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ABSTRACT

In this paper, we test the random walk hypothesis for weekly

stock market returns by comparing variance estimators derived from

data sampled at different frequencies. The random walk model is

strongly rejected for the entire sample period (1962-1985) and

for all sub-periods for a variety of aggregate returns indexes and

size—sorted portfolios. Although the rejections are largely due

to the behavior of small stocks, they cannot be ascribed to

either the effects of infrequent trading or time-varying volatilities.

Moreover, the rejection of the random walk cannot be interpreted

as supporting a mean—reverting stationary model of asset prices,

but is more consistent with a specific nonstationary alternative

hypothesis.
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I. INTRODUCTION.

Since Keynes' now famous pronouncement in his General Theory that most

investors' decisions "can only be taken as a result of' animal spirits-—of a

spontaneous urge to action rather than inaction, and not as the outcome of a

weighted average of benefits multiplied by quantitative probabilities,"1 a

great deal of research has been devoted to examining the efficiency of stock

market price formation.2 In Fama's (1970) survey, the vast majority of' those

studies were unable to reject the "efficient markets" hypothesis for common

stocks. Although several seemingly anomalous departures from market

efficiency have been well-documented,3 many financial economists would agree

with Jensen's (1978) belief that "there is no other proposition in economics

which has more solid empirical evidence supporting it than the Efficient

Markets Hypothesis."

Although the precise formulation of an empirically refutable efficient

markets hypothesis is obviously model specific, historically the majority of'

such tests have focused on the forecastability of common stock returns.

Within this paradigm, which has been broadly categorized as the "random walk"

theory of stock prices, few studies have been able to statistically reject the

random walk model. However, several recent papers have uncovered new

empirical evidence which suggests that stock returns contain stationary or

mean-reverting components. For example, Keim and Stambaugh (1986) find

statistically significant predictable components in stock prices using

forecasts based upon certain predetermined variables. In addition, Fama and

French (1986) show that long holding-period returns are significantly

negatively serially correlated, implying that 25 to 15 percent of' the

variation of longer-horizon returns is predictable from past returns.



In this paper, we provide further evidence that stock prices do not

follow random walks by using a simple specification test based upon variance

estimators. Our empirical results indicate that the random walk model is

generally not consistent with the stochastic behavior of weekly returns,

especially for the smaller capitalization stocks. However, in contrast to the

negative serial correlation which Fama and French (1986) find for longer

horizon returns, we find significant positive serial correlation for weekly

and monthly holding-period returns. For example, using 1216 weekly

observations from September 6, 1962 to December 26, 1985 we compute the weekly

first-order autocorrelation coefficient of the equal-weighted CRSP index to be

30 percent! This empirical puzzle becomes even more striking when we show

that it cannot possibly be attributed to either the effects of infrequent

trading or heteroscedasticity.

Of course, these results do not necessarily imply that the stock market

is inefficient or that prices are not rational assessments of 'fundamental'

values. As Leroy (1973) and Lucas (1978) have shown, rational expectations

equilibrium prices need not even form a martingale sequence, of which the

random walk is a special case. Therefore, without a more explicit economic

model of the price—generating mechanism, a rejection of the random walk

hypothesis has few implications for the efficiency of market price

formation. Although our test results may be interpreted as a rejection of

some economic model of efficient price formation, there may exist other

plausible models which are consistent with the empirical findings. Our more

modest goal in this study is to employ a test which is capable of

distinguishing among an interesting set of alternative stochastic price

processes. In particular, our test exploits the fact the variance of the

increments of a random walk is linear in the sampling interval. Therefore, if
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stock prices are generated by a random walk (possibly with drift) then, for

example, the variance of monthly-sampled log-price relatives must be four

times as large as the variance of a weekly sample. Comparing the (per unit

time) variance estimates obtained from weekly and monthly prices may then

yield some indication of the plausibility of the random walk theory.14 Such a

comparison is formed quantitatively along the lines of the Hausman (1978)

specification test and is particularly simple to implement.

In Section 2 we derive our specification test for both homoscedastic and

heteroscedastic random walks. As a guide to interpreting the empirical

results, we present in Section 3 the results of simulation experiments which

give the power of our test against two specific alternative hypotheses: a

mean-reverting stationary process, and a more empirically plausible

nonstationary process. The main results of the paper are given in Section 14,

where rejections of the random walk are extensively documented for weekly

returns indexes and size-sorted portfolios. Section 5 contains a simple model

which demonstrates that infrequent trading cannot possibly account for the

magnitude of the estimated autocorrelations of weekly stock returns. We

summarize briefly and conclude in Section 6.

2. THE SPECIFICATION TEST.

Denote by the stock price at time t and define X ln P as the log—

price process. Our maintained hypothesis is given by the recursive relation:

= t + X1 +

We assume throughout that for all t, E(ct] 0. In the next section we develop

our test under the null hypothesis that the Ce'S are independently and

identically distributed with variance ci. However, because there is mounting

evidence that financial time series often possess time-varying volatilities,
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we construct a test statistic which is robust to such heteroscedasticity in

Section 2.2.

2.1 HOMOSCEDASTIC INCREMENTS.

We begin with the null hypothesis that the disturbances c. are

independently and identically distributed normal random variables with

variance
2

thus:
0

H: i.i.d. N(O, (1)

Note that, in addition to homoscedasticity, we have made the assumption of

independent Gaussian increments. An example of such a specification is the

exact discrete-time process X obtained by sampling the following well-known

continuous—time process at equally spaced intervals:

dX(t) i.dt + 0dW . (2)

This Ito process corresponds to the popular lognormal diffusion price process

often used in contingent claims analysis.

Suppose we obtain 2n+1 observations X0, X1, ..., X2 of at equally

spaced intervals. Consider the following estimators for the unknown

parameters 'i and

k:1
(Xk - Xkl) i— (X2

-
X0)

(3a)

a k1
[Xk - - 1

k:1
(Xk - Xkl )2 -

2
(3b)

k:1
[X2k - - 2i]2

k:1 (K2k_ X2k2) - 212 . (3c)

The estimators i and correspond to the maximum-likelihood estimators of the
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i and parameters, whereas is also an estimator of but uses only the

subset of n+1 observations X0, X2, X, ..., X2. Observe that under standard

asymptotic theory, all three estimators are strongly consistent. That is,

holding all other parameters constant, as the number of observations 2n

increases without bound the estimators converge almost surely to their

population values. In addition it may readily be shown that both and

possess the following Gaussian limiting distributions:

/ (; - a) N(O, 2ci) (14a)

/2n (o - a) 'I(O, 14a) . (4b)

Since the estimator is asymptotically efficient under the null hypothesis

(1), we may form the usual Hausman-type specification test by considering the

difference d of the two estimators where:

2 2— a (5)

for which the asymptotic variance is simply the difference of the asymptotic

variances of the two respective estimators under the null hypothesis (1),

i.e. :

— a 412n d - N(O, 2ao)
(6)

Using any consistent estimator of the asymptotic variance of d' a standard

significance test may be performed. P. more convenient alternative test

statistic is given by the ratio of the variances r6

4 — 1, r N(O, 2) . (7)

Although the variance estimator is based upon differences of every other
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observation X2k, alternative variance estimators may be obtained by using

differences of every q—th observation. Specifically, suppose that we obtain

nq-i.i observations X0, X1, •.. Xflq where q is any integer greater than 1.

