
NBER WORKING PAPER SERIES

INCENTIVE DESIGN IN EDUCATION:
AN EMPIRICAL ANALYSIS

Hugh Macartney
Robert McMillan
Uros Petronijevic

Working Paper 21835
http://www.nber.org/papers/w21835

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
December 2015

We would like to thank Joseph Altonji, Peter Arcidiacono, David Deming, Giacomo De Giorgi, David
Figlio, Caroline Hoxby, Lisa Kahn, Lance Lochner, Rich Romano, Eduardo Souza-Rodrigues, Aloysius
Siow, and seminar participants at Duke University, University of Florida, NBER, SITE, University
of Western Ontario, and Yale University for helpful comments and suggestions.  Thanks also to Hammad
Shaikh for excellent research assistance.   Financial support from the University of Toronto is gratefully
acknowledged.  All remaining errors are our own. The views expressed herein are those of the authors
and do not necessarily reflect the views of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been peer-
reviewed or been subject to the review by the NBER Board of Directors that accompanies official
NBER publications.

© 2015 by Hugh Macartney, Robert McMillan, and Uros Petronijevic. All rights reserved. Short sections
of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full
credit, including © notice, is given to the source.



Incentive Design in Education: An Empirical Analysis
Hugh Macartney, Robert McMillan, and Uros Petronijevic
NBER Working Paper No. 21835
December 2015
JEL No. D82,I21,J33,M52

ABSTRACT

While incentive schemes to elicit greater effort in organizations are widespread, the incentive strength-effort
mapping is difficult to ascertain in practice, hindering incentive design.  We propose a new semi-parametric
method for uncovering this relationship in an education context, using exogenous incentive variation
and rich administrative data.  The estimated effort response forms the basis of a counterfactual approach
tracing the effects of various accountability systems on the full distribution of scores.  We show higher
average performance comes with greater score dispersion for a given accountability scheme, and that
incentive designs not yet enacted can improve performance further, relevant to education reform.

Hugh Macartney
Department of Economics
Duke University
239 Social Sciences Building
Box 90097
Durham, NC 27708
and NBER
hugh.macartney@duke.edu

Robert McMillan
University of Toronto
Department of Economics
150 St. George Street
Toronto, ON M5S 3G7
CANADA
and NBER
mcmillan@chass.utoronto.ca

Uros Petronijevic
University of Toronto
150 St. George Street
Toronto, Ontario, Canada
M5S3G7
uros.petronijevic@utoronto.ca



Across many types of organization, schemes that provide incentives to exert effort are often

seen as an important means of boosting organizational performance. The design of such

schemes has, naturally, been a central preoccupation in economics and also a very challenging

one, given that effort is typically unobserved. While this challenge has been taken up in a

substantial body of sophisticated theoretical research,1 a host of incentive schemes operating

in practice are only loosely informed by the theoretical contracting literature. This creates

scope – in a variety of settings – for potentially significant performance gains from judicious

incentive reform.

In order to gauge whether such gains are attainable, one attractive approach involves

studying the introduction of actual incentive reforms, as in classic papers by Lazear (2000)

and Bandiera, Barankay and Rasul (2005), for example.2 Incentive designers often wonder

about more speculative considerations, however, looking to the effects of changing the pa-

rameters of existing schemes counterfactually, or the effects of incentive schemes yet to be

implemented in practice. As a complement to the evaluation of actual schemes, therefore,

approaches that combine a strategy for identifying effort under prevailing incentive provi-

sions with a framework for counterfactual analysis can be appealing – a type of approach

that features in a recent body of research studying worker incentives.3

We build on that strand of literature in two key respects. First, we propose a new

semi-parametric method for recovering the incentive strength-effort relationship. Here, we

specify a simple model of effort setting, then show that the implied function relating effort

to incentives can be credibly and transparently identified, based on exogenous incentive

variation; despite its simplicity, the model does a remarkably good job of fitting the data.

Second, using the estimated model as a foundation, we develop a framework for carrying

out informative counterfactuals, allowing us to uncover the full distribution of outcomes for

1The seminal work of Mirrlees (1975) and subsequent analyses make clear that robust contract forms are
difficult to obtain.

2Lazear’s well-known study shows how the introduction of a new piece-rate style incentive scheme by
Safelite Glass Corporation led to an increase in company profits, implying that the pre-existing scheme was
suboptimal. Bandiera et al. demonstrate that significant productivity gains arise among fruit pickers in
moving to a piece rate from a relative incentive scheme. Other papers consider incentive variation more
broadly, including Mas and Moretti (2009), who study the productivity effects of varying peers using a novel
approach that focuses on the assignment of supermarket checkout staff.

3See innovative papers by Copeland and Monnet (2009) and Misra and Nair (2011), among others.
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a given incentive scheme and further, to place rival incentive schemes on a common footing;

here, we include a maximally efficient benchmark – a scheme that generates the highest

average effort for a given cost.4 The framework thus allows us to explore how changing

incentives counterfactually affects the complete distribution of outcomes.

We develop our new approach in the context of accountability systems in public ed-

ucation – a prominent policy arena in which incentive schemes have been adopted widely.

In their essence, such schemes involve setting performance targets and explicit rewards (or

penalties) that depend on target attainment, their goal being to increase teacher and school

effort, in turn raising test scores.5 Several types of accountability scheme have been imple-

mented to date, including proficiency schemes – notably the federal No Child Left Behind Act

of 2001 (‘NCLB’) – that set fixed performance targets based on school sociodemographics,

and value-added schemes whose targets condition on prior student scores.

Such variety brings to mind important incentive design issues, particularly how the fea-

tures of different accountability systems affect student and school outcomes. While several

convincing studies consider incentive issues by focusing on particular aspects of account-

ability schemes already in operation,6 our approach allows us to analyze the impacts of

alternative education accountability systems, including ones not yet implemented, across

the entire distribution of test scores. In so doing, we are able to assess – for the first time –

the relative merits of rival schemes in a quantifiable way, and shed light on the way incentives

can affect the spread of educational outcomes, relevant to wider social mobility.

To implement our approach, we exploit plausibly exogenous incentive variation arising

from the introduction of NCLB. Being a ‘fixed’ scheme, NCLB creates incentives to focus on

students at the margin of passing relative to a fixed target.7 We take advantage of this non-

uniformity in North Carolina, a setting for which we have rich administrative data covering

all public school students over a number of years.

4Our approach has a positive emphasis, in contrast to the normative emphasis of the optimal contracting
literature.

5Persuasive evidence that accountability schemes succeed in improving student achievement already exists
– see Carnoy and Loeb (2002), Lavy (2009), Hanushek and Raymond (2005), Dee and Jacob (2011), and
Imberman and Lovenheim (2015), among others.

6See Cullen and Reback (2006), Neal and Schanzenbach (2010), and Macartney (2016).
7That NCLB creates such incentives has been well-documented in the literature – see Reback (2008), for

example.
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To guide our empirical analysis, we set out a simple model of the education process that

links incentives to outcomes via discretionary action, ‘effort,’ which we will take to refer to

changes in observable test scores that are attributable to incentive variation. This yields an

effort function that depends on the parameters of the incentive scheme and, under threshold

targets, a measure of incentive strength.

We estimate this function semi-parametrically, first by constructing a continuous incen-

tive strength measure for each student using rich data from the pre-NCLB-reform period,

equal to the gap between the target and the student’s predicted score; this describes how

marginal each student is.8 Then we compare the achievement of each student against a

prediction reflecting all pre-reform inputs; this difference for each level of incentive strength

serves as a pre-period performance control. Once incentives are altered, teachers and schools

re-optimize, and the post-reform difference between the realized and predicted test scores

will reflect both the original inputs as well as any additional effort associated with the new

non-uniform incentives, likely to be strongest where students are marginal.9

Consistent with the model predictions, we find that the profile of actual scores in the

pre-reform period plotted against the incentive measure is remarkably flat. Then, once the

reform comes in, there is a pronounced hump, peaking precisely where incentives should be

most intense and declining on either side of that.10 By differencing the post- and pre-reform

distributions, we can then uncover – based on minimal assumptions11 – the underlying effort

response to greater accountability for all levels of incentive strength.

This response forms the basis of a counterfactual approach that allows us to recover the

outcome distribution under various accountability schemes, including schemes not currently

8Given the incentive strength measure is very much related to, and builds upon, measures appearing in
related prior work, we draw attention in Appendix A to seemingly subtle differences that turn out to be
important in the development of our approach.

9This is related to the approach in Neal and Schanzenbach (2010). Because they only have one year of
pre-reform data, they do not construct a score difference relative to the pre-reform; and unlike their focus
on deciles of the distribution, we develop a continuous measure of incentive strength. (See Appendix A for
more discussion.)

10We also find evidence supporting the hypothesized channel, rather than the rival story of schools focusing
on the middle of the distribution.

11We assume first that the education production technology is linear in effort and separable – a reasonable
first-order approximation, made almost without exception in the education literature. Second, NCLB should
influence the effort decisions of educators but not the other determinants of student test scores – something
we can check indirectly.
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implemented. To illustrate the approach, we trace out comparable performance frontiers

based on the first two moments of the score distribution for different accountability systems,

starting with the most widespread – those setting fixed and value-added targets.12 Doing so

reveals a clear tradeoff: higher average performance comes at the expense of more dispersed

scores for a given type of scheme. Further, we show that the frontier associated with fixed

targeting falls inside its value-added counterpart, and that regular value-added schemes are

inferior to a scheme with student-specific bonus payments. We are able to represent these

respective frontiers together with the aid of a single diagram. The analysis is relevant to

the reform of existing education accountability systems, and has broader applicability to the

problem of incentive design in the workplace – a theme we develop below.

The rest of the paper is organized as follows: the next section sets out a theoretical

framework that underlies our estimation approach. In Section II, we describe the institu-

tional context and the rich administrative data set we have access to, along with motivating

descriptive evidence. Section III presents the research design: we outline our implementation

of this design in a North Carolina context in Section IV, along with estimates of the effort

function. In Section V, we describe our counterfactual framework, and present the results

from the counterfactual analysis. Section VI concludes.13

I. Theory

We present a simple model of the education process that links accountability incentives to

school performance. This motivates our incentive strength measure, and serves as a means for

analyzing the determinants of optimal effort, which will guide our empirical implementation.

We also consider the setting of accountability targets – an important issue in incentive design.

The model has three main elements: First, there is a test score technology relating

measured education output y to various inputs. Given our interest in incentives, we place

particular emphasis on the discretionary actions of educators that may serve to increase

output. In line with a substantial body of work in incentive theory, we will refer to such

12Given we predict the full counterfactual score distribution, our approach allows us to consider various
other possibilities beyond the first two moments.

