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The tradeoff theory of capital structure is the longest standing theory of capital struc-

ture1 and underlies much of the large body of empirical work that studies capital structure.

In the tradeoff theory, the optimal amount of debt equates the marginal benefit of a dollar

of debt arising from the tax deductibility of interest payments with the marginal cost of

a dollar of debt arising from increased exposure to default. This framework implies that

changes in leverage over time, or variation in leverage across firms, can be attributed to dif-

ferences in the marginal interest tax shield and/or differences in the marginal cost of default.

The tradeoff theory has been conventionally interpreted2 to imply that more profitable firms

should have higher leverage ratios–a prediction that is contrary to the empirical fact3 that

more profitable firms tend to have lower leverage ratios.4 Notable exceptions to this conven-

tional interpretation are presented in quantitative models by Hennessy and Whited (2005)

and Strebulaev (2007). In the stochastic dynamic model presented here, I analytically

demonstrate an alternative explanation of the negative relationship between profitability

and leverage that is found empirically.

In this paper, I develop and analyze a model of capital structure that incorporates an

interest tax shield as well as the possibility of default. In some situations, the optimal amount

of debt will be determined by the equality of the marginal benefit of debt arising from the

interest tax shield and the marginal cost of debt associated with increased probability of

default–that is, optimal debt will be characterized by the tradeoff theory. However, in

other situations within the model, optimal debt will not be characterized by the equality of

marginal benefit and marginal cost that epitomizes the tradeoff theory. Because the model

allows for situations in which the tradeoff theory holds and situations in which it does not

hold, the model has the potential to guide empirical tests by including both a null hypothesis

in terms of the tradeoff theory and an alternative hypothesis that offers an explanation of

leverage other than the tradeoff theory. In particular, I show that the model developed

here accommodates situations in which higher profitability (either current profitability or

expected future profitability) is associated with lower leverage, specifically, a lower value of

1Robichek and Myers (1966), Kraus and Litzenberger (1973), and Scott (1976).
2Scott (1976), Fama and French (2002), Frank and Goyal (2007).
3Fama and French (2002).
4For instance, Myers (1993, p.6) states "The most telling evidence against the static tradeoff theory is the

strong inverse correlation between profitability and financial leverage.... Yet the static tradeoff story would

predict just the opposite relationship. Higher profits mean more dollars for debt service and more taxable

income to shield. They should mean higher target debt ratios."
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market leverage, which is the ratio of debt to the market value of the firm. Furthermore, if

the probability of default is nonzero, these situations arise when and only when the tradeoff

theory is operative. That is, the empirical finding that more profitable firms tend to have

lower leverage ratios, which has been viewed by others as evidence against the tradeoff theory,

is viewed as evidence in favor of the tradeoff theory when seen through the lens of the model

presented here.

As the tradeoff theory has developed over the past half century, it has become increasingly

complex, especially in empirical structural models of the firm that are designed to capture

realistic features of a firm’s environment.5 The model I develop here is stripped of these

complexities so that I can focus on its new features and implications in a framework that

admits analytic results without relying on numerical solution. The model’s biggest departure

from standard models of debt concerns the maturity of the debt. Many standard models

of debt6 assume that debt has infinite maturity and pays a fixed coupon over the infinite

future, or until the firm defaults. Clearly, the assumption of infinite maturity is extreme,

but it has been used productively over the years. I also make an extreme assumption about

maturity, but in the opposite direction. I assume that debt must be repaid an instant after

it is issued. The standard specification with infinite maturity can be viewed as the limiting

case of long-term debt and my specification with zero maturity can be viewed as the limiting

case of short-term debt, such as commercial paper, much of which has a maturity of only 1

to 4 days,7 as well as overnight repurchase agreements.

The specification of zero-maturity debt is motivated by two considerations. First, this

specification makes salient the recurrent nature of the financing decision, in contrast to the

once-and-for-all financing decision in many models of debt.8 At each instant of time, the

firm decides whether to repay its debt or to default, and if it decides to repay its debt, it

chooses the amount of debt to issue anew. Because I do not include any flotation, issuance, or

adjustment costs, the amount of debt issued responds immediately and completely to changes

in the firm’s environment, and will not have the rich dynamics documented empirically and

5Hennessy and Whited (2007).
6Modigliani and Miller (1958), Leland (1994), and Gorbenko and Strebulaev (2010).
7In March 2016, the average daily issuance of nonfinancial AA commercial paper was 210 issues amounting

to $5.3 billion. 53% of these issues, accounting for 55% of the dollar volume, had a maturity of 1-4 days.

Source: Board of Governors of the Federal Reserve System, Volume Statistics for Commercial Paper Issuance,

Data as of April 12, 2016.
8Merton (1974), Leland (1994), and Gorbenko and Strebulaev (2010).
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analyzed by Leary and Roberts (2005). Second, zero-maturity debt is always valued at par,

which alleviates the need to calculate the value of debt that would arise with long-term

debt. Therefore, the firm’s decision about whether to default on its debt, which depends

on a comparison of the total value of the firm and the value of the firm’s debt, becomes

transparent.

Because firms have the opportunity to default on their debt, rational lenders need to take

account of the probability of default, as well as their losses in the event of default, in order to

determine the appropriate interest rate on their loans to the firm. In this paper, risk-neutral

lenders have the same information that the firm’s shareholders have and they require a

premium above the riskless rate in order to compensate for the expected losses in the event of

default. In addition, if the amount of debt were sufficiently large, it would trigger immediate

default. In the current framework with zero-maturity debt, lenders avoid being subject to

immediate default by refusing to lend an amount greater than the contemporaneous value

of the firm, which itself depends on the amount of debt issued.

An important component of the firm’s financing decision is the stochastic process for the

firm’s pre-tax pre-interest cash flow, that is, EBIT (earnings before interest and taxes). I

specifiy a continuous-time continuous-state process for EBIT. Instead of a diffusion process,

as in Leland (1994) for example, I specify a Markov process in which EBIT remains un-

changed for a random length of time and then a new value of EBIT arrives at dates governed

by a Poission process with arrival intensity . On these dates, the value of EBIT changes

by a discrete amount, and a discrete decrease in the value of EBIT can lead the firm to

default on its debt. In the event of default, a fraction   0 of the firm’s value disappears

as a deadweight loss and the creditors take ownership of the remaining fraction 1− of the

firm. I do not consider re-negotiation between shareholders and creditors. Shareholders

and creditors have common knowledge. If they were to re-negotiate when a new realization

of EBIT would lead to default, the result of that re-negotiation would simply be a function

of the amount of debt and the level of EBIT at that time. But if shareholders and lenders

were to agree on terms that would apply when a new value of EBIT would lead to default,

they could simply write those terms into the debt contract. But then the debt contract

would become state-contingent in a way that would make the instrument not look like debt.

Since I want to focus on the leverage ratio as measured using conventional debt, I do not
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consider re-negotiation or the sort of "pre-negotiation" just described.9

For simplification, the new values of EBIT are i.i.d across arrivals. Nevertheless, EBIT

displays persistence: EBIT remains constant during each regime, and regimes have a mean

duration of 1

, which could potentially be quite large. The unconditional correlation between

two values of EBIT that occur at dates   0 units of time apart is −, which is positive

and declines monotonically in . The advantage of using the i.i.d. specification is that it

allows for persistence in EBIT as well as analytic tractability.10 In particular, as I will show,

the optimal amount of debt is invariant to contemporaneous EBIT if the value of EBIT is

high enough that tradeoff theory of debt is operative. As a result, the leverage ratio, which

is the ratio of debt to the value of the firm, is a decreasing function of EBIT, since the

value of the firm is increasing in EBIT. The stark result that optimal debt is invariant to

EBIT when the tradeoff theory is operative is a consequence of the assumption that EBIT

is i.i.d. across regimes. In Section 7, I extend the model to allow for persistence in EBIT

across regimes. I show that optimal debt would no longer be invariant to EBIT when the

tradeoff theory is operative. I present a simple example in which the conditional distribution

of EBIT is uniform and I show that in this example, optimal debt and the leverage ratio

are both decreasing in contemporaneous EBIT, thereby reinforcing the major result of the

paper. I also show that the conditional probability of default is a decreasing function of

EBIT, when and only when the tradeoff theory is operative.

When EBIT is i.i.d. across regimes, the firm’s optimal capital structure depends on

whether EBIT exceeds or falls short of an endogeneously determined critical value. For

values of EBIT that exceed the critical value, the tradeoff theory is operative, provided that

the firm faces a positive probability of default. When the tradeoff theory is operative, the

optimal level of debt is invariant to EBIT; since an increase in EBIT increases the total value

9The debt contract that I analyze is not an optimal contract, but it is of the form commonly used in

practice and in analytical models. Although it is not optimal, it does have the important feature that all

participants in the debt instrument do so voluntarily and are not made worse off by participating. Biais,

Mariotti, Plantin, and Rochet (2007) derive "performance sensitive" debt as an optimal contract in a dynamic

framework.
10In their analysis of the impact of temporary shocks on optimal issuance of debt, Gorbenko and Strebulaev

(2010) specify temporary shocks as Poisson arrivals from a given distribution; when they consider multiple

shocks over time, they assume that they are i.i.d., as in the framework used here. The temporary shocks in

Gorbenko and Strebulaev are drawn from a double exponential distribution; the shocks in the current model

are drawn from a more general distribution on finite support for which the density is finite and non-decreasing

and the restriction in equation (2) is satisfied.
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of the firm, the optimal leverage ratio falls as profitability, measured by EBIT, increases.

This negative relationship between profitability and the leverage ratio, which arises from

the invariance of debt to EBIT, is reminiscent of Strebulaev’s (2007) finding that when

adjustment costs prevent the level of debt from changing, an increase in profitability reduces

the leverage ratio. However, the mechanisms that make debt invariant to profitability are

different in the current model and in Strebulaev’s model. Specifically, the invariance of

optimal debt arises in the current model in the complete absence of any flotation, issuance,

or adjustment costs that prevent debt from adjusting in Stebulaev’s model.

For values of EBIT below the critical value, the borrowing constraint that prevents im-

mediate default binds. In this situation, the tradeoff theory is not operative and the optimal

leverage ratio is invariant to EBIT. To summarize, the model predicts a negative relation-

ship between the optimal leverage ratio and contemporaneous EBIT (which is consistent

with empirical findings) when the tradeoff theory is operative but not when the constraint

on the firm’s borrowing is binding.

To examine the relationship between the optimal amount of debt and expected future

profitability, I analyze the impact of a rightward translation of the unconditional distribu-

tion of profitability. This favorable shift of the unconditional distribution of profitability

increases the continuation value of the firm, which the firm’s current shareholders stand to

lose in the event of default; therefore, a favorable shift of the unconditional distribution

increases the cost of default facing these shareholders.11 In response to the increased cost of

default, the firm adjusts its capital structure to reduce the probability of default. Whether

this change in capital structure reduces the optimal amount of debt depends on the uncon-

ditional distribution of profitability. In the focal case of a uniform distribution, a rightward

translation of the distribution reduces optimal debt when the tradeoff theory is operative.12

Thus, whether one analyzes the relationship between the optimal leverage ratio and contem-

11To the extent that creditors recover a portion of their loans in the event of default, the social cost of

default is smaller than the loss to current shareholders. I assume that creditors receive a fraction 1−  of

the continuation value of the firm in the event of default, so the social cost of default is a fraction  of the

continuation value. Therefore, the social cost of default, as well as private cost to current shareholders, is

increased by a favorable shift of the unconditional distribution of profitability.
12Appendix D in the online appendix shows that this finding holds more broadly within the class of

truncated exponential distributions for density functions that do not slope upward too steeply. Only for

sufficiently steeply upward-sloping density functions will optimal debt increase in response to a rightward

translation of the distribution function when the tradeoff theory is operative.
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poraneous EBIT (as described above) or between the optimal leverage ratio and long-run

average EBIT, the model predicts a negative relationship between the optimal leverage ratio

and EBIT if the tradeoff theory is operative, but not if the firm faces a binding constraint

on its borrowing.

Section 1 presents the economic environment facing a firm, including the opportunity

to borrow and the ability to default on outstanding debt. The availability and terms of

loans to the firm depend on the valuation of the firm. Section 2 characterizes the optimal

level of debt and the associated value of shareholders’ equity, which together sum to the

total valuation of the firm. An important component of this analysis is the critical value of

current EBIT, which is the boundary between low values of EBIT for which the borrowing

constraint binds and high values of EBIT for which the borrowing constraint does not bind.

Depending on whether this critical value of EBIT is at the minimum value of the support of

EBIT, the maximum value of the support of EBIT, or in between, the firm will find itself in

one of three scenarios, which are characterized in Section 3. Although optimal behavior in

two of the three scenarios can be derived very easily, optimal behavior in one of the scenarios

(denoted as Scenario II) entails more extensive analysis, which is presented in Section 4. Of

particular interest is subsection 4.1, which interprets the analytic results in terms of the

tradeoff theory. Section 5 demonstrates that Scenario I, II, or III will prevail depending

on whether the tax rate is low, intermediate, or high, and it provides explicit expressions

for the values of the tax rate associated with the boundaries between adjacent scenarios.

Section 6 analyzes the impact of a rightward translation of the unconditional distribution of

EBIT on optimal debt, shareholder equity, the critical value of EBIT, and the probability

of default. Section 7 extends the model to allow for persistence in EBIT across regimes.

In the focal case of a uniform distribution, persistence strengthens the major result of the

paper that the optimal leverage ratio is a decreasing function of EBIT if the tradeoff theory

is operative. Concluding remarks are presented in Section 8. To avoid disruption in the

narrative flow of the paper, the proofs of all lemmas, propositions, and corollaries are in

Appendix A. Appendix B presents the details of the calculation of the value of the firm.

An online appendix presents closed-form solutions for optimal debt and the value of the firm

in the special case in which the unconditional distribution of EBIT is uniform and creditors

recover zero in the event of default. It also contains a section analyzing the impact of

rightward translation of the unconditional distribution of EBIT when the distribution is a
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truncated exponential distribution.

1 The Firm’s Economic Environment

Let  () be EBIT, the pre-tax net cash flow from operations, before interest, at time .

The realizations of  () are generated by an exogenous stochastic process and thus are

independent of any actions taken by the firm. If EBIT at time 0 is  (0), then  ()

remains equal to  (0) until some random date 1  0. At time 1, a new value of EBIT,

 (1), is drawn from a distribution with c.d.f.  (), with  (Φ) = 0,  (Φ) = 1, and finite

density  () =  0 ()  0 everywhere on the support [ΦΦ ], where−∞  Φ  Φ ∞.
In addition, assume that  0 () ≥ 0 for all  in the support of  (), which will ensure that
the firm’s objective function is concave in debt. The unconditional expected value of EBIT

is assumed to be positive, that is,  {} = R Φ

Φ
 ()  0, which implies Φ  0 but does

not place a restriction on the sign of Φ. The arrival date of a new value of EBIT, that is,

the timing of 1, is governed by a Poisson process with an instantaneous probability  of an

arrival of a new value of  (). Realizations of new values of EBIT are i.i.d. across regimes.

I assume that the firm is managed on behalf of risk-neutral shareholders with constant

rate of time preference equal to   0. The shareholders have "deep pockets" in the sense

that they can infuse an unlimited amount of funds into the firm if its after-tax cash flow

from operations net of interest is negative. The support of the distribution for EBIT may

include negative values of EBIT, since Φ may be negative. If a negative realization of

EBIT is sufficiently large in absolute value or sufficiently persistent, current shareholders

might decide to abandon ownership of the firm to avoid a stream of future cash flows with

a negative expected present value. In principle, the shareholders of a firm might abandon

ownership of the firm either as a response to unfavorable current and prospective future

EBIT or as a means to avoid repaying the firm’s debt. My focus in this paper is on leverage

and the potential default associated with it, so I will restrict the stochastic process for EBIT

to be such that in the complete absence of borrowing, risk-neutral shareholders of the firm

would never find it optimal to abandon the firm.13 To formalize this restriction, define

 ( ()) to be the expected present value of current and future cash flows, if the firm is

13In contrast to this assumption, Gorbenko and Strebulaev (2010) allow the unlevered value of the firm

to become negative, in which case shareholders would abandon the firm.
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an all-equity firm that never issues any debt, and continues to operate forever, regardless of

the realization of  (). Therefore,  ( ()) ≡ 

©R∞

(1− ) () −(−)

ª
, where  {}

denotes the expectation conditional on information available at time . The Poisson arrival

process for new values of  () implies that  { ()} = −(−) () +
¡
1− −(−)

¢
 {},

for  ≥ , so it is straightforward to calculate the value of an all-equity firm that operates

forever as

 ( ()) =
1− 

+ 

∙
 () +




 {}

¸
 (1)

Henceforth, I assume that

Φ  −

 {}  (2)

so that  ( ())  0 for all  () ≥ Φ and hence an all-equity firm would never find it

optimal to cease operation.14

The firm borrows by issuing bonds to risk-neutral lenders who have the same rate of time

preference, , as shareholders. The maturity of these bonds is vanishingly small. If the

firm issues an amount  of bonds at time , then it must repay these bonds at time + ,

where  is infinitesimal. Effectively these bonds have instantaneous maturity. The interest

rate on these bonds,  (), is set at a level that compensates lenders for their expected losses

in the event of default. If the firm defaults on its debt, the shareholders lose all ownership

interest in the firm and receive zero. The creditors take ownership of the firm in default, but

the act of default imposes a deadweight loss equal to a fraction  of the value of the firm,

where 0   ≤ 1. Therefore, in default at time +, creditors receive (1− ) ( (+ )),

where  ( (+ )) is the value of the firm, which is described more formally in equation

(7) below. Since creditors lose the value of the bonds, , but recover (1− ) ( (+ ))

in default, the expected loss to creditors due to default in the interval from  to  + 

is 
R
 ((+))

[ − (1− ) ( (+ ))]  ( (+ )). Therefore, the interest rate,

 (), that compensates lenders for the expected loss in default is

 () = + 

Z
 ()

∙
1− (1− )

 ()



¸
 () ≥  (3)

14Leland (1994, p. 1217) effectively makes the same assumption by specifying a stochastic process for the

"asset value," which corresponds to ( ()) ≡ 

©R∞

(1− ) () −(−)

ª
, that is bounded away from

zero.