Define the estimators:

nq
z (X — X ) CX — X ) (8a)nq1 k k-i nq nq 0

(8b)

in 2 1 2 2
nq k:i {Xqk

-
Xqk_q

-

k1 (Xqk - Xqk_q)
- (8c)

- - 1 . (8d)

The specification test may then be performed using the J(q) and J(q)

statistics for which the asymptotic distributions are given by:7

/ N(O, 2(q - 1)a') (9a)

/nq J(q) N(0, 2(q - 1)) . (9b)

For practical purposes, two further refinements of the statistics d and

result in more desirable finite sample properties. The first is to use

overlapping q—th differences of X in estimating the variances. Specifically,

we define the following estimator of

1
nq

ac
nq2 k:q

[Xk -
Xk_q

— qu] . (10)

Note that this differs from the estimator in that this sum contains

nq — q + 1 terms whereas the estimator contains only n terms. By using
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overlapping q-th increments, we hope to obtain a more efficient estimator and

hence a more powerful test. Using in our variance ratio test, we define

the corresponding difference and ratio test statistics as:

M(q)
- M(q) $ - 1 . (11)

The second and final refinement involves using unbiased variance estimators in

the calculation of the M statistics. Although this does not yield an unbiased

variance ratio, simulation experiments show that the finite-sample properties

of the test statistics are closer to their asymptotic counterparts when this

bias adjustment is made.8 Indeed, according to the results of Monte Carlo

experiments in Lo and MacKinlay (1987), the behavior of the bias-adjusted M

statistics (which we denote as M(q) and M(q)) does not depart significantly

from that of their asymptotic limits even for small sample sizes. As a

result, our empirical results are based only upon the M(q) statistic. Since

it may be shown that the M(q) statistics have the following limiting

distribution:

/i (q) N(O, 2(2g—1)(g—1)) (12a)

we base our tests upon the standardized test statistic z where:

z / (q).(2(2l)) M(O, 1) . (12b)

In order to develop some intuition for these variance ratios, observe

that for an aggregation value q of 2, the M(q) statistic may be re—expressed

as:

M(2) p(1) - 12 [(X1 - - h)2 + (X2 - - ih)2] (13)
Ltnh

a
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hence for q 2 the M(q) statistic is approximately the first-order

autocorrelation coefficient estimator p(1) of the differences. More

generally, it may be shown that:

2(g-1) (1) + 2(g-2) (2) + ... + p(q-1) + o(n 2) (1k)

where o(n 2) denotes terms which are of order smaller than n
2

in

probability and p(k) denotes the k-th order autocorrelation coefficient

estimator of the first-differences of X. Equation (1i) provides a simple

interpretation for the variance ratios: they are particular linear

combinations of the autocorrelation coefficients (plus or minus some

asymptotically negligible terms) of first-differences. Specifically, variance

ratios computed with an aggregation value q are (approximately) linear

combinations of the first q—1 autocorrelation coefficients estimators of the

first differences with arithmetically declining weights.9

2.2 HETEROSCEDASTIC INCREMENTS.

Since there is already a growing consensus among financial economists

that volatilities do change over time,1° a rejection of' the random walk

hypothesis due to heteroscedasticity would not be of much interest. We

therefore wish to derive a version of our specification test of the random

walk model which is robust to changing variances. Now it is evident that, as

long as the increments are uncorrelated, even in the presence of

heteroscedasticity the variance ratio must still approach unity as the number

of observations increase without bound. This is simply due to the fact that

the variance of the sum of uncorrelated increments must still equal the sum of

the variances despite heteroscedastic increments.11 However, the asymptotic
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variance of the variance ratios (or M statistics) will clearly depend upon the

type and degree of heteroscedasticity present. One possible approach is to

assume some specific form of heteroscedasticity (such as Engle's (1982) ARCH

process), and then calculate the asymptotic variance of K(q) under this null

hypothesis. However, in order to allow for more general forms of

heteroscedasticity, we employ an approach due to White (1980) and White and

Domowitz (198L). Specifically, in addition to some technical regularity

conditions,12 we assume:

H*: E[Et] 0 for all t * s . (15)

This null hypothesis requires that X, possess uncorrelated increments, but

allows for quite general forms of heteroscedasticity, including deterministic

changes in the variance (due, for example, to seasonal factors) and ARCH

processes (in which the conditional variance depends upon past information).

Since M(q) still approaches 0 under H*, we need only compute its

asymptotic variance (call it 8) in order to perform the standard inferences.

We do this in two steps. First, recall that the following equality obtains

asymptotically:

— a q-1
2(

M(q)
g

. (16)

Second, note that under 11* the autocorrelation coefficients p(j) are

asymptotically uncorrelated.13 Therefore, if we can obtain asymptotic

variances (j) for each of the p(j) under H*, we may readily calculate the

asymptotic variance of M(q) as the weighted sum of the 6(j) where the weights

are simply the weights in (16) squared. Using the results of White (1980) and

White and Domowitz (19814), consistent estimators for 6(j) are given by:
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nq
(X - Xkl -

•(Xkj
- Xkjl -

6(J) — kj+1 . (17)

z (Xk — Xkl — ) I
k:1

Therefore, a consistent estimator 8 for the asymptotic variance of is

then given by:

qi
[2(g - J)]2() . (18)

q

We thus conclude that, even in the presence of general heteroscedasticity, the

test statistic z /nq M(q)//8 is still asymptotically standard normal. In

Section L we use both the z and z statistics to empirically test for random

walks in weekly stock returns data.

3. POWER AGAINST FADS ALTERNATIVES.

Before applying our test to the data, we wish to examine its power

against two specific alternative hypotheses. The first alternative is a mean—

reverting process for prices which has been advanced by several authors as a

model of stock market 'fads'.15 For contrast, a second alternative price

process with essentially opposite autocorrelation patterns is also explored.

Since our test statistic involves variances of data sampled at different

frequencies, it is natural to formulate the alternative hypotheses in

continuous time. To simplify matters, both alternatives are homoscedastic

hence we only consider the power of the z statistic and do not study the power

of the heteroscedasticity—coflsiSteflt statistic z.

-10-



3.2 POWER AGAINST PRICE FADS.

As an alternative to the random walk model for asset prices, several

recent studies have examined what Shiller (1981) describes as a 'fads' model;

market prices fluctuate according to investors' fads which have exponentially

decaying influence. In discrete time, this hypothesis has been implemented by

supposing that deviations from the rational expectations of the present value

of future earnings are autocorrelated as, for example, in Fama and French

(1986) and Summers (1986). In continuous time, one representation of the fads

model is given by the Ornstein-Uhlenbeck (O.U.) process for log—prices X(t):

K1: dX(t) = -y[X(t) — a]dt +
adW(t)

> 0 (19)

which Shiller and Perron (1985) consider. To differentiate this process from

our second alternative, we call K1 the 'price fads' model. In order to

develop some intuition for the empirical implications of this alternative, we

report its first two population moments (all conditional upon X(0) X0):

—Y t
E0[X(t)] a +

(X0
— cz)e (20a)

2
a -2yt

VAR0[X(t)] 2._ (1 — e ) (20b)

2
—2y S -y (t—s)

COV0[X(s), X(t)] = (1 - e )•e p s � t . (20c)
p

From (20a) we see that for large t the mean log—price E[X(t)] tends to its

steady state value of and the speed with which E[X] reverts to this mean

depends upon the parameter y• It is well-known that the process of K1 has

the following exact discrete—time representation:
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Xk
ci + 4(h)(Xkl - + k (21)

-Y h
where X(kh), iji(h) e , h is the (fixed) sampling interval, and are

independently and identically distributed Gaussian disturbances with

2
a —2yh

expectation 0 and variance (1 - e ). Observe that for more finely

Yp

sampled data (smaller h) the autoregressive coefficient (h) becomes closer to

unity. Such a process is precisely the continuous-time analogue of Phillips'

(1986) discrete—time 'near—integrated' time series.

In performing our simulations, we choose parameter values (cL y, a) so

that the resulting magnitudes of the above statistics correspond roughly to

reasonable empirical values. Specifically, we assume that the weekly first-

order autocorrelation coefficient for log—prices is 0.95, implying a weekly

(steady-state) first-order autocorrelation coefficient of -0.025 for weekly

returns. We also assume that the unconditional variance of weekly returns is

O.OOO4. These assumptions yield the parameter values 0.051 and

2
14.10 x 1O for h 1 week. Since the value of ci does not affect our

p p

test statistics, we set it to zero without loss of generality. To develop

further intuition for the implications of our parameter values, we report in

Table la the implied steady-state first-order autocorrelation coefficients of

returns under K1 for a variety of holding-periods. The first row gives the

serial correlation of weekly returns whereas the fourth row reports the serial

correlation of monthly returns, etc. Note that the serial correlations are

negative for all holding periods, as it must be under K1. In addition, the

absolute value of the autocorrelations increases monotonically with the

holding period, so that a weekly serial correlation of -2.5 percent becomes

-9.3 percent for monthly returns.
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Using the above parameter values, we generate one realization of the

price series according to (21) for a specific sample size, compute the test

statistic z corresponding to the statistic M(q), repeat this procedure 5000

times, and examine the resulting frequency distribution of z. Table 2a

reports the results for a variety of sample sizes, time spans, and aggregation

values q. Panel A reports the test's power for data sets spanning 1216 weeks

whereas Panels B and C report power results for data sets of 608 and 304 week

time spans respectively. Within Panel A, the three subsections correspond to

tests based upon different base intervals for the fixed time span of 1216

weeks. For example, the first sub—section reports results for base intervals

of one week. The first row shows that comparing one-week variances to (one—

half) two-week variances using a 5 percent test has 14.3 percent power. The

first row of Panel A's second subsection shows that a 5 percent test based

upon a two—week versus four-week variance comparison has 21.2 percent power.

