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The average return on equities has been substantially higher than the average return on

risk free bonds over long periods of time. Between 1946 and 2016, the S&P500 earned

66 basis points per month more than 30 days T-bills (i.e. over 7% annualized). Over

the years, many dynamic equilibrium asset pricing models have been proposed in the

literature to understand the nature of risks in equities that require such a large premium

and why risk free rates are so low. A common feature in most of these models is that

risk premium on equities does not remain constant over time, but varies in a systematic

and stochastic manner. A large number of academic studies have found support for

such predictable variation in equity premium.1 This led Lettau and Ludvigson (2001) to

conclude ”it is now widely accepted that excess returns are predictable by variables such

as price-to-dividend ratios.”

Goyal and Welch (2008) argue that variables such as price-to-dividend ratios, although

successful in predicting stock index returns in-sample, fail to predict returns out-of-sample.

The difference between in-sample and out-of-sample prediction is the assumption made on

investors’ information set. Traditional dynamic equilibrium asset pricing models assume

that, while investors’ beliefs about investment opportunities and economic conditions

change over time and drive the variation in stock index prices and expected returns, these

investors nevertheless have complete knowledge of the parameters describing the economy.

For example, these models assume that they know the true model and model parameters

governing consumption and dividend dynamics. However, as Hansen (2007) argues, ”this

assumption has been only a matter of analytical convenience” and is unrealistic in that

it requires us to ”burden the investors with some of the specification problems that

challenge the econometrician”. Motivated by this insight, a recent but growing literature

1See, among others, Campbell and Shiller (1988b), Breen, Glosten, and Jagannathan (1989), Fama
and French (1993), Glosten, Jagannathan, and Runkle (1993), Lamont (1998), Baker and Wurgler (2000),
Lettau and Ludvigson (2001), Campbell and Vuolteenaho (2004), Lettau and Ludvigson (2005), Polk,
Thompson, and Vuolteenaho (2006), Ang and Bekaert (2007), van Binsbergen and Koijen (2010), Chen,
Da, and Zhao (2013), Kelly and Pruitt (2013), van Binsbergen, Hueskes, Koijen, and Vrugt (2013), Li,
Ng, and Swaminathan (2013), Da, Jagannathan, and Shen (2014), and Martin (2017).
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has focused on the role of learning in asset pricing models. Timmermann (1993) and

Lewellen and Shanken (2002) demonstrate, via simulations, that parameter uncertainty

can lead to excess predictability and volatility in stock returns. Johannes, Lochstoer,

and Mou (2016) propose a Markov-switching model for consumption dynamics and show

that learning about the consumption process is reflected in asset prices. Croce, Lettau,

and Ludvigson (2014) show that a bounded rationality limited information long-run risks

model can generate a downward-sloping equity term structure. Collin-Dufresne, Johannes,

and Lochstoer (2016) provide the theoretical foundation that parameter learning can be

a source of long-run risks under Bayesian learning.2 We add to this literature.

The main contributions of our paper are as follows. First, we present a model for

aggregate dividends of the stock index, based on simple economic intuition, that explains

large variation in annual dividend growth rates out-of-sample. Then, we show that,

when learning about dividend dynamics is incorporated into a long-run risks model, the

model predicts large variation in annual stock index returns out-of-sample. This not

only addresses the Goyal and Welch (2008) critique and significantly revises upward the

degree of return predictability in the existing literature, but also lends support that both

investors’ aversion to long-run risks and learning about these risks play important roles

in determining asset prices and expected returns.34

To study how learning about dividend dynamics affects stock index prices and expected

returns, we first need a dividend model that is able to realistically capture how investors

form expectations about future dividends. Inspired by Lintner (1956) and Campbell

and Shiller (1988b), we put forth a model of dividend growth rates that incorporates

information in corporate payout policy into the latent variable model used in Cochrane

2Instead of learning, an alternative path that researchers have taken is through introducing preferences
shocks. See Albuquerque, Eichenbaum, and Rebelo (2015).

3Our paper is also consistent with the argument of Lettau and Van Nieuwerburgh (2008) that steady-
state economic fundamentals, or in our interpretation, investors beliefs about these fundamentals, vary
over time and these variations are critical in determining asset prices and expected returns.

4Following the existing literature, we adopt the stock index as a proxy for the market portfolio.
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(2008), van Binsbergen and Koijen (2010), and others. Our model predicts 42.4% to 46.4%

of the variation in annual dividend growth rates between 1946 and 2016 in-sample and

predicts 39.5% to 41.3% of the variation in annual dividend growth rates between 1976 and

2016 out-of-sample. Based on these results, we comfortably reject the null that expected

dividend growth rates are constant and demonstrate that the superior performance of

our dividend model over alternative models in predicting annual dividend growth rates is

statistically significant and economically meaningful.

We document that uncertainties about parameters in our dividend model, especially

parameters surrounding the persistent latent variable, are high and resolve slowly. That

is, these uncertainties remain substantial even at the end of our 71 years data sample,

suggesting that learning about dividend dynamics is a difficult and slow process. Further,

when our dividend model is estimated at each point in time based on data available

at the time, model parameter estimates fluctuate, some significantly, over time as more

data become available. In other words, if investors estimate dividend dynamics using our

model, we expect their beliefs about the parameters governing the dividend process to

vary significantly over time. We then show that these changes in investors’ beliefs can

have large effects on their expectations of future dividends. Through this channel, changes

in investors’ beliefs about the parameters governing the dividend process can contribute

significantly to the variation in stock prices and expected returns.

We provide evidence that investors behave as if they learn about dividend dynamics

and price stocks using our model. First, we define stock yields as discount rates that

equate the present value of expected future dividends to the current prices of the stock

index. From the log-linearized present value relationship of Campbell and Shiller (1988),

we write stock yields as a function of price-to-dividend ratios and long-run dividend

growth expectations.5 We show that, assuming that investors learn about dividend

5See Jagannathan, McGrattan, and Scherbina (2001) for the dynamic version of the Gordon (1959)
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dynamics, these stock yields explain 18.7% of the variation in annual stock index returns

between 1975 and 2016. In comparison, stock yields, assuming full information, predict

a statistically significantly lower 13.0% of the same variation over the same horizon.

Next, we embed our dividend model into an dynamic equilibrium asset pricing model

that features Epstein and Zin (1989) preferences, which capture preferences for the early

resolution of uncertainty, and consumption dynamics similar to the long-run risks model of

Bansal and Yaron (2004). We refer to this model as our long-run risks model. We find that,

assuming learning, our long-run risks model predicts 25.3% to 27.1% of the variation in

annual stock index returns between 1975 and 2016. Learning accounts for approximately

half of the predictability in returns. Both the model’s forecasting performance and the

incremental contribution of learning to this performance are statistically significant and

economically meaningful.

Our results suggest that, aside from a common persistent component in consumption

and dividend growth rates, the assumption that investors hold Epstein and Zin (1989)

preferences with early resolution of uncertainty, a critical component of any long-run risks

model, is essential to the model’s strong performance in predicting annual stock index

returns.6 More specifically, we find that, replacing Epstein and Zin (1989) preferences

with constant relative risk aversion (CRRA) preferences, R-square value for predicting

annual stock index returns, between 1975 and 2016, drops from 13.3% to 11.8% assuming

full information and drops from at least 25.3 percent to at most 15.1 percent after learning

is incorporated. This substantial deterioration in forecasting performance is evidence that

the assumption of early resolution of uncertainty, as modeled through Epstein and Zin

growth model that gives an expression for stock yield in levels. When expected dividend growth rates
vary over time, according to the present value relationship, stock yield, that is, the long-run expected
return on stocks, is the current dividend yield plus a weighted average of expected future one period
dividend growth rates.

6Alternatively, as Hansen and Sargent (2010) and Bidder and Dew-Becker (2016) show, if investors
are ambiguity averse, they may behave as if there is such a common persistent component even if the
actual consumption and dividend processes are not persistent.
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(1989) preferences, is potentially important for building an asset pricing model consistent

with investors behavior.

We follow Cogley and Sargent (2008), Piazzesi and Schneider (2010), and Johannes,

Lochstoer, and Mou (2016), and define learning based on the anticipated utility of Kreps

(1998), where agents update using Bayes’ law but optimize myopically in that they do not

take into account uncertainties associated with learning in their decision making process.

That is, anticipated utility assumes agents form expectations not knowing that their

beliefs will continue to evolve going forward in time as the model keeps updating.7

The rest of this paper is as follows. In Section 1, we introduce our dividend model

and evaluate its performance in capturing dividend dynamics. In Section 2, we show

that investors’ beliefs about dividend model parameters can vary significantly over time

as a result of Kreps’ learning about dividend dynamics. In Sections 3, we show that

learning accounts for a significant fraction of the variation in both long-run and short-run

expected stock index returns. In Section 4, we first discuss how an asset pricing model’s

performance in predicting stock index returns can be used as a criterion to evaluate that

model. Then, we demonstrate that, between 1975 and 2016, a model that incorporates

Kreps’ learning into a long-run risks model predicts 25.3% to 27.1% of the variation in

annual stock index returns and explain why such a finding provides us insight into investor

preferences and the role of learning in describing investors’ behavior. In Section 5, we

conclude.

I. The Dividend Model

In this section, we present a model for dividend growth rates that extends the latent

variable model of Cochrane (2008), van Binsbergen and Koijen (2010), and others by

7Collin-Dufresne, Johannes, and Lochstoer (2016) provide the theoretical foundation for studying
uncertainties about model parameters as priced risk factors.
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incorporating information in corporate payout policy into the model. The inclusion of

corporate payout policy in explaining dividend dynamics is inspired by Campbell and

Shiller (1988b), who show that cyclical-adjusted price-to-earnings (CAPE) ratios, defined

as the log ratios between real prices and real earnings averaged over the past decade, can

predict future growth rates in dividends.

We begin with the latent variable model used in Cochrane (2008), van Binsbergen and

Koijen (2010), and others. Let Dt be nominal dividend of the stock index, dt = log(Dt),

and ∆dt+1 = dt+1 − dt be log dividend growth rate. The model is described as:

∆dt+1 − µd = xt + σdεd,t+1

xt+1 = ρxt + σxεx,t+1εd,t+1

εx,t+1

 ∼ i.i.d. N

0,

 1 λdx

λdx 1


 , (1)

where time-t is defined in years to control for potential seasonality in dividend payments.

Following van Binsbergen and Koijen (2010), we fit our model to the nominal dividend

process. As shown in Jagannathan, McGrattan, and Scherbina (2000) and Boudoukh,

Michaely, Richardson, and Roberts (2007), equity issuance and repurchase tend to be

more sporadic and random compared to cash dividends. For this reason, we focus on

modeling the cash dividend process.8 In (1), expected dividend growth rates are a function

of the latent variable xt, the unconditional mean µd of dividend growth rates, and the

persistence coefficient ρ of the latent variable xt:

Et [∆dt+s+1] = µd + ρsxt, ∀s ≥ 0. (2)

8A firm’s investment opportunities set includes repurchasing its own shares. It will, all else equal,
lead to an increase in future earnings of the remaining shares, just as investment in any other productive
assets would. This is another reason to focus on cash dividends in our study.
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Before we introduce corporate payout policy into this model, we first recall the dividend

model used in Campbell and Shiller (1988b). Define pt as log nominal price of the

stock index, et as log nominal earnings, πt as log consumer price index, and, following

Campbell and Shiller (1988b), consider the following vector-autoregression for annual

nominal dividend growth rates, log price-to-dividend ratios, and CAPE ratios:


∆dt+1

pt+1 − dt+1

pt+1 − ēt+1

 =


β10

β20

β30

+


β11 β12 β13

β21 β22 β23

β31 β32 β33




∆dt

pt − dt

pt − ēt

+


σdεd,t+1

σ(p−d)ε(p−d),t+1

σ(p−ē)ε(p−ē),t+1

 ,


εd,t+1

ε(p−d),t+1

ε(p−ē),t+1

 ∼ i.i.d. N

0,


1 λ12 λ13

λ12 1 λ23

λ13 λ23 1


 . (3)

where, as in Campbell and Shiller (1988b), CAPE ratio is defined as:

pt − ēt = (pt − πt)−
1

10

10∑
s=1

(et−s+1 − πt−s+1) . (4)

Estimates of β10, β11, β12, and β13 from (3), based on data between 1946 and 2016, are

reported in the first row of Table I. We see that both price-to-dividend ratios and CAPE

ratios have significant effects on future dividends, but in the opposite direction. That is,

increases in price-to-dividend ratios predict increases in future dividend growth rates, but

increases in CAPE ratios predict decreases in future dividend growth rates. Further, we

note from Table I that β12 + β13 = 0 cannot be statistically rejected. For this reason, we

restrict β13 = −β12 and re-write (3) as:

∆dt+1 = β0 + β1∆dt + β2 (ēt − dt) + σdεd,t+1, εd,t+1 ∼ i.i.d N(0, 1). (5)

Stock index price pt does not appear in (5). Instead, future dividend growth rates are a

function of some measure of retention ratios, that is, ēt − dt. Estimated coefficients from
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(5) are in the second row of Table I. We see that the β2 estimate is significant, suggesting

that expected dividend growth rates respond to corporate payout policy. High earnings

relative to dividends implies that firms have been retaining earnings in the past and so

they are expected to pay more dividends in the future.