13Supplementary material is provided in a set of appendices, referenced in the text.
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actions simply as ‘effort.’14 In our setting, effort is taken to capture a range of actions on

the part of educators that raise student performance, most of which are unobserved by the

researcher.15

Formally, we write the education production technology, which relates outputs to inputs,

as yi = q(ei, θi) + εi. We focus on the effort choice of a single educator i; depending on the

context, this could be a single teacher, or all the teachers in a grade within a school, treated

as a single effort-making body. Output yi is the test score of the student or students taught

by i; ei is the effort of educator i, which is endogenous to the prevailing incentive scheme;

and θi represents exogenous inputs, such as student ability – we treat students as passive,

though potentially heterogeneous. Effort and exogenous student inputs are assumed to be

related in a systematic way to output, captured by the function q(e, θ), with both first partial

derivatives being positive; thus we will think of increases in θ – relevant below – as capturing

more favorable exogenous ‘production’ conditions. The simplest form for the q(., .) function

would be linear, and additive in its arguments. The output measure yi is also assumed to

be influenced by a noise component, given by εi. We define H(·) and h(·) as the cumulative

distribution and probability density functions of the negative of this noise, −εi, and assume

these functions are common across all educators i.

Second, we characterize an incentive scheme by a target yTi faced by educator i and

a reward b, both exogenously given.16 This formulation of the target allows for a range

of possibilities, considered in more detail below: the target could be an exogenously fixed

score, a function of average student characteristics (including past performance), or even

be student-specific. The reward parameter b governs how target attainment maps into the

educator’s payoff, and can include monetary rewards or non-monetary punishments.

Third, educator i faces a cost that is convex in effort and may depend on exogenous

14The analogy with firms is clear, quoting Laffont and Tirole (1993), page 1: “The firm takes discretionary
actions that affect its cost or the quality of its product. The generic label for such discretionary actions is
effort. It stands for the number of hours put in by a firm’s managers or for the intensity of their work. But
it should be interpreted more broadly.”

15In our empirical implementation, effort will refer more specifically to changes in observable test scores
that are attributable to incentive variation.

16Unlike the contract theory literature, we will not write down a planning problem and then derive the
optimal contract form given the incentive constraints. Rather, we focus on the way that the effort distribution
changes under exogenously given schemes, where those schemes might not be optimal.
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conditions θ also, though we suppress that dependence for now. Thus we write it as c(ei),

and assume its functional form is known.17

Taking these elements together, we can write down the educator objective under dif-

ferent incentive schemes. In each instance, the structure allows us to express optimal effort

as a function of the parameters of the incentive scheme, along with other exogenous char-

acteristics. This function is our main object of interest, our goal being to recover its form

semi-parametrically: in Section III, we outline a strategy for doing so.

Types of Scheme

We consider some common incentive schemes through the lens of the model. Under a piece

rate, educator i’s objective can be written: Ui = b[q(ei, θi)+εi−yTi ]−c(ei). Optimal effort e∗i

then satisfies the first-order condition: b · ∂q(ei,θi)
∂ei

= c′(ei), implying that the choice of effort

is invariant to the target yTi .

In practice, threshold schemes are far more widespread in an education setting, not least

because they give policymakers greater cost control – the maximum payout under the scheme

is determinate, for example. We focus on these. The educator’s objective under a threshold-

based scheme is Ui = b · 1yi≥yTi − c(ei), which in expectation is given by b ·Pr[q(ei, θi)− yTi ≥

−εi] − c(ei) = b · H[q(ei, θi) − yTi ] − c(ei). Optimal effort e∗i will then implicitly satisfy the

first-order condition, given by

(1) b · h[q(ei, θi)− yTi ]
∂q(ei, θi)

∂ei
= c′(ei).

Unlike a piece rate, optimal effort is a function of the target. Further, it depends on the

value of θ in a systematic way – a point we now develop.

Take the case where q(e, θ) is simply the sum of its arguments: q(ei, θi) = ei + θi. The

additively separable assumption implies that the marginal benefit of effort, given by the LHS

of (1), simplifies to b ·h[θi + ei−yTi ]. Holding the reward parameter b fixed, marginal benefit

is then a function of two quantities. The first is the gap between the systematic component

17This formulation applies straightforwardly in the case of a single educator teaching a single student.
When multiple students are involved, it is natural to distinguish two components of effort, one being student-
specific, the other common to all students taught by i. Below, we will consider the polar cases of student-
specific versus common effort.
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of the score, q(ei, θi) and the target for educator i; the second is the density of the error in

the performance measure, h(·), evaluated at that gap.

For illustration, suppose that the decision maker i refers to a school. Suppose also

that the error term is unimodal, peaking at a mean of zero. Then consider three cases,

corresponding to variation in the underlying conditions governing education production in

three types of school, where θL < θM < θH – for instance, those educating low-, moderate-

and high-ability students on average, respectively.

In Figure A.1, we illustrate the effects of shifting θ on optimal effort, found at the

intersection of the marginal cost and marginal benefit curves. Effort is on the horizontal

axis, and the intersection with the vertical axis indicates zero effort – the origin for the

marginal cost of effort curve in each panel. The peak of the marginal benefit curve will

be found at the effort level, ē, for which the predicted score equals the target – we assume

a symmetric distribution in the figure. Taking the target to be fixed at the same value

across all three panels, in the linear case we have ē(θ) = yT − θ, which is declining in

the underlying conditions θ, leading the marginal benefit curve to shift left as underlying

‘production’ conditions become more favorable.

Given our interest in the agents’ decision problem, consider the school in the first case,

where θ = θL. Taking the target as fixed, the low value of θ makes it very unlikely that

the school will exceed its performance target, even if effort is set at a high level; thus, the

incentive to exert costly effort will be correspondingly low. We illustrate this case in panel

(a). The marginal benefit curve, conditioning on θL, will simply be the product of (fixed) b

and the density h(·), tracing out the shape of the latter. Optimal effort, e∗(θL), is determined

by the intersection of this marginal benefit curve and the given marginal cost curve.

It is straightforward to see how optimal effort changes as we raise the θ parameter.

Shifting from θL to θM , the marginal benefit curve moves to the left in panel (b), in turn

moving the intersection between marginal benefit and marginal cost to the right (at least

in this intermediate case). Intuitively, the underlying production conditions relative to the

target make effort more productive in terms of raising the odds of exceeding the target,

so the school will have an incentive to exert higher effort. This incentive is unlikely to be

monotonic, however. Panel (c) illustrates the case where θ = θH , the underlying production

7



conditions being so favorable that the educator is likely to satisfy the target even while

exerting little effort. Where marginal cost and marginal benefit intersect, the height of the

marginal benefit curve is relatively low, reflecting the low marginal productivity of effort.

This in turn leads to a low level of effort, lower than the case where θ = θM .

Several relevant points emerge from this simple illustration: First, a given target can

create stronger or weaker incentives, depending on the underlying ‘production’ conditions

facing the educator. Intuitively, a target will engender more effort when effort has a higher

marginal impact in terms of the passing probability – where the density of the noise distri-

bution is higher.

Second, there is a clear role for incentive design to strengthen effort incentives: if θ

is given exogenously and is known, then it would be possible to tailor targets to create

the strongest possible incentives (given θ) if all that mattered were maximal performance.18

Related, we will see shortly that different methods of setting targets will give rise to different

incentives – our empirical exploration of the associated incentive differences will form the

heart of the paper.

Third, a natural metric for measuring incentive strength emerges from the analysis.

This is the gap between the systematic component of the score and the target – the argu-

ment of the h(·) function in the expression for the marginal benefit of effort. It will feature

in our empirical implementation with one important adjustment: we will replace the sys-

tematic component of the score, q(e, θ), with a predicted score, ŷ, obtained using parameters

estimated in a low-stakes environment.

Fourth, in line with the illustration, the optimal effort response is likely to have an

inverted-U shape.19 For low and high values of θ, incentives to exert effort will be low, as

increased effort has little impact on target attainment: in the former case, the target is

likely to remain out of reach, while in the latter, it is easily attained. In the middle of the

θ distribution, effort incentives are stronger. We will see below that the spread of the effort

distribution will be influenced by the way targets are chosen, with implications for incentive

18In panel (b) of Figure A.1, the target calls forth precisely the maximal effort, given that the marginal
cost curve intersects the marginal benefit curve at its highest point.

19In the simple model under consideration, having a symmetric, unimodal error distribution is sufficient
for this.

8



design.

Target setting

Having discussed the simple analytics of target threshold schemes in general, we now consider

different target-setting schemes. A general class of incentive schemes can be characterized

by a set of targets and rewards, written {yT(I), b(I)}, given prior information I. Relevant to

our application, we will treat the predicted score using all prior information available to the

econometrician (ŷ) as our summary of I. Thus the general characterization can be expressed

as {yT(ŷ), b(ŷ)}. The schemes most widely used in practice, discussed next, can be viewed

as special cases.

Fixed schemes: These involve targets that are the same for all agents – say, those

involved with a certain grade g. Let the test score of students taught by educator i in grade

g be given by yig.
20 The grade-specific target yTig that applies under a fixed scheme can be

written yTg . The fixed scheme sets a threshold: b · 1 yig ≥ yTg , where b is the reward if test score

yig exceeds the student-invariant target yTg , or the sanction if the score does not exceed the

target (e.g. under NCLB).

Value-added schemes: The target now depends on prior information. The threshold

rule can be written b·1 yig ≥ yTig where the target yTig = αgyig−1, ∀ i in grade g. The parameter

αg is central to the target-setting process in grade g, governing the strength of the dependence

on the prior score; b is the reward if the test score yig exceeds the target, or the sanction if

the score does not exceed the target.

To illustrate the general formulation, suppose for simplicity that performance in the

prior grade, yg−1, is the only information available, and let the predicted score be written as

a flexible function ŷ = α̂0 +
∑P

p=1 α̂p(yg−1)p, dropping any person-specific subscripts, where

the parameters {α̂p}Pp=0 are estimated from a flexible regression of y on yg−1 in a low-stakes

incentive environment.21

In this setup, the target under a fixed scheme imposes α0 = α, and αp = 0 for all p > 0.

20For simplicity, assume one such student.
21As in schemes typically implemented, the reward b(yg−1) = b for all prior information yg−1. Let the

target be calculated according to yT(yg−1) = α0 +
∑P
p=1 αp(yg−1)p for some {αp}Pp=0.
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Correspondingly, the target under a value-added scheme imposes the condition αp = 0 for

p > 1.

