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I. Introduction 

 Greenhouse gases (GHGs) like carbon dioxide (CO2) contribute to climate change and thus 

create negative externalities. The standard Pigouvian solution to the market failure caused by negative 

externalities is to price the externality at marginal external damages. Solar geoengineering (SGE, also 

called albedo modification or solar radiation management (SRM)) is an alternative way to reduce the 

damages from GHGs: instead of reducing the quantity of GHGs, SGE can, at least in part, reduce the 

damages that they inflict. A Pigouvian tax on GHG emissions will not create incentives for SGE. If SGE is 

part of the optimal policy portfolio, then a Pigouvian tax alone cannot bring about the first-best. 

Furthermore, if the Pigouvian tax is set at the level of marginal external damages without SGE, then the 

tax will be too high relative to the optimum level (which is equal to marginal external damages with 

SGE), and abatement (emissions reductions) will be too high, resulting in welfare loss. It has been argued 

that SGE implementation may be substantially cheaper than abatement, creating a large welfare loss 

from ignoring SGE.  But SGE also introduces new sources of damages and uncertainty, possibly eroding 

the welfare gains from its implementation, or even yielding welfare losses. 

 The purpose of this paper is to investigate, theoretically and numerically, how the possibility of 

SGE affects optimal climate policy. Does SGE substantially reduce the optimal carbon tax? Does ignoring 

SGE lead to policies that encourage too much abatement at too high a cost? How does uncertainty over 

climate change and over SGE damages affect optimal policy? How important is the fact the SGE reduces 

temperature but does not reduce carbon concentrations? We develop a theoretical model that captures 

these effects and demonstrates the welfare effects of introducing or ignoring SGE. We augment a 

standard integrated assessment model (IAM) of climate change by adding the possibility of a specific 

type of SGE to the Dynamic Integrated Climate-Economy (DICE) model (Nordhaus 2008). Costs and 

benefits of SGE are calibrated from various prior estimates, though we note that there is substantial 

uncertainty. Therefore, we conduct extensive sensitivity analyses. We caution that the purpose of this 
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paper is not to argue one way or the other about the merits of SGE or to estimate the optimal level of its 

deployment, but rather to investigate the qualitative point that ignoring SGE in models may lead to 

biased and incomplete policy recommendations.  

 Geoengineering is often thought of as an "insurance" against harsh or abrupt climate damages – 

as something that should be figuratively kept behind glass only to be broken in case of emergency. By 

contrast, our main approach begins by treating SGE as a policy option, just like abatement, with its own 

costs and benefits. Optimal use of SGE is evaluated by comparing marginal benefits to marginal costs. 

When both abatement and SGE are policy tools, both should be used to the point where the marginal 

benefits of each are equal. In the last section of the paper, we compare this optimal approach to an 

alternative "insurance" approach in which SGE is not used until a temperature threshold is reached. 

 A small but growing literature examines the economics of solar geoengineering.1  One branch of 

that literature focuses on governance.  Barrett (2008) explores the "incredible economics of 

geoengineering," by which he means the fact that SGE is (potentially) so much cheaper than emissions 

abatement that it could be undertaken by a single country.2 This creates a unique set of administrative 

problems. In fact, if the key problem with administering abatement policy is the inability to achieve 

international consensus to act, the key problem with SGE might be ensuring that there is not too much 

implemented, since any number of nations may do it independently. A series of studies examine this 

issue of international governance for SGE. Ricke et al. (2013) look at the incentives behind the formation 

                                                           
1
 In addition to the small but growing literature in economics on GE, there is a large scientific literature on the 

subject. Latham et al. (2014) and the associated special journal issue provide a recent introduction. 

2
 The prospect of low-cost GE is not universally accepted. For instance, Keller et al. (2014) use an Earth system 

model to simulate several different types of GE in the presence of high GHG emissions (no abatement), and they 

find that the effects of GE on warming are limited (less than an 8% reduction) and the side effects are potentially 

severe. 
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of coalitions to implement SGE. These incentives are different than those behind coalitions to abate 

GHGs. With SGE, there are incentives to keep coalitions small so that action can be taken. Victor (2008) 

argues for norms to govern the deployment of SGE. Weitzman (2012) models SGE as a "free-driver" 

problem analogous to the "free-rider" problem of abatement. He notes that SGE, depending on the level 

at which it is undertaken and the nation in question, can be either a public good or a public bad (thus he 

labels it a "public gob"). Moreno-Cruz (2015) models two countries agreeing on both mitigation and 

geoengineering, and shows that SGE can lead to inefficiently high levels of mitigation. These papers are 

primarily concerned with how international agreements can be crafted to implement SGE (or to prevent 

too much implementation).3 

 A second strand of the literature, which is smaller though perhaps more fundamental, focuses 

on the optimal use of SGE. Moreno-Cruz and Keith (2013) incorporate SGE into a two-period model of 

climate change and solve for optimal policy. They find that the uncertainty related to SGE is an 

important determinant of optimal policy. Including SGE can reduce the overall costs of climate policy by 

around 2 percentage points of GDP. Other papers have added SGE to integrated assessment models 

(IAMs) and examined the policy implications. Bickel and Lane (2009) show that SGE promises potentially 

large net benefits, though there is substantial uncertainty. They model two types of geoengineering: 

solar radiation management (SRM) and air capture (AC), and they conclude that SRM is cheaper and 

more cost-effective. They conduct a benefit-cost analysis of various levels of implementation of SGE, 

and they consider how implementing SGE affects carbon taxes. But, they do not solve for an optimal 

level of SGE. Goes et al. (2011) make several modifications to the DICE model, including allowing SGE 

                                                           
3
 Barrett (2014) discusses the literature on the governance of geoengineering, what he calls "the fundamental 

problem posed by geoengineering." Rayner et al. (2013) present the "Oxford Principles," a set of five guidelines for 

international GE governance. A similar argument is related to moral hazard: deployment of GE may reduce or 

eliminate the willingness to reduce carbon emissions (Corner and Pidgeon 2014).  
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and refining the climate dynamics. Their specification imposes an exogenous intermittency in SGE which 

makes it less effective.4 They present summaries of policies with an optimal mix of abatement and SGE 

(subject to the intermittency), but they do not present implications for policy, i.e. carbon taxes with SGE. 

Bickel and Agrawal (2013) extend the analysis of Goes et al. (2011) by considering alternate conditions 

under which SGE would be deployed; in contrast to Goes et al. (2011), Bickel and Agrawal (2013) find 

that under some scenarios a substitution of SGE for abatement can pass a cost-benefit test. Gramstad 

and Tjøtta (2010) include SGE in DICE and conduct a cost-benefit analysis of GE under various 

assumptions about the level undertaken and its costs. Under all specifications, SGE passes a cost-benefit 

analysis, with net benefits ranging from $1.5 trillion to $17.8 trillion. Postponement of SGE by 30-50 

years reduces those net benefits by less than 10%. They do not consider carbon taxes or the optimal 

level of SGE. 5 

 Our paper falls under this second strand of the literature that examines optimal SGE policy. Our 

paper's contribution is threefold. First, we focus on how the inclusion of SGE affects optimal abatement 

and the optimal carbon tax. Our theoretical model shows that including SGE reduces the price of carbon. 

Since SGE appears to be so much cheaper than abatement, it is possible that including SGE will 

drastically reduce the price of carbon. It is theoretically possible that optimal policy will involve a corner 

solution with no abatement (and hence no carbon taxes), though we show numerically that this does 

not hold because of SGE's inability to deal with carbon concentrations. To quantify this, we modify the 

                                                           
4
 Jones et al. (2013) also investigate the effect of abrupt suspension of GE (a "termination effect"), using a 

simulation of 11 different climate models. Also see Ross and Matthews (2009). 

5
 Klepper and Rickels (2012 and 2014) provide review articles on the economics of geoengineering. Emmerling and 

Tavoni (2013) use a different IAM, WITCH, to model SGE and abatement policy.  Wigley (2006) uses the Model for 

the Assessment of Greenhouse Gas-Induced Climate Change (MAGICC) to study how SGE and abatement are 

related. 
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DICE model to include the possibility of SGE and use it to solve for optimal policy, where both 

abatement and SGE are policy options. While solving for the optimal carbon price is a straightforward 

extension of other papers that have used an IAM with SGE to find optimal policy, we argue that it is 

nonetheless an important contribution that should not be overlooked. If SGE means that the optimal 

carbon price is much lower than current estimates of the social cost of carbon, this has very important 

policy implications. We calculate the welfare loss of ignoring this fact. We also explore how different 

assumptions about various parameter values affect the time path of optimal policy. For instance, it is 

well known that small changes to the discount rate have large changes in optimal abatement paths, but 

little is known about how discounting affects optimal SGE paths, or how discounting affects abatement 

when SGE is an option.6 

Our second contribution to the literature is our focus on uncertainty. There are substantial 

uncertainties about the costs, benefits, and risks of SGE given the present state of scientific 

understanding.7 There is also uncertainty in our understanding of the climate, in particular over the 

equilibrium climate sensitivity, which measures how much temperature changes after doubling CO2 

concentrations from pre-industrial levels. We characterize these uncertainties in our analytical model 

and derive policy implications. We also use a stochastic version of DICE to model uncertainty in 

geoengineering and in the climate system.  