8



where the first term, , is the riskless rate in the absence of any chance of default, and the

second term is the expected loss to creditors in default for each dollar of debt they hold.

In addition to requiring an interest rate that includes compensation for the expected loss

in default, potential lenders to the firm will never lend an amount that is so large that the

firm would default immediately upon receiving the funds from issuing the bond. This limit

on the amount the firm can borrow is

 ≤  ( ())  (4)

I will refer to the limit on borrowing in equation (4) as an endogenous borrowing constraint,

though it could also be described as a non-negativity constraint on the value of the firm’s

equity, or equivalently, as limited liability.

The taxable income of the firm, denoted  (), is operating profit,  (), minus interest

payments,  (), so using the interest rate in equation (3), taxable income is

 () =  ()−  − 

Z
 ()

[ − (1− ) ()]  ()  (5)

The tax rate on taxable income is constant and equal to  , where 0    1. If taxable

income is negative, the firm receives a tax rebate of − ()  0.
I assume that shareholders do not retain any earnings in the firm, that is, the firm pays

out all net cash flows as dividends,  (), so

 () = (1− )  () +  (6)

where  is the net increase in bonds at time , which represents a net inflow of funds to

the firm. The notation  () and  allows for dividends and net increases in bonds to

be discrete amounts, rather than flows, at a point of time. For instance, as I show later, the

arrival of a new regime that increases  () by a discrete amount may increase the amount

of bonds by a discrete amount at a point of time, so that  and  () are both positive.

The value of the firm at time  is

 ( ()) = max




½Z 



−(−) ()

¾
 (7)
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where  is the date at which the shareholders decide to default on their debt, and hence

is endogenous.  ( ()) in equation (7) is the value of the firm at time  if it arrives at

time  with zero bonds outstanding. Equivalently,  ( ()) is the value of the firm at time

 immediately after it has paid off (with interest) its outstanding debt issued at − , and

before it issues new debt at time .

To describe the timing of events around time , it is useful to define − ≡ lim&0−
as the amount of bonds issued by the firm an instant before time .

1. The firm arrives at time  with − bonds outstanding.

2. The values of profitability,  (), and the value of the firm  ( ()) are realized and

observed by the firm and by lenders.

3. The firm decides whether to repay or default on its outstanding bonds.

(a) If  ( ())  −, the firm defaults on its bonds, creditors receive (1− ) ( ())

and shareholders receive nothing.

(b) If  ( ()) ≥ − , the firm repays its bonds, and shareholders retain ownership.

4. If shareholders retain ownership, the firm issues bonds  subject to the borrowing

constraint  ≤  ( ()).

5. The firm receives  (), pays interest  (), and pays taxes  [ ()−  ()].

6. The firm pays dividends  () = (1− ) [ ()−  ()] + , where
15  =  −

−.

2 Optimal Debt, Firm Value, and Shareholder Equity

Consider the firm at time  immediately after it has repaid its bonds −. At this instant,

the firm has no outstanding bonds and it decides how many bonds to issue at time  to

15As it turns out, the firm will change the amount of outstanding debt only at times of regime change,

when  () changes. At these times, the amount of debt will change by a discrete amount, .
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achieve the maximum on the right hand side of equation (7). The firm’s optimization

problem can be represented by the following Bellman equation

 ( ()) = max
≤ (())



½Z 1



−(−) () + −(1−)max
h
 ( (1))−−1

 0
i¾
, (8)

where 1 is the date of the first arrival of a new regime after time . The value of the firm

in equation (8) is the sum of two terms. The first term is the expected present value of

dividends, , over the interval of time from  to the arrival of a new regime at time 1.

The second term is the expected present value of the firm at time 1, after observing the new

value of profitability,  (1). When the firm observes  (1), it can choose to become a firm

with value  ( (1)), but to do so, it must repay its outstanding debt −1
, so the net value

to the shareholders of continuing their ownership in the firm is  ( (1))−− . Provided

this net value of continued ownership of the firm is non-negative, shareholders will repay

their outstanding bonds, and then issue a new amount of bonds, 1 . Otherwise, the firm

will default on its bonds, and shareholders lose their ownership of the firm.

Other than deciding whether to default, the only decision that the firm makes is how

many bonds to issue at each point in time. The structure of the stochastic process for  ()

implies that the optimal value of  is simply a function of contemporaneous  (). I will

use the notation b ( ()) to denote the optimal value of . Profitability is constant, and

equal to  (), over the interval of time from  until 1, so after-tax income, (1− )  (), and

the optimal amount of bonds outstanding, b ( ()), are constant and equal to (1− )  ()

and b ( ()), respectively, for all  in [ 1). With b ( ()) constant over this interval of
time,  = 0 for all  in ( 1) , but  = b ( ()) for a firm at time  after it has repaid

its debt −1
.

It is straightforward but tedious to calculate the value of the firm, so I have relegated

the derivation to Appendix B, where I show that

 ( ()) =
1

+ 
max

≤ (())
[(1− ) () +  + ()] , (9)

where

 () ≡ 

∙
+ 

Z
 ()

 ()

¸
 − [+  (1− )]

Z
 ()

 ()  ()  (10)
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and  ≡ R  ()  () is the unconditional mean of  (). To interpret the function  ()
in equation (10), which arises naturally in the derivation of the value of the firm, use equation

(3) to rewrite equation (10) as

 () =  () − 

Z
 ()

 ()  () . (11)

I will refer to  () as the "tradeoff function" because it contains the elements of the tradeoff

theory of debt. The first term on the right hand side of the expression for  () in equation

(11),  (), is the interest tax shield, which is simply the tax rate,  , multiplied by interest

payments,  (). The second term is the expected deadweight loss associated with default,

where the deadweight loss is  () if default occurs when profitability equals .

Equation (9) can be expressed in terms of flows at time  by multiplying both sides by

+ and then subtracting  ( ()) from both sides to obtain the Hamilton-Jacobi-Bellman

equation

 ( ()) = max
≤ (())

[(1− ) () +  ( −  ( ())) + ()]  (12)

The left hand side of equation (12),  ( ()), is the required return on the firm, which

is the product of the rate of return required by shareholders and the value of the firm. The

expected return to the firm, on the right hand side, has three components: the after-tax

profit from operations, (1− ) (); the expected change in the value of the firm if the regime

changes, which is the product of, , the instantaneous probability of a regime change, and

 −  ( ()), which is the expected change in the value of the firm when a new value of 

is drawn from its unconditional distribution; and  (), the contribution of bond financing

consisting of the interest tax shield,  (), less the expected deadweight loss associated

with default.

The optimal value of debt is the value of  that attains the maximum on the right hand

side of equation (12). Since  enters the maximand on the right hand side of equation (12)

only through  (), the optimal amount of debt is16

b ( ()) ≡ arg max
≤ (())

 ()  (13)

16Equivalently, the optimal value of  attains the maximum on the right hand side of equation (9), which,

since +   0, is also given by equation (13).
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Since  () is independent of  (), the optimal value of debt, b ( ()), is independent of
 () if the borrowing constraint,  ≤  ( ()), is not binding. However, if the borrowing

constraint is binding, then b ( ()) =  ( ()), which is increasing in  (), since, as shown

in Proposition 1 below,  ( ()) is strictly increasing in  ().

To obtain the value function, substitute the optimal amount of debt, b ( ()), from
equation (13) into equation (9), which yields

 ( ()) =
(1− ) () +  +

³ b ( ())´
+ 

 (14)

Proposition 1  ( ()) is strictly increasing in  (). Moreover, for any 2  1 in the

support [ΦΦ ],
 (2)− (1)

2−1 ≥ 1−
+

 0.

The proof of Proposition 1 is in Appendix A, but the logic of the proof is straightforward.

Suppose that 2  1. If the firm were to maintain the same level of debt at  () = 2 as

at  () = 1, which is
b (1), the value of the firm would increase by 1−

+
(2 − 1), so thatb (1) would be feasible when  () = 2. Allowing for the possibility that optimal debt

changes when EBIT increases to 2 from 1 implies that the value of the firm may increase

by even more, so  ( ()) increases by at least 1−
+

(2 − 1).

The following proposition is an immediate consequence of the definition of optimal debt,b ( ()), in equation (13) and the fact that  () is strictly increasing (Proposition 1).
Proposition 2 The optimal value of bonds, b ( ()), is
1. non-decreasing in the state,  (), and

2. non-decreasing in time, , outside of default.

Proposition 2 states that the optimal value of debt never falls below previous optimal

values of debt as long as the firm does not default. This behavior is consistent with the

time path of debt in Goldstein, Ju, and Leland (2001), in which it is assumed that, outside

of default, the firm does not decrease its debt.17

17The second paragraph of Goldstein, Ju, and Leland (2001, p. 483) begins "Below, we consider only the

option to increase future debt levels. While in theory management can both increase and decrease future

debt levels, Gilson (1997) finds that transactions costs discourage debt reductions outside of Chapter 11."

13



Since shareholders owe a liability of b ( ()), the value of shareholders’ equity in the
firm,  ( ()), is

 ( ()) =  ( ())− b ( ()) ≥ 0 (15)

where the inequality is the borrowing constraint. Because shareholders receive an amountb ( ()) immediately when they borrow, they choose to maximize  ( ()) =  ( ())+

rather than to maximize shareholder equity exclusive of ,  ( ()) =  ( ())−.

The following proposition provides bounds on the optimal amount of bonds. Because

the firm has the option to operate forever as an all-equity firm,  ( ()) is at least as large

as ( ()) in equation (1), and the assumption in equation (2) that Φ  −

 {} implies

that  ( ())  0. Therefore, even the lowest value of the firm,  (Φ), is at least as high

as  (Φ)  0. It cannot be optimal to issue an amount of bonds smaller than  (Φ)

because to do so would fail to take full advantage of the interest tax shield, without any

exposure to the possibility of default. Therefore, the optimal amount of bonds is at least

 (Φ). The borrowing constraint,  ≤  ( ()), implies that even when the firm attains

its highest possible value, the firm can never issue an amount of bonds greater than  (Φ).

Proposition 3 If 0    1, then 0   (Φ) ≤ b ( ()) ≤  (Φ).

Corollary 4 If 0    1, then b (Φ) =  (Φ), and  (Φ) = 0.

Corollary 4 follows directly from Proposition 3, which implies that b (Φ) ≥  (Φ),

and from the borrowing constraint b (Φ) ≤  (Φ). Therefore, b (Φ) =  (Φ). Hence,

when  () takes on its minimum value Φ, the optimal amount of debt equals  (Φ), which

implies that shareholders’ equity,  (Φ) =  (Φ)− b (Φ), is zero.

Proposition 5 If (1) 0    
1+

and (2)  ()  0 is non-decreasing for all  ∈ [ΦΦ ],

then  ( ()) is concave in  () on the domain [ΦΦ ].

Proposition 5 provides sufficient conditions for the value function,  ( ()), to be concave.

One of the steps (formalized as Lemma 22 in Appendix A) in the proof of Proposition 5 is

to prove that if  ( ()) is concave, then the tradeoff function  () is strictly concave in

 for  (Φ) ≤  ≤  (Φ), which is Corollary 6 below.
18

18Corollary 6 provides sufficient conditions for  () to be strictly concave in . A necessary condition
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Corollary 6 to Proposition 5. If (1) 0    
1+

and (2)  ()  0 is non-decreasing for

all  ∈ [ΦΦ ], then  () is strictly concave in  for  (Φ) ≤  ≤  (Φ).

Define ∗ as the value of debt that maximizes the tradeoff function  () over  ∈
[ (Φ)   (Φ)], ignoring the borrowing constraint  ≤  ( ()). Formally,

∗ ≡ arg max
 (Φ)≤≤ (Φ)

 ()  (16)

The strict concavity of  () in  implies that ∗ is unique. Since,  () is independent

of  (), ∗ is invariant to  (). If ∗ ≤  ( ()), the borrowing constraint does not bind,

and optimal debt, b ( ()), equals ∗. However, if ∗   ( ()), the firm cannot borrow

as much as ∗ and b ( ()) =  ( ()).

Define ∗ as the critical value of  ∈ [ΦΦ ] above which  ()  ∗ and below which

 ()  ∗. Formally,

∗ ≡  −1 (∗)  (17)

The following proposition characterizes optimal debt, b ( ()), shareholder equity,  ( ()),
and total firm valuation,  ( ()), first for  () ≥ ∗ and then for  () ≤ ∗.

Proposition 7 Define ∗ so that  (∗) = ∗ ≡ argmax (Φ)≤≤ (Φ) (). Then

• (1) for any  () ≥ ∗,

(a) b ( ()) = ∗,

(b)  ( ()) = 1−
+

[ ()− ∗], and

(c)  ( ()) = 1−
+

[ ()− ∗] +∗;

• (2) for any  () ≤ ∗,

(a) b ( ()) ≡  ( ()) is concave and strictly increasing in  (), and

(b)  ( ()) = 0.

for this strict concavity is that default imposes a deadweight cost, that is,   0. To see the necessity

of this condition, set  = 0 in the definition of  () in equation (10) and differentiate twice with respect

to  to obtain 0 () = 
h
+ 

R
 ()

 ()
i
and 00 () =  −10 () 

¡
 −1 ()

¢
 0 because


¡
 −1 ()

¢
 0 and  −10 ()  0. Therefore, if  = 0, then  () is strictly convex in . Thus,   0

is a necessary condition for strict concavity of  () in .
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Figure 1: Optimal Debt, Equity and Firm Value

Figure 1 illustrates optimal debt, shareholders’ equity, and the total value of the firm,

each as a function of , for a situation in which  (Φ)  ∗   (Φ). For  () ≤ ∗, the

borrowing constraint,  ≤  ( ()), is binding so shareholders’ equity,  ( ()) =  ( ())−b ( ()), is identically zero. In Figure 1 optimal debt, b ( ()), and the value of the firm,
 ( ()), are shown for  () ≤ ∗ by the upward-sloping concave curve ; shareholders’

equity is shown by the horizontal line segment on the horizontal axis for  () ≤ ∗. For

higher values of  (), specifically for  () ≥ ∗, the borrowing constraint is not binding, andb ( ()) = ∗, as shown by the horizontal line segment starting at point  and extending to

the right. Shareholders’ equity is  ( ()) = 1−
+

[ ()− ∗], as shown by the line segment

starting on the horizontal axis at  = ∗ and extending to the right with slope 1−
+
. The

value of the firm is shown by the line segment  with slope 1−
+
.

Corollary 8 Define the optimal leverage ratio as  ( ()) ≡ (())
 (())

. If  () ≤ ∗, then

 ( ()) ≡ 1; if  () ≥ ∗, then  ( ()) = 1
1−
+

()−∗
∗ +1

, which is strictly decreasing in  ().

The tradeoff theory is operative when optimal debt is determined by equating the mar-

ginal tax shield associated with interest deductibility and the marginal default cost. For-

mally, the tradeoff theory is operative when 0
³ b ( ())´ = 0 so that b ( ()) = ∗.

Proposition 7 implies that the tradeoff theory is operative when and only when  () ≥ ∗.

Therefore, Corollary 8 implies that when and only when the tradeoff theory is operative,

the optimal leverage ratio is a decreasing function of contemporaneous profitability. This
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result is remarkable because, as noted in the introduction to this paper, it is the opposite of

the conventional interpretation of the tradeoff theory, which states that the leverage ratio is

increasing in profitability. However, empirical studies find a negative relationship between

the leverage ratio and productivity, consistent with Corollary 8 when the tradeoff theory is

operative.

Proposition 2 states that outside of default, b ( ()) is a weakly increasing function of
the state  () and of time . The leverage ratio, however, is weakly decreasing in the state,

 (), and is not monotonic in time . To see that the leverage ratio can either increase or

decrease over time, consider several consecutive regimes in which  () ≥ ∗. The optimal

value of bonds, b ( ()), remains constant and equal to ∗ over time since  () ≥ ∗.

When  () increases from one of these regimes to the next regime,  ( ()) increases and

the leverage ratio falls; when  () decreases from one of these regimes to the next regime,

 ( ()) falls and the leverage ratio increases.

Under the optimal debt policy, b ( ()), the instantaneous probability of default is

³ b ( ())´ ≡ 

Z
 () (())  () , (18)

which is the probability that a new regime arrives that induces a value of the firm lower than

the currently outstanding debt, b ( ()).
Proposition 9 The instantaneous probability of default 

³ b ( ())´ = min [ ( ())   (∗)].

In the framework analyzed here, default occurs only at times of regime change.19 If

 ()  ∗, then b ( ()) =  ( ()) so default will occur at the next regime change if

the new value of profitability is lower than  () so the new value of the firm is less than

 ( ()) = b ( ()). Alternatively, if  () ≥ ∗, then b ( ()) = ∗ =  (∗) so that

default will occur at the next regime change if the new value of profitability is less than ∗

so the new value of the firm is less than  (∗) = b ( ()). Thus, regardless of whether

 () is above or below the critical value ∗, default will occur at the next regime change if

and only if the new value of profitability is less than min [ ()  ∗].