An interesting pattern emerges from Table 2a. Within any fixed time

span, the power of the test increases as the aggregation value q increases.

For example, although the power of a 5 percent tests is 14.3 percent for q 2

using a 1216 week time span, when q is 16 the power increases to 71.5 percent,

almost quintupling its value at q = 2! Using the same time span with a two—

week base period (h 2), Panel A's second subsection reports that the same

test (q 16) has 90.8 percent power. Even with only 304 base observations

(monthly, or h 4) in the 1216 week time span, a 5 percent test with q 16

has 97.6 percent power! Decreasing the time span decreases the power of the

test as Panels B and C attest. Indeed, within a 304 week time span, the

highest power which the 5 percent test ever achieves is 10.4 percent (h 4,

q 4).
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The explanation for this pattern of power increasing with q lies in the

pattern of serial correlations of K1 given in Table la. As we noted, the

price fads model more closely resembles a random walk as the observation

interval h decreases. This is confirmed by the serial correlations of Table

la which grow farther away from the value 0 (implied by a random walk) as the

holding period increases. Therefore, under this alternative it becomes easiest

to detect departures from the random walk by comparing the most coarsely-

sampled data to the finest. This corresponds to using larger aggregation

values q.

3.2 POWER AGAINST RETURNS FADS.

One of the implications of K1 is that continuously-compounded returns

over any two non-overlapping holding periods are always negatively correlated

and that the autocorrelation increases in absolute value for longer holding

periods. Because it will become evident (see Section I) that this pattern is

inconsistent with the data, we consider another related alternative hypothesis

which is empirically more relevant. Heuristically, this consists of' modelling

instantaneous returns as an O.U. process and deriving the log—price process by

integration. More formally, let R(t) denote the instanteous return of a

security at time t with price P(t). Then we have:

R(t - (t) D(t)
t)

D(t)
(22)-

P(t)
+

P(t)
- + P(t)

where D(t) is the dividend flow of the security at time t. For simplicity, we

assume that D(t) 0 for all t so that the return consists solely of' capital

appreciation.16 Observe that if the log-price process X(t) were any type of

diffusion, the instantaneous return R(t) is no longer well-defined since the

sample paths of P(t) are nowhere differentiable. However, if we begin by

first specifying the dynamics of R(t), then equation (22) may be used to
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define the log—price process X(t). Specifically, we have:

dR(t) _Yr[R(t) — r]dt + ar(t) > 0 (23a)

t

1(2: X(t) X + f R(s)ds . (23b)0
0

We refer to this alternative as the 'returns fads' model of prices. Since

R(t) is an 0.U. process, its population moments are analogous to those in

(20). However, note that in contrast to the price fads model under this

alternative logprices are explosive. Furthermore, the log-price process is

qualitatively different under the two alternatives since, under the returns
fads model the price process is (mean—square) differentiable whereas it is of

unbounded variation under the price fads alternative.17 The moments of the

log—price process under the returns fads model 2 are given by:

—Y t

E0[X(t)J x0 + rt — !_. [i(o) — ].[i — e r j (2'4a)

2 2
a a —yt —yt

VAR0[X(t)j . t + — [i
- e

r ].[e r — (24b)

2'rr

2 2
a a —yS —yt

COV0[X(s), X(t)] = + [2e
r

+ 2e

2'rr

(24c)

—y (t—s) -y (t+s)—2—e r -e r s�t.

Moreover, it may readily be shown that under this alternative all non-

overlapping finite holding-period returns are positively correlated and that

the autocorrelations decline as the holding-period increases. This is

precisely opposite the pattern of the price fads autocorrelations.
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As in the price fads case, we chose values of the parameters

r' 1r' Or) which correspond roughly to reasonable empirical values.

Specifically, we set (ar, 'yr' Or) (0.00140, 2.0, 0.0140) for h 1 week. This

implies a steady-state mean of 0.004 for weekly returns, and a weekly variance

of 0.00014. Table lb reports first-order autocorrelation coefficients for

various holding period returns. As we noted above, all the autocorrelations

are positive in contrast to those of the price fads model. Moreover, they

decline rapidly as the holding period increases, so that a weekly

autocorrelation of 30.3 percent becomes a mere 7.1 percent with monthly

returns.

Table 2b reports the power of our test against the returns fads

alternative. Note that even with 3014 weekly observations, using

aggregation value q of 2 yields a 5 percent test with 99.1 percent power.

However, in contrast to the price fads alternative, Table 2b shows that larger

aggregation values general yields less powerful tests. For example, the power

of a 5 percent test using 1216 weekly observations is 100 percent when q = 2,

but declines to 614 percent when q increases to 64. This pattern is

understandable in view of Table lb's holding-period autocorrelations since

they imply that, unlike the price fads model, the returns fads process behaves

more like a random walk with coarser sampling. Therefore, a comparison of

variance estimators based on coarser to finer data is less likely to reveal a

returns fads. Indeed, the results in Table 2b imply that the simple first—

order serial correlation coefficient of the returns (using the finest—sampled

data) would yield a more powerful test than using any of the variance ratios

with aggregation values larger than 2.

Of course, the power levels reported in Tables 2a and b are obviously

parameter specific. Therefore, caution must be exercised in using these
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simulation results to compare the power of our test with those of the

literature. This comparison is performed explicitly in Lo and MacKinlay

(1987). In this paper, we present the power results for the two alternatives

in order to highlight their qualitative differences. Whereas the absolute

magnitude of the power depends critically upon the values chosen for and

the patterns of increasing or decreasing power in q do not depend upon any

parameter values but are general properties of the alternative hypotheses.

These patterns will prove to be important in interpreting the empirical

results of the next section.

4. THE RANDOM WALK HYPOTHESIS FOR WEEKLY RETURNS.

To test for random walks in stock market returns, we focus on the 1216—

week time span from September 6, 1962 to December 26, 1985. Our choice of a

weekly observation interval was determined by several considerations. Since

our sampling theory is wholly based upon asymptotic approximations, a large

number of observations are required in order to obtain reasonably accurate

inferences. Therefore, using monthly returns data even from the period 1926

to 1985 would only yield 720 observations of what most economists would

consider a highly volatile time series. However, we also decided against the

use of daily returns even though such a data set clearly contains many more

observations. With a daily observation interval, the biases associated with

non-trading, the bid-ask spread, asynchronous prices, etc. may become

statistically significant. Without any formal model of the market micro-

structure, it would be virtually impossible to obtain reliable inferences

using daily (or finer-sampled) observations. Therefore, a weekly sampling

interval seemed to be the ideal compromise, yielding a large number of

observations but minimizing the effects of micro-structure biases.
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The weekly stock returns are derived from the CRSP daily returns file.

The weekly return of each security is computed as the return from Wednesday's

closing price to the following Wednesday's close. If the following

Wednesday's price is missing, then Thursday's price (or Tuesday's if

Thursday's is missing) is used. If both Tuesday's and Thursday's prices are

also missing, the return for that week is reported as missing.

In Section 4.1 we perform our test upon both equal and value-weighted

CRSP indexes for the entire 1216-week period as well as 608-week and 3014—week

sub—periods using aggregation values q ranging from 2 to 6LL Section LL2

reports corresponding test results for size—sorted portfolios.

LL1 RESULTS FOR MARKET INDEXES.

Tables 3 and L report the variance ratios and test statistics z and z

for return indexes and size—sorted portfolios. Tables 3a and 3b display the

results of the M(q) tests for CRSP NYSE-AMEX market indexes. Table 3a

presents the results for a one-week base observation period (h 1 week) and

Table 3b contains corresponding results for a four—week base observation

period (h weeks). Tables 14a and 14b report results of the variance ratio

test for size sorted portfolios also with base observation periods of one and

four weeks respectively. The values reported in the main rows are the actual

variance ratios (M(q) + 1). The values enclosed in parentheses immediately

below the main rows are corresponding z statistics and the second set of

parenthetical entries below the first are the z* statistics which are robust

to heteroscedasticity.

Consider Panel A of Table 3a which displays the results for the CRSP

equal-weighted index. The first row presents the variance ratios and test

statistics for the entire 1216 week sample period, the next two give the

results for the two 608 week sub-periods, and the last four are the results
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for the four 30k week sub—periods. It is clear from Panel A that the random

walk null hypothesis may be rejected at all the usual significance levels for

the entire time period and all sub-periods. Moreover, the rejections are not

due to heteroscedasticity since the z statistics also reject the random walk

model. Also, note that the estimates of the variance ratio are larger than

1.0 for all cases. Specifically, consider the entries in the first colunrn of

Panel A. These correspond to variance ratios with an aggregration value q of

2. In view of equation (13), we may regard one minus this ratio as a

consistent estimate of the first-order serial correlation coefficient of

weekly returns. The entry in the first row, 1.30, implies that the first—

order autocorrelation for weekly returns is approximately 30 percent. Since

the 1.30 ratio is based upon 1216 observations, the standard test of the

first-order autocorrelation coefficient (based upon the standard error

1/11216 = 0.03) easily rejects the random walk hypothesis at any significance

level.