Uniform schemes: What we will refer to as a uniform scheme also serves as a useful

reference point. Given the definitions, yT can replicate ŷ with some constant shift d. In

particular, if α0 = α̂0−d and αp = α̂p for all p > 0, then yT = ŷ−d. The maximally efficient

scheme, which provides an important benchmark in our counterfactual analysis, is a special

case of this. (See Section V.)

I.A. Optimal Effort Function

Our main object of interest from the model is the optimal effort function, which solves the

educator’s payoff maximization problem. For a given incentive scheme, involving a target

yTig set in a specific way and bonus b, this can be written as e∗(ŷig − yTig; b) for an educator i

in grade g. We already saw, in the general case of threshold schemes, how the gap between

the systematic component of the score and the target is a potentially important determinant

of the effort decision. Thus, we write optimal effort as a function of the gap: ŷig − yTig.22

Because this gap plays a key role in the empirical implementation that follows, it is

useful to define our continuous measure of incentive strength as πig ≡ ŷig − yTig for a given

type of scheme. The distribution of incentive strength will also be important: under a value-

added scheme, it is likely to be tighter than under a fixed scheme, given that targets can be

made student-specific.

With this compact notation in place, our interest centers on e∗(πig) – the way that

a given measure of incentive strength, observed for educator i in grade g, maps into effort,

taking b as given. It is worth emphasizing that the functional form of e∗(πig) is unknown and

must be inferred empirically: Section III describes our strategy for uncovering this mapping

in a semi-parametric way.

22From equation (1), it is clear that the reward parameter b enters the marginal benefit expression mul-
tiplicatively. We will suppress b for the remainder of the section, though this multiplicative feature will be
useful when carrying out counterfactual analysis.
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Aggregation: The Case of Uniform Effort

Here, we provide a brief discussion of aggregation issues, which will arise later on in the

empirical analysis. The simple version of the model presented thus far applies most readily

to the case of a single student taught by single effort-making educator. This can be thought

of as capturing the extreme case where the teacher is able to perfectly tailor instruction to

each student. In such a setting, it is easy to aggregate up to the classroom or school level,

useful when exploring the classroom or school-wide effects of incentive schemes.

This extreme case does not do justice to the constraint that teachers often face, whereby

it is difficult to individualize instruction. As an alternative, we consider the other extreme

classroom aggregation case where each teacher chooses an identical level of effort for all stu-

dents under her care: Under the additive separability assumption, it is straightforward to

show that the educator chooses a level of uniform effort according to the distance between

average student ability and the target averaged over all students in the class.23 This formu-

lation of the educator’s decision problem, when she is constrained to choose a common level

of effort for all of her students, will prove useful when we present our empirical results.

II. Institutional Setting and Data

North Carolina provides a suitable context for our study, for institutional and data reasons.

On the institutional side, the state provides incentive variation arising under two separate

accountability regimes. High-stakes accountability was implemented under the ABCs of

Public Education legislation in the 1996-97 school year for all schools serving kindergarten

through grade eight. Under the ABCs, each grade from three to eight in every school

is assigned a school-grade-specific target gain, depending on both average prior student

performance and a constant level of expected test score growth. Based on average school-

level gains across all grades in student standardized mathematics and reading scores, the

ABCs pays a monetary bonus to all teachers and the principal if a school achieves its overall

growth target.

NCLB provisions were implemented in North Carolina in the 2002-03 school year fol-

23It is also worth noting that class/school size effects do not play a role in the uniform effort choice under
additive separability.
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lowing the passage of the federal No Child Left Behind Act in 2001. In contrast to the

pre-existing pecuniary incentives under the ABCs, NCLB focuses on penalties for under-

performing schools. The federal program aims to close performance gaps by requiring schools

to meet Adequate Yearly Progress (‘AYP’) targets for all students and for each of nine stu-

dent subgroups. We focus on AYP targets for all students as a first approximation to the

prevailing incentives, abstracting from the subgroup aspect in our analysis.

In addition to this incentive variation, North Carolina offers incredibly rich longitudinal

education data from the entire state, provided by the North Carolina Education Research

Data Center (NCERDC). These contain yearly standardized test scores for each student in

grades three through eight and encrypted identifiers for students and teachers, as well as

unencrypted school identifiers. Thus students can be tracked longitudinally, and linked to a

teacher and school in any given year.

Our sample period runs from 1997-2005. To focus on schools facing similar incentives,

we limit the sample to schools serving kindergarten to eighth grade, and exclude vocational,

special education, and alternative schools.24 These restrictions notwithstanding, our sample

sizes are very large, with over five million student-grade-year observations over the nine-year

window, and over 14,000 school-year observations.

Table A.1 provides sample summary statistics. Our main performance variables are con-

structed from individual student test scores. These are measured on a developmental scale,

which is designed so that each additional point represents the same amount of knowledge

gained, irrespective of the baseline score or school grade. Both the mathematics and reading

scores in the table show a monotonic increase across grades, consistent with knowledge being

accumulated in those subjects over time. The test score levels are relevant under NCLB,

which requires that each student exceeds a target score on standardized tests (among other

requirements). The longitudinal nature of the data set also allows us to construct growth

score measures for both mathematics and reading, based on within-student gains. These

gains are positive, on average, in both subjects across grades, the largest gains occurring in

each case in the earlier grades.

24We also only retain schools with a highest grade served between grades five and eight, thus avoiding the
different accountability provisions that arise in high schools as well as the potentially different incentives in
schools with only one or two high-stakes grades.
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With respect to the school-level performance variables, 27 percent of schools failed the

ABCs and 37 percent failed NCLB across the sample period.25 Throughout our sample

period, the average school had a school-wide proficiency rate of 79 percent on math and

reading tests.26

II.A. Descriptive Analysis

We are interested in school and school-grade performance variation over time, especially

contrasting outcomes before and after the introduction of NCLB. In prior work, in order

to identify the effects of NCLB on student outcomes, Dee and Jacob (2011) use states that

had pre-existing accountability programs as ‘control’ states, and argue quite plausibly that

NCLB should have had little effect on school incentives there. To motivate our research

design below, we present evidence indicating that schools in North Carolina – a state with a

pre-existing scheme – actually responded in a noticeable way to the introduction of NCLB.
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Figure 1 – School Performance from 1999 to 2005

Figure 1 shows the fraction of schools failing the ABCs and NCLB in each year, starting

in 1999. We construct a consistent series showing the counterfactual NCLB failure rate in

25Recall that NCLB is a proficiency count system, which assesses school performance according to the
fraction of students achieving proficiency status on End-of-Grade tests.

26The school-wide proficiency rate does not map directly into school-level NCLB outcomes because of
subgroup proficiency requirements.
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the years prior to 2003 by applying the NCLB outcome calculations in 2003 to the underlying

student-level performance data for prior years. As is clear from the figure, the year in which

NCLB was introduced – 2003 – is associated with a remarkable decline in the fraction of

schools failing the ABCs, down from 25 percent in 2002 to only 4 percent in 2003. To

lend credence to the notion that this reflects an NCLB-triggered response, notice that the

fraction of schools predicted to fail NCLB declines substantially, from 58 percent in 2002

to 36 percent in 2003, consistent with schools taking steps to improve along the dimensions

required under NCLB.27 The figure also shows that the ABCs improvement was short-lived,

as the failure rate more than jumps back, to over 30 percent in 2004.

III. Research Design

The research design presented in this section is central to our analysis. Our goal is to uncover

the optimal effort response e∗(π) for a given incentive strength π, described in Section I.

Building on the descriptive evidence in the previous section, the strategy we follow makes

use of the new performance requirements under NCLB as an exogenous shock to the school

decision process occurring in 2003. In order to explain the semi-parametric approach we

develop, we set out the technological assumptions we are making, describe the construction

of our ex ante incentive strength measure, and then show how double-differencing combined

with an exogeneity argument yields the optimal effort response to incentives.

Technology: As is standard in the literature, we specify a simple linear structure for

the test score production function. Not only does this provide a useful starting point; it also

serves as a reasonable first-order approximation to a richer underlying test score technology.

We think of there being a ‘pre-reform’ environment in which effort is approximately

uniform, irrespective of incentive strength π.28 Test scores in this environment are generated

according to y(π) = ŷ + ε(π), the sum of a systematic component, which may include

baseline effort, and noise. We reference a particular score by our ex ante incentive measure

27Due to the many nuances associated with the implementation of NCLB, we are unable to perfectly
reproduce school-level outcomes in the post-NCLB period: the counterfactual NCLB failure rate does not
coincide precisely with the actual failure rate. In 2003, we understate the failure rate by around 10 percentage
points: in 2004 and 2005, we are much closer.

28Such uniformity can be checked, to some degree. We provide descriptive evidence in the next section
(see Figure 6).
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π, as we are interested in seeing how changes in formal incentives are reflected in the score

distribution in a way that is attributable to an effort response.

To that end, consider a reform R that introduces new performance targets for educators,

thereby changing the incentives to exert effort. The targets can be written yTR(ŷR), where

ŷR represents the predicted score in the post-reform environment, excluding any additional

effort response e∗ to the reform. We will write scores in this post-reform environment, using

the linearity assumption, as

(2) yR(π) = ŷR + e∗(π) + εR(π),

expressed as a function of π.

Incentive Strength and Effort Response: We obtain the optimal effort response

as a function of incentive strength using a five-step procedure (visualized in Figure A.3), in

which we distinguish 2003 – the year in which the new incentives came into effect – from

pre-reform years.

In the first step (Figure A.3a), we predict student performance in a flexible way in

those pre-reform years using several covariates, including lagged test scores.29 In the second

step (Figure A.3b), we then use the saved coefficients from the first step to construct our ex

ante incentive strength measure. In particular, combining those coefficients with updated

covariates from 2003 and prior test scores for 2002, we are able to predict performance (ŷ)

for 2003. Using the known NCLB target specified by the reform (yT ), we then compute

our continuous measure of incentive strength as the difference between the predicted value

(which does not include additional effort in 2003) and the target: π ≡ ŷ − yT . On this

basis, the predicted score component is invariant to any changes occurring in 2003. Instead,

variation in incentive strength when new incentives are considered arises from changes in the

target. Specifically, the proficiency target yT becomes relevant under NCLB, implying that

π will capture the strength of effort incentives in 2003 but not in prior years.