                                                           
6
 Barrett (2014) considers four different options for the time path of SGE, and Keith (2013) recommends starting at 

a low level of SGE and gradually increasing its use, but neither uses an IAM to generate optimal policy.  Likewise, 

Wigley (2006) notes that more intensive use of SGE can reduce the need for abatement but does not consider 

optimal SGE levels. 

7
 The National Academy of Sciences has recently issued a report providing a technical evaluation of SGE proposals, 

jointly sponsored by the NOAA, the CIA, NASA, and the Energy Department (National Research Council 2015).  
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Third, in our models (analytical and numerical) we explicitly distinguish between damages from 

carbon concentrations and damages from temperature. Unlike abatement, SGE reduces temperatures 

without reducing carbon concentrations, either atmospheric or oceanic. Both types of carbon stocks 

may lead to damages, even if temperatures are brought back to preindustrial levels. For instance, ocean 

acidification may deplete corals and fisheries, and atmospheric carbon may affect precipitation patterns. 

Other papers have mentioned this issue, but to our knowledge ours is the first to incorporate it into a 

theoretical model or numerical simulation of geoengineering policy.  

 We find that SGE unambiguously lowers the optimal level of abatement and the optimal price of 

carbon in the model. The degree to which it does so is sensitive to parameter values. In our base case 

specification, the optimal level of abatement is up to 25 percentage points lower than the optimal level 

without SGE, and the elimination of all carbon emissions is delayed by five decades. Ignoring SGE can 

increase overall costs of climate change by one-half to one percent of GDP. Optimal abatement levels 

are less sensitive to parameter values and to uncertainty in equilibrium climate sensitivity than are 

optimal SGE levels. The degree to which damages from climate change arise from carbon directly, rather 

than from temperature, substantially affects optimal SGE deployment; if a high fraction of damages are 

from carbon, then SGE is used less intensively. 

 We focus on SGE, which is just one type of geoengineering. The recent National Academy of 

Sciences report (National Research Council 2015) differentiates between two broad categories of 

geoengineering: albedo modification (which includes SGE) and carbon dioxide removal (CDR). CDR 

eliminates the damages from carbon and does not have the negative side effects of SGE. However, it is 

prohibitively costly, so we omit it from our analysis. We model sulfur SGE because it is the most 

promising of the albedo modification options. We do not explicitly model adaptation, which is a third 

alternative (along with mitigation/abatement and geoengineering) for dealing with climate change. The 
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notion that geoengineering can be a substitute for mitigation also extends to adaptation.8 The costs of 

climate damages in our model can be interpreted as being net of adaptation; we leave it to future work 

to separately model adaptation from geoengineering.  

 The next section of the paper introduces our theoretical model, which provides the framework 

for our inclusion of SGE into the DICE model. Section 3 briefly describes how we include SGE in the DICE 

model; details are in the appendix. Section 4 presents our simulation results, and section 5 concludes. 

 

II. Theoretical Model 

 Consider a representative agent who has access to an endowment of a fixed stock of capital  . 

That capital can be allocated in three ways: towards production   , towards abatement   , or towards 

solar geoengineering   ;            . Allocating capital towards production yields a level of 

potential output      , with      and      . This is potential output, because actual output is 

reduced due to damages from pollution  . Actual output (all of which is consumed) is     

                . The damage function         represents the fraction of potential output that is 

lost because of pollution  , and            (damages are increasing and convex in pollution, but 

must be bounded by 1 at the solution). Solar geoengineering    affects damages also, with      and 

     . That is, solar geoengineering reduces absolute and marginal damages. Pollution   is 

determined by the total capital endowment and the fraction abated  , so that         . The 

fraction abated is a function of abatement capital:        , where           .  The model does 

not explicitly include adaptation, but the damage function can be interpreted as being net of adaptation. 

                                                           
8
 Aldy (2015) argues that both adaptation and geoengineering need to be considered when calculating the social 

cost of carbon. 
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 The planner's problem is to allocate the capital stock so as to maximize actual output (or 

equivalently maximize a monotone utility function over actual output). That is, 

   
        

                 

such that 

           

             

 First, consider the constrained solution to this problem that omits SGE, or sets     . The 

solution to this constrained problem is analogous to policy recommendations by IAMs that ignore SGE. 

The first-order condition for the constrained problem is 

     
                  

        
      

    ,  (1) 

where   
    

 , and    indicate solutions to the constrained problem.9 The left-hand side of equation (1) 

is the marginal cost of an additional unit of abatement, which is the foregone marginal output that could 

have been produced by allocating to production    instead of abatement   . The right-hand side is the 

marginal benefit of an additional unit of abatement, which is the reduction in damages caused by 

pollution from the extra unit of abatement. In a decentralized economy, the right-hand side of this 

equation is the optimal pollution tax when GE is ignored (as it is in many IAMs). 

 Next, consider the unconstrained problem where SGE is not fixed at zero. This solution is 

characterized by two first-order conditions: 

     
   

             
   

       
   

       
   

     
      

   
   (2) 

    
      

   
      

   
        

      
   

     (3) 

where   
   

   
   

   
   

, and      indicate solutions to the unconstrained problem (i.e. the optimal 

levels). Equation (2), as in equation (1) in the constrained case, equates the marginal cost of an 

                                                           
9
 Throughout, we assume interior solutions and assume that the second-order conditions are satisfied. 
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additional unit of abatement with its marginal benefit. In a decentralized economy, the optimal carbon 

tax is the right-hand side of equation (2). In equation (3), the left-hand side represents the marginal 

benefit of an additional unit of abatement (divided through by potential output  ), and the right-hand 

side represents the marginal benefit of an additional unit of GE.  

 Consider the market for abatement    under both the constrained and unconstrained problem, 

as shown in the top half of Figure 1. The x-axis is the amount of abatement. The line         is the 

marginal cost of abatement conditional on no SGE (    ); it equals                 

           , which is the left-hand side of equation 1 evaluated at arbitrary   . The line         is 

the marginal benefit of abatement with no SGE; it equals          
                     . The 

appendix shows that    is increasing and    is decreasing in   . Where these are equal, their value is 

the optimal price of carbon, conditional on no SGE, as indicated by       ; this is the price 

determined by equation 1.  

 Allowing for SGE affects the marginal benefit of abatement, and intuition suggests that the 

marginal benefit curve allowing for SGE will be lower than the marginal benefit curve with no SGE.  SGE 

reduces the damages from a unit of emissions, and therefore it reduces the marginal benefits of 

abatement. This intuition is verified in the appendix, and thus the curve      
   

, which is the marginal 

benefit of abatement conditional on the optimal level of SGE, is drawn in  Figure 1 lower than 

       . Assuming that introducing SGE does not change the marginal cost of abatement, then the 

optimal price of carbon conditional on optimal SGE is lower than the optimal price of carbon ignoring 
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SGE. Figure 1 demonstrates the deadweight loss in the abatement market (the triangle labeled DWL) 

from setting a carbon tax that ignores SGE.10 

 The bottom half of Figure 1 shows that in equilibrium, the marginal benefit of an additional unit 

of abatement capital will equal the marginal benefit of an additional unit of solar geoengineering. The 

left-hand side is the market for abatement, and the right-hand side is the market for solar 

geoengineering. The curves in blue represent the marginal costs and benefits of solar geoengineering, at 

a constant level of abatement (equal to   
 ). As    increases and solar geoengineering is implemented, 

the optimal level of abatement    decreases, so emissions increase. Thus, the marginal benefit of each 

unit of solar geoengineering increases, since more pollution is allowed and temperatures are warmer 

without solar geoengineering. This is represented by an upward shift in the marginal benefit curve to the 

red curve. In equilibrium, the marginal benefits of solar geoengineering (on the right half) will increase 

just enough and the marginal benefits of abatement (on the left half) will decrease just enough so that 

the optimal quantity of each choice variable is such that the marginal benefits are equal across the two 

                                                           
10

 Allowing for SGE also affects the marginal cost curve, though in  Figure 1 we have ignored the fact that 

             
   

. The appendix shows that              
   

. This is because, for any abatement 

level, allowing SGE makes the damages from pollution lower, and thus potential output higher, and therefore the 

marginal cost of abatement (foregone output) higher. But, the appendix also argues that the difference between 

the two marginal cost curves is likely to be small, unlike the difference between the two marginal benefit curves, 

which is why we have ignored the change in MC in  Figure 1. Since the marginal cost under optimal SGE is (slightly) 

higher than under no SGE, the optimal price of carbon under optimal SGE will be closer to the optimal price of 

carbon ignoring GE than shown in Figure 1 ignoring the change in marginal costs. But, the deadweight loss from 

ignoring SGE could be higher or lower than that shown in Figure 1 (although the quantity of abatement will be 

lower, the cost of each unit over the optimal is higher). 
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markets. Extending the new optimal carbon price across the graphs will intersect the equilibrium in the 

solar geoengineering market.  

