
NBER WORKING PAPER SERIES

THE PRICING OF SHORT-TERM MARKET RISK:
EVIDENCE FROM WEEKLY OPTIONS

Torben G. Andersen
Nicola Fusari

Viktor Todorov

Working Paper 21491
http://www.nber.org/papers/w21491

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
August 2015

Andersen gratefully acknowledges support from CREATES, Center for Research in Econometric Analysis
of Time Series (DNRF78), funded by the Danish National Research Foundation. Todorov's work was
partially supported by NSF Grant SES-0957330. The views expressed herein are those of the authors
and do not necessarily reflect the views of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been peer-
reviewed or been subject to the review by the NBER Board of Directors that accompanies official
NBER publications.

© 2015 by Torben G. Andersen, Nicola Fusari, and Viktor Todorov. All rights reserved. Short sections
of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full
credit, including © notice, is given to the source.



The Pricing of Short-Term market Risk: Evidence from Weekly Options
Torben G. Andersen, Nicola Fusari, and Viktor Todorov
NBER Working Paper No. 21491
August 2015
JEL No. C01,C14,C52,C58,G12,G13,G17,G32

ABSTRACT

We study short-term market risks implied by weekly S&P 500 index options. The introduction of weekly
options has dramatically shifted the maturity profile of traded options over the last five years, with
a substantial proportion now having expiry within one week. Economically, this reflects a desire among
investors for actively managing their exposure to very short-term risks. Such short-dated options provide
an easy and direct way to study market volatility and jump risks. Unlike longer-dated options, they
are largely insensitive to the risk of intertemporal shifts in the economic environment, i.e., changes
in the investment opportunity set. Adopting a novel general semi-nonparametric approach, we uncover
variation in the shape of the negative market jump tail risk which is not spanned by market volatility.
Incidents of such tail shape shifts coincide with serious mispricing of standard parametric models for
longer-dated options. As such, our approach allows for easy identification of periods of heightened
concerns about negative tail events on the market that are not always "signaled" by the level of market
volatility and elude standard asset pricing models.

Torben G. Andersen
Kellogg School of Management
Northwestern University
2001 Sheridan Road
Evanston, IL  60208
and NBER
t-andersen@kellogg.northwestern.edu

Nicola Fusari
Department of Finance
Carey School of Business
The Johns Hopkins Univer
Baltimore, MD 21202
nicola.fusari@jhu.edu

Viktor Todorov
Department of Finance
Kellogg School of Management
Northwestern University
2001 Sheridan Road
Evanston, IL
v-todorov@kellogg.northwestern.edu



1 Introduction

Recent years have witnessed a rapid increase in the trading of short-dated options. For instance,

S&P 500 option contracts with about one week or less to maturity have seen their share of trading

at the Chicago Board of Options Exchange (CBOE) rise steadily from about 12% in 2010 to 25%

in 2014. Furthermore, the volume in shorter-dated options is skewed disproportionate towards out-

of-the-money (OTM) options relative to the pattern for longer-dated options. Qualitatively similar

developments are observed in many other index option markets and for options on individual names.

This process has been facilitated by the introduction of a new option category, featuring sequential

issuance of contracts expiring one week apart, the so-called weekly options, or “weeklies.”

This begs the question of what economic function these newly popular instruments serve. The

primary distinguishing feature, relative to regular longer-dated options, is the intimate link between

the pricing of options close to expiry and the state of the underlying asset return process.1 When

tenor is short, the volatility and jump intensity are not expected to vary much over the remaining

life of the option. This implies, in particular, that the prices of deep OTM options are largely

independent of the level of diffusive volatility. They reflect solely the characteristics of the risk-

neutral jump process. Likewise, the pricing of short-dated at-the-money (ATM) options depends

primarily on spot volatility. These arguments fail in the case of longer-dated instruments for which

the expected variation in the future volatility and jump intensity cannot be ignored in valuation. In

fact, realistic models for the joint volatility and jump dynamics involve a complex interaction among

these distinct components, rendering semi-closed form option pricing and traditional statistical

inference feasible only under strong parametric assumptions, e.g., the specifications reside within

the affine jump-diffusion model class of Duffie et al. (2000).

Consequently, short-dated OTM options represent exposures tied closely to the possibility of an

abrupt shift, or jump, in the near future, i.e., such instruments are well suited for short-term crash

(or boom) protection. In contrast, a position in short-dated ATM options reflects an exposure to

regular (diffusive) price movements, whose size scale with spot volatility. In other words, short-

dated options allow us to decompose the exposure to distinct features of the underlying return

process. They enable investors to trade securities representing jump or crash risk on the one hand,

and instruments with primary exposure to diffusive risks on the other.

Hence, the introduction of weeklies has improved on the spanning of market jump risk and

represents a step towards market completion. This topic has a long history, with Ross (1976)

1A similar type of connection is present for short-maturity bond prices. Collin-Dufresne et al. (2008) explore this
relation to identify the state vector driving the short-rate dynamics in a model-free way.
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emphasizing the enhanced spanning and the associated potential for efficiency gains from options

trading, and Breeden and Litzenberger (1978) stressing the ability to replicate a wide range of

payoffs through a static option portfolio.2

Reversing the above reasoning, we infer that prices for actively traded short-dated options

may simplify the task of identifying the concurrent spot volatility and pertinent features of the

risk-neutral jump process, subject to only minimal assumptions on the return generating process.

Specifically, short-maturity ATM options should help pin down spot volatility while the relative

prices of deep OTM options assist in determining the jump intensity and jump distribution. The

emergence of the weekly options has moved this observation from the realm of theory to the domain

of practical empirical work. The requisite quotes for short-dated options are now available on a

daily basis. The goal of the current paper is to capitalize on the new opportunities afforded by

the trading of weeklies to explore the characteristics of the risk-neutral distribution of equity-index

returns as implied directly by the option data, largely avoiding reliance on parametric restrictions.

The current paper is, as far as we know, the first to explore the information content of weekly

options for the underlying risk-neutral return dynamics in a systematic way. In part, this reflects the

very recent emergence of near-continuous trading in very short-dated options. Therefore, we first

carefully review the basic features of our weekly option sample and provide detailed descriptions

of our filtering procedures, imposed to control for excessive noise or errors.

In order to exploit all available information in our short-dated option sample, we develop a new

asymptotic pricing approximation, operative across all strikes, and not just for ATM and deep OTM

options. Exploiting this novel approximation, we proceed semi-nonparametrically and impose only

weak parametric restrictions on the jump distribution, but remain silent about the dynamics of

the volatility and jump intensity. The approach allows us to infer the spot characteristics for the

risk-neutral return distribution exclusively from the short-dated options. In particular, we generate

separate estimates of the underlying state of the volatility and jump intensity process as well as

the current jump size distribution at the conclusion of each single trading day.

Our approach bears superficial resemblance to calibration procedures commonly applied in

approximating option-implied volatility surfaces. The differences are critical and fundamental,

however. Our approach explicitly imposes no-arbitrage constraints in estimation and synthesizes

the option price information into consistent estimates for the spot volatility and the key jump

characteristics, amenable to direct econometric analysis. In contrast, standard calibration delivers

a smoothed risk-neutral density for a specific horizon, but provides no direct guidance for the ex-

2The latter statement is more formally explored in Green and Jarrow (1987) and Nachman (1988). For further
developments, see, e.g., Bakshi and Madan (2000) and Pan and Liu (2003), among many others.
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traction of spot volatility, jump intensities or jump size distributions. Indeed, from the perspective

of summarizing the state of the local risk-neutral distribution in a continuous-time setting, the

spot volatility and jump characteristics constitute sufficient statistics. They fully characterize the

local behavior of the underlying semi-martingale representing the risk-neutral asset price process.

Moreover, our ability to extract consistent point estimates and generate suitable confidence re-

gions for the state vector over time sets the stage for analysis of the dynamic properties of the

system. In contrast, a sequence of smoothed risk-neutral densities over specific horizons provides

a purely descriptive account of the evolution of the system. We label the most general version of

our methodology “structural calibration” to emphasize the fact that it generates valid asymptotic

inference for the key components of the state vector governing the evolution of the risk-neutral

distribution on the basis of distinct estimates at the end of each individual trading day.3

Our semi-nonparametric procedure enables far more general modeling of the time variation in

jump risk than in the prior literature. In particular, standard option pricing models allow no time

variation in the jump distribution and only limited variation in the jump intensity. Relative to

recent nonparametric approaches focused on tail estimation, we offer a vastly more comprehensive

analysis. For example, Bollerslev and Todorov (2014) and Bollerslev et al. (2015) are strictly

concerned with the tails and rely exclusively on very deep OTM contracts, obtained from regular

option samples. In contrast, we estimate the entire jump distribution through a very different

methodology and exploit short-dated options, taking full advantage of the introduction of weeklies.

To illustrate the potential importance of time variation in the risk-neutral jump distribution

and the informational advantages provided by the short-dated options, Figure 1 depicts log prices

for options with tenor around one and four weeks on three consecutive days in September 2012.

The left panel concerns the shorter maturities. The three curves largely coincide for moneyness

in the range (−2, 3), suggesting no major change in spot volatility or implied upside jump risk

across these days. However, on September 20 and 21, the option prices are systematically higher

for the deep OTM put options than on the preceding day, September 19. The gap emerges around

m = −2 and increases steadily for further OTM puts. The finding is clearly robust, with close to

20 consecutive put prices being elevated relative to September 19. This change is suggestive of an

isolated shift in the negative jump tail distribution, because a change in the spot volatility or jump

intensity would boost the prices of options with moneyness closer to zero as well.

In the right panel of Figure 1, one may also observe a tendency towards an elevation in the

prices of the longer-dated deep OTM put options, but the differences across the days are now

3See Jarrow and Kwok (2015) for an alternative method of disentangling model misspecification from estimation
error through the imposition of minimal restrictions on the calibration of the option surface.
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smaller and there is considerable noise in the far OTM quotes, which generates non-monotonicity

and further blurs the inference. This reflects the fact that longer-dated OTM puts are sensitive to

not only the negative jump distribution, but also the pricing of the time-varying volatility and jump

intensity as well as associated leverage-type effects. The risks due to time variation in volatility and

jump intensity, while having minimal impact over short intervals such as a week, have a nontrivial

effect over longer periods, like a month. Thus, Figure 1 illustrates the informational advantages of

short-dated options for studying the risk-neutral left jump tail.
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Figure 1: Log Option Prices on September 20th 2012. The Log Prices on September 20, 2012,
are indicated by the full drawn line. On this date, the tenors were 7 calendar days for the short-dated
options and 28 calendar days for the regular options. The dotted and broken lines represent log prices for
the corresponding option contracts on September 19 and 21, 2012, respectively. Moneyness m is defined as
log(K/Fτ/(

√
τIVatm,τ ), where K is the strike of the option, τ is the option tenor, Fτ is the futures price for

the underlying asset at option expiry, and IVatm,τ is the at-the-money implied volatility for tenor τ .

Since traditional option pricing models preclude shifts in the jump distribution, it is reveal-

ing that Figure 1 suggests such events do occur and, in fact, may be identified empirically from

short-dated options. Of course, an isolated shift in the jump distribution may be unusual. In

most scenarios, we expect the jump distribution to change in conjunction with the volatility and

jump intensity. Such simultaneous shifts complicate the identification of changes in the jump size

distribution. This necessitates the development of formal tools for disentangling the effects in more

general circumstances, and our structural calibration approach is designed to accomplish this task.

At the same time, the type of event observed in Figure 1 is far from unique. We identify several

similar instances of isolated shifts in the left jump tail across our four-year sample.

The fact that our approach relies heavily on short-maturity options raises a potential concern.

How can we guard against excessive noise or idiosyncratic pricing in short-dated options? This
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question revolves around the strength of the statistical evidence and the economic plausibility of

the implied tail shifts. These issues are recurrent themes throughout our analysis.