Although the variance ratios increase with q , note that the magnitude of

the z and z statistics do not. Indeed, the test statistics seem to decline

with q hence the significance of the rejections becomes weaker as coarser—

sample variances are compared to weekly variances. This pattern is

inconsistent with the price fads alternative K1 under which the power is an

increasing function of q. If price fads were indeed present in the data, we

should observe more significant rejections for larger q. Moreover, since

price fads imply negative serial correlation of returns, we should also

observe variance ratios less than 1.0. However, the results of Table 3a are

inconsistent with these implications and support those of the returns fads

alternative: positive serial correlation which declines for longer holding—
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periods, implying variance ratios greater than 1.0 and weaker rejections of

the random walk model as q increases.

Although the rejection of the random walk hypothesis is much weaker for

the value-weighted index as Panel B indicates, nevertheless the general

patterns persist. The variance ratios also exceed 1.0, and the z and z

statistics decline as q increases. Note that the rejections for the value-

weighted index are primarily due to the first 304 weeks of the sample period.

Table 3b presents the variance ratios using a base observation period of

4 weeks hence the first entry of the first row, 1.15, is the variance ratio of

eight—week returns to four-week returns, etc. Note that with a base interval

of a month, we generally do not reject the random walk model even for the

equal-weighted index. This result lends further support to the returns fads

model since, as Table lb shows, the weekly-sampled process can deviate

considerably from a random walk whereas the monthly-sampled increments may be

very close to white noise.

Finally, although the test statistics in Tables 1-3 are based upon

nominal stock returns, it is apparent that virtually the same results would

obtain with real or excess returns. Since the volatility of weekly nominal

returns is so much larger than that of the inflation and T-bill rates, it

should be obvious that the use of nominal, real, or excess returns in a

volatility—based test must yield practically identical inferences.

14.2 RESULTS FOR SIZE BASED PORTFOLIOS.

Researchers have recently argued that one can construct portfolios with

constant return characteristics by using the market value of equity as a

portfolio classification variable.18 Also, an implication of the work of Keim

and Staxnbaugh (1986) is that, conditional on stock and bond market variables,

the logarithm of wealth relatives of' portfolios of smaller stocks do not
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follow random walks. For portfolios of larger stocks their results are less

conclusive. Consequently, it is of interest to explore what evidence our

tests provide for the random walk hypothesis for the logarithm of size based

portfolio wealth relatives.

We compute weekly returns for five size based portfolios from the NYSE—

AMEX universe on the CRSP daily return file. Stocks with returns for any

given week are assigned to portfolios based on which quintile their market

value of equity is in. The portfolios are equal weighted and have a

continually changing composition.19 The number of stocks included in the

portfolios varies from 2036 to 2720. Tables 4a and 4b report the M(q) test

results for the size—based portfolios.

Table 4a displays the results using a base observation interval of one

week. Panel A reports the results for the portfolio of small firms (first

quintile), Panel B, reports the results for the portfolios of medium—sized

firms (third quintile), and Panel C reports the results for the portfolio of

large firms (fifth quintile). Evidence against the random walk hypothesis for

small firms is strong for all time periods considered. In Panel A all the z

and z statistics are well above 2.0, ranging from z 3.52 to 11.92 and z

4.00 to 18.06. As we proceed through the Panels to the results for the

portfolio of large firms the z and z statistics become smaller, but even for

the large firms portfolio the evidence against the null hypothesis is

strong. In the 304 week subperiods several of the z statistics are high.

For example, when the aggregation value equals 4 the z* statistics are 2.85,

2.78, 1.60, and 1.17 across the four subperiods. As in the case of the

returns indexes, we may obtain estimates of the first-order autocorrelation

coefficient for returns on these size—sorted portfolios simply by subtracting

1.0 from entries in the q 2 column. The values in Table Ua indicate that
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portfolio returns for the smallest quintile have a 42 percent weekly

autocorrelation over the entire sample period! Moreover, this autocorrelation

reaches 51 percent in sub—period 3 (May 2, 19714 to December 19, 1979) and its

lowest sub—period value (July 4, 1968 to May 1, 1974) is 32 percent. In

addition, although the serial correlation for the portfolio returns of the

largest quintile is much smaller (114 percent for the entire sample period), it

is nevertheless still statistically significant.

Table 4b reports the results using a base observation interval of four

weeks. In Panel A, the results for the smallest firms are also inconsistent

with the random walk hypothesis. For example, the ratio estimate for an

aggregation value of 8 for the overall period is 1.41 with a z statistic of

2.04. In this panel all the ratio estimates are greater than 1.0 and many of

the z statistics are greater than 2.0. Moreover, the implied first-order

autocorrelation for monthly portfolio returns of the smallest quintile is

still quite significant (23 percent). Proceeding through the table we see

that the evidence against the random walk hypothesis disappears so that, in

Panel C, the results for the large firms are all consistent with the random

walk hypothesis. Several of the ratio estimates are below 1.0 and all of the

z statistics are between -2.0 and 2.0.

The results for size—based portfolios are generally consistent with those

for the market indexes. The patterns of variance ratios increasing in q and

significance of rejections decreasing in q which we observed for the indexes

also obtain for these portfolios. The evidence against the random walk

hypothesis for the logarithm of wealth relatives of small-firms portfolios is

strong in all cases considered. For larger firms and a one week base

observation interval, the evidence is also inconsistent with the random
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walk. However, as the base observation interval is increased to four weeks,

our test does not reject the random walk model for larger firms.

5. SPURIOUS AUTOCORRELATION INDUCED BY NON-TRADING.

Although we have based our empirical results upon weekly data to minimize

the biases associated with market micro-structure issues, this alone does not

insure against their possibly substantial influences. In this section, we

consider explicitly the conjecture that infrequent trading may induce

significant spurious correlation in stock returns.20 The common intuition for

the cause of such artificial serial correlation is that, for whatever reasons,

small capitalization stocks are less liquid than larger stocks. Therefore,

new information is impounded first into large-capitalization stock prices and

then into smaller-stock prices with a lag. This lag induces a positive serial

correlation in, for example, an equally-weighted index of stock returns. Of

course, this induced positive serial correlation would be less pronounced in a

value-weighted index. Since our rejections of the random walk hypothesis are

most resounding for the equal—weighted index, they may very well be the result

of this non-trading phenomenon. In order to investigate this possibility, we

consider the following simple model of nontrading.

Suppose our universe of stocks consists of N securities indexed by i,

each with the return generating process given by:

1=1, ...,N (25)

RMt represents a factor common to all returns (e.g., the market) and is

assumed to be an independently and identically distributed random variable

with mean and variance a. The term represents the idiosyncratic

component of security i's return and it is also assumed to be i.i.d. (over

both i and t), with mean 0 and variance ci. The return-generating process may
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thus be identified with N securities each with a unit beta such that the

theoretical R2 of a market model regression for each security is 0.50.

Now suppose that, in each period t, there is some chance that security i

does not trade. One simple approach to modelling this phenomenon is to

distinguish between the observed returns process and the virtual returns

process. For example, suppose security i has traded in period t—1; consider

its behavior in period t. If security i does not trade in period t, we define

its virtual return as Rt (which is given by (25)), whereas its observed

return R?. is 0. If security i then trades at t+1, its observed

return R? is defined to be the sum of its virtual returns R. and R.
it+1 it it+1'

hence non-trading is assumed to cause returns to cumulate. The cumulation of

returns over periods of non-trading captures the essence of spuriously induced

correlations due to the non-trading lag.

In order to calculate the magnitude of the positive serial correlation

induced by non—trading, we must specify the probability law governing the non—

trading event. For simplicity, we assume that whether or not a security

trades may be modelled by a Bernoulli trial, so that in each period and for

each security there is a probability p that it trades and a probability 1 - p

that it does not. Moreover, it is assumed that these Bernoulli trials are

i.i.d. across securities and, for each security, they are i.i.d. over time.