 

II.A. Uncertainty 

 We amend the model to include uncertainty.  Suppose that there are two random variables that 

affect the damage function d: call them    and   .     represents uncertainty about the relationship 

between pollution and damages, for instance, uncertainty about equilibrium climate sensitivity, or 

uncertainty over how temperatures affect the economy.  The other shock,   , represents uncertainty 

over solar geoengineering – either its implementation costs, its efficacy in controlling temperatures, or 

its negative side effects.  Realistically, the third of these is the major source of uncertainty regarding 

SGE.   

We assume that the variance of either of these shocks affects marginal damages in the following 

way: 
      

        
   and 

      

        
  .  A higher variance in    means that the expected marginal damages 

from pollution are higher.  This could arise from the damage function itself, or it could reflect risk 

aversion in preferences, where the damage function   incorporates that risk aversion.  A higher variance 

in    increases   , that is, it makes it less negative – so it reduces the marginal benefits from solar 

geoengineering.  Again, this could arise from the form of the damage function itself, or it could reflect 

risk aversion.  We also assume that 
     

        
   and 

     

        
  : both of these shocks affect the 

expected level of damages, not just the derivative.  We make no assumptions over the "cross" effect of 

the shocks: 
      

        
 or 

      

        
. 

 Given these uncertainties, the planner allocates production, abatement, and solar 

geoengineering to maximize expected net output.  The implicit function theorem can be used on the 

two first-order conditions to present comparative static results on how uncertainty in either pollution 
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damages or in solar geoengineering effectiveness affects optimal policy.  The details of the derivation 

are presented in the appendix; here we present the results. 

 The appendix shows that 

   

        
 

 

   
          

      
      

   
 

      

   
  

     

        
  

      

        
  

      

        
   

(4) 

Here     is the determinant of the Jacobian matrix of the first-order conditions and is positive, and   

and   are positive terms defined in the appendix.  The second and third terms in the brackets are signed 

and easily interpretable.  Since uncertainty over climate damages increases the expected marginal 

damages from pollution (
      

        
  ), it increases optimal abatement.  The increase in the uncertainty 

of pollution damages makes abatement more attractive.  If uncertainty over climate damages also 

increases    – i.e. reduces the marginal benefits from SGE – then through this channel it also increases 

optimal abatement.  The first term in equation 4, which is multiplied by 
     

        
, has ambiguous sign.  Its 

first component,        
      

   
, is negative.  The extent to which solar geoengineering reduces the 

marginal damages from pollution –     – means that climate uncertainty's effect on total expected 

damages reduces optimal abatement.  This is because more solar geoengineering will be employed, and 

the more that SGE reduces marginal damages from pollution, the less abatement is needed.  The second 

component of the coefficient on 
     

        
, 
      

   
, is positive so long as       – that is, the marginal 

benefits of solar geoengineering are decreasing.  Since uncertainty over climate increases expected 

damages, increased use of SGE will be less effective and so more abatement will need to be used to 

compensate, hence this effect makes 
   

        
 positive. 

 Also, the appendix shows that 
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           (5) 

Here the terms   and   are both positive and defined in the appendix.  As with equation 4, here the 

second and third terms are unambiguous.  Since uncertainty over climate increases marginal damages 

from pollution, this effect decreases optimal SGE – more abatement is used instead of SGE.  If 

uncertainty over climate increases    (reduces marginal benefits from SGE), then this reduces optimal 

SGE because it is less effective.  The first term in equation 5, multiplied by 
     

        
, has ambiguous sign.  

The first two components,                       
      

   
, are positive.  As expected damages are 

higher with more climate uncertainty, this will lead to more optimal SGE, since marginal damages are 

positive (     ) and increasing (
      

   
).  The remaining component multiplying

     

        
,  

      

   
, is 

negative since      .  Because increased use of SGE will decrease marginal damages from pollution, 

there is an effect making optimal use of SGE lower – less is needed since marginal damages are lower. 

 Comparing the two sets of ambiguous terms multiplying  
     

        
 in equations 4 and 5 yields the 

following conclusion: if the cross-partial derivative     is not too large, then higher uncertainty in 

climate damages will increase use of both abatement and SGE.  That is, there is a scale effect since 

expected damages are larger, so it is optimal to use more of both tools available.  The negative cross-

partial derivative     means that each of the two policy tools (abatement and SGE) makes the other less 

effective, and thus this effect serves to reduce the use of each.   

 The equations for the effect of uncertainty in solar geoengineering on optimal policy are 

identical to the equations above, except with partial derivatives with respect to        : 

   

        
 

 

   
          

      
      

   
 

      

   
  

     

        
  

      

        
  

      

        
   

(6) 
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            (7) 

As before, there are unambiguous effects from how uncertainty affects the first derivatives.  Since 

      

        
   (uncertainty about SGE reduces expected marginal benefits of SGE), more uncertainty 

about SGE leads to less SGE and more abatement; SGE is a less-attractive option, and abatement is a 

substitute for it.  Note that         could also be taken to represent uncertainty about damages from 

SGE; for example, the possibility that SGE will damage the ozone layer.  In fact, it is this aspect of    that 

motivates most of the uncertainty around SGE technology.  However, the ambiguous first term 

(multiplying 
     

        
) indicates that uncertainty over SGE could increase SGE use. 

In the numerical simulations below we incorporate uncertainty over both climate damages and 

SGE. 

 

II.B. Decomposition of Climate Damages  

 We amend the model to consider that damages from climate change may occur both from 

temperature changes, which SGE addresses, and from carbon concentrations, which SGE does not 

address.  To model this simply, we separate the damage function into two components, only one of 

which is affected by solar geoengineering:                         . Damages that occur from 

temperature change, which SGE can remedy, are modeled by   , and damages from carbon 

concentrations, which SGE cannot remedy, by   .  When     , this becomes the original model.  But 

when     , there is a separate component of damages that cannot be alleviated with SGE, and so 

each unit of SGE is less effective at reducing damages from pollution. We conduct comparative statics on 

how this value affects optimal abatement and SGE policy. When the fraction of climate damages from 

carbon, rather than from temperature, increases,    will increase. 
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 The appendix shows that  

   

   
                          (8)  

   

   
                        

                       (9) 

The constant   is defined in the appendix and is positive.   

 In equation 8, the first term in brackets is negative, and the second term is positive.  As more 

climate damages come from carbon rather than temperature (higher   ), the second (positive) term 

reflects the fact that more abatement is warranted, since it is the only approach that addresses carbon.  

In equation 9, the first two terms in brackets are positive, and the third term is negative. As more 

abatement is used because of a higher   , there is less need for SGE to alleviate    because the cross-

partial derivative is negative. This is captured in the third (negative) term.  However, in each of the 

above equations there is a term or terms of opposite sign to the above intuition.  The negative term in 

equation 8 reflects the fact that, as more abatement is employed to counter increased damages from 

carbon (  ), the damages from temperature (  ) are less intensive and therefore somewhat less 

abatement may be needed.  The positive terms in equation 9 reflect the fact that an increase in    

increases the magnitude of climate change damages overall, and some of that can be alleviated with 

increased SGE.  This effect will be larger as     and      are larger; that is, as marginal damages from 

temperature are greater and increasing.   

 The model in this section provides intuition but omits many important details. For instance, it is 

static, though climate change is inherently dynamic.  Thus, in the following section we incorporate SGE 

into a dynamic IAM. Though the output of the IAM is difficult to interpret intuitively (it is a "black box"), 

the intuition developed in this section will be carried over to the results from the IAM simulations. 

 

III. Solar Geoengineering and DICE 
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 The dynamic integrated climate-economy (DICE) model by William Nordhaus is an IAM designed 

to solve for optimal GHG abatement policy and calculate the social cost of carbon. It includes a 

representative-agent economic model with an endogenous capital stock and an exogenous level of 

technological growth. Carbon emissions are a byproduct of production but can be reduced through 

expenditure on abatement. The climate component of the model includes several equations describing 

the dynamic interaction between carbon concentrations in several layers: the atmosphere and upper 

and lower oceans. The atmospheric carbon concentration affects the atmosphere’s radiative forcing; 

that is, the difference between the amount of heat energy absorbed by Earth and that radiated back 

into space. The human-caused change in radiative forcing is ultimately what affects atmospheric 

temperatures. Finally, the climate and economy sections of the model are integrated together since 

increases in temperature cause reductions in total economic output. The model can be run to solve for 

optimal (welfare-maximizing) carbon abatement trajectories. Given marginal abatement costs, the 

optimal price of carbon is a byproduct of the model’s output. A time period in the 2007 version of the 

model is one decade, and the model is typically run over several dozen periods (hundreds of years). 