For now, we supplement the illustrative evidence with an account of the events surrounding

September 20, 2012, which bolsters our presumption of a genuine shift in the risk-neutral tail. The

backdrop is optimism due to an announcement, the preceding week, of additional monetary stimulus

by the Federal Reserve. On September 20, even though the economic news were decidedly negative,

the S&P 500 recovered most initial losses and experienced only a marginal day-over-day decline.4

Likewise, on September 21, the economic news were at best mixed, and the S&P 500 ended flat.5

Hence, one may conjecture that the broader outlook for equities remained fairly positive, but an

element of uncertainty, or fear, may have entered the minds of some investors. If the monetary

policy announcements were able to contain any escalation in the perception of overall risk, the

negative news updates may have increased the expected size or pricing of contingencies associated

with a sudden market downturn.

The above finding of market jump risk variation, departing significantly from the dynamics

of market volatility, runs counter to the common approach of modeling jump risk in no-arbitrage

asset pricing models. In the latter, the jump intensity is proportional to volatility or its factors,

see, e.g., Bates (2000) and Pan (2002). It is also contrary to the implications of standard equilib-

rium consumption-based models, such as Drechsler and Yaron (2011) and Wachter (2013) which,

although quite flexibly specified, impose tight (affine) connections between the variation of market

jump risks and volatility. Furthermore, to the extent the variation in the priced negative jump tail

risk is unmatched by actual variation in negative market jumps under the statistical measure, our

option evidence points to substantial nonlinearities in the part of the economy-wide pricing kernel

that concerns the pricing of “large” negative jumps.

On the constructive side, our semi-nonparametric approach provides an easy way to extract a

measure for perceived downside short-term tail risk. This measure can be used both for modeling

and analyzing the latter in a robust way, and hence may also serve as a useful input to policy

making.6 In particular, we demonstrate that periods of heightened tail risk, as measured from the

short-dated options, are closely connected with periods in which traditional asset pricing models

4According to Zacks Stock Market News, the weekly initial claims for unemployment benefits rose to a two-month
high, U.S. leading economic indicators dropped, and manufacturing activity declined in the U.S., Europe and China,
but stocks recovered as investors remained somewhat optimistic.

5The Zacks stock market report mentions that unemployment had risen in 26 states and the World Trade Orga-
nization lowered its forecast for international trade. At the same time, there were positive signs that the European
Union was getting closer to a bail-out agreement with Spain.

6“... policymakers can achieve better outcomes by basing their outlooks on risk-neutral probabilities derived from
the prices of financial derivatives? (Narayana Kocherlakota, President of the Federal Reserve Bank of Minneapolis,
from speech at the University of Michigan, June 8, 2012).
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severely underestimate the expensiveness of longer-dated deep OTM put options. The latter have

been used extensively in earlier empirical work and they constitute an important segment of the

options included in the calculation of the VIX volatility index.

The rest of the paper is organized as follows. In Section 2, we describe the option data on

the S&P 500 index, and in particular its decomposition in terms of tenor. Our general setup and

notation is presented in Section 3. In Section 4, using data for standard longer-dated options, we

estimate general parametric models nesting many of the models estimated in prior work and assess

their ability to price the short-dated options. In Section 5, we describe our semi-nonparametric

approach for conducting inference based on the short-dated options and estimate models with

time-invariant and time-varying jump distributions. In Section 6, we analyze the implications of

the estimated models for the connections between market jump and volatility risks as well as the

pricing of longer-dated OTM puts. Section 7 concludes. Some details on the filters applied to the

options data and additional results from the estimation are provided in the Appendix.

2 S&P 500 Equity-Index Options

2.1 The SPX Options

The trading of equity-index options has grown rapidly in recent years, partially in response to the

introduction of new contracts offering a more comprehensive set of expiration dates, especially at

the short end of the maturity spectrum. The traditional S&P 500 equity-index (SPX) options have

traded on the CBOE since 1987. They have one monthly expiration date, at week’s end around the

middle of any given month. These contracts have been complemented with so-called quarterly and

weekly options over the last decade. Quarterly options (SPXQ) expire at the end of each quarter,

providing four additional expiration dates per year. Weekly options (SPXW) expire at the end of

the trading week, unless an expiration already exists close to that date. Since January 2014, the

CBOE maintains six consecutive SPXW expiration dates, ensuring that a string of short maturity

S&P 500 options, expiring one week apart, exists at all times. In particular, an actively traded

front-maturity option with expiry within nine calendar days is always present.

Figure 2 depicts the average number of SPXW options (“weeklies”) traded per day and their

percentage relative to the overall trading of S&P 500 options on the CBOE. The average daily

SPXW volume for the years 2010-2014 was around 17,000, 71,000, 107,000, 198,000, and 330,000

contracts, respectively. This raised their proportion from below 8% in early 2010 to well above 40%

by the end of 2014. Since weeklies have a relatively short maturity upon issuance, this development

has contributed to a fundamental shift in the maturity profile: options with tenor below 9 days
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were thinly traded up till five years ago – and routinely excluded from empirical studies. Now, they

constitute one of the dominant segments of the maturity spectrum.
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Figure 2: Weekly (SPXW) Options. The bar plot (left y-axes) represents the average daily volume
in weekly options. The light gray line (right y-axes) depicts the weekly options’ volume as a percentage of
the total volume in SPX (sum of SPX, SPXQ and SPXW) options.

We focus primarily on extracting information about the current state of the risk-neutral dynam-

ics from short-maturity options. To allow meaningful inference, we require good coverage across

the strike range at the front maturity. This effectively determines the starting date for our sample,

as the coverage for short-dated options is poor prior to 2011. Our empirical analysis is based on

end-of-day S&P 500 equity-index option quotes from the CBOE, obtained via OptionMetrics for

January 3, 2011 through December 31, 2014. We seek to contrast our findings from short-maturity

options to what can be learned from an option panel composed of longer-dated options, resembling

those routinely used in prior studies. To ensure a homogenous basis for comparison, we construct

a common set of trading days for these separate option samples. Towards this end, we first extract

quotes for all OTM SPXW, SPXQ and SPX options for 2011-2014.7 For each option with τ years

to maturity and strike price K, we define moneyness as,

m =
ln(K/Fτ )√
τ IVATM,τ

,

where Fτ denotes the forward price for transactions τ years into the future, while IVATM,τ denotes

the (annualized) implied volatility of the option with strike price closest to Fτ .

7The in-the-money options are invariably less liquid and have higher spreads. Thus, we obtain more accurate
prices for these options by imputing them via put-call parity using the corresponding OTM options.
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We then apply a first set of filters, retaining only trading days and option quotes satisfying

the following criteria: (i) For each included tenor, there are at least ten distinct option quotes

across the strike range; (ii) The front maturity contract has at most 9 calendar days to maturity;

(iii) The maturity is less than or equal to 365 calendar days; (iv) The moneyness is not extreme:

−15 ≤ m ≤ 5; (v) The ratio of ask to bid price is less than five: Ask
Bid < 5. Notice this also implies

that the bid quotes must be strictly positive; (vi) The front-maturity contract has valid quotes for

OTM put options beyond moneyness m = −3.5; (vii) It is not an abbreviated trading day, a U.S.

holiday, or a low-activity trading day just prior to a U.S. holiday.

The first criterion ensures we can mitigate noise by diversifying the measurement errors across

multiple contracts at each maturity, enabling more accurate inference. The availability of multiple

contracts is also important for robust identification of the forward price, which is a critical input

to our analysis. We have 1,505,535 quotes satisfying this initial condition. The second criterion

guarantees we have short-dated options available throughout the sample, while the exclusion of

maturities beyond one year mirrors standard practice.8 These two criteria eliminate about 240,000

additional quotes. The subsequent moneyness and bid-ask quote conditions leave us with slightly

more than one million quotes. The OTM coverage condition eliminates five trading days during

August 2011. Finally, removing Holidays and partial trading days leaves us with 973,866 quotes.

We next split these “eligible” quotes into two distinct maturity categories: short-dated options

with tenor less than or equal to nine calendar days versus options with strictly more than nine days

to expiry. The sorting brings out another source of heterogeneity. The short-dated options, almost

tautologically, are cheaper than longer-dated ones. Given the tick size of $0.05, the percentage, or

relative, error induced by the rounding of option values to the price grid is larger for the short-dated

options. Likewise, the effect of illiquidity can be exacerbated for the cheaper options. Hence, we

impose additional filters on the short-maturity sample: (a) for each trading day, we retain only the

(most liquid) cross-section with the shortest maturity; (b) The moneyness is further restricted to

−8 ≤ m ≤ 5; (c) at least five units of each included contract are traded during the day; (d) we

impose a final condition, detailed in Appendix A, to remove stale quotes or quotes that constitute

clear (no-arbitrage) violations. Since the short-maturity options are critical for our inference, these

filters provide an additional safeguard against biases stemming from excessively noisy quotes.

These final conditions reduce our short-maturity sample from 61,756 to 41,206 contracts, cover-

ing 925 trading days. Thus, we have, on average, 54.5 bid-ask quotes at day’s end for a single short

8The availability of quotes for actively traded options with tenor beyond one year varies over time and is correlated
with market conditions. Hence, their inclusion will bias our comparison of the characteristics across our short- and
long-dated option samples.
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maturity across a broad strike range, with a minimum of five units traded for each contract during

the course of the day. Consistent with standard practice, we do not impose active trading conditions

on the longer-dated options. The latter are subject to relatively less distortion from discreteness or

illiquidity. Our set of “regular” options comprises 912,110 contracts with a tenor-strike composition

roughly matching that of the extant literature. If anything, it provides better coverage of relatively

shorter maturities due to the growth in the trading of weeklies. These contracts are introduced in

a staggered fashion with an initial maturity of about six weeks. Hence, these contracts typically

first enter our regular option sample and only later our short-dated sample.

2.2 Characteristics of the Two Option Samples

Table 1 summarizes the composition of our option sample. The top panel gives the number of

contracts that fall in each moneyness-tenor category, while the bottom panel provides the relative

trading volume. The shaded column concerns our short-maturity sample, and the next three

columns refer to our regular sample.

The top panel reveals that the short-dated options, consisting exclusively of the front-maturity

contracts, accounts for about 4.3% of the sample. Moreover, for options with tenor below 60 days,

the OTM put options constitute a marginally larger fraction than the ATM options (−2 ≤ m ≤ 2),

but this is sharply reversed for the longer maturities. Finally, there are very few quotes for OTM

calls. The bottom panel shows that the trading in our short-maturity sample, comprising 19.2% of

the total, is much more intense than for the regular options. Furthermore, the volume is higher for

ATM than OTM options, with the volume in OTM calls being extraordinarily light in the regular

sample. Finally, the volume for tenors beyond 180 days is low, especially for far OTM options.

Hence, our option samples provide good coverage across moneyness and maturity for short and

medium tenors, except for the deep OTM calls. At longer maturities, the lack of liquidity for the

latter instruments is a definite concern. Even if the information content of the options is excellent,

it is inherently difficult to draw inference regarding the behavior of the upper right tail of the

distribution across all maturities, and the problems compound for both tails at longer horizons.

Turning to the variation in coverage over time, Figure 3 depicts the maximum strike range

captured across all tenors within our two categories. The left panel shows that, since 2012, the

short-dated options almost always cover strikes below m = −6 on the downside, while the upside

coverage invariably reaches m = 2, but only sporadically goes much beyond this level.

