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ABSTRACT

Naturally-occurring yellow sand outbreaks, which are produced by winds flowing to Korea from
China and Mongolia, create air pollution. Although there is seasonal pattern of this phenomenon, there
exists substantial variation in its timing, strength and location from year to year. Thus, exposure to
the intensity of air pollution exhibits significant randomness and unpredictability. To warn residents
about air pollution in general, and about these dust storms in particular, Korean authorities issue different
types of public alerts. Using birth certificate data on more than 1.5 million babies born between 2003
and 2011, we investigate the impact of air pollution, and the avoidance behavior triggered by pollution
alerts on various birth outcomes. We find that exposure to air pollution during pregnancy has a significant
negative impact on birth weight, the gestation weeks of the baby, and the propensity of the baby being
low weight. Public alerts about air quality during pregnancy have a separate positive effect on fetal
health. We show that Korean women do not time their pregnancy according to expected yellow dust
exposure, and that educated women’s pregnancy timing is not different from those who are less-
educated. The results provide evidence for the effectiveness of pollution alert systems in promoting
public health.  They also underline the importance of taking into account individuals’ avoidance
behavior when estimating the impact of air quality on birth outcomes. Specifically, we show that the
estimated impact of air pollution on infant health is reduced by half when the preventive effect of
public health warnings is not accounted for.
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Chinese Yellow Dust and Korean Infant Health 

 

I. Introduction 

It has been documented that health at birth has long term effects on adult health, human 

capital accumulation and economic well-being.  One of the most commonly-used indicators of 

health at birth is the weight of the infant when she was born.  As summarized by Currie (2011) 

and Almond and Currie (2011), infants who are heavier at birth end up being different in 

adulthood from those who have lighter birth weights.   For example, they are taller adults, have 

greater IQ scores, attain higher levels of education and earn more when they are adults.  

Consequently, a sizable literature has investigated the impact on birth weight of its various 

determinants, ranging from smoking (Lien and Evans 2005, Grossman and Joyce 1990) to 

prenatal care consumption (Mocan, Raschke and Unel (Forthcoming),  Dehejia and Lleras-

Muney 2004), to nutritional assistance for low-income families (Almond, Hoynes and 

Schanzenbach 2011).   

An important component of this investigation is the extent to which in utero exposure to 

pollution impacts birth weight.1  While the literature on the effect of air pollution on infant 

mortality is extensive2, there are relatively few studies examining the biological effect of 

pollution on birth weight.  Examples of this limited area of inquiry include Currie, Neidell and 

Schimeider (2009), who show that mother’s exposure to carbon monoxide in her last trimester of 

pregnancy in New Jersey increases the risk of low birth weight.  Coneus and Spiess (2012) find a 

1 A related research has shown the impact on adult outcomes of in utero exposure to disease and pollution (Black et 
al. 2013, Sanders 2012, Almond 2006) 
2 Examples include Greenstone and Hanna (2014), Luechinger (2014), Agarwal, Banternghansa and Bui (2010), 
Jayachandran, (2009), Currie and Neidell (2005), Chay and Greenstone (2003). 
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similar effect of air pollution on birth weight using German data.  Currie et al. (2015) report that 

toxic plant openings increase the incidence of low birth weight through their detrimental effect 

on air pollution within one mile radius.  Currie and Walker (2012) demonstrate that the 

introduction of electronic toll collection on the highways of New Jersey and Pennsylvania 

reduced automobile emissions, resulting in fewer infants with low birth weight.  

In this paper we investigate the impact of air pollution on infant health, measured by birth 

weight and gestational age of newborns.  In contrast to the existing body of work that employed 

data from the U.S. or some European countries, we focus on a new setting, the Republic of 

Korea. We utilize the universe of birth certificates between 2003 and 2011, which allow us to 

analyze more than 1.5 million live births.  We exploit the exogenous variation in air pollution, 

created by a natural phenomenon in South Korea: The Yellow Dust (Hwang-sa in Korean). This 

is a weather event, originated in the arid lands of Northern China and in the desert regions of 

Mongolia plateau “under the conditions of high temperature, low humidity, and high wind 

velocity” (Chun et al. 2001). Winds with abnormally high speed, particularly the Westerlies,3 

pick up dust and sand particles and carry them to the Korean peninsula. Although there is a 

seasonal pattern of this phenomenon, there exists substantial variation in its strength and location 

from year to year.  In other words, while the intensity of air pollution due to yellow dust exhibits 

a seasonal cycle, the amplitude of the cycle varies significantly between the years, along with the 

timing of the up-and-down swings.  For example, Figure 1 displays the average concentration of 

PM10 (particles with a diameter of 10 micrometers or less) levels by month between 2003 and 

3 The Westerlies are winds blowing from West to East, and occur in temperate zones -- in the middle latitudes 
between 30 and 60 degrees latitude.  
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2006.4  The values reported in Figure 1 are average PM10 levels, aggregated over hourly 

readings in about 130 weather stations across Korea. While pollution generally rises in the 

Spring and declines during Summer, the pattern is not systematic, and it exhibits substantial 

noise from year to year.  The same irregularity is observed within a given city as well.  We 

demonstrate, in different ways, that women do not time their pregnancy according to expected 

Yellow Dust exposure, and that educated women’s pregnancy timing is not different from those 

who are less-educated.  Therefore, exposure to the intensity of air pollution exhibits substantial 

randomness and unpredictability. 

An important contribution of the paper is the ability to account for avoidance behavior, 

and to obtain estimates of the impact of pollution avoidance on birth outcomes.  Individuals may 

take precautionary measures in reaction to temporary increases in pollution by such actions as 

wearing masks or staying indoors.  The biological impact of air pollution on health is 

underestimated if reductions in the exposure to pollution due to avoidance are not accounted for.  

The paucity of data prevented most of the existing research from controlling for the avoidance 

behavior, although there are notable exceptions (e.g. Janke 2014, Moretti and Neidell 2011, 

Neidell 2009).  As summarized by Zivin, Neidell and Schlenker (2011), the provision of public 

notifications and alerts on environmental hazards is being used increasingly as a tool to generate 

behavioral responses to mitigate the detrimental effects of exposure. 

We utilize various pollution alerts at the local level, issued by Korean authorities, to 

obtain unbiased estimates of the biological impact of pollution on infant health, as well as to 

4 Particulate matter intensity is directly linked to negative health consequences such as lung and heart disease and 
reduced immune system function (http://www.epa.gov/pm/health.html). When inhaled by the pregnant mother, these 
particles get into pregnant mother’s lungs and into the blood stream, and they may be transferred to the infant. 
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estimate the improvement of infant health generated by pollution avoidance.5   Our paper is the 

first one to investigate the effectiveness of public air quality alerts on birth outcomes.6   

In a concurrent paper, using the incidence of yellow dust events in Korea, Jia and Ku 

(2015) investigate the effect of pollution on mortality.  The authors show that during the months 

in which Chinese pollution is high, an increase in the number of yellow dust events triggers a rise 

in deaths due to respiratory and cardiovascular causes, especially in the elderly population in 

Korean districts.  Our paper is different from Jia and Ku (2015) in a number of ways. First, we 

focus on infant birth outcomes, rather than aggregate mortality. Second, we employ micro data, 

as opposed to district-level data.  Finally, Jia and Ku (2015) consider neither the avoidance 

behavior of Koreans nor the public alerts against poor air quality.  

We find that, controlling for temperature and precipitation, exposure to air pollution 

during pregnancy has a significant negative impact on birth weight, gestation weeks of the baby, 

and the propensity of the baby being low weight (less than 2,500 gr). Public notifications about 

air quality have a separate statistically significant and positive effect on fetal health.   We show 

that mothers do not time their pregnancy around expected yellow dust exposure, and that 

educated women’s pregnancy timing is not different from those who are less-educated.  We also 

show that white collar families and more educated and older mothers are more likely to give 

birth in high-pollution cities.  These family attributes and the housing price index of the city in 

which the birth took place are correlated with birth outcomes, but adjusting for these factors does 

not impact the results appreciably. 

5 Neidell (2009), Moretti and Neidell (2011) implement a similar approach when analyzing the impact of ozone on 
respiratory-related hospitalizations, and asthma. 
6 Janke (2014), Moretti and Neidell (2011), Neidell (2009) and Neidell (2004) also consider public warnings, but 
these papers focus on the effects of smog and ozone alerts on respiratory illnesses such as the asthma in the general 
population, rather than birth outcomes. 
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Our results provide evidence for the effectiveness of pollution alert systems in promoting 

public health. They also underline the importance of taking into account individuals’ avoidance 

behavior when estimating the impact of air quality on birth outcomes.  Specifically, we show that 

the estimated impact of air pollution on infant health is reduced by half when the preventive 

effect of public health warnings is not accounted for.  Using the regression results, and following 

the framework of Moretti and Neidell (2011), we obtain estimates of the willingness to pay to 

reduce air pollution and the cost of the avoidance behavior. 

The rest of the paper is organized as follows. In section II we provide a detailed 

description of the public alert system that is designed to inform people about the yellow dust 

activity.  Section III presents the empirical specification. Section IV describes the conceptual 

framework on cost of pollution avoidance and willingness to pay.  Section V presents the data.  

Section VI contains the results, robustness analyses and extensions. Section VII discusses the 

estimates of the cost of avoidance and Section VIII concludes. 

 

II. Yellow Dust, Air Pollution, and Pollution Alerts 

Yellow Dust is a weather phenomenon originated in Northern China and in the deserts of 

the Mongolia plateau.  High winds pick up particles of dust and sand and carry them towards the 

Korean peninsula.  These particles of dust and sand settle in Korea and they elevate the ambient 

air pollution, measured by PM10 concentration. This phenomenon generally occurs from March 

to May, but also irregularly during the winter months.   These dust and sand particles are 
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detrimental to human health and they have adverse respiratory health effects, particularly in 

children and the elderly (Ministry of Environment of Korea, 2002).7 

To reduce the risk of the yellow dust exposure, the Korean government has developed a 

warning system with behavioral guidelines. Since 2002, Korea Meteorological Administration 

(KMA) has been releasing notifications to the public based on the measured PM10 levels. 

Between mid-2002 and 2007, KMA issued an Advisory in a city when the PM10 level was 

predicted to rise above 500 and 1000 𝜇𝜇𝑚𝑚/m3 for over 2 hours in a day.  A Warning was issued 

when the PM10 level was predicted to rise above 1000 𝜇𝜇𝑚𝑚/m3 for over 2 hours.  In February 

2007, these thresholds were reduced to 400 and 800 𝜇𝜇𝑚𝑚/m3, respectively.  These public 

notifications advise individuals, especially children, the elderly, and people with respiratory 

illnesses to limit outdoor activities, and staying indoors is recommended. Pregnant women are 

suggested to refrain from outdoor activities and to wear protective masks if necessary. 