19The model in Gorbenko and Strebulaev (2010) has a similar feature. Specifically, in their model, default

occurs only at the times at which a new value of the temporary shock has a Poisson arrival.
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Proposition 10 The instantaneous probability of default, 
³ b ( ())´, and the interest

rate,  (), are

1. strictly increasing in b ( ())
2. strictly increasing in  () if  ()  ∗

3. invariant to  () if  () ≥ ∗

In principle, there are two endogenous channels that can increase the probability of

default at the time, 0, of the next regime change: channel (1) is an increase in the current

amount of bonds outstanding, b ( ()); and channel (2) is a shift in the distribution of  (0)
that shifts the distribution of  ( (0)) in an unfavorable way. Statement 1 of Proposition

10 captures channel (1). Channel (2) is not operative in the current specification because

profitability, , is i.i.d. across regimes so the distribution of  ( (0)) is invariant to  ().

If  ()  ∗, an increase in current profitability,  (), increases the probability of default

(Statement 2 of Proposition 10) because it leads the firm to increase its bonds, b ( ()),
(channel 1) and the increase in current profitability does not improve the distribution of

 ( (0)). If  () ≥ ∗, an increase in  () has no effect on the probability of default. These

counter-intuitive results are based on the assumption that  () is i.i.d. across regimes. In

Section 7, I relax this i.i.d. assumption and allow profitability to be persistent across regimes.

I show that an increase in  () can reduce the probability of default, if the tradeoff theory

is operative.

The following proposition describes aspects of optimal behavior when the borrowing

constraint binds so b ( ()) =  ( ()).

Proposition 11 If b ( ()) =  ( ()), then

1. after tax income, (1− )  () ≡ (1− )
h
 ()−  () b ( ())i ≤ 0, with strict in-

equality if  ()  Φ

2. after-tax income (1− )  () is strictly increasing in  ()

3. if  is not a time of regime change, then dividends,  () = (1− )  () ≤ 0.
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Statement 1 of Proposition 11 implies that if the after-tax income of the firm is positive,

then the borrowing constraint, b ( ()) ≤  ( ()), cannot bind. Statement 2 is that

the after-tax income of the firm is strictly increasing in  () if the borrowing constraint is

binding, that is, if  ()  ∗.20 Statement 3 is that if the borrowing constraint is binding,

and if there is not a change in regime, the shareholders of the firm will not receive positive

dividends. Negative dividends in this context means that the shareholders inject funds

into the firm to cover the negative flow of after-tax income because the binding borrowing

constraint prevents the firm from issuing additional debt to cover the negative after-tax

income.

3 Three Scenarios

∗ is defined in equation (16) as the value of  that maximizes  () over the interval

 (Φ) ≤  ≤  (Φ). In this section, I define and analyze three scenarios that are defined

by whether the lower bound ≥  (Φ) strictly binds, the upper bound ≤  (Φ) strictly

binds, or neither bound strictly binds. Formally, Scenario I is the set of configurations of

, , ,  , and  () for which the lower bound on  strictly binds, Scenario II is the set of

configurations of , , ,  , and  () for which neither bound strictly binds, and Scenario

III is the set of configurations of , , ,  , and  () for which the upper bound on 

strictly binds.

The definition of ∗ in equation (16), ∗ ≡ argmax (Φ)≤≤ (Φ) (), implies that

∗ = argmax


 () + 1 ( −  (Φ)) + 2 ( (Φ)−)  (19)

where 1 ≥ 0 is the multiplier on the constraint  (Φ) ≤  and 2 ≥ 0 is the multiplier on
the constraint  ≤  (Φ). The first-order condition for optimal  is

0 (∗) = 2 − 1 (20)

20If  () ≥ ∗, after-tax income, (1− )
h
 ()−  () b ( ())i, is also strictly increasing in  () because

 () and b ( ()) are invariant to  () when  () ≥ ∗. Therefore, after-tax income is strictly increasing

in  (), regardless of whether the borrowing constraint binds.
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and the complementary slackness conditions are

1 (
∗ −  (Φ)) = 0 (21)

and

2 ( (Φ)−∗) = 0 (22)

Three distinct scenarios are defined according to whether the multipliers 1 and 2 are

positive or zero:21

• Scenario I: 1  0 and 2 = 0

• Scenario II: 1 = 2 = 0

• Scenario III: 1 = 0 and 2  0

The remainder of this section will focus on Scenarios I and III. I will analyze Scenario

II in more detail in Section 4.

3.1 Scenario I

In Scenario I, 1  0 and 2 = 0, so the first-order condition in equation (20) implies

0 (∗) = −1  0. Thus, the marginal interest tax shield, which provides an incentive

to increase the amount of debt, is overwhelmed by the marginal expected cost of losing

the continuation value of the firm in default. The complementary slackness condition in

equation (21) implies ∗ =  (Φ). Therefore, the optimal value of debt is  (Φ), which

is the highest value of debt that the firm can issue without facing a positive probability of

default.

Proposition 12 Define 0 ≡ 1
+

h
Φ +



 {}

i
. In Scenario I (where 1  0 and

2 = 0), for all  () ∈ [ΦΦ ],

1. b ( ()) = ∗ = 0, which is invariant to  () and 

2.  ( ()) = 1−
+

( ()−Φ) 

21Since  (Φ) 6=  (Φ), 1 and 2 cannot both be positive.
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3.  ( ()) = 0 +
1−
+

( ()−Φ) 

Proposition 12 states that in Scenario I, the optimal value of debt equals 0, which is

invariant to the tax rate and invariant to the current value of EBIT. The invariance of

optimal debt with respect to the tax rate reflects the fact that at the margin the tax shield

is so weak that it is completely outweighed by the cost of default. Therefore, shareholders

choose not to expose the firm to the probability of default. Nevertheless, because the tax

rate  is positive, the firm takes advantage of the tax shield on interest by choosing the

maximal amount of debt that does not risk default. In fact, when  () = Φ, the firm uses

the tax shield to completely insulate its value from taxes. That is, when  () = Φ, the

ability to issue bonds and deduct interest payments increases the total value of the firm to

 (Φ) = 0 =
1

+

h
Φ +



 {}

i
from 1−

+

h
Φ +



 {}

i
in the absence of debt.

3.2 Scenario III

In Scenario III, 1 = 0 and 2  0, so the first-order condition in equation (20) implies

that 0 (∗)  0. The complementary slackness condition in equation (22) implies that

∗ =  (Φ). Thefore, since  () is strictly concave in , 0 ()  0 for all  ∈
[ (Φ)   (Φ)]. The marginal intereset tax shield associated with an increase in debt

overwhelms the increased exposure to default associated with an increase in debt. Therefore,

the firm will issue as much debt as it can, driving shareholders’ equity to zero, so thatb ( ()) ≡  ( ()) for all  () ∈ [ΦΦ ].

Proposition 13 In Scenario III (where 1 = 0 and 2  0),  (Φ) =
1

+
[Φ + (1− )] 

The expression for the value of the firm at  () = Φ depends on  as well as on the

exogenous parameters , , Φ , and . In the special case in which default destroys the

entire value of the firm ( = 1), Proposition 13 implies  (Φ) =
1

+
Φ , which is simply

the expected value of the flow of Φ from the current time until the next regime change,

which triggers default because the new value of  ( ()) will be less than b (Φ) =  (Φ).

In this special case, the firm value,  (Φ), is completely insulated from taxes.
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4 Scenario II

Suppose that the firm is in Scenario II, so 1 = 1 = 0. Therefore, equation (20) implies

that 0 (∗) = 0. Differentiating  () in equation (10) with respect to  and evaluating

0 () at  = ∗ yields

0 (∗) = 
£
+ 

¡
 −1 (∗)

¢¤− (1− ) −10 (∗)∗
¡
 −1 (∗)

¢
= 0 (23)

The following lemma provides a simple expression for  −10 (∗), which appears in the

second term in equation (23).

Lemma 14 If 1 = 2 = 0, then  0 (∗) = 1−
+

and  −10 (∗) = +

1− , where ∗ ≡
 −1 (∗) 

Use Lemma 14 to rewrite equation (23) as

0 (∗) = 
£
+ 

¡
 −1 (∗)

¢¤− (+ )∗
¡
 −1 (∗)

¢
= 0 (24)

Because  () is strictly concave, there is at most one value of ∗ that satisfies equation

(24).22 For  () ≥ ∗ ≡  −1 (∗), the borrowing constraint does not bind and the optimal

amount of debt is ∗; for  ()  ∗ ≡  −1 (∗), the borrrowing constraint binds and the

optimal value of debt equals the value of the firm,  ( ()).

4.1 The Tradeoff Theory

When the borrowing constraint is not binding, the optimal amount of debt is ∗, which

satisfies the first-order condition, 0 (∗) = 0, in equation (24).23 To interpret that first-

22There will exist a value of ∗ that satisfies equation (24) if  ≤  ≤  , where  and  are defined

in Proposition 15.
23Flotation costs for bonds can lead to a modification of the tradeoff theory. For instance, let  () be

the cost of issuing  units of bonds, and assume that  (0) = 0, 0 () ≥ 0, and 00 () ≥ 0 for  ≥ 0.
Subtracting these flotation costs from operating profits, the value of the firm in equation (9) can be written as

 ( ()) = 1
+

max≤ (())
h
(1− ) () +  + e ()

i
, where e () ≡  () −  () is a "modified

tradeoff function." Since  () is strictly concave and  () is convex, the modified tradeoff function,e (), is strictly concave. Define e∗ ≡ max≤ (Φ) e (). Suppose that 0 ( (Φ))  , so that if

 ≤  (Φ), then e0 () = 0 () − 0 () = − 0 ()  0, where the first equality follows from the
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order condition in terms of the tradeoff theory, I rewrite it as

 (+  (∗)) = (+ )∗ (∗)  (25)

where ∗ ≡  −1 (∗). First consider the special case in which  = 1 so that default

completely destroys the firm. In this case, the interest rate in equation (3) is + (∗) so

the left hand side of equation (25) is simply  (), which is the marginal interest tax shield

associated with an additional dollar of debt. To see why, suppose that the firm issues an

additional dollar of debt at time 0, pays interest + (∗), then repays the dollar of debt

at time 0 +  with probability − (
∗), which is the probability that it is not optimal

to default at 0 +  or earlier. Therefore, if the interest rate were to remain unchanged at

 +  (∗), the additional dollar of debt would increase the expected present value of the

firm’s after-tax cash flow over the next interval  of time by 1− (1− ) (+  (∗)) −
−− (

∗), which equals the left hand side of equation (25) for small . Thus, the left

hand side of equation (25) is the marginal interest tax shield associated with an additional

dollar of debt.

The right hand side of equation (25) is the marginal cost associated with the increased

probability of default resulting from an additional dollar of debt. By increasing the prob-

ability of default, a one-dollar increase in debt increases the default premium, and hence

increases the interest rate,  +  (∗), paid by the firm. To measure the increase in

the probability of default, define  () as the threshhold value of  that triggers default

when outstanding debt is . Formally,  ≡  ( ()) so 1 =  0 ( ())0 (). Since

 0 (∗) = 1−
+

(Lemma 14), 0 (∗) = +

1− . Therefore, a one-unit increase in  will in-

crease the threshhold level of  at which default occurs by 0 (∗) = +

1− and thus increase

the probability of default by  (∗)0 (∗) =  (∗) +
1− , which, in the case with  = 1,

increases the interest rate by  (∗) +
1− , and increases the total flow of after-tax interest

definition of e (), the second equality follows from the definition of  (), which implies  () ≡  for

 ≤  (Φ), and the final inequality follows from 0 ( (Φ))   and the convexity of  (). Therefore,

 (Φ)  e∗ ≤  (Φ) and for any  () ≥  −1
³ e∗´, the optimal amount of debt, b ( ()), equals e∗, and

hence is invariant to  (). The optimal amount debt for these values of  (), satisfies e0 ³ b ( ())´ = 0,
which can be viewed as a "modified tradeoff theory." Note that when e0 () = 0, 0 () = 0 ()  0.

In this case, the marginal interest tax shield is equated to the marginal expected cost of default, plus the

marginal flotation cost, 0 (). When this modified tradeoff theory holds, the optimal leverage ratio will be
a declining function of  (), as in the text.
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payments at time 0 by  (
∗) (+ )∗, which is the right hand side of equation (25) when

 = 1. Therefore, equation (25) represents the equality of the marginal interest tax shield

and the marginal cost associated with increased exposure to default, which is the essence of

the tradeoff theory.

In the more general case in which  ≤ 1, the interpretation of equation (25) in terms
of the tradeoff theory is more nuanced. Define  (0) as the flow of (pre-tax) interest

payments at time  if the amount of outstanding debt is  and if the firm defaults if and

only if   0. Thus,

 (0) ≡ (+  (0)) −  (1− )

Z 0

Φ

 ()  ()  (26)

so that  (  ()) =  (), where  () is the interest rate in equation (3). If the value

of  that triggers default, 0, were to remain unchanged, an increase in debt would increase

interest payments by
(∗0)


=  +  (0). Therefore, when  = ∗ and 0 = ∗, a

one-dollar increase in  increases the tax shield associated with interest deductibility by


 (∗ ∗)


=  (+  (∗))  (27)

Therefore, the left hand side of equation (25) is the marginal tax shield.

Now consider the impact on interest payments of an increase in 0, holding the amount

of debt unchanged. Partially differentiating equation (26) with respect to 0 , evaluating

this derivative at 0 = ∗, and using  (∗) = ∗, yields

 (∗ ∗)
0

=  (∗)∗ (28)

Therefore, equation (28) implies that if 0 were to increase by 
0 (∗), as would be the case

if  were to increase by one dollar, after-tax interest payments would increase by

(1− )
 (∗ ∗)

0
0 (∗) = (+ ) (∗)∗ (29)

The left hand side of equation (29) is the marginal expected default cost, measured in flow

terms, that reflects the increased probability of default when  increases by one dollar.
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Specifically, a one-dollar increase in  increases the default threshhold 0 by 
0 (∗) = +

1− ,

thereby increasing total interest costs by
(∗∗)

0
0 (∗) and after-tax interest costs by

(1− )
(∗∗)

0
0 (∗), which is the left hand side of equation (29). The right hand side of

equation (29) is identical to the right hand side of equation (25), so the right hand side of

equation (25) is the marginal expected cost of default associated with a one-dollar increase

in  Thus, equation (25) is a statement of the tradeoff theory, equating the value of the

interest tax shield associated with an additional dollar of debt, expressed per unit of time,

and the marginal cost of increased exposure to default resulting from this increased debt,

also expressed per unit of time.

4.2 Firm in Scenario II with  () ≤ ∗

Suppose that the firm is in Scenario II and that  () ≤ ∗. In this case, the firm issues as

much debt as it can, driving the equity value to zero, so  ( ()) = b ( ()) and  ( ()) =
0. Substitute b ( ()) for  ( ()) in equation (14), then multiply both sides of the resulting
equation by +  and subtract 

³ b ( ())´ from both sides to obtain

(+ ) b ( ())−
³ b ( ())´ = (1− ) () + , if  () ≤ ∗. (30)

Differentiate both sides of equation (30) with respect to  () to obtain the ordinary differ-

ential equation (ODE)24,25³
+ −0

³ b ( ())´´ b0 ( ()) = 1−  . (31)

The boundary condition for the ODE in equation (31), which takes the form of a value-

matching condition, is b (∗) = ∗ (32)

24This ODE is solved in the Online Appendix in Section E.
25Differentiate equation (31) with respect to  () to obtain

³
+ −0

³ b ( ())´´ b00 ( ()) −

00
³ b ( ())´³ b0 ( ())

´2
= 0. Differentiating  () in equation (10) with respect to  implies that

0 ()   (+ )   +  so that b00 ( ()) has the same sign as 00
³ b ( ())´, which is negative if

  
1+

and  0 () ≥ 0.
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Evaluate equation (31) at  () = ∗ and use 0 (∗) = 0 and the boundary condition in

equation (32) to obtain b0 (∗) =
1− 

+ 
 (33)

Since equation (33) was derived from the ODE that holds for  ≤ ∗, the derivative

in equation (33) is actually the left-hand derivative. Since  ( ()) ≡ b ( ()) for Φ ≤
 () ≤ ∗, equation (33) implies that the left-hand derivative of  ( ()) at  () = ∗ is
1−
+
. Proposition 7 implies that the right-hand derivative of  ( ()) at  () = ∗ is also

1−
+
. Therefore, the right-hand and left-hand derivatives of  ( ()) at  () = ∗ are equal

to each other.

The value-matching condition in equation (32) is illustrated in Figure 1 at point , where

the curve through  and , which represents  () for  ≤ ∗, meets the line segment  ,

which represents  () for  ≥ ∗. As discussed, the left-hand and right-hand derivatives of

 () are equal to each other at  = ∗, so the meeting of the curve through  and  and

the line segment  is smooth, that is, differentable, at point .26

5 Threshhold Tax Rates

The tax rate,  , determines whether the firm is in Scenario I, II, or III. For low values of

  0, the marginal interest tax shield is so small that it is overwhelmed by the marginal

expected default cost, and hence the firm is in Scenario I, where it does not expose itself to

any chance of default. For high values of  , the marginal interest tax shield is so strong

that the firm always borrows as much as lenders are willing to lend, and hence the firm is in

Scenario III. For intermediate values of  , defined in the following proposition, the firm is in

Scenario II, where the tradeoff theory is operative if  () ≥ ∗, and the borrowing constraint

binds if  ()  ∗.

26This smooth meeting of the curve through  and  and the line segment  is superficially similar to

the smooth-pasting condition that arises in optimal stopping problems with an underlying diffusion process.