For brevity, the right panel of Figure 3 combines information across tenors in our regular sam-

ple. Hence, the extreme positive and negative moneyness is often attained at different maturities.
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τ ≤ 9 9 < τ ≤ 60 60 < τ ≤ 180 τ > 180 Total

Number of contracts (%)

m < −2 1.95 23.22 12.88 6.73 44.78

|m| ≤ 2 2.17 21.25 17.40 12.34 53.16

m > 2 0.20 1.63 0.17 0.07 2.07

Total 4.32 46.10 30.44 19.13 100

Volume (%)

m ≤ −2 5.97 14.58 3.55 0.66 24.77

|m| ≤ 2 12.74 40.67 16.34 4.18 73.93

m > 2 0.47 0.78 0.04 0.01 1.30

Total 19.18 56.03 19.93 4.85 100

Table 1: Option characteristics. Top Panel: Percentage of option contracts over different
combinations of tenor (τ , in days) and moneyness (m) between January 3, 2011, and December 31,
2014. Bottom Panel: Percentage of contract volume over different combinations of tenor (τ , in
days) and moneyness (m) between January 3, 2011, and December 31, 2014.

Moreover, the moneyness is not truncated, as is the case for the short-maturity sample. As such,

the two panels are not directly comparable. Instead, the right panel merely serves to convey general

information regarding the time variation in coverage offered by our regular option sample. With

this caveat in mind, we note the broadly similar coverage on the upside while, up through 2013,

there typically are some longer-dated options that provide a broader strike range on the downside

than afforded by our short-maturity sample. Nonetheless, the OTM put coverage is generally im-

pressive for the short-dated options, reaching the threshold of −8 for more than one third of the

dates in the sample. At that point, no significant information is available from additional downside

coverage. In summary, our short-maturity sample covers an impressively broad range of strikes on

the downside and matches the upside coverage provided by standard option samples.

Finally, we address the concern that the bid-ask spread may be excessive for short-dated options.

Figure 4 depicts the average spreads for our two categories. For the range [−4, 1], the relative spread

is indeed lower for the longer-dated options, but outside this range the liquidity of the short-dated

options – reflecting our sample selection criteria – manifests itself in a relatively narrow spread.

This suggests the reliability of the pricing for this critical segment of far OTM short-dated options

is comparable to, if not better than, that of the typical OTM options used in prior studies.
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Figure 3: Moneyness Range. Left Panel: Moneyness range for short-maturity options. Right Panel:
moneyness range for long-maturity options. The sample period is January 3, 2011 – December 31, 2014.
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Figure 4: Bid Ask Spread. Kernel regression of the Relative (left axes) and absolute (right axes) bid-ask
spread as a function of moneyness, m.

3 Setting and Notation

Throughout, we assume financial markets are arbitrage-free which, subject to mild regularity, im-

plies the existence of a risk-neutral measure. The underlying price process X, i.e., the S&P 500

index, is governed by the following general risk-neutral dynamics,

dXt

Xt−
= (rt − δt) dt +

√
Vt dWt +

∫
R2

(ex − 1) µ̃(dt, dx, dy), (1)

where rt and δt are the instantaneous risk-free rate and dividend yield which we will assume

are deterministic;9 W is a Brownian motion; V is the diffusive stochastic variance process; µ

is a counting jump measure with compensator dt ⊗ νt(dx, dy) and the difference µ̃(dt, dx, dy) =

µ(dt, dx, dy) − dt ⊗ νt(dx, dy) is the associated martingale jump measure. The jump specification

involves two separate components, x and y. The former captures the price jumps and the latter

the jumps in the diffusive variance. The marginal of the jump measure that counts only the price

jumps will be denoted by µ(dt, dx) ≡ µ(dt, dx,R) and its associated compensator by dt⊗ νt(dx).

9The unexpected variation in these series over the relevant maturities is minor relative to the other factors that
impact option prices. As such, this standard simplifying assumption has little practical effect on the results.
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The specification for X in equation (1) implies that the discounted cum-dividend gain process

associated with X follows a local martingale. Subject to mild auxiliary restrictions, this is the

minimal condition for the dynamics of X to preclude arbitrage.10

Our estimation is based on a panel of options written on the asset X along with high-frequency

data for X that are used to construct nonparametric volatility estimates. We denote the prices of

European-style out-of-the-money (OTM) options on X at time t by Ot,k,τ . Assuming frictionless

trading, option prices equal the expected discounted payoffs under the risk-neutral measure,

Ot,k,τ =

 EQ
t

[
e−

∫ t+τ
t rs ds (Xt+τ −K)+

]
, if K > Ft,t+τ ,

EQ
t

[
e−

∫ t+τ
t rs ds (K −Xt+τ )+

]
, if K ≤ Ft,t+τ ,

(2)

where τ is the tenor, K is the strike price, Ft,t+τ is the futures price of the underlying asset X,

at time t for the future date t + τ , and k = ln(K/Ft,t+τ ) is the log-moneyness. As is common,

we quote option prices in terms of their Black-Scholes implied volatility (BSIV). We denote the

observed option BSIV by κt,k,τ .

For each trading day, the option data is split into two groups. The first comprises the “standard”

data used in empirical work, namely OTM options with maturities beyond nine calendar days, and

the second consists of short-dated options with less than or equal to nine days to expiry. The

number of options in these groups on day t are denoted Nt and Mt , respectively.

4 How Well Do Existing Parametric Models Fit the Weeklies?

We start our formal analysis of the short-dated options by exploring the ability of standard para-

metric asset pricing models to capture both their level and dynamics. We use estimates of these

models based on “standard” data, namely S&P 500 index options with tenor beyond nine calendar

days. Subsequently, we contrast our findings to a more general semi-nonparametric setup in which

certain parts of the pricing model are left unspecified while others are generalized.

The parametric models we consider below parameterize the dynamics of V and its dependence

with W and µ, as well as that of the jump compensator νt(dx, dy). In particular, we consider

two-factor affine volatility specifications, and we set Vt = V1,t + V2,t , where

dV1,t = κ1 (v1 − V1,t) dt + σ1
√
V1,t dB1,t +

∫
R2

y µ(dt, dx, dy),

dV2,t = κ2 (v2 − V2,t) dt + σ2
√
V2,t dB2,t,

(3)

10One condition implicitly imposed in equation (1) is that X is an Itô semimartingale, i.e., its characteristics are
absolutely continuous in time. This restriction is valid for nearly all prior parametric specifications in the literature.
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and (B1,t, B2,t) is a two-dimensional Brownian motion with independent increments, corr (dWt, dB1,t) =

ρ1
√
V1,t/Vt, and corr (dWt, dB2,t) = ρ2

√
V2,t/Vt .

We consider two alternative specifications for the jump measure that allow for simultaneous

jumps, so-called co-jumps, in price and volatility. The first follows the double-jump volatility

representation of Duffie et al. (2000),

νt(dx, dy)

dxdy
= ct

e
−

(x−µx − ρjy)
2

2σ2x

√
2π σx

e
− y

µv

µv
1{y>0}, (4)

where ct = η0 +η1V1,t−+η2V2,t−. In words, the log-price jump, conditional on a volatility jump of

size y, is Gaussian with mean µx + ρjy and variance σ2x , while the volatility jump is exponentially

distributed with mean µv . The jump intensity itself is time-varying and affine in the two volatility

factors, as originally proposed by Bates (2000).

Our second specification for the jumps stems from Andersen et al. (2015b) and is given by,

νt(dx, dy)

dxdy
= c−t · 1{x<0, y=µvx2} · λ− e

−λ−|x| + c+t · 1{x>0, y=0} · λ+ e−λ+x , (5)

where c±t = η±0 + η±1 V1,t− + η±2 V2,t−. Following Kou (2002), the price jumps are exponentially

distributed, with separate tail decay parameters, λ− and λ+, for negative and positive jumps.

The volatility jumps are proportional to the squared negative price jumps, mimicking a discrete

asymmetric GARCH specification.11 As in the previous representation, the jump intensities are

time-varying, but we now further allow for separate variation for the positive and negative jumps.

For the models above, the option prices are known in semi-analytic form and are solely functions

of the parameter vector θ, the volatility states V1,t and V2,t, and the option characteristics τ and k.

Hence, we denote the model-implied BSIV by κk,τ (St, θ), where the state vector is St = (V1,t, V2,t).

They differ from the observed ones due to measurement errors in the option prices and possible

model misspecification.

Our first goal is to assess whether standard empirical models from the extant literature perform

satisfactorily in pricing short-maturity options. To this end, we initially estimate the parametric

models using our regular option sample. As is common in the literature, to limit the computational

burden, we exploit Wednesday end-of-day quotes for estimation.12 The estimation is based on the

following objective function,

11Option pricing implications of qualitatively similar features of the return distribution are pursued within a
discrete-time GARCH setting by Christoffersen et al. (2012).

12We switch to a nearby business day in case of a Wednesday market closure.
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(
{Ŝt}t∈TW , θ̂

)
= argmin
{St}t∈TW ,θ

∑
t∈TW

{ ∑
j:τj>9

(
κt,kj ,τj − κkj ,τj (St, θ)

)2
Nt

+
kn
Nt

(√
V̂ nt −

√
V1,t + V2,t

)2
V̂ nt /2

}
,

(6)

where V̂ n
t is a nonparametric estimate of the spot diffusive variance,13 using kn high-frequency

increments preceding time t, and T W denotes the set of time indices corresponding to the Wednes-

days in our sample. The main component of the objective function (6) is the mean squared error

in fitting the option (BSIV) panel, but we add a term penalizing the deviation of the implied spot

volatility from the nonparametric high-frequency estimate.

Given the estimated parameter vector θ̂ from the “regular” option data set, we estimate the

state vector, St = (V1,t, V2,t), each trading day using the short-dated option sample,

Ŝt = argmin
St

 ∑
j:τj≤9

(
κt,kj ,τj − κkj ,τj (St, θ̂)

)2
+ kn

(√
V̂ nt −

√
V1,t + V2,t

)2
V̂ nt /2

 , t = 1, ..., T. (7)

The estimation results for the two parametric models are reported in Appendix B. For the

Gaussian jump model, the mean jump intensity is 0.30, or only three jumps per ten years, while

the mean jump size is large and negative at −21.15%. The root-mean-squared-error (RMSE) of the

fit to the short-maturity option sample is 2.80%, expressed in annualized BSIV. In comparison, the

point estimates for the double-exponential jump model imply about 3.5 jumps per year, roughly

equally split between positive and negative jumps. The mean negative jump size is −4.64% and it

is 2.05% for positive jumps. Finally, this model has a lower RMSE at 2.39%. Thus, both models

feature left-skewed jump distributions, but the Gaussian representation involves rare and large

negative jumps, while the double-exponential implies more frequent, moderately sized, negative

and positive jumps, with the negative jumps being about double the size of the positive ones.

Our primary focus here is the quality of fit for the short-dated options. To assess model

performance, we make use of the diagnostic tests developed in Andersen et al. (2015a). Our first

test is a Z-score that reflects the fit to a specific part of the option surface over a given period. We

focus on the day-by-day fit. The test is given by the normalized “option-fit” (of) statistic,

T̂ of
K,t = ZK,t/

√
Âvar (ZK,t), (8)

where ZK,t =
∑

j:kj∈K, τj≤9

(
κt,kj ,τj − κkj ,τj (Ŝt, θ̂)

)
is the average pricing error over the relevant

13In our application, V̂ nt is a standard robust threshold realized volatility estimator, implemented as in Andersen
et al. (2015a).
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part of the moneyness region, K. Andersen et al. (2015a) show that T̂ of
K,t is asymptotically standard

normal under the null of correct model specification, and it diverges towards infinity otherwise.

Our second diagnostic is based on the discrepancy between the option-implied model-based

estimate for spot diffusive volatility, V̂t = V̂1,t + V̂2,t , and the corresponding nonparametric high-

frequency estimate, V̂ n
t . The formal test is based on the normalized “volatility fit” (vf) statistic,

T̂ vf
t = (V̂ n

t − V̂t)/
√

Âvar(V̂ n
t − V̂t). (9)

Under correct model specification T̂ vf
t is asymptotically standard normal, and diverges otherwise.