[Table I is about here.]

We extend (1) based on this insight that corporate payout policy contains information

about future dividends. Define ∆et+1 = et+1 − et as log nominal earnings growth rate

and qt = et − dt as log earnings-to-dividend ratio, that is, retention ratio. We write our

dividend model as the following system of equations:

∆dt+1 − µd = xt + φ
(
qt − µq

)
+ σdεd,t+1,

xt+1 = ρxt + σxεx,t+1,

qt+1 − µq = θ
(
qt − µq

)
+ σqεq,t+1,

εd,t+1

εx,t+1

εq,t+1

 ∼ i.i.d. N

0,


1 λdx λdq

λdx 1 λxq

λdq λxq 1


 . (6)

In our model, future dividend growth rates are a linear combination of three components.

First, they consist of the latent variable xt, which follows a stationary AR[1] process.

Second, they are affected by changes in retention ratios. That is, we expect firms to

pay more future dividends if they have retained more earnings. Third, they consist of

white noises εd,t. For convenience, we model retention ratios as an AR[1] process, and

assuming that it is stationary implies that dividend and earnings growth rates have the

same unconditional mean µd. In (6), expected dividend growth rates are:

Et[∆dt+s+1] = µd + ρsxt + φθs(qt − µq), ∀s ≥ 0. (7)

This means that, aside from the latent variable xt and retention ratios, expected dividend
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growth rates are a function of the unconditional mean µd of dividend growth rates, the

unconditional mean µq and persistence θ of retention ratios, the persistence ρ of the latent

variable xt, and coefficient φ that connects corporate payout policy to dividend dynamics.

The earnings process is not modeled explicitly in (6). However, because earnings growth

rates are, by definition, a function of dividend growth rates and retention ratios, that is,

∆et+1 = (qt+1 − qt) + ∆dt+1, (8)

and because both dividend growth rates and retention ratios are modeled in (6), we can

solve for earnings growth rates as:

∆et+1 = µd + xt + (θ + φ− 1)(qt − µq) + σeεe,t+1, εe,t+1 ∼ i.i.d N(0, 1), (9)

where σe =
√
σ2
d + σ2

q + 2σdσqλdq and εe,t+1 =
σdεd,t+1+σqεq,t+1

σe
.

A type of model commonly used to forecast macroeconomic variables is a Markov-

switching model. We take the Markov-switching model describing consumption dynamics

in Johannes, Lochstoer, and Mou (2016). It is conceivable that the same model can be

applied to dividend growth rates:

∆dt+1 = µd(st) + σd(st)εd,t+1, st ∈ {1, 2, 3},

p(st+1 = i|st = j) = φij,

φij ∈ [0, 1] ∀i, j ∈ {1, 2, 3},
3∑
i=1

φij = 1 ∀j ∈ {1, 2, 3}. (10)

That is, st is the underlying state of the economy, p(st+1 = i|st = j) is the probability

that the economy transfers from state j ∈ {1, 2, 3} to state i ∈ {1, 2, 3}, and µd(st) and

σd(st) are the mean and volatility of dividend growth rates in a particular state. A key

feature of this model that is not present in dividend models discussed so far is that it
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is able to incorporate, albeit in a restricted manner, both regime changes and stochastic

volatility. We adopt (10) as another baseline to compare against our dividend model.

A. Estimation and Results

Due to the lack of reliable historical earnings data on the CRSP value-weighted market

index, we use the S&P500 index as the proxy for the market portfolio. That is, throughout

this study, data on prices, dividends, and earnings are from the S&P500 index. These

data can be found on Prof. Robert Shiller’s website.

We estimate model parameters:

Θ = {µd, φ, σd, ρ, σx, µq, θ, σq} (11)

based on maximum-likelihood. For parameter reduction, we assume in our model that

cross-correlations λ(·, ·) of different shocks to the dividends are zeros, that is, λ(εd,t+1, εq,t+1) =

0, λ(εd,t+1, εx,t+1) = 0, and λ(εx,t+1, εq,t+1) = 0. The log-likelihood function l(·) is then

separable and maximizing it is equivalent to:

max
Θ

l (∆d1, ..∆dT , q0, ...qT |Θ) = max
{µq ,θ,σq}

l1 + max
{µd,φ,σd,ρ,σx}

l2

l1 = l
(
q0, .., qT |{µq, θ, σq}

)
l2 = l (∆d1|q0, {µd, φ, σd, ρ, σx}) +

T−1∑
t=0

l (∆dt+1|q0, ..., qt,∆d1, ..,∆dt, {µd, φ, σd, ρ, σx}) .

(12)

Thus, we can separately estimate {µq, θ, σq} from the AR[1] process of retention ratios by

maximizing l1 using least squares, and estimate {µd, φ, σd, ρ, σx} from the rest of the

dividend model by maximizing l2 using Kalman filter (Hamilton (1994)). Appendix

A describes Kalman filter. Table II reports model parameter estimates based on non-
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overlapping annual data between 1946 and 2016.9 Standard errors of parameter estimates

are based on bootstrap simulation, as described in Appendix B. Previous works have

suggested a regime shift in dividend dynamics before and after World War II. Fama and

French (1988) note that dividends are more smoothed in the post-war period. Chen, Da,

and Priestley (2012) argue that the lack of predictability in dividend growth rates by

price-to-dividend ratios in the post-war period is attributable to this dividend smoothing

behavior. So our sample is for the post-war period between 1946 and 2016. Consistent

with our intuition, coefficient φ that connects corporate payout policy to dividend dy-

namics is estimated to be positive and significant. That is, high retention ratios imply

high future dividend growth rates. The annual persistence of retention ratios is estimated

to be 0.370. The latent variable xt is estimated to be slightly more persistent at 0.469. So

there is a moderate level of persistence in dividend growth rates between 1946 and 2016

based on estimates from our model.

[Table II is about here.]

In the first column of Table III, we report our dividend model’s performance in

predicting annual dividend growth rates. Between 1946 and 2016, our model predicts

46.4% of the variation in annual dividend growth rates, which is a significant improvement

over the baseline models. Given these statistics are in-sample, we know that at least a part

of this improved forecasting performance comes from adding more parameters to existing

models and is thus mechanical. Thus, to address the concern that our model overfits the

data, we also assess our model based on how it predicts annual dividend growth rates

out-of-sample. That is, instead of estimating model parameters based on the full data

sample, we predict dividend growth rates at each point in time using model parameters

estimated based on data available at the time. ModelMi’s out-of-sample performance is

9All annual statistics reported are based on year-end data, that is, from January to December. For
all of the results in this paper, we have also replicated them using overlapping annual data, the findings
are very similar.
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then evaluated using out-of-sample R-square value in Goyal and Welch (2008):

R2
O(Mi) = 1−

∑T−1
t=T0

(∆dt+1 − Et[∆dt+1|Mi])
2∑T−1

t=T0

(
∆dt+1 − µ̂d,t

)2 , (13)

where µ̂d,t is the average of dividend growth rates up to time-t:

µ̂d,t =
1

t

t−1∑
s=0

∆ds+1. (14)

We use time-0 to denote the start of the data sample, time-T0 to denote the end of the

training period, and time-T to denote the end of the data sample. We use the data

sample prior to 1975 as the training period and out-of-sample prediction is for the 42

years period between 1975 and 2016. In the second and third columns of Table III, we

report out-of-sample R-square values for predicting annual dividend growth rates and the

corresponding bootstrap simulated p-values. Results show that our model predicts 41.3%

of the variation in annual dividend growth rates between 1975 and 2016 out-of-sample,

which is economically meaningful improvement over the 16.1%, 25.6%, and -4.2% from

the baseline models.

[Table III is about here.]

We proceed to show that the differences in performance between our model and the

baseline models in predicting dividend growth rates are statistically significant. For two

models Mi and Mj, we define incremental R-square value of Mi over Mj as:

R2
I(Mi,Mj) = 1−

∑T−1
t=T0

(∆dt+1 − Et[∆dt+1|Mi])
2∑T−1

t=T0
(∆dt+1 − Et[∆dt+1|Mj ])

2
, (15)

and report statistics in Table III. If incremental R-square value is significantly positive, it

suggests that our dividend model is an improvement over the baseline models in predicting

annual dividend growth rates. Taken as a whole, we note that the differences in forecasting

performance between our model and the baseline models are significant.
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B. Inflation and Real Rates

In a standard neoclassical asset pricing model, real dividend growth rates, not nominal

rates, are of interest to investors in forming their investment decisions. To convert nominal

dividend growth rates into real rates, we need to specify a process for inflation. We model

inflation as a stationary AR[1] process:

∆πt+1 − µπ = η (∆πt − µπ) + σπεπ,t+1, επ,t+1 ∼ i.i.d. N(0, 1). (16)

Table IV reports parameter estimates of the inflation model based on non-overlapping

annual data between 1946 and 2016. There is a moderate level of persistence in inflation

rates. Based on the reported R-square value for predicting inflation rates, which is 44.8%

in-sample between 1946 and 2016 and 54.0% out-of-sample between 1975 and 2016, we

see that the AR[1] model does a reasonable job in describing the inflation process.

[Table IV is about here.]

For parameter reduction, we assume cross-correlations of different shocks to inflation

and shocks to the dividend process, that is, λdπ = λ (εd,t+1, επ,t+1), λxπ = λ (εx,t+1, επ,t+1),

and λqπ = λ (εq,t+1, επ,t+1), are zeros. This assumption also implies that estimating the

inflation model separately from dividend dynamics using least squares is equivalent to a

joint maximum likelihood estimation. Given this inflation model, we can then derive the

expression for expected real dividend growth rates based on expected nominal rates and

inflation as:

Et[∆d̃t+s+1] = (µd − µπ) + ρsxt + φθs(qt − µq)− ηs+1 (∆πt − µπ) , ∀s ≥ 0. (17)

where ∆d̃t = ∆dt−∆πt denotes real dividend growth rate.10 To provide a more intuitive

visualization of how various types of shocks to real dividend growth rates at a given time

10Throughout, we put ∼ on top of a variable to denote that the variable is defined in real terms.
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affect investors’ expectations of real dividends going forward, we consider an one unit

change to shocks to the real dividend process, that is, εd,t, εx,t, εq,t, and επ,t, and show

how such a change affects both real dividend growth rates immediately and expected real

dividend growth rates up to 10 years into the future. We report these impulse response

functions in Figure 1. We see that εd,t affects dividend growth rates instantly but its effect

does not persist into the future, whereas εx,t and εq,t affect dividend growth rates with a

one-period lag but their effects are persistent over time. Figure 1 shows that expected

inflation 1-to-1 negatively affects expected real dividend growth rates. This is a result

of our choice to fit our dividend model to the nominal dividend process and extract real

dividend growth rate expectations by subtracting from it expected inflation rates. The

underlying assumption behind this choice is that firms do not adjust for inflation in paying

out dividends to investors, so we expect real rates to fall as inflation expectations rise.

This is supported in the data and is consistent with the economic rationale that expected

inflation is negatively related to expected growth in real activity.11

[Figure 1 is about here.]