In those problems, the value-matching and smooth-pasting conditions are two separate boundary conditions

that pin down two parameters in the solution. In the current framework, the fundamental stochastic variable

has finite variation whereas in optimal stopping problems with a diffusion process, the stochastic variable

has infinite variation. In the current framework, equality of the left-hand and right-hand derivatives of

 ( ()) at  = ∗ arises as a consequence of the value-matching condition. That equality does not impose
any additional structure or restriction on the solution.
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Figure 2: Three Scenarios

Proposition 15 Define  ≡ 
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³
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 {}

´
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 ≡  
+

 (Φ) (Φ + (1− ))  0. Suppose   .
27

• (1) If   , then the firm is in Scenario I and b ( ()) = 1
+

h
Φ +



 {}

i
for

all  () ∈ [ΦΦ ].

• (2) If  ≤  ≤ , then the firm is in Scenario II and

(a) b ( ()) = ∗ for  () ≥ ∗

(b) b ( ()) =  ( ()) for  () ≤ ∗.

• (3) If     
1+
, then the firm is in Scenario III and b ( ()) =  ( ()) for all

 () ∈ [ΦΦ ].

Figure 2 illustrates the three scenarios and displays the behavior of debt and the leverage

ratio in each scenario. The tax rate  is measured along the horizontal axis and  is measured

27The interval  ≤  ≤  is non-vacuous if 

≤ 1. Using the definitions of  and  ,




=

 (Φ+



{})


+

(Φ+(1−))
(Φ)

(Φ)
≤


 (Φ+



{})


+
Φ

(Φ)

(Φ)
, where the inequality follows from (1− ) ≥ 0. Therefore,



≤ (1 + )

Φ+{}
Φ

(Φ)

(Φ)
, where  ≡ 


. As an example, if  () is the density of a uniform distribution,

then
(Φ)

(Φ)
= 1 and  {} = 1

2
(Φ +Φ), so



≤ 1

2
(1 + )

(2Φ+(Φ+Φ))

Φ
= 1

2
(1 + )

³
(2 + ) Φ

Φ
+ 

´
.

A sufficient condition for 

≤ 1 in this example is 1

2
(1 + )

³
(2 + ) Φ

Φ
+ 

´
≤ 1, which is satisfied if, for

instance, Φ ≤ 0 and (1 + )  ≤ 2, which is satisied for 0 ≤  ≤ 1.
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along the vertical axis. Scenario I prevails for   , Scenario II prevails for  ≤  ≤  ,

and Scenario III prevails for     
1+
. The ordinate of each point on the thick line

that is horizontal at  = Φ in Scenario I, upward sloping in Scenario II, and horizontal at

 = Φ in Scenario III is the value of 
∗ for each value of  . Everywhere above this line,

that is, in Scenario I and in the upper portion of Scenario II, which is labelled IIA,  ()  ∗

so the borrowing constraint is not binding and b ( ()) = ∗. Since b ( ()) is invariant
to  and  ( ()) is strictly increasing in , the optimal leverage ratio,  ( ()) ≡ (())

 (())
,

is strictly decreasing in  throughout Scenarios I and IIA. Everywhere below this line, that

is, in the lower portion of Scenario II, which is labelled IIB, and in Scenario III,  ()  ∗,

so the borrowing constraint is binding and the leverage ratio is invariant to .

6 Effect of a Rightward Translation of  ()

I have examined the relationship between optimal debt and contemporaneous profitability,

 (). Now I turn attention to the relationship between optimal debt and the prospects for

future profitability represented by the distribution function  (). Specifically, I examine

an improvement in future prospects for profitability that is a rightward translation of the

distribution  () to a new distribution, indexed by  ≥ 0,  () ≡  (−) on the

support [Φ () Φ ()], where Φ () = Φ + , Φ () = Φ +  and [ΦΦ ] is

the support of the original distribution  (). For a given value of , let  ( () ;) be

the value of the firm when  =  (), let b ( () ;) be the optimal value of debt when
 =  (), let  ( () ;) be the instantaneous probability of default when  =  (), let

 (;) be the tradeoff function  (), and let ∗ () and ∗ () be the values of ∗ and

∗, respectively.

The following proposition states that a rightward translation of the distribution  ()

increases the value of the firm,  ( () ;), for any  () in the intersection of the supports

of the original distribution and the new distribution.

Proposition 16 For 0    Φ − Φ and any  () ∈ [Φ +Φ ],  ( () ;) 

 ( () ; 0).
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6.1 Effect of a Rightward Translation of  () in Scenario I

In Scenario I, the firm issues the amount of debt shown in Proposition 12, which is the

highest amount of debt that it can issue without exposing itself to a chance of default.

Proposition 17 In scenario I,

1.
 (();)


= 1


 0

2.
(();)


= − 1−

+
 0

3.
 (();)


= +

(+)
 0

4.
(();)


 0

A rightward translation of the distribution  () by one unit increases EBIT by one

unit in every state, which increases the expected present value of EBIT by 1

, since the firm

will never default and hence will receive a stream of EBIT forever. Therefore, the optimal

amount of debt increases by 1

units (Statement 1). A rightward translation of  () reduces

the value of equity for any given  () because the increase in the firm’s debt outweighs the

increase in total firm value resulting from improved future prospects of the firm (Statement

2).28 That is, the decline in the value of equity for a given  () is smaller than the increase in

the optimal amount of debt, so that, consistent with Proposition 16, a rightward translation

of  () increases the total value of the firm for any given  () (Statement 3). Finally, the

increase in debt and the decrease in the value of equity increase the leverage ratio for any

given  () (Statement 4).

6.2 Effect of a Rightward Translation of  () in Scenario II

In Scenario II, 1 = 2 = 0 so that
(∗();)


= 0, where ∗ () =  (∗ () ).

Therefore, the first-order condition in equation (24) can be written as

 (∗ () ;)


=  (+  (∗ ()−))−  (+ ) (∗ () ;)  (∗ ()−) = 0

(34)

28However, the entire distribution of  () shifts to the right so the unconditional expected value of  ( ()),

which is 1−
+

( {}−Φ) in Scenario I, is unchanged since Φ()


=

{}


= 1.
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Lemma 18 If 0    
1+

and  0 () ≥ 0 for all , then ∗0 ()  1.

To understand why ∗0 ()  1, suppose that ∗ () = ∗ (0) + so that a rightward

translation of the distribution by increases ∗ by, which would leave the  (∗ ()−)

and  (∗ ()−) unchanged but would increase  (∗ () ;) through the direct effect

of an increase in  on the firm’s value and through the effect in Proposition 16. Therefore,

the marginal interest tax shield in equation (34) would remain unchanged, but the marginal

expected cost of default would increase, thereby reducing the reducing the optimal amount

of debt and hence reducing the associated critical value ∗ () below ∗ (0) +.

To further explore the impact of a translation of the distribution  (−), differentiate

equation (34) with respect to  and use equation (34) to substitute 
+ (∗()−)
(∗()−) for

 (+ ) (∗ () ) to obtain29

 [∗0 ()− 1] (∗ ()−) =  (+ ) (∗ ()−)
 (∗ () ;)


 (35)

where

 () ≡  ()− (+  ())
 0 ()
 ()

. (36)

The following proposition uses equation (35) to examine the impacts on  ( () ;),

∗ (), and ∗ () of a rightward translation of the distribution  ().

Proposition 19 If 0    
1+

and (2)  0 () ≥ 0 for all , then

1.
 (();)


 0.

2. 
³
 (∗();)



´
=  (∗0 ()) = − ( (∗ ()−)).

3. ∗0 ()  0, if  (∗ ()−) ≥ 0

Since an increase in  does not increase ∗ () by an amount greater than or equal to

the increase in , it reduces  (∗ ()−) and hence reduces the probability of default

if b ( () ;) = ∗ (). Alternatively, if b ( () ;)  ∗ (), an increase in  also

29  (
∗();)


=
 (∗();)


∗0 ()+  (∗();)


is the effect on  (∗) of a small increase in . Propo-

sition 16 implies that
 (∗();)


 0, but does not imply that

 (∗();)


is positive. Indeed, as shown in

Statement 2 of Proposition 19,
 (∗();)


will be negative when  (∗), defined in equation (36), is positive.
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Figure 3: Rightward Translation of  () in Scenario II

reduces the probability of default, which is  ( ()−). Thus, for any  (), a rightward

translation of the distribution of profitability reduces ( () ;) (Statement 1 of Proposi-

tion 19). A rightward translation of the distribution, which is an increase in , decreases

 +  (;), which enters the marginal interest tax shield, and, since  0 (;) ≥ 0, de-
creases  (;), which enters the marginal expected cost of default. If  ()  0, then the

percentage decrease in the marginal interest tax shield exceeds the percentage decrease in

 () when  increases, and so the value of ∗ () falls. Since ∗ () =  (∗ () ;), the

fall in ∗ implies that  (∗ () ;) falls (Statement 2 of Proposition 19). Furthermore,

since an increase in  increases  (;), the value of ∗ () falls to achieve the fall in

 (∗ () ;) (Statement 3 of Proposition 19).

If the distribution  () is uniform, so that  0 () ≡ 0, it satisfies the condition in

Proposition 19 that  () is non-decreasing. With  () being uniform,  () =  () =


Φ−Φ  0. Therefore, Statements 2 and 3 of Proposition 19 imply that with a uniform

distribution, a rightward translation reduces ∗, reduces ∗, and reduces  (∗ () ;).

Figure 3 illustrates the impact of a rightward translation of  () for the case in which

 (∗ ()−)  0, which includes the uniform distribution. In response to a rightward

translation of  (), the value of ∗ falls from its initial value of ∗ (0) to its new value of

∗ () (Statement 3). In addition, the curves representing equity value, optimal debt, and

the total value of the firm move from the solid curves to the dashed curves. As shown,
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the rightward translation of  () has no effect on equity for  ≤ ∗ () and increases the

equity value by a constant amount, 1−
+

(∗ (0)− ∗ ())  0 for   ∗ (0). The total

value of the firm increases for all  () (Proposition 16), as shown by the shift from the

solid curve through , , and  , to the dashed curve that lies above it. The response of

optimal debt to a rightward translation of  () depends on whether  is high or low. For

 () ≥ ∗ (0), the optimal value of debt, which is invariant to  () in this range, falls in

response to a rightward translation of  () (Statement 2). The continuation value of the

firm increases, thereby increasing the cost of losing this future value by defaulting on debt.

In response to this increased cost of default, the firm reduces its exposure to default by

reducing the amount of debt it issues and reduces the critical value ∗. For  () ≤ ∗ (),

the optimal amount of debt increases in response to a rightward translation of  () because

the borrowing constraint is binding for low values of  () and a rightward translation of

 () increases the total value of the firm, which allows the firm to borrow an increased

amount. Finally, there is some e ∈ (∗ ()  ∗ (0)), not labelled in Figure 3, such that a
rightward translation of  () increases optimal debt for  ()  e and decreases optimal
debt for  ()  e.30
To understand the role of  () in determining the impact of a rightward translation of

 (),31 it is helpful to recall that
(∗())


in the first-order condition in equation (34)

equals the marginal interest tax shield minus the marginal expected default cost. Holding

∗ () fixed, an increase in  (1) reduces the marginal interest tax shield (by reducing

 (∗ ()−)) and, (2) if  () is uniform so that  (∗ ()) is invariant to , increases

the marginal cost of default (by increasing  (∗ () )). Therefore, an increase in 

makes
(∗())


negative. Because  (;) is strictly concave in , a reduction in 

is needed to restore the first-order condition. In order to obtain the opposite effect, that

is, in order for an increase in  to increase the optimal value of ∗, an increase in  must

reduce the marginal default cost–and must do so by more than the reduction in the marginal

30The text has shown that when  (∗)  0, ∗ ()  ∗ (0) = b (∗ (0) ; 0). Note that ∗ () =b (∗ () ;) =  (∗ () ;)   (∗ () ; 0) = b (∗ () ; 0), where the final equality follows from the

fact that the borrowing constraint binds for  () = ∗ () under the original distribution  (). Therefore,b (∗ () ; 0)  ∗ ()  b (∗ (0) ; 0). Since b (; 0) is increasing in  for   ∗ (0), there is a uniquee ∈ (∗ ()  ∗ (0)) for which b ³e; 0´ = ∗ () 
31Section D in the online appendix analyzes the case in which the unconditional distribution of EBIT is a

truncated exponential distribution and distinguishes situations in which ∗ falls in response to a rightward
translation of  () from situations in which ∗ increases in response to a rightward translation of  ().
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interest tax shield. Such a reduction in the marginal default cost requires that an increase in

 reduces  (∗ ()−), for given ∗ (), by a sufficiently large amount, which will occur

if  0 (∗) is large enough to make  (∗)  0.

The tradeoff theory of capital structure is operative only in Scenario II and, indeed, only

for  () ≥ ∗ in Scenario II. When the tradeoff theory is operative, i.e., when  () ≥ ∗,

the optimal value of debt equals ∗. In the focal case of a uniform distribution, and

more generally when  (∗)  0, Proposition 19 implies that a rightward translation of the

distribution  () reduces the optimal amount of debt and hence reduces the optimal leverage

ratio. When  ()  ∗, the tradeoff theory is not operative and b ( () ;) =  ( () ;).

Therefore, Proposition 16 implies that the optimal value of debt increases in response to a

rightward translation of  () in Scenario II when  ()  ∗. Of course, whenever  () ≤ ∗,

the optimal leverage ratio equals one and thus is invariant to a translation of  ().

6.3 Effect of a Rightward Translation of  () in Scenario III

In Scenario III, the borrowing constraint binds, that is, b ( () ;) =  ( () ;) for

all  (). Therefore, Proposition 16 implies that in Scenario III a rightward translation

of  () increases  ( ()) and hence increases b ( ()) for all  (). Of course, withb ( () ;) =  ( () ;) for all  (), the optimal leverage ratio equals one for all  () in

Scenario III.

6.4 Summary of Effects of Increased Profitability

Table 1 summarizes the findings about the impact of increased profitability on optimal debt

when  ()  0, which includes the case in which  () is uniform. The top third of the table

summarizes characteristics of the different scenarios. The tradeoff theory will be operative

if and only if (1) the borrowing constraint (B.C., in the table) is not binding and (2) the

firm faces a positive probability of default. Only Scenario IIA meets these two criteria,

so the tradeoff theory is operative only in Scenario IIA. Among the scenarios in which

the firm faces a positive probability of default (Scenarios IIA, IIB, and III), an increase in

profitability–either an increase in current profitability,  (), or a rightward translation of

the unconditional distribution  ()–can reduce the optimal leverage ratio only in Scenario

IIA, that is, only when the tradeoff theory is operative. Thus, in the context of the model
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Characteristics of Scenarios

Scenario I Scenario IIA Scenario IIB Scenario III

B.C.* not binding B.C.* not binding B.C.* binds B.C.* binds

Pr{default}=0 Pr{default}0 Pr{default}0 Pr{default}0

Not Tradeoff Tradeoff Operative Not Tradeoff Not Tradeoff

Increase in  ()

Scenario I Scenario IIA Scenario IIB Scenario IIIb unchanged b unchanged b ↑ b ↑
 ↑  ↑  ≡ 0  ≡ 0
 ↑  ↑  ↑  ↑
 ↓  ↓  ≡ 1  ≡ 1

Rightward Translation of  ()

Scenario I Scenario IIA Scenario IIB Scenario IIIb ↑ b ↓ if   0 b ↑ b ↑
 ↓  ↑  ≡ 0  ≡ 0
 ↑  ↑  ↑  ↑
 ↑  ↓ if   0  ≡ 1  ≡ 1
*B.C. refers to the borrowing constraint  () ≤ b ()

Table 1: Effects of Increased Profitability

presented here, in which the tradeoff theory can be operative or not, the empirical finding

of a negative relationship between profitability and the leverage ratio is consistent only with

the tradeoff theory being operative, if the probability of default is positive.

7 Persistence of Profitability Across Regimes

I derived the main result of this paper—that the leverage ratio is negatively related to prof-

itability when the tradeoff theory is operative—by assuming that profitability is i.i.d. across

regimes. Under this assumption, the tradeoff function  () defined in equation (10) is

independent of  (), which implies that ∗ is independent of  (). And when the tradeoff

theory is operative, optimal debt, b ( ()), equals∗ so the optimal level of debt is invariant

to  (). Therefore, the leverage ratio,
(())
 (())

, is decreasing in  () because the value of the

firm is increasing in  ().

In this section, I show that with persistence across regimes, the optimal amount of debt
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can be a decreasing function of profitability when the tradeoff theory is operative. To the

extent that higher profitability reduces the amount of debt, it strenghtens the major finding

of this paper that when the tradeoff theory is operative, the leverage ratio is a decreasing

function of profitability. And to the extent that higher profitability reduces the amount

of debt, the probability of default is a decreasing function of profitability when the tradeoff

theory is operative.

Suppose that the current time is  and let 0 denote the time of the first regime change after

. Let  ( (0)   ()) be the distribution of  (0) conditional on  (), and let  ( (0)   ()) ≡
 ((0)())

(0) be the associated conditional density. I will model stable persistence in prof-

itability across regimes by assuming that

0 ≤ − ( (
0)   ())

 ()
≤  ( (0)   ())

 (0)
. (37)

Persistence is captured by the first inequality in equation (37), which implies that if 2  1,

then the distribution of  (0) conditional on  () = 2 first-order stochastically dominates

the distribution of  (0) conditional on  () = 1. The second inequality captures stability.

For instance, it implies that a one-unit increase in  () increases each q-quantile of the

conditional distribution of  (0) by less than one unit.32

Under the conditional distribution  ( (0)   ()), the tradeoff function () in equation

(10) is

 ( ()) ≡ 
h
+ 

R
 ((0))  ( (0)   ())  (0)

i


− [+  (1− )]
R
 ((0))  ()  ( (0)   ())  (0)

(38)

and the value function is

 ( ()) =
1

+ 
max

≤ (())
[(1− ) () +  + ( ())]  (39)

32Formally, define  (  ()) implicitly by  ≡  ( (  ())   ()). Stable positive first-order serial

dependence is described by 0 ≤ (())

()
 1. Implicitly differentiate  ≡  ( (  ())   ()) with respect

to  () for a given  to obtain
(())

()
= −((0)())

()

∙
((0)())

(0)

¸−1
. Therefore, equation (37)

implies that 0 ≤ (())

()
 1.
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Proposition 20 If  ( (0)   ()) is non-increasing in  (), the value function  ( ()) is

strictly increasing in  ().