We defer to Andersen et al. (2015a) for details regarding the construction of feasible estimates for

the two asymptotic variance terms involved in the tests based on equations (8) and (9).

For conciseness, Figures 5 and 6 only depict the Z-scores for the best performing model, based

on the double-exponential jump specification. The diagnostics for the alternative parametric spec-

ification are relegated to Appendix B.

Jan11 May11 Sep11 Feb12 Jun12 Oct12 Mar13 Jul13 Nov13 Apr14 Aug14 Dec14

-10

0

10

DOTM Puts

Jan11 May11 Sep11 Feb12 Jun12 Oct12 Mar13 Jul13 Nov13 Apr14 Aug14 Dec14

-10

0

10

OTM Puts

Jan11 May11 Sep11 Feb12 Jun12 Oct12 Mar13 Jul13 Nov13 Apr14 Aug14 Dec14

-10

0

10

OTM Calls

Figure 5: Short-dated option price fit based on a parametric model estimated from the
“regular” option sample. The figure reports the daily test statistics (8) for the short-dated options
based on the parametric model in equations (3) and (5) with parameters estimated from the “regular” option
sample and the state vector estimated separately from the short-dated options each trading day. The regions
of the option cross-section are for tenor τ ≤ 9 and deep OTM puts (top panel, −8 ≤ m < −4 ), OTM puts
(middle panel, −4 ≤ m < 0), and OTM calls (bottom panel, 0 ≤ m < 5). The solid lines indicate the
symmetric 95% confidence band for the test.

The panels in Figure 5 plot the Z-scores for each trading day across the short-dated option

sample for three separate segments of the option cross-section, corresponding to the deep OTM
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put options in the top panel, the OTM puts in the middle panel and the OTM call options in the

bottom panel. In all cases, we observe very large pricing errors with t-statistics often exceeding

5 in absolute value and even going beyond 10. In particular, we identify persistent overpricing of

deep OTM puts between March 2012 and October 2013 and of OTM calls in the entire second

part of the sample. Likewise, there are highly significant deviations between the model-implied

spot volatilities and the corresponding high-frequency estimates in Figure 6. In this case, the lower

panel reveals that the model-implied estimates quite often exceed the high-frequency estimates by a

wide margin, i.e., the model-implied volatility has excessive positive outliers. Overall, the standard

models provide a very poor fit to the short-dated option prices. This suggests that these models

fail to capture critical features of the underlying risk-neutral return dynamics.
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Figure 6: Volatility fit based on a parametric model estimated using “regular” options.
The top panel reports end-of-day spot volatilities based on nonparametric estimates from high-frequency
data (solid line) or option-implied values (grey line). The option-implied volatility estimate is computed
using the parametric model defined in equations (3) and (5) with parameters estimated from the “regular”
option sample and the state vector estimated separately from the short-dated options on each trading day.
The volatility estimates are reported in annualized units. The bottom panel reports the corresponding daily
volatility test statistic (9). The solid lines indicate the symmetric 95% confidence band for the test.

These findings are quite unsettling. Standard asset pricing models fail systematically in terms

of providing a suitable characterization of the equity return dynamics and the associated short-

horizon risk pricing. Is this due to the specific parametric models used here? If so, what features are

to blame for the poor performance? More generally, what type of no-arbitrage model is consistent

with our short-maturity option sample? Of course, it is possible that short-maturity options are
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subject to a great deal of idiosyncratic noise and serve as a poor basis for assessing the performance

of asset pricing models. We explore this possibility further in the following sections, as we impose

successively weaker restrictions on the risk-neutral dynamics. In this manner, the option data are

given prominence in shaping the results, allowing us to more readily distinguish the effects of model

misspecification versus excessive noise in the option prices.

5 Semi-nonparametric Models for Short-Maturity Option Pricing

The parametric approach to option pricing allows us to utilize the rich information in the entire

option surface, covering all available maturities and strikes. On the other hand, option prices are

highly nonlinear functions of the underlying state variables and parameters. Hence, the impact of

even minor misspecification can be both significant and unpredictable. While this is largely un-

avoidable when pricing options across the full maturity range, the literature has developed partial

remedies for short-dated options. One may adopt a more robust semi-nonparametric approach in

which parts of the pricing kernel are left unspecified, avoiding the unforeseeable consequences of mis-

specification along particular dimensions. However, these techniques apply only for a restrictive set

of strikes and for very short maturities. Below, we describe a novel semi-nonparametric procedure,

which exploits a more robust local approximation to the prices of short-dated options, irrespec-

tive of the strike price. In turn, this enables us to perform feasible inference on the risk-neutral

dynamics from short-dated options alone, while imposing only weak distributional assumptions.

Henceforth, we retain the general representation (1) for the risk-neutral dynamics of X, but

impose parametric restrictions on the distribution of price jumps only. In other words, we stipulate

that the price jump intensity is of the form dt⊗ ν(dx; Jt, θ) for some parametric jump distribution

ν(dx; Jt, θ) with time-invariant parameter vector θ and time-varying state vector Jt.

Various asymptotic expansions have been used in prior work. For example, Carr and Wu (2003)

and Bollerslev and Todorov (2014) exploit the following OTM option price approximation,

Ot,τ,k
τXt−

−→


∫
R(ex − ek)+ ν(dx; Jt, θ), if k > 0∫
R(ek − ex)+ ν(dx; Jt, θ), if k < 0

, as τ ↓ 0 . (10)

That is, the valuation of short-dated OTM options is largely determined by the prices of “big”

jumps. However, in practice, this approximation works well only for very deep OTM options,

i.e., for k large in absolute value. Moreover, once we move beyond very short-maturity options,

the presence of the diffusion term and the time-variation in volatility and jump intensity have a

non-trivial impact on the pricing.
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Another short-maturity option approximation concerns ATM options, see, e.g., Durrleman

(2008). In particular, we have,

κt,0,τ −→
√
Vt, as τ ↓ 0. (11)

The approximations (10) and (11) work either for deep OTM or ATM options, but not for the

broad range with strikes between these extremes. Below, we implement our new approximation,

which applies to all short-maturity options.

Our approach is based on computing short-dated option prices from an approximate represen-

tation of X with constant diffusive variance and jump intensity (as well as constant dividend yield

and risk-free rate), denoted X̃. It is defined as,

dX̃s

X̃s−
= (rt − δt)ds+

√
VtdWs +

∫
R

(ex − 1)(µ(ds, dx)− ds⊗ ν(dx; Jt, θ)), s ≥ t, X̃t = Xt . (12)

X̃ approximates X over a short horizon starting at time t. It is used to compute approximate prices

at time t for short-maturity options written on X with any given strike price. The approximation

freezes the characteristics of X, i.e., its drift, volatility, and jump intensity, at their values at time

t. Therefore, conditional on Ft, X̃ is a Lévy process. The reason X̃ may approximate X well over

short intervals (like a few days) is that, over such horizons, the volatility and the jump intensity

of X are not expected to vary much. In fact, since risk premiums tend to be highly persistent, the

stochastic volatility and jump intensity are likely to be even less variable under the pricing measure

than under the actual statistical measure.

Pricing options written on X̃ at time t is significantly easier than pricing options on X. Indeed,

semi-closed option pricing formulas exist for large classes of Lévy processes, see, e.g, Cont and

Tankov (2004). The theoretical price of an option, in terms of BSIV, at time t written on X̃ with

tenor τ and log-moneyness k depends on the parameter vector θ as well as the state vector, St =

(Vt,Jt). We denote it by κ̃k,τ (St, θ). The formal analysis of the approximation error, κ̃k,τ (St, θ)−
κt,k,τ , relies on an asymptotic analysis of the price increment X̃t+τ − Xt+τ for τ ↓ 0. While the

approximation X̃ has been used previously by, e.g., Jacod and Protter (2012) to study the properties

of nonparametric high-frequency volatility estimators, it is novel in the context of option pricing.

Option prices obtained via the approximation (12) improve on equations (10) and (11) along

several dimensions. First, our new approximation applies for any degree of moneyness. Second, our

approximation error stems only from the time-variation of volatility and jump intensity over the life

of the option. In contrast, equation (10) includes also approximation errors due to the presence of

a diffusive component in X, the presence of “small” jumps, and the possible occurrence of multiple

“big” jumps prior to expiry. Similarly, equation (11) includes an approximation error due to the
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presence of jumps in X. Thus, if X has constant volatility and jump intensity, our approximation

κ̃k,τ (St, θ) is exact, unlike the ones in equations (10) and (11).

We will use our approximation, exploiting the simplified return dynamics in equation (12), to

better identify the characteristics of the risk-neutral jump process implied by the pricing of short-

dated options. Parametric models specify the entire risk-neutral law for X, including an explicit

dynamic representation for the volatility and jump intensity processes, their relation, the interaction

between volatility and return innovations, etc. By contrast, focusing solely on short-dated options

and using the approximation κ̃k,τ (St, θ), we need to specify only the jump distribution. Thus, the

inference based on κ̃k,τ (St, θ) is far more robust than one based on a full parametric model which

hinges also on correctly specified volatility and jump intensity dynamics.

5.1 Models with Fixed Jump Distribution

Using short-dated options and the Lévy-based approximation (12), we now estimate semi-nonparametric

models that mirror our two parametric specifications but, importantly, we avoid specifying the

dynamics of the volatility and the jump intensity as well as their interdependence. Hence, the

success of these models does not depend on correct parametric specification for the dynamics of

the volatility and jump intensity. Consequently, the relative quality of fit for the parametric and

semi-nonparametric specifications provides an informal diagnostic tool. In particular, it sheds some

light on the extent to which the representation for the dynamics of the volatility and jump intensity

in equation (3) is to blame for the poor performance of the parametric models in Section 4.

Our first model for ν(dx; Jt, θ) is

ν(dx; Jt, θ) = ct
1√

2π σx
e
− (x−µx)2

2σ2x dx . (13)

This formulation involves Gaussian jumps, as in equation (4), but we now allow the jump intensity,

ct, to display (arbitrary) time variation unrelated to volatility. In this specification θ = (µx, σ
2
x)

and Jt = ct. We note that the jump distribution remains time invariant in this specification.

Our second model for ν(dx; Jt, θ) is given by

ν(dx; Jt, θ) = ct

{
e−λ

−|x|

|x|1+α
1{x<0} +

e−λ
+|x|

|x|1+α
1{x>0}

}
dx, α < 2. (14)

This jump specification extends the double-exponential model (5) in two dimensions. First, the

intensity parameter ct now varies unrestrictedly. Second, although we retain the double-exponential

specification for now, we introduce, for later reference, an additional parameter, α, which controls
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the behavior of the jump measure around zero. α = −1 corresponds to the original double-

exponential and α = 0 to the variance gamma jump process. For α < 0, the jump process is of

finite activity, while α ∈ [0, 1) implies infinite activity, but finite variation jumps. Finally, α ∈ [1, 2)

generates jumps of infinite variation. For constant ct , the process (14) belongs to the tempered

stable class, introduced by Carr et al. (2002, 2003), and estimated from return data by Bates

(2012).14 We find that α cannot be identified with precision from the data. Therefore, we do not

treat α as a parameter, but instead estimate the jump specification (14) for different fixed values

of α. Thus, the parameter vector is θ = (λ−, λ+) and the state vector is Jt = ct.

On the other hand, there is also a new constraint imposed in equation (14). The time-varying

jump intensities now take a similar form for positive and negative jumps, whereas the earlier

double-exponential formulation (with α = −1) in equation (5) allows for these jump intensities to

evolve separately. We impose this additional restriction because separate identification of the jump

intensity for each observation date requires reliable observations for deep OTM options. However,

on many trading days, the coverage for deep OTM calls is too limited to allow meaningful inference.