In Table V, we report the in-sample and out-of-sample R-square values for predicting

real, rather than nominal, annual dividend growth rates using either our model or one

of the baseline models. We find that our model also outperforms the baseline models in

forecasting real annual dividend growth rates. It predicts 42.4% of the variation in real

annual dividend growth rates between 1946 and 2016 in-sample and 39.5% of the variation

in real rates between 1975 and 2016 out-of-sample.

[Table V is about here.]

11See, among others, Fama (1981) and Piazzesi and Schneider (2006).
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II. Parameter Uncertainty and Learning

The difference between in-sample and out-of-sample prediction is the assumption made

on investors’ information set. Model parameters reported in Table II are estimated using

data up to 2016, so they reflect investors’ knowledge of dividend dynamics at the end

of 2016. So if investors were to estimate our dividend model at an earlier date, they

would have estimated a set of parameter values different from those reported in Table

II. This is a result of investors’ knowledge of dividend dynamics evolving as more data

become available. We call this learning. That is, we use learning to refer to investors

estimating model parameters at each point in time based on data available at the time.

In this section, we summarize how learning affects investors’ beliefs about the parameters

governing the dividend process, assuming that investors behave as if they learn about

dividend dynamics using our model. We then show evidences supporting that learning

about dividend dynamics can have significant asset pricing implications.

To better reflect investors’ information set, from this point onwards, we assume in-

vestors have access to earnings information 6 months after fiscal quarter or year end. The

choice of 6 months is reasonably conservative and is based on Securities and Exchange

Commission (SEC) rules since 1934 that require public companies to file 10-Q reports

no later than 45 days after fiscal quarter end and 10-K reports no later than 90 days

after fiscal year end.12 We report, in Figure 2, model parameters estimated based on

non-overlapping annual data up to time-τ , for τ between 1975 and 2016. There are

several points we take away from Figure 2. First, there is a gradual upward drift in

investors’ beliefs about the unconditional mean µq of retention ratios. This suggests that

firms have been paying a smaller fraction of earnings as cash dividends in recent decades.

Second, there are gradual downward drifts in investors’ beliefs about φ that connects

12In 2002, these rules were updated to require large firms file 10-Q reports no later than 40 days after
fiscal quarter end and 10-K reports no later than 60 days after fiscal year end. However, in our research
we find that a small percentage of firms do miss these deadlines.
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corporate payout policy to dividend dynamics. This means that dividends have become

more smoothed over time. The decline in the impact of retained earnings on future

dividends is consistenet with declining investment opportunities and more of the retained

earnings being used for share repurchases. Third, a sharp drop in investors’ beliefs about

the persistence θ of retention ratios towards the end of our data sample is due to the

abnormally low earnings reported around the time of the 2009 recession and the strong

stock market recovery that followed. The changes in the volatility of shocks to dividends

and retention ratios are products of these trends.

[Figure 2 is about here.]

Figure 2 shows that the persistence ρ of the latent variable xt appears to be the

parameter hardest to learn and least stable over time. Investors’ belief about ρ fluctuates

significantly over the sample period. For example, there are three times when investors’

beliefs about ρ sharply drops during our sample. The first is around the time of the 2001

recession. The second is at the start of what is sometimes referred to as the Dot-Com

bubble. The third is around the time of the 2009 recession. This is a standard feature of

a latent variable model. That is, when a large and unexpected shock hits, in our context

either in the form of a recession or what is sometimes referred to as a bubble, our model

assigns some positive probability that such a shock belongs to the persistent process and

revises ρ downward.

We can infer, from standard errors reported in Table II, that learning about dividend

dynamics is a slow process. That is, even with 71 years of data, there are still significant

uncertainties surrounding the estimates of some model parameters. To quantify the

speed of learning, following Johannes, Lochstoer, and Mou (2016), for a parameter in

our dividend model, we construct a measure that is one minus the inverse ratio between

the bootstrap simulated standard error assuming that the parameter is estimated based on

data up to 2016 and the bootstrap simulated standard error assuming that the parameter
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is estimated based on 10 more years of data, that is, if the parameter were estimated using

data up to 2026. In other words, this ratio reports how much an estimated parameter’s

standard error would have reduced in 10 years. So the closer this ratio is to zero, the

more difficult it is for investors to learn about that parameter. In Table VI, we report

this measure for each of the eight model parameters. Overall, 10 years of additional data

would decrease the standard errors of parameter estimates by between approximately 3%

and 8%. Further, consistent with results in Figure 2 and in Table I, reducing uncertainties

surrounding ρ is the most difficult among these parameters.

[Table VI is about here.]

A. Parameter Uncertainty and Expectations for the Long-Run

We show that learning about dividend dynamics can have significant asset pricing impli-

cations. That is, consider the log linearized present value relationship in Campbell and

Shiller (1988):

pt − dt =
κ0

1− κ1
+

∞∑
s=0

κs1 (Et[∆dt+s+1]− Et[Rt+s+1]) , (18)

where κ0 and κ1 are log-linearizing constants and Rt+1 is the stock index’s log return.13

The expression is a mathematical identity that connects price-to-dividend ratios, expected

dividend growth rates, and discount rates, that is, expected returns. We define stock yields

as discount rates that equate the present value of expected future dividends to the current

price of the stock index. That is, rearranging (18), we can write stock yields as:

syt ≡ (1− κ1)

∞∑
s=0

κs1Et[∆Rt+s+1]

= κ0 − (1− κ1)(pt − dt) + (1− κ1)
∞∑
s=0

κs1Et[∆dt+s+1]. (19)

13To solve for κ0 = log(1 + exp(p− d))− κ1(p− d) and κ1 = exp(p−d)
1+exp(p−d) , we set unconditional mean of

log price-to-dividend ratios p− d to 3.474.
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We define long-run dividend growth expectations as:

∂t ≡ (1− κ1)
∞∑
s=0

κs1Et[∆dt+s+1]. (20)

Given that price-to-dividend ratios are observed, there is a one-to-one mapping between

long-run dividend growth expectations and stock yields. Further, long-run dividend

growth expectations are specific to the dividend model and its parameters. For example,

using our dividend model, we can re-write expected long-run dividend growth rates as:

∂t = (1− κ1)

∞∑
s=0

κs1
(
µd + ρsxt + φθs(qt − µq)

)
. (21)

If investors instead use a different dividend model, their expectations of long-run dividend

growth rates will also be different. For example, if we assume that dividend growth rates

follow a white noise process centered around µd, we can rewrite (21) instead as ∂t = µd.

Further, because long-run dividend growth expectations are functions of dividend model

parameters, it is also affected by whether these parameters are estimated once based

on the full data sample, or estimated at each point in time based on data available

at the time. The first case corresponds to investors having complete knowledge of the

parameters describing the dividend process. The second case corresponds to investors

having to learn about dividend dynamics. In Figure 3, we plot our model’s long-run

dividend growth expectations, either assuming learning or assuming full information. The

plot shows that learning can have a considerable effect on investors’ long-run dividend

growth expectations.

[Figure 3 is about here.]

In Figure 4, we plot stock yields, either assuming learning or assuming full information,
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computed by substituting (21) into (19):

syt = κ0 − (1− κ1)(pt − dt) + µd + (1− κ1)

(
1

1− κ1ρ
xt +

φ

1− κ1θ
(qt − µq)

)
. (22)

We also plot price-to-dividend ratios in Figure 4, and scale price-to-dividend ratios to

allow for easy comparison to stock yields. We note that, assuming full information,

there is almost no noticeable difference between the time series of scaled price-to-dividend

ratios and stock yields. This suggests that the variation in long-run dividend growth

expectations, assuming that investors do not learn, is minimal relative to the variation

in price-to-dividend ratios, so the latter dominates the variation in stock yields, as stock

yields are a linear combination of these two components. However, assuming learning, we

find significant differences between the time series of price-to-dividend ratios and stock

yields.

[Figure 4 is about here.]

III. Learning about Dividends and the Time Variation in

Discount Rates

So far in our analysis, we have focused on how learning affects the econometrician.

From this point onwards, we examine the asset pricing implications of assuming that

investors have to learn about dividend dynamics in a manner similar to learning by

the econometrician. While the econometrician does not price assets, investors do. So,

assuming investors behave as if they learn about dividend dynamic using our model, we

expect such behavior to affect stock index prices and returns. This assumption is not

unreasonable. Because our dividend model outperforms alternative models in forecasting

dividends, it is natural to assume that investors behave as if they use a model that is

more similar to ours in their investment decisions, at least among the choices examined.
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In this section, we present evidence that are consistent with this assumption.

First, we show that stock yields, assuming learning, predict annual stock index returns.

To establish a baseline, note that, if we assume dividend growth rates follow a white noise

process centered around µd, stock yields can be simplified to:

syt = κ0 − (1− κ1)(pt − dt) + µd. (23)

That is, under the white noise assumption, stock yields are just scaled price-to-dividend

ratios. So, we regress future annual stock index returns on price-to-dividend ratios, based

on non-overlapping annual data between 1975 and 2016. Statistics are in the first column

of Table VII. Results from Table VII show that, between 1975 and 2016, price-to-dividend

ratios predict 13.6% of the variation in annual stock index returns.

We then regress future annual stock index returns on stock yields in (22), assuming

learning. We report regression statistics in the second column of Table VII. We see that

R-square value from this regression is 18.7%. We note that the only difference between

this regression and the baseline regression is the assumption on the dividend process.

That is, here we assume that investors behave as if they learn about dividend dynamics

using our model, whereas in the baseline regression we assume that expected dividend

growth rates are constant. This means that we can attribute the increase in R-square

value from 13.6% to 18.7% to our modeling of learning about dividend dynamics. To

emphasize the importance of learning, we regress future annual stock index returns on

stock yields in (22), assuming full information. Statistics are in the third column of Table

VII. Results show that stock yields, assuming full information, perform roughly as well

as price-to-dividend ratios in predicting annual stock index returns. This is consistent

with results in Figure 4, which show that there is very little difference between the time

series of price-to-dividend ratios and stock yields, assuming full information. To show

the superior predictive power of stock yields, assuming learning, is significant, we run
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bi-variate regressions of future annual stock index returns on both stock yields, assuming

learning, and either price-to-dividend ratios or stock yields, assuming full information.

Statistics are in the fourth and fifth columns of Table VII. Results show that stock yields,

assuming learning, significantly dominate both price-to-dividend ratios and stock yields,

assuming full information, in predicting annual stock index returns.

[Table VII is about here.]

It is worth noting that, for learning to be relevant in our context, investors must

behave as if they are learning about dividend dynamics using our model. To illustrate

this point, we regress stock index returns over the next year on stock yields, assuming

instead that investors behave as if they learn about dividend dynamics using one of the

three baseline models. Statistics are in the sixth to eighth columns of Table VII. We

find that stock yields, assuming learning based on one of the baseline models, perform no

better than price-to-dividend ratios in predicting annual stock index returns.

We can also demonstrate the relevance of our dividend model by showing that stock

index prices respond to contemporaneous changes in long-run dividend growth rates from

our model better than the alternatives. That is, if investors behave as if they price the

stock index using our model, we expect that, all else equal, when dividend expectations

rise according to our model, so should prices, and vice versa. We regress annual stock

index returns on contemporaneous changes in long-run dividend expectations, assuming

investors behave as if they learn using our dividend model. We report regression statistics

in the first column of Table VIII. Results confirm that increases in expectations about

future dividends is accompanied by more positive stock index returns, and vice versa. In

fact, contemporaneous changes to expected dividends account for a statistically significant

10.6% of the variation in annual stock index returns. As points of reference, we also

run regressions of annual stock index returns on contemporaneous changes in long-run

dividend expectations, either based on our model but assuming full information, or based
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on assuming learning using one of the alternative models. These results are reported in the

second to fifth columns of Table VIII. We note that, under any other cases considered,

the relationship between annual stock index returns and contemporaneous changes in

expected dividends is negative. Taken as a whole, our findings suggest that the absence

of a relationship between dividend expectations and stock index pricing documented in

the existing literature may be due to a failure to simultaneously account for corporate

payout policy and the role of learning in pricing.14

[Table VIII is about here.]