Because the conditional distribution of  (0) depends on  (), b ( ()) ≡
argmax (Φ)≤≤ (Φ) ( ()) depends on  (). If  ( ()) attains a local maximum

at ∗ ( ()) ∈ (ΦΦ), then the associated first-order condition at  = ∗ is

 (∗  ())


=
 [+  ( −1 (∗)   ())]

− (1− ) −10 (∗)∗ ( −1 (∗)   ())
= 0. (40)

The first of the two terms on the right hand side of equation (40) is the marginal interest

tax shield. Equation (37) implies that a higher value of  () leads to a lower value of

this marginal interest tax shield for any given value of , thereby reducing the incentive to

issue debt. The second term on the right hand of equation (40) is the marginal expected

cost of default. A higher value of  () could lead to a higher or a lower value of this cost

by increasing or decreasing the density,  ( −1 ()   ()). If the impact on the marginal

interest tax shield outweighs the impact of any change in the marginal expected cost of

default, the value of ∗ falls.

The instantaneous conditional probability of default at time  in equation (18) is

 ( ()) ≡ 
³
 −1

³ b ( ())´   ()´  (41)

which is the instantaneous conditional probability that a new regime will arrive with a value

of  (0) that is low enough that the new value of the firm,  ( (0)), is less than outstanding

bonds, b ( ()). Therefore,
0 ( ()) = 

³
 −1

³ b ( ())´   ()´ −10 ³ b ( ())´ b0 ( ())+

³
 −1

³ b ( ())´   ()´
 ()



(42)

The two terms on the right hand side of equation (42) correspond to channels (1) and (2),

respectively, introduced in the discussion following Proposition 10. The first term captures

the effect on the optimal amount of debt of an increase in  (), and the consequent effect

on the probability of default. The second term captures the direct effect of a change in the

conditional distribution on the probability of default at a given value of debt. If  () is i.i.d.
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across regimes, the second term is zero, and the sign of 0 ( ()) is the same as the sign ofb0 ( ()): positive when the borrowing constraint is binding, that is, b ( ()) =  ( ());

and zero when the tradeoff theory is operative, so b0 ( ()) = 0.

The following proposition describes optimal debt and the probability of default in a

simple example in which profitability is persistent across regimes.

Proposition 21 Suppose that  ( (0)   ()) is uniform on [ ( ())−   ( ()) + ],33

where   0 and 0  0 ( ())  1.

1. If the tradeoff theory is operative in a neighborhood of  (), then

(a) b0 ( ())  0

(b) 0 ( ())  0

(c) 0 ( ())  0

2. If the borrowing constraint is binding in a neighborhood of  (), then

(a) b0 ( ())  0

(b) 0 ( ()) = 1−0(())
2

 0

Proposition 21 implies that the introduction of stable persistence across regimes in the

case of a uniform distribution has different effects depending on whether the tradeoff the-

ory is operative or the borrowing constraint is binding. When the borrowing constraint

is binding, an increase in current profitability increases the value of the firm and hence in-

creases the optimal amount of debt, and increases the instantaneous conditional probability

of default, which is the same counter-intuitive result that holds with profitability is i.i.d.

across regimes.34 However, when the tradeoff theory is operative, an increase in current

profitability reduces the optimal amount of debt and hence reduces the leverage ratio, which

reinforces the major result of this paper that profitability and leverage are negatively related

when the tradeoff theory is operative. In addition, when the tradeoff theory is operative, an

increase in current profitability reduces the instantaneous conditional probability of default.

33To ensure that the support of the distribution of  (0) remains within [ΦΦ ], suppose that Φ +  ≤
 (Φ)   (Φ) ≤ Φ − .
34These results in the case of binding borrowing constraints hold much more generally. When the borrow-

ing constraint binds,  ( ()) ≡ 
³
 −1

³ b ( ())´   ()´ = 
¡
 −1 ( ( ()))   ()

¢
=  ( ()   ()),

which is (weakly) increasing in  () under the general condition for stable persistence in equation (37).
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8 Concluding Remarks

The model of debt choice developed and analyzed here is simple enough to be analytically

tractable yet rich enough to include situations in which the tradeoff theory is operative as

well as situations in which it is not operative. This model points to factors, such as the

tax rate and the level of profitability, that determine whether or not the tradeoff theory

is operative. To the extent that optimal behavior differs depending on whether or not

the tradeoff theory is operative, one could potentially use such differences in behavior to

empirically test the tradeoff theory.

The equality of the marginal tax shield resulting from interest deductibility and the

marginal cost of increased exposure to default associated with increased debt is the defining

feature of the tradeoff theory of debt. The mere presence of interest deductiblity and

deadweight costs of default is not sufficient to ensure that the tradeoff theory is operative. I

have demonstrated three situations in which the tradeoff theory is not operative despite the

presence of interest deductibility and deadweight default costs. First, if the tax rate is very

low (Scenario I), the marginal benefit of the interest tax shield associated with an additional

dollar of debt is completely overwhelmed by the marginal cost associated with increased

exposure to default resulting from an additional dollar of debt. In this case, the firm will

take advantage of the tax shield offered by interest deductibility, but will only borrow as much

as it can without exposing itself to any possibility of default. Thus, the tradeoff theory is not

operative for tax rates that are sufficiently low. Second, if the tax rate is sufficiently high

(but not so high as to violate conditions for concavity of the value function), the marginal

benefit of the interest tax shield associated with an additional dollar of debt completely

overwhelms the marginal cost associated with increased exposure to default resulting from

an additional dollar of debt. In this case, the firm borrows as much as lenders are willing

to lend. The tradeoff theory is not operative because the borrowing constraint is strictly

binding so the marginal benefit of the interest tax shield fails to equal the marginal cost of

increased default probability. Third, even if the tax rate is neither too low nor too high,

the tradeoff theory will fail to be operative if the current value of EBIT is lower than the

critical value, denoted by ∗ in the model. In this situation, a low value of EBIT implies

that the current value of firm is low, which implies that the constraint on how much the

firm can borrow is strictly binding. In this situation, the marginal benefit of the interest
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tax shield exceeds the marginal cost of increased default probability, so, again, the tradeoff

theory is not operative. The only situation in the model in which the tradeoff theory is

operative is when the tax rate is neither too low nor too high and the current value of EBIT

is higher than the critical value ∗. In this case, the optimal value of debt equates the

marginal benefit of the interest tax shield and the marginal cost of increased exposure to

default. In the baseline stochastic specification in which EBIT is i.i.d. across regimes, the

optimal value of debt is invariant to the contemporaneous value of EBIT when the tradeoff

theory is operative.

The relationship between profitability and optimal borrowing depends on whether the

tradeoff theory is operative. Table 1 summarizes the impact on optimal borrowing of an

increase in profitability. In this table are two measures of leverage–the amount of debt

issued and the market leverage ratio–and two measures of profitability–current EBIT and

the unconditional distribution from which new values of EBIT are drawn. Two major lessons

emerge from this table. First, when the tradeoff theory is operative, the leverage ratio is a

decreasing function of current EBIT; and provided that the unconditional density function

of EBIT does not slope upward too steeply, a rightward translation of the unconditional

distribution of EBIT reduces both the level of optimal debt and the optimal leverage ratio.

This finding that an increase in profitability leads to a reduction in the leverage ratio is

consistent with empirical analyses of this relationship. The second lesson is that provided

the firm faces a positive probability of default, the optimal leverage ratio is negatively related

to profitability only if the tradeoff theory is operative. So the empirical finding of a negative

relationship between borrowing and profitability is not consistent with the alternatives to

the tradeoff theory in this model.

I will conclude by describing four potential extensions of the analysis in this paper. First,

the stochastic specification for EBIT can be generalized in various ways. For instance, the

arrival rate of new regimes, , can be a random variable. In particular, the arrival of a new

regime could be specified as a new realization of the vector ( ) drawn from a distribution

 ( ). If the realizations of ( ) are i.i.d. across regimes, the analysis of this paper

is easily extended, and would allow an added dimension of cross-sectional heterogeneity

across firms35 An alternative generalization of the stochastic structure would be to allow

for persistence in EBIT across regimes, as in Section 7. The analysis in Section 7 suggests

35I thank an anonymous referee for pointing out this extension.
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that persistence across regimes strengthens the appeal of the tradeoff theory, at least in

the example in which the conditional distribution of EBIT is uniform. In that case, when

the tradeoff theory is operative, the optimal amount of bonds is decreasing in profitability,

which reinforces the finding that the leverage ratio is decreasing in profitability, consistent

with empirical findings. In addition, when the tradeoff theory is operative, the probability

of default is decreasing in profitability.

Second, an important extension of the current model is to incorporate the capital invest-

ment decision. In ongoing work (Abel 2016), I develop and analyze a model in which a firm

can accumulate (or decumulate) physical capital subject to convex costs of adjustment. In

that framework, it continues to be the case that the optimal leverage ratio is a declining

function of profitability when the tradeoff theory is operative.

A third type of extension is to include flotation costs for bonds. Footnote 23 outlines a

simple extension with flotation costs specified as a convex function of the amount of bonds.

In that case, the tradeoff theory is easily extended to a "modified tradeoff theory." Future

research could analyze a broader variety of flotation costs, including perhaps a fixed cost

component of these costs.

Fourth, the assumption of instantaneous maturity of bonds is analytically convenient

and, in fact, seems appropriate for overnight repos and commercial paper. However, future

research could examine bonds of longer maturity and address the optimal maturity of bonds.
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A Appendix: Proofs

Proof. of Proposition 1. Assume that 2  1. If
b (1) is feasible when  () = 1, then

equation (9) implies that  (2) ≥
(1−)2++( (1))

+
and  (1) =

(1−)1++( (1))
+

, so

 (2)− (1) ≥ (1−)(2−1)
+

 0. Note that b (1) ≤  (1)   (2) confirms that
b (1)

is feasible when  () = 2. Also  (2)− (1) ≥ (1−)(2−1)
+

implies that
 (2)− (2)

2−1 ≥ 1−
+



Proof. of Proposition 2. Assume that 2  1. Suppose, contrary to what is to be

proved, that b (2) ≤ b (1). Therefore, b (2) ≤ b (1) ≤  (1) ≤  (2) so bothb (1) and b (2) are feasible both when  = 1 and when  = 2. Since
b (1) is chosen

by the firm when  = 1, 
³ b (1)´  

³ b (2)´ because  () is strictly concave. Sinceb (2) is chosen by the firm when  = 2, 
³ b (2)´  

³ b (1)´ because  () is strictly
concave, which is a contradiction. Therefore, b (2) ≥ b (1) (Statement 1). To prove thatb ( ()) is non-decreasing in time, it suffices to prove that for any 2  1 where 1 and

2 are in consecutive regimes, b ( (2)) ≥ b ( (1)). Suppose, contrary to what is to be

proved, that b ( (2))  b ( (1)). Since, b ( (2))  b ( (1)) ≤  ( (1)), the firm

chooses b ( (1)) in preference to b ( (2)) when both are feasible. It would only chooseb ( (2)) in preference to b ( (1)) when  =  (2) if b ( (1)) were not feasible, that is,
if b ( (1))   ( (2)). In this situation, the firm would default on its debt, b ( (1)),
when the regime changes and  changes from  (1) to  (2) (Statement 2).

Proof. of Proposition 3. To prove the first inequality, 0   (Φ), observe that a feasible

policy would be for the firm to never issue any bonds and to stay in operation forever, because

the assumption Φ  −

 {} in equation (2) implies that  (Φ)  0. If  () = Φ

and the firm followed this all-equity policy forever, its value would be  (Φ). Therefore,

 (Φ) ≥  (Φ)  0. To prove the second inequality,  (Φ) ≤ b ( ()), observe that if
the firm’s outstanding bonds are 0   (Φ), there no possibility that the firm will choose

to default on the debt. In this case,  (0) = 0, so that (1− ) () +  +  (0) =

(1− ) () +  + 0. If 0   (Φ), then (1− ) () +  + 0  (1− ) () +

 +  (Φ), so 0   (Φ) cannot be optimal. Therefore,  (Φ) ≤ b ( ()). The

third inequality, b ( ()) ≤  (Φ), is a direct consequence of the borrowing constraint,

 ≤  (Φ), and the fact that  () is strictly increasing (Proposition 1), so that  ( ()) ≤
 (Φ).
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Proof. of Corollary 4.  (Φ) ≥ b (Φ) ≥  (Φ), where the first inequality is the

borrowing constraint that prevents the firm from borrowing an amount that leads to im-

mediate default and the second inequality follows from Proposition 3. Since  ( ()) =

 ( ())− b ( ()),  (Φ) = 0.

Lemma 22 is stated (and proved) here, immediately preceding the proof of Proposition

5, rather than in the text, because its only role is to help prove Propositions 5 and 6.

Lemma 22 . If (1)  0 ( ()) ≥ 0 for all  ∈ [ΦΦ ], (2)   
1+
, and (3)  ( ()) is

concave and strictly increasing, then  () is strictly concave in  for  ≥ 0.

Proof. of Lemma 22. Assume that  ( ()) is concave and strictly increasing. Twice

differentiate  −1 ( ()) ≡  with respect to  to obtain  −10 ( ()) 0 () ≡ 1 and

 −100 ( ()) [ 0 ()]2 +  −10 ( ()) 00 () = 0. Since  ( ()) is concave and strictly

increasing,  0 ()  0,  −10 ( ())  0, and  00 () ≤ 0, so that  −100 () ≥ 0. Twice par-
tially differentiating ()≡ 

h
+ 

R
 ()

 ()
i
 − [+  (1− )]

R
 ()

 ()  ()

with respect to yields
0 () = 

h
+ 

R
 ()

 ()
i
−  (1− ) −10 () (

−1 ())

and 00 () = [(1 + )  − ] −10 ()  (
−1 ())

−  (1− )

³
 −100 ()  (

−1 ()) +  0 ( −1 ()) [
−10 ()]

2
´

 0

for  ≥ 0 since   
1+

implies that the first term, [(1 + )  − ] −10 ()  (
−1 ()),

is negative, and  −100 () ≥ 0 and  0 ( −1 ()) ≥ 0 imply that the second term, which
follows (but does not include) a minus sign, is non-negative. Therefore, 00 ()  0, so

 () is strictly concave in  for  ≥ 0.
Proof. of Proposition 5. The proof begins by defining an operator  and proving

that  maps concave, strictly increasing functions into concave, strictly increasing functions.

Assume that (1)  ( ()) ≥ 0 is non-decreasing, (2)   
1+
, and (3)  ( ()) is concave

and strictly increasing. Lemma 22 implies that  () is strictly concave in  for  ≥ 0.
Define the operator  by

( ) ( ()) = max
≤ (())

∙
(1− ) () +  + ()

+ 

¸
 (A.1)

where  ( ( ())) defined in equation (10) depends on  ( ()). Consider 1 and 2

and the respective corresponding optimal values of debt b (1) and b (2). Equation

(14) implies  () =
(1−)++( ())

+
and b () ≤  (),  = 1 2. Now consider
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 () = 1 + (1− )2 and  () =  b (1) + (1− ) b (2) for 0 ≤  ≤ 1. Ob-

serve that  () =  b (1) + (1− ) b (2) ≤  (1) + (1− ) (2) ≤  ( ()), so that

 () is a feasible level of debt when  =  (). Observe that  (1)+(1− ) (2) =



∙
(1−)1++( (1))

+

¸
+(1− )

∙
(1−)2++( (2))

+

¸
≤ (1−)()++(())

+
≤ (1−)()++( (()))

+

=  ( ()), where the first inequality follows from the concavity of  () and the second

inequality follows from the fact that b ( ()) maximizes  () subject to  ≤  ( ()).

Therefore,  ( ()) is concave. To prove that  () is strictly increasing, consider

2  1, and observe that
b (1) ≤  (1)   (2) so that

b (1) is feasible when
 = 2. Then  (2) ≥

(1−)2++( (1))
+

and  (1) =
(1−)1++( (1))

+
, so

 (2)−  (1) ≥ (1−)(2−1)
+

 0. Therefore,  () is strictly increasing. Therefore,

the operator  maps concave, strictly increasing functions into concave, strictly increasing

functions. It remains to show that  is a contraction so that there is a unique concave,

strictly increasing function that is a fixed point of  .

Monotonicity: I will show that if 2 ( ()) ≥ 1 ( ()), then 2 ( ()) ≥ 1 ( ()).

Suppose that 2 ( ()) ≥ 1 ( ()). Use equation (A.1)

 ( ()) =
(1− ) () +  +

³ b ( ())
´

+ 
, (A.2)

where b ( ()) is the optimal value of debt when the value function is  () and  =  ().

Use the definition of  () in equation (10) to rewrite equation (A.2) as

 ( ()) =
(1− ) () +

R
 ()  ()

+ 
, (A.3)

where

 () ≡
 +  + (1− ) (1− ) () , if  ()  

 +  () , if  () ≥ 
 (A.4)
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The definition of  () in equation (A.4) implies

2 ()−1 () =

(1− ) (1− ) (2 ()− 1 ()) ≥ 0, if 2 ()  

2 ()− [ + (1− ) (1− )1 ()] , if 1 ()   ≤ 2 ()

 (2 ()− 1 ()) ≥ 0, if 1 () ≥ 



(A.5)

When 1 ()   ≤ 2 (), 2 ()−1 () = 2 ()−[ + (1− ) (1− )1 ()] ≥
2 () − [ + (1− ) (1− )] ≥ 0, so that equation (A.5) implies that 2 () ≥
1 (). Since b1 ( ()) ≤ 1 ( ()) ≤ 2 ( ()), b1 ( ()) is feasible under 2 ( ()).