 The DICE model and its results have been refined over the years, and summaries of the model’s 

equations and results are available in Nordhaus (2008) as well as Nordhaus’s personal webpage.11 A key 

takeaway from the model runs are that the social cost of carbon in the present is positive (typically 

around $30 per ton of CO2), and it is gradually increasing over time to reflect the increase in carbon 

concentrations and thus in marginal damages per ton of carbon.  

 IAMs like DICE have been criticized. Pindyck (2013) argues that they tell us "very little" and are 

"close to useless" because so many of the calibrated parameter values are ad hoc with little empirical 

foundation. This is demonstrated by the fact that the policy recommendations can be so sensitive to 

arbitrarily chosen parameter values, for instance the discount rate. Because our numerical analysis relies 

                                                           
11

 http://www.econ.yale.edu/~nordhaus/homepage/  

http://www.econ.yale.edu/~nordhaus/homepage/
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on DICE, it is subject to these criticisms. However, even if one accepts these critiques and is skeptical of 

IAMs, we argue that our analysis has merit. Though the point estimates of optimal policy paths should 

be interpreted with caution, how they vary with parameter values (i.e. the sensitivity analysis) still 

provides insight. Further, the simulations demonstrate that it is important to consider SGE in optimal 

policy design, with or without IAMs. In these respects, the use of DICE can be seen as another argument 

in favor of Pindyck's (2013) and others' critiques of IAMs.  

  

III.A. Modifications to DICE 

 Here we briefly describe our modifications to DICE to include SGE; details are available in the 

appendix.  The appendix also details our calibration of the model. We have modified DICE in the 

following five ways. First, while the only choice variable in the original DICE model is carbon abatement, 

we add a second choice variable to reflect the choice of the intensity of solar geoengineering. 

Abatement intensity   can take values between zero and one: when    , there is no abatement, and 

    means all carbon emissions are abated (zero emissions). The choice variable for the intensity of 

SGE is  . When   equals zero, this represents no SGE. When    , this represents "full" SGE, i.e. fully 

offsetting the warming effects from increased carbon concentrations. However, unlike abatement 

intensity  , SGE intensity   could take a value larger than 1, representing more than fully offsetting 

temperature increases from climate change. 

Second, there is a cost of implementing solar geoengineering, analogous to the cost of 

abatement.  This cost, expressed as a fraction of gross output that is lost to SGE implementation, is a 

quadratic function of SGE intensity  .  To completely offset global warming (   ) costs 0.27% of 

global GDP in our base case.  

Third, we add damages from solar geoengineering, analogous to the original model's 

specification of damages from climate change. For instance, sulfates are expected to exacerbate ozone 
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depletion (Heckendorn et al. 2009). Precipitation could be drastically reduced (Ferraro et al. 2014, 

Robock et al. 2008). The sulfates injected into the stratosphere may condense and fall back to the 

atmosphere, contributing to acid rain12. Like the damages from climate change, these are expressed as a 

fraction of gross output that is lost, and they are a quadratic function of SGE intensity  .  We are very 

conservative (i.e. biased against SGE) in our base-case calibration: SGE at full intensity (   ) leads to 

damages of 3% of global GDP.  

Fourth, the benefits of solar geoengineering are modeled as directly modifying the radiative 

forcing equation (see the appendix for details).  This implies that SGE can reduce temperatures much 

more quickly than abatement can. Fifth and finally, we decompose the damages from climate change so 

that they depend directly on temperature and also on atmospheric and ocean carbon concentrations.  In 

the base case, 80% of climate change damages are from temperature increase, 10% are from 

atmospheric carbon concentrations, and 10% are from ocean carbon concentrations.  By contrast, in the 

original DICE model and all of the previous studies that have modified DICE to include geoengineering, 

100% of damages are from temperature.    

 A unique contribution of this paper is to treat uncertainty and stochastic processes by adopting 

a stochastic optimization technique, rather than only using conventional sensitivity analyses or Monte 

Carlo (MC) simulation. The advantage of our approach over sensitivity analysis is that it incorporates the 

prior knowledge about probability distributions of uncertain parameters into the solution method. 

Although our approach features a similar random sampling as MC simulation, its advantage over MC 

simulation is that the numerical results are used to develop the optimal strategy rather than merely 

demonstrating the range of possible outcomes. The optimal strategy then is used to produce the 

prediction for any new realization of the uncertain parameter. This is the key advantage of stochastic 

optimization techniques over conventional MC simulation: in stochastic optimization (or "reinforcement 

                                                           
12

 Though Kravitz et al. (2009) find that this effect will be insubstantial. 
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learning" in computer science language) the agent updates its optimal decision in the face of uncertainty 

based on a large (finite) number of previous observations of random realizations of uncertain parameter 

and outcome but in MC simulation, the collection of the agent’s responses to realizations of random 

variable form a probability distribution that defines the range of optimal policy.  

The other SGE DICE papers conduct sensitivity analyses, but they do not model uncertain or 

stochastic parameters. Several papers, including Baker and Solak (2011) and Kolstad (1996), modify DICE 

to include uncertainty, but without SGE.13  In this paper we consider continuous state and probability 

spaces and adopt a unique stochastic approximation technique for finding the optimal strategy in the 

face of uncertainty. We do not “invent” a new approximation function, and we use the already 

calculated functions within the model as building blocks of our value function approximation. This 

reduces the number of tunable parameters and substantially limits the subsequent optimal search 

domain. Furthermore, this algorithm is intuitive in the sense that it forecasts a limited number of steps 

ahead given the current realization of the uncertain parameter and uses this as an insight to predict 

values of future states.  Details of the solution method are available in the appendix.  Finally, the 

appendix compares our modifications to DICE to the modifications made by the small number of other 

papers that have considered geoengineering (see appendix table 1). 

 

IV. Simulation Results 

IV.A Baseline Simulations 

                                                           
13

 Kelly and Kolstad (1999) use neural network approximations to obtain flexible functional form of the value 

function. Oppenheimer et al. (2008) discretize the uncertainty over equilibrium climate sensitivity and solve the 

stochastic DICE model in discrete deterministic stages. Webster et al. (2012) use two parametric and non-

parametric methods to approximate the value function. Cai et al. (2013) apply Chebyshev polynomial 

approximation for value function estimation. 
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In order to understand the way solar geoengineering affects optimal climate policy, we start by 

analyzing the deterministic case. We compare the outcomes of the baseline scenario to the case of no 

solar geoengineering; that is, a model that does not allow for solar geoengineering. The results are 

presented in Figure 2. The first panel shows how abatement is affected when solar geoengineering is 

introduced as a viable policy instrument. The introduction of solar geoengineering lowers the level of 

abatement and delays the time when we transition to a clean economy. Once abatement reaches it 

maximum level, geoengineering begins to decline. However, it stays positive for some time because of 

the lag in the effect of emissions on temperature. The optimal SGE deployment is a "ramping-up" policy, 

starting out at low levels and gradually increasing as the damages from climate change increase.  

Although SGE is allowed to take a value greater than 1, its maximum value is just about one-half (i.e. 

offsetting half of the increase in radiative forcing from carbon concentrations).  This is because the 

benefits from SGE are traded off against the (substantial) damages. Eventually, SGE use declines towards 

zero, since carbon concentrations are reduced.  SGE is a substitute for abatement in the short- and 

medium-run, but eventually abatement dominates. 

In the next two panels we look at carbon dioxide concentrations and temperature changes. 

Because of the lower level of abatement, carbon dioxide concentrations peak at a higher level and later 

in the presence of solar geoengineering. Concentrations peak at 1600ppm, relative to the case of No 

SGE where concentrations peak at 1400ppm. But with solar geoengineering, temperature peaks much 

earlier and it is kept at check below the 2 degrees mark. This is the buying-time effect, often cited in the 

literature, where solar geoengineering keeps the system below deleterious levels of climate change 

while the abatement technology improves enough to eliminate emissions (Keith 2013, Moreno-Cruz and 

Smulders 2007). This is done at the cost of allowing for higher concentrations. Thus, there is a tradeoff 

between carbon damages and temperature damages, as well as solar geoengineering costs and 

abatement costs.  
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The fourth panel in Figure 2 shows that the carbon price is lower when solar geoengineering is 

introduced; it peaks at a lower level before it starts to decline at the rate of learning by which the costs 

of the backstop technology decline. As the analytical model shows, ignoring solar geoengineering leads 

to an optimal carbon price that is too high.  After 100 years, the optimal carbon price is about 30% lower 

than the price from the model ignoring solar geoengineering; after 200 years it is about 45% lower.14 

What is remarkable about all these results is that they do not arise because solar 

geoengineering is very cheap, since we are very conservative about the costs and damages of SGE. 