With the ex ante incentive strength measure in hand, we then turn to the main task

29Specifically, we regress contemporaneous 2002 scores on cubics in prior 2001 math and reading scores
and indicators for parental education, gender, race, free or reduced-price lunch eligibility, and limited English
proficiency.
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in the third step: to determine the optimal effort response for each value of our continuous

incentive strength measure (π). We do this in the following semi-parametric way: for each

value of π, we compute the difference between the realized and predicted scores (y − ŷ) in

2003, the year when the incentive shock occurred. Intuitively, this quantity should contain

the effort response as well as any noise in our prediction.30 In terms of the above technology,

this step will recover yR(π)− ŷR = e∗(π)+εR(π). Recall from the theory that the response to

NCLB is predicted to be non-uniform (larger for marginal students with π close to zero and

smaller for non-marginal students with larger absolute values of π). This prediction serves

as a helpful check that our assumptions are satisfied.

Our fourth step is designed to control for any pre-existing patterns that are common

across the pre- and post-reform periods. To that end, we repeat steps one through three using

only the pre-reform years 1998 through 2000 (Figures A.3c and A.3d).31 That is, we regress

1999 scores on cubics in prior 1998 math and reading scores as well as contemporaneous

student covariates. Using the resulting coefficients, we construct ŷ and, combined with the

target yT , π for the year 2000. We then compute y− ŷ in 2000 for each value of the incentive

measure. This fourth step thus recovers the noise in the pre-reform period (y(π)− ŷ = ε(π)).

Our fifth and final step differences the post- and pre-reform distribution from step three

and four, to identify the optimal effort function. The double differencing yields:

(3)
(
yR(π)− ŷR

)
−
(
y(π)− ŷ

)
= e∗(π) + εR(π)− ε(π) .

In our context, an exogeneity assumption implies that the RHS of (3) is just equal to e∗(π),

the desired object. That is, conditional on π, the stochastic components of the production

technology are equal in expectation over time. Given that NCLB should influence the effort

decisions of educators but not the other determinants of student test scores, this assumption

is plausible – recall that the targets under NCLB are student-invariant.32 We consider

30Notably, the effort response is in addition to the effort exerted under the pre-existing value-added ABCs
scheme, even if is not completely uniform. We only require that the ABCs scheme affects y and ŷ in the
same way for this to be true.

31We select these pre-reform years since the test scores in them are all obtained from the same first edition
testing suite.

32Note that this strategy allows for the existence of any non-uniformity in the pre-existing value-added
ABCs scheme which is time invariant.
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supportive evidence next.

IV. Incentive Response

In this section, we show results from the implementation of our research design, and discuss

evidence relating to the validity of the approach.

IV.A. The Test Score Response

Given our rich test score microdata, we can compute whether there was any test score

response to the introduction of NCLB in 2003.

Figure 2 shows the densities of realized minus predicted test scores in both the pre-

period (2000 and 2002)33 and the post-period (2003), which we interpret as the densities

of unobservable test score determinants, including the effort of educators. Predicted scores
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Figure 2 – Shifts in Residual Densities (2003 versus 2000 and 2002)

represent the test scores that are likely to occur in a given year if the relationship between

student observable characteristics and realized test scores remains the same as it was in past

years. The difference between realized and predicted scores in the pre-NCLB year is centered

approximately around zero, suggesting that the prediction algorithm performs well. In 2003,

however, the residual densities for all grades display clear rightward shifts, indicating that

33For grades four and five, we use 2000 as the pre-reform year, rather than the year immediately preceding
the implementation of NCLB (2002). We do so because North Carolina altered the scale used to measure end-
of-grade results in 2001, implying that we cannot use our prediction algorithm in 2002, as contemporaneous
and prior scores are on different scales in 2001. In contrast, we can use it in 2002 for grade three, because
these students write the ‘pre’ test at the beginning of the year, meaning that both scores are on the same
scale in 2001.
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realized scores exceeded predicted scores on average. This observation is consistent with an

improvement in some unobserved determinant of test scores.

Interpreting the Response as Effort

We argue that the unobserved determinant in question is teacher effort by relying on the well-

established theoretical predictions associated with proficiency-based accountability schemes,

discussed in Section I. These schemes reward schools (or refrain from punishing them) based

on the percentage of proficient students and so provide schools with clear incentives to focus

their efforts on students predicted to score around the proficiency target. Students likely

to score far below the target require a prohibitively costly amount of extra effort to reach

proficiency status, while students predicted to score far above the target are likely to pass

without any additional effort at all. Thus, to the extent that the documented shifts in

residual densities represent an effort response, we should see the largest gains in realized-

over-predicted scores for the students predicted to score near the proficiency threshold.

Figure 3 shows that these are exactly the patterns we find across the predicted test

score distribution.34 In 2003, the gains above predicted scores are low for students predicted
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Figure 3 – NCLB Effort Response
34We focus on the fourth grade distribution in our analysis. The patterns are similar across grades for the

middle and top of the ex ante incentive strength distribution, though the low end is somewhat distorted for
third and fifth grades due to slightly greater heterogeneity in the impacts of the pre-existing value-added
ABCs scheme as well as effects that can be traced to subgroups under NCLB.
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to be far below the proficiency threshold; they begin to increase for students predicted to

be close to the threshold; and they decline again for students predicted to be far above the

threshold. Yet the figure makes clear that there is virtually no relationship in the pre-NCLB

year between a student’s predicted position relative the proficiency threshold and the gain

he or she experiences over the predicted score. This is as one would expect, given there was

no strong incentive for educators to focus on proficiency prior to NCLB.

Generally speaking, to the extent that educators care about incentives under the new

regime, adjusting discretionary effort is an obvious candidate input through which perfor-

mance can be altered, and in a manner consistent with the observed change in the test

score profile. This ‘effort’ could take a variety of unobserved forms: teachers raising their

energy levels and delivering material more efficiently inside the classroom, increasing their

lesson preparation outside the classroom, or teaching more intensively ‘to the test.’ Without

richer data, these various components are difficult to distinguish. At the school level, there

could be changes in education spending (in the form of lowering class sizes, for instance),

or reassigning teachers, though we do not find evidence of observable changes along these

dimensions. This leads us to take the evidence as supporting the view that teachers changed

their effort in response to NCLB, and in a way according with the hypothesized response to

a proficiency-count system.

IV.B. Validity of the Approach

Testing for Bunching

When presenting the research design, we drew attention to the required exogeneity of the

incentive ‘shock.’ Indirect light can be shed on this by examining bunching in the distribu-

tions of the predicted ex ante incentive strength measures, especially in the vicinity of the

target.

To give a sense of the grade-specific distributions of our ex ante incentive strength

measure that emerge from applying the proposed recipe, Figure 4 plots the incentive-strength

distributions for Grades 3, 4, and 5 mathematics in 2003. We are especially interested to see

if NCLB produces any bunching around the relevant target.
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Figure 4 – Distribution of Predicted Scores minus the NCLB Target

In each of the panels, the fixed NCLB target occurs at zero, as indicated by the ver-

tical line. Based on the distribution of predicted scores, the figure provides no evidence of

bunching. This lends support to the notion that the NCLB ‘shock’ was indeed exogenous,

affecting the effort of educators but not other determinants of student test scores.

Rival Effort Story

Our maintained hypothesis is that our approach uncovers the effort response to the incentive

strength measure, π. In Appendix B, we consider alternative story whereby effort might vary

with respect to a student’s relative position in the predicted score distribution in his or her

school. A natural test is to look at the position of peak effort across quartiles of the incentive

strength distribution, as we describe there, supporting the view that schools indeed respond

to a student’s proximity to the proficiency threshold, as hypothesized.

IV.C. Incentive Strength and the Optimal Effort Function

We are now in a position to recover the effort function. In Figure 5(a), we take the dif-

ference between the two years – 2003 versus 2000 – to isolate the effort response at each

point in the predicted test score distribution (applying the third and fourth steps). In Fig-

ure 5(b), we then fit a flexible polynomial to the data, which we interpret as the optimal

effort function, e∗(π). We estimate the function by first grouping students in each year into

incentive strength bins of width one (in terms of developmental scale units) and calculating

the average effort response within each bin. We then take the difference between the 2003
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and 2000 averages, weight each difference by the number of students in the bin, and regress

the weighted differences on a flexible tenth-order polynomial of the incentive strength mea-

sure, π. The points in Figure 5(b) represent the within-bin differences and the function is

the tenth-order polynomial fit. To avoid over-fitting noisy outcomes in bins with relatively

few observations, we impose a linear fit on the effort function in the extreme positive and

negative ranges of π.

The function behaves as theory would predict, peaking where incentives are strongest

and steadily declining as incentives weaken. With this function in hand, we can compute the

expected effort response for students at any point in the π distribution, under the standard

separable production technology assumption used in the literature.
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Figure 5 – Derivation of the Optimal Effort Function

Rationalizing the Estimated Effort Function

We show how the estimated effort function can be rationalized using a simple parametrization

of the basic model of optimal teacher effort-setting in Section I.

Writing teacher preferences as Ui = b · 1yi≥yT − c(ei, θi), we allow educator i’s cost of

effort to depend here on student characteristics, θi, proxied using the predicted score ŷi; thus

we write the systematic portion of the production technology q(ei, θi) = q(ei, ŷi). We also

assume q(ei, ŷi) = ei + ŷi, and c(ei, ŷi) = 1
2
s(ŷi)e

2
i , further parametrizing the slope of the

marginal cost of effort as s(ŷi) = ψ0 + ψ1ŷi + ψ2ŷi
2.

The first-order condition in equation (1) can then be used to solve for optimal effort
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implied under this parametrization, estimating the parameters of the marginal cost function

using a minimum distance estimator. Figure A.2 shows the simulated optimal effort against

the continuous incentive strength measure, π = ŷ − yT , on the horizontal axis alongside the

estimated effort profile recovered using our semi-parametric approach.

The figure makes clear that the simple quadratic parametrization of the marginal cost

function in the basic model can reproduce the estimated effort function remarkably well,

including its right-skewed shape. This suggests that the model provides a surprisingly good

approximation to the effort-setting process, despite its abstracting from many features of the

actual incentive environment.

V. Counterfactual Analysis

In this section, we first present our framework for carrying out counterfactuals, before turning

to the counterfactual results themselves.

V.A. A Framework for Counterfactual Comparisons

We develop a framework that enables us to compute the implied test score distribution

for the set of targets {yTig} associated with a given incentive scheme, whether actual or

counterfactual.35 This implied score distribution serves as a basis for calculating useful

summary measures – the score distribution’s first and second moments, for example. These

measures are then used to trace out performance frontiers associated with a given type of

scheme by varying the scheme’s targets in a counterfactual way, and also to compare frontiers

across various types of schemes (e.g., fixed versus value-added). We will do so with the aid

of a simple figure that allows us to represent different classes of scheme on the same picture

in an informative way.