Therefore,

2 ( ()) ≥
(1− ) () +

R
2

³
 b1 ( ())

´
 ()

+ 
(A.6)

and since 2 () ≥ 1 (),

2 ( ()) ≥
(1− ) () +

R
1

³
 b1 ( ())

´
 ()

+ 
 (A.7)

The right hand side of equation (A.7) equals 1 ( ()), so 2 ( ()) ≥ 1 ( ()). There-

fore, the operator  satisfies the monotonicity property of the Blackwell conditions.

Discounting: For  ≥ 0,

[ ( + )] ( ()) =
(1− ) () +

R


³
 b ( ())

´
 ()

+ 
, (A.8)

where b ( ()) is the optimal amount of debt under the value function  ( ()) + , and,

following equation (A.4),

 () ≡
 +  + (1− ) (1− ) ( () + ) , if  () +   

 +  ( () + ) , if  () +  ≥ 
 (A.9)

Since b ( ()) is feasible under  () +  , it follows that b ( ()) ≤  ( ()) + ,

which implies b ( ())−  ≤  ( ()), so that b ( ())−  is feasible under  ( ()) and
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hence

 ( ()) ≥
(1− ) () +

R
0

³
 b ( ()− )

´
 ()

+ 
. (A.10)

Subtracting equation (A.10) from equation (A.8) yields

[ ( + )] ( ())−  ( ()) ≤
R h



³
 b ( ())

´
− 0

³
 b ( ()− )

´i
 ()

+ 


(A.11)

The definition of  () in equation (A.9) implies



³
 b ( ())

´
−0

³
 b ( ()− )

´
=
[+ (1−  (1− ))] , if  () +   b ( ())

[+ ] , if  () +  ≥ b ( ())


(A.12)

Equations (A.11) and (A.12) imply that

[ ( + )] ( ())−  ( ()) ≤ + 

+ 
 (A.13)

which can be written as

[ ( + )] ( ()) ≤  ( ()) +  (A.14)

where  ≡ +

+
 1. Hence, the operator  satisfies the discounting property of the

Blackwell conditions.

Therefore, the operator  takes concave, strictly increasing functions on the domain

[ΦΦ ] into concave, strictly increasing functions on the domain [ΦΦ ], and it has a

unique fixed point  ( ()). Therefore,  ( ()) is concave on the domain [ΦΦ ].

Proof. of Corollary 6. Lemma 22 and Proposition 5 immediately imply that  () is

strictly concave in  for  (Φ) ≤  ≤  (Φ) under the conditions in this corollary.

Proof. of Proposition 7. If  () ≥ ∗, then  ( ()) ≥  (∗) = ∗ so the constraint ≤
 ( ()) will not bind and hence the optimal value of debt is b ( ()) = ∗. Therefore, for

any  () ≥ ∗, the value of  ( ()) defined in equation (14) is  ( ()) = (1−)()++(∗)
+

,

so

 (2)−  (1) =
1− 

+ 
(2 − 1) for 1 ≥ ∗ and 2 ≥ ∗. (A.15)
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Setting 1 in equation (A.15) equal to 
∗, and using  (∗) = ∗ yields

 ( ()) =
1− 

+ 
[ ()− ∗] +∗, for  () ≥ ∗. (A.16)

Since b ( ()) = ∗ when  () ≥ ∗, equations (A.16) and (15) imply

 ( ()) =
1− 

+ 
[ ()− ∗] , for  () ≥ ∗. (A.17)

For values of  ()  ∗, setting  = ∗ would violate the constraint  ≤  ( ())

because  ( ()) ≤  (∗) = ∗, so the optimal value of , b ( ()), will be less than ∗.

Since  () is strictly concave in  (Corollary 6), the constraint  ( ()) ≥  will strictly

bind for any  ()  ∗ so that

 () ≡ b () , for  () ≤ ∗

and

 ( ()) = 0, for  () ≤ ∗ (A.18)

Proof. of Corollary 8. For  () ≥ ∗, use Proposition 7 to substitute ∗ for b ( ()) and
1−
+

[ ()− ∗]+∗ for  ( ()) in the definition of the leverage ratio,  ( ()) ≡ (())
 (())

, and

divide numerator and denominator by ∗ to obtain  ( ()) = 1
1−
+

()−∗
∗ +1

. For  () ≤ ∗,

Proposition 7 implies b ( ()) =  ( ()), so the leverage ratio equals one.

Proof. of Proposition 9. If  ()  ∗, then b ( ()) =  ( ()) so  ()  b ( ()) if
and only if  ()   ( ()), i.e., if and only if    (), since  () is strictly increasing.

Therefore,  ( ()) =  ( ())   (∗). If  () ≥ ∗, then b ( ()) = ∗, so  () b ( ()) = ∗ =  (∗) if and only if  ()   (∗), i.e., if and only if   ∗, since  ()

is strictly increasing. Therefore,  ( ()) =  (∗) ≤  ( ()). Therefore,  ( ()) =

min [ ( ())   (∗)].

Proof. of Proposition 10. From equation (18), 
³ b ( ())´ ≡ 

R
 () (())  () =


R
 −1( (()))  (), so 

 (()) =  −10
³ b ( ())´  ³ −1 ³ b ( ())´´ 0. If  ()  ∗,

then
 (())
()

 0, so 
()

= 

 (())  (())()
 0. If  () ≥ ∗, then  (())

()
≡ 0, so 

()
=
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 (())  (())()
≡ 0. From equation (3),  () = +

R
 () (())

h
1− (1− )

 ()(())
i
 () =

+
R
 −1( (()))

h
1− (1− )

 ()(())
i
 (), so

()

 (()) =  −10
³ b ( ())´ ³ −1 ³ b ( ())´´

+ 
R
 −1( (()))

∙
(1− )

 ()

[ (())]2
¸
 ()  0. If  ()  ∗, then  (())

()
 0, so

()

()
=

()

 (())  (())()
 0. If  () ≥ ∗, then  (())

()
≡ 0, so ()

()
=

()

 (())  (())()
≡ 0.

Proof. of Proposition 11. Suppose that b ( ()) =  ( ()). Substitute  ( ())

for b ( ()) in the definition of  () in equation (11) and then substitute the resulting

equation into equation (12) to obtain

 ( ()) = (1− ) () +  ( −  ( ())) +  () ( ())− 

Z
 () (())

 ()  () 

(A.19)

Now substitute  ( ()) for  in equation (3) to obtain

 () ( ()) =  ( ()) + 

Z
 () (())

[ ( ())− (1− ) ()]  ()  (A.20)

Combine equations (A.19) and (A.20) to eliminate  ( ()) and obtain

0 = (1− ) ()+ ( −  ( ()))−(1− )  () ( ())+

Z
 () (())

[ ( ())−  ()]  () 

(A.21)

Substitute
R
[ ()−  ( ())]  () for  −  ( ()) in equation (A.21) and rearrange to

obtain

(1− ) [ ()−  () ( ())] = −
Z
 ()≥ (())

[ ()−  ( ())]  () ≤ 0 (A.22)

When b ( ()) =  ( ()), (1− )  () = (1− ) [ ()−  () ( ())], so equation (A.22)

implies that

(1− )  () = −
Z
 ()≥ (())

[ ()−  ( ())]  () ≤ 0, (A.23)

with strict inequality if  ()  Φ , which proves Statement 1.
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Differentiate equation (A.23) with respect to  () to obtain

 [(1− )  ()]

 ()
=  0 ( ())

Z
 ()≥ (())

 ()  0, (A.24)

which proves Statement 2. Finally, to prove Statement 3, if  is not a time of regime change,

then  = 0, so equation (6) implies  () = (1− )  () , which is non-positive from

Statement 1.

Proof. of Proposition 12. Assume that the firm is in Scenario I so that 1  0.

The complementary slackness condition in equation (21) implies ∗ =  (Φ). Therefore,

∗ =  −1 (∗) =  −1 ( (Φ)) = Φ. Proposition 7 implies

 ( ()) =
1− 

+ 
[ ()− Φ] +  (Φ) . (A.25)

Taking the unconditional expectation of both sides of equation (A.25) yields

 =
1− 

+ 
[ {}− Φ] +  (Φ) , (A.26)

where  ≡  { ()}. Evaluate () in equation (10) at =  (Φ) to obtain ( (Φ)) =

 (Φ) so that equation (14) implies

 (Φ) =
(1− )Φ +  +  (Φ)

+ 
. (A.27)

Equations (A.26) and (A.27) are two linear equations in  (Φ) and , which can be

solved to obtain  (Φ) =
1

+

h
Φ +



 {}

i
. Therefore, b ( ()) = ∗ =  (Φ) =

1
+

h
Φ +



 {}

i
. Since ∗ = Φ, Proposition 7 implies that  ( ()) =

1−
+

[ ()− Φ]

and  ( ()) = ∗ +  ( ()).

Proof. of Proposition 13. Since 2  0, equation (22) implies ∗ =  (Φ) and

hence b (Φ) =  (Φ). Evaluating equation (14) at  () = Φ , and setting b (Φ) =

 (Φ) yields  (Φ) =
(1−)Φ++( (Φ))

+
. The definition of  () in equation (10)

implies  ( (Φ)) ≡  (+ ) (Φ) − [+  (1− )]. Substituting this expression

for  ( (Φ)) into the preceding equation,  (Φ) =
(1−)Φ++( (Φ))

+
, yields  (Φ) =

(1−)Φ++(+) (Φ)−[+(1−)]
+

. Multiply both sides by + and then subract  (+ ) (Φ)
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from both sides to obtain (1− ) (+ ) (Φ) = (1− )Φ +  (1− ) (1− ) , which

implies (+ ) (Φ) = Φ +  (1− ) , or equivalently,  (Φ) =
Φ+(1−)

+
.

Proof. of Lemma 14. Since, 1 = 1 = 0, equation (20) implies 0 (∗) = 0. Since

 (Φ) ≤ ∗ ≤  (Φ) and  () is strictly increasing in , there is a unique 
∗ ∈ [ΦΦ ]

such that  (∗) = ∗. Therefore, b (∗) = ∗. Differentiating  ( ()) in equation (14)

with respect to  () yields  0 ( ()) = 1
+

h
1−  +0

³ b ( ())´ b0 ( ())
i
. Evaluating

this derivative at  () = ∗, where b ( ()) = b (∗) = ∗, and using 0 (∗) = 0, yields

 0 (∗) = 1−
+
. Therefore,  −10 (∗) = +

1− .

Proof. of Proposition 15. The proof proceeds by presenting, for each scenario, the value

of∗ that satisfies the first-order condition in equation (20) and the values of 1 and 2 that,

along with ∗, lead to satisfaction of the complementary slackness conditions in equations

(21) and (22). Because the maximand in equation (19) is strictly concave in , a value of

 that satisfies equations (20), (21), and (22) is the unique value of ∗.

(I) Assume that   . Suppose that 
∗ =  (Φ), 1  0, and 2 = 0. Since 

∗ =

 (Φ), the complementary slackness condition in equation (21) is satisfied and since 2 = 0,

the complementary slackness condition in equation (22) is satisfied. Since 2 − 1  0, the

first-order condition in equation (20) implies that 0 (∗)  0. Thus, it suffices to show that

0 ( (Φ))  0. Differentiating  () in equation (10) with respect to  and evaluating

the derivative at  = ∗ =  (Φ), and using 
∗ =  −1 (∗) =  −1 ( (Φ)) = Φ, yields

0 (∗) = −  (1− ) −10 ( (Φ))  (Φ) (Φ) . (A.28)

Since 1  0 and 2 = 0, the firm is in Scenario I. Therefore, Statement 3 of Proposition

12 implies  (Φ) = ∗ = 1
+

h
Φ +



 {}

i
and also implies that  0 ( ()) = 1−

+
for all

 (), so that  −10 ( (Φ)) =
+

1− . Therefore, equation (A.28) can be written as

0 (∗) = − 

∙
Φ +




 {}

¸
 (Φ) . (A.29)

Use the definition  ≡ 

 (Φ)

³
Φ +



 {}

´
to rewrite equation (A.29) as

0 (∗) = ( − )   0, (A.30)
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where the inequality follows from   0 and the assumption that   . Therefore,

∗ =  (Φ), 1  0, and 2 = 0 satisfy the first-order condition in equation (20) and the

complementary slackness conditions in equations (21) and (22), and the firm is in Scenario

I.

(II) Assume that  ≤  ≤  . Suppose that 1 = 2 = 0. Therefore, the comple-

mentary slackness conditions in equations (21) and (22) are satisfied. Since 2 − 1 = 0,

the first-order condition in equation (20) implies that 0 (∗) = 0. Thus, it suffices to show

that 0 () = 0 for some  ∈ [ (Φ)   (Φ)]. The proof will proceed by showing that if

∗ =  (Φ) so that 
∗ = Φ, then 0 (∗) ≥ 0 and that if ∗ =  (Φ) so that 

∗ = Φ ,

then 0 (∗) ≤ 0, so there is a ∗ ∈ [ (Φ)   (Φ)] that satisfies 
0 (∗) = 0.

Differentiate  () in equation (10) with respect to  and use Lemma 14 to obtain

0 (∗) = 
¡
+ 

¡
 −1 (∗)

¢¢− (+ )∗
¡
 −1 (∗)

¢
 (A.31)

Consider the possibility that ∗ =  (Φ), which implies 
∗ = Φ. Evaluate  () in

equation (10) at  =  (Φ) to obtain  ( (Φ)) =  (Φ), so equation (14) evaluated

at  () = Φ and b ( ()) = ∗ =  (Φ) yields  (Φ) =
(1−)Φ++ (Φ)

+
, which

implies

((1− ) + ) (Φ) = (1− )Φ +  (A.32)

Taking the expectation of both sides of  ( ()) = 1−
+

[ ()− ∗] +∗ from Proposition 7

yields

 =
1− 

+ 
[ {}− Φ] +  (Φ) , when ∗ =  (Φ) and ∗ = Φ. (A.33)

Substituting equation (A.33) into equation (A.32) and rearranging yields

 (Φ) =
1

+ 
Φ +



+ 
 {}  (A.34)

Now evaluate 0 (∗) in equation (A.31) at ∗ =  (Φ) and use the expression for  (Φ)

in equation (A.34) to obtain

0 ( (Φ)) = − 

∙
Φ +




 {}

¸
 (Φ)  (A.35)
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Use the definition  ≡ 

 (Φ)

³
Φ +



 {}

´
to rewrite equation (A.35) as

0 ( (Φ)) = ( − )  ≥ 0, (A.36)

where the inequality follows from   0 and the assumption that  ≥ .

Evaluate 0 () at  =  (Φ) to obtain

0 ( (Φ)) = ( −  (Φ)  (Φ)) (+ )  (A.37)

Evaluate  () in equation (10) at  =  (Φ) to obtain  ( (Φ)) =  (+ ) (Φ)−
[+  (1− )], so equation (14) evaluated at  () = Φ and b ( ()) = ∗ =  (Φ)

yields  (Φ) =
(1−)Φ++(+) (Φ)−[+(1−)]

+
, which implies

 (Φ) =
1

+ 
[Φ + (1− )]  (A.38)

Substitute equation (A.38) into equation (A.37) and use the definition

 ≡  
+

 (Φ) (Φ + (1− )) to obtain

0 ( (Φ)) = ( − ) (+ ) ≤ 0 (A.39)

where the inequality follows from  +   0 and the assumption  ≤  . Therefore, there

is a ∗ ∈ [ (Φ)   (Φ)] for which 0 (∗) = 0 when 1 = 2 = 0. Hence, the firm is

in Scenario II. Proposition 7 immediately implies that b ( ()) = ∗ for  () ≥ ∗ andb ( ()) =  ( ()) for  () ≤ ∗.

(III) Assume that 
1+

    . Suppose that ∗ =  (Φ), 1 = 0, and 2  0,

so that the firm is in Scenario III. Since 1 = 0, the complementary slackness condition

in equation (21) is satisfied. Since ∗ =  (Φ), the complementary slackness condition

in equation (22) is satisfied. Since 2 − 1  0, the first-order condition in equation (20)

implies that 0 (∗)  0. Thus, it suffices to show that 0 ( (Φ))  0. Differentiating

 () in equation (10) with respect to and evaluating the derivative at  = ∗ =  (Φ),

and using ∗ =  −1 (∗) =  −1 ( (Φ)) = Φ , yields

0 ( (Φ)) =  (+ )−  (1− ) −10 ( (Φ))  (Φ) (Φ) . (A.40)
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Proposition 1 implies that  0 ( (Φ)) ≥ 1−
+
, so  −10 ( (Φ))  +

1− and equation

(A.40) implies

0 ( (Φ)) ≥  (+ )−  (+ ) (Φ) (Φ)  (A.41)

Use  (Φ) = 1
+

[Φ + (1− )] from Proposition 13 and the definition

 ≡  
+

 (Φ) (Φ + (1− )) to rewrite equation (A.41) as

0 ( (Φ)) ≥ ( − ) (+ )  0 (A.42)

where the second inequality follows from +   0 and    . Therefore, 
∗ =  (Φ),

1 = 0, and 2  0 satisfy the first-order condition in equation (20) and the complementary

slackness conditions in equations (21) and (22), and the firm is in Scenario III.