IV. Learning about Dividends in a Dynamic

Equilibrium Model

Although long-run discount rates can be uniquely pinned down based on the price-to-

dividend ratios and expectations of long-run dividend growth rates, the present value

relationship cannot fully capture how discount rates over short horizons vary over time.

In other words, the variation of expected long-run returns and expected returns over

the short-run are not necessarily perfectly correlated with each other. In this section, we

search for a dynamic equilibrium asset pricing model that is able to quantitatively capture

the possible role of learning in determining short-run expected returns. That is, a model

that, after incorporating parameter uncertainty, is able to show strong performance in

predicting short horizon stock index returns that is consistent with the data.

For the rest of this section, we first argue that an asset pricing model’s performance

in predicting stock index returns can be used to assess that model. Then, we incorporate

learning into a long-run risks model and show that 25.3% to 27.1% of the variation in

annual stock index returns can be predicted using such a model.

14See, for example, Cochrane (2008).
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A. Return Predictability and Assessing Asset Pricing Models

The criterion we propose to assess an asset pricing model is the deviation of that candidate

model’s expected returns on a given asset from the expected returns of the true model.

The true model here is defined as the asset pricing model that best describes the behavior

of the marginal investor who prices that asset, in a frictionless and efficient market. Let

Mi be a candidate model, M0 be the unobserved true asset pricing model, Rt be log

return of that asset, Et[Rt+1|Mi] be theMi-endowed-investors’ expectation of that asset

over the next time period, and Et[Rt+1|M0] be expected return under the true model.

The following definition defines a better asset pricing model, that is, the candidate model

that is closer to the true model, as the model that minimizes the mean squared difference

between its expected returns and the expected returns of the true model.

Definition 1 A candidate asset pricing model Mi is a better approximation of the true

asset pricing model (M0) than model Mj if and only if:

E
[
(Et[Rt+1|M0]− Et[Rt+1|Mi])

2
]
< E

[
(Et[Rt+1|M0]− Et[Rt+1|Mj ])

2
]
.

A clear inconvenience of this definition is that the true asset pricing model M0 is never

observable, and thus Et[Rt+1|M0] is unobservable. To circumvent this issue, we notice

that, assuming markets are frictionless and efficient and investors form rational expecta-

tions, the error term εt+1 = Rt+1 − Et[Rt+1|M0] is orthogonal to any information that is

time-t measurable. This leads to the following proposition.

Proposition 1 A candidate asset pricing modelMi is a better approximation of the true

asset pricing model (M0) than model Mj if and only if:

1−
E
[
(Rt+1 − Et[Rt+1|Mi])

2
]

E
[
(Rt+1 − E[Rt+1])2

] > 1−
E
[
(Rt+1 − Et[Rt+1|Mj ])

2
]

E
[
(Rt+1 − E[Rt+1])2

]

23



Proofs are in Appendix C. In other words, if we define out-of-sample R-square value:

R2(Mi) = 1−
∑T−1

t=T0
(Rt+1 − Et[Rt+1|Mi])

2∑T−1
t=T0

(Rt+1 − µ̂r,t)2
, (24)

where µ̂r,t = 1
t

∑t−1
s=0Rs+1 is the average of that asset up to time-t, as the performance

of a candidate model Mi in predicting asset returns over the next time period, and

assuming we have a sufficiently long data sample, then we can use it to assess how close

the candidate model is to the true model. The asset in question we use to evaluate models

in this paper is the stock index.

B. The Long-Run Risks Model

We propose a long-run risks model that combines our dividend model, Epstein and Zin

(1989) investor preferences, and persistent consumption growth rates similar to Bansal

and Yaron (2004) and show that such a model predicts 25.3% to 27.1% of the variation

in annual stock index returns.

Epstein and Zin (1989) has been one of the most widely used expressions for investor

preferences in the literature. Investor preferences are defined recursively as:

Ut =

[
(1− δ)C̃

1−α
ζ

t + δ
(
Et
[
U1−α
t+1

]) 1
ζ

] ζ
1−α

, ζ =
1− α
1− 1

ψ

, (25)

where C̃t is real consumption, ψ is the elasticity of intertemporal substitution (EIS), and

α is the coefficient of risk aversion. We note that, the representative agent prefers early

resolution of uncertainty if ζ < 0 and prefers late resolution of uncertainty if ζ > 0.15 Log

of the intertemporal marginal rate of substitution (IMRS) is:

mt+1 = ζ log(δ)− ζ

ψ
∆c̃t+1 + (ζ − 1) R̃ct+1, (26)

15Or equivalently, if α > 1, then the representative agent prefers early resolution of uncertainty if ψ > 1
and prefers late resolution of uncertainty if ψ < 1.
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where c̃ = log(C̃) and R̃c
t+1 denotes the real return of the representative agent’s wealth

portfolio. For quarterly calibration, we set ψ = 1.5 to be consistent with preferences for

the early resolution of uncertainty, and set α = 5 and δ = 0.975, all of which are within

the range of parameter choices commonly made by the existing literature.

Similar to Bansal and Yaron (2004), we assume that consumption and dividend growth

rates carry the same persistent latent component xt. That is, we describe real consumption

growth rates as:

∆c̃t+1 − (µd − µπ) =
1

γ
(xt + σdεc,t+1) . (27)

Following Bansal and Yaron (2004), we set the unconditional mean of consumption growth

rates to equal to that of dividend growth rates. The parameter γ is the leverage of the

equity market. A common criticism of the long-run risk model has always been that it

requires a small but highly persistent component in consumption and dividend growth

rates that is difficult to find support in the data.16 This criticism serves as the rationale

for why we expect learning to be important in this context.

Unfortunately, we cannot adopt the Bansal and Yaron (2004) model in its exact

form because our dividend model does not feature stochastic volatility, which is a key

component of Bansal and Yaron (2004). However, our long-run risks model still needs the

additional degree of freedom from a second latent variable to be able to simultaneously

capture the time series of dividends and price-to-dividend ratios in the data. So, instead

of stochastic volatility, our long-run risks model assumes stochastic correlation between

shocks to consumption and shocks to dividend and earnings processes. That is, we

assume that the correlations between shocks εc,t+1 to real consumption growth rates

and shocks εd,t+1 and εe,t+1 to dividend and earnings growth rates are equal, denoted

λt = λ(εc,t+1, εd,t+1) = λ(εc,t+1, εe,t+1), and follow an AR[1] process centered around zero:

λt+1 = ωλt + σλελ,t+1, ελ,t+1 ∼ i.i.d. N(0, 1). (28)

16See Beeler and Campbell (2012), Jagannathan and Marakani (2015).
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It can then be derived that the correlation between consumption and retention ratios is:

λ (εc,t+1, εq,t+1) =

√
σ2
d + σ2

q − σd
σq

λt (29)

For those other cross-correlations of different shocks that we cannot identify, we set them

all to zeros. So to summarize, the correlation matrix of shocks to consumption, dividends,

and retention ratios is:



εc,t+1

εd,t+1

εx,t+1

ελ,t+1

εq,t+1

επ,t+1


∼ i.i.d. N


0,



1 λt 0 0

√
σ2
d+σ2

q−σd
σq

λt 0

λt 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0
√
σ2
d+σ2

q−σd
σq

λt 0 0 0 1 0

0 0 0 0 0 1




. (30)

C. Estimation and Results

We solve our long-run risk model in Appendix D. In solving this model, we closely follow

the steps in Bansal and Yaron (2004). The model consists of four state variables: latent

variables xt and λt, retention ratios, and inflation rates. We can solve for price-to-dividend

ratio as a linear function of these four state variables:

pt − dt = Ad,0 +Ad,1xt +Ad,2λt +Ad,3
(
qt − µq

)
+Ad,4(∆πt − µπ). (31)

Expectation of stock return over the next period is:

Et[Rt+1] = Ar,0 +Ar,1xt +Ar,2λt +Ar,4(∆πt − µπ), (32)
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The coefficients Ad,· and Ar,·, derived in Appendix D, are functions of the parameters

that describe investor preferences, and the joint processes of consumption and dividends.

We note that, substituting (31) into (32), we can avoid estimating the latent variable λt

directly from macroeconomic data and instead write expected future returns as a function

of price-to-dividend ratios and the other three state variables:

Et [Rt+1] = A0 +A1xt +A2qt +A3∆πt +A4(pt − dt),

A0 =
Ar,0Ad,2 −Ar,2Ad,0

Ad,2
− Ar,2
Ad,2

µq +

(
Ar,2Ad,3
Ad,2

−Ar,4
)
µπ,

A1 =
Ar,1Ad,2 −Ar,2Ad,1

Ad,2
, A2 =

Ar,2
Ad,2

, A3 = −
Ar,2Ad,3
Ad,2

,

A4 =
Ar,4Ad,2 −Ar,2Ad,4

Ad,2
. (33)

Price-to-dividend ratios, earnings-to-dividend ratios, and inflation rates are directly

observable. Aside from those in investors preferences, all but three parameters in our

long-run risks model, as well as the latent variable xt, appears in either (6) or (16) and

can thus be estimated from dividend dynamics. We follow Krep’s learning and use these

parameters and state variable estimates as if they were their true values. There are

multiple ways through which we can estimate the remaining three parameters, that is,

ω, σλ, and γ, that are not part of dividends or preferences. One approach is to estimate

them from consumption data. However, as discussed in Savov (2011), consumption is

measured with significant noise and the right measure of consumption itself is still up for

debate. So instead, we estimate them from price-to-dividend ratios. That is, fix a set of

parameters ω, σλ, and γ, then for each time-t, by substituting in price-to-dividend ratios,

retention ratios, inflation rates, and dividend model estimates, we can back out λt as:

λt =
(pt − dt)− Ad,0 − Ad,1xt − Ad,3

(
qt − µq

)
− Ad,4 (∆πt − µπ)

Ad,2
(34)
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From (28), we know that the latent variable λt should be an AR[1] process with an

unconditional distribution of N(0, σλ√
1−ω2 ). So we can choose the set of parameters ω, σλ,

and γ to best fit these distributional characteristics λt. In other words, we solve for ω, σλ,

and γ using Generalized Method of Moments, fitting the three parameters to the three

moments:

E[λt] = 0

E[λ2
t − E[λt]

2]− σ2
λ

1− ω2
= 0

E[(λt − E[λt]) ((λt+1 − ωλt)− E[λt+1 − ωλt])] = 0 (35)

Under the assumption that our long-run risks model holds, exactly three independent

moment conditions, as in (35), are required to identify the three parameters ω, σλ, and

γ. Our choice of the three moment conditions is standard. First, we choose the three

parameters so that the sample mean of the latent variable λt is set to zero. Second, the

sample variance of the latent variable λt is set to equal the variance specified in our model.

Third, the sample first-order serial covariance of the latent variable λt is made to match

the covariance specified in our model. Standard errors of parameter estimates are based

on bootstrap simulation, as described in Appendix B.

Our choice to estimate ω, σλ, and γ from price-to-dividend ratios is consistent with

the existing literature on learning from prices.17 Still, the fact that our model feature

consumption but our estimation of the model does not is a drawback of our approach.

Including clean consumption data in our estimation, if such data were avaliable, would

mean having extra independent observations for estimating state variables and parame-

ters. However, as simulation results in Table VI suggest, the gain in efficiency as a result

of having this extra data would be rather limited.18

17For example, the literature on Rational Expectations Equilibrium models.
18Also, we need high frequency consumption data to reasonably fit a model with time-varying
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To focus on the role of learning about dividends on asset pricing and differentiate

ourselves from Johannes, Lochstoer, and Mou (2016), we first run (35) by fitting the

three moments of the latent variable λt based on the entire data sample between 1946

and 2015. This is a senario where learning is restricted to parameters in the dividend

model, that is, learning about dividends. However, because the entire data sample is

used, a forward-looking bias may be introduced. To overcome this concern, we also run

(35) at each point in time using only data avaliable at the time. That is, in this scenario,

learning is applied to parameters both in and beyond the dividend model, that is, full

learning.