The basic component of the framework is a test score technology of the form given in

equation (2). Consider a counterfactual scheme R and its associated target (or targets). To

determine the test score for educator i under the scheme R, we define the test score outcome

35Recall that we characterize a scheme in terms of a set of targets and rewards.
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as the sum of the predicted test score, the educator’s effort,36 and a noise component:

(4) yi(R) = ŷi + e∗
(
πi(R)

)
+ εi.

In terms of the elements of this formula, we already have estimates of effort as a function

of incentive strength e∗(π), and the noise ε is drawn from a mean-zero normal distribution

with variance matching the year 2000 distribution in panel (b) of Figure 2. This leaves the

implied distribution of incentive strength measures for scheme R, π(R). We describe how

this is recovered next.

Distribution of Incentive Strength: Under target-based schemes, for a given distribu-

tion of exogenous attributes faced by educators and a given target, we can calculate the

distribution of distances, one for each educator i, between the predicted score and the tar-

get. Computationally, this requires calculating πig = ŷig − yTig for educator i in grade g, and

storing the entire set of distances across all educators.

Taking the two components of incentive strength in turn, a scheme R will imply a

determinate target for each educator. This can be compared to the educator’s predicted

score, which we assume – looking ahead to our actual implementation – is calculated in the

‘pre-reform’ environment referred to above. Thus, while changing the incentive scheme will

change the individual target and alter the optimal effort calculation (as well as the actual

score, if effort also changed), it will not alter the predicted score used in the calculation of

the distribution of incentive strength.37

By way of illustration, Figure 4 showed grade-specific density plots of the incentive

strength measure implied by the prevailing NCLB targets for each grade. As the target is

moved counterfactually, above and below the actual target, the density will shift to the left

and to the right, respectively.38

Formally, we will write the density of π under scheme R as fR(π) on the support

36Below, we will consider two cases, where educator effort is student-specific or classroom-specific, starting
with the former.

37The fact that the predicted score is defined not to include any effort response will be reflected in the
notation used in this subsection.

38Focusing on fourth grade, these movements for a fixed scheme are shown in panels (a) and (e), relative
to (c), in Figure A.5.
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π ∈ [π
¯R
, π̄R]. The incentive strength calculations for each educator (just outlined) allow us

to recover this density semi-parametrically.

Counterfactual Outputs: Our framework yields the full counterfactual score distribution

for any scheme R.39 This allows us to compute a variety of useful summary measures. For

illustration, we focus on the average effort associated with a given scheme and the corre-

sponding variance of scores. These two measures can then be used to trace out performance

frontiers for each type of scheme, which we then plot.

Given the definition of the incentive strength measure from above (and omitting sub-

scripts), we write average effort for a given incentive scheme R as ΩR ≡
∫ π̄R
π
¯R

e∗(π, b)fR(π)dπ.

For comparability, we will use the average cost of a scheme to standardize outcomes

across schemes. The total cost under a given scheme is the monetary reward associated

with a student passing, multiplied by the number of such students, assuming that this is

the relevant payoff structure. To compute the average cost, first define π̃ig ≡ πig + εig =

yig − yTig; this is the gap between the target and the actual score, given that πig does not

include the noise component. Then the average cost for scheme R can be written CR =

b
∫ ¯̃πR
π̃
¯R

1(π̃+e∗(π,b)≥0)f̃R(π̃)dπ̃, where f̃R(π̃) is the distribution of π̃ given scheme R, with the

lower and upper limits given in the integral.40 This is just the proportion of educators

predicted to exceed the relevant target under R multiplied by the reward parameter b.

This formula allows us to compute one of our preferred summary measures, average

effort under scheme R with targets {yTR} relative to scheme R′ with targets {yTR′}, which

can be calculated using ΩR, ΩR′ , CR and CR′ , just defined. One might wish, as we will,

to compare average effort under fixed versus the maximally efficient benchmark (defined

shortly) – i.e. ΩR=F versus ΩR′=M . This cannot be accomplished directly, however, if the

average costs under the two schemes differ (i.e., CM 6= CF ). Our solution is to adjust b under

the fixed scheme until CF (b′) = CM(b), and then compare ΩM(b) to ΩF (b′). We will use the

measure, ΩM (b)
ΩF (b′),

to compare performance under these alternative schemes.

39Specifically, for a scheme R and for each educator i, we can now compute the implied test score yi(R)
according to (4), once we have determined the incentive strength πi(R) faced by that educator under the
scheme, and read off the corresponding effort level from the estimated effort function. Repeating for all
educators under scheme R yields the full counterfactual outcome distribution.

40Note that e∗ is added to π̃ since ŷ does not include effort under regime R.
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Now turning to the dispersion of scores under scheme R, define ỹ ≡ ŷ + ε. In essence,

this is the test score absent any effort component, referring back to (2). The variance in test

scores is then:

ΣR =

∫ ¯̃yR

ỹ
¯R

[ỹ + e∗(ŷ − yT , b)− ỹ + e∗]2f̃R(ỹ)dỹ,

where we make explicit the dependence of e∗ on ŷ. The ratio ΣF (b)
ΣV A(b′)

can be thought of as

relative dispersion, or the change in variance from adopting the less sophisticated target.41

Alternative Types of Scheme: For the set of fixed proficiency targets, we simply move

the proficiency threshold below and above the NCLB threshold. For value-added (‘VA’)

proficiency targets, we vary the multiplicative coefficient on the prior mathematics scores

in the ABCs math target, moving it below and above the coefficient that actually prevails

under the ABCs.42

Under uniform schemes, first referenced in Section I, the target yT = ŷ − d, where d is

some constant shift. This means that the incentive strength measure for a uniform scheme

will simply be π = d, ∀ ŷ. Average effort is then e∗(d), since e = e∗(d), ∀ ŷ, and average

cost is C(d) = b
∫

1d+e∗(d)+ε≥0hε(ε)dε.
43 This allows us to define the maximally efficient

scheme by choosing d to maximize e∗(d)
C(d)

.

Although uncommon in practice, the reward b can also be distributed heterogeneously for

any given target. This is a further possibility that we explore in our counterfactual analysis.

Generally, a heterogeneous reward has implications for both average effort and the dispersion

of scores, but under a uniform scheme it only affects the dispersion. Here, increasing the

weight on students with the lowest ŷ will serve to lower the spread. If emax � σ2
ŷ , then there

will be a positive lower bound for the variance, which we will plot below.44

41Intuitively, greater effort is delivered under the value-added scheme to students who were considered
non-marginal under the fixed scheme, making effort more uniform across the student distribution under the
former.

42When we consider determining proficiency status based on a VA target, we assume all of the other rules
under NCLB still hold but that, instead of students facing a common proficiency threshold, each student faces
a individual-specific proficiency threshold equal to his or her VA target determined by the ABCs formula,
with the multiplicative adjustment just described.

43In Section I, we define h(·) as the probability density function of −ε. Here, we use hε(·) to denote the
probability density function of ε.

44Using a heterogeneous reward to reach that minimum variance under the maximally efficient scheme
is socially optimal only if it is sufficiently transparent to agents; otherwise, the effort response may be
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V.B. Counterfactual Results

In describing our counterfactual results, we first consider a set of fixed proficiency targets

and a set of VA proficiency targets, deriving the implied incentive strength distributions

for π in each case. To illustrate the proficiency targets that we consider, Figure 6 shows

the distributions of π that prevail under the actual NCLB proficiency target and the ABCs

VA target. The figure underlines the point that since VA targets are student-specific, the

distribution of π under the ABCs target has a much lower variance than the distribution

under the NCLB target. An important implication of this is that the effort responses under

VA targets will be much more uniform across the distribution of students than those under

fixed targets.
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Figure 6 – π Densities

We present the results of selected counterfactual simulations in Figure 7. For each

simulation, we obtain the two summary measures of interest: average effort across students,

and the variance of student test scores. In the analysis below, we plot the inverse of the

variance against average effort, using the results from all the simulations associated with a

given type of scheme to trace out the frontiers for both the set of fixed and VA targets in

Average Effort-Inverse Variance space.

The maximally efficient point provides an important benchmark (and is shown in Figure

7f). For each counterfactual regime, we equate the cost to the cost prevailing under the

substantially attenuated in comparison to simpler schemes. Yet it still serves as a useful yardstick in the
comparisons below.
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maximally efficient target and then recalculate the normalized effort responses, using them

to determine final test score outcomes. The normalization allows us to make efficiency

comparisons across the regimes by exploring the levels of average effort that prevail for a

given cost. All points in Figure 7 represent average effort and inverse variance pairs obtained

after equating costs across all regimes.
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Figure 7 – Counterfactual Simulations

The figure shows there is a clear tradeoff between average effort and inverse variance.

To explain the tradeoff for the class of fixed targets, consider the target that is 6 points below

the NCLB target in Figure 7a). In this case, virtually the entire π distribution is to the right

of the new proficiency threshold, implying that a large fraction of students with relatively

high predicted scores fall into the region where the optimal effort function is negative, which

works to lower average effort substantially. At the same time, however, the variance is

lowest under this regime because only the relatively high-achieving students receive negative

effort, while the relatively low-achieving students receive high values of positive effort. The

combined effects work to decrease the variance by raising the performance of low-performing

students at the expense of high-performing students.

As one shifts the target up, the π distribution begins to shift back to the left, raising
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average effort and variance. When the target is 8 points above the NCLB target, the π

distribution is virtually centered around zero, implying that there is a fraction of students

with large negative values of π and correspondingly low values of effort. The variance under

this target is high because students with low predicted scores receive small positive or even

negative values of effort and students with relatively high predicted scores receive large

positive values of effort. Clearly, the choice of target is critical for determining the amount

of effort teachers exert toward each type of student and the variance in scores that results

from these effort choices.