Thus, effectively, the formulation in equation (17) implies we “borrow” information from the highly

liquid OTM put options to pin down the jump intensity, also for the positive jumps. Without such

a restriction, minor model misspecification or measurement errors in the option prices induce a

large degree of instability and imprecision in the estimates for the right jump intensities. This

implies that we should view our fit to the OTM call options with some skepticism.

The estimation of our semi-nonparametric models is done via,

(
{Ŝt}Tt=1, θ̂

)
= argmin
{St}Tt=1,θ

T∑
t=1

{ ∑
j:τj≤9

(
κt,kj ,τj − κ̃kj ,τj (St, θ)

)2
Mt

+
kn
Mt

(√
V̂ nt −

√
Vt
)2

V̂ nt /2

}
, (15)

which is a direct analogue to equation (6).

We defer the estimation results to Appendix C. Briefly summarizing the findings, however, we

note a substantial improvement in the fit to the short-dated options with RMSEs of, respectively,

1.19% and 1.02% for the Gaussian and double-exponential (α = −1) jump specifications. Moreover,

the jump intensity for the Gaussian representation rises to 2.5 per year with a more moderate jump

size of −5%. In comparison, the double-exponential model has mean jump sizes of −3.8% and

1.6%, i.e., it features only slightly smaller jumps than before.

Given the model estimates, we construct Z-scores for the short-maturity option and volatility

fit, exactly as in equations (8) and (9). For brevity and ready comparison with Figures 5 and 6, we

only provide diagnostic plots for the better fitting double-exponential representation, while the plots

14More precisely, (14) can be viewed as tempered stable for α ∈ (0, 2).
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for the Gaussian jumps are deferred to Appendix C. Comparing the fit of the double-exponential

parametric model and its semi-nonparametric counterpart in this section, the improvement is evi-

dent. The average magnitudes of the Z-scores both for the fit to the option cross-section and the

nonparametric volatility estimates are now much smaller, suggesting a lower degree of misspecifi-

cation. This is consistent with the hypothesis that the parametric modeling of the return dynamics

– including the two-factor affine specification as well as the affine dependence of the jump intensity

on the volatility factors – is partially responsible for the poor empirical performance of the models

in Section 4. This conclusion is also in line with the empirical evidence based on option data and

flexible one-factor nonlinear volatility models provided by Christoffersen et al. (2010).

Nevertheless, even for the current model, the fit is problematic. Figure 7 displays the Z-scores

for the fit to the option prices. In line with the evidence for the fully parametric model in Section 4,

we continue to observe severe overvaluation for the deep OTM puts during March 2012 to October

2013 and for the OTM calls in the second part of the sample. In addition, the moderately OTM

puts are, in contrast to the deep OTM puts, systematically underpriced in the period March 2012

to October 2013. This reveals a tension in jointly fitting the overall shape of the option skew, even

with a fully flexible specification for the jump intensity. Moreover, Figure 8 documents that large

outliers occur systematically on the downside, representing model-implied overestimation of the

spot volatilities relative to the ones based on the high-frequency data. Qualitatively similar issues

are apparent from the diagnostic tests for the Gaussian specification in Appendix C.

5.2 Models with Time-Varying Jump Distribution

In spite of the flexibility afforded by our semi-nonparametric models based on equations (13) and

(14), they still do not account satisfactorily for the time variation in the pricing of short-dated

options. What is the reason? The specifications (13) and (14) impose structure on the jump

process along two dimensions. First, they assume that the jump distribution, at any point in time,

may be captured through a finite-dimensional parameter vector. Second, like essentially all prior

parametric models in the extant literature, they imply that the relative intensity of differently sized

jumps is invariant over time. That is, νt(x)/νt(x
′) is constant across all jump sizes x, x′ ∈ R.

It is unlikely that the parametric structure of the specifications (13) or (14) is the main problem.

In fact, equation (14) is quite flexible and allows for separate parameters to govern small and big

jumps. A more plausible culprit is the constraints on the time variation of the jump characteristics

and, in particular, the imposition of a time-invariant shape for the intensity across jump sizes.15

15Indeed, we can formally test the hypothesis of a time-invariant shape across the jump sizes. Recall the short-
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Figure 7: The fit to the prices of short-dated options based on the semi-nonparametric
model (14). The figure reports the daily test statistics (8) for the short-dated option sample based on
model (14) with the parameters and state vector estimated from the short-maturity options. The regions of
the cross-section are for tenor of τ ≤ 9 and deep OTM puts (top panel, −8 ≤ m < −4), OTM puts (middle
panel, −4 ≤ m < 0), and OTM calls (bottom panel, 0 ≤ m < 5). The solid lines indicate the symmetric
95% confidence band for the test.
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Figure 8: The fit to spot volatility based on the semi-nonparametric model (14). The top
panel reports end-of-day spot volatilities based on nonparametric estimates from high-frequency data (solid
line) or option-implied values (grey line). The option-implied volatility estimate is computed on the basis
of model (14) with the parameters and state vector estimated from the short-dated options on each trading
day. The volatility estimates are reported in annualized units. The bottom panel reports the corresponding
daily volatility test statistics (9). The solid lines indicate the symmetric 95% confidence band for the test.
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Hence, we now further generalize the models by allowing the parameters in equations (13) and (14)

to vary over time. We consider the following time-varying jump distribution models,

ν(dx; Jt, θ) = ct
e
− (x−µx,t)

2

2σ2x,t

√
2πσx,t

dx , (16)

and

ν(dx; Jt, θ) = ct

{
e−λ

−
t |x|

|x|1+α
1{x<0} +

e−λ
+
t |x|

|x|1+α
1{x>0}

}
dx . (17)

In these specifications, the volatility and jump intensity remain unrestricted, but the coefficients

of the jump distributions now also shift freely across the observation dates. Thus, all the jump

coefficients are time-varying and no longer constitute part of the parameter vector. Instead, they

enter St as additional state variables that are necessary for a full characterization of the prevailing

risk-neutral price dynamics. In other words, θ is now the empty set — formally θ = ∅ — while

St = (Vt ,Jt ) with Jt = ( ct , µx,t , σx,t ) and Jt =
(
ct , λ

+
t , λ

−
t

)
for the two models, respectively.

We stress that the two models (16) and (17), by construction, remain arbitrage-free.

As in Section 5.1, we estimate the system via criterion function (15). Since the parameter vector

is absent (the empty set), this reduces to a sequence of optimization problems with the spot volatil-

ity, jump intensity, and jump distribution coefficients estimated independently for each observation

date. Clearly, this provides a tremendous amount of flexibility in fitting the option cross-section.

At the same time, the constraint that the jump intensity, ct, enters symmetrically for the positive

and negative jumps is now even more critical. On many days, the information attainable through

the few available quotes on deep OTM calls is insufficient for reasonable inference. Moreover, the

richness of quotes for deep OTM puts implies that the coefficients typically adjust to allow a good

fit to the left tail of the implied volatility skew. As a result, we may occasionally observe a poor fit

to the prices of OTM calls, but this is a natural consequence of the lack of identifying information

on this dimension. While this is a genuine limitation, we note that, from an economic perspective,

most of the interesting variation is associated with the negative jump tail. Specifically, the latter

has been linked to risk premiums that account for a large component of the time-varying equity

and variance risk premiums in the aggregate U.S. stock market.

Our modeling via equation (1) and the jump specifications (16) and (17) is reminiscent of the

calibration to option surfaces, often adopted by practitioners. However, there are fundamental

maturity asymptotic approximation (10). A specification of νt(dx) = ct × ν(dx) for some intensity process ct (like
our parametric jump specifications thus far), together with the asymptotic result in equation (10), implies that the
ratio Ot,τ,k/Ot,τ,k′ for some k, k′ > 0 or k, k′ < 0 fixed will remain constant as we vary t, i.e., across the days in the
sample. This can be easily rejected for our short-maturity data set.
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differences. Model (1), complemented by either (16) or (17), is built around the principles of no-

arbitrage. In particular, it enforces (statistical) equality of the diffusive volatility under the physical

and risk-neutral measures, and we explicitly enforce this restriction in the estimation procedure.

There is no counterpart of this no-arbitrage condition for “large” jumps due to the market incom-

pleteness induced by the presence of jumps. Our flexible semi-nonparametric specifications (16)

and (17) reflect this basic fact. In short, we rely on the short-dated options to inform us about

time-variation in the pricing of jump risk as well as the state of spot volatility. Although longer-

dated options also impose some “discipline” on the risk-neutral jump intensity, this information

cannot be extracted in a model-free manner.

Hence, in essence, we identify the features of the semimartingale model for X, i.e., the spot

volatility and characteristics of the jump process, from the short-dated options written on X. This

endows our day-by-day estimates with a direct “structural” interpretation vis-a-vis the state of

the underlying risk-neutral asset price process. This is not feasible from the standard practitioner

calibration of option surfaces via flexible curve-fitting procedures, e.g., smoothing splines. We

subsequently employ this characterization to study the jump risk and volatility dynamics as well

as the implications for longer-dated options. Again, such applications are precluded if calibration

is performed through curve-fitting void of any connection to volatility, jump intensity and jump

distribution as well as their no-arbitrage links with the underlying asset returns.

The ability to accommodate each individual implied volatility skew through variation in the

coefficients of the jump distribution across observation dates via “structural calibration” generates

a substantial improvement in fit to the short-dated options. Since we are close to a (statistically)

acceptable characterization, we provide a more comprehensive review of the diagnostic tests.

First, we consider the Gaussian jump specification, widely adopted in the empirical literature.

Of course, our current version (16) is much more flexible than the standard representation which

invokes fixed jump parameters and relies on a particular parametric representation for the spot

volatility and jump intensity dynamics. The Z-scores associated with our pricing approximation

for the options in our short-maturity sample are depicted in Figure 21 of Appendix D. The rejections

are far less frequent and less dramatic than observed previously. Nonetheless, the model is strongly

rejected, as there are lengthy periods with pronounced clustering of Z-scores outside the standard

error bands. Specifically, over the last fifteen months of the sample, the model-implied estimates

overprice deep OTM puts, while close-to-ATM puts are underpriced. In other words, the model has

difficulty in accommodating the shape of the left tail. Likewise, the diagnostics for the volatility fit

in Figure 22 reveal that the model-implied volatility often greatly exceeds the corresponding high-
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frequency based estimate of spot volatility. Even so, the overall RMSE drops to 0.85%, confirming

the vast improvement in average fit relative to the prior Gaussian specifications.

Second, we consider the class of tempered stable distributions with time-varying tail parameters,

λ−t and λ+t , across observation dates. Consistent with our previous findings, the double-exponential

jump representation (α = −1) improves on the Gaussian model. The overall RMSE is now 0.68%

and the associated Z-score diagnostics, presented in Appendix D, also indicate a superior fit relative

to the Gaussian specification. However, the fit is still not stellar. There are indications of mispricing

for close-to-ATM puts towards the end of the sample – less dramatic but qualitatively in line with

the evidence for the Gaussian jumps – and there is an excessive number of instances with model-

implied overestimation of spot volatility relative to the nonparametric estimator. Since the shape of

the implied volatility skew close to the origin is significantly affected by α, we explored alternative

values for this coefficient. We find a substantial improvement for increasing values of α, culminating

around α = 0.5.16 We now obtain a much lower RMSE of 0.57%, and the diagnostic checks are

no longer indicative of systematic pricing errors for the OTM put options or any persistent errors

in the model-implied volatility estimate. However, as for all the models we entertain, the pricing

of the OTM call options is somewhat problematic. This is, of course, not unexpected, given our

restriction that the right jump intensity is proportional to the left jump intensity which, in turn

reflects the limited number of OTM call options in our sample. As noted earlier, this implies that a

much higher weight is assigned to the OTM put option fit in our criterion function. The Z-scores for

the option price and volatility fit are depicted in Figures 9 and 10, while more detailed information

on the fit of the tempered stable models for alternative values of α is provided in Appendix D.