In Figure 5, we report parameters in our long-run risks model not in the dividend

process, estimated based on non-overlapping annual data up to time-τ , for τ between 1975

and 2016. In the same figure, we also report coefficients A· that relate price-to-dividend

ratios and state variables to expected returns in (33), assuming full information, learning

about dividends, or full learning. We see that coefficients A· fluctuates significantly over

time. In other words, as learning is introduced, these coefficients become additional model

specific state variables in determining stock index expected returns. This observation is

consistent with the findings of Collin-Dufresne, Johannes, and Lochstoer (2016). Un-

surprisingly, the fluctuations of coefficients A· are more intensive for full learning than

learning about dividends.

[Figure 5 is about here.]

In Figure 6, we report the evolution of the four state variables of our long-run risks

model, that is, latent variables xt and λt, earnings-to-dividend ratios, and inflation

rates, as well as expected excess stock index returns returns and risk free rate, over

time, assuming full information, learning about dividends, or full learning. We see that,

consistent with data, most of the variation in expected stock index returns is attributable

correlations in dividends and consumption shocks.
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to variation in expected excess returns. Unsurprisingly, learning increases the volatility

of both expected excess returns and risk free rate. Interestingly, Figure 6 suggests

that, around the time of the 2001 recession, expectations of one-year excess returns are

negative. This is a result of model implied correlations between shocks to dividends and

consumption being highly negative, that is, the stock index temporarily serving as a hedge

to consumption, during this period and is an equilibrium outcome, based on parameters

estimated from data, of our model.

[Figure 6 is about here.]

We examine how our long-run risks model, assuming either learning about dividends

or full learning, that is, our learning models, perform in predicting annual stock index

returns. We then measure forecasting performance using out-of-sample R-square value:

R2
O(L) = 1−

∑T−1
t=T0

(Rt+1 − Et [Rt+1|L])2∑T−1
t=T0

(
Rt+1 − µ̂r,t

)2 . (36)

where L stands for learning. We use data since 1946 as the training period and compute

the out-of-sample R-square value using non-overlapping annual data between 1975 and

2016. In the second and third rows of Table IX, we report out-of-sample R-square value for

predicting annual stock index returns using our learning models. We find that, between

1975 and 2016, our learning models predict 25.3% to 27.1% of the variation in annual

stock index returns out-of-sample.

To better quantify the incremental contribution of learning to the model’s performance

in predicting annual stock index returns, we compute expected returns in (32) using

dividend model parameters estimated based on the entire data sample between 1975

and 2016, that is, our full information model. We report out-of-sample R-square value

for predicting stock index returns using our full information model in the third row

of Table IX. From learning to full information, R-square value reduces from at least

25.3% to 13.3%. So learning acounts for approximately half of the return predictability
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documented. To examine the significance of this difference, we report, also in Table IX,

incremental R-square value of our learning models over our full information model:

R2
I(L,F) = 1−

∑T−1
t=T0

(Rt+1 − Et[Rt+1|L])2∑T−1
t=T0

(Rt+1 − Et[Rt+1|F ])2
. (37)

Results from Table IX show that there is a statistically significant gain in forecasting

performance from modeling investors’ learning about dividend dynamics.19 Also, perfor-

mance for predicting annual stock index returns is slightly better for full learning than

learning about dividends. However, we do not have enough statistical power to conclude

that learning about parameters beyond the dividend model plays a statistically significant

role.

[Table IX is about here.]

For additional details on how our learning models’ forecasting performance evolves

over time, at each time-τ , we follow Goyal and Welch (2008) and define the cumulative

sum of squared errors difference (SSED) between predicting annual stock index return

using our learning models and using the historical mean of returns as:

Dτ (L) =

τ−1∑
t=T0

(Rt+1 − Et[Rt+1|L])2 −
τ−1∑
t=T0

(
Rt+1 − µ̂r,τ

)2
. (39)

The SSED for our learning models are plotted in Figure 7. If the forecasting performance

of our learning model is stable and robust over time, we should observe a steady but con-

stant and consistent decline in SSED. Instead, if the forecasting performance is especially

poor in certain sub-period of the data, we should see a significant drawback in SSED

during that sub-period. A flat SSED suggests that our model neither adds or destroys

19We note that R2
I(L,F), R2(L) and out-of-sample R-square value of our full information model, that

is, R2(F), are related through the following equation:

R2
I(L,F) = 1− 1−R2(L)

1−R2(F)
. (38)
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forecasting performance. We note that our model’s forecasting performance is positive

through the majority of the data sample. Overall, as shown in Figure 7, most of the

forecasting performance can be attributed to the early three-fourth of the sample, while

performance is relatively flat during the most recent decade.

[Figure 7 is about here.]

To see the incremental contribution of learning to SSED over time, we plot, in Figure

8, the incremental SSED defined as the difference in SSED between our learning model

and our full information model:

Dτ (L)−Dτ (F) =

τ−1∑
t=T0

(Rs+1 − Et[Rs+1|L])2 −
t−1∑
s=T0

(Rs+1 − Et[Rs+1|F ])2 . (40)

Similar to what we observed earlier, the incremental gain in forecasting performance

from learning is large and reasonably consistent, but is mostly concentrated in the early

three-fourth of the sample.

[Figure 8 is about here.]

1. Long-Run Risks Model and Other Return Forecasts

Goyal and Welch (2008) document that empirical forecasts of stock index returns over-

whelmingly lack out-of-sample predictive power. However, subsequent literature, such

as Kelly and Pruitt (2013) and Li, Ng, and Swaminathan (2013), overcomes the Goyal

and Welch (2008) critique and finds out-of-sample return predictability. We compare

the out-of-sample forecasting performance of our long-run risks model, assuming either

learning about dividends or full learning, with these more successful empirical proxies of

stock index returns in the existing literature.

To avoid the concern of selection bias in our reporting of results, we compare our

learning models with these emprical proxies of returns based on the sample period used
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by the corresponding original authors. For Kelly and Pruitt (2013), this is between 1981

and 2009. For Li, Ng, and Swaminathan (2013), this is between 1995 and 2013. To

evaluate performance, we report, in Table X, incremental R-square values for predicting

stock index returns using our learning models over these alternative expected return

proxies for the selected periods. Results show that our learning models outperform these

empirical proxies of expected stock index returns.20

[Table X is about here.]

2. Recession versus Expansion

Figure 7 suggests that the times around the 2001 recession plays an especially important

role in the return predictability results. It appears, from Figure 7, that the learning

models’ performance in most of the other recessions are positive as well. To make more

clear on how return predictability differs between periods of expansions and periods of

recessions, we divide our data sample between 1975 and 2016 into expansion versus

recession periods and report separate forecasting performance results. We define a year

to be in recession if any of its months overlap with the NBER recession dates. There

are six such years in our 42 years data sample. Results are reported in Table XI. We

find that the forecasting performance of our learning models is much stronger during

recessions than expansions, but performance during expansions is nevertheless robust,

with an R-square value of 19.1% to 19.6% assuming learning versus 13.2% assuming full

information. The finding that predictability is strongest during market downturns is not

surprising and is consistent with the existing literature. For example, Golez and Koudijs

(2017) find, based on four centuries of stock market data, that most of the predictability

of future stock returns using price-to-dividend ratios stems from recessions. However,

in both expansions and recessions, our learning models outperform our full information

20Although when compared to Li, Ng, and Swaminathan (2013), the outperformance is not statistically
significant due to the much shorter data sample.
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model, suggesting that learning plays an important role regardless of economic conditions.

[Table XI is about here.]

3. The Role of Epstein and Zin (1989) Preferences

To emphasize that Epstein and Zin (1989) preferences are critical to our return pre-

dictability results, we build a model where we replace Epstein and Zin (1989) preference

with Constant Relative Risk Aversion (CRRA) preferences:

Ut =
∞∑
t=0

δt
C̃1−α
t

1− α
(41)

and set α = 5 and δ = 0.975. While estimates of parameters in the dividend model do

not change with preferences, the three remaining parameters, ω, σλ, and γ, need to be

reset. That is, we estimate parameters ω, σλ, and γ of our model using General Method

of Moments by fitting the same set of moments in (35) under CRRA preferences and the

chosen preference parameters. We then derive expected returns under CRRA preferences.

We report, in Table XII, R-square values for predicting annual stock index returns using

the CRRA model, assuming learning about dividends, full learning, or full information.

We see that, assuming learning, R-square values for predicting annual stock index returns

reduce from at least 25.3% for Epstein and Zin (1989) preferences to at most 15.1% for

CRRA preferences, and the lack of the incremental contribution of learning to R-square

value accounts for most of this reduction. These results suggest that modeling investors

behavior using CRRA preferences cannot fully capture the effect of learning on expected

stock index returns.

[Table XII is about here.]
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V. Conclusion

In this paper, we develop a time series model for dividend growth rates that is inspired

by both the latent variable model of Cochrane (2008), van Binsbergen and Koijen (2010),

and others and the vector-autoregressive model of Campbell and Shiller (1988b). The

model shows strong performance in predicting annual dividend growth rates. We find

that some parameters in our dividend model are difficult to estimate with precision in

finite sample. As a consequence, learning about dividend model parameters significantly

changes investors beliefs about future dividends and the nature of the long run risks in

the economy.

We evaluate the economic and statistical significance of learning about parameters in

the dividend process in determining asset prices and expected returns. We argue that a

better asset pricing model should forecast returns better. We find that a long run risks

model that incorporates learning about dividend dynamics is surprisingly successful in

forecasting stock index returns. While our long run risks model, featuring Epstein and

Zin (1989) preferences and persistence shocks to dividends and consumption, assuming

learning, explains 25.3% to 27.1% of the variation in annual stock index returns, shutting

down learning reduces the R-square value to 13.3%. This drop in R-square value is

statistically significant and economically meaningful. We also show that we cannot

replicate our learning results under CRRA preferences. Our findings highlight the joint

importance of investors aversion to long run risks and investors learning about these risks

in understanding asset pricing dynamics.
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A. Appendix

A. Estimation of Parameters in Our Dividend Model

We estimate parameters of the following system of equations that jointly describe the

dividend, earnings, and inflation processes (see (6), (9), and (16)).

∆dt+1 − µd = xt + φ
(
qt − µq

)
+ σdεd,t+1,

xt+1 = ρxt + σxεx,t+1,

qt+1 − µq = θ
(
qt − µq

)
+ σqεq,t+1,

∆πt+1 − µπ = η (∆πt − µπ) + σπεπ,t+1,

εd,t+1

εx,t+1

εq,t+1

επ,t+1


∼ i.i.d. N


0,



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




. (42)

To estimate parameters in the third equation of (42), we run an autoregression on

retention ratios:

qt+1 − µq = θ
(
qt − µq

)
+ σqεq,t+1, εq,t+1 ∼ i.i.d. N(0, 1). (43)

To estimate parameters in the fourth equation of (42), we run an autoregression on

inflation rates:

∆πt+1 − µπ = η
(
∆πt − µq

)
+ σπεπ,t+1, επ,t+1 ∼ i.i.d. N(0, 1). (44)

For the remaining parameters in the first to second equations of (42), we note that

dividend growth rates and contemporaneous earnings are related, as shocks to dividends

also impact contemporaneous earnings in (9), and vice versa. So we estimate the process
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of dividends and earnings through the following system of equations:

∆dt+1 = a1 + yt+1 + b1∆et+1 + b2qt + νd,t+1

yt+1 = b3yt + νy,t+1 vd,t+1

vy,t+1

 ∼ i.i.d. N

0,

 ςd 0

0 ςy


 . (45)

To apply the Kalman filter, let ŷt|s denote the time-s expectation of the latent variable

yt and Pt|s denote the variance of yt conditioning on information in time-s. Set initial

conditions ŷ0|0 = 0 and P0|0 =
σ2
y

1−b23
. We can then iterate the following system of equations:

ŷt+1|t = b3ŷt|t, Pt+1|t = b23Pt|t + ς2
y,

εt+1 = ∆dt+1 − a1 − ŷt+1|t − b1∆et+1 − b2qt,

ŷt+1|t+1 = ŷt+1|t +
Pt+1|t

Pt+1|t + ς2
d

εt+1, Pt+1|t+1 = Pt+1|t −
P 2
t+1|t

Pt+1|t + ς2
d

. (46)