In addition to Warnings and Advisories, officials may declare a Yellow Dust Event (YDE) 

in the city if ambient yellow dust is noticeable in the air at least once at any time during a day. 

This is produced daily by specially trained observers in monitoring stations who take into 

account conditions such as visibility distance, atmospheric turbidity, dust stacks, and odor of the 

air. Although YDEs are correlated with PM10 concentrations, they are monitored separately 

from PM10 levels. Because of the health hazards associated with YDEs, YDEs are routinely 

forecasted by the KMA. These forecasts, similar to weather forecasts, are announced to the 

public. 

7 Epidemiological literature has identified negative health consequences of yellow sand (Park et al. 2005, Lee, Son 
and Cho 2007). 
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Anecdotal evidence suggests that individuals tend to consider seriously the information 

provided by these alerts. For example, as documented by international media, during a Yellow 

Dust Event, Koreans respond by wearing preventive masks and staying indoors.8  For example, 

in 2002, in response to a particularly high-density yellow dust event elementary schools were 

closed and plants in some industries, such as semiconductor manufacturing, were temporarily 

shut down. 9 Later in the paper we provide evidence that people avoid outdoor activities in 

response to Advisories, Warnings and YDEs, by demonstrating that attendance to professional 

soccer games is substantially impacted by these alerts. 

 

III. Empirical Specification 

To investigate the impact of air pollution and the role of the public alerts on infant health 

outcomes, we estimate the equation depicted below: 

(1) 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛽𝛽1𝑃𝑃𝑃𝑃10𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝒊𝒊𝒊𝒊𝑨𝑨𝜷𝜷𝟐𝟐 + 𝛽𝛽3𝑌𝑌𝑌𝑌𝑌𝑌𝑖𝑖𝑖𝑖 + 𝑿𝑿𝒊𝒊𝒊𝒊𝑨𝑨𝜷𝜷𝟒𝟒 + 𝑾𝑾𝒊𝒊𝒊𝒊𝑨𝑨𝜷𝜷𝟓𝟓 + 𝜇𝜇𝑖𝑖 + 𝜃𝜃𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖  

where 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑖𝑖𝑖𝑖𝑖𝑖 indicates a particular birth outcome of infant 𝑖𝑖 born to a mother residing in city 

𝑐𝑐 on day t. We consider five outcome variables: birth weight in grams, a binary indicator of low 

birth weight (equals to one if the infant’s birth weight is less than 2,500 grams), gestation weeks, 

an indicator for premature birth (whether infant’s gestational age is fewer than 37 weeks), and 

fetal growth (birth weight per gestation week).10 The Korean birth certificate data released to us 

do not include the exact birthday, but they have information on birth month.  We assign the 15th 

8 The influence of Chinese Yellow Dust on Korea is frequently covered by the media.  An example is a piece in New 
York Times on April 12th, 2002, p.3. “China's Growing Deserts Are Suffocating Korea”   
<http://events.nytimes.com/2002/04/14/international/asia/14KORE.html?pagewanted=print&position=top&_r=0>. 
CNN also covered the issue on February 23rd, 2015 “Yellow dust blankets Seoul” 
<http://www.cnn.com/videos/world/2015/02/23/lok-hancocks-south-korea-yellow-dust.cnn>. 
9 http://web.kma.go.kr/aboutkma/biz/asiandust02.jsp 
10 Studies, such as Coneus and Spiess (2012), also used fetal growth as a birth outcome measure.   
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day of the month as the birthday to each child.  Because the birth certificate data include 

information on gestation in weeks, the day of conception can be determined.  Using this 

information, and assuming that the mother spent her pregnancy in the same city as the one in 

which she gave birth, her exposure to air pollution during each day of her pregnancy can be 

determined.  We measure air pollution by calculating the PM10 level in each city using hourly 

readings of all monitoring stations in that city, and by creating a daily average PM10 level for 

each city.  In Equation (1),  𝑃𝑃𝑃𝑃10𝑖𝑖𝑖𝑖𝑖𝑖 is the average hourly exposure to air pollution of infant 𝑖𝑖’s 

mother throughout the duration of her pregnancy that ended with the birth of the child on day t in 

city c.   

  The vector 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝒊𝒊𝒊𝒊𝑨𝑨 represents the two variables that measure the total number of days 

in which a public notification is issued in mother’s city of residence during her pregnancy that 

ended at time t. There are two types of public alerts: Advisories (issued when PM10 level is 

anticipated to increase above 500 𝜇𝜇𝑚𝑚/𝑚𝑚3 [400 since 2007]) and Warnings (issued when PM10 

level is anticipated to increase above 1,000 𝜇𝜇𝑚𝑚/𝑚𝑚3 [800 since 2007]). We also include in the 

regressions the number of days a yellow dust event is observed in mother’s city during her 

pregnancy. This is denoted by 𝑌𝑌𝑌𝑌𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 in equation (1).  

To investigate potentially differential effects of pollution and that of avoidance behavior 

on birth outcomes during different developmental stages of the fetus, in some specifications we 

examine the effect of PM10 and pollution alerts by trimester of pregnancy.  

The vector 𝑿𝑿 stands for control variables that include parental characteristics such as the 

age, education, marital status and employment status of both mother and the father.  These 

attributes are important to control for because they may impact health outcomes. For example, 

more educated mothers are better producers of infant health (Chou et al. 2010, McCrary and 
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Royer  2011)  and these attributes may also be correlated with exposure to pollution (e.g. more 

educated mothers may be more effective in avoiding pollution, or in timing their pregnancy). 

While we have no income information on birth certificates, parental education is expected to be 

correlated with family income.  

Vector 𝑿𝑿 also contains other variables that impact infant’s birth weight (Currie 2011), 

including infant’s gender, an indicator of whether the infant was part of a multiple birth, and 

birth parity. 𝑾𝑾 is a vector of weather controls such as the average precipitation and temperature 

during the mother’s pregnancy. All regressions include indicators for the city of residence, 𝜇𝜇𝑖𝑖 to 

account for unobserved (to us) time-invariant characteristics of cities such as the extent of 

economic development, urbanization and access to health care. Equation (1) also contains a 

vector of year-of-conception and month-of-conception dummies, represented by 𝜃𝜃𝑖𝑖. Standard 

errors are clustered at the city level. 

Anecdotal evidence suggests that Koreans try and reduce/avoid outdoor activities during 

a yellow dust event (YDE). In order to investigate this point more rigorously, we estimate the 

effect of YDEs and public alerts on an outdoor activity: attendance to professional soccer games. 

Soccer games are played in open air stadiums, and if Koreans attempt to avoid pollution when a 

public alert is issued, then we expect the attendance to a soccer game to decline when a pollution 

alert is released on the game day. To test this hypothesis, we estimate an equation similar to 

Zivin and Neidell (2009) 

(2) 𝐴𝐴𝐻𝐻𝐻𝐻𝐻𝐻𝐴𝐴𝐴𝐴𝐻𝐻𝐴𝐴𝑐𝑐𝐻𝐻𝑔𝑔𝑖𝑖𝑖𝑖 = 𝛼𝛼1𝑃𝑃𝑃𝑃10𝑖𝑖𝑖𝑖 + 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝒊𝒊𝑨𝑨𝜶𝜶𝟐𝟐 + 𝛼𝛼3𝑌𝑌𝑌𝑌𝑌𝑌𝑖𝑖𝑖𝑖 + 𝑿𝑿𝒈𝒈𝒊𝒊𝑨𝑨𝜷𝜷𝟒𝟒 + 𝜇𝜇𝑖𝑖 + 𝜃𝜃𝑖𝑖 + 𝜖𝜖𝑔𝑔𝑖𝑖𝑖𝑖  

where 𝐴𝐴𝐻𝐻𝐻𝐻𝐻𝐻𝐴𝐴𝐴𝐴𝐻𝐻𝐴𝐴𝑐𝑐𝐻𝐻𝑔𝑔𝑖𝑖𝑖𝑖 is the number of fans (or the logarithm of fans) who attended  a particular 

soccer game 𝑔𝑔 that took place in city 𝑐𝑐 on day 𝐻𝐻. 𝑃𝑃𝑃𝑃10𝑖𝑖𝑖𝑖 is the average PM10 level in city 𝑐𝑐 that 
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same day. 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝒊𝒊𝑨𝑨 is the same vector of indicators that take the value of one if an advisory or a 

warning is issued on the day of the game, as explained above. Similarly, 𝑌𝑌𝑌𝑌𝑌𝑌𝑖𝑖𝑖𝑖 is a dummy 

variable that is equal to one if a yellow dust event is observed.  In vector 𝑿𝑿𝒈𝒈𝒊𝒊𝑨𝑨 we include 

variables that are likely related to soccer game attendance. For example, games in which high 

quality teams are playing may attract greater attendance. To control for the quality of the teams, 

we employ teams’ rankings in the league as of the game day. In addition, we control for the 

round of the game in the tournament. 𝜇𝜇𝑖𝑖 and 𝜃𝜃𝑖𝑖 are city fixed effects and time dummies (month-

year). 

 

IV. Cost of Avoidance and Willingness to Pay 

Exposure to air pollution, measured by PM10, has a direct biological impact on birth 

weight. Public alerts, triggered by air pollution, are expected to generate avoidance; and 

avoidance impacts birth weight positively.  Therefore, an increase in PM10 affects birth weight 

both directly and indirectly.   Thus, holding constant other determinants of birth weight (BW), 

the total derivative of 𝐵𝐵𝐵𝐵 with respect to 𝑃𝑃𝑃𝑃10 is given by equation (3): 

(3) 𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑10

= 𝜕𝜕𝑑𝑑𝑑𝑑
𝜕𝜕𝑑𝑑𝑑𝑑10

+ 𝜕𝜕𝑑𝑑𝑑𝑑
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖𝑑𝑑

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖𝑑𝑑
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖
𝜕𝜕𝑑𝑑𝑑𝑑10

 

The first term on the right hand side of Equation (3) represents the biological health effect of 

PM10. The second term is the effect on birth weight of PM10 through alerts and avoidance 

behavior.  Following Moretti and Neidell (2011) and the literature they cite, the willingness to 

pay (WTP) for a reduction in pollution can be expressed as  

(4) 𝐵𝐵𝑊𝑊𝑃𝑃 = 𝜕𝜕𝑑𝑑𝑑𝑑
𝜕𝜕𝑑𝑑𝑑𝑑10

× 𝐵𝐵 
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where 𝐵𝐵 is the economic benefit associated with a one-gram increase in birth weight. Following 

Currie, Neidell and Schimeider (2009), we use the estimate provided by Black, Devereux and 

Salvanes (2007) in approximating B.  Specifically, we consider the increase in lifetime earnings 

due to the increase in birth weight as an estimate of B. The term ( 𝜕𝜕𝑑𝑑𝑑𝑑
𝜕𝜕𝑑𝑑𝑑𝑑10

) in equation (4) is the 

direct biological effect of pollution on birth weight. The coefficient β1 in Equation (1) is an 

estimate of 𝜕𝜕𝑑𝑑𝑑𝑑
𝜕𝜕𝑑𝑑𝑑𝑑10

 because the regression in Equation (1) controls for the impact of avoidance 

(Advisories, Warnings and Yellow Dust Events).  Thus, the estimate of the WTP in Equation (4) 

provides the loss associated with the decline in infant health due to an increase in PM10. 