Mow consider the observed return at time t of an equally-weighted

portfolio:

jE R . (26)

But the observed return for security i may be expressed as:

Rt X1t(O).Rt + X1t(1).Rt 1

+ X.t(2).R.t2 . . . (27)
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where Xt(j), i 1, 2, 3, ... are random variables defined as:

1 If i trades at t.

X.t(O) (28a)1 0 Otherwise.

1 If i does not trade at t-1 and i trades at t.

X.t(1) f (28b)1 o Otherwise.

1 If i trades at t and does not trade at t-1 and t-2.

X.t(2) (28c)1 0 Otherwise.

The Xt(j) variables are merely indicators of the number of consecutive

periods before t in which security j has not traded. Using this relation, we

have:

N N N
2 X.t(O).R.t + E

X.t(1).R.t 1 +
Z X1t(2).R.t2 + (29)

For large N, it may readily be shown that because the it component of each

security's return is idiosyncratic and has zero expectation, the following

approximation obtains:

N N N
2 Xit(O).RMt + E

Xjt(l)RMt 1 + Xit(2).RMt 2 +
• (30)

N
Moreover, it is also apparent that the averages z X(j) become arbitrarily

close, again for large N, to the probability of j consecutive no—trades

followed by a trade, i.e.:

N

plim X.t(j) p.(l p)i . (31)
N i1
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The observed equal-weighted return is then given by the approximation:

p.R + p.(l -
p)•RMt 1

+ p.(l - p)2.R 2
+ (32)

Using this expression, the general jt_order autocorrelation coefficient

p(j) may be readily computed as:

COV{R°, H° .1

(j) = t tj (1 — p)J (33)

VAR[R]

Assuming that the implicit time interval corresponding to our single period is

one trading day, we may also compute the weekly (five-day) first-order

autocorrelation coefficient of R as:

W(1) - p(l) + 2p(2) + • + 5(5)
(3)4)p -

+ llp(l) + • • + p(14)

By specifying reasonable values for the probability of non-trading, we may

calculate the induced autocorrelation using equation (311). In order to

develop some intuition for the parameter p, observe that the total number of
N

securities which trade in any given period t is given by the sum E X.(0)

Under our assumptions, this random variable has a binomial distribution with

parameters (N, p) hence its expected value and variance are given by Np and

Np(1-p) respectively. Therefore, the probability p may be interpreted as the

fraction of the total number of N securities which trades on average in any

given period. A value of 0.90 implies that, on average, 10 percent of the

securities do not trade in a single period.

Table S presents the theoretical daily and weekly autocorrelations

induced by non-trading for non-trading probabilities of 10 to 50 percent. The

first row shows that when (on average) 10 percent of the stocks do not trade

each day, this induces a weekly autocorrelation of only 2.3 percent!
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Moreover, even when the probability of non-trading is increased to 50 percent,

the induced weekly autocorrelation is 22 percent, which is still considerably

lower than the estimated 30 percent autocorrelation in the weekly equal-

weighted CRSP index. Furthermore, it should be emphasized that the 22 percent

spurious autocorrelation requires that on average half the stocks do not trade

on any given day. Clearly, this is unrealistically high hence a 22 percent

autocorrelation is a very conservative upper bound.21 A daily non-trading

probability of 10 percent is empirically more relevant, from which we conclude

that our rejection of the random walk hypothesis cannot plausibly be

attributed to infrequent trading.22

6. CONCLUSION.

In this paper, we have rejected the random walk hypothesis for weekly

stock market returns using a simple volatility-based specification test.

These rejections cannot be ascribed to infrequent trading or to time—varying

volatilities. Moreover, the pattern of rejections indicate that a mean—

reverting price fads model of Shiller and Perron (1985) and Summers (1986)

cannot account for the departures from the random walk.

As we stated in the introduction, the rejection of the random walk model

does not necessarily imply the inefficiency of stock price formation. Our

results do, however, impose restrictions upon the set of plausible economic

models for asset pricing; any structural paradigm of rational price formation

must now be able to explain this pattern of serial correlation present in

weekly data. As purely descriptive tools for examining the stochastic

evolution of prices through time, specification tests of price processes also

serve a useful purpose. This is especially true in cases where a 'reduced

form' model of the price process is of more importance than a structural

framework within which those prices are determined in equilibrium. For
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example, the pricing of complex financial claims often depend critically upon

the specific stochastic process driving underlying asset returns whereas,

since such models are usually based upon arbitrage considerations, the

particular economic equilibrium which generates prices may be of less

consequence. In particular, one implication of our empirical findings is that

the standard Black—Scholes pricing formula for stock index options may be

misspecified.

Although our variance-based test may be used as a diagnostic check for

the random walk specification, it is a more difficult task to determine

precisely which single process best fits the data. Our empirical results

suggest that a returns fads model may provide a more likely explanation for

the stochastic properties of short-run returns. A direct parameter estimation

of this process may shed more light on the behavior of market prices and will

be pursued in future research. However, this alternative also has its

limitations. In particular, it implies that all non-overlapping holding-

period returns are positively correlated, whereas Fama and French (1986) have

shown that long holding-period returns (3 to 5 years) are negatively serially

correlated. Furthermore, the results of French and Roll (1986) for return

variances when markets are open versus when they are closed adds yet another

dimension to this empirical puzzle. Whether or not it is possible to

construct a single stochastic process which exhibits this rich pattern of

autocorrelations for various holding periods is an intriguing problem which

merits further investigation.
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FOOTNOTES

1See Keynes (1936) Chapter 12, Section VII.

2See Fama's (1970) survey and, more recently, Chapter 5 of Fama (1976)
for a sample of this vast and still growing literature.

3See, for example, the studies in Jensen's (1978) volume on anomalous
evidence regarding market efficiency.

Other studies which have also employed variance ratios are Campbell and
P4ankiw (1986), Cochrane (1986), Fama and French (1986), and French and Roll
(1986). There is also a sizable literature concerning the testing of unit
roots, of which the random walk process is a special case. See Lo and
MacKinlay (1987) for a discussion of how the proposed variance ratio test is
related to the more general unit root tests.

5Briefly, Hausman (1978) exploits the fact that any asymptotically

efficient estimator of a parameter 8, say 8e' must possess the property that

it is asymptotically uncorrelated with the difference 8a - 0e where 8a is any

other estimator of 8. If not, then there exists a linear combination of

8 and 8 - 8 which is more efficient than 8
, contradicting the assumede a e.. e

efficiency of 8e• The result follows directly then since:

PVAR[oJ AVAR[8 + 8a
- AVARfO] + AVAR[e 8]

P1VAR[o — 01 AVARIO 1 - AVAR[0]

where AVAR[.] denotes the asymptotic variance operator.

6Note that if (2)2 is used to estimate a, then the standard 't-test' of

0 will yield inferences identical to those obtained from the

corresponding test of r 0 for the ratio since

2 2
____ % G

- N(0, 1)
/'1 /2o /2

a
a

7See Lo and MacKinlay (1987).

8More formally, the unbiased variance estimators a, G, G are given by:
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nq - 1 k1
[Xk - Xk_l

-

—2 1

nq - q k1
[Xqk - Xqk_q

-

—2 1
nq

o — z {X - X - q] m q(nq - q + 1)•(1 -
C

rnk_q
k k-q nq

9Mote the similarity between these variance ratios and the Box-Pierce
Q—statistic which is a linear combination of squared autocorrelations with all
the weights set identically equal to unity. Although we may expect the
finite—sample behavior of the variance ratios to be comparable to that of the
Q-statistic under the null hypothesis, they may have very different power
properties under various alternatives. See Lo and MacKinlay (1987) for
further details.

10See, for example, Merton (1980), Poterba and Summers (1985), and

French, Schwert, and Starnbaugh (1985).

We must of course assume that the average variance converges
asymptotically, otherwise no statistical inference is possible. In
particular, Assumption A of White and Domowitz (198)4) is assumed.

121n particular, we require Assumption A and the assumptions in Theorem
2.3 of White and Domowitz (1984), and the added condition that
E[€tctJtetk] 0 for all t and for non—zero j k. This last condition

implies that the estimators of the increments' autocorrelation coefficients
are asymptotically uncorrelated so that the estimator of the asymptotic
variance of M(q) takes on the particularly simple form in (18). Although
this restriction on the fourth cross-moments of may seem somewhat
unintuitive, note that it is satisfied for any process with independent
increments (irregardless of heterogeneity) and also for linear Gaussian ARCH

processes. Moreover, at the expense of computational simplicity this
assumption may be relaxed entirely, requiring the estimation of the asymptotic
covariances of the autocorrelation estimators in order to estimate the
limiting variance e of M(q) via relation (16). Although the resulting
estimator of 8 would be more complicated than (18), it is conceptually
straightforward and may be readily formed along the lines of Newey and West

(1986).