These results are due to the use of solar geoengineering directly on the radiative forcing equation. This 

reduces the inertia of the climate system, reducing the amount of abatement needed today to reduce 

concentrations in the future. Thus, by postponing costly abatement to future periods, solar 

geoengineering helps to reduce the aggregate costs of climate change.  This is demonstrated in the last 

panel of Figure 2, which plots the costs in proportional GDP loss of ignoring solar geoengineering. For 

instance, at year 200, this value is 1.52%, indicating that net GDP (after accounting for climate damages, 

SGE damages, abatement costs, and SGE costs) is 1.52% lower in the "No SGE" simulation than it is in 

the baseline simulation. This corresponds to the area of deadweight loss from the analytical model in 

Figure 1.  

These deterministic simulation results verify what we find in the analytical model – allowing for 

solar geoengineering reduces the optimal level of abatement, reduces the optimal carbon price, and 

reduces total policy costs. 

 

                                                           
14

 This carbon price equals marginal external damages along the optimal policy path as solved through DICE. In 

contrast, the term "social cost of carbon" often refers to marginal external damages along the baseline path, as a 

way of valuing reductions in carbon emissions.  Aldy (2015) notes that this price (the social cost of carbon) can also 

be affected by the availability of geoengineering (and adaptation). 
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IV.B Variation in the Composition of Damages – Temperature vs. Carbon 

 Because SGE reduces temperatures without reducing atmospheric or ocean carbon 

concentrations, it cannot completely offset all damages from climate change.  In the baseline 

specification, we assume that 80% of climate damages are directly from temperature, 10% are from 

atmospheric carbon concentrations, and 10% are from ocean carbon concentrations (see the appendix 

for details).  In Figure 3, we present simulation results where we vary this decomposition of climate 

damages.  In addition to the baseline case, we simulate three other damage decompositions, in each of 

which damages from temperature only account for 50% of climate damages.  The remaining 50% of 

damages are split between atmospheric and ocean carbon 25/25, 40/10, or 10/40. 

 Comparing the baseline case to any of the three alternate decompositions shows that there is 

more solar geoengineering and less abatement when temperature accounts for a higher fraction of 

climate damages.  SGE is less effective relative to abatement when temperature accounts for less 

damages, and so less of it is deployed.  This corresponds to the results from the analytical model that 

   

   
   and 

   

   
  .  Comparing the three alternative decompositions to each other shows that there is 

more solar geoengineering and less abatement when ocean carbon concentrations account for a higher 

fraction of damages than do atmospheric carbon concentrations.  Abatement more directly affects 

atmospheric rather than ocean carbon, since the absorption of emitted carbon by the ocean is gradual 

and slow. If atmospheric carbon is more damaging than ocean carbon, more abatement and less SGE are 

needed. 

 The actual composition of damages between ocean carbon, atmospheric carbon, and 

temperature is unknown. In fact, atmospheric carbon may yield benefits from increased agricultural 

productivity. The purpose of this analysis is not to provide policy recommendations but rather to 

demonstrate the importance of research on measuring these distinct damages from climate change and 
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incorporating them into assessment models. For mitigation policy, the distinction is unimportant. But 

because SGE severs the direct link between carbon and temperature, the distinction matters. 

 

IV.C Uncertainty and Stochasticity 

 We now allow DICE to be solved allowing for uncertainty or stochasticity in certain parameters 

as described above.  For a distribution of policy paths, we present the mean of the policy outcome 

variables and their 5th and 95th percentile paths.  We also compare the solutions under uncertainty with 

the solutions in the deterministic case.  We allow two different variables to be random: equilibrium 

climate sensitivity and SGE damages.  Of course, in the real world there is uncertainty over many more 

parameters in the model (perhaps all of them) and over the model specification itself.  We focus on the 

uncertainty in these two parameters because they allow us to compare more general uncertainty in the 

climate system with uncertainty that is specific to SGE. 

 First, we allow equilibrium climate sensitivity to be uncertain. This parameter describes the 

equilibrium temperature change that results from a doubling of atmospheric carbon. In our 

deterministic case this is set to 3. It takes on a truncated log-normal distribution, calibrated based on the 

IPCC report (IPCC 2013). The lower and upper bounds are 0.1 and 20, respectively; the mean and 

standard deviation are 1.1 and 0.55, respectively. This parameterization is used in Shayegh and Thomas 

(2015). 

 Figure 4 presents the policy simulation results. For each of the simulated outcomes (abatement, 

solar geoengineering, temperature, atmospheric carbon, and the price of carbon), we present the mean 

value (in green) across the 1000 simulations, the 5th and 95th percentiles, and the value from the 

deterministic case (in red). The green and red curves are very close to each other, indicating that the 

average policy outcome is not much different than the deterministic case (this is because the 

distribution of the equilibrium climate sensitivity is set so that its average is the deterministic value).  
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However, both abatement and SGE are slightly higher in the deterministic case than in the mean value 

across the random simulations. This corresponds to our prediction from the theoretical model that 

   

        
 and 

   

        
 can be positive.  The 5th and 95th percentile values demonstrate that uncertainty 

over equilibrium climate sensitivity affects optimal solar geoengineering policy much more so than it 

affects optimal abatement policy.  The 5th to 95th percentile bands for abatement, carbon 

concentrations, and the carbon price are very narrow. This is surprising, since the only uncertain variable 

in this simulation is equilibrium climate sensitivity, which is not directly related to solar geoengineering. 

This reflects the flexibility enabled by the use of SGE directly on the radiative forcing equation, making 

the SGE response more sensitive to small variations.15 

 Although these simulations allow for uncertainty in climate sensitivity, they all use an identical 

probability distribution of the uncertain parameter (equilibrium climate sensitivity).  In fact, this 

distribution itself is unknown, and many different estimated distributions arise from various models 

(see, for example, Figure 1 in Millner et al. 2013).  Thus, we re-run these simulations under alternative 

distributions for the uncertain climate sensitivity parameter, but with all other parameters kept at base 

case values.  The results, which are presented in Appendix Figure 1, demonstrate that the optimal policy 

values are largely invariant to this distribution.    

 Second, we allow the damages from SGE, measured by the parameter   , to be stochastic (see 

the appendix for details). These damages represent the primary source of uncertainty over SGE.16 The 

distribution of this parameter is assumed to be lognormal, with a mean value of 0.03, identical to the 

                                                           
15

 The confidence bands here are smaller than those in other simulations of optimal abatement policy (without 

SGE).  We also run these simulations without the possibility of SGE, and we find confidence bands that are much 

larger and in line with the magnitudes from other studies.  Allowing for SGE thus implies that optimal abatement 

paths are much less uncertain – the uncertainty is instead "transferred" to the optimal SGE path. 

16
 National Research Council (2015). 
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value on the deterministic case, and a scale parameter equal to 1. Figure 5 presents these simulations.  

Here, SGE use is lower and abatement is higher in the deterministic simulations, compared to the mean 

of the random simulations (the green curves vs. the red curves).  The theoretical model (equations 6 and 

7) were ambiguous about this comparison.  This result appears counterintuitive but it follows from the 

way geoengineering is defined in the model.  SGE can be implemented to quickly reduce temperatures 

(that is, it can be greater than 1), and it enters directly in the forcing equation, eliminating the inertia 

associated with the carbon cycle. This implies that SGE is always useful, irrespective of how damaging it 

can be, but when its damages are low it is used substantially more relative to the deterministic case. 17 

As in the case of uncertainty over equilibrium climate sensitivity, here with stochasticity over SGE 

damages, we find that stochasticity affects the distribution of optimal SGE policy by a much greater 

amount than it affects the distribution of optimal abatement policy. Optimal SGE can peak at anywhere 

between 10% and 150% intensity. As a result, temperatures can peak between 0.5 and 2.5 degrees 

above preindustrial levels. 

 

IV.D SGE as Insurance  

As discussed earlier, SGE is often thought of as an "insurance" policy that should only be used as 

an emergency response to unprecedented climate change.  For instance, policymakers may want to 

prohibit SGE unless global average temperature increases beyond 2°C.  While this is not optimal in our 

model (assuming that all costs and benefits of SGE are captured in our model), it may be more politically 

viable.  In Figure 6, we present simulations in which SGE can only be deployed after temperature 

increases by 2°C; afterwards it is free to take any value.  These simulations allow for uncertainty over 

                                                           
17

 We confirm this result by trying multiple values for the variance, also by changing the distribution form 

lognormal to normal and finally by treating SGE damages as uncertain and not stochastic.  The result holds in all 

cases. 
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climate sensitivity, as in Figure 4.  The red curve (representing the deterministic case) shows an abrupt 

increase in SGE once it is allowed, and a corresponding decrease in abatement activity and temperature. 