6 Characterizing the Time-Varying Jump Distributions

Section 5 demonstrates that a suitable fit to the pricing of short-dated equity-index options requires

an accommodation of pronounced time-variation in the jump distribution. If this is, indeed, a robust

empirical finding, it has serious implications for the proper specification of asset and derivatives

pricing models. In this section, we analyze the main features of our final, and statistically satisfac-

tory, semi-nonparametric representation for the risk-neutral asset return process. We focus on the

time-variation in the volatility and jump characteristics to gauge if they are economically rational

and sensible. Alternatively, one may hypothesize that the results are driven either by a substantial

16We note that a value of α = 0.5 implies that jumps are of infinite activity, i.e., there are many small ones, under
the risk-neutral probability. This property is preserved under equivalent martingale measure, and thus continues to
hold for the statistical law of the market index.
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Figure 9: The fit to short-dated option prices based on the semi-nonparametric model
(17). The figure reports the daily test statistics (8) for the short-maturity options based on the semi-
nonparametric model (17) with α = 0.5 and the state vector estimated from the short-dated options. The
regions of the option cross-section are for tenor τ ≤ 9 and deep OTM puts (top panel, −8 ≤ m < −4), OTM
puts (middle panel, −4 ≤ m < 0), and OTM calls (bottom panel, 0 ≤ m < 5). The solid lines indicate the
symmetric 95% confidence band for the test.
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Figure 10: The volatility fit based on the semi-nonparametric model (17). The top panel
reports end-of-day spot volatilities based on nonparametric estimates from high-frequency data (solid line)
or option-implied values (grey line). The option-implied volatility estimate is computed on the basis of
the semi-nonparametric model (17) with α = 0.5 and the state vector estimated from the short-maturity
option sample. The volatility estimates are reported in annualized units. The bottom panel reports the
corresponding daily volatility test statistics (9). The solid lines indicate the symmetric 95% confidence band
for the test.
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degree of noise in the quotes for short-dated options or by idiosyncratic pricing in this segment of

the derivatives market, which may be effectively separated from mainstream capital markets.

Section 6.1 explores why the Gaussian jump model consistently performs poorly in capturing the

implied jump size distribution; Section 6.2 depicts the time-variation in the extracted spot volatility

and relate the more significant tail shifts to changes in the prevailing economic environment; Section

6.3 decomposes the fluctuations in the implied spot return variation into the diffusive, left- and

right-jump variation components, documenting precise and economically meaningful identification

of the overall return variation and its constituents; Section 6.4 shows that large fluctuations in

our left jump variation measure systematically spill over into contemporaneous pricing errors for

standard parametric models within regular option panels, confirming the existence of strong links

between our jump variation measure and the state of the broader option market.

6.1 The Shape of the Jump Distribution

The empirical results in Sections 4 and 5 beg the question of why the popular Gaussian specifi-

cation, even with the extreme degree of flexibility afforded by unrestricted time-variation in the

volatility, jump intensity and jump parameters, invariably seems to underperform our alternative

representations. To illustrate a common shortcoming, Figure 11 displays the observed log-price for

our short-dated options on October 15, 2014, along with the corresponding model-implied ones gen-

erated by the Gaussian and tempered stable jump specifications. In the moneyness range (−2, 0),

the Gaussian model systematically underprices OTM put options, while it overprices them over

the range (−5.5,−2.5). Finally, for the extreme left tail, there is again significant underpricing but

this region contains few observations and has a limited impact on the estimation for this trading

day. The tempered stable model, on the other hand, provides an impressive fit to the entire left

tail, only missing marginally for extreme OTM puts. The point is that the Gaussian specification

generates a negative jump mode, which induces a pronounced non-convexity in the left tail as a

function of m. In contrast, the actual log option prices consistently display a convex pattern in the

left tail, signifying systematic mispricing by the Gaussian model.

We also note that both specifications produce quite substantial pricing errors for OTM calls.

This reflects the dominant role of OTM puts in determining the estimation results. In turn, this

stems from the relative sparsity and illiquidity of the OTM calls. As noted previously, an extended

model specification, involving separately evolving intensities for large positive and negative jumps,

is likely to improve the fit to the right tail. Unfortunately, the information embedded in the

available OTM call options is insufficient for disentangling the intensity and size distribution for

positive jumps with reasonable precision on a day-to-day basis.
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Figure 11: Option prices and model fit on October 15, 2014. Left Panel: fitted option prices
(in log) according to the Gaussian semi-nonparametric model (16). Right Panel: fitted option prices (in
log) according to the semi-nonparametric Generalized Tempered Stable model (17) with α = 0.5. In both
panels the dots represent the observed option prices while the light gray line indicates the model fitted prices.
The tenor of the options is nine days.

6.2 Time Variation in Diffusive and Jump Risk

We now take a closer look at the time variation in the volatility and jump characteristics implied

by the short-dated options. We use the best performing model (17) with α = 0.5. As discussed in

Section 5, our model diagnostics indicate that this model successfully captures the dynamics in the

pricing of short-maturity options, with the exception of the OTM calls. Since we allow both ct and

λ±t to vary unrestrictedly and the option bid-ask spread is relatively large, the daily point estimates

are invariably noisy. Hence, to reduce the estimation error and better bring out the systematic time

series variation in the system, Figure 12 presents 20-day moving averages of the jump parameters

and the spot diffusive variance.

Figure 12 reveals some interesting dynamic patterns. Starting in the upper left panel, we see

that the estimated diffusive variance is dominated by one major spike associated with the downgrade

of the U.S. federal debt in August 2011. In comparison, the elevated (diffusive) volatility during the

European sovereign debt crisis from early 2012 until July 2012, the fears of a prolonged government

shutdown in the summer of 2013, and the worries about European growth and Ebola outbreaks in

October 2014, were all quite moderate.

The estimated jump intensity series in the upper right panel is highly correlated with the

diffusive variance. This is consistent with standard asset pricing models and our parametric speci-

fications in Section 4, which attribute variation in the jump intensity to shifts in market volatility.

Nevertheless, there are periods for which the two series behave markedly differently. For example,
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during the European debt crisis in 2012 and the turbulence surrounding the potential government

shutdown in 2013, the response of the intensity was in relative terms much larger than for volatility,

while the opposite was the case towards the end of 2014.
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Figure 12: Estimates for the semi-nonparametric model (17). We plot the estimates for Vt
(top left panel), ct (top right panel), 1/λ−t (bottom left panel), and 1/λ+t (bottom right panel) based on the
model (17) with α = 0.5. For each series, we plot a 20-day moving average of the daily estimates.

The strong correlation between the spot variance and jump intensity is compatible with the

standard option pricing framework as long as the jump size distribution remains invariant. However,

the bottom left panel reveals that the left tail parameter λ−t exhibits pronounced time variation.

This suggests that the standard paradigm will have difficulty in capturing the type of time variation

in the pricing of short-dated options observed across our sample. To further interpret the variation

in the negative jump size distribution, we first review the features of the cross-section of option

prices that facilitate separate identification of the jump intensity and jump size distribution.

For a fixed value of α, λ−t determines the shape of the risk-neutral jump distribution for the given

day and, in particular, the slope of the implied volatility curve for “sufficiently” low moneyness,

i.e., the far left tail (recall approximation (10) for deep OTM options). On the other hand, the

jump intensity ct governs the overall level of implied volatility for “sufficiently” deep OTM options

and it impacts both the level and curvature of the implied volatility curve in the near-ATM region.

29



In summary, a shift in λ−t alters the slope, or thickness, of the far left tail of the implied volatility

curve, while ct moves the curve up or down in a parallel fashion.

The left tail of the risk-neutral jump distribution is thickest during the beginning and end of our

sample as well as during July of 2012 and summer through fall of 2013. The initial high level may

reflect the aftermath of the first European sovereign debt crisis. The slow decay in 1/λ−t merely

paused for the downgrade of U.S. debt in August 2011. That is, while the volatility and jump

intensity soared, there was no perception of an increase in the size of a potential market crash. In

contrast, a substantial thickening of the tail is evident during the European debt crisis in 2012, the

fear of a government shutdown in 2013, and during a prolonged period in 2014, characterized by

the Russian annexation of Crimea and the imposition of sanctions, concerns about global economic

growth, collapsing oil prices and, finally, the Russian foreign exchange crisis in December 2014.

These episodes seem to induce thicker tails rather than enhance the general sense of uncertainty,

as the corresponding movements in volatility and jump intensity are muted.

These observations suggest that the variation of λ−t is not strongly related to that of the diffusive

volatility or ct. Indeed, the correlation between 1/λ−t , on the one hand, and Vt or ct, on the other,

is 0.01 and −0.37, respectively. Since 1/λ−t and ct have a fairly similar effect on the pricing of deep

OTM put options (recall approximation (10)), the latter correlation can be explained, at least in

part, by the correlation of the estimation errors in recovering these two parameters from the data.

Finally, the bottom right panel of Figure 12 confirms the difficulty of recovering the shape of

the positive jump distribution. The estimates of λ+t suggest the right tail is an order of magnitude

thinner than the left tail. The series is mildly correlated with the left tail parameter, but the

systematic fluctuations across the sample are modest. This reflects the lower prices, large spreads,

and relatively poor liquidity for deep OTM calls, as discussed previously.

To further illustrate the separation of the volatility dynamics from the behavior of the left

jump tail, suggested by Figure 12, we display the logarithmic option prices on three select days in

Figure 13. They complement Figure 1 by providing additional examples of isolated shifts in the

slope of the left tail. The upper panels depict log prices of the short-dated options for the day of

the tail shift as well as for a pair of nearby trading days. The lower panels cover the identical days,

but display log option prices from our regular sample with about one month to expiry.

We note that the log prices in each panel of the top row are very close across the nearby trading

days form ∈ (−2, 3). This implies, in particular, that neither the return volatility nor jump intensity

shifted significantly across those days. However, in all cases, we observe a striking increase in the

(negative) slope of the left tail. This type of movement is not compatible with standard asset
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pricing models for which the jump size distribution is invariant and the jump intensity is tied to

volatility. The challenge is only magnified by noting that there is a plausible economic rationale

for the tail shift on each of these dates, including the one in Figure 1.17
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Figure 13: Log Option Prices. First column: January 7, 2011. The short-dated options in the
top panel have 7 calendar days to expiry, while the regular options in the bottom panel have a tenor of 42
calendar days. The surrounding trading days are January 6 and 10, 2011. Second column: December
20, 2013. The short-dated options in the top panel have 7 calendar days to expiry, while the regular options
in the bottom panel have a tenor of 28 calendar days. The surrounding trading days are December 19 and 26,
2013. Third column: October 15, 2014. The short-dated options in the top panel have 9 calendar days
to expiry, while the regular options in the bottom panel have a tenor of 30 calendar days. The surrounding
trading days are October 17 and 16, 2014.

Comparing the top and bottom panels, we note that the regular options also provide a hint of

the tail movements, but the evidence is less clear, often blurred by idiosyncratic noise and, overall,

not particularly compelling. This is perhaps not surprising. As the regular options are longer-

dated, the effect from a change in the jump size distribution is compounded by time variation in

the volatility and jump intensity as well as their interaction. Consequently, the power to detect

shifts in the jump distribution should, indeed, be much better for the short-maturity sample.