Figures 7d), 7e), and 7f) show the frontier for the class of VA proficiency targets. When

the multiplicative coefficient is equal to the ABCs coefficient, the resulting point is interior

to the VA frontier. This result can be explained as follows: as shown in Figure 6b), the π

distribution under the ABCs VA target is quite tight and has most of its mass to the right

of zero. Since the peak of the optimal effort function occurs when π is close to zero, the

low dispersion of the π distribution makes it possible to substantially raise average effort by

only slightly increasing the target and shifting the distribution to the left. When the VA

coefficient increases above the ABCs level and the π distribution shifts left, some students

fall into the negative effort region of the optimal effort function. In contrast to the fixed

scheme, however, these are the students with high predicted scores.45

Increasing the VA coefficient thus increases the effort most students receive while re-

sulting in negative effort being exerted only toward relatively high-achieving students. The

combined effects work to substantially raise average effort while also reducing the variance in

student outcomes. As the frontier shows, continuing to increase the VA coefficient eventually

causes average effort to fall, as the coefficient that is 0.04 points above the ABCs coefficient

results in less effort than that under the ABCs coefficient. It also results in lower variance in

tests scores, however, as relatively high-achieving students receive the lowest values of effort.

Thus, regular VA schemes also present policymakers with a tradeoff between the variance in

outcomes and the average effort exerted.

In terms of comparing the prospective targets, we first note that one can achieve a far

45This follows because the coefficient multiplies a student’s prior score, implying that large coefficients
impose targets above predicted scores for high-achieving students (who also have high prior scores, on
average).
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lower variance in test scores by using fixed targets rather than VA targets. This follows di-

rectly from the relative dispersions in π between the two types of target. Since VA targets are

student-specific, the π distribution is much tighter under VA schemes and the correspond-

ing effort responses are more uniform. In contrast, fixed targets generate more dispersion

in effort responses and, as a result, can substantially improve outcomes for low-performing

students at the expense of high-performing students. Which scheme should be adopted in

practice ultimately depends on societal preferences and the tradeoff one is willing to make

between variance in outcomes and average effort. The frontiers in Figure 7 imply that only

a social planner with a strong aversion to inequality (or a low marginal rate of substitution)

would choose a fixed target over a VA target.

Turning to a comparison of specific targets, the NCLB fixed target results in 117 percent

more effort and 4 percent higher variance than the lowest fixed target, and it produces 31

percent less effort and 16 percent less variance than the highest target on the fixed frontier.

The ABCs target is interior to the VA frontier and results in 72 percent more effort and

25 percent more variance than the NCLB target. Relative to maximally efficient uniform

target, which maintains the pre-existing inequality of scores (since all students receive the

same effort), the ABCs target results in 79 percent of the maximally efficient effort and the

NCLB target results in 46 percent of the effort.

Extensions

We further explore our counterfactual analysis along two dimensions, considering school

heterogeneity first, followed by the scope for using heterogenous payments (or penalties) in

combination with more efficient targets.

School-level analysis

Building on the prior analysis, schools can be viewed as a simple aggregation across stu-

dents within the school, consistent with a technology that allows teachers to tailor effort

to individual students. At the other extreme, each teacher in a grade could be constrained

to choose a single level of classroom effort. We conduct the school-level analysis on these

two separate bases, providing informative bounds as to the likely effects on the counterfac-
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tual performance distribution. The details of this analysis are given in Appendix C: we

summarize the main findings here.

Assuming effort is student-specific, 85 percent of variation occurs within schools (and

90 percent of that within classrooms). This accords with the literature. In Kane and Staiger

(2002), for example, 87 percent of variance in math scores is within-school; and in Chetty,

Friedman and Rockoff (2014), 85 percent of the variance in teacher quality is within-school.

At the other extreme, assuming effort is classroom-specific, the total variance falls by

50-75 percent, and 50 percent of the remainder occurs between schools. (Intuitively, most

heterogeneity occurs within-classroom, but that channel is now shut down.)

Heterogenous rewards

Thus far, the focus has been on the choice of target to determine average effort and the

dispersion of outcomes. We have shown that while value-added schemes result in greater

effort on average (compared to fixed targets), the scope for altering dispersion is limited.

Combining value-added targets with heterogeneous bonus payments (or penalties) allows for

arbitrary levels of dispersion while preserving average effort. This is highly appealing from a

policy perspective, as it opens the possibility of increasing average effort while lowering the

variance in outcomes.

We demonstrate the potential for heterogeneous payments as follows: First we divide

students into quartiles of the predicted test score distribution, serving as an approximation

to varying the reward parameter b continuously. Next we assign a different value of b to

each quartile, making three of the quartiles proportional to a reference quartile (e.g. the

first quartile). Based on these proportions, we then adjust b for the reference quartile until

the total cost across all students is equivalent to the cost under the homogenous b scheme.

For reference, recall that compared to the NCLB target with homogenous rewards/penalties,

an ABCs target with a homogeneous reward parameter b results in 20 percent greater vari-

ance but also 75 percent greater average effort. We show that, compared to the same NCLB

target, an ABCs target with heterogeneous rewards achieves nearly identical variance (4

percent more) while attaining 62 percent greater average effort, as Figure 8 illustrates.46

46In the figure, we set b1 = 1.5b2 = 2.5b3 = 5b4. This arrangement provides higher rewards at the bottom
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Figure 8 – Frontiers Under Homogeneous and Heterogeneous b

VI. Conclusion

This paper has made two main contributions. First, it offers a transparent semi-parametric

approach to identifying the impact of incentives on effort. We used exogenous incentive

variation associated with a prominent accountability reform to identify the effort response of

North Carolina teachers and schools, showing that the response is consistent with a simple

model of effort setting: despite its simplicity, the model fits the data surprisingly well. Our

approach is based on minimal assumptions, is easy to implement, and can be applied in

other contexts where detailed administrative data are available.

Second, it provides a new framework for measuring the performance of different incen-

tive schemes in education on a comparable basis. The framework incorporates the estimated

effort function and allows us to compute the full distribution of scores under counterfactual

incentive provisions. To illustrate the power of the framework, we calculated the average

effort and dispersion of scores associated with rival incentive schemes, tracing out corre-

sponding performance frontiers on an intuitive, comparable basis.

Among the main findings, our estimates make clear the tradeoff between average ef-

fort and the inverse variance of scores for both fixed and value-added targets – the most

widespread in education. We show that school heterogeneity is important, the evidence (in

Appendix C) suggesting that fixed schemes perform better in schools with a greater pro-

end of the ex ante test score distribution, which decreases its variance ex post and shifts the value-added
points in Figure 8a) up to what is seen in Figure 8b). Under the approach, we are able to consider arbitrary
relative weights as well as closer and closer approximations to student-specific rewards.

31



portion of low-performing students. Further, value-added targets with heterogeneous bonus

payments across students dominate most fixed targets.

The framework has more general relevance to incentive design issues in organizations.

Where sufficiently rich data are available, it provides a tool for measuring the effects on firm

output and worker productivity associated with different worker incentive schemes, including

schemes that have not yet been implemented. The counterfactual output allows incentive

designers to trace the effects of reforms on the dispersion of productivity (with its equity

implications) in addition to aggregate productivity effects.

In related work, we are examining how the exogenous incentive variation we have un-

covered can be used to shed light on the nature of the underlying production technology

in education. Building on our strategy for recovering unobservable effort, we explore how

various education inputs, including teacher effort, persist. Such persistence effects are po-

tentially very relevant for policy, speaking (among other things) to the issue of ‘teaching to

the test.’
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Appendices

A. Contribution of Research Design to Prior Literature

Given the incentive strength measure is very much related to, and builds upon, measures appearing

in related prior work, it is worth drawing attention to seemingly subtle differences that turn out

to be important in the development of our approach. First, our predicted student scores are based

on pre-reform data – important in that we use these data to control for baseline effort (described

shortly). Similar to the prediction algorithm in Deming, Cohodes, Jennings, Jencks and Lopuch

(2013) and Reback (2008), we employ a flexible specification involving lagged test scores and several

other student characteristics to calculate expected outcomes, though neither prior study has a pre-

reform period.47 Second, ours is a continuous measure, which we can compute for each student.

In contrast, Deming et al. (2013) aggregate incentive strength to the school-level, and Neal and

Schanzenbach (2010) group students into deciles of the ability distribution. The continuous measure

is important when conducting counterfactuals, allowing us to evaluate how various targets change

incentives throughout the entire student distribution.

B. Ruling Out Rival Effort Story

Our maintained hypothesis is that we are uncovering the effort response with respect to the incentive

strength measure, π. As an alternative, effort might vary with respect to a student’s relative position

in the predicted score (ŷ) distribution within his or her school. For example, it is possible that

educators responded to NCLB by targeting effort towards students at a particular point of the ŷ

distribution and that this point happened to coincide with the value of ŷ where π under NCLB

was close to zero. Such a response is in the spirit of Duflo, Dupas, and Kremer (2011), who set out

a model in which teachers respond by choosing a particular type (or quality) of effort such that

students at a certain point in the ability distribution will benefit most. Students who are further

away from this point require a different type of effort or teaching style, so they do not benefit as

much and may even perform worse than they otherwise would have. If teachers in North Carolina

responded to NCLB’s introduction by tailoring teaching methods best-suited for students at the

point in the ability distribution where π equalled zero, then varying π counterfactually to make

47Deming et al. (2013) analyze the Texas accountability program that operated throughout the 1990’s,
and Reback (2008) calculates a student-level measure of incentive strength – a passing probability rather
than a predicted score – using Texas data.
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inferences about competing accountability schemes would seem unwarranted.

To assess this possibility, we determine the effort responses and corresponding π densities

separately for eight types of school. Specifically, we divide schools according to whether they are

above or below median variance of π, and further, on the basis of which quartile (in terms of the

mean value of π) they are in. If schools responded to NCLB by tailoring effort toward a particular

part of the ability distribution, we should observe the peak of the effort response shifting to the

right as that point in the ability distribution shifts right across the types of school. This is not

the case: Figure A.4 plots the effort responses and π densities separately for schools in each of the

quartiles of the mean, focusing on below-median variance.48 As one moves up the quartiles, the π

distribution shifts rightward, implying that a student with a value of π near zero in quartile-one

schools will have a different relative position in the ŷ distribution than a student with a value of π

near zero in the quartile two, three or four schools.

The figure shows that the peak effort response occurs close to π = 0 and the effort function

maintains a similar shape across each of the quartiles. This supports the view that schools respond

to a student’s proximity to the proficiency threshold and not his or her relative position in the

predicted score distribution.

C. Exploring Heterogeneity Across Schools

C.1. Aggregate Differences by School Type

In this subsection we investigate how manipulating the proficiency targets counterfactually affects

the distributions of incentive strength (π), effort, and realized scores, both across and within schools.

To get a sense of how these quantities evolve as targets change, Figure A.6 groups schools by

quartiles of the school-specific mean value of π that prevails under NCLB and then plots changes

in the mean (on the top row) and variance (on the bottom) of π, effort, and realized scores for each

type of school. In each panel, the horizontal axis measure the distance of the counterfactual fixed

target from the NCLB target.