Before that point is reached, there is a slight inflation in the values of optimal abatement in the case of 

SGE as an insurance policy (Figure 6 relative to Figure 4). Since the timing of deploying SGE is uncertain 

and correlated with uncertainty in equilibrium climate sensitivity, more abatement is the only available 

option to hedge against such uncertainty.  Lastly, the lower confidence interval band for optimal SGE 

deployment is flat at zero, since for those simulations temperature never reaches the threshold 2°C 

increase and SGE is never allowed.18   

  

IV.E Sensitivity analysis 

 Lastly we consider how variation in certain parameters affects optimal policy.  In these 

simulations, presented in Figure 7, we conduct deterministic simulations for several different values of 

certain parameters, along with the No SGE scenario.  Figure 7 presents the optimal SGE deployment 

path under each parameter value; the Appendix Figures 3 through 6 present the other policy outcomes 

(including abatement and the price of carbon).  We vary the costs of solar geoengineering (     , Panel 

A), its effectiveness at counterbalancing radiative forcing ( , Panel B), the damages associated with its 

implementation (  , Panel C), and the social discount rate ( , Panel D).   See the appendix for details on 

these parameters and their baseline calibrations. 

 As the implementation costs of solar geoengineering increase, less solar geoengineering is 

deployed.  Because these costs are so low in the base case, an order-of-magnitude change in the 

coefficient in front of these costs has only a modest effect on SGE deployment; the maximum level of 

SGE intensity varies from 20% to 50%.  Appendix Figure 3 shows that abatement, carbon concentrations, 
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 Simulations that allow for SGE and insurance under stochasticity of SGE damages, as in Figure 5, are presented in 

Appendix Figure 2, and they are qualitatively similar to the simulations in Figure 6. 
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and the carbon price are not very sensitive to this parameter. But even if we make solar geoengineering 

10 times more costly than the base case, there is a substantial amount of warming that is still 

compensated by SGE. This reflects the fact that by eliminating the inertia of the carbon cycle and 

therefore allowing for postponing abatement, solar geoengineering decreases the total costs of climate 

change and increases welfare. 

 Panel B of Figure  shows that solar geoengineering effectiveness affects its deployment – as SGE 

is more effective, it is used more intensively.  When its effectiveness is very low (      ), it is barely 

used. When it is very effective (     ), it is immediately ramped up to 25% intensity, after which it 

gradually increases.  Even after 500 years we see no decline in its intensity. Appendix Figure 4 shows 

that more effective SGE results in lower abatement and higher carbon concentrations, but lower 

temperatures. With a high effectiveness of    , temperatures are brought back to pre-industrial 

levels after just 200 years. 

 Next, variation in the damages from SGE cause a very wide range of optimal SGE deployment, as 

seen in Panel C of Figure . When damages are an order-of-magnitude lower than the base case 

(        ), SGE eventually reaches greater than 100% intensity. The variation from damages, in Panel 

C, is so much larger than the variation from costs, in Panel A, because costs are so small and damages (at 

least in our conservative calibration) are quite large. Appendix Figure 5 demonstrates that the variation 

in optimal abatement and carbon concentrations is smaller than the variation in SGE deployment. With 

the lowest level of GE damages, mean temperatures are brought back to within 0.5 degrees of 

preindustrial levels by 200 years. 

 Finally, increasing the discount rate (Panel D of Figure  and Appendix Figure 6) decreases the 

amounts of both abatement and solar geoengineering, as well as the carbon price.  Abatement and solar 

geoengineering are postponed to a later stage, but also less solar geoengineering is implemented overall 
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and at its peak. This suggests that more patient societies would tend to favor abatement over solar 

geoengineering.19 

 

V. Conclusion  

 Solar geoengineering has the potential to lower the costs of dealing with climate change and 

reduce the need for abatement and a high carbon price. Three points are crucial. First, models that 

ignore solar geoengineering may prescribe policies that abate too much, cost too much, and have a 

carbon price that is too high. Second, uncertainty over both climate damages and solar geoengineering 

costs and damages can substantially affect optimal policy. Third, because solar geoengineering reduces 

temperatures but not carbon concentrations, it is merely an imperfect substitute for abatement.  We 

explore these issues through both an analytical theoretical model and a numerical integrated 

assessment model of climate change. Our modification of the DICE model provides quantitative insights 

as to how solar geoengineering can affect optimal abatement policy. The level of abatement can be 

about 25% lower when allowing for solar geoengineering, and the optimal atmospheric carbon 

concentrations can be more than 20% higher. Despite that, temperature changes can be kept about 

one-and-a-half degrees Celsius lower because of the use of solar geoengineering, and total GDP losses 

can be lower by up to one-and-a-half percentage points of GDP. These base-case results are of course 

sensitive to the parameter values, which are very uncertain. Still, under a wide (two orders of 

magnitude) range in parameters describing the costs and damages of solar geoengineering, the optimal 

carbon price and level of abatement do not vary substantially, although the optimal level of solar 

geoengineering does vary substantially (ranging from nearly no solar geoengineering to more than 100% 
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 In the appendix, we also consider sensitivity analyses over a variable that is not directly related to SGE: the cost 

of abatement.  See Appendix Figure 7 and the corresponding discussion. 
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solar geoengineering). As with all climate models, more precise parameter values are essential for 

pinning down specific policy recommendations.  

 We caution that these results should not be interpreted as a policy prescription for immediate 

deployment of solar geoengineering. The uncertainties surrounding the calibration of the model, in 

particular the damages associated with solar geoengineering, are too great to be able to do so. Instead, 

the main contribution of this paper is in its qualitative and quantitative exploration of how including SGE 

in climate models affects the optimal deployment of abatement and the price of carbon, of how 

uncertainty affects optimal policy, and of how important it is that solar geoengineering reduces 

temperatures but not carbon.  

 Still, the fundamental contribution made by this study has important policy implications. It is not 

efficient to merely estimate the marginal external damages of a ton of carbon and institute that carbon 

tax, if the external damages are estimated in a model without the possibility of solar geoengineering. 

Our results suggest that this may in fact be the case, and that for this reason the carbon price currently 

being used by policymakers may be too high.20 Of course, there are many other potential reasons why 

the carbon price currently used may be too low – estimates may omit many benefits from carbon 

reductions. 

 Our research emphasizes the need for more information on costs and benefits of solar 

geoengineering. Extensions to our analysis may yield valuable policy lessons.  Further research could 

expand the set of parameters modeled as uncertain variables, or add refinements to either the climate 

model in DICE or its treatment of economic costs or growth. The damages from SGE represent probably 

the most "unknown" of all of the features of this model.  Research in progress is examining how solar 

geoengineering can address the issue of tipping points, or irreversibilities and discontinues in climate 

                                                           
20

 The SCC used by the EPA and other federal agencies is described here: 

http://www.epa.gov/climatechange/EPAactivities/economics/scc.html.  

http://www.epa.gov/climatechange/EPAactivities/economics/scc.html
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damages.  Endogenous learning about climate or SGE should be considered, for instance by adopting the 

Bayesian learning framework of Kelly and Kolstad (1999).  This would allow for a calculation of the value 

of information about SGE, and the benefits of research and development or field experiments. Explicitly 

modeling how adaptation affects optimal abatement and geoengineering is a fruitful extension that 

could yield additional insights.  Because the model is dynamic, it can be used to examine 

intergenerational justice.  The model could be disaggregated by region – potentially important if the 

effects of SGE are not uniform across the globe.21  Finally, there are many issues related to SGE that we 

do not or cannot address using an IAM – including a fat-tailed distribution of risks, distributional effects, 

and ethical issues related to the question of abatement versus SGE.  

                                                           
21

 The RICE model is a regionally disaggregated extension of the DICE model.  Kravitz et al. (2014) studies the 

regional disparities arising from SGE deployment.  Moreno-Cruz et al. (2012) account for regional inequalities in 

SRM effectiveness. 
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Figure 1 – Static Model 
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Figure 2 – Baseline simulations 
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Figure 3 – Variation in the Composition of Damages 
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Figure 4 – Uncertainty in Equilibrium Climate Sensitivity 
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Figure 5 –Stochasticity in Geoengineering Damages 
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Figure 6 –SGE as Insurance  
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Figure 7 – Sensitivity analysis 
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Solar Geoengineering, Uncertainty, and the Price of Carbon – Appendix 

 

A.I: Details of the Theoretical Model 

We verify that 1) the marginal cost of abatement is increasing in   , 2) the marginal benefit of 

abatement is decreasing in   , 3) the marginal cost of abatement is higher for a positive value of SGE    

than it is for     , and 4) the marginal benefit of abatement is lower for a positive value of SGE    

than it is for     . We also argue that the difference in marginal costs (3) is likely to be smaller in 

magnitude than the difference in marginal benefits (4). 

The marginal cost of abatement as a function of abatement    is               

                 , for some fixed   . The first half is increasing in    since   is concave. The 

second half is increasing in    since   is increasing and   is decreasing in  . Thus, marginal cost is 

monotone increasing. 