At each time τ , to estimate parameters in (45), we maximize the log-likelihood function:

l = −
τ−1∑
t=0

(
log
(
Pt+1|t + ς2

d

)
+

ε2t+1

Pt+1|t + ς2
d

)
. (47)

Throughout, we apply Kalman filter based on non-overlapping annual data. To then

map parameters in (45) to those in the first and second equation of (42), we substitute

∆et+1 = qt+1 − qt + ∆dt+1 and (43) into (45) and re-arrange (45) into:

∆dt+1 −
a1 + b2µq

1− b1
= xt +

b1(θ − 1) + b2
1− b1

(
qt − µq

)
+

b1
1− b1

σqεq,t+1 +
1

1− b1
νd,t+1

xt+1 = b3xt + νx,t+1, xt =
1

1− b1
yt, vd,t+1

vx,t+1

 ∼ i.i.d. N

0,

 ςd 0

0 1
1−b1 ςy


 . (48)
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Thus, the mapping is:

µd =
a1 + b2µq

1− b1
, φ =

b1(θ − 1) + b2
1− b1

, ρ = b3,

σx =
1

1− b1
ςy, σd =

√(
b1

1− b1

)2

σ2
q +

(
1

1− b1

)2

ς2
d. (49)

B. Bootstrap Simulation

Each simulation is based on 100,000 iterations. First, we simulate innovations to dividend

growth rates and retention ratios:


εd,t+1

εx,t+1

εq,t+1

 ∼ i.i.d. N

0,


1 0 0

0 1 0

0 0 1


 . (50)

Dividend model parameters used for simulations are those reported in Table II, which are

estimated based on the full data sample between 1946 and 2015. In our simulations, we use

these estimates as if they were the true parameter values. From these innovations, we can

simulate the latent variable xt and retention ratios iteratively as:

xt+1 = ρxt + σxεx,t+1,

qt+1 − µq = θ
(
qt − µq

)
+ σqεq,t+1. (51)

Given the simulated time series of the latent variable xt and retention ratios, we can

simulate dividend growth rates iteratively as:

∆dt+1 − µd = xt + φ
(
qt − µq

)
+ σdεd,t+1,

∆et+1 = ∆qt+1 + ∆dt+1. (52)
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To simulate price-to-dividend ratios, we use (31), which is derived from our long-run risks

model.

C. Proof of Proposition 1

Let M0 be the true asset pricing model and let Mi and Mj be two candidate models.

Define εt+1 = Rt+1 − Et[Rt+1|M0]. We can write:

E
[
(Et[Rt+1|M0]− Et[Rt+1|Mi])

2
]

= E
[
(Rt+1 − Et[Rt+1|Mi])

2
]

+ E
[
ε2t+1

]
− 2 · E [(Rt+1 − Et[Rt+1|Mi]) εt+1]

= E
[
(Rt+1 − Et[Rt+1|Mi])

2
]

+ E
[
ε2t+1

]
+ 2 · E [(Et[Rt+1|Mi]εt+1]− 2 · E [Rt+1εt+1]

= E
[
(Rt+1 − Et[Rt+1|Mi])

2
]

+ E
[
ε2t+1

]
− 2 · E [Rt+1εt+1] .

Last equality assumes frictionless and efficient market and investors having rational expec-

tations. As a result, marginal investor’s investment decisions are based on all information

available and so εt+1 is orthogonal to any variable that is time-t measurable. E
[
ε2t+1

]
and

E [Rt+1εt+1] are independent of the model Mi and so:

E
[
(Et[Rt+1|M0]− Et[Rt+1|Mi])

2
]
< E

[
(Et[Rt+1|M0]− Et[Rt+1|Mj ])

2
]

⇔ E
[
(Rt+1 − Et[Rt+1|Mi])

2
]
< E

[
(Rt+1 − Et[Rt+1|Mj ])

2
]

⇔ 1−
E
[
(Rt+1 − Et[Rt+1|Mi])

2
]

E
[
(Rt+1 − E [Rt+1])2

] > 1−
E
[
(Rt+1 − Et[Rt+1|Mj ])

2
]

E
[
(Rt+1 − E [Rt+1])2

] .
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D. Derivation of Price-Dividend Ratios and Expected Returns in Long-Run

Risks Model

We derive price-to-dividend ratios and expected returns implied by our long-run risk

model, which features dividend dynamics in (3), consumption dynamics in (27), and

investors preferences in (25). Our model differs from Bansal and Yaron (2004), as

discussed in the body of the paper. Nevertheless, we can still use the methodology in

Bansal and Yaron (2004) to solve for prices and expected returns in our model. The log

stochastic discount factor is given as:

mt+1 = ζ log(δ)− ζ

ψ
∆c̃t+1 + (ζ − 1)R̃ct+1. (53)

Let zc,t be the log wealth-to-consumption ratio, by first order Taylor series approximation,

log real return of the representative agent’s wealth portfolio can be written as:

R̃ct+1 = g0 + g1zc,t+1 − zc,t + ∆c̃t+1. (54)

The log-linearizing constants are:

g0 = log(1 + exp(z̄c))− g1(z̄c) and g1 =
exp(z̄c)

1 + exp(z̄c)
.

Assume that log wealth-to-consumption ratio is of the form:

zc,t = Ac,0 +Ac,1xt. (55)

Let µc = µd − µπ. Then we can write:

Et

[
mt+1 + R̃ct+1

]
= ζ log(δ) +

(
ζ − ζ

ψ

)(
µc +

1

γ
xt

)
+ ζg0 + ζ (g1 − 1)Ac,0 + ζ (g1ρ− 1)Ac,1xt,

vart

(
mt+1 + R̃ct+1

)
= ζ2

(
1− 1

ψ

)2

σ2
c + ζ2 (g1Ac,1)2 σ2

x. (56)
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Since Et[exp(mt+1 + R̃c
t+1)] = 1, we can solve for coefficients Ac,0, Ac,1, and Ac,2 as:

Ac,0 =
log(δ) + (1− 1

ψ )µc + g0 + 1
2ζ(1− 1

ψ )2σ2
c + 1

2ζ(g1Ac,1)2σ2
x

1− g1
,

Ac,1 =

(
1− 1

ψ

)
1
γ

1− g1ρ
. (57)

Next, let zd,t be log price-to-dividend ratio of the stock index and R̃t+1 be log real stock

index return. Then, by first order Taylor series approximation, we can write:

R̃t+1 = κ0 + κ1zd,t+1 − zd,t + ∆d̃t+1. (58)

where ∆d̃t+1 is real dividend growth rate.

Assume that log price-to-dividend ratio is of the form:

zd,t = Ad,0 +Ad,1xt +Ad,2λt +Ad,3(qt − µq) +Ad,4(∆πt − µπ). (59)

Then note that:

Et

[
mt+1 + R̃t+1

]
= ζ log(δ) + (ζ − 1) (g1 − 1)Ac,0 + (ζ − 1) (g1ρ− 1)Ac,1xt

+

(
ζ − ζ

ψ
− 1

)
(µc + γxt) + (ζ − 1) g0 + κ0 + (κ1 − 1)Ad,0 + (κ1ρ− 1)Ad,1xt

+ (κ1ω − 1)Ad,2λt + (κ1θ − 1)Ad,3
(
qt − µq

)
+ (κ1η − 1)Ad,4 (∆πt − µπ)

+ µc + xt + φ
(
qt − µq

)
− η(∆πt − µπ).

vart

(
mt+1 + R̃t+1

)
=

(
ζ − 1− ζ

ψ

)2

σ2
c + σ2

d + ((ζ − 1)g1Ac,1 + κ1Ad,1)2 σ2
x

+ (κ1Ad,2)2 σ2
λ + (κ1Ad,3)2 σ2

q + (κ1Ad,4)2σ2
π + 2

(
ζ − 1− ζ

ψ

)
σcσdλt

+ 2

(
ζ − 1− ζ

ψ

)
(κ1Ad,3)

(√
σ2
d + σ2

q − σd
)
σcλt. (60)

46



Based on Et[exp(mt+1 + R̃t+1)] = 1, we can solve for Ad,0, Ad,1, Ad,2, Ad,3, and Ad,4 as:

Ad,0 =



ζ log(δ) + (ζ − 1)g0 + (ζ − 1)(g1 − 1)Ac,0

+
(
ζ − ζ

ψ − 1
)
µc + κ0 + µc + 1

2σ
2
d + 1

2((ζ − 1)g1Ac,1 + κ1Ad,1)2σ2
x

+1
2(κ1Ad,2)2σ2

λ + 1
2(κ1Ad,3)2σ2

q + 1
2(κ1Ad,4)2σ2

π

+1
2

(
ζ − ζ − ζ

ψ

)2
σ2
c


1− κ1

,

Ad,1 =

(
ζ − 1− ζ

ψ

)
1
γ + (ζ − 1)(g1ρ− 1)Ac,1 + 1

1− κ1ρ
,

Ad,2 =

(
ζ − 1− ζ

ψ

)(
(κ1Ad,3)

(√
σ2
d + σ2

q − σd
)

+ σd

)
σc

1− κ1ω
,

Ad,3 =
φ

1− κ1θ
, Ad,4 =

−η
1− κ1η

. (61)

Substituting the expression for zd,t into R̃t+1 = κ0 + κ1zd,t+1 − zd,t + ∆d̃t+1 leads:

Et[R̃t+1] = Ar,0 +Ar,1xt +Ar,2λt +Ar,3(qt − µq) +Ar,4(∆πt − µπ), (62)

where:

Ar,0 = κ0 − (1− κ1)Ad,0 + µd, Ar,1 = 1− (1− κ1ρ)Ad,1,

Ar,2 = −(1− κ1ω)Ad,2, Ar,3 = φ− (1− κ1θ)Ad,3, Ar,4 = −η − (1− κ1η)Ad,4. (63)

Expected real return over the next τ period is:

τ−1∑
s=0

R̃t+s+1 = τAr,0 +

(
τ−1∑
s=0

Ar,1ρ
s

)
xt +

(
τ−1∑
s=0

Ar,2ω
s

)
λt +

(
τ−1∑
s=0

Ar,3θ
s

)(
qt − µq

)
+

(
τ−1∑
s=0

Ar,4η
s

)
(∆πt − µπ) (64)

For nominal returns, add expected inflation based on the AR[1] model.
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E. Estimating ω, σλ, and γ by the Generalized Method of Moments

The three parameters of interest in our General Method of Moments (GMM) estimation

are the AR[1] coefficient ω, volatility σλ, which should be strictly above 0, and leverage

γ. The three moment conditions are described in (35). First, note that we can use the

third moment condition in (35) to write ω as:

ω =
µ ((λt+1 − µ (λt+1))(λt − µ (λt)))

µ
(
λ2
t − µ (λt)

2) (65)

where µ(·) is the sample mean function. Substituting in (65), we can then use the second

moment condition in (35) to write σλ as:

σλ =
√

(1− ω2)µ
(
λ2
t − µ (λt)

2)
=

√√√√√
1−

(
µ ((λt+1 − µ (λt+1)) (λt − µ (λt)))

µ
(
λ2
t − µ (λt)

2)
)2
µ

(
λ2
t − µ (λt)

2) (66)

So for a given γ, we can solve for the corresponding equilibrium ω and σλ, denoted ω∗

and σ∗λ, by finding ω and σλ that are the fixed points to the system of expressions in (34),

(65), and (66). In other words, by finding these fixed points in equilibrium, the second

and third moment conditions in (35) are automatically satisfied.

We can then solve for γ based on the first moment condition in (35), while satisfying the

equilibrium ω = ω∗ and σλ = σ∗λ. We can do this numerically by maximizing l = −µ (λt)
2.

[Table AI is about here.]

[Table AII is about here.]

[Table AIII is about here.]

[Table AIV is about here.]
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[Table AV is about here.]

[Table AVI is about here.]

[Table AVII is about here.]