Proof. of Proposition 16. Let  ( () ; 0) be the optimal taxable income under the

original distribution ( = 0) and recall from Statement 2 of Proposition 11 and footnote

20 that  ( () ; 0) is strictly increasing in  (). Consider the following feasible financ-

ing plan under  (): (1) if  () ∈ [Φ () Φ (0)], set  ( () ;) = b ( () ; 0),
where b ( () ; 0) is the optimal amount of debt under 0 (), and pay the same de-

fault premium that would be paid under 0 (), so that taxable income  ( () ;) =

 ( () ; 0). It will be verified below that the default premium under the new distrib-

ution,  (), is no higher than under the original distribution, 0 (). (2) if  () ∈
(Φ (0) Φ ()], set  ( () ;) = b (Φ (0) ; 0) and pay the same default premium that

would be paid under 0 () when  () = Φ (0), so that  ( () ;) =  (Φ (0) ;) +

 () − Φ (0) =  (Φ (0) ; 0) +  () − Φ (0)   (Φ (0) ; 0) (3) at any future date of

regime change, , (a) if  () ∈ [Φ () Φ (0)], default if and only if the firm would

optimally default under 0 () when  =  () and (b) if  () ∈ (Φ (0) Φ ()], do

not default. For  (0) ∈ [Φ () Φ (0)], the firm will have the same cash flow  ()

as it would under the optimal policy under 0 (). However, with the financing plan

under  (), the continuation value under  () will exceed the continuation value un-

der 0 () by
R Φ()

Φ(0)
(1− )  ( () ;)  (−) − R Φ()

Φ(0)
(1− )  ( () ; 0)  () 

(1− )  (Φ (0) ; 0)
R Φ()

Φ(0)
 (−) − (1− )  (Φ () ; 0)

R Φ()

Φ(0)
 () =

(1− )  (Φ (0) ; 0)
R Φ(0)

Φ(0)−  () − (1− )  (Φ () ; 0)
R Φ(0)+

Φ(0)
 ()  0, where the

first inequality follows from  ( () ;)   (Φ (0) ; 0) if  ()  Φ (0), as shown above,

and from the fact that  ( () ; 0) is strictly increasing in  () as shown earlier in this proof;
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the second inequality follows from  (Φ (0) ; 0)   (Φ () ; 0) and
R Φ(0)

Φ(0)−  () R Φ(0)+

Φ(0)
 () since  () ≡  0 () is non-decreasing. Therefore, the continuation value un-

der () exceeds the continuation value under0 (), and hence  ( () ;)   ( () ; 0)

for   0. Finally, because the continuation value of the firm for any given  () is higher

under  () than under 0 (), the default premium under  () is no higher than under

0 ().

Proof. of Proposition 17. FromProposition 12, b ( () ;) = 1
+

h
Φ () +



 {;}

i
in Scenario I, so

 (();)


= 1
+

h
Φ()


+ 



{;}


i
, where {;} = R Φ()

Φ()
 (−).

Since
Φ()


=

{;}


= 1,
 (();)


= 1

+

³
1 + 



´
= 1


(Statement 1). From Proposi-

tion 12,  ( () ;) = 1−
+

( ()−Φ ()) in Scenario I, so
(();)


= − 1−

+

Φ()


. Since

Φ()


= 1,

(();)


= − 1−

+
(Statement 2). Since  ( () ;) = b ( () ;)+ ( () ;),

 (();)


=

 (();)


+
(();)


= 1


− 1−

+
= 1



+

+
 0 (Statement 3). Since  ( () ;) ≡(();)

 (();)
,
(();)


= 1

 (();)
1


h
1−  ( () ;) +

+

i
 0, where the inequality follows from

 ( () ;) ≤ 1 and   1 (Statement 4).

Proof. of Lemma 18. Suppose that the distribution shifts to the right by   0 and

consider whether b ≡ ∗ () +  satisfies the first-order condition in equation (34) un-

der the new distribution. That is, consider whether Ψ ≡ 
³
+ 

³b− (+ )
´´
−

 (+ )
³b+ 

´

³b− (+ )

´
equals zero. The definition of b implies that b−

(+ ) = ∗ () − , so

Ψ =  (+  (∗ ()−)) −  (+ ) (∗ () + + )  (∗ ()−). Use equa-

tion (34) to replace  (+  (∗ ()−)) by  (+ ) (∗ () )  (∗ ()−) in

Ψ to obtain Ψ =  (+ )  (∗ ()−) [ (∗ () )−  (∗ () + + )]. Since

  0, we have  (∗ () + + )   (∗ () + )   (∗ () ) where the first

inequality follows from Proposition 1 and the second inequality follows from Proposition 16.

Since  (∗ ()−)  0 and  (∗ () + + )   (∗ () ), we have Ψ  0,

that is,
( (+);+)


 0 and since (from Corollary 6)  (;) is strictly concave in ,

the value of ∗ is less than 
³b+ 

´
so ∗ (+ )  b ≡ ∗ () + . Therefore, for

any   0,
∗(+)−∗()


 1, so ∗0 ()  1.

Proof. of Proposition 19. Proposition 9 implies that

 ( () ;) = min [ ( ()−)   (∗ ()−)].
 (∗()−)


=  (∗ ()−) (∗0 ()− 1)
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 0, where the strict inequality follows from  (∗ ()−)  0 and Lemma 18. Also,
 (()−)


= − ( ()−)  0. Therefore,

 (();)


 0 (Statement 1).

Since ∗ () ≡  (∗ () ;),  (∗0 ()) = 
³
 (∗();)



´
. Since   0,

 (+ )  (∗ (0))  0, and ∗0 ()  1 (Lemma 18), equation (35) implies 
³
 (∗();)



´
=

− ( (∗ ()−)). Therefore, 
³
 (∗();)



´
= 

¡
∗0 ()

¢
=− ( (∗ ()−))

(Statement 2).

Statement 2 implies that if  (∗ ()−) ≥ 0, then  (∗();)


≤ 0. Since  (∗();)


=
 (∗();)


∗0 ()+ (∗();)


, it follows that if  (∗ ()−) ≥ 0, then  (∗();)


∗0 () =

 (∗();)


−  (∗();)


≤ − (∗();)


 0, where the final inequality follows from Proposi-

tion 16. Finally, since
 (∗();)


 0 (Proposition 1), ∗0 () ≤ −

 (∗();)


 (∗();)


 0 (Statement

3).

Proof. of Proposition 20. Define the operator  as

 ( ()) = max≤ (())
(1−)()+   (())((0)())(0)+(())

+
. First, I will prove

that  maps non-decreasing functions into strictly increasing functions. Then I will prove

that  is a contraction by proving that it satisifies monotonicity and discounting.

Mapping non-decreasing functions into strictly increasing functions: Assume that  ()

is non-decreasing in . Therefore, for 2  1,  (2) ≥  (1) so
b (1) ≤  (1) ≤  (2)

and hence b (1) is feasible when  () = 2.

Substituting the definition of  ( ()) from equation (38) into the expression for

 ( ()) and evaluating the resulting expression at  = b ( ()) yields  ( ()) =
(1−)()+ ((0) (()))((0)())(0)

+
, where

 () ≡  +  + (1− ) (1− ) () , if  ()  

 +  () , if  () ≥ 
. (A.43)

Note that  () is non-decreasing in .36 Therefore,  (2) ≥
(1−)2+


((0) (1))((0)2)(0)

+


(1−)1+

((0) (1))((0)2)(0)

+
≥

(1−)1+

((0) (1))((0)1)(0)

+
=  (1), where the first inequality follows from the fact

that b (1) is feasible when  () = 2; the second inequality follows from 2  1; and

36To show that  () is non-decreasing in , it suffices to show that + +(1− ) (1− ) ≤
 + , or equivalently that 0 ≤ (1− ) − (1− ) (1− ) =  (1− ), which follows from

  0,   1,   0, and  ≥ 0.
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the third inequality follows from the facts that  () is non-decreasing in  and that

 ( (0)  2) first-order stochastically dominates  ( (0)  1). Therefore  maps non-

decreasing functions into strictly increasing functions.

Monotonicity: Suppose that 2 ( ()) ≥ 1 ( ()). Define  () to be the function

 () defined in equation (A.43) where  () is replaced by  (),  = 1 2. Therefore,

2 ( ()) ≥ (1−)()+ 2((0) 1(()))((0)())(0)
+

and

1 ( ()) =
(1−)()+ 1((0) 1(()))((0)())(0)

+
, where b1 ( ()) attains the maximum

of
(1−)()+ 1((0))((0)())(0)

+
, subject to  ≤ 1 ( ()) and b1 ( ()) is feasible under

2 ( ()) because b1 ( ()) ≤ 1 ( ()) ≤ 2 ( ()). Therefore, 2 ( ())− 1 ( ()) ≥
[2((0) 1(()))−1((0) 1(()))]((0)())(0)

+
. To prove that 2 ( ()) − 1 ( ()) ≥ 0,

it suffices to prove that 2

³
 (0)  b1 ( ())

´
− 1

³
 (0)  b1 ( ())

´
≥ 0 for all  () in the

support of  . The definition of  () implies

2 ()

−1 ()
=

(1− ) (1− ) [2 ()− 1 ()] ≥ 0, if 2 ()  

2 ()− [ + (1− ) (1− )1 ()] , if 1 ()   ≤ 2 ()

 [2 ()− 1 ()] ≥ 0, if 1 () ≥ 



It remains to prove that 2 ()−1 () ≥ 0 when 1 ()   ≤ 2 (). Observe that

when 1 ()   ≤ 2 (), 2 ()− 1 () = 2 ()− [ + (1− ) (1− )1 ()]

 2 ()− [ + (1− ) (1− )] =  (2 ()− [1− (1− )]) ≥ 0. Therefore, the
operator  is monotonic.

Discounting: Define () () to be the function  () defined in equation (A.43)

where  () is replaced by  () + , so that

(0)
³
 b() ( ())− 

´
≡

⎡⎢⎢⎣

³ b() ( ())− 

´
+

³ b() ( ())− 
´

+(1− ) (1− ) ()

⎤⎥⎥⎦ , if  ()  b() ( ())− 

"

³ b() ( ())− 

´
+ ()

#
, if  () ≥ b() ( ())− 
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and

()
³
 b() ( ())

´
≡

"
 b() ( ()) +  b() ( ())

+ (1− ) (1− ) ( () + )

#
, if  () +   b() ( ())

 b() ( ()) +  ( () + ) , if  () +  ≥ b() ( ())

.

For  ≥ 0, [ ( + )] ( ()) =
(1−)()+ ()((0) ()(()))((0)())(0)

+
. Since b() ( ()) ≤

 ( ()) +  , b() ( ()) −  ≤  ( ()) and is feasible under  ( ()). Therefore,

 ( ()) ≥ (1−)()+ (0)((0) ()(())−)((0)())(0)
+

. Therefore, [ ( + )] ( ()) −
 ( ()) ≤


[()((0) ()(()))−(0)((0) ()(())−)]((0)())(0)

+
, where

()
³
 b() ( ())

´
−(0)

³
 b() ( ())− 

´ =
+ [1−  (1− )], if  () +   b() ( ())

+ , if  () +  ≥ b() ( ())
.

Therefore, [ ( + )] ( ()) −  ( ()) ≤ , where  ≡ +

+
 1. Therefore, 

satisfies the discounting property and hence  is a contraction. Therefore,  () is strictly

increasing.

Proof. of Proposition 21. The uniform distribution in this proposition is  ( (0)   ()) =
(0)−(())+

2
. First consider the case in which the tradeoff theory is operative in a neighbor-

hood of  (), which implies that b ( ()) satisfies the first-order condition in equation (40).
This first-order condition can be written as 

h
+ 

 −1()−(())+
2

i
−(1− ) −10 () 1

2
=

0, the second-order condition that must hold for the tradeoff theory to be operative is that

the left hand side of this first-order condition is decreasing in . An inrease in  () reduces

the first term on the left hand side, which is the marginal interest tax shield. Therefore, the

value of  must fall to satisfy the first-order condition. Hence, b0 ( ())  0 (Statement

1a). Since b0 ( ())  0 and from Proposition 20  ( ()) is strictly increasing in  (),

the leverage ratio,  ( ()) ≡ (())
 (())

is strictly decreasing in  () (Statement 1b). With

 ( (0)   ()) = (0)−(())+
2

, the conditional probability of default in equation (41) is

 ( ()) =
 −1( (()))−(())+

2
regardless of whether the tradeoff theory is operative or the

borrowing constraint is binding. If the tradeoff theory is operative, b0 ( ())  0 so an

increase in  () reduces  −1
³ b ( ())´. An increase in  () increases  ( ()). Therefore,
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because  −1
³ b ( ())´ decreases and  ( ()) increases, the probability of default,  ( ())

falls. (Statement 1c).

Now consider the case in which the borrowing constraint is binding in a neighborhood of

 (). Therefore, b ( ()) ≡  ( ()), and hence Proposition 20 implies that b0 ( ()) 

0 (Statement 2a). Since b ( ()) ≡  ( ()), we have  −1
³ b ( ())´ =  (), so the

expression for  ( ()) can be written as  ( ()) =
()−(())+

2
. Therefore, 0 ( ()) =

1−0(())
2

 0, where the inequality follows from the assumption 0  0 ( ())  1 (Statement

2b).

B Calculation of the Value of the Firm

This Appendix derives the expression for the value of the firm in equation (9). First,

substitute equation (6) into equation (8) to obtain

 ( ()) = max
≤ (())



( R 1

(1− )  () −(−)+

R 1

−(−)

+−(1−)max
h
 ( (1))−−1

 0
i )

 (B.1)

Set  () =  () for all  in [ 1),  = ,  = 0 for all  in ( 1) and −1
=  to

obtain

 ( ()) = max
≤ (())



½
(1− )  ()

Z 1



−(−)+ + −(1−)max [ ( (1))− 0]

¾


(B.2)

The density of 1 is 
−(1−) so



©
−(1−)

ª
=



+ 
(B.3)

and



½Z 1



−(−)

¾
=

1

+ 
 (B.4)

Use the expectations in equations (B.3) and (B.4) to calculate the expectation in equation
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(B.2) and rearrange to obtain

 ( ()) =
1

+ 
max

≤ (())


½
(1− )  + (+ ) + 

Z
 ()≥

[ ()−]  ()

¾


(B.5)

Substitute the expression for taxable income,  (), from equation (5) into equation (B.5)

to obtain

 ( ()) =
1

+ 
max

≤ (())


⎧⎨⎩ (1− )
h
 ()−  − 

R
 ()

[ − (1− ) ()]  ()
i

+(+ ) + 
R
 ()≥

[ ()−]  ()

⎫⎬⎭ 

(B.6)

Collect terms in  and separately collect terms in  () to obtain

 ( ()) =
1

+ 
max

≤ (())


⎧⎪⎪⎨⎪⎪⎩
(1− ) ()

 +  −  (1− )

R
 ()

 ()− 

R
 ()≥

 ()

+
R
 ()≥

 ()  () +  (1− ) (1− )
R
 ()

 ()  ()

⎫⎪⎪⎬⎪⎪⎭ 

(B.7)

Use 1 − R
 ()≥

 () =
R
 ()

 () and
R
 ()≥

 ()  () =
R
 ()  () −R

 ()
 ()  () and rearrange to rewrite equation (B.7) as

 ( ()) =
1

+ 
max

≤ (())


⎧⎪⎪⎨⎪⎪⎩
(1− ) ()


h
+ 

R
 ()

 ()
i


+
R
 ()  ()− [1− (1− ) (1− )]

R
 ()

 ()  ()

⎫⎪⎪⎬⎪⎪⎭ 

(B.8)

Use the definitions () ≡ 
h
+ 

R
 ()

 ()
i
−[+  (1− )]

R
 ()

 ()  ()

and  ≡ R  ()  () to rewrite equation (B.8) as
 ( ()) = max

≤ (())
(1− ) () +  + ()

+ 
 (B.9)
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Online Appendix

C Closed-Form Solutions:  = 1 and  () is Uniform

on [ΦΦ ]

In this online appendix, I derive closed-form solutions for optimal debt and shareholders’

equity in the special case in which (1)  = 1, so that default completely destroys the value

of the firm; and (2) the unconditional distribution  () is uniform. The assumption that

 = 1 simplifies the solution of the shareholders’ problem in Scenario II by permitting the

calculation of ∗, b ( ()), and  ( ()) for  () ≥ ∗ without having to simultaneously

calculate  ( ()) for values of  ()  ∗.37

It will be convenient to represent the uniform distribution on [ΦΦ ] by the mean

 ≡ 1
2
(Φ + Φ) and by  ≡ Φ − Φ. Therefore,  () = 1


,  () =

−+ 1
2



, and hence

 = − 1
2
 +  (), for  ∈ [ΦΦ ].

Proposition 12 contains closed-form solutions for b ( ()),  ( ()), and  ( ()) in

Scenario I for the more general case in which 0   ≤ 1 and  0 () ≥ 0, which includes the
uniform distribution as a special case. This Appendix presents closed-form solutions that

apply in Scenario II and Scenario III in the special case with  = 1 and uniform  ().