Re-writing equation (3) and multiplying both sides with 𝐵𝐵 yields Equation (5): 

(5) 𝜕𝜕𝑑𝑑𝑑𝑑
𝜕𝜕𝑑𝑑𝑑𝑑10

× 𝐵𝐵 = 𝐵𝐵𝑊𝑊𝑃𝑃 = ( 𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑10

× 𝐵𝐵) − ( 𝜕𝜕𝑑𝑑𝑑𝑑
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖𝑑𝑑

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖𝑑𝑑
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖
𝜕𝜕𝑑𝑑𝑑𝑑10

× 𝐵𝐵) 

Equation (5) decomposes the willingness to pay (WTP) into two components. The first 

component includes the term 𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑10

 which is the total derivate of birth weight with respect to 

PM10.  This term can be estimated by the coefficient of PM10 using the regression Equation (1), 

if the regression does not control for variables that are related to avoidance behavior. That is, to 

the extent that pollution alerts and notifications in Equation (1) capture the factors that influence 

the demand for avoidance, omitting these variables from equation (1) allows the coefficient of 

PM10 to represent the total effect of PM10 on birth weight, ( 𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑10

).     

Given that one can calculate WTP, as well as the first component of WTP on the right-

hand side of Equation (5), the second term of WTP ( 𝜕𝜕𝑑𝑑𝑑𝑑
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖𝑑𝑑

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖𝑑𝑑
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖
𝜕𝜕𝑑𝑑𝑑𝑑10

× 𝐵𝐵) can be recovered. 

This last term represents the cost of pollution avoidance (Moretti and Neidell 2011).  As 
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discussed by Neidell  (2009), providing estimates on the cost of pollution avoidance is critical in 

the assessment of full cost environmental pollution and the design of policy. 

 

V. Data 

Our data set is compiled from multiple sources. We have information on all births in 

Korea between 2003 and 2011, obtained from Vital Statistics-Natality Files provided by 

Statistics Korea Micro Data Service System.  Birth certificates provide information about the 

infant (such as gender, birth weight, gestational length, whether the infant was singleton, and the 

birth order) and about the parents (such as their age, education level, employment status, and 

marital status).  In addition, the month, year and the city of the birth are reported. Following 

Knittel, Miller and Sanders (2011), we restrict our sample to infants whose gestational age is 

between 27 and 42 weeks in order to accurately determine the three trimesters of the pregnancy. 

In our regressions, we only consider the singleton births, since birth weight differences in twins 

are largely attributable to biological factors attributable to the mother (Almond, Chay and Lee 

2005).   

We augment the birth certificate data with data on city air quality, yellow dust events, 

public notifications and weather conditions. To proxy for air quality, we use PM10 concentration 

which is measured hourly by the monitoring stations in cities.11 These PM10 data are obtained 

from National Institute of Environmental Research (NIER) in Korea. The variable PM10 is the 

average hourly PM10 concentration in the city of residence of the mother during her 

11 PM10 stands for particulate matter 10. These are tiny objects in the air that are less than or equal to 10 
micrometers in size. 
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pregnancy.12 Figure 2 shows the average daily PM10 concentrations in each region across Korea 

between years 2003 and 2011 in our sample.13  PM10 concentration is relatively higher in the 

North, in cities close to Northern China and the Mongolia plateau. For example, average PM10 

was 58.6 𝜇𝜇𝑚𝑚/𝑚𝑚3 in Seoul between 2003 and 2011, whereas Geoje-si, the most-Southeastern 

region used in our sample, had 36.3 Geoje-si 𝜇𝜇𝑚𝑚/𝑚𝑚3. We show later in the paper that the results 

do not change when we estimate models by geographical location.  An important issue is the 

timing of the pregnancy around the yellow dust season.  We show that mothers do not time their 

pregnancy around yellow dust, arguably because there is substantial uncertainty in the intensity 

of yellow dust phenomenon from year to year. We obtain weather conditions data (precipitation 

and temperature) from the annual climatological report provided by the Korea Meteorological 

Administration(KMA). 

Although there are about 4 million births between 2003 and 2011, our estimation sample 

contains over 1.5 million of these births because births in most locations cannot be matched 

reliably with air pollution measures because air quality and weather measures are not measured 

or not measured consistently in these locations.  In addition, some regions such as Jeong-eup in 

North-Jeolla Province are excluded at the advice of the Korea Meteorological Administration 

because of the inaccuracy of the yellow dust outbreak indicators in those areas. 

The descriptions and the summary statistics of the variables are presented in Table 1.14 

The average Korean infant was born just above 3,200 grams with gestational age of 39 weeks.15 

12 The birth certificates data set only includes month and year of birth, but not day of birth. In our analysis, we 
assumed that infants are born on the 15th day of the month reported in the certificate.  
13 Although PM10 concentrations are available at the weather station level in a region, for eight regions (Seoul, 
Busan, Daegu, Incheon, Gwangju, Daejeon, Ulsan, and Gyeonggi-do) we report the average PM10 levels in a region 
in this map due to the lack of space.  
14 Our sample period starts in 2003 since dust alert systems were established around the middle of the year 2002. In 
the data set we obtained from the Statistics Korea, there are about 4 million birth certificates between 2003 and 
2011. However, we lose observations since the PM10 data are not available for some Korean cities. The birth 
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Approximately, three and a half percent of Korean infants are classified as low birth weight 

(<2,500 grams at birth), and four percent of the infants were born premature (gestational age<37 

weeks).  Thirty percent of Korean mothers and 95 percent of fathers are employed. Sixty-six 

percent of mothers and 70 percent of fathers have a college education or higher. 

Average hourly PM10 exposure of a mother during pregnancy is about 54 𝜇𝜇𝑚𝑚/𝑚𝑚3. Due 

to yellow dust breaks, mothers experienced about 1.7 Advisories and 0.5 Warnings during 

pregnancy. The average Korean mother experienced 7 Yellow Dust Events. 

To investigate whether Koreans respond to public notifications of yellow dust events and 

poor air quality by avoiding outdoors activities, we estimate these notifications’ effect on 

attendance to soccer games played in Korean premier soccer league: K League. These data are 

obtained from the English version of the official website of the K League.16 From this website, 

we scraped information about the number of people who attended a particular game, the final 

score, and the teams’ performance in the league (standings table). The attendance data span the 

period between 2004 and 2011. The average attendance to a game during this time period is 

about 12,500.  

 

VI. Results 

The Effect of Air Quality, Pollution Alerts and Yellow Dust Events on Birth Outcomes 

The results obtained from estimating Equation (1) are presented in Table 2. In addition to 

the variables listed, all regressions include city fixed effects and year-of-conception and month-

outcomes and parent characteristics of infants that are out of sample are similar to those that enter into our 
regressions (Appendix Table 1).  
15 In comparison, the average birth weight of U.S. born babies is 3320 grams (Mocan et al. 2013). 
16 http://www.kleague.com/eng 
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of-conception fixed effects. Outcome variables are the birth weight in grams (column 1), an 

indicator for whether the birth weight is less than 2,500 grams (column 2), gestational age in 

weeks (column 3), an indicator for whether infant’s gestational age is less than 37 weeks 

(column 4), and ratio of birth weight to gestational age (column 5). Standard errors, reported in 

parentheses, are clustered at the city level.  

Column 1 of Table 2 shows that infants born to mothers who were exposed to greater 

daily PM10 levels (worse air quality) during their pregnancy are born with lower weights. 

Specifically, a one 𝜇𝜇𝑚𝑚/𝑚𝑚3 increase in average exposure to PM10 during pregnancy leads to 

about 0.8 gram reduction in newborn’s birth weight. This indicates that a 10 percent increase in 

the average hourly PM10 exposure reduces birth weight by about 0.13% (from the baseline of 

3,257 grams), which implies an elasticity of birth weight with respect to PM10 of about 0.013.17  

The results of column (1) in Table 2 also indicate that each additional pollution Advisory 

and Warning that a mother experiences during her pregnancy improves infant’s birth weight by 

4.4 and 13.6 grams, respectively. A warning’s effect is larger than an advisory’s effect (p-value < 

0.01). This could be because a Warning provides a stronger signal about the dust level than an 

Advisory, and therefore a warning is associated with stronger health risk and may prompt a 

stronger avoidance response. The coefficient of Yellow Dust Events in column 1 indicates that 

each additional day a yellow dust event is issued during pregnancy increases birth weight of the 

infant by about 8.6 grams. These positive estimates are consistent with the hypothesis that 

Korean mothers avoid/reduce outside activities when an air quality alert is issued or when there 

is a yellow dust event in the city of residence of the expecting mother. 

17 The elasticity is calculated as  𝜕𝜕𝑑𝑑𝑑𝑑
𝜕𝜕𝑑𝑑𝑑𝑑10

÷ 𝑑𝑑𝑑𝑑�����

𝑑𝑑𝑑𝑑10�������� = 0.8 × 54.27
3256

= 0.013. 
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Similar to those in column (1), the results presented in columns (2)-(5) in Table 2 provide 

evidence for the detrimental effect of PM10 exposure and the beneficial effect of pollution alerts 

and yellow dust events on birth outcomes. Each Advisory, Warning and Yellow Dust Event 

reduces the probability of low birth weight by 0.2, 0.5 and 0.3 percentage points (from the 

sample mean of 3.4 percentage points), respectively.  Similarly, advisories, warnings and yellow 

dust events increase the gestational age of the infant, probability of premature birth and its 

average fetal growth, while a rise in PM10 exposure reduces them. 

The signs of the control variables in Table 2 are consistent with expectations. Girls and 

babies born to mothers who have not previously given birth weigh less at birth compared to boys 

and babies born to mothers who have given birth to at least one baby, respectively. Infants whose 

parents are employed and have attained higher education levels are born healthier.  

Previous papers provide evidence for differential effect on birth outcomes of external 

factors in different developmental stages of the fetus (Currie 2011). To investigate this 

possibility, we include in the regressions the exposure to PM10 and the number of alerts against 

poor air quality during the first, second and third trimesters of pregnancy (instead of the overall 

exposure during the whole pregnancy). For example, instead of the variable Advisories, we 

include Advisories – trimester 1, Advisories – trimester 2 and Advisories – trimester 3 that 

decompose the number of advisories a pregnant woman has experienced during her pregnancy 

into its first, second and third trimester components. The results, presented in Table 3, are similar 

to those in Table 2.  The number of Advisories, Warnings and Yellow Dust Events experienced in 

any trimester has a positive and significant impact on birth weight. These effects are not 

statistically different from each other. An increase in PM10 exposure in the third trimester 

worsens birth outcomes. Average PM10 exposure in late stages of pregnancy (third trimester) 
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has a larger negative impact on the birth outcomes compared to its effect in the first- or second- 

trimesters. This finding is consistent with that of Currie, Neidell and Schmieder (2009) who 

report that exposure to pollution during the third trimester has a more significant impact than 

exposure during the two earlier trimesters.  