 The marginal benefit of abatement is             
                      . Because   

is increasing the first part is decreasing in   . Assuming that   is concave, the middle part is decreasing 

in   . Lastly, because the cross-partial derivative      , the third part of this expression is decreasing 

in   , and so the entire expression for marginal benefit is monotone decreasing. 

 The marginal cost of abatement at zero SGE is                            , and for 

an arbitrary level of SGE (for instance,   
   

) it is                                . Because 

  is concave, the first part of the expression is higher for     . Because     , the second part of the 

expression is higher for     . Thus, the marginal cost of abatement is higher for a positive value of 

SGE    than it is for     . 
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 The marginal benefit of abatement at zero SGE is          
                     , and 

for an arbitrary level of SGE it is             
                      . Because   is increasing, 

the first part of this expression is lower for     . Because      , the second part of the expression 

is lower for     . Thus, the marginal benefit of abatement is lower for a positive value of SGE    than 

it is for     . 

 Lastly, we argue that the magnitude of the difference in the two marginal benefit curves is likely 

to be large, while the magnitude of the difference in the two marginal cost curves is likely to be small. 

This cannot be mathematically demonstrated like the rest of the claims in the appendix. Rather, it 

follows from our intuition of the application of the model. Consider first the difference in marginal costs. 

The first half of the expression is the difference between          and            . This is likely 

to be small, because    is likely to be very small relative to   (i.e. only a small fraction of total capital will 

be spent on GE). The second difference between the two expressions is                   versus 

                  . This is also likely to be small because the damages from climate change as a 

proportion of total potential output ( ) is likely to be only a few percentage points. Thus, even if the 

optimal level of    completely eliminated climate change damages (   ), the value of     would 

change only from, say, 98% to 100%. 

 Consider instead the differences in marginal damages. The first difference is the difference 

between         and           , which from the argument in the previous paragraph is likely to 

be small since    is small relative to  . The other difference is the difference between       

           and                  . This difference is likely to be large (first-order). Even though 

damages   may be small (a few percentage points), the difference in the marginal damages    may be 
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large depending on the presence of SGE. At the extreme, if    is sufficiently high to eliminate any 

damages from climate change, then          will be zero though          is positive. 

Uncertainty 

 We now derive the expressions in section II.A in which pollution damages and solar 

geoengineering benefits are uncertain.  The two first-order conditions for the planner's problem can be 

written as: 

                                                                        

   

                                                 

The variance of the shocks,         and        , are treated as exogenous parameters that affect the 

expected values of the damage function and its partial derivatives, as defined in the text.  Therefore, the 

implicit function theorem can be used to find the following derivatives: 

 

 
 

   
        

   

         

 
 

  

 

 
 

  

   

  

   
  

   

  

    

 
 

  

 

 
 

  

        
  

         

 
 

 

 

 
 

   

        

   

         

 
 

  

 

 
 

  

   

  

   
  

   

  

    

 
 

  

 

 
 

  

        

  

         

 
 

 

The inverse of the 4-by-4 matrix in these expressions (the Jacobian matrix) is 

 

   

 

 
 

  

   
 

  

   

 
  

   

  

    

 
 

 

The determinant of the Jacobian,      is positive from the second-order condition of the planner's 

maximization problem.  The elements of the Jacobian matrix are: 
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All terms in 
  

   
 and 

  

   
 are positive.  However, 

  

   
 and 

  

   
 have ambiguous sign.  In 

  

   
, the first two 

terms are negative, and the third term is positive.  In 
  

   
, the first term is negative, and the second term 

is positive.  Since the final term in each expression is a multiple of    , which we assume is negative,   

  

   
 is negative and  

  

   
 is positive so long as     is not too negative.   

 Furthermore, 

  

        
        

     

        
             

      

        
 

  

        
        

      

        
 

      

        
 

 Substituting these expressions into the matrix equation above, simplifying, and collecting terms 

yields 
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Define 
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  , and the expression is as appears in the text. 

 Next, 

   

        
 

 

   
                               

      

   
 
      

   
  

     

        

           
      

      

   
 

                               
     

   
         

            
      

        

   
  

   
 

      

        
  

Define 

          
      

      

   
                                

     

   
         

            

  and   
  

   
  , and the expression is as appears in the text. 

 The solutions for 
   

        
 and 

   

        
 are identical to those for 

   

        
 and 

   

        
, 

respectively, except for replacing all partials with respect to         with partials with respect to 

       .  
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Decomposition of Climate Damages  

 We now derive the expressions in section II.B where damages occur from both temperature and 

from carbon.  The first-order conditions in for the planner's problem are identical as in the original 

model, except that the damage function is now                         . 

                                                         

                               

As with the last model, the implicit function theorem can be used to conduct comparative statics: 

 

 
 

   
   
   

    

 
 

  

 

 
 

  

   

  

   
  

   

  

    

 
 

  

 

 
 

  

   
  

    

 
 

 

Again, it can be shown that 
  

   
  , 

  

   
  , and the determinant of the Jacobian is positive.  The 

partial derivatives 
  

   
 and 

  

   
 have ambiguous sign: 

  

   
                    

     
   

 
     
   

 

  

   
        

     
   

 
     
   

 

As in the model in the prior section, the first two terms in 
  

   
 are negative, and the last is positive.  The 

first term in 
  

   
 is negative, and the last is positive.  Also, 

  

   
                     

        

  

   
   

 After substituting in for each of these partial derivatives and simplifying, we get 
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The first set of terms in front of each expression, 
 

   
                     

      , is positive and is 

defined as the constant C in the text.  

 

A.II. Details of the Numerical Simulation Model 

Modification of DICE and calibration 

 In the original DICE model, the cost of abatement is modeled as a power function of  : 

                    
  . The exponent    is 2.8 in the base case, indicating convex costs. The 

coefficient       decreases with time, halving after about 100 years (10 periods) to reflect technological 

advancement in abatement. The outcome variable               is the fraction of gross output that 

is sacrificed for abatement. For instance, in period 1 where             , the cost of abating 10 

percent of gross emissions would be 0.009% of gross output (                      ). We define 

solar geoengineering costs analogously as a fraction of gross output:                        
  . 

To calibrate this cost function of aerosol-sulfate-based SGE, we use two sources.22 First, doing well-

informed back-of-the-envelope calculations, Crutzen (2006) estimates the amount of sulfur needed to 

reduce the radiative forcing equivalent to doubling CO2 to be equal to 5.3 Mt of sulfur. The second piece 

of information is related to the costs of delivering sulfur at the distance required to have a global 

impact. Crutzen (2006) has estimated something in the order of $25 Billion for 1 Mt S. Recent estimates, 

using new aircraft designs, estimated the costs at $3 Billion for 1 Mt S or $8 Billion to deliver 5 Mt S 

(McClellan et al. 2012). These two pieces of data imply that reducing the radiative forcing equivalent to 
                                                           
22

 There are alternatives solar radiation management technologies other than sulfate aerosols, though sulfate 
aerosols are likely the most cost-effective and dependable technology. Marine cloud brightening (MCB) would 
increase reflectivity by injecting seawater particles into clouds (Latham et al. 2014). Cirrus cloud seeding would 
increase outgoing radiation by reducing cirrus cloud cover (Storelvmo et al. 2014).  
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a doubling of CO2 costs between $8 Billion and $125 Billion. Furthermore, we assume that particles are 

required at an increasing rate (Rasch et al. 2008), and for simplicity the costs are quadratic (less convex 

than mitigation, but linear costs are unrealistic due to coagulation of particles and other such 

processes). GDP in 2005 was $46 Trillion, so the lowest estimate of $8 Billion is only 0.02% of global GDP 

and the highest estimate is 0.27% of global GDP. (Compare this with the 3% in terms of mitigation costs 

associated with the optimal policy in DICE.) Because solar geoengineering is a fraction in our model, 

reducing a doubling of CO2 to nothing is equivalent to setting    . Thus our solar geoengineering cost 

estimate is               and     . We set        constant over time, so that unlike abatement 

technology there is no learning or improvement in solar geoengineering technology. We also include the 

coefficient       to represent a scaling of solar geoengineering costs. In the base case we set        , 

and we will vary this in sensitivity analysis. By using the high cost estimate and not allowing 

technological growth in SGE technology, this base case value for SGE costs is very conservative, that is, 

biased against deployment of solar geoengineering.  

 In addition to these implementation costs of solar geoengineering, there may also be damages 

from solar geoengineering. We model these damages in the same way that the original DICE model 

models damages from climate change – as a factor of total potential output that is unrealized due to 

these damages (and of course we keep damages from climate change as well). In the original DICE, the 

damage function is     , where output      
 

      
       and                       

 . The 

damage function is a function of atmospheric temperature at time  ,       , and the  s are calibrated 

coefficients. We amend this by also allowing for solar geoengineering   to directly reduce total output. 