13See footnote 12.

An equivalent and somewhat more intuitive method of arriving at this
same formula is to consider the regression of the increments on a constant and
the j-th lagged increments. The estimated slope coefficient is then simply
the j-th autocorrelation coefficient. It may then be shown that estimated
variance of the slope coefficient given by White's (1980) heteroscedasticity-
consistent covariance matrix estimator for this regression is numerically

identical to S(j). Note that White (1980) requires independent disturbances
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whereas White and Domowitz (19814) allow for weak dependence (of which
uncorrelated errors is a special case). Taylor (19814) also obtains this
result under the assumption that the multivariate distribution of the sequence
of disturbances is symmetric.

5See, for example, Shiller and Perron (1985), Fama and French (1986),
and Summers (1986).

16This, of course, entails no loss of generality if all dividends are re-
invested in the security or if the dividend-price ratio is a nonstochastic
function of time.

17The integrated O.(J process has a long history in the physical
sciences. The prime motivation for its development was the need to model the
velocity of a particle suspended in fluid. Because the Brownian motion model
of a particle's position yields sample paths of' unbounded variation, the
particle's velocity cannot be defined. This problem was solved by modelling
velocity itself as a Brownian motion and then integrating to obtain the
particle's position. However, for purposes of modelling the stochastic
behavior of an individual security, the integrated O.U. process still contains
a serious limitation: it implies the existence of pure arbitrage
opportunities in the context of frictionless markets in which continuous
trading is possible. Specifically, Harrison, Pitbiaddo, and Schaefer (19814)
demonstrate that continuous time price processes in frictionless markets with
continuous sample paths must be of unbounded variation to rule out
arbitrage. This is clearly violated by the integrated O.U. process which, by
construction, possesses a mean—square derivative. We therefore do not
advocate the returns fads process as a reasonable alternative to the lognormal
diffusion. Its use is merely for purposes of illustrating the power of our
test statistics against an alternative under which returns are positively
serially correlated. Note, however, that the integrated O.tJ. process may be
appropriate as a model of the behavior of aggregate wealth (e.g., in a single-
good representative agent model).

l8Huberman and Kandel (1985) is one example.

19We also performed our tests using value-weighted portfolios and
obtained essentially the same results. The only difference appeared in the
largest quintile of the value-weighted portfolio, for which the random walk
hypothesis was generally not rejected. This, of course, is not surprising
given that the largest value-weighted quintile is quite similar to the value-
weighted market index.

20See, for example, Cohen, Hawawini, Maier, Schwartz, and Whitcomb
(1983).

21lndeed, several other factors imply that the actual size of the
spurious autocorrelations induced by infrequent trading are lower than those
given in Table 5. For example, in calculating the induced correlations using
equation (33), we have ignored the idiosyncratic components in returns due to
diversification whereas, in practice, perfect diversification is never
achieved. But note that any residual risk increases the denominator of (33)

but does not necessarily increase the numerator (since the are cross-
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sectionally uncorrelated). To see this explicitly, we simulated the returns
for 1000 stocks over 5120 days, calculated the weekly autocorrelations for the
virtual returns and for the observed returns, computed the difference of those
autocorrelations, repeated this procedure 20 times and then averaged the
differences. With a (daily) non-trading probability of 10 percent, the
simulations yield a difference in weekly autocorrelations of 2.1 percent
(lower than the theoretical 2.3 percent), 14.3 percent for a non—trading
probability of 20 percent (theoretically 5.3 percent), and 7.6 percent for a
non-trading probability of 30 percent (theoretically 9.3 percent).

whether or not the security has traded recently, it is natural to suppose that
the likelihood of a no—trade tomorrow is lower if there is a no-trade today.
In that case, it may readily be shown that the induced autocorrelation is even
lower than that computed in our i.i.d. framework.

Finally, the well-known bias induced by the bid-ask spread (which we
attempt to minimize by using weekly data) also serves to reduce the estimated
autocorrelation of returns.

22jfl fact, for the value-weighted CRSP index a non-trading probability of
10 percent is probably too high since the smaller stocks (which might possibly
have a non-trading probability as high as 10 percent) are given almost no
weight, whereas the stocks with significant weight such as IBM and GM have
almost zero probability of a no-trade.

Another factor which may reduce
empirically is that, within the CRSP
price is reported as the average of
the specialist adjusts the spread to
trade occurs the reported CRSP will
there may still be some delay before
presumably less than the lag between

Also, if it is assumed that the

the spurious positive autocorrelation
files, if a security does not trade its
the bid-ask spread. Therefore, as long as
reflect the new information, even if no
reflect the new information. Although
the bid—ask spread is adjusted, it is
trades.

probability of no-trades depends upon
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TABLE la

Theoretical steady state first-order serial correlation
coefficients of price fads returns for one to twelve week
holding—periods when 0.051.

Holding Period First-Order Serial
(Weeks) Correlation

1 -0.025
2 0.0119
3 -0.071

-0.093

5 -0.113
6 -0.132
7 -0.151
8 -0.168

9 -0.185
10 -0.201
11 —0.216
12 -0.230



TABLE lb

Theoretical steady state first-order serial correlation
coefficients of returns fads returns for one to twelve week

holding-periods when = 2.0.

Holding Period First-Order Serial

(Weeks) Correlation

1 0.329
2 0.160

3 0.099
14 0.071

5 0.056
6 0.0145

7 0.038
8 0.033

9 0.029
10 0.026
11 0.024
12 0.022



TABLE 2a

Power of the specification test M(q) against the price fads

alternative with parameters (a, 1, a) (0.000, 0.051 , 0.020
when h • 1 for various time spans, aggregation values, and

observation intervals. All simulations are based upon 5000

replications.

Sample
Size q 11

Power
(10%)

Power
(5%)

Powern
A. Power Results for 1216 Week Time Span.

1216 2 1 0.225 0.143 0.088
1216 14 1 0.373 0.251 0.152
1216 8 1 0.592 0.455 0.313
1216 16 1 0.837 0.715 0.541
1216 32 1 0.975 0.922 0.797
1216 64 1 0.999 0.985 0.906

608 2 2 0.323 0.212 0.131
608 L4 2 0.547 0.404 0.281
608 8 2 0.821 0.697 0.535
608 16 2 0.968 0.908 0.7814
608 32 2 0.999 0.987 0.910

3014 2 4 0.4614 0.334 0.230
304 14 14 0.766 0.637 0.485
3014 8 14 0.952 0.883 0.750
3014 16 4 0.998 0.976 0.888

B. Power Results for 608 Week Time Span.

608 2 1 0.144 0.080 0.0143
608 4 1 0.215 0.121 0.065
608 8 1 0.328 0.201 0.114
608 16 1 0.497 0.309 0.165
608 32 1 0.666 0.413 0.170

3014 2 2 0.203 0.120 0.067
304 14 2 0.320 0.198 0.108
3014 8 2 0.472 0.285 0.149
3014 16 2 0.651 0.412 0.182

152 2 14 0.275 0.171 0.095
152 14 4 0.449 0.293 0.165
152 8 4 0.625 0.Z400 0.187

C. Power Results for 3014 Week Time Span.

3014 2 1 0.125 0.065 0.033
3014 14 1 0.140 0.074 0.036
304 8 1 0.168 0.078 0.029
3014 16 1 0.201 0.074 0.020

152 2 2 0.146 0.078 0.042
152 14 2 0.171 0.085 0.038
152 8 2 0.214 0.099 0.028

76 2 14 0.170 0.092 o.ous
76 14 4 0.211 0.104 0.042



TABLE 2b

Power of the specification test M(q) against the returns fads

alternative with parameters °r' 'rr, ar) — (0.00k, 2.0, 0.0U0) when

h • 1 for various time spans, aggregation values, and observation

intervals. All simulations are based upon 5000 replications.