 

The Estimates of Pollution on Birth Outcomes When Avoidance is Omitted 

 The results in Tables 2 and 3 indicate that mothers’ exposure to PM10 is detrimental to 

the infants’ health, while air quality alerts and yellow dust events are beneficial as they allow the 

pregnant women to avoid pollution. That is, advisories and warnings help pregnant women avoid 

harmful effects of pollution.  Pollution advisories and warnings are issued based on anticipated 

PM10 concentrations, and elevated PM10 level triggers these notifications. Similarly, Yellow 

Dust Events cause an increase in ambient PM10 levels.  In other words, PM10 levels are 

positively correlated with the intensity of pollution alerts issued by the government.  Given that 

people take precautions when these warnings are issued, the failure to control for pollution 

warnings and advisories would bias downwards the estimated biological impact of air pollution. 

In Table 4 we report the results of the models that exclude pollution alert indicators.  

These are the same models as shown in Equation (1), but the variables Advisories, Warnings and 

Yellow Dust Events are omitted.  Put differently, Table 4 is similar to Table 2, except for the 

pollution alert variables.  The coefficients of PM10 in columns (1)-(5) of Table 4 indicate that 

PM10 is harmful for infants’ birth outcomes as shown earlier.  However, the magnitude of the 

impact is much smaller in absolute value when compared to those in Table 2. For example, 

according to the results in column 1 of Table 4 (where public notifications and yellow dust 

events are omitted), a one 𝜇𝜇𝑚𝑚/𝑚𝑚3 increase in the average exposure to PM10 during pregnancy 
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leads to about 0.2 gram reduction in the newborn’s birth weight. This same effect is estimated to 

be 0.8 grams when the full set of control variables is included in the regressions (Column 1 in 

Table 2).  Thus, a comparison of PM10 coefficients between Tables 2 and 4 reveals that the 

inability to account for the beneficial effect of pollution warnings on health generates a 

substantial underestimation of the negative impact of pollution on health. 

 

The Impact of Air Quality, Pollution Notifications and Yellow Dust Events on Attendance to 

Soccer Games  

 Our results show that air pollution alerts in terms of Advisories, Warnings and Yellow 

Dust Event notifications are beneficial to birth weight and gestational age. These findings are 

consistent with the hypothesis that mothers avoid/reduce outdoors activities when a public air 

quality alert is issued or when a yellow dust event is observed. Ideally, we would like to test this 

hypothesis using data on the amount of time pregnant mothers spend outside.  No such data, 

however, are available. Instead, we use data on another outdoors activity: attendance to 

professional soccer games. Soccer games are played in open air stadiums, and the attendees are 

exposed to air pollution. If Koreans try to avoid pollution when an air pollution notification is 

announced, then the number of fans who attend a soccer game should decrease when a pollution 

alert is issued on the game day. To estimate the effect of YDEs and alerts on attendance to the 

soccer games, we run the regression depicted by equation (2).  

 Table 5 presents the results obtained from equation (2) where the unit of observation is a 

soccer game played between two teams of the Korean premier league, K League. The outcome 

variable is the number of individuals who attended the game.  We control for various attributes 

of the games, including the strength of both teams (approximated by their rank that week), the 
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number of goals scored that far during the season, the week of the season, and whether the game 

is played during the day or at night and in weekdays or at the weekend.  We also add stadium 

fixed-effects, time dummies (month and year), and indicators for the team match-ups. Standard 

errors are clustered at the stadium level. 

 In Table 5, the coefficients of Yellow Dust Events and Warnings are negative and 

significant, lending support to the hypothesis that individuals avoid spending time outside during 

days of pollution warnings and yellow dust events. Specifically, if a yellow dust event occurs on 

game day, about 3,400 fewer individuals attend that particular game. This corresponds to about 

26 percent decline (from the baseline of 12,500 spectators). Similarly, a Warning on the game 

day reduces the game attendance by about 7,000.  

 

A Falsification Test 

 Neither exposure to pollution, nor avoidance of pollution should impact birth outcomes if 

pollution is measured after the birth of the infant. To operationalize this idea as a falsification 

test, we estimated equation (1) using future values of PM10, air quality alerts, and yellow dust 

events as explanatory variables. Specifically, we ran the regression below: 

(6) 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛽𝛽1𝑃𝑃𝑃𝑃10𝑖𝑖𝑖𝑖𝑖𝑖+𝑘𝑘 + 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝒊𝒊𝒊𝒊𝑨𝑨+𝑘𝑘𝜷𝜷𝟐𝟐 + 𝛽𝛽3𝑌𝑌𝑌𝑌𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖+𝑘𝑘 + 𝑿𝑿𝒊𝒊𝒊𝒊𝑨𝑨𝜷𝜷𝟒𝟒 + 𝜇𝜇𝑖𝑖 + 𝜃𝜃𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖  

where subscript 𝐻𝐻 + 𝑘𝑘 indicates 𝑘𝑘 days after the delivery of the baby at time 𝐻𝐻.  

 The results obtained from estimating equation (6) are presented in Table 6 where the 

outcome variable is infant’s birth weight.18 Columns (1) to (4) pertain to k=30, 60, 90 and 120 

days. For example, in column (1) of Table 6, the rows PM10, Advisories, Warnings, and Yellow 

18 Similar results are obtained when other outcome variables are used in the regressions. 
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Dust Events stand for the corresponding variables measured during the 30 days subsequent to the 

delivery of the baby. In column 2, these rows indicate the air quality and notification during 60 

days following the baby’s birth. The full set of control variables, as in Table 2, is included in all 

regressions. As expected, results show that mother’s exposure to poor air quality or her 

avoidance behavior due to notifications after she delivered the baby does not have any influence 

of the baby’s birth weight. 

 

Other Robustness Checks 

 As an extension, to investigate whether air quality and pollution notifications have 

differential impacts on birth weight, we estimated equation (1) over a number of subsamples. 

The results are presented in Table 7, where the outcome variable is infant’s weight at birth. First, 

we split the sample into two groups by geographical location. Mothers who live in the North and 

Northwest Korea could be more responsive to pollution and notifications. The Northern part of 

Korea is closer to China and it is exposed to more frequent yellow dust events. As a result, 

individuals could be more aware of adverse effects of yellow dust and poor air quality, and they 

may respond more intensely.  However, the results in columns 1 and 2 of Table 7 suggest the 

effects of PM10, air quality notifications and yellow dust events on birth weight are similar in 

both samples. Similarly, there is no difference between mothers who live in cities with poor 

versus high air quality (PM10 greater or smaller than the median) regarding the effect of air 

quality and notifications on birth weight (columns 3 and 4).  

 A potential concern is selection due to unobservables related to mother’s health 

knowledge. For example, pregnant mothers who are more knowledgeable about the detrimental 

impact of poor air quality may take better preventive action against pollution. They may move 
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away from cities of low air quality, or they may time the birth to avoid exposure to high levels of 

PM10. Alternatively, they may be better at following the advisories and warnings. In that case, 

our baseline results in Table 2 may be overestimates of the true effect of pollution. 

 To investigate this possibility, we first estimated equation (1) in subsamples that are 

separated by mother attributes: mother’s education, work experience, and pregnancy experience. 

Mothers with more education or more experience in the labor market are likely to command 

more know-how about reducing/eliminating harmful effects of air pollution.  Similarly, a mother 

who has given birth before could be more knowledgeable compared to her counterparts who are 

expecting their first babies. The results, presented in columns (5) to (10) of Table 7, suggest that 

our baseline findings are not driven by certain types of mothers. For example, advisories, 

warnings and yellow dust events improve birth weights of infants born to high-educated or 

experienced mothers as much as they improve birth weights of low-educated or inexperienced 

mothers’ babies. Similarly, exposure to PM10 is detrimental to infants of high-educated or 

experienced mothers as much as it is damaging to the health of babies born to low-educated or 

inexperienced mothers.  

As another robustness check, we investigated whether high-educated parents alter the 

timing of their pregnancies in order to select themselves out of poor air quality seasons. First, 

using each birth as the unit of observation, we regressed total exposure to pollution during the 

pregnancy of the mother (measured by PM10) on monthly dummies for the month of conception 

(n=1,549,376).  This regression showed that PM10 exposure during pregnancy is lower if 

conception is between the months of March and June.  We then created a dummy variable for 

each mother to indicate if her conception of pregnancy was during this more favorable period 

(March to June).  We ran this Conception Timing dummy on mother’s and father’s education 
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(dummy indicators of having high school education, and having college education as used in all 

regressions).  The results showed that neither mother’s nor father’s education had any impact on 

the timing of pregnancy.19 Thus, we could not find support for the hypothesis that educated 

parents adjust the time of their pregnancies to avoid poor air quality. 

To investigate any overall seasonal pattern in conceptions, we calculated the total number 

of conceptions by month in the country and regressed them on 11 monthly dummies to analyze 

whether the number of conceptions rises or declines in certain months of the year (possibly to 

avoid pollution).  The estimated monthly coefficients and the corresponding confidence intervals 

are reported in Figure 3.  In no case the coefficients are different from zero, signifying that the 

number of conceptions does not exhibit any seasonal pattern.  

 

Residential Location Decision 

A possible bias in our estimates could emerge due to the geographical selection of 

parents. For example, if families with more income and higher education reside in bigger cities 

with worse ambient air quality, and if such families have high productive and/or allocative 

efficiency in infant health production (Grossman 2008 and 1972, Rosenzweig and Schultz 1982, 

Kenkel 1991, Altindag, Cannonier and Mocan 2011), then the negative impact of pollution on 

birth outcomes is underestimated. 

To investigate the correlation between city-level air pollution and parent attributes, we 

estimated a regression where the outcome variable is an indicator that takes the value of one if 

the infant is born in a city where average PM10 level is above the national median.20  The 

19 The point estimates ranged from -0.005 to 0.0007 with p-values ranging from 0.15 to 0.81. 
20 This is the variable that we use to divide the sample into two (columns 3 and 4) in Table 7. 
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explanatory variables included parent characteristics and month- and year-of conception 

dummies. In addition, the variable White Collar Family took the value of one if both mother and 

father have white collar jobs such as managers, engineers and office workers.  Families for 

which White Collar Family is zero include at least one parent with a blue collar job (such as 

laborer, technician) or an agricultural job.  The results presented in column (1) of Table 8 

indicate that mothers who delivered their baby in high pollution cities are more likely to be 

working, older, married and slightly more educated.  Also, those mothers are delivering their first 

infant. Father characteristics are unrelated to the probability of the child being born in a high 

pollution city. In column (2) of Table 8, the coefficient of White Collar Family is positive 

indicating that infants whose parents have white collar jobs are more likely to be born in more 

polluted cities.  Thus, the results of Table 8 support the hypothesis that parents with potentially 

higher incomes select into more polluted cities.  To the extent that such families are more 

efficient in the production of infant health, the negative impact of pollution on infant health 

could be underestimated.   In this case, our baseline result presented in Tables 2-4 represent an 

underestimate of the effect of PM10 on infant health.  