[Figure AI is about here.]
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β10 β11 β12 β13

0.045 0.425∗∗∗ 0.184∗∗∗ -0.217∗∗∗

(0.054) (0.061) (0.064) (0.077)

β0 β1 β2

-0.037 0.455∗∗∗ 0.147∗∗∗

(0.024) (0.070) (0.052)

Table I: Campbell and Shiller (1988b) Betas for Predicting Dividend Growth Rates:
This table reports coefficients from predicting dividend growth rates using the vector-autoregression
specification in Campbell and Shiller (1988b). Statistics are based on non-overlapping annual data
between 1946 and 2016. Reported in parentice are Newey and West (1987) standard errors that account
for up to 10 years of serial correlations. Estimates significant at 90%, 95%, and 99% confidence levels are
highlighted using ∗, ∗∗, and ∗ ∗ ∗.

µd φ σd
0.064 0.140 0.015

(0.016) (0.021) (0.017)

ρ σx
0.469 0.048

(0.168) (0.011)

µq θ σq
0.729 0.370 0.251

(0.065) (0.120) (0.026)

Table II: Dividend Model Parameter Estimates: This table reports estimated parameters from
our dividend model. Dividends are estimated based on non-overlapping annual data since 1946. Reported
in parentice are bootstrap simulated standard errors.
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In-Sample Out-of-Sample

R2 R2
O p-val.

Our Model 0.464 0.413 0.000

van Binsbergen and Koijen (2010) 0.174 0.161 0.008

Campbell and Shiller (1988b) 0.278 0.256 0.001

Johannes, Lochstoer, and Mou (2016) 0.137 -0.042 1.000

Out-of-Sample

R2
I p-val.

van Binsbergen and Koijen (2010) 0.301 0.000

Campbell and Shiller (1988b) 0.212 0.002

Johannes, Lochstoer, and Mou (2016) 0.437 0.000

Table III: Dividend Growth Rates and Expected Growth Rates. The table on the top reports
R-square values for predicting dividend growth rates using our dividend model, the latent variable model
in van Binsbergen and Koijen (2010), the VAR model in Campbell and Shiller (1988b), or the Markov-
switching model in Johannes, Lochstoer, and Mou (2016). The first column reports in-sample R-square
values. The second and third columns report out-of-sample R-square values and the corresponding
bootstrap simulated p-values. The table on the bottom reports incremental R-square values for predicting
dividend growth rates using our model over one of the baseline models. Dividends are estimated based on
non-overlapping annual data since 1946. In-sample (out-of-sample) statistics are based on non-overlapping
annual data between 1946 and 2016 (1975 and 2016).
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µπ η σπ
0.036 0.557 0.027

(0.014) (0.111) (0.018)

In-Sample Out-of-Sample

R2 R2
O p-val.

Our Model 0.448 0.540 0.000

Table IV: Inflation Model Parameter Estimates and Inflation Predictability: The table on
the top reports estimated parameters from our inflation model, based on non-overlapping data between
1946 and 2016. Reported in parentice are bootstrap simulated standard errors. The table on the bottom
reports R-square values for predicting inflation rates using our inflation model. The first column reports
in-sample R-square value. The second and third columns report the out-of-sample R-square value and
the corresponding bootstrap simulated p-value. In-sample (out-of-sample) statistics are based on non-
overlapping annual data between 1946 and 2016 (1975 and 2016).

εd,t εx,t εq,t επ,t

Figure 1: Impulse Response Functions of Dividend Shocks. This figure plots the changes to
real annual dividend growth rates immediately and expected real dividend growth rates over the next 10
years as a result of a unit change in shocks to the dividend process, that is, εd,t, εx,t, εq,t, and επ,t.
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In-Sample Out-of-Sample

R2 R2
O p-val.

Our Model 0.424 0.395 0.000

van Binsbergen and Koijen (2010) 0.160 0.146 0.012

Campbell and Shiller (1988b) 0.259 0.234 0.001

Johannes, Lochstoer, and Mou (2016) 0.172 -0.058 1.000

Out-of-Sample

R2
I p-val.

van Binsbergen and Koijen (2010) 0.292 0.000

Campbell and Shiller (1988b) 0.210 0.002

Johannes, Lochstoer, and Mou (2016) 0.428 0.000

Table V: Dividend Growth Rates and Expected Growth Rates (Real Rates). The table on
the top reports R-square values for predicting (real) dividend growth rates using our dividend model,
the latent variable model in van Binsbergen and Koijen (2010), the VAR model in Campbell and Shiller
(1988b), or the Markov-switching model in Johannes, Lochstoer, and Mou (2016). The first column
reports in-sample R-square values. The second and third columns report out-of-sample R-square values
and the corresponding bootstrap simulated p-values. The table on the bottom reports incremental R-
square values for predicting dividend growth rates using our model over one of the baseline models.
Dividends are estimated based on non-overlapping annual data since 1946. In-sample (out-of-sample)
statistics are based on non-overlapping annual data between 1946 and 2016 (1975 and 2016).

µd φ σd ρ σx µq θ σq
0.078 0.076 0.067 0.036 0.041 0.061 0.068 0.080

Table VI: Speed of Learning about Dividend Model Parameters: This table reports the speed
of learning for the eight parameters in our dividend model. Speed of learning is defined as one minus the
inverse ratio between the bootstrap simulated standard errors assuming that parameters are estimated
based on data between 1946 and 2016 and the bootstrap simulated standard errors assuming that
parameters are estimated based on 10 more years of data.
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Baseline Model
Our Model vBK CS JLM

pt − dt -0.130∗∗∗ 0.014
(0.035) (0.078)

syt(L) 4.399∗∗∗ 4.748∗∗ 5.423∗∗ 3.379∗∗∗ 4.160∗∗∗ 1.965∗∗

(0.775) (2.137) (2.024) (0.850) (1.216) (0.843)

syt(F) 4.097∗∗∗ -1.282
(1.036) (2.100)

R2 0.136 0.187 0.130 0.187 0.190 0.114 0.114 0.054

Table VII: Stock Index Returns and Stock Yields: This table reports the coefficient estimates
and R-square values from regressing future stock index returns on log price-to-dividend ratios and stock
yields, computed using our dividend model, the latent variable model in van Binsbergen and Koijen
(2010) (vBK), the VAR model in Campbell and Shiller (1988b) (CS), or the Markov-switching model
in Johannes, Lochstoer, and Mou (2016) (JLM), and assuming investors either learn, that is, syt(L),
or do not learn, that is, syt(F), about dividends. Dividends are estimated based on non-overlapping
annual data since 1946. Regressions are based on non-overlapping annual data between 1975 and 2016.
Reported in parentice are Newey and West (1987) standard errors that account for up to 10 years of
serial correlation. Estimates significant at 90%, 95%, and 99% confidence levels are highlighted using ∗,
∗∗, and ∗ ∗ ∗.
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Baseline Model
Our Model vBK CS JLM

∆∂t+1(L) 8.324∗∗∗ -1.800 0.229 -4.183∗∗

(2.702) (4.147) (6.781) (1.787)

∆∂t+1(F) -4.203
(5.411)

R2 0.106 0.004 0.002 0.000 0.030

Table VIII: Stock Index Returns and Contemporaneous Shocks to Dividend Expectations:
This table reports the coefficient estimates and R-square values from regressing stock index returns on
contemporaneous shocks to long-run dividend growth rate expectations, computed using our dividend
model, the latent variable model in van Binsbergen and Koijen (2010) (vBK), the VAR model in Campbell
and Shiller (1988b) (CS), or the Markov-switching model in Johannes, Lochstoer, and Mou (2016), and
assuming investors either learn, that is, ∆∂t+1(L), or do not learn, that is, ∆∂t+1(F), about dividends.
Dividends are estimated based on non-overlapping annual data since 1946. Regressions are based on
non-overlapping annual data between 1975 and 2016. Reported in parentice are Newey and West (1987)
standard errors that account for up to 10 years of serial correlations. Estimates significant at 90%, 95%,
and 99% confidence levels are highlighted using ∗, ∗∗, and ∗ ∗ ∗.

Incremental
R2 p-val. R2

I p-val.

Full Info. 0.133 0.017

Learning about Dividends 0.253 0.001 0.138 0.015

Full Learning 0.271 0.000 0.159 0.009

Table IX: Stock Index Returns and Expected Returns under Epstein and Zin (1989)
Preferences. This table reports out-of-sample R-square values for predicting stock index returns
using our long-run risks model, assuming investors have full information, learn about dividends, or
learn about all parameters in our long-run risks model, that is, full learning, and the corresponding
bootstrap simulated p-values. Also reported are incremental out-of-sample R-square values for predicting
stock index returns assuming learning over assuming full information. Dividends are estimated based on
non-overlapping annual data since 1946. Statistics are based on non-overlapping annual data between
1975 and 2016.
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Incremental
Learning about Dividends Full Learning

R2
I p-val. R2

I p-val.

Kelly and Pruitt (2013) 0.140 0.045 0.152 0.036
(1981 - 2009)

Li, Ng, and Swaminathan (2013) 0.083 0.230 0.069 0.276
(1995 - 2013)

Table X: Long-Run Risks Model and Empirical Proxies of Expected Returns. This table
reports incremental R-square values for predicting stock index returns using our long-run risks model,
assuming learning, over the proxies of expected returns in Kelly and Pruitt (2013) or Li, Ng, and
Swaminathan (2013), and the corresponding bootstrap simulated p-values. Dividends are estimated based
on non-overlapping annual data since 1946. Statistics are based on non-overlapping annual data between
1981 and 2009 for Kelly and Pruitt (2013) and between 1995 and 2013 for Li, Ng, and Swaminathan
(2013).

Boom Recession
Incremental Incremental

R2 p-val. R2
I p-val. R2 p-val. R2

I p-val.

Full Info. 0.132 0.029 0.138 0.455

Learning about Dividends 0.196 0.007 0.074 0.109 0.516 0.085 0.438 0.128

Full Learning 0.191 0.008 0.068 0.024 0.641 0.037 0.584 0.056

Table XI: Stock Index Returns and Expected Returns under Epstein and Zin (1989)
Preferences (Expansion versus Recession). This table reports out-of-sample R-square values for
predicting stock index returns using our long-run risks model, assuming investors have full information,
learn about dividends, or learn about all parameters in our long-run risks model, that is, full learning,
and the corresponding bootstrap simulated p-values. Also reported are incremental R-square values for
predicting stock index returns assuming learning over assuming full information. Statistics are based on
non-overlapping annual data between 1975 and 2016 and are separately reported for expansions versus
recessions. A year is in recession if any of its months overlap with NBER recession dates.
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Incremental
R2 p-val. R2

I p-val.

Full Info. 0.118 0.026

Learning about Dividends 0.144 0.013 0.030 0.276

Full Learning 0.151 0.011 0.037 0.219

Table XII: Stock Index Returns and Expected Returns under CRRA Preferences. This
table reports out-of-sample R-square values for predicting stock index returns using our CRRA model,
assuming investors have full information, learn about dividends, or learn about all parameters in our
CRRA model, that is, full learning, and the corresponding bootstrap simulated p-values. Also reported
are incremental R-square values for predicting stock index returns assuming learning over assuming full
information. Dividends are estimated based on non-overlapping annual data since 1946. Statistics are
based on non-overlapping annual data between 1975 and 2016.
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Full Info. Learning about Dividends Full Learning

Constant 0.016 0.003 0.008
(0.034) (0.013) (0.015)

Slope 0.902∗∗∗ 1.203∗∗∗ 1.174∗∗∗

(0.246) (0.083) (0.140)

R2 0.135 0.254 0.262

Full Info. Learning about Dividends Full Learning

syt(L) 3.614∗∗∗ 3.895∗∗∗

(0.772) (0.670)

syt(F) 4.410∗∗∗

(0.103)

R2 0.972 0.708 0.661

Table AI: Stock Index Returns, Long-Run Risks Expected Returns, and Stock Yields: The
table on the top reports estimated coefficients from regressing future stock index returns on expected
returns from our long-run risks model, assuming investors have full information, learn about dividends,
or learn about all parameters in our long-run risks model, that is, full learning. The table on the bottom
reports estimated coefficients from regressing expected returns from our long-run risks model, assuming
investors have full information, learn about dividends, or learn about all parameters in our long-run risks
model, that is, full learning, on stock yields, assuming investors either learn, that is, syt(L), or do not
learn, that is, syt(F), about dividends. Dividends are estimated based on non-overlapping annual data
since 1946. Reported in parentice are Newey and West (1987) standard errors that account for up to 10
years of serial correlations. Estimates significant at 90%, 95%, and 99% confidence levels are highlighted
using ∗, ∗∗, and ∗ ∗ ∗.
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Quarterly Semi-Annual Bi-Annual

R2
O p-val. R2

O p-val. R2
O p-val.