Sample
Size q h Power

(10%)
Power,
(5%)

Power
(1%)

A. Power Results for 1216 Week Time Span.

¶216 2 1 1.000 1.000 1.000

1216 U 1 1.000 1.000 1.000

1216 8 1 1.000 1.000 1.000

1216 16 1 1.000 1.000 0.999
1216 32 1 0.993 0.971 0.916
1216 6k 1 0.827 0.6k0 0.378

608 2 2 0.987 0.970 0.9L83

bO U 2 0.93 0.915 0.o7
608 8 2 0.808 0.677 0.528
608 16 2 0.530 0.353 0.198
608 32 2 0.263 0.117 0.0k0

30k 2 U 0.3U9 0.239 0.150

30k U U 0.2U1 0.139 0.069

304 8 U 0.153 0.072 0.033
30k 16 U 0.109 0.QU1 0.012

B. Power Results for 608 Week Time Span.

608 2 1 1.000 1.000 1.000

608 U 1 1.000 1.000 1.000

608 8 1 1.000 1.000 0.998
608 16 1 0.985 0.958 0.898
608 32 1 0.819 0.633 0.378

30k 2 2 0.86k 0.775 0.679

30k U 2 0.750 0.61k 0.k68

304 8 2 0.511 0.342 0.195

304 16 2 0.268 0.118 0.037

152 2 U 0.216 0.138 0.083
¶52 U Li 0.167 0.082 0.037
152 8 4 0.120 0.0k7 0.016

C. Power Results for 30k Week Time Span.

30* 2 1 0.998 0.991 0.980

30* 14 1 0.999 0.996 0.982

304 8 1 0.975 0.931 0.852

304 16 1 0.807 0.610 0.358

152 2 2 0.591 0.1470 0.3148

152 ii 2 0.U61 0.309 0.178

152 8 2 0.265 0.120 0.0142

76 2 U 0.174 0.098 0.053
76 U U 0.118 0.050 0.018



TABLE 3a

Variance ratio test M(q) of the random walk hypothesis for CRSP equal and
value weighted indexes using a one-week base observation interval (h - I week)
for the sample period September 6, 1962 to December 26, 1985 and sub—periods.
The actual variance ratios are reported in the main rows, with the z and z'
statistics given in parentheses in rows iediately below each main row.

'Indicates significance at the 5 percent level

Tim.
period

Number nq
of baa.

observations
2

Number q of
to

base
form

8

observations aggregated
variance ratio

16 32 64

A. Equal-Weighted CRSP NYSE—AMEX Index

620906—851226 J216 1.30 1.64 1.9k 2.05 2.22 2.23
(10.29)' (11.9k)' (11.08)' (8.30)' (6.66)' (4.71)'
(7.51)' (8.87)' (8.48)' (6.59)' (5.52)' (4.05)

620906—740501 608 1.31 1.62 1.92 2.09 2.37
(7.53)' (8.23)' (7.64)' (6.10)' (5.28)'
(5.38)' (6.03)' (5.76)' (4.77)' (4.32)'

740502—851226 608 1.28 1.65 1.93 1.91 1.714

(7.02)' (8.51)' (7.75)' (5.07)' (2.8k)'
(5.32)' (6.52)' (6.13)' (4.17)' (2.45)'

620906—680703 30k 1.32 1.68 1.92 2.07
(5.66)' (6.29)' (5.44)' (4.26)'
(4.12)' (4.77)' (4.23)' (3.45)'

680704—740501 304 1.29 1.58 1.83 1.87
(4.99)' (5.36)' (4.90)' (3.46)'
(14.03)' (U.l44) (4.18)' (3.04)'

740502—791219 304 1.29 1.71 2.01 1.91

(5.12)' (6.58)' (5.93)' (3.60)'
(3.80)' (5.02)' (4.66)' (2.93)'

791220—851226 30k 1.26 1.49 1.66 2.00
(4.61)' (4.55)' (3.91)' (3.94)'
(3.99)' (3.83)' (3.46)' (3.63)'

B. Value-Weighted CRSP NYSE-AMEX Index

620906—851226 1216 1.08
(2.96)'
(2.33)'

1.16

(2.94)'
(2.31)'

1.22
(2.59)'
(2.07)'

1.22
(1.71)

(1.38)

1.35
(1.94)
(1.60)

1.31
(1.17)
(1.00)

620906—740501 608 1.15
(3.66)'
(2.89)'

1.22
(2.87)'
(2.28)'

1.27
(2.22)'
(1.79)

1.32
(1.78)
(1.46)

1.42
(1.61)

(1.37)

740502—851226 608 1.05
(1.13)
(0.92)

1.12
(1.57)
(1.28)

1.18
(1.50)
(1.214)

1.10
(0.56)
(0.46)

1.01

(0.06)

(0.05)

620906—680703 304 1.20

(3.55)'
(2.87)'

1.29
(2.71)'
(2.19)'

1.32
(1.90)
(1.55)

1.29
(1.15)
(0.96)

6807011—740501 301$ 1.12
(2.12)'
(1.86)

1.18
(1.69)
(1.49)

1.22
(1.32)
(1.18)

1.30
(1.18)
(1.08)

740502—791219 304 1.00
(—0.01)
(-0.01)

1.11

(1.07)
(0.87)

1.21

(1.21)
(0.99)

1.14
(0.57)
(0.47)

791220—851226 304 1.10

(1.72)
(1.42)

1.09
(0.82)
(0.68)

1.08

(0.49)
(0.42)

1.12

(0.47)
(0.41)

Note: Under the random walk null hypothesis the value of the variance ratio is 1 .0 and
the test statistic has a standard normal distribution (asymptotically).



TABLE 3b

Variance ratio test (q) of the random walk hypothesis for CRSP

equal and value weighted indexes using a tour-week base observation

interval (h • 14 weeks) for the sample period September 6, 1962 to

December 26, 1985 and sub—priods. The actual variance ratios are
reported in the main rows, with the z and a' statistics given in

parentheses in rows iemediately below each main row.

'Indicates significance at the 5 percent level.

Tiem
period

Number n
of

observations

Number q of base
to tori

2 II

observations aggregated
variance ratio

8 16

A. Equal-Weighted CRSP NYSE-AMEX Index

620906—851226 3011 1.15

(2.63)'
(2.26)'

1.19
(1.80)
(1.511)

1.30
(1.711)

(1.52)

1.30
(1.20)
(1.07)

620906—7110501 152 1.13
(1.611)

(1.39)

1.23
(1.511)

(1.32)

1.110

(1.67)

(1.116)

7110502—851226 152 1.15
(1.b)
(1.68)

1.11

(O.fl)
(0.611)

1.02

U.1Q)
(0.09)

620906—680703 76 1.11

(0.92)
(0.80)

1.20
(0.95)
(0.87)

6807011—7110501 76 1.12
(1.01)
(0.90)

1.15
(0.71)
(0.614)

7110502—791219 76 1.16

(1.113)

(1.23)

1.07
(0.30)
(0.27)

791220—851226 76 1.02
(0.21)
(0.29)

1.21

(1.00)
(1.10)

B. Value-Weighted CR5? NYSE—AMEX Index

620906—851226 3014 1.05
(0.79)
(0.75)

1.00
(0.00)
(0.00)

1.11
(0.614)
(0.57)

1.07
(0.28)
(0.26)

620906—7110501 152 1.02
(0.27)
(0.26)

1.011

(0.29)
(0.26)

1.12
(0.50)
(0.146)

7110502—851226 152 1.05
(0.611)
(0.63)

0.95
(—0.311)
(—0.31)

0.89
(—0.116)
(—0.142)

620906—680703 76 1 .00
(0.02) .
(0.02)

1 .02
(0.08)
(0.08)

6807011—740501 76 1.02
(0.18)
(0.18)

1.05
(0.22)
(0.21)

7140502—791219 76 1.12
(1.07)
(1.01)

0.98
(—0.11)
(—0.10)

791220—851226 76 0.90
(-0.89)
(-0.95)

0.95
(—0.211)

(—0.23)

Note: Under the random walk null hypothesis the value of the variance ratio
is 1.0 and the test statistic has a standard normal distribution

(asymptotically).



TABLE 44

Variance ratio test (q) of the random walk hypothesis for size—sorted
portfolios using a one—week base observation interval (h • 1 week) for the
sale period September 6, 1962 to December 26, 1985 and sub—periods. The
aotua.I variance ratios are reported in the main rows, with the a and z'
statistics given in parentheses in rows immediately below each main row.

'Indicates significance at the 5 percent level

Time
period

Number n
of base
b V0 ser a

2

Number q of base observations aggregated
to form variance ratio

8 16 32 614

A. Portfolio of firms with market values in smallest NYSE-AMEX quintile

620906—851226 1216 1.142

(111.71)'

(8.81)'

1.97 2.119 2.68
(18.06)' (17.514)' (13.28)'
(11.58)' (11.92)' (9.65)'

2.83
(9.98)'
(7.8's)'

2.96
(750)'
(6.23)'

620906—7140501 608 1.37
(9.05)'
(6.12)'

1.83 2.27 2.52
(10.92)' (10.60)' (8.149)'

(7.83)' (7.914)' (6.68)'

2.98
(7.614)'

(6.32)'

7140502—851226 608 1.149

(12.13)'
(6.'s4)'

2.114 2.76 2.87
(15.08)' (114.65)' (10.'48)'
(8.66)' (9.06)' (7.06)'

2.56
(6.03)'
(4.53)'

.