To investigate this issue, we augmented the regression depicted in equation (1) with two 

variables that are shown to be related to air pollution in the city at the time of the birth (Table 8) 

as well as potentially correlated with productive/allocative efficiency of the family. The first 

variable is White Collar Family as described earlier.   We also added the housing price index of 

the city (Housing Price Index) in which the family resides.  Higher housing prices may reflect 

more favorable city characteristics including better health care services.21 The results are 

21 We include 9 month lagged Housing Price Index (HPI) to capture city amenities at the time of conception. Using 
contemporaneous HPI does not change the results.  
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reported in Panel A of Table 9.22 As expected, Housing Price Index is positively correlated with 

infant health. Similarly infants born to white collar families have better health at birth.   The 

coefficients of PM10, Advisories, Warnings and Yellow Dust Events do not change in any 

significant way when White Collar Family and Housing Price Index are not controlled for in the 

regressions (Panel B of Table 9). 

 

 

VII. The Willingness to Pay and the Cost of Avoidance Behavior 

Conditional on avoidance, the impact of a 10% increase in PM10 on birth weight ( 𝜕𝜕𝑑𝑑𝑑𝑑
𝜕𝜕𝑑𝑑𝑑𝑑10

 ) 

is 4.3 grams (using the coefficient of -0.8 in column 1 of Table 2).  This represents a 0.13% 

decrease from the baseline average of 3,257 gr. Black, Devereux and Salvanes (2007) report that 

a one-percent increase in an infant’s birth weight generates an increase in future earnings by 

about 0.13%.  An average full time Korean worker’s annual earning was about $28,000 in 

2010.23 Assuming the average newborn will earn as much as the average worker, and 

considering that a typical Korean starts working at age 25 and retires at age 60 (the official 

retirement age in Korea),  and using a discount rate of six percent, the present value of the 

benefit generated by a 10% decline in PM10 is about $20. This is the estimated value of the 

Willingness to Pay (WTP), which is depicted by equation (4).  In 2010, 470,000 babies were 

born in Korea. Thus, the full cost of a 10% increase in PM10 for one cohort of Koreans is $9.5 

million.   

22 Sample size is smaller in these regressions since we lose observations due to lack of HPI data in some cities. 
23 Source: OECD Statistics. http://stats.oecd.org/. 

24 
 

                                                           

http://stats.oecd.org/


The estimated coefficient of PM10 reported in column (1) of Table 4 corresponds to 

( 𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑10

).  This is because the models reported in Table 4 do not control for pollution alerts which 

shift the demand for avoidance.  In this specification, a 10% increase in PM10 generates a 

reduction in birth weight by 0.03%; and using the same B as above, this produces a cost of $2 

million for one cohort of Korean babies. Using Equation (5), this implies that the cost of 

avoidance is $7.5 million (in 2010 dollars).  We should note that the benefit value used in this 

exercise pertains to increased future earnings of the infant, and it does not include any other 

elements such as health-related expenditures.  For example, to the extent that poor health at birth 

has an impact on chronic health conditions in adulthood, the benefits should be adjusted 

upwards. Thus, the magnitudes we report should be considered as lower bounds. 

 

VIII. Summary and Conclusion 

 Previous research has shown that infant health, particularly weight at birth, is an 

important predictor of future well-being of individuals, including earnings.  An important 

determinant of birth weight is prenatal exposure to pollution.  A complicating issue in the 

investigation of the impact of environmental pollution to infant health is the difficulty in finding 

exogenous exposure to pollution.  Individuals and families who are likely to live in less polluted 

areas may have better health outcomes because of particular attributes  of these families, 

unrelated to pollution.  Such endogenous geographical selection, or endogenous timing of a 

pregnancy would confound the estimated impact of pollution on infant health.  Second, as policy 

makers increasingly emphasize the relevance of pollution warnings and air quality alerts as a 

potential tool to modify exposure of individuals through avoidance behavior, it is essential to 

determine the effectiveness of such alerts.  This is important not only because the failure to 
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account for avoidance behavior would provide an underestimate of the biological impact of 

pollution on health, but also because of the significance of the welfare loss associated with such 

avoidance behavior. 

In this paper we investigate the impact of air pollution on infant health using information 

on more than one and a half million live births in the Republic of Korea.  The novelty of our 

identification strategy is the ability to measure the exposure of pregnant women to pollution 

generated by a natural phenomenon: the yellow dust.  Winds carry particles of dust and sand 

from the arid lands of Northern China and the deserts of Mongolia to the Korean peninsula. 

These particles of dust and sand settle in Korea and they elevate the ambient air pollution, 

measured by PM10 concentration.  Although there is a seasonal pattern of this phenomenon, 

there is significant variation in its timing, strength and location from year to year.  Thus, 

exposure to the intensity of air pollution exhibits substantial randomness and unpredictability.  

We also show that Korean women do not time their pregnancy according to expected yellow dust 

exposure, and that educated women’s pregnancy timing is not different than those who are less-

educated.   

We measure air pollution in each city by calculating the PM10 level, using hourly 

readings of all monitoring stations in that city, and creating a city-level daily average PM10.  

Using these daily air pollution data and making use of the gestation weeks reported on birth 

certificates, we measure the extent of exposure to pollution of each pregnancy. 

An important contribution of the paper is the ability to account for avoidance behavior. 

We utilize pollution advisories, pollution warnings as well as alerts on yellow dust events that 

are issued by Korean authorities at the local level.  We obtain estimates of the biological impact 

of pollution on infant health, and the improvement in infant health generated by pollution 
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avoidance.  Our paper is the first one to investigate the effectiveness of pollution alerts on birth 

outcomes. 

The results show that exposure to air pollution during pregnancy has a significant 

negative impact on birth weight, gestation weeks of the baby, and the propensity of the baby 

being low weight. Public notifications about air quality have a separate statistically significant 

and positive effect on infant health.  In complementary analysis we show that the same public 

notifications significantly reduce attendance to professional soccer games, supporting the 

premise that individuals avoid being outdoors when pollution alerts are issued. 

We find white collar families and more educated and older mothers are more likely to 

give birth in high-pollution cities.  These family attributes and the housing price index of the city 

in which the birth took place are correlated with birth outcomes.   Adjusting for these factors, 

however, does not impact the results. 

Our results provide evidence for the effectiveness of pollution alert systems in promoting 

public health. They also underline the importance of taking into account individuals’ avoidance 

behavior when estimating the impact of air quality on birth outcomes.  We show that the 

estimated impact of air pollution on infant health is reduced by half when the preventive effect of 

public health warnings is not accounted for.  Using future earnings as the only component of the 

benefit of pollution reduction, our estimates imply that willingness to pay, associated with a 10% 

decline in the level of PM10,  is $9.5 million (in 2010 dollars) for one cohort of babies, and the 

corresponding cost of avoidance is $7.5 million. To the extent that poor health at birth has an 

impact on health conditions later in life, the magnitudes we report should be considered as lower 

bounds. 
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Table 1: Summary Statistics 
Variable Description Mean Std. Dev. 
Birth weight Baby’s weight at birth (grams) 3257 430 
Low birth weight =1 if birth weight is less than 2,500 grams. 0.034 0.181 
Gestation Gestational age in weeks 38.94 1.48 
Premature =1 if gestation <37 weeks 0.042 0.200 
Fetal growth Birth weight/Gestation 83.54 10.20 
Advisories Number of advisories issued during pregnancy 1.72 1.36 
Warnings Number of warnings issued during pregnancy 0.51 0.59 
Yellow dust events Number of observed yellow dust outbreaks. 6.77 3.80 
PM10 Average daily PM10 during pregnancy 54.27 8.79 
Temperature Average temperature during pregnancy (°C) 13.43 3.00 
Precipitation Average precipitation during pregnancy (mm.) 125.26 46.77 
Girl =1 if the baby is a girl 0.484 0.500 
Second baby =1 if the baby is mother’s second child 0.376 0.484 
Third baby =1 if the baby is mother’s third, fourth,…etc.  0.085 0.278 
Married =1 if baby is born within a marriage 0.991 0.096 
Mother working =1 if mother is working 0.288 0.453 
Mother’s age 20-30 =1 if mother’s age is between 20 and 30 0.408 0.491 
Mother’s age 30-40 =1 if mother’s age is between 30 and 40 0.573 0.495 
Mother’s age 40+ =1 if mother is older than 40 0.015 0.122 
Mother high school grad.  =1 if mother has completed high school  0.323 0.468 
Mother college grad. =1 if mother has completed college or more 0.659 0.474 
Father working =1 if father is working 0.954 0.210 
Father’s age 20-30 =1 if father’s age is between 20 and 30 0.181 0.385 
Father’s age 30-40 =1 if father’s age is between 30 and 40 0.749 0.433 
Father’s age 40+ =1 if father is older than 40 0.069 0.253 
Father high school grad.  =1 if father has completed high school  0.291 0.454 
Father college grad. =1 if father has completed college or more 0.689 0.463 