C.1 Closed-Form Solutions for Scenario II

Consider Scenario II. Evaluate the value function in equation (14) at  () = ∗, use  (∗) =

∗ = b (∗), the definition of  () in equation (10) with  = 1, and multiply both sides

by +  to obtain

(+ )∗ = (1− )∗ +  (+  ∗)∗ + 

Z Φ

∗
 ()  ()  (C.1)

where  ∗ =  (∗). Proposition 7 along with the uniform distribution  () = 1

impliesZ Φ

∗
 ()  () = (1−  ∗)∗ +

1− 

+ 

1



Z Φ

∗
(− ∗)  (C.2)

37In the more general case with  6= 0, b ( ()) for  ≥ ∗ depends on b ( ()) for  ()  ∗.
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Evaluate the integral in equation (C.2) and use Φ−∗


= 1−  ∗ to obtainZ Φ

∗
 ()  () = (1−  ∗)∗ +

1

2

1− 

+ 
(1−  ∗)2  (C.3)

Substitute equation (C.3) into equation (C.1) and rearrange terms to obtain

(+  ∗)∗ = ∗ +
1

2




+ 
(1−  ∗)2  (C.4)

The first-order condition in equation (25) when  = 1 and  () = 1

is

 (+  ∗) = (+ )∗

 (C.5)

Use equation (C.5) to eliminate ∗ from equation (C.4) and rearrange to obtain





(+  ∗)2 = (+ )∗ +

1

2
 (1−  ∗)2  (C.6)

Use the definition  ≡ 

 (Φ)

³
Φ +



 {}

´
from Proposition 15, and set  = 1,

 (Φ) =
1

,  {} = , and use ∗ = Φ +  ∗ to obtain

 =




1



µ
∗ −  ∗ +






¶
 (C.7)

Use equation (C.7) to eliminate ∗ from equation (C.6) and rearrange to obtain

 (+  ∗)2 − (+ )  − (+ ) ∗ + (+ )







− 1

2
2 (1−  ∗)2 = 0 (C.8)

Now collect terms in  ∗2,  ∗, and a constant to obtain

1
2
(2 − 1)2 ∗2 + (2 − 1)  ∗ + ( − ) 

2

−
³
 − 


1


h³
1 + 



´
− 1

2

i´ = 0 (C.9)

Now use the fact that  ≡ 

 (Φ)

³
Φ +



 {}

´
= 


1


³
− 1

2
 + 



´
= 


1


³³
1 + 



´
− 1

2

´

to set the final term on the left hand side of equation (C.9) equal to zero and then multiply
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both sides of the resulting equation by 1
2

2
2−1 to obtainµ




 ∗
¶2
+ 2




 ∗ +

2 ( − )

2 − 1 = 0 (C.10)

Equation (C.10) is a quadratic equation in 

 ∗ and the positive root of this equation

(recall that     
1+

 1
2
) is




 ∗ = −1 +

r
1− 2
1− 2  (C.11)

Use the fact that ∗ =  (∗) + − 1
2
 =  (∗) + Φ to obtain

∗ = − 1
2
 − 




+ 





r
1− 2
1− 2 = Φ + 





Ã
−1 +

r
1− 2
1− 2

!
. (C.12)

To calculate the optimal level of debt, ∗, use equation (C.5) along with equation (C.11)

to obtain

∗ = 




+  (∗)
+ 

=






+ 

r
1− 2
1− 2  (C.13)

Next calculate the optimal amount of debt when  () ≤ ∗. It will be helpful to define

Γ and use the expression in equation (C.3) to obtain

Γ ≡ 

Z Φ

∗
 ()  () = (1−  ∗)∗ +

1

2

1− 

+ 
(1−  ∗)2  (C.14)

For  () ≤ ∗, the borrowing constraint is binding so  ( ()) ≡ b ( ()). Therefore, set
 ( ()) = b ( ()) and  = 1 in the definition of  () in equation (10) to obtain


³ b ( ())´ =  [+  ( ())] b ( ())− 

Z ()

Φ

 ()  () . (C.15)

Substitute equation (C.15) into equation (14), use b ( ()) ≡  ( ()) and  ( ()) =
()−(− 1

2
)


to obtain

(−  ()) b ( ()) = (1− ) () +




Z ∗

()

b () + Γ (C.16)
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where

 ≡ (1− ) + +




µ
− 1

2


¶
 0 (C.17)

and

 ≡ 


 0, (C.18)

so that

−  () = (1− ) +  [1−  ( ())]  0 (C.19)

In Appendix C.3, I show that the functional equation in equation (C.16) is satisfied by

b ( ()) = (−  ())
1−
  + 

1


, (C.20)

where  is a constant of integration that is determined by the boundary condition in equation

(32), so that

b ( ()) = 



"
1−

µ
− ∗

+ 

¶µ
−  ()

− ∗

¶ 1−


#
, for  () ≤ ∗ (C.21)

Differentiating equation (C.21) with respect to  () and using 

= 


from equation (C.18)

yields b0 ( ()) =
1− 

+ 

µ
−  ()

− ∗

¶ 1

−2
≥ 1− 

+ 
, for  () ≤ ∗, (C.22)

where the inequality follows from   
1+
≤ 1

2
and the inequality is strict for  ()  ∗.

Since 1−
+

 0, b0 ( ())  0 for  ()  ∗. Therefore, consistent with Proposition 7, for

low values of  (), that is, for  () ≤ ∗, the optimal amount of debt is strictly increasing

in  (). Evaluating the derivative in equation (C.22) at  = ∗ yields b0 (∗) = 1−
+
, which

is consistent with equation (33).38

38As a check, note that when  = , so that 
∗ = Φ and  (∗) = 0, equation (C.21) implies that

b (Φ) = 



∙
1−

µ
− Φ

+ 

¶¸
 (C.23)

Equation (C.19) implies that − Φ = (1− ) +  when  =  so equation (C.23) can be rewritten as

b (Φ) = 





+ 
. (C.24)
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C.2 Closed-Form Solutions for Scenario III

In Scenario III, the borrowing constraint binds for all values of EBIT so that b ( ()) ≡
 ( ()) for all  () ∈ [ΦΦ ] and optimal debt is given by equation (C.20). However, the

constant of integration, , is determined by a different boundary condition than in Scenario

II. To obtain an appropriate boundary condition, set  = 1 and evaluate  () in equation

(10) at  = b (Φ) ≡  (Φ) to obtain


³ b (Φ)

´
≡  (+ ) b (Φ)−  (C.26)

Substitute equation (C.26) into equation (14) and use b ( ()) ≡  ( ()) to obtain

b (Φ) =  (Φ) =
1

+ 
Φ  (C.27)

As shown in Appendix C.3, the boundary condition in equation (C.27), along with equation

(C.20), implies that39

b ( ()) = 



"
1− (1− )

µ
−  ()

− Φ

¶ 1−


#
 (C.28)

C.3 Appendix: Solving the Functional Equation in (C.16)

The functional equation in equation (C.16) holds for  () ≤ ∗. To solve the functional

equation in equation (C.16), differentiate this equation with respect to  () and use 

= 



from equation (C.18) to write the resulting differential equation in canonical form as

b0 ( ()) +
1− 





−  ()
b ( ()) = 1− 

−  ()
 (C.29)

Substitute  from equation (C.7) into equation (C.24) recognizing that ∗ = Φ and  (∗) = 0 to obtain

b (Φ) = 1

+ 

µ



+Φ

¶
, (C.25)

which is identical to the optimal value of debt in Regime I shown in Proposition 12.

39As a check, note that when  =  , so that 
∗ = Φ and  (

∗) = 1, equation (C.28) and the definition
of  in Proposition 15 with  = 1 and  (Φ) =

1

imply that b (Φ) = 


 =

1
+
Φ , which is identical

to equation (C.27).
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Multiply both sides of equation (C.29) by the integrating factor (−  ())
− 1−

 to obtain

(−  ())
− 1−

 b0 ( ())+
1− 


 (−  ())

− 1
 b ( ()) = (1− ) (−  ())

− 1
  (C.30)

Integrate both sides of equation (C.30) and then divide both sides of the resulting equation

by the integrating factor (−  ())
− 1−

 to obtain

b ( ()) = (−  ())
1−
  + 

1


 (C.31)

where  is a constant of integration. To determine the value of , substitute the solution

for  ( ()) from equation (C.31) into the functional equation (C.16) to obtain

(−  ())

∙
(−  ())

1−
  + 

1



¸
= (1− ) () +





Z ∗

()

∙
(− )

1−
  + 

1



¸
+ Γ

(C.32)

Evaluating equation (C.32) at  () = ∗ and simplifying yields

 =
h
∗ + Γ− 





i
(− ∗)−

1
  (C.33)

Finally, substitute equation (C.33) into equation (C.31) to get an expression for the optimal

amount of debt b ( ()) = 
1


+ 

µ
−  ()

− ∗

¶1−


 (C.34)

where

 ≡ (1− )∗ + Γ

− ∗
− 

1


 (C.35)

To calculate  in Scenario II, evaluate equation (C.34) at  () = ∗ and use the value-

matching condition in equation (32) to obtain

∗ = 
1


+  , in Scenario II. (C.36)

Use the expression for ∗ in equation (C.13) and the definition  ≡ 

to obtain

∗ = 
+  (∗)

+ 




, in Scenario II. (C.37)
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Equating the right hand sides of equations (C.36) and (C.37) yields

 =

∙

+  (∗)

+ 
− 1
¸



 0, in Scenario II, (C.38)

where the inequality follows from   0, 0    1, and   0. Use equation (C.19) to

obtain


+  (∗)

+ 
− 1 = −− ∗

+ 
, in Scenario II. (C.39)

Substitute equation (C.39) into equation (C.38) to obtain

 = −− ∗

+ 




, in Scenario II. (C.40)

Substituting equation (C.40) into equation (C.34) yields

b ( ()) = 



"
1−

µ
− ∗

+ 

¶µ
−  ()

− ∗

¶1−


#
, in Scenario II. (C.41)

which is the same as equation (C.21) since 

= 


.

To calculate  in Scenario III, use ∗ = Φ , so that Γ = 0 and equation (C.19) implies

− ∗ = (1− ) (+ ), to rewrite equation (C.35) as

 =
Φ

+ 
− 


, in Scenario III. (C.42)

Substituting equation (C.42) into equation (C.34) and using 

= 


yields

b ( ()) = 



"
1−

µ
1− 

+ 

1


Φ

¶µ
−  ()

− Φ

¶1−


#
, in Scenario III. (C.43)

Now use the definition of  in Proposition 15 with  = 1 and  (Φ) =
1

to obtain

 =


Φ
+

so

b ( ()) = 



"
1− (1− )

µ
−  ()

− Φ

¶ 1−


#
, in Scenario III, (C.44)
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which is identical to equation (C.28).

C.4 Appendix: Verification that Equation (C.34) Satisfies Func-

tional Equation (C.16)

Use equation (C.34) to express the right hand side of equation (C.16) as

(1− ) () +




Z ∗

()

b () + Γ = (1− ) () +




Z ∗

()

"



+ 

µ
− 

− ∗

¶ 1−


#
+ Γ

(C.45)

Perform the integration on the right hand side of equation (C.45) to obtain

(1− ) () +




Z ∗

()

b () + Γ =

⎡⎣ (1− ) () + 



(∗ −  ())

+


³
−−∗



´³
−
−∗

´ 1
 |∗

()
+ Γ

⎤⎦  (C.46)

which can be written as

(1− ) () +




Z ∗

()

b () + Γ =

⎡⎣ (1− ) () + 



(∗ −  ())

+


³
−−∗



´ ∙
1−

³
−()
−∗

´ 1


¸
+ Γ

⎤⎦  (C.47)

Use the definition  ≡ 

to obtain

(1− ) () +




Z ∗

()

b () + Γ = − () + ∗ −  (− ∗)

"
1−

µ
−  ()

− ∗

¶ 1


#
+ Γ

(C.48)

Use the definition  ≡ (1−)∗+Γ
−∗ − 


in equation (C.35), which implies (− ∗) = ∗ +

Γ−  

, to obtain

(1− ) () +




Z ∗

()

b () + Γ = − () + 


 +  (− ∗)

µ
−  ()

− ∗

¶ 1


 (C.49)
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Multiply and divide the final term on the right hand side of equation (C.49) by  −  ()

and simplify to obtain

(1− ) () +




Z ∗

()

b () + Γ = (−  ())

"



+ 

µ
−  ()

− ∗

¶ 1

−1#

 (C.50)

Use the solution for the level of debt in equation (C.34) on the right hand side of equation

(C.50) to obtain

(1− ) () +




Z ∗

()

b () + Γ = (−  ()) b ( ())  (C.51)

which is the same as equation (C.16). In Scenario II, the solution for the optimal level

of debt in equation (C.34) becomes equation (C.21) as demonstrated in the derivation of

equation (C.41) and in Scenario III, the solution for the optimal level of debt in equation

(C.34) becomes equation (C.28) as demonstrated in the derivation of equation (C.44).

D Appendix: Translation of Truncated Exponential

Distribution

To distinguish situations in which ∗ falls in response to a rightward translation of  ()

from situations in which∗ increases in response to a rightward translation of  (), consider

the truncated exponential distribution  () =
exp[(−Φ)]−1
exp[(Φ−Φ)]−1 which has density  () =

 exp[(−Φ)]
exp[(Φ−Φ)]−1 on the support [ΦΦ ]. Assume that  ≥ 0,40 so that  0 () =  () ≥ 0,
which ensures that  () is concave. With this distribution function, the function  ()

defined in equation (36) becomes

 () =

µ


exp [ (Φ −Φ)]− 1 − 

¶
 (D.1)

which is invariant to . The following corollary provides a condition on  (Φ −Φ) that

determines the sign of  () and hence determines the sign of ∗0 ().

40The uniform distribution is the limiting case as  approaches zero, as may be seen by using L’Hopital’s

Rule to obtain lim→0  () = lim→0
(−Φ) exp[(−Φ)]

(Φ−Φ) exp[(Φ−Φ)] =
−Φ
Φ−Φ .
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Corollary 23 If (1) 0    
1+

and (2) the unconditional distribution of  is the trun-

cated exponential distribution  () =
exp[(−Φ)]−1
exp[(Φ−Φ)]−1 for  ∈ [ΦΦ ] where  ≥ 0, then

∗0 () Q 0 as  (Φ − Φ) Q 
³
1 + 



´


Proof. of Corollary 23. Since  ≥ 0, equation (D.1) implies that  () R 0 as 

R

exp [ (Φ −Φ)]−1, so that  () R 0 as  (Φ − Φ) Q ln
³
1 + 



´
. Therefore, Statement

2 of Proposition 19 implies that ∗0 () Q 0 as  (Φ −Φ) Q ln
³
1 + 



´
.

Since 
³
1 + 



´
 0, Corollary 23 indicates that a rightward translation of the truncated

exponential distribution will reduce∗ for small   0, as well as for the uniform distribution

( = 0). In order to get the opposite result, that is, to get ∗ to increase in response to

a rightward translation of  (),  must be sufficiently large, that is, the density function

must have a sufficiently steep upward slope.

E Appendix: Solution to ODE in equation (31)

Consider  () ≤ ∗ so b ( ()) ≡  ( ()) and evaluate  () in equation (10) at  = b ( ())
for  () ≤ ∗ using  −1

³ b ( ())´ =  −1 ( ( ())) =  () to obtain\


³ b ( ())´ =  [+  ( ())] b ( ())− [+  (1− )]

Z ()

Φ

 ()  () (E.1)

Substitute equation (E.1) into equation (30) and use  =
R ()
Φ

 ()  ()+
R ∗
()

 ()  ()+R Φ
∗  ()  () to obtain

[(1− ) +  (1−  ( ()))] b ( ()) = (1− ) () (E.2)

+(1− ) (1− )

Z ()

Φ

 ()  ()

+

Z ∗

()

 ()  () + Γ

where

Γ ≡ 

Z Φ

∗
 ()  ()  (E.3)

Equation (E.2) is a functional equation in b ( ()) ≡  ( ()) for  () ≤ ∗. A strategy for
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solving this functional equation is to differentiate both sides with respect to  () and use the fact

that  ( ()) ≡ b ( ()) for  () ≤ ∗ to obtain the following first-order linear ordinary differential
equation (ODE)41

[(1− ) +  (1−  ( ()))] b0 ( ()) + (1− ) ( ()) b ( ()) = 1−   (E.4)

The ODE in equation (E.4) holds for  () ≤ ∗. To solve this ODE, rewrite this equation in

canonical form as

b0 ( ()) +
 (1− ) ( ())

(1− ) +  (1−  ( ()))
b ( ()) = 1− 

(1− ) +  (1−  ( ()))
 (E.5)

Next multiply both sides of equation (E.5) by the integrating factor exp
³R (1−)(())

(1−)+− (()) ()
´

= [(1− ) + −  ( ())]−
(1−)

 to obtain⎡⎢⎢⎣ [(1− ) +  (1−  ( ()))]−
(1−)

 0 ( ())+

[(1− ) +  (1−  ( ()))]−
(1−)


−1

× (1− ) ( ()) ( ())

⎤⎥⎥⎦ = (1− ) [(1− ) +  (1−  ( ()))]−
(1−)


−1 

(E.6)

Integrating both sides of equation (E.6) yieldsÃ
[(1− ) +  (1−  ( ()))]−

(1−)


× ( ())

!
=

"
+

(1− )
R
[(1− ) +  (1−  ( ()))]−

(1−)


−1  ()

#


(E.7)

where  is a constant of integration determined by the boundary condition b (∗) = ∗ in equation
(32). Divide both sides of equation (E.7) by

[(1− ) +  (1−  ( ()))]−
(1−)

 to obtain

41An alternative derivation of equation (E.4) evaluates 0 () at  = b ( ()) to obtain 0 ³ b ( ())´ =
 [+  ( ())] − (1− ) −10

³ b ( ())´ b ( ())  ( ()), so that 0
³ b ( ())´ b0 ( ()) =

 [+  ( ())] b0 ( ()) − (1− ) b ( ())  ( ()) because  −1
³ b ( ())´ =  (), which implies

 −10
³ b ( ())´ b0 ( ()) = 1. Substitute this expression for 0

³ b ( ())´ b0 ( ()) into the ODE in

equation (31) to obtain (+ ) b0 ( ())−  [+  ( ())] b0 ( ())+(1− ) b ( ())  ( ()) = 1−  ,

which is equivalent to equation (E.4).
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 ( ()) = [(1− ) +  (1−  ( ()))]
(1−)

 (E.8)

×
∙
 + (1− )

Z
[(1− ) +  (1−  ( ()))]−

(1−)


−1  ()
¸
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