17For example, on January 7, 2011, the employment news were disappointing and a couple of critical rulings
concerning the conduct of banks during the financial crisis caused losses for the financial sector. Moreover, this
occurred against the backdrop of tension related to the European sovereign debt crisis. Further, we previously
discussed the global economic growth concerns and Ebola outbreaks dominating the news on October 15, 2014.
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6.3 Implied Variation Measures

We next explore the implications of our estimates for measures of diffusive and jump variance. In

particular, we plot model-implied estimates for the spot (diffusive) variance, Vt, and the left and

right jump variances, LJVt =
∫
x<0 x

2νt(dx) and RJVt =
∫
x>0 x

2νt(dx). These quantities are the

spot counterparts for the measures that comprise the theoretical valuation of the VIX index.18

Figure 14 provides the 95% confidence bounds for the above spot estimates implied by our

best performing model (17) with α = 0.5. From the top panel of Figure 14, we note that spot

diffusive variance is recovered with very good precision. As expected, its confidence intervals

become wider during the more volatile periods. The alternative nonparametric estimator of Vt

from high-frequency data on X is much noisier. Nonetheless, these two spot volatility series are

compatible, as documented in Section 5.2. On the other hand, as discussed above, estimates for

Vt based on regular longer-dated options are more prone to model misspecification. Hence, the

estimates for Vt based on the semi-nonparametric specification (17) and short-maturity options

strike a good balance between precision and robustness to model misspecification. As such, they

arguably provide the most reliable spot variance estimates available in the literature.

The last two panels of Figure 14 depict the risk-neutral spot jump variation measures. Unlike

Vt, high-frequency data on X do not deliver model-free estimates for these quantities, underscoring

the lack of market completeness in the presence of jumps. The left jump variation is estimated

very accurately, with even tighter confidence bounds than for Vt. In contrast, the relative precision

in recovering the right jump variation is poor, reflecting the scarcity of deep OTM call options.

However, this does not impinge on the overall accuracy of our risk-neutral variation measure, as

the magnitude of the right jump variation is inconsequential relative to the other components.

Figure 14 reveals interesting connections between the diffusive variance and the left jump vari-

ance. On average, they are about equal in magnitude. This provides a sharp contrast to the much

more modest contribution of jumps to the return variation under the physical measure, identified in

numerous studies using high-frequency data on X. In other words, our results suggest a very rich

pricing of jump risk. At the same time, Figure 14 also shows that the relative importance of the

diffusive and left jump variation varies greatly over time. We highlight two episodes. The first is

early August 2011, when there is a surge in both the diffusive and left jump variation, but the latter

is almost three times the size of the former. As noted previously, this period was dominated by

fears linked to the S&P downgrade of the US credit rating. While the level of general uncertainty

18Formally, the 30-day VIX measure is given by the expected value of the cumulative sum of these measures over

the coming calendar month, i.e., V IXt ≈ EQ
t

[∫ t+τ
t

(Vs + LJVs +RJVs) ds
]

with τ equal to one calendar month.

32



rose sharply, the event disproportionally impacted the priced tail risk. The second episode is the

first half of October 2014 where, again, the diffusive and the left jump variance increase sharply.19

However, unlike the previous episode, the diffusive variance remains roughly on par with the left

jump variance throughout the period. Hence, in this instance, we observe an increased level of

general uncertainty, but no relative elevation in the importance of tail risk.
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Figure 14: Measures of Return Variation. The figure plots 95% confidence intervals for the daily
Vt (top panel),

∫
x<0

x2νt(dx) (middle panel) and
∫
x>0

x2νt(dx) (bottom panel) implied by estimates for the
semi-nonparametric model (17) with α = 0.5 from the short-dated options. All quantities are reported in
annualized units.

19As mentioned earlier, the main sources of concern at that time were signs of weakness in the European economy
and its potential global impact as well as the spread of incidents linked to the Ebola virus.
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6.4 Tail Jump Variation and Standard Option Pricing Models

The preceding sections document a significant amount of variation in the pricing of negative market

jumps and show that these fluctuations are not directly linked to market volatility. Moreover, they

demonstrate that such time-variation in the pricing of jump risk is most readily identified from

short-dated options. In line with this reasoning, the bulk of our empirical evidence hinges of

information extracted exclusively from options with very short tenor.

It is natural to ask whether our evidence concerning the pricing of jump risk is strictly limited

to the short-dated options. That is, can we identify implications for the type of longer-dated

options that are used in standard asset pricing and derivatives studies? In theory, this should be

feasible if the pricing of jump risk is economically meaningful and persistent as opposed to purely

idiosyncratic. In this case, periods characterized, via short-dated options, as containing elevated

jump variation should manifest themselves as distinct in terms of the pricing of longer-dated options

as well. Of course, for longer-dated options, other sources of risks start playing an important role.

Hence, to better isolate the effect of jump risk pricing, we focus on moderately-dated OTM options,

i.e., tenors of 10–45 days and moneyness m ∈ [−7,−2]. The SPX options in this category are highly

liquid and constitute critical ingredients in the computation of the VIX index.

In the top panel of Figure 15, we display the tail jump variation extracted from short-dated

options, via our semi-nonparametric representation (17) with α = 0.5, along with the one implied

by estimates from the parametric model (3) and (5), based on our longer-dated (regular) option

sample. It is evident that our tail estimates, extracted from the short-dated sample, are far more

volatile than those obtained from the standard parametric model and commonly used option data.

In particular, there are several instances where the former estimates for the tail jump variation spike

sharply relative to the latter. If these periods truly feature elevated tail risk and this, to a large

extent, is missed by standard empirical option pricing procedures, then this should manifest itself

in systematic pricing errors. Specifically, the parametric model should severely underprice deep

OTM put options during such episodes. The lower panel of Figure 15 provides strong confirmatory

evidence for this hypothesis. The panel displays formal Z-scores, indicating the degree to which the

parametric model underprices the OTM put options within the regular sample. Notice that these

option prices are part of the data used for estimation of the parametric model itself. Nonetheless,

dramatic mispricing is evident, with Z-scores exceeding 10 on many occasions, going beyond 20

several times, and even topping 30 around the downgrade of US debt. The truly striking feature,

however, is the remarkable correlation between these episodes of blatant parametric mispricing for

OTM put options and the periods for which we observe very large deviations between the jump
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variation estimates across the two models, indicated in the top panel.

In summary, the jump variation measures, extracted exclusively from the short-dated option

sample, are highly informative regarding qualitatively similar features of the regular option panel.

Whenever the parametric models – estimated from and evaluated against regular longer-dated

options only – fail to capture elevation in these jump variation measures, they also fail, often

spectacularly, in pricing in-sample observations on OTM put options. Hence, our flexible semi-

nonparametric jump variation measures, constructed from short-dated options, identify large and

systematic pricing errors in standard parametric models across critical segments of the implied

volatility surface. Put differently, the tail risks priced in the very short-dated options are closely

linked to those priced in “regular” option panels. The liquid trading of short-dated options affords

us with a simple and efficient procedure for identifying such priced jump tail risks.
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Option Fit: DOTM Puts with Maturity between 10 and 45 days

Figure 15: Tail Jump Variation. Top Panel: Jump Variation implied by the parameters and state
vector from the estimates of the parametric model defined by equations (3) and (5) based on the regular
option panel and the semi-nonparametric model (17) with α = 0.5 based on the short-dated options. For each

model, we report the quantities
∫ bt
−∞ x2νt(dx), using the corresponding parameter and state vector estimates,

where bt equals the negative of three times the daily ATM implied volatility. Bottom Panel: Option Z-
scores for the fit of the parametric model defined by equations (3) and (5) to options with moneyness [-7,-2]
and tenor between 10 and 45 days. The shaded area on the plot corresponds to Z-scores in excess of 2.5 (i.e.,
when the model severely underestimates the OTM Puts). The correlation between the shaded areas on the
two plots equals 0.54. All series are reported as five-day moving averages.

6.5 Interpretation and Implications

We conclude by briefly outlining some potential implications of our findings. The top panel of

Figure 15 depicts a highly volatile priced negative jump tail risk whose time variation is distinct
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from that of market volatility. This suggests that it may be useful to include the priced tail risk as a

genuine state variable, distinct from market volatility, into parametric models. It would reflect the

current concerns regarding negative tail events, priced in the economy separately from volatility.

Our semi-nonparametric model (17) indicates that, in order to capture such variation, it may be

necessary to disentangle level shifts in the pricing of tail risk from changes in the shape of the tail,

i.e., identify ct separately from λ−t .

In the current study, we deliberately do not impose any restriction on the variation of these

processes. Our goal is to let the short-dated options convey information directly, unencumbered

by potentially misspecified parametric representations. However, in light of the above evidence, a

natural next step is to model the dynamic evolution of the priced tail risk by parametric means.

This will enable us to incorporate information about tail risks and volatility embedded in short-

maturity options into the pricing of regular longer-dated options. The evidence from Figure 17

strongly suggests this will boost the performance of such models in capturing the price dynamics of

broader option panels. This, in turn, will allow for more robust extraction of information regarding

the pricing of the other risks that are critical for the valuation of longer-dated options, like the

term structure of volatility and the pricing of volatility and jump intensity shocks, i.e., the main

risks driving changes in the investment opportunity set.

From an economic perspective, it is of interest to explore the origin behind the pronounced

fluctuation in the price of jump tail risk. The large variation in the shape of the risk-neutral

jump distribution, implied by the short-dated options, is notoriously difficult to reconcile with

the dynamics of market jump risks obtained from actual return data, see, e.g., the nonparametric

analysis in Bollerslev and Todorov (2011). This may be explained, in part, by the limited number

of actual tail risk realizations. Nevertheless, the current evidence suggest that a large component

of the observed variation in the risk-neutral jump variation stems from shifts in the pricing of

negative jump tail risk. That is, there is a sharp separation between the dynamics of the actual

jump risk and its pricing. This is indicative of nonlinearities in the aggregate pricing kernel along

the dimensions associated with pricing of market jump risk. This, in turn, suggests time-varying

risk aversion towards tail risk and/or heterogeneity in the attitude towards tail risk among investors.

To pin down the economic forces that can rationalize the empirical evidence, obtained from our

short-dated option sample, requires an extensive study exploiting data on the full option panel and

the underlying asset as well as, potentially, volume data for option trading.
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7 Conclusion

In this paper we study short-dated options written on the S&P 500 market index. The trading in

this segment of the market for equity-index options has increased significantly over the last five years

with the introduction and increased popularity of the so-called “weeklies”. In this paper we seek

to understand the dynamic behavior of this sizable and rapidly growing part of the option market

which hitherto has been essentially unexplored. We confirm that these instruments provide an easy

way to separately manage market jumps and diffusive risks. The flip side is that they provide

for a simple and robust way to identify market volatility and the priced tail risk. We exploit this

informational role of the short-dated options to identify and study the dynamic properties of priced

jump risk. Our analysis shows the latter exhibits significant variation which cannot be directly

associated with market volatility. This runs counter to the modeling approach adopted by the vast

majority of no-arbitrage reduced-form and equilibrium-based models. We further show that the

dynamic behavior of priced tail risk is reflected in the prices of longer-dated options. Moreover,

we document that this feature is a major source of misspecification of traditional asset pricing

models, designed to capture the variation in option-implied volatility surfaces. Our analysis yields

an easy-to-construct measure of priced negative jump tail risk. It can be used to capture investors

concerns about this critical component of risk and for direct exploration of its dynamic behavior

as well as its interaction with other observed economic quantities.
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Appendix

A Data Filters

It can be problematic to infer the underlying market value of very deep OTM options from the

corresponding bid and ask quotes. The tick size becomes large relative to the option value and

the options may be quite illiquid for some of the strikes in the extreme tail, as market makers

seek to concentrate trading in a few contracts. Both factors tend to inflate the percentage spread

and induce non-monotonicity in the spread midpoint (as a function of strike price). Consequently,

the relative pricing of the options in this region is particularly noisy. In particular, one will often

encounter a sequence of identical quotes in the tail end of the strike range. Such “flat” pricing

induces very thick tails in the extracted risk-neutral density. To mitigate the impact of rounding

and potential illiquidity or quote staleness, we impose a filter that eliminates flat pricing and non-

monotonicity for the quote midpoints in the extreme tail from our short-dated option sample. We

stress that this, all else equal, will induce thinner tails in our estimates for the size of the jump

distribution.