Notes: Sample consists of 1,549,376 observations. Unit of observation is newborn baby. 
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Table 2: The Effect of Alerts and Air Pollution on Birth Outcomes 
  (1) (2) (3) (4) (5) 
  Birth Weight Low Birth Weight Gestation Premature Birth Fetal Growth 
PM10 -0.798*** 0.0003*** -0.004*** 0.001*** -0.012*** 
 (0.150) (0.0001) (0.001) (0.000) (0.003) 
Advisories 4.360*** -0.002*** 0.037*** -0.004*** 0.043** 
 (1.007) (0.000) (0.006) (0.001) (0.018) 
Warnings 13.565*** -0.005*** 0.086*** -0.007*** 0.186*** 
 (1.488) (0.001) (0.009) (0.001) (0.028) 
Yellow dust events 8.578*** -0.003*** 0.057*** -0.006*** 0.113*** 
 (0.403) (0.000) (0.002) (0.000) (0.007) 
Temperature -18.634*** 0.005*** -0.148*** 0.003*** -0.180*** 
 (1.587) (0.001) (0.009) (0.001) (0.031) 
Precipitation -0.160*** 0.0000*** -0.001*** 0.0001*** -0.002*** 
 (0.023) (0.0000) (0.000) (0.0000) (0.000) 
Girl -97.816*** 0.007*** 0.134*** -0.008*** -2.789*** 
 (0.723) (0.000) (0.003) (0.000) (0.016) 
Second baby 30.726*** -0.011*** -0.403*** 0.0002 1.677*** 
 (1.331) (0.000) (0.005) (0.0004) (0.031) 
Third baby 60.913*** -0.010*** -0.406*** 0.006*** 2.452*** 
 (2.029) (0.001) (0.006) (0.001) (0.050) 
Married 32.039*** -0.012*** 0.111*** -0.012*** 0.609*** 
 (4.006) (0.002) (0.012) (0.002) (0.099) 
Mother working 5.525*** -0.0005 -0.002 0.0003 0.144*** 
 (0.944) (0.0003) (0.003) (0.0003) (0.022) 
Mother’s age 20-30 66.926*** -0.005 0.048** -0.007* 1.610*** 
 (6.820) (0.003) (0.023) (0.004) (0.165) 
Mother’s age 30-40 63.824*** 0.002 -0.029 -0.0001 1.670*** 
 (6.871) (0.003) (0.023) (0.0039) (0.167) 
Mother’s age 40+ 19.946*** 0.021*** -0.294*** 0.023*** 1.064*** 
 (7.198) (0.004) (0.027) (0.004) (0.177) 
Mother high sch.  43.048*** -0.011*** 0.053*** -0.006*** 1.006*** 
grad. (3.311) (0.002) (0.012) (0.002) (0.077) 
Mother college grad. 49.751*** -0.016*** 0.115*** -0.012*** 1.056*** 
 (3.499) (0.002) (0.012) (0.002) (0.082) 
Father working 8.173*** -0.003*** -0.004 -0.003*** 0.235*** 
 (1.598) (0.001) (0.006) (0.001) (0.037) 
Father’s age 20-30 35.193*** -0.019** 0.047 -0.019*** 0.838*** 
 (11.528) (0.008) (0.044) (0.007) (0.267) 
Father’s age 30-40 36.428*** -0.019** 0.052 -0.019*** 0.859*** 
 (11.464) (0.008) (0.044) (0.007) (0.268) 
Father’s age 40+ 27.342** -0.012 -0.027 -0.011 0.776*** 
 (11.136) (0.008) (0.045) (0.007) (0.256) 
Father high sch. grad. 22.819*** -0.005*** 0.020** -0.004*** 0.541*** 
 (3.012) (0.001) (0.009) (0.001) (0.072) 
Father college grad. 28.774*** -0.010*** 0.069*** -0.008*** 0.602*** 
 (3.237) (0.001) (0.010) (0.001) (0.078) 
N 1,549,376 1,549,376 1,549,376 1,549,376 1,549,376 

Notes: Outcome variables are baby’s weight at birth in grams, an indicator for whether baby’s birth weight is less 
than 2,500 grams, gestation weeks, an indicator for whether infant is born with gestational age less than 37 weeks, 
and the ratio of birth weight to gestation weeks in columns 1 to 5, respectively. Regressions include city fixed 
effects, and time dummies for conception year and month. Standard errors clustered at the city level are presented in 
parentheses. *, ** and *** indicate significance at 10%, 5% and 1%, respectively. 
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Table 3: The Effect of Alerts and Air Pollution on Birth Outcomes (Trimesters) 
  (1) (2) (3) (4) (5) 

  Birth Weight Low Birth Weight Gestation Premature  
Birth 

Fetal 
Growth 

PM10      in trimester 1 -0.110 0.0001* -0.0002 -0.0000 -0.002 

 (0.090) (0.0000) (0.0007) (0.0001) (0.002) 
in trimester 2 -0.049 0.0001 0.0000 0.0001*** -0.002 

 (0.092) (0.0000) (0.0006) (0.0000) (0.002) 
in trimester 3 -0.799*** 0.0002*** -0.006*** 0.0003*** -0.009*** 

 (0.110) (0.0000) (0.001) (0.0001) (0.002) 
Advisories      in trimester 1 4.647*** -0.002*** 0.042*** -0.003*** 0.037 

 (1.455) (0.001) (0.009) (0.001) (0.026) 
in trimester 2 12.571*** -0.006*** 0.084*** -0.009*** 0.167*** 

 (1.170) (0.000) (0.007) (0.001) (0.020) 
in trimester 3 6.427*** -0.003*** 0.055*** -0.006*** 0.060** 

 (1.305) (0.001) (0.008) (0.001) (0.023) 
Warnings      in trimester 1 13.515*** -0.004*** 0.093*** -0.005*** 0.167*** 

 (2.185) (0.001) (0.016) (0.001) (0.037) 
in trimester 2 7.848*** -0.004*** 0.034*** -0.010*** 0.150*** 

 (1.896) (0.001) (0.012) (0.001) (0.035) 
in trimester 3 14.982*** -0.005*** 0.097*** -0.006*** 0.197*** 

 (1.991) (0.001) (0.011) (0.001) (0.037) 
Yellow dust events      in trimester 1 8.597*** -0.004*** 0.054*** -0.006*** 0.121*** 

 (0.459) (0.000) (0.003) (0.000) (0.009) 
in trimester 2 10.935*** -0.004*** 0.074*** -0.007*** 0.140*** 

 (0.498) (0.000) (0.003) (0.000) (0.008) 
in trimester 3 11.778*** -0.004*** 0.083*** -0.006*** 0.142*** 

 (0.570) (0.000) (0.003) (0.000) (0.010) 
Temperature      in trimester 1 6.851*** 0.0000 0.060*** 0.005*** 0.041** 

 (0.968) (0.0005) (0.006) (0.001) (0.018) 
in trimester 2 -3.228*** -0.0004 -0.035*** -0.004*** -0.002 

 (0.519) (0.0003) (0.003) (0.000) (0.010) 
in trimester 3 -8.913*** 0.004*** -0.056*** 0.007*** -0.128*** 

 (0.843) (0.000) (0.005) (0.001) (0.016) 
Precipitation      in trimester 1 -0.004 0.0000 0.0002** 0.0000*** -0.0005** 

 (0.009) (0.0000) (0.0001) (0.0000) (0.0002) 
in trimester 2 -0.096*** 0.0000*** -0.001*** 0.0000*** -0.001*** 

 (0.009) (0.0000) (0.000) (0.0000) (0.000) 
in trimester 3 0.006 0.0000** 0.0002* 0.0001*** -0.0003 

 (0.017) (0.0000) (0.0001) (0.0000) (0.0003) 
Girl -97.967*** 0.007*** 0.133*** -0.008*** -2.790*** 

 (0.717) (0.000) (0.003) (0.000) (0.016) 
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Table 3 (concluded) 
  (1) (2) (3) (4) (5) 

  Birth Weight Low Birth 
Weight Gestation Premature 

Birth Fetal Growth 
 

Second baby 31.179*** -0.011*** -0.399*** 0.0001 1.682*** 

 (1.347) (0.000) (0.005) (0.0004) (0.031) 
Third baby 61.531*** -0.010*** -0.401*** 0.006*** 2.458*** 
  (2.035) (0.001) (0.006) (0.001) (0.050) 
Mother’s age 20-30 66.811*** -0.005 0.047** -0.007* 1.609*** 

 (6.802) (0.003) (0.022) (0.004) (0.165) 
Mother’s age 30-40 63.816*** 0.003 -0.029 -0.0001 1.670*** 

 (6.866) (0.003) (0.023) (0.0039) (0.167) 
Mother’s age 40+ 20.213*** 0.021*** -0.292*** 0.023*** 1.068*** 

 (7.190) (0.004) (0.027) (0.004) (0.177) 
Mother high sch. grad. 43.299*** -0.011*** 0.054*** -0.006*** 1.008*** 

 (3.308) (0.002) (0.012) (0.002) (0.078) 
Mother college grad. 49.954*** -0.016*** 0.116*** -0.012*** 1.059*** 

 (3.501) (0.002) (0.012) (0.002) (0.082) 
Father working 8.188*** -0.003*** -0.004 -0.003*** 0.236*** 

 (1.590) (0.001) (0.006) (0.001) (0.037) 
Father’s age 20-30 34.563*** -0.019** 0.043 -0.019*** 0.830*** 

 (11.611) (0.008) (0.045) (0.007) (0.268) 
Father’s age 30-40 35.772*** -0.019** 0.048 -0.019*** 0.850*** 

 (11.567) (0.008) (0.044) (0.007) (0.269) 
Father’s age 40+ 26.831** -0.012 -0.030 -0.011 0.770*** 

 (11.217) (0.008) (0.045) (0.007) (0.258) 
Father high sch. grad. 22.922*** -0.005*** 0.021** -0.004*** 0.542*** 

 (3.010) (0.001) (0.009) (0.001) (0.072) 
Father college grad. 28.771*** -0.010*** 0.069*** -0.008*** 0.601*** 

 (3.235) (0.001) (0.009) (0.001) (0.078) 
N 1,549,376 1,549,376 1,549,376 1,549,376 1,549,376 

Notes: Outcome variables are baby’s weight at birth in grams, an indicator for whether baby’s birth weight is less 
than 2,500 grams, gestation weeks, an indicator for whether infant was born with gestational age less than 37 weeks, 
and the ratio of birth weight to gestation weeks in columns 1 to 5, respectively. Regressions include number of 
advisories, warnings, yellow dust events, average PM10, temperature and precipitation in each trimester instead of 
the whole pregnancy. Regressions also include city fixed effects, and time dummies for conception year and month. 
Standard errors clustered at the city level are presented in parentheses. *, ** and *** indicate significance at 10%, 
5% and 1%, respectively. 
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Table 4: The Effect of Air Pollution on  
Birth Outcomes without Controlling for Pollution Alerts 

  (1) (2) (3) (4) (5) 

  Birth 
Weight 

Low Birth 
Weight Gestation Premature 

Birth 
Fetal 

Growth 
PM10 -0.232** 0.0001** -0.001 0.0001*** -0.005* 

 (0.101) (0.0000) (0.001) (0.0000) (0.003) 
Temperature -19.617*** 0.005*** -0.158*** 0.002* -0.181*** 

 (1.595) (0.001) (0.009) (0.001) (0.031) 
Precipitation -0.110*** 0.0000*** -0.001*** 0.0000*** -0.002*** 

 (0.019) (0.0000) (0.000) (0.0000) (0.000) 
Girl -97.641*** 0.006*** 0.134*** -0.008*** -2.785*** 

 (0.669) (0.000) (0.003) (0.000) (0.015) 
Second baby 29.671*** -0.010*** -0.405*** 0.001 1.653*** 

 (1.308) (0.000) (0.005) (0.000) (0.029) 
Third baby 61.713*** -0.010*** -0.402*** 0.006*** 2.464*** 

 (2.056) (0.001) (0.006) (0.001) (0.050) 
Married 31.471*** -0.012*** 0.107*** -0.011*** 0.606*** 

 (4.064) (0.002) (0.012) (0.002) (0.100) 
Mother working 5.572*** -0.001 -0.002 0.0003 0.145*** 

 (0.925) (0.000) (0.003) (0.0003) (0.022) 
Mother’s age 20-30 66.830*** -0.006** 0.066*** -0.009** 1.575*** 