Our Model 0.502 0.000 0.515 0.000 0.379 0.003

van Binsbergen and Koijen (2010) 0.337 0.000 0.267 0.000 0.151 0.080

Campbell and Shiller (1988b) 0.328 0.000 0.298 0.000 0.262 0.017

Johannes, Lochstoer, and Mou (2016) 0.075 0.079 0.001 0.855 -0.034 1.000

R2
I p-val. R2

I p-val. R2
I p-val.

van Binsbergen and Koijen (2010) 0.212 0.002 0.311 0.000 0.268 0.015

Campbell and Shiller (1988b) 0.222 0.002 0.281 0.000 0.158 0.073

Johannes, Lochstoer, and Mou (2016) 0.435 0.000 0.495 0.000 0.399 0.002

Table AII: Dividend Growth Rates and Expected Growth Rates (Quarterly, Semi-Annual,
and Bi-Annual Rates). The table on the top reports out-of-sample R-square values for predicting
dividend growth rates (quarterly, semi-annual, or bi-annual rates) using our dividend model, the latent
variable model in van Binsbergen and Koijen (2010), the VAR model in Campbell and Shiller (1988b), or
the Markov-switching model in Johannes, Lochstoer, and Mou (2016), and the corresponding bootstrap
simulated p-values. The table on the bottom reports incremental R-square values for predicting dividend
growth rates using our model over one of the baseline models. Dividends are estimated based on non-
overlapping annual data since 1946. Out-of-sample statistics are based on non-overlapping quarterly,
semi-annual, or bi-annual data between 1975 and 2016.
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Our Model Baseline Model
pt − dt syt(L) syt(F) vBK CS JLM

Quarterly -0.033∗∗∗ 0.993∗∗∗ 1.101∗∗∗ 0.857∗∗∗ 1.183∗∗∗ 0.384
(0.009) (0.201) (0.284) (0.232) (0.327) (0.239)

R2 0.032 0.035 0.032 0.026 0.029 0.007

Semi-Annual -0.065∗∗∗ 1.894∗∗∗ 2.137∗∗∗ 1.686∗∗∗ 2.215∗∗∗ 0.912
(0.016) (0.409) (0.531) (0.415) (0.615) (0.480)

R2 0.069 0.081 0.072 0.058 0.061 0.022

Bi-Annual -0.281∗∗∗ 9.312∗∗∗ 9.311∗∗∗ 7.786∗∗∗ 9.063∗∗∗ 4.868∗∗

(0.073) (2.216) (2.341) (1.986) (2.663) (1.884)

R2 0.258 0.299 0.263 0.231 0.208 0.120

Table AIII: Stock Index Returns and Stock Yields (Quarterly, Semi-Annual, and Bi-Annual
Returns): This table reports the coefficient estimates and R-square values from regressing future stock
index returns (quarterly, semi-annual, or bi-annual returns) on log price-to-dividend ratios and stock
yields, computed using our dividend model, the latent variable model in van Binsbergen and Koijen
(2010) (vBK), the VAR model in Campbell and Shiller (1988b) (CS), or the Markov-switching model in
Johannes, Lochstoer, and Mou (2016) (JLM), and assuming investors either learn, that is, syt(L), or do
not learn, that is, syt(F), about dividends. Dividends are estimated based on non-overlapping annual
data since 1930. Regressions are based on non-overlapping quarterly, semi-annual, or bi-annual data
between 1975 and 2016. Reported in parentice are Newey and West (1987) standard errors that account
for up to 10 years of serial correlation. Estimates significant at 90%, 95%, and 99% confidence levels are
highlighted using ∗, ∗∗, and ∗ ∗ ∗.
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Incremental
Quarterly R2 p-val. R2

I p-val.

Full Info. 0.034 0.017

Learning about Dividends 0.051 0.003 0.018 0.079

Full Learning 0.053 0.003 0.020 0.067

Semi-Annual

Full Info. 0.070 0.015

Learning about Dividends 0.155 0.000 0.092 0.005

Full Learning 0.166 0.000 0.103 0.003

Bi-Annual

Full Info. 0.203 0.039

Learning about Dividends 0.329 0.006 0.159 0.072

Full Learning 0.405 0.002 0.253 0.019

Table AIV: Stock Index Returns and Expected Returns under Epstein and Zin (1989)
Preferences (Quarterly, Semi-Annual, and Bi-Annual Returns). This table reports out-of-
sample R-square values for predicting stock index returns (quarterly, semi-annual, or bi-annual returns)
using our long-run risks model, assuming investors have full information, learn about dividends, or learn
about all parameters in our long-run risks model, that is, full learning, and the corresponding bootstrap
simulated p-values. Also reported are incremental R-square values for predicting stock index returns
assuming learning over assuming full information. Dividends are estimated based on non-overlapping
annual data since 1946. Statistics are based on non-overlapping quarterly, semi-annual, or bi-annual data
between 1975 and 2016.
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In-Sample Out-of-Sample

R2 R2
O p-val.

Our Model 0.319 0.258 0.001

van Binsbergen and Koijen (2010) 0.133 0.102 0.039

Campbell and Shiller (1988b) 0.151 0.137 0.016

Johannes, Lochstoer, and Mou (2016) 0.063 -0.033 1.000

Out-of-Sample

R2
I p-val.

van Binsbergen and Koijen (2010) 0.174 0.006

Campbell and Shiller (1988b) 0.140 0.014

Johannes, Lochstoer, and Mou (2016) 0.282 0.000

Table AV: Dividend Growth Rates and Expected Growth Rates (Extended Data Sample).
The table on the top reports R-square values for predicting dividend growth rates using our dividend
model, the latent variable model in van Binsbergen and Koijen (2010), the VAR model in Campbell
and Shiller (1988b), or the Markov-switching model in Johannes, Lochstoer, and Mou (2016). The first
column reports in-sample R-square values. The second and third columns report out-of-sample R-square
values and the corresponding bootstrap simulated p-values. The table on the bottom reports incremental
R-square values for predicting dividend growth rates using our model over one of the baseline models.
Dividends are estimated based on non-overlapping annual data post Great Depression. Out-of-sample
statistics are based on non-overlapping annual data between 1975 and 2016.
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Baseline
Our Model 1 2 3

pt − dt -0.130∗∗∗ -0.008
(0.035) (0.103)

syt(L) 3.676∗∗∗ 2.953 3.928∗ 2.819∗∗∗ 2.842∗∗ 1.828∗

(0.633) (2.071) (2.128) (0.799) (1.519) (1.116)

syt(F) 3.014∗∗∗ -0.666
(1.127) (1.975)

R2 0.136 0.173 0.133 0.154 0.153 0.103 0.083 0.049

Table AVI: Stock Index Returns and Stock Yields (Extended Data Sample): This table
reports the coefficient estimates and R-square values from regressing future stock index returns on log
price-to-dividend ratios and stock yields, computed using our dividend model, the latent variable model
in van Binsbergen and Koijen (2010) (vBK), the VAR model in Campbell and Shiller (1988b) (CS), or the
Markov-switching model in Johannes, Lochstoer, and Mou (2016) (JLM), and assuming investors either
learn, that is, syt(L), or do not learn, that is, syt(F), about dividends. Dividends are estimated based on
non-overlapping annual data post Great Depression. Regressions are based on non-overlapping annual
data between 1975 and 2016. Reported in parentice are Newey and West (1987) standard errors that
account for up to 10 years of serial correlation. Estimates significant at 90, 95, and 99 percent confidence
levels are highlighted using ∗, ∗∗, and ∗ ∗ ∗.

Incremental
R2 p-val. R2

I p-val.

Full Info. 0.122 0.023

Learning about Dividends 0.198 0.003 0.086 0.058

Full Learning 0.219 0.002 0.110 0.031

Table AVII: Stock Index Returns and Expected Returns under Epstein and Zin (1989)
Preferences (Extended Data Sample). This table reports out-of-sample R-square values for
predicting stock index returns using our long-run risks model, assuming investors have full information,
learn about dividends, or learn about all parameters in our long-run risks model, that is, full learning,
and the corresponding bootstrap simulated p-values. Also reported are incremental R-square values for
predicting stock index returns assuming learning over assuming full information. Dividends are estimated
based on non-overlapping annual data post Great Depression. Statistics are based on non-overlapping
annual data between 1975 and 2016.
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Figure 2: Evolution of Dividend Model Parameter Estimates Over Time. This figure plots
estimates of the eight parameters in our dividend model, assuming that these parameters are estimated
based on data up to time-τ for τ between 1975 and 2016. The shaded regions are recessions. A year is
in recession if any of its months overlap with NBER recession dates.
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Figure 3: Expected Long-Run Dividend Growth Rates. This figure plots long-run dividend
growth expectations, computed using our dividend model, for the period between 1975 and 2016.
Dividends are estimated based on non-overlapping annual data since 1946. Assuming full information,
parameters are estimated once based on the full data sample. Assuming learning, parameters are
estimated at each point in time based on data available at the time. The shaded regions are recessions.
A year is in recession if any of its months overlap with NBER recession dates.
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Figure 4: Stock Yields. This figure plots stock yields syt, computed using our dividend model, and
log price-to-dividend ratios (scaled) for the period between 1975 and 2016. Dividends are estimated based
on non-overlapping annual data since 1946. Assuming full information, parameters are estimated once
based on the full data sample. Assuming learning, parameters are estimated at each point in time based
on data available at the time. The shaded regions are recessions. A year is in recession if any of its
months overlap with NBER recession dates.

66



ω σλ γ A0

A1 A2 A3 A4

Figure 5: Evolution of Long-Run Risks Model Parameter and Coefficient Estimates Over
Time. This figure plots estimates of the parameters in our long-run risks model, aside from those in the
dividend process, and coefficients A· that relate price-to-dividend ratios, the latent variable xt, retention
ratios, and inflation rates to expected returns, assuming that these parameters are estimated based on
data up to time-τ for τ between 1975 and 2016. The shaded regions are recessions. A year is in recession
if any of its months overlap with NBER recession dates.
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Figure 6: Evolution of Long-Run Risks Model State Variables, Expected Excess Stock
Index Returns, and Risk Free Rate Over Time. This figure plots estimates of the state variables
of our long-run risks model, as well as expected excess returns and risk free rate from our model, assuming
full information, learning about dividends, or learning about all parameters in our long-run risks model,
that is, full learning, between 1975 and 2016. The shaded regions are recessions. A year is in recession if
any of its months overlap with NBER recession dates.
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Figure 7: Cumulative Sum of Squared Errors Difference. The figure on the left plots the
cumulative sum of squared errors difference (SSED) of our long-run risks model, assuming learning
about dividends, in predicting stock index returns. The figure on the right plots the SSED of our
long-run risks model, assuming learning about all parameters in our long-run risks model, that is, full
learning. Dividends are estimated based on non-overlapping annual data since 1946. Statistics are based
on non-overlapping annual data between 1975 and 2016. The shaded regions are recessions. A year is in
recession if any of its months overlap with NBER recession dates.
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Figure 8: Incremental Gain in Cumulative Sum of Squared Errors Difference from Learning.
The figure on the left plots the incremental gain in the cumulative sum of squared errors difference (SSED)
of our long-run risks model, assuming learning about dividends versus full information. The figure on
the right plots the incremental gain in SSED of our long-run risks model, assuming learning about all
parameters in our long-run risks model, that is, full learning, versus full information. Dividends are
estimated based on non-overlapping annual data since 1946. Statistics are based on non-overlapping
annual data between 1975 and 2016. The shaded regions are recessions. A year is in recession if any of
its months overlap with NBER recession dates.

Autocorrelation Function (ACF) Partial Autocorrelation Function (PACF)

Figure A1: Autocorrelation Function and Partial Autocorrelation Function of Inflation
Rate. This figure plots the autocorrelation function and partial autocorrelation function of inflation
rates, up to 10 years lag. Correlations are estimated based on data between 1946 and 2015.
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