We discuss the average and variance panels in pairs, starting with panels (a) and (d), which

plot the evolution of the average and variance of π, respectively. The patterns are straightforward:

since the target is constant for all students, the average value of π (predicted score minus fixed

target) is linearly decreasing with the target, but changing the (constant) target does not affect

48Analogous results hold for schools with above-median variance.
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the variance of π. In panel (b), average effort is monotonically increasing at the quartile-four

schools. These schools have the best prepared student body, and so higher targets provide sharper

incentives for teachers, who continue to exert more effort. At the quartile-one and quartile-two

schools, however, average effort eventually begins to decline. Students are poorly prepared at these

schools, and increasing the target reduces the likelihood of many students reaching proficiency

status, resulting in weaker incentives for teachers to exert effort.

Panel (e) shows each school type has a target level for which the variance is minimized before

starting to increase rapidly at higher values of the target. The target corresponding to the minimum

variance is increasing in the quartile to which a school belongs, with the minimum achieved at 0, 2,

4, and 6 points above the NCLB target across quartile-one, two, three, and four schools, respectively.

This result is explained by the shape of the effort function and the distribution of π across each

type of school. For values of π between 0 and 10, the effort function is relatively flat, assigning

fairly uniform levels of effort to each value of incentive strength. Intuitively, the fixed target that

results in the largest mass of the π distribution being contained in the uniform-effort range also

results in the minimum effort variance. Since the π distribution mechanically shifts right as school

quartiles increase, it takes a progressively higher value of the fixed target to pull the distribution

back into the range where effort is uniform and the variance is minimized.

As one would expect from the profiles of average effort in panel (b), panel (c) shows that aver-

age test scores are increasing with the target at quartile-four schools, begin to level off at quartile-

three schools, and begin to slightly decline at high target values at quartile-two and quartile-one

schools. The variance of test scores in panel (f) is increasing with the target at all types of school.

At higher target values, the low-performing students at each school receive little (or negative) effort

and the high-performing students receive high effort, which works to exacerbate inequality, driving

up the variance in realized scores.49

Figure A.7 shows the relevant patterns for the class of VA targets. The horizontal axes measure

the distance of the counterfactual VA multiplicative coefficient from the ABCs coefficient (0.68).50

A key insight from Figure A.7 is that there is much less (in fact, almost zero) heterogeneity in the

49Note that the variance of test scores does not follow the same profile as the variance of effort. While the
counterfactual test score is the sum of predicted scores, noise, and effort, the variance of test scores is not
the sum of the variances of these three components. Effort is a function of the predicted score, implying a
non-zero covariance component between the two.

50 Note that, because North Carolina’s ABCs program uses coefficients and targets exclusively with test
scores measured on the first-edition scale in grade four, all of the results for VA targets are measured on the
first-edition scale. This is in contrast to the results above for the fixed targets, which are measured on the
second-edition scale.
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average value of π across school types. VA schemes effectively set student-specific targets, implying

that incentive strength is similar across all students. Panel (d) shows the variance of π is increasing

in the VA coefficient, implying that higher values of the coefficient shift the distribution of π to the

left while increasing its spread. Despite the variances increasing, they are still much lower than the

variances that prevail under fixed targets.

In panel (b), average effort is steadily increasing in the VA target until beginning to fall at a

coefficient 0.02 points higher than the ABCs coefficient. At this point, the π distribution shifts far

to the left and a large mass of students at each school begin receiving negative effort, which lowers

the average. Test scores follow a similar profile in panel (c), slightly increasing and then slightly

decreasing for high values of the coefficient.

As mentioned, the effort function is relatively flat for most values of π between 0 and 10, and

then exhibits an abrupt decline once π is lower than -2. For values of the multiplicative coefficient

ranging between -0.04 and 0.01, the π distribution has a relatively small variance and falls in the

region where the effort function is quite flat. Panel (e) thus shows that there is virtually no variance

in effort for most values of the coefficient. At high values of the coefficient, the π distribution shifts

far to the left and its variance increases, resulting in many students falling into the domain where

effort abruptly declines and becomes negative for students with the lowest values of π. This works

to increase the dispersion in effort across students at each type of school sharply. In panel (f), one

can see these relations between π and effort cause a sudden reduction in the variance of tests scores.

Under the VA scheme, students who are pushed into the negative effort region by high multiplicative

coefficients are the high-performing students, implying that the reduction in variance is achieved

by lowering the achievement of the historically high-performing students.

C.2. Within- and Between-School Variances

In this subsection, we document the implications of the dynamics discussed above for the inequality

of student outcomes within and across the full set of schools, no longer grouping schools into four

types. Under each counterfactual target, Table A.2 decomposes the variance of π, effort, and

realized scores into the variance within schools, the variance between schools, and the amount of

the within-schools variance that occurs within classrooms.

Most of the variation in each variable occurs within schools, which is line with several studies

that find much of the variance in education variables occurs within, not across, schools (see, for

example, Kane and Staiger, 2002). While there is some change in the ratio of the within-school
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variance to total variance as one changes the targets, these changes are very small. For example,

a fixed target six points below the NCLB target results in 88 percent of the variance in total test

scores occurring within schools, while a target ten points above NCLB results in 86 percent of the

variance occurring within schools. In absolute terms, however, higher fixed targets result in much

higher inequality in final outcomes, both within and across schools: the within-school variance in

test scores is 33 percent higher under the fixed target ten points above NCLB than the target six

points below NCLB; the between-school variance is 53 percent higher.

While higher fixed targets increase the variance of tests scores, higher VA coefficients decrease

it. Panel B of Table A.2 shows that opposite patterns prevail when one moves from a VA coefficient

0.04 points below the ABCs coefficient to one 0.04 points above. The total variance in test scores

declines by 14 percent, and the within- and between-schools variances fall by 15 and 14 percent,

respectively.

Under both classes of scheme, about 90 percent of the within-schools variation in each variable

occurs within classrooms. To some extent, one might be concerned that this is an artefact of the

assumption that teachers can choose to adjust their effort across students on a student-specific

basis in a flexible way. Yet the evidence actually supports this assumption.51 This lends confidence

to our counterfactual results.

While we do not know the exact combination between student- and classroom-specific effort

teachers may choose, we can create bounds for our results by assuming that each student in a

classroom receives the same level of effort, and then conducting the counterfactual analyses while

maintaining that assumption. We can thus consider the extreme cases of student- and classroom-

specific effort separately, while knowing that the true data-generating process likely lies somewhere

in between the two. The following subsection reports results under the assumptions that each

student in a classroom receives the same amount of effort and that teachers reach decisions about

classroom effort levels according to the model in Section I.A.

51This is because we do not use the model to estimate the actual effort response under NCLB. Rather,
that is simply the realized minus predicted score for each student, and there is nothing structural about it.
Yet in Table A.2, we see that even under the 0 column in panel A (which reflects what actually happened),
most of the variance is within schools and within classrooms. This suggests that we are closer to the
student-by-student world than the common-effort-within-classrooms world.
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C.3. Classroom-Specific Effort Constraint

Table A.3 shows how the variances of each variable evolve when effort is constrained to be equal

within classrooms. As in Section I.A, teachers choose the level of effort corresponding to the

average values of π within their classrooms. Since we do not change anything with respect to

the student-specific incentive strength, π, the variances of π are the same as those in Table A.2.

The within-classroom variance of effort is zero by construction under the assumption of common

classroom effort, and the within-classroom variance in test scores is constant across the targets

within the fixed and VA schemes.52

Under the common effort assumption, the between-school variance becomes much more im-

portant in explaining the total variation in effort, comprising 40 to 60 percent of the total effort

variance within the class of fixed targets and about 50 percent of the variance within the class of

VA targets (the last two columns of panel B). Much of the dispersion in test scores still occurs

within schools, however, the within-classroom variance explaining less of the within-school score

variance for higher fixed targets and more for higher VA coefficients.

In the prior subsection and this one, we have considered the distributional implications of two

extreme cases: one where all effort is student-specific and the other where effort is constrained to

be uniform within classrooms. In practice, the effort exerted by teachers is likely to fall somewhere

in between. In the absence of weights to determine the importance of each case, the comparison is

still useful, as it helps us bound the actual effect of varying the incentive target counterfactually.

C.4. Differential Effort Functions Across School Types

While teachers are likely constrained in the extent to which they can differentiate effort across

students within a classroom, this may not be the only source of heterogeneity in optimal effort

responses. In particular, two students who have the same level of incentive strength, π, but attend

different schools may receive different levels of teacher effort, depending on the likelihood that their

schools satisfy the standard of the accountability program in question.53 It is plausible to think

that the amount of effort each student receives depends both on his or her individual likelihood of

passing and the probability that his or her school passes: if the school is very likely (or unlikely)

52They are not constant across the schemes because the VA results use the first-edition math scale and
the Fixed results use the second-edition. See footnote 50.

53For example, a student on the margin of proficiency in a school with a reasonable likelihood of passing
the standard may receive a large amount of additional effort while a similar student in a school with a very
small (or high) chance of passing may receive no additional effort.
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to pass no matter the actions it takes, it may not respond to the accountability provisions at all.

We already explored this type of of heterogeneity to some extent in Figure A.4 in Appendix

B, where we divide schools by their distributions of π and look for heterogeneous effort responses

across types of school. There, we find little evidence that schools with a lower (first quartile

schools) or higher probability (fourth quartile schools) of doing well under NCLB responded by

targeting effort differently toward students. Instead, all types of school seem to be responding to

the proximity of each student to the proficiency target rather than a school-specific probability of

passing. Nevertheless, we allow for differential effort responses by school type in this subsection

by recalculating the optimal effort function within each school type and redoing the counterfactual

analyses using these school-type-specific effort functions. To explore the contrast between schools

with low- and high-ability students, we consider schools with a variance of π below the median and

present separate results for those with mean values of π in the first and fourth quartile.

Low-Mean, Low-Variance Schools

Figure A.8 shows the fixed and VA target frontiers for schools with a mean value of π in the first

quartile. Students at these schools are predicted to have relatively low performance in the absence

of any additional effort. There still exists a clear tradeoff between the variance in test scores and

the average effort exerted within both the set of fixed and VA targets. The NCLB target continues

to balance average effort and the dispersion of scores relative to other fixed targets, as it achieves

50 percent more effort and 6 percent higher variance than the lowest fixed target, and it produces

2 percent less effort and 20 percent less variance than the fixed target that is 8 points higher than

NCLB.