 (7.003) (0.003) (0.023) (0.004) (0.167) 
Mother’s age 30-40 63.473*** 0.001 -0.013 -0.002 1.634*** 

 (7.048) (0.003) (0.023) (0.004) (0.170) 
Mother’s age 40+ 17.553** 0.020*** -0.281*** 0.022*** 0.979*** 

 (7.187) (0.003) (0.026) (0.004) (0.176) 
Mother high sch. grad. 44.226*** -0.011*** 0.055*** -0.006*** 1.031*** 

 (3.192) (0.001) (0.012) (0.002) (0.073) 
Mother college grad. 50.789*** -0.017*** 0.116*** -0.012*** 1.082*** 

 (3.400) (0.002) (0.012) (0.002) (0.079) 
Father working 8.956*** -0.003*** -0.004 -0.004*** 0.253*** 

 (1.503) (0.001) (0.006) (0.001) (0.035) 
Father’s age 20-30 33.031*** -0.016** 0.025 -0.015** 0.820*** 

 (10.875) (0.007) (0.043) (0.006) (0.250) 
Father’s age 30-40 34.821*** -0.016** 0.031 -0.016** 0.852*** 

 (10.760) (0.007) (0.042) (0.006) (0.249) 
Father’s age 40+ 25.221** -0.009 -0.051 -0.007 0.761*** 

 (10.392) (0.007) (0.043) (0.007) (0.238) 
Father high sch. grad. 21.935*** -0.006*** 0.015* -0.004*** 0.529*** 

 (2.680) (0.001) (0.009) (0.001) (0.065) 
Father college grad. 27.810*** -0.010*** 0.063*** -0.008*** 0.590*** 

 (2.945) (0.001) (0.009) (0.001) (0.072) 
N 1,676,096 1,676,096 1,676,096 1,676,096 1,676,096 

Notes: Outcome variables are baby’s weight at birth in grams, an indicator for whether baby’s birth weight is less 
than 2,500 grams, gestation weeks, an indicator for whether infant was born with gestational age less than 37 weeks, 
and the ratio of birth weight to gestation weeks in columns 1 to 5, respectively. Regressions include the whole set of 
covariates as in Table2 except Advisories, Warnings, and Yellow Dust Events. Standard errors clustered at the city 
level are presented in parentheses. *, ** and *** indicate significance at 10%, 5% and 1%, respectively. 
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Table 5: Effect of Yellow Dust Events and  
Air Quality Notifications on Soccer Attendance 

 
(1) (2) 

 
Attendance Log(Attendance) 

PM10 8.489 0.001 

 
(7.277) (0.001) 

Advisory 2346.761 -0.041 

 
(2423.710) (0.155) 

Warning -7051.620* -0.564* 

 
(3677.459) (0.277) 

Yellow Dust Event -3377.854** -0.219** 

 
(1237.069) (0.079) 

Temperature (°C) 208.512*** 0.020*** 

 
(36.196) (0.004) 

Precipitation (mm.) -61.354*** -0.007*** 

 
(8.527) (0.001) 

Weekend -868.899 0.131 

 
(1781.747) (0.155) 

Evening -4470.460** -0.292* 

 
(2008.817) (0.162) 

Weekend×Evening 4978.367** 0.301 

 
(2027.002) (0.186) 

Round in Tournament -337.412*** -0.048*** 

 
(105.130) (0.011) 

Home Team Goals For 203.218** 0.025*** 

 
(78.056) (0.005) 

Away Team Goals For 13.915 0.002 

 
(43.662) (0.005) 

Rank of Home Team -218.622** -0.015* 

 
(78.521) (0.007) 

Rank of Away Team -217.373*** -0.016** 

 
(72.318) (0.006) 

N 1,061 1,061 
Notes: Outcome variable in column 1, Attendance, is the number of people who attended a soccer game in the 
Korean K-League between years 2004 and 2011. Mean Attendance is about 12,500. Outcome in column 2 is the 
natural logarithm of Attendance. Yellow Dust Event, Advisory and Warning are indicators for whether the 
corresponding notification is released on the game day. PM10 is the average of hourly measure in the game day. 
Temperature is the maximum temperature in Celsius in the day. Precipitation is measured in millimeters. Weekend 
denotes Saturday and Sunday games. Evening is equal to one if the whole game is played after sunset. Round in 
Tournament is the week number in the season. Goals For and Rank measures the number of goals scored by the 
corresponding team in the previous rounds in the tournament and the rank of the team as of the start of the game. 
Regressions also include stadium and team match-up fixed effects, year and month dummies. 
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Table 6: Falsification Test: The Effect of Future Alerts and Air Quality on Birth Weight 
 (1) (2) (3) (4) 

 During 30 Days 
following Birth 

During 60 Days 
following Birth 

During 90 Days 
following Birth 

During 120 Days 
following Birth 

PM10 -0.030 -0.067 -0.078 -0.113 

 (0.043) (0.056) (0.074) (0.082) 
Advisories -0.677 -0.171 -0.255 -0.743 

 (1.029) (0.731) (0.679) (0.596) 
Warnings 1.217 0.118 0.239 -0.777 

 (1.888) (1.457) (1.335) (1.036) 
Yellow dust events 0.371 0.396 0.470* 0.583** 

 (0.397) (0.297) (0.255) (0.251) 
Temperature 0.490* 0.070 0.590** 0.350 

 (0.252) (0.240) (0.251) (0.293) 
Precipitation -0.011*** 0.001 -0.003 -0.004 

 (0.003) (0.004) (0.004) (0.004) 
Girl -97.620*** -97.623*** -97.617*** -97.683*** 

 (0.748) (0.755) (0.743) (0.725) 
Second baby 29.991*** 30.062*** 29.985*** 30.013*** 

 (1.326) (1.338) (1.364) (1.365) 
Third baby 59.912*** 60.167*** 60.216*** 60.058*** 

 (2.058) (2.067) (2.074) (2.089) 
Married 32.933*** 32.651*** 31.980*** 32.619*** 

 (3.979) (3.993) (4.072) (4.250) 
Mother working 5.785*** 5.921*** 5.930*** 5.718*** 

 (0.958) (0.940) (0.936) (0.922) 
Mother’s age 20-30 70.595*** 70.169*** 69.749*** 69.243*** 

 (7.023) (7.047) (7.055) (7.096) 
Mother’s age 30-40 66.975*** 66.499*** 65.911*** 65.358*** 

 (7.082) (7.124) (7.134) (7.173) 
Mother’s age 40+ 21.208*** 20.996*** 20.509*** 19.847*** 

 (7.385) (7.321) (7.208) (7.269) 
Mother high sch. grad. 44.008*** 44.002*** 44.347*** 44.684*** 

 (3.342) (3.347) (3.352) (3.369) 
Mother college grad. 50.406*** 50.293*** 50.593*** 51.092*** 

 (3.544) (3.514) (3.534) (3.515) 
Father working 8.356*** 8.040*** 8.200*** 8.478*** 

 (1.642) (1.641) (1.702) (1.738) 
Father’s age 20-30 32.471*** 34.241*** 36.141*** 36.758*** 

 (11.761) (11.566) (11.910) (12.234) 
Father’s age 30-40 34.017*** 35.834*** 37.795*** 38.514*** 

 (11.652) (11.473) (11.785) (12.124) 
Father’s age 40+ 24.151** 25.700** 27.536** 28.145** 

 (11.287) (11.142) (11.474) (11.833) 
Father high sch. grad. 22.267*** 21.748*** 22.192*** 22.192*** 

 (3.054) (3.116) (3.216) (3.185) 
Father college grad. 28.361*** 27.915*** 28.364*** 28.353*** 

 (3.281) (3.324) (3.448) (3.443) 
N 1,516,650 1,483,838 1,450,696 1,417,975 

Notes: Outcome variable is baby’s weight at birth in grams. Variables Advisories, Warnings, Yellow dust events, 
PM10, Temperature and Precipitation measure the corresponding variables 30, 60, 90 and 120 days following the 
baby’s birth in columns 1 to 4, respectively. Full set of controls are included in regressions. Standard errors clustered 
at the city level are in parentheses. *, ** and *** indicate significance at 10%, 5% and 1%, respectively. 
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Table 7: The Effect of Alerts and Air Pollution on Birth Weight in Subsamples 
 (1) (2) (3) (4) 

 

Infants Born 
in North West 

Korea 

Infants Born 
in Rest of 

Korea 

Infants Born in 
High PM10 Cities 

Infants Born in 
Low PM10 Cities 

PM10 -0.982*** -1.216*** -1.079*** -0.743** 

 (0.209) (0.277) (0.195) (0.298) 
Advisories 2.560 5.154*** 1.580 7.102*** 

 (1.738) (1.453) (1.284) (1.941) 
Warnings 8.640*** 17.078*** 14.920*** 12.292*** 

 (2.210) (1.913) (2.014) (2.120) 
Yellow dust events 11.425*** 7.738*** 10.611*** 7.537*** 

 (0.801) (0.457) (0.614) (0.475) 
N 692,463 856,913 823,921 725,455 

 
 (5) (6) (7) (8) (9) (10) 

 
Infants Born to 
High Educated 

Mothers 

Infants Born to 
Low Educated 

Mothers 

First  
Born 

Infants 

Non-First 
Born 

Infants 

Infants Born 
to Working 

Mothers 

Infants Born to 
Non-Working 

Mothers 
PM10 -0.797*** -0.807*** -0.711*** -0.897*** -0.888*** -0.760*** 
 (0.146) (0.198) (0.176) (0.164) (0.220) (0.148) 
Advisories 4.000*** 4.855*** 4.109*** 4.497*** 3.282*** 4.732*** 
 (0.993) (1.277) (1.018) (1.116) (1.110) (1.078) 
Warnings 13.568*** 14.157*** 14.404*** 12.645*** 13.780*** 13.477*** 
 (1.528) (2.344) (1.674) (1.744) (1.664) (1.638) 
Yellow 8.332*** 9.077*** 8.785*** 8.359*** 8.408*** 8.652*** 
dust events (0.405) (0.526) (0.440) (0.420) (0.568) (0.416) 
N 1,020,987 528,389 835,108 714,268 445,974 1,103,402 
Notes: Table 7 presents coefficients obtained from estimating the main specification over subsamples described at 
the top of each column. Outcome variable is baby’s weight at birth in grams. Full set of control variables are 
included in all regressions. Standard errors clustered at the city level are presented in parentheses. *, ** and *** 
indicate significance at 10%, 5% and 1%, respectively. Subsamples: Infants born in/to (1) Regions in North and 
North West Korea Seoul, Gangwon and Chungnam vs. (2) Rest of Korea; (3) Regions with average PM10 level 
greater than the median vs. (4) Regions with average PM10 level less than the median; (5) Mothers with at least a 
college degree vs. (6) Mothers with less than college degree; (7) Mothers of their first children vs. (8) Mother who 
have given birth before; (9) Working mothers vs. (10) Mother who are not working.  
  