620906—680703 3014 1.146

(8.01)'
(5.86)'

2.09 2.65 3.05
(10.13)' (9.714)* (8.11)'
(7.90)' (7.91)' (6.92)'

6807014—7140501 3015 1.32
(5.60)'
(14.19)'

1.70 2.04 2.01
(6.514)' (6.114)' (14.00)'

(5.21)' (5.13)' (3.52)'

7140502—791219 304 1.51
(8.91)'
(s.77)'

2.19 2.80 2.78
(11.08)' (10.63)' (7.07)'
(6.146)' (6.68)' (4.85)'

791220—851226 30s 1.145
(7.79)'
(6.17)'

1.99 2.50 3.19
(9.25)' (8.86)' (8.68)'
(7.112)' (7.59)' (7.97)'

3. Portfolio of firms with market values in central NYSE—AMEX quintile

620906—851226 1216 1.28 1.60 1.84 1.91 2.08 2.15
(9.85)' (11.10)' (9.914)' (7.21)' (5.89)' (14.39)'
(7.38)' (8.37)' (7.70)' (5.78)' (14.92)' (3.80)'

620906—7110501 608 1.30 1.59 1.85 2.01 2.28
(7.39)' (7.82)' (7.08)' (5.67)' (4.93)'
(5.31)' (5.73)' (5.33)' (14.112)' (14.03)'

7140502—851226 608 1.27 1.59 1.80 1.69 1.119

(6.53)' (7.73)' (6.69)' (3.87)' (1.90)'
(5.31)' (5.73)' (5.33)' (11.42)' (14.03)'

620906—680703 3014 1.29 1.58 1.75 1.84
(5.10)' (5.40)' (11.143)' (3.34)'
(3.81)' (4.20)' (3.52)' (2.75)'

6807011—740501 30l 1.29 1.57 1.80 1.85
(5.05)' (5.28)' ('4.72)' (3.38)'
('4.07)' (14.311)' (3.99)' (2.914)'

7l0502—791219 304 1.26 1.62 1.81 1.63
(4.61)' (5.81)' ('4.80)' (2.51)'
(3.63)' (4.58)' (3.88)' (2.09)'

791220—851226 3014 1.26 1.146 1.61 1.84
(4.50)' (14.26)' (3.61)' (3.314)*
(3.99)' (3.64)' (3.23)' (3.12)'



TABLE 14a (continued)

C. Portfolio of rirs with sarket values in largest NYSE—AMEX quintile

620906—851226 1216 1.114 1.27 1.36 1.314 1.1414 1.31

(147J4)* (14.96)' (14.214)' (2.71)' (2.143)' (1.17)
(3.82)' (3.99)' (3.145)* (2.22)' (2.03)' (1.00)

620906—7140501 608 1.21 1.36 1.145 1.1414 1.146

(5.23)' (14.75)' (3.73)' (2.148)' (1.78)
(14.014)' (3.70)' (2.96)' (2.02)' (1.149)

7140502—851226 608 1.09 1.20 1.27 1.18 1.08
(2.11)' (2.58)' (2.28)' (1.03) (0.32)
(1.80) (2.18)' (1.95) (0.87) (0.28)

620906—680703 3014 1.26 1.39 1.146 1.140

(l4147)' (3.65)' (2.68)' (1.60)

(3.51)' (2.85)' (2.12)' (1.30)
6807014—7140501 3014 1.19 1.314 1.143 1.142

(3.33)' (3.19)' (2.52)' (1.68)

(2.86)' (2.78)' (2.214)' (1.53)

7140502—791219 3014 1.05 1.20 1.31 1.214

(0.90) (1.90) (1.814) (0.914)

(0.77) (1.60) (1.55) (0.79)

791220—851226 3014 1.12 1.15 1.16 1.20
(2.11)' (1.36) (0.95) (0.80)

(1.82) (1.17) (0.85) (0.72)

Note: Under the random walk null hypothesis the value or the variance ratio is 1.0 and
the test statistic has a standard normal distribution (asymptotically).



TABLE 11b

Variance ratio test (q) of the random walk hypothesis for size—
sorted portfolios ust.g a four—week base observation interval
(h - 1$ weeks) for the sample period September 6, 1962 to December
26, 1985 and sub-periods. The actual variance ratios are reported
in the main rows, with the z and z statistics given in parentheses
in rows imeediately below each main row.

'Indicates significance at the 5 percent level

Time
period

N ber
of base

observations

Number

2

q of base observations aggr
to form variance ratio

8

egated

16

A. Portfolio of firms with market values in smallest NYSE—AI€X quintile

620906—851226 301$ 1.23
(k.01)'
(3.09)'

1.32 1.111

(3.01)' (2.39)'
(2.140)' (2.01$)'

1.1$7
(1.86)
(1.66)

620906—7140501 152 1.20
(2.50)'
(2.06)'

1.314 1.59
(2.22)' (2.145)'
(1.93) (2.23)'

7140502—851226 152 1.26
(3.16)'
(2.31)'

1.31 1.19
(2.01$)' (0.78)
(1.52) (0.63)

620906—680703 76 1.21

(1.87)
(1.58)

1.39
(1.80)
(1.65)

6807014—7140501 76 1.17
(1.149)

(1.23)

1.18
(0.83)
(0.73)

714052—791219 76

.

1.26
(2.25)'
(1.67)

1.25
(1.16)
(0.89)

791220—851226 76 1.18
(1.51$)

(1.77)

1.148

(2.21$)'

(2.'46)'

B. Portfolio of firma with market values in central NYSE—AMEX quintile

620906—851226 301$ 1.13 1.11$ 1.21$ 1.29
(2.20)' (1.30) (1.143) (1.11$)
(1.91$) (1.12) (1.21$) (1.01)

620906—7140501 152 1.11 1.21 1.37
(1.38) (1.37) (1.56)
(1.16) (1.15) (1.32)

7140502—851226 152 1.12 1.02 0.91
(1.149) (0.13) (—0.36)
(1.1414) (0.12) (—0.33)

620906—680703 76 1.08 1.15
(0.72) (0.68)
(0.65) (0.63)

680701$—7l80501 76 1.09 1.11$

(0.79) (0.63)
(0.71) (0.57)

7140502—791219 76 1.11 0.91$
(0.93) (—0.26)
(0.88) (—0.214)

791220—851226 76 1.03 1.16
(0.21$) (0.75)
(0.33) (0.83)



TABLE 4b (continued)

C. Portfolio of firms with airket values in largest NYSE—AMEX quintile

620906—851226 3014 1.06 1.01 1.08 0.98

(1.12) (0.10) (0.146) (—0.09)

(1.03) (0.09) (0.140) (—0.08)

620906—7140501 152 1.03 1.02 1.03
(0.140) (0.11) (0.12)

(0.35) (0.10) (0.10)

7'10502—851226 152 1.07 0.96 0.88
(0.87) (-0.27) (-0.50)

(0.83) (—0.214) (—0.145)

620906—680703 76 1.02 1.03
(0.15) (0.13)
(0.17) (0.13)

6807014—7140501 76 1.03 1.00

(0.26) (0.02)
(0.214) (0.02)

1L405Q2—T9119 10 1.11 0.
(0.97) (—0.19)
(0.90) (-0.17)

791220—851226 76 0.914 0.99
(—0.50) (—0.OU)
(—0.55) (—0.03)

Note: Under the random walk null hypothesis the value of the variance ratio

is 1.0 and the test statistic has a standard normal distribution

(asymptotically).



TABLE 5

Magnitudes of spurious autocorrelations of returns induced by the
non-trading phenomena for daily non-trading probabilities 1 - p of
10 to 50 percent. The theoretical values of daily j-th order

atocorrelations p(J) and weekly first-order autocorrelation
o (1) are all zero in the absence of the non-trading problem.

Probability
Non—tradi

i-p

of

ng p(1) p(2) p(3) p(L) (5) W(1)

0.10 0.1000 0.0100 0.0010 0.0001 0.0000 0.0227

0.20 0.2000 0.OUOO 0.0080 0.0016 0.0003 0.0525

0.30 0.3000 0.0900 0.0270 0.0081 0.0021 0.b927

o.Lo o.lrnoo 0.1600 o.o6Uo 0.0256 0.0102 0.11473

0.50 0.5000 0.2500 0. 1250 0.0625 0.0312 0.2209