Unlike the aggregate results, the 8-point-higher fixed target is interior to the fixed frontier

among schools serving low-performing students. Since many students at these schools are predicted

to have low scores, a target this high makes it very difficult for them to reach proficiency status.

Teachers recognize this and opt not to direct resources toward these students, causing their test

scores to fall and score inequality to be exacerbated.

The VA targets result in more effort and inequality than the fixed targets. For example,

the ABCs VA target results in 28 percent more effort and 30 percent more inequality than the

NCLB fixed target. For schools serving low-performing students, the highest variance in test scores

generated by the fixed targets is lower than the variance in test scores produced by all-but-one VA

target (the VA target when the coefficient is 0.04). Since inequality is so much lower under the
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set of fixed schemes, even a planner with a moderate aversion to variance in scores might choose a

fixed target for these schools.

These reductions in inequality come at the expense of the high-performing students in these

schools, however. As there are relatively few of those students, when faced with a fixed target, teach-

ers in such schools really focus on redirecting their attention toward students near the proficiency

threshold, choosing large negative values of optimal effort for the highest-performing students.

When one lowers the fixed target and pushes the π distribution to the right, an increasing fraction

of relatively high-performing students are shifted into the area where effort is negative, leading to

a substantial decline in inequality.

High-Mean, Low-Variance Schools

Figure A.9 shows the fixed and VA target frontiers for schools with a mean value of π in the

fourth quartile. Students at these schools are predicted to perform highly in the absence of any

additional effort. In such schools, the VA frontier clearly dominates the fixed frontier, as fixed

targets cannot produce the same reduction in variance as they can in the schools that serve low-

performing students.

Since high performers represent a relatively high fraction of students in these schools, teachers

do not redirect resources away from them to the same degree that they do in low-performing schools,

which results in an effort function with small negative values of effort for large values of π and a

relatively flat profile for progressively larger values of π. When one lowers the fixed target and

pushes the π distribution to the right, the high-performing students pushed into the area where

effort is negative only experience small declines in performance, resulting in relatively small changes

in inequality. In high-performing schools, VA schemes clearly dominate and would be chosen by a

planner, regardless of preference over the variance of scores and average effort.
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Table A.1 – Descriptive Statistics

Student-Level

Mean Std. Dev. N

Performance Measures

Math Score
Grade 3 144.67 10.67 905, 907
Grade 4 153.66 9.78 891, 969
Grade 5 159.84 9.38 888, 467
Grade 6 166.43 11.12 892, 087
Grade 7 171.61 10.87 884, 286
Grade 8 174.76 11.63 860, 623

Math Growth
Grade 3 13.85 6.30 841, 720
Grade 4 9.40 5.96 730, 627
Grade 5 6.82 5.29 733, 037
Grade 6 7.55 5.68 722, 491
Grade 7 5.99 5.60 718, 994
Grade 8 3.73 5.86 705, 095

Reading Score
Grade 3 147.03 9.33 901, 233
Grade 4 150.65 9.18 887, 147
Grade 5 155.79 8.11 883, 685
Grade 6 156.79 8.85 889, 445
Grade 7 160.30 8.19 882, 288
Grade 8 162.79 7.89 859, 089

Reading Growth
Grade 3 8.15 6.72 837, 361
Grade 4 3.75 5.55 725, 590
Grade 5 5.61 5.21 727, 864
Grade 6 1.54 4.95 718, 291
Grade 7 3.77 4.92 716, 496
Grade 8 2.76 4.62 703, 236

Demographics

College-Educated Parents 0.27 0.44 5, 456, 948
Male 0.51 0.50 5, 505, 796
Minority 0.39 0.49 5, 502, 665
Disabled 0.14 0.35 5, 498, 312
Limited English Proficient 0.03 0.16 5, 505, 479
Free or Reduced-Price Lunch 0.42 0.49 3, 947, 605

School-Level

Mean Std. Dev. N

Failed ABCs 0.27 0.45 14, 052
Failed NCLB 0.37 0.48 5, 014
Proficiency Rate 0.79 0.11 14, 042

Notes: The sample excludes vocational, special education and alternative schools. We
also exclude high schools and schools with a highest grade served lower than fifth grade.
Student-level summary statistics are calculated over all third to eighth grade student-year
observations from 1997-2005 in eligible schools. The free or reduced price lunch eligibility
variable is not available prior to 1999. School-level summary statistics are calculated over
all eligible school-year observations from 1997-2005. The NCLB performance indicator
variable is not available prior to 2003, the year the program was introduced.
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Table A.2 – Variance Decomposition Across Counterfactual Regimes with
Student-Specific Effort

A: Fixed Target Relative to NCLB

−6 −4 −2 0 2 4 6 8 10

Total Variance π 49.09 49.09 49.09 49.09 49.09 49.09 49.09 49.09 49.09
Between School 9.16 9.16 9.16 9.16 9.16 9.16 9.16 9.16 9.16
Within School 39.93 39.93 39.93 39.93 39.93 39.93 39.93 39.93 39.93
Within Class 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6

Total Variance Effort 0.63 0.57 0.49 0.4 0.34 0.32 0.42 0.7 1.28
Between School 0.11 0.1 0.09 0.06 0.04 0.02 0.02 0.05 0.14
Within School 0.51 0.46 0.4 0.34 0.29 0.3 0.4 0.65 1.14
Within Class 0.46 0.42 0.36 0.3 0.27 0.27 0.37 0.6 1.04

Total Variance Score 62.05 62.63 63.55 64.93 66.95 69.74 73.47 78.25 84.36
Between School 7.55 7.65 7.81 8.06 8.41 8.91 9.59 10.46 11.56
Within School 54.5 54.98 55.73 56.87 58.53 60.83 63.88 67.79 72.8
Within Class 49.99 50.41 51.08 52.09 53.56 55.61 58.33 61.83 66.32

B: VA Coefficient Relative to ABCs

−0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04

Total Variance π 2.01 2.19 2.39 2.61 2.85 3.12 3.4 3.71 4.04
Between School 0.12 0.14 0.15 0.18 0.2 0.23 0.26 0.3 .33
Within School 1.89 2.05 2.23 2.44 2.65 2.89 3.14 3.41 3.7
Within Class 1.75 1.9 2.07 2.25 2.44 2.66 2.88 3.13 3.39

Total Variance Effort 0.01 0 0 0 0 0.01 0.15 0.71 1.44
Between School 0 0 0 0 0 0 0.01 0.05 0.1
Within School 0.01 0 0 0 0 0.01 0.14 0.66 1.33
Within Class 0.01 0 0 0 0 0.01 0.13 0.61 1.23

Total Variance Score 80.97 80.75 80.63 80.72 80.83 80.23 77.59 72.55 69
Between School 10.78 10.77 10.75 10.76 10.78 10.71 10.39 9.71 9.23
Within School 70.19 69.98 69.88 69.95 70.05 69.53 67.2 62.84 59.77
Within Class 63.98 63.8 63.7 63.77 63.86 63.4 61.33 57.46 54.72

Notes: The total variance of a given variable is calculated across all students. For each variable, the within-
and between-school variances decompose the total variance into the variance that occurs within schools and
the variance that occurs across schools, respectively. The within-class variance represents the amount of
the within-school variance that occurs within classrooms. All available fourth grade students, schools, and
classrooms in 2003 are used in the calculations.
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Table A.3 – Variance Decomposition Across Counterfactual Regimes with
Classroom-Specific Effort

A: Fixed Target Relative to NCLB

−6 −4 −2 0 2 4 6 8 10

Total Variance π 49.09 49.09 49.09 49.09 49.09 49.09 49.09 49.09 49.09
Between School 9.16 9.16 9.16 9.16 9.16 9.16 9.16 9.16 9.16
Within School 39.93 39.93 39.93 39.93 39.93 39.93 39.93 39.93 39.93
Within Class 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6

Total Variance Effort 0.22 0.18 0.14 0.1 0.07 0.05 0.05 0.15 0.49
Between School 0.15 0.12 0.09 0.07 0.04 0.03 0.02 0.07 0.3
Within School 0.07 0.06 0.05 0.03 0.03 0.02 0.03 0.08 0.18
Within Class 0 0 0 0 0 0 0 0 0

Total Variance Score 69.8 70.08 70.43 70.86 71.36 71.88 72.57 74.06 76.77
Between School 7.36 7.56 7.79 8.08 8.39 8.71 9.12 10.11 12.04
Within School 62.44 62.52 62.63 62.78 62.97 63.18 63.45 63.95 64.73
Within Class 58.02 58.02 58.02 58.02 58.02 58.02 58.02 58.02 58.02

B: VA Coefficient Relative to ABCs

−0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04

Total Variance π 2.01 2.19 2.39 2.61 2.85 3.12 3.4 3.71 4.04
Between School 0.12 0.14 0.15 0.18 0.2 0.23 0.26 0.3 0.33
Within School 1.89 2.05 2.23 2.44 2.65 2.89 3.14 3.41 3.7
Within Class 1.75 1.9 2.07 2.25 2.44 2.66 2.88 3.13 3.39

Total Variance Effort 0 0 0 0 0 0 0.01 0.18 0.61
Between School 0 0 0 0 0 0 0 0.09 0.33
Within School 0 0 0 0 0 0 0.01 0.09 0.28
Within Class 0 0 0 0 0 0 0 0 0

Total Variance Score 81.06 81.01 80.98 81.02 81.11 81.07 80.54 78.79 77.07
Between School 10.78 10.76 10.75 10.77 10.82 10.81 10.52 9.51 8.32
Within School 70.27 70.24 70.23 70.25 70.29 70.26 70.02 69.29 68.75
Within Class 64.06 64.06 64.06 64.06 64.06 64.06 64.06 64.06 64.06

Notes: The total variance of a given variable is calculated across all students. For each variable the within-
and between-school variances decompose the total variance into the variance that occurs within schools and
the variance that occurs across schools respectively. The within-class variance represents the amount of
the within-school variance that occurs within classrooms. All available fourth grade students schools and
classrooms in 2003 are used in the calculations.
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Figure A.1 – Optimal Effort and Varying Exogenous Production Conditions under
a Threshold Scheme
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Figure A.5 – Deriving the Fixed Frontier
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Figure A.6 – Counterfactual Fixed Targets and School-Type Heterogeneity with
Student-Specific Effort
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Figure A.7 – Counterfactual VA Targets and School-Type Heterogeneity with
Student-Specific Effort
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Figure A.8 – Counterfactual Simulations for Low Mean, Low Variance Schools
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Figure A.9 – Counterfactual Simulations for High Mean, Low Variance Schools
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