 



Table 8 
Characteristics of Families Whose Infants are Born in Polluted Areas 

  (1) (2) 
  Born in High 

PM10 city 
Born in High 

PM10 city 
White Collar Family 

 
0.050*** 

 
 

(0.015) 
Second baby -0.044*** -0.044*** 
 (0.010) (0.010) 
Third baby -0.102*** -0.101*** 
 (0.020) (0.020) 
Married 0.033* 0.033* 
 (0.019) (0.020) 
Mother working 0.035*** 

  (0.012) 
 Mother’s age 20-30 0.059*** 0.061*** 

 (0.012) (0.012) 
Mother’s age 30-40 0.109*** 0.111*** 
 (0.018) (0.019) 
Mother’s age 40+ 0.127*** 0.130*** 
 (0.021) (0.021) 
Mother high sch. grad. 0.037*** 0.038*** 
 (0.009) (0.010) 
Mother college grad. 0.002 0.002 
 (0.018) (0.018) 
Father working 0.017 

  (0.013) 
 Father’s age 20-30 -0.015 -0.008 

 (0.016) (0.016) 
Father’s age 30-40 -0.003 0.004 
 (0.018) (0.017) 
Father’s age 40+ 0.000 0.008 
 (0.021) (0.020) 
Father high sch. grad. 0.000 0.002 
 (0.010) (0.010) 
Father college grad. -0.012 -0.013 
 (0.019) (0.018) 
N 1,549,376 1,549,376 

The outcome variable is an indicator that takes the value of one if the baby is born in a city where the average PM10 
level is greater than the median. Regressions also include month and year of conception dummies. High Family 
Income is equal to one if both parents of the infant have white collar jobs such as managers, engineers and office 
workers, and it is equal to zero if at least one parent has a blue collar job such as laborer or technician or an 
agricultural job. Standard errors clustered at the city level are presented in parentheses. *, ** and *** indicate 
significance at 10%, 5% and 1%, respectively. 
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Table 9: The Effect of Alerts and Air Pollution on Birth Outcomes Controlling for Housing 
Price Index and a Proxy for the Productive Efficiency of the Family 

Panel A 

 
(1) (2) (3) (4) (5) 

 

Birth Weight Low Birth Weight Gestation Premature 
Birth 

Fetal 
Growth 

PM10 -1.241*** 0.0005*** -0.008*** 0.001*** -0.016*** 

 
(0.202) (0.000) (0.002) (0.000) (0.003) 

Housing Price Indext-9 0.333*** -0.000*** 0.003*** -0.0005*** 0.004** 

 
(0.113) (0.000) (0.001) (0.000) (0.002) 

White Collar Family 1.880* -0.001 0.003 0.0001 0.042* 

 (0.998) (0.000) (0.003) (0.0004) (0.023) 
Advisories 5.399*** -0.003*** 0.046*** -0.006*** 0.054*** 

 (1.090) (0.000) (0.006) (0.001) (0.019) 
Warnings 15.094*** -0.005*** 0.094*** -0.007*** 0.209*** 

 (1.418) (0.001) (0.008) (0.001) (0.028) 
Yellow dust events 8.662*** -0.003*** 0.058*** -0.006*** 0.114*** 

 
(0.427) (0.000) (0.002) (0.000) (0.007) 

N 1,376,282 1,376,282 1,376,282 1,376,282 1,376,282 
 

Panel B 

 
(1) (2) (3) (4) (5) 

 
Birth Weight Low Birth Weight Gestation Premature Birth Fetal Growth 

PM10 -1.265*** 0.0005*** -0.009*** 0.001*** -0.016*** 

 
(0.204) (0.000) (0.002) (0.000) (0.003) 

Advisories 4.757*** -0.002*** 0.041*** -0.005*** 0.046** 

 (1.103) (0.000) (0.006) (0.001) (0.019) 
Warnings 16.213*** -0.006*** 0.103*** -0.009*** 0.222*** 

 (1.501) (0.001) (0.008) (0.001) (0.029) 
Yellow dust events 8.585*** -0.003*** 0.058*** -0.006*** 0.113*** 

 
(0.413) (0.000) (0.002) (0.000) (0.007) 

N 1,376,282 1,376,282 1,376,282 1,376,282 1,376,282 
Notes: The Housing Price Index pertains to the  city of infant’s birth, 9 months before the infant’s birth date. White 
Collar Family is equal to one if both parents of the infant have white collar jobs such as managers, engineers and 
office workers, and it is equal to zero if at least one parent has a blue collar job such as laborer or technician or an 
agricultural job.  Regressions in Panel A include Housing Price Index, and White Collar Family in addition to the 
control variables as in Table 2. Regressions in Panel B include all control variables except for Housing price Index 
and White Collar Family. The coefficients of the full set of control variables are listed in Appendix Table 2. 
Standard errors clustered at the city level are presented in parentheses. *, ** and *** indicate significance at 10%, 
5% and 1%, respectively. 
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Figure 1 
Average Hourly PM10 Concentrations in Our Sample between Years 2003 and 2006 
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Figure 2 
Average Daily PM10 Concentrations in each Region across Korea  

between Years 2003 and 2011` 
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Figure 3 
Conceptions by Month 

 
The figure presents the estimates obtained from a regression with outcome variable Number of Conceptions in a 
month. The unit of observation is a month-year. The independent variables are month and year dummies. January is 
the omitted category. The solid connected line is the coefficient estimates of the month dummies. The dashed lines 
represent 2 standard deviation confidence intervals. 
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Appendix Table 1: Characteristics Infants and Parents in and out of Sample 
  In the Sample   Out of Sample 

Variable Mean Std. 
Dev.   Mean Std. Dev. 

Birth weight 3257 430  3262 439 
Low birth weight 0.030 0.180  0.030 0.180 
Gestation 38.94 1.48  38.85 2.55 
Premature 0.040 0.200  0.040 0.200 
Fetal growth 83.54 10.20  83.63 10.43 
Singleton 1.000 0.000  1.000 0.000 
Girl 0.480 0.500  0.480 0.500 
Second baby 0.380 0.480  0.390 0.490 
Third baby 0.080 0.280  0.100 0.300 
Married 0.990 0.100  0.980 0.140 
Mother working 0.290 0.450  0.230 0.420 
Mother’s age 20-30 0.410 0.490  0.470 0.500 
Mother’s age 30-40 0.570 0.490  0.510 0.500 
Mother’s age 40+ 0.020 0.120  0.020 0.120 
Mother high school grad.  0.320 0.470  0.410 0.490 
Mother college grad. 0.660 0.470  0.560 0.500 
Father working 0.950 0.210  0.960 0.200 
Father’s age 20-30 0.180 0.380  0.220 0.420 
Father’s age 30-40 0.750 0.430  0.710 0.460 
Father’s age 40+ 0.070 0.250  0.070 0.250 
Father high school grad.  0.290 0.450  0.360 0.480 
Father college grad. 0.690 0.460   0.610 0.490 

Number of observations in the sample of births that are not included in the  
regressions is about 2.5 million. 
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Appendix Table 2: The Coefficients of the Full Set of Control Variables in Table 9 

 
(1) (2) (3) (4) (5) 

  Birth Weight Low Birth Weight Gestation Premature Birth Fetal Growth 
PM10 -1.241*** 0.000*** -0.008*** 0.001*** -0.016*** 

 (0.202) (0.000) (0.002) (0.000) (0.003) 
Housing Price Indext-9 0.333*** -0.000*** 0.003*** -0.000*** 0.004** 

 
(0.113) (0.000) (0.001) (0.000) (0.002) 

White Collar Family 1.880* -0.001 0.003 0.000 0.042* 
 (0.998) (0.000) (0.003) (0.000) (0.023) 
Advisories 5.399*** -0.003*** 0.046*** -0.006*** 0.054*** 

 (1.090) (0.000) (0.006) (0.001) (0.019) 
Warnings 15.094*** -0.005*** 0.094*** -0.007*** 0.209*** 

 (1.418) (0.001) (0.008) (0.001) (0.028) 
Yellow dust events 8.662*** -0.003*** 0.058*** -0.006*** 0.114*** 

 (0.427) (0.000) (0.002) (0.000) (0.007) 
Temperature -18.923*** 0.005*** -0.141*** 0.002 -0.203*** 

 (1.748) (0.001) (0.009) (0.001) (0.035) 
Precipitation -0.167*** 0.000*** -0.001*** 0.000*** -0.003*** 

 (0.031) (0.000) (0.000) (0.000) (0.001) 
Girl -98.022*** 0.006*** 0.134*** -0.008*** -2.795*** 

 (0.826) (0.000) (0.003) (0.000) (0.018) 
Second baby 30.348*** -0.011*** -0.407*** 0.000 1.677*** 

 (1.382) (0.000) (0.005) (0.000) (0.031) 
Third baby 59.992*** -0.010*** -0.417*** 0.007*** 2.452*** 

 (1.983) (0.001) (0.006) (0.001) (0.049) 
Married 31.388*** -0.011*** 0.111*** -0.012*** 0.591*** 

 (4.131) (0.002) (0.014) (0.002) (0.100) 
Mother’s age 20-30 67.169*** -0.007** 0.043* -0.008* 1.626*** 

 (6.970) (0.003) (0.025) (0.004) (0.172) 
Mother’s age 30-40 65.313*** 0.000 -0.029 -0.002 1.710*** 

 (6.911) (0.003) (0.025) (0.004) (0.171) 
Mother’s age 40+ 22.993*** 0.018*** -0.290*** 0.021*** 1.135*** 

 (7.428) (0.004) (0.030) (0.005) (0.183) 
Mother high sch. grad. 44.026*** -0.010*** 0.050*** -0.005*** 1.034*** 

 (3.726) (0.002) (0.012) (0.002) (0.086) 
Mother college grad. 51.570*** -0.016*** 0.115*** -0.011*** 1.100*** 

 (3.848) (0.002) (0.013) (0.002) (0.088) 
Father’s age 20-30 30.052** -0.018** 0.028 -0.021*** 0.740*** 

 (11.517) (0.007) (0.046) (0.007) (0.269) 
Father’s age 30-40 31.742*** -0.018** 0.036 -0.022*** 0.766*** 

 (11.337) (0.007) (0.046) (0.007) (0.267) 
Father’s age 40+ 22.727** -0.011 -0.042 -0.013* 0.682** 

 (11.062) (0.007) (0.046) (0.007) (0.258) 
Father high sch. grad. 22.008*** -0.005*** 0.015* -0.003* 0.533*** 

 (3.146) (0.001) (0.009) (0.001) (0.077) 
Father college grad. 28.682*** -0.009*** 0.067*** -0.008*** 0.606*** 

 
(3.357) (0.001) (0.010) (0.001) (0.083) 

N 1,376,282 1,376,282 1,376,282 1,376,282 1,376,282 
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