Specifically, for OTM puts, we remove all quotes at the end of the moneyness spectrum until

the extreme quote midpoint is smaller than all other quote midpoints for put options positioned

closer to the ATM strike. A similar procedure is applied separately for the call options each trading

day. Figure 16 illustrates how the filtering procedure works for three trading days in our sample.
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Figure 16: Data Filters. Illustration of the filtering procedure applied to the option data. Top panel:
January 13th 2012, middle panel: March 21st 2012 and bottom panel: May 16th 2012. The dots on the plots
correspond to the observed option prices (in logs). The solid line connects the data points that are preserved
after applying the filter, while the grey line connects the data points which are removed after applying the
filter.
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B Additional Results: Parametric Estimation based on the “Reg-
ular” Option Sample

Panel A: Parameter Estimates

Parameter Estimate Std. Parameter Estimate Std. Parameter Estimate Std.

ρ1 −0.9998 0.0122 v2 0.0088 0.0001 η2 5.0739 0.2159

v1 0.0173 0.0002 κ2 11.5603 0.2371 µx −0.1241 0.0022

κ1 2.0769 0.0219 σ2 0.3708 0.0052 σx 0.1141 0.0005

σ1 0.2678 0.0060 η0 0.0033 0.0029 µv 0.0850 0.0011

ρ2 −0.7185 0.0049 η1 20.2664 0.3938 ρj −0.3260 0.0185

Panel B: Summary Statistics

RMSE 1.5179%

Mean jump intensity (yearly) 0.2963

Mean jump size −0.2115

Mean diffusive variance 0.0234

Mean negative jump variance 0.0171

Mean postive jump variance 0.0000

Table 2: Estimation results for the parametric model defined by equations (3) and (4).
The results are based on our regular option sample with tenor 10 ≤ τ ≤ 365, covering January 2011
– December 2014. The parameter estimates are obtained using weekly observations at day’s end on
Wednesday, or Tuesday in case of a market closure on Wednesday. The state vector is estimated
daily from the short-dated option sample, given the estimated parameter vector. Panel A provides
the point estimates for the parameters and the associated asymptotic standard errors. Panel B
reports summary statistics for the daily series of model-implied jump and variance estimates. All
variances are given in annualized units.
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Panel A: Parameter Estimates

Parameter Estimate Std. Parameter Estimate Std. Parameter Estimate Std.

ρ1 −0.9998 0.0159 κ2 2.1994 0.0263 η−2 109.1400 2.2914

v1 0.0040 0.0001 σ2 0.2720 0.0043 η+2 0.0034 3.2853

κ1 10.6500 0.1045 η−0 0.0016 0.0116 λ− 21.5550 0.1285

σ1 0.2905 0.0058 η+0 1.6494 0.0678 λ+ 48.7747 0.5458

ρ2 −0.9990 0.0075 η−1 65.9215 1.5383 µv 16.5960 0.2541

v2 0.0169 0.0002 η+1 0.0078 4.9065

Panel B: Summary Statistics

RMSE 1.4210%

Mean positive jump intensity (yearly) 1.8784

Mean negative jump intensity (yearly) 1.6495

Mean negative jump size −0.0464

Mean positive jump size 0.0205

Mean diffusive variance 0.0217

Mean negative jump variance 0.0081

Mean postive jump variance 0.0014

Table 3: Estimation results for the parametric model defined by equations (3) and (5).
The results are based on our regular option sample with tenor 10 ≤ τ ≤ 365, covering January 2011
– December 2014. The parameter estimates are obtained using weekly observations at day’s end on
Wednesday, or Tuesday in case of a market closure on Wednesday. The state vector is estimated
daily from the short-dated option sample, given the estimated parameter vector. Panel A provides
the point estimates for the parameters and the associated asymptotic standard errors. Panel B
reports summary statistics for the daily series of model-implied jump and variance estimates. All
variances are given in annualized units.
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Figure 17: Short-dated option price fit based on the parametric model with Gaussian
jumps estimated from the “regular” option sample. The figure reports the daily option fit tests
in (8) for the short-dated options based on the parametric model in equations (3) and (4) with parameters
estimated from the “regular” option sample and the state vector estimated separately from the short-dated
options each trading day. The regions of the option cross-section are for tenor τ ≤ 9 and deep OTM puts
(top panel, −8 ≤ m < −4 ), OTM puts (middle panel, −4 ≤ m < 0), and OTM calls (bottom panel,
0 ≤ m < 5). The solid lines indicate the symmetric 95% confidence band for the test.
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Figure 18: Volatility fit based on a parametric model with Gaussian jumps estimated
using “regular” options. The top panel reports end-of-day spot volatilities based on nonparametric
estimates from high-frequency data (solid line) or option-implied values (grey line). The option-implied
volatility estimate is computed using the parametric model defined in equations (3) and (4) with parameters
estimated from the “regular” option sample and the state vector estimated separately from the short-dated
options on each trading day. The volatility estimates are reported in annualized units. The bottom panel
reports the corresponding daily volatility test statistic (9). The solid lines indicate the symmetric 95%
confidence band for the test.
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C Additional Results: Semi-nonparametric Estimation with Fixed
Jump Distribution Parameters using Short-Dated Options

Mean Std Q05 Q50 Q95

Gaussian Jumps

RMSE 1.189 0.619 0.568 1.048 2.322

Diffusive Variance 0.019 0.017 0.006 0.014 0.053

Negative Jump Variance 0.014 0.023 0.003 0.008 0.049

Positive Jump Variance 0.001 0.002 0.000 0.001 0.003

Double Exponential Jumps

RMSE 1.023 0.528 0.488 0.913 1.909

Diffusive Variance 0.018 0.015 0.005 0.013 0.050

Negative Jump Variance 0.016 0.024 0.004 0.009 0.052

Positive Jump Variance 0.001 0.002 0.000 0.001 0.004

Table 4: Estimation results for the semi-nonparametric models (13) and (14). The
columns provide the mean, standard deviation and 5th, 50th and 95th quantiles for the sequence
of daily estimates obtained for the series indicated in the rows. The estimates are obtained from
our short-dated option sample, covering January 2011 – December 2014. The Gaussian jumps
refer to model (13) and the double exponential jumps to model (14) with α = −1. The Root-
Mean-Squared Error (RMSE) summarizes the fit to the end-of-day cross-section of annualized
Black-Scholes implied volatilities (BSIVs). All variances are also reported in annualized units.
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Figure 19: The fit to short-dated option prices based on the semi-nonparametric model
with Gaussian jumps estimated from the short-maturity sample. The figure reports the
daily test statistics (8) for the short-maturity options based on the semi-nonparametric model (13) with the
parameters and state vector estimated from the short-dated options. The regions of the option cross-section
are for tenor τ ≤ 9 and deep OTM puts (top panel, −8 ≤ m < −4), OTM puts (middle panel, −4 ≤ m < 0),
and OTM calls (bottom panel, 0 ≤ m < 5). The solid lines indicate the symmetric 95% confidence band for
the test.
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Figure 20: The volatility fit based on the semi-nonparametric model with Gaussian
jumps estimated from the short-dated options. The top panel reports end-of-day spot volatility
estimates based on nonparametric techniques and high-frequency data (solid line) or option-implied values
(grey line). The option-implied volatility estimate is computed on the basis of the semi-nonparametric model
(13) with the parameters and state vector estimated from the short-maturity option sample. The volatility
estimates are reported in annualized units. The bottom panel reports the corresponding daily volatility test
statistics (9). The solid lines indicate the symmetric 95% confidence band for the test.
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D Additional Results: Semi-nonparametric Estimation from Short-
Dated Options; Time-Varying Jump Distribution Parameters
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Figure 21: The fit to short-dated option prices based on the semi-nonparametric model
(16) with Gaussian jumps estimated from the short-maturity sample. The figure reports
the daily test statistics (8) for the short-maturity options based on the semi-nonparametric model (16) with
the state vector estimated from the short-dated options. The regions of the option cross-section are for tenor
τ ≤ 9 and deep OTM puts (top panel, −8 ≤ m < −4), OTM puts (middle panel, −4 ≤ m < 0), and OTM
calls (bottom panel, 0 ≤ m < 5). The solid lines indicate the symmetric 95% confidence band for the test.
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Mean Std Q05 Q50 Q95

Gaussian Jumps

RMSE 0.855 0.402 0.404 0.754 1.717

Diffusive Variance 0.018 0.016 0.005 0.013 0.054

Negative Jump Variance 0.015 0.021 0.004 0.009 0.051

Positive Jump Variance 0.001 0.001 0.000 0.001 0.003

Double Exponential Jumps (α = −1)

RMSE 0.677 0.299 0.346 0.590 1.309

Diffusive Variance 0.016 0.014 0.005 0.012 0.047

Negative Jump Variance 0.018 0.023 0.004 0.011 0.061

Positive Jump Variance 0.001 0.001 0.000 0.001 0.003

Tempered Stable Jumps with α = 0

RMSE 0.606 0.273 0.312 0.531 1.173

Diffusive Variance 0.015 0.013 0.005 0.011 0.043

Negative Jump Variance 0.019 0.025 0.005 0.012 0.065

Positive Jump Variance 0.001 0.001 0.000 0.001 0.004

Tempered Stable Jumps with α = 0.5

RMSE 0.571 0.270 0.292 0.495 1.114

Diffusive Variance 0.014 0.012 0.004 0.010 0.040

Negative Jump Variance 0.020 0.026 0.005 0.012 0.069

Positive Jump Variance 0.001 0.002 0.000 0.001 0.004

Table 5: Estimation results for the semi-nonparametric models (16) and (17). The
columns provide the mean, standard deviation and 5th, 50th and 95th quantiles for the sequence
of daily estimates obtained for the series indicated in the rows. The estimates are obtained from
our short-dated option sample, covering January 2011 – December 2014. The Gaussian jumps refer
to model (16) and those with specific α values refer to model (17). The Root-Mean-Squared Error
(RMSE) summarizes the fit to the end-of-day cross-section of annualized Black-Scholes implied
volatilities (BSIVs). All variances are also reported in annualized units.
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Figure 22: The volatility fit based on the semi-nonparametric model (16) with Gaussian
jumps estimated from the short-dated options. The top panel reports end-of-day spot volatilities
based on nonparametric estimates from high-frequency data (solid line) or option-implied values (grey line).
The option-implied volatility estimate is computed on the basis of the semi-nonparametric model (16) with
the state vector estimated from the short-maturity option sample. The volatility estimates are reported in
annualized units. The bottom panel reports the corresponding daily volatility test statistics (9). The solid
lines indicate the symmetric 95% confidence band for the test.
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Figure 23: The fit to short-dated option prices based on the semi-nonparametric model
(17) with double-exponential jumps estimated from the short-maturity sample. The
figure reports the daily test statistics (8) for the short-maturity options based on the semi-nonparametric
model (17) with α = −1 and the state vector estimated from the short-dated options. The regions of the
option cross-section are for tenor τ ≤ 9 and deep OTM puts (top panel, −8 ≤ m < −4), OTM puts (middle
panel, −4 ≤ m < 0), and OTM calls (bottom panel, 0 ≤ m < 5). The solid lines indicate the symmetric
95% confidence band for the test.
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Figure 24: The volatility fit based on the semi-nonparametric model (17) with double-
exponential jumps estimated from the short-maturity sample. The top panel reports end-of-
day spot volatilities based on nonparametric estimates from high-frequency data (solid line) or option-implied
values (grey line). The option-implied volatility estimate is computed on the basis of the semi-nonparametric
model (17) with α = −1 and the state vector estimated from the short-maturity option sample. The volatility
estimates are reported in annualized units. The bottom panel reports the corresponding daily volatility test
statistics (9). The solid lines indicate the symmetric 95% confidence band for the test.
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