In addition to the      term representing damages from climate change, we also include damages from 

geoengineering:      
 

      
 

 

     
        . The coefficient    represents how damages from 

solar geoengineering scale net output. In our base case, we set        , which implies that solar 

geoengineering at full intensity (   ) leads to damages that amount to 3% of gross output.  This is 
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slightly higher than SGE damages in Goes et al. (2011), where damages range from 0% to 2%, or in 

Gramstad and Tjotta (2010), where damages range from 0.1% to 2.4%.  SGE damages are similar in scale 

to climate change damages in DICE associated with about 6 degrees Celsius of warming, thus this 

damage estimate (like the cost estimate) is very conservative (i.e. biased against geoengineering).  

 The purpose of engaging in solar geoengineering is to alter the radiative forcing of the Earth's 

atmosphere. Radiative forcing is the difference in net heat loss due to anthropogenic GHG emissions 

relative to preindustrial levels. In the DICE model, the radiative forcing equation is 

            
      

         
          

It is a function of the ratio of the current atmospheric carbon stock (      ) to the pre-industrial 

atmospheric carbon stock (          = 596.4 Gt C, equivalent to about 280 ppm CO2), exogenous 

forcing        due to anthropogenic emissions of GHGs other than CO2 (assumed exogenous in DICE), 

and a calibrated radiative forcing parameter  . Atmospheric temperature        is affected by radiative 

forcing through the following equation: 

                                                         . 

This function also depends on the lower ocean temperature in the previous period         . A higher 

value of radiative forcing      (which is caused by higher atmospheric carbon       ) leads to higher 

atmospheric temperatures        all else equal. Our modification is to the radiative forcing equation: 

             
      

         
                    

The variable      is the amount of solar geoengineering in period  , and   is a positive parameter that 

captures the leverage of solar geoengineering. Higher   means less solar geoengineering needs to be 

implemented to achieve a given level of radiative forcing reduction. At a value of 1, radiative forcing   is 

reduced to zero (regardless of the carbon stock), completely eliminating anthropogenic climate change 
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effects on temperature.  When    , radiative forcing is negative, and global temperatures will reduce 

faster than they would even with no anthropogenic GHGs in the atmosphere. 

 Our final change to the DICE model is a modification of the damage function from climate 

change (not from solar geoengineering). In DICE, climate change damages are a function of temperature 

only. However, climate change damages are expected to come from more than just temperature 

changes. Absent its effect on temperature, atmospheric carbon is expected to affect precipitation 

patterns, which may cause damages (Allen 2002, Bala et al 2008). Bony et al. (2013) find that 

atmospheric carbon increases account for about half of predicted tropical circulation change and a large 

fraction of precipitation changes from climate change. The acidification of oceans cause damages too.  

Brander et al. (2012) suggest that find that damages from ocean acidification alone can account for 

0.14% to 0.18% of gross GDP. There is also the possibility that increased atmospheric carbon 

concentrations may have benefits to agricultural productivity, holding temperature and precipitation 

constant (Pongratz et al. 2012, Matthews et al. 2005). Because solar geoengineering decreases 

temperature but does not change the carbon stock in either the atmosphere or the oceans, it is crucial 

to decompose the damages from climate change into damages directly from temperature and damages 

from carbon stocks. Thus, we modify DICE's damage function      to be a function of temperature 

       as well as atmospheric carbon        and upper ocean carbon       :  

               
                      

                       
  

The temperature     is already defined as degrees Celsius relative to preindustrial (1750) average 

temperature, but the other two components of damages are not, so we calculate damages by 

subtracting the preindustrial levels, and we allow damages to be a quadratic function of the deviation 

from preindustrial levels. We calibrate the new damage coefficients   in the following way. We impose 

that the original DICE model’s total climate change damages in the initial period is correct, but we 

allocate some of those damages to be directly from temperature, some from ocean carbon 
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concentrations, and some from atmospheric carbon concentrations. Direct damages from atmospheric 

or ocean carbon concentrations are difficult to calibrate. Therefore, we begin by assuming that, of the 

total damages from climate change in the initial period calibrated in DICE, 80% is directly a function of 

atmospheric temperature, 10% is a function of atmospheric carbon, and 10% is a function of upper 

ocean carbon. By imposing that the total damages from climate in the initial period are identical to 

those in DICE, this allows us to calibrate   ,   , and    . Specifically, in the initial period in DICE, 

climate change damages amount to 0.15157% of gross output (                     

       ). We set 80% of this total a function of temperature, yielding            (           

              ). And similarly we calibrate the other damage parameters. 

 These are the five areas in which we modify DICE to include geoengineering and its costs, 

benefits, and damages. We have described the base case parameterizations that we use in our model, 

but we will also conduct a very broad range of sensitivity analyses, since many of the parameters are 

difficult to quantify.  

 

Solution Method and Uncertainty 

The model is solved using the two-step-ahead approximation method described in Shayegh and 

Thomas (2015). This algorithm was originally developed to find the optimal solution for the stochastic 

case of uncertainty in equilibrium climate sensitivity in DICE. The approximation technique was tested 

and tuned in the deterministic case and then applied to the stochastic model.  

We consider two different specifications of uncertain parameters, and the algorithm is slightly 

different in the two cases.  First, we model uncertainty in the climate system by allowing equilibrium 

climate sensitivity to be uncertain.  In this case, we are dealing with a physical constant with a true value 

that is unknown to the planner, and therefore we can formulate this problem as decision-making under 

uncertainty. To solve this problem we generate 1000 samples from the distribution of equilibrium 
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climate sensitivity. We solve the model for each realization and find the best set of tunable parameters 

for the value function approximation so that it generates the optimal climate change abatement and 

SGE action under any realization of this uncertain parameter. In other words, we find the optimal 

decision rule by simulating and solving finitely many deterministic problems. 

The second case considers uncertainty in the damages from SGE (the parameter   ).  In this 

case, we treat uncertainty as random shocks in the system, i.e., a stochastic process. We assume that 

the parameter values at each period are independently drawn randomly from a probability distribution. 

Under this characterization of uncertainty, for each simulation we generate a “path” of realizations of 

the random parameter instead of assuming a constant value throughout the modeling horizon.  

Thus, the distinction highlights the difference between uncertainty and stochasticity in the 

system.  With equilibrium climate sensitivity, there is a true value, but we (and the planner) do not know 

what it is. Uncertainty is subject to change over time with more observations.23 Damages from SGE are 

described by stochasticity: randomness in the system that cannot be resolved or reduced over time by 

observation.  

The algorithm works as follows: at each period  , the decision-maker estimates the value of the 

current state by projecting the values of the subsequent two states. The values of the two projected 

states are calculated under a deterministic forecast of the stochastic parameter and brought back to the 

present using an artificial and tunable discount rate. In the case of uncertainty in the climate system, the 

deterministic forecast of the uncertain parameter remains fixed over time within an iteration but varies 

from iteration to iteration. In the case of uncertainty in GE deployment, the forecast varies both over 

time and within an iteration. These values reflect the social utility under the deterministic assumption 

and are used to construct the value function of the current state. The optimal action (abatement or 

                                                           
23

 However, in our study we assume that uncertainty about equilibrium climate sensitivity remains unresolved and 
do not incorporate Bayesian updating. Recent studies incorporating Bayesian updating about equilibrium climate 
sensitivity in IAMs include Kelly and Tan (2013), Hwang (2014), and Shayegh and Thomas (2015). 
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geoengineering) is found by maximizing this value function. The algorithm starts at time     and 

progress until the final period. To update the optimal decision rule, the algorithm finds the best set of 

parameters for the value function approximation. At each iteration, assuming a constant set of 

parameters, the value functions are used to approximate future values and derive optimal actions. Once 

an iteration is complete, it moves backwards and calculate the “actual” values of future states given 

such actions. The difference between these actual and the estimated values (generated from the value 

function approximation) constitutes an error margin for that iteration. For the next iteration, the 

algorithm updates the value function approximation parameters to close the gap between actual and 

estimated values. The algorithm iterates until it “learns” the decision rule (i.e. finds the best value 

function approximation). In theory, the iteration ends when the error (difference between old and new 

values) converges to zero. Our experiments here are, instead, run for a finite set of iterations and the 

validity of error margin is confirmed at the end of 1000 iterations.  

Although the algorithm is designed to deal with random variables in stochastic problems, it can 

be used in a deterministic model to approximate the optimal solution or in the model with uncertainty 

to generate approximate solution for each realization of an uncertain parameter. The algorithm is 

developed in MATLAB and is available upon request. 

 

Other DICE models with geoengineering 

 Other studies have also modified DICE to include geoengineering, and Appendix Table 1 

compares our modifications to these other papers’. All of the papers allow SGE to directly modify the 

radiative forcing equation; our paper is the only one to allow SGE to enter as a multiplicative factor 

rather than a linear additive term. This is not a major difference, since in either case the substantive 

effect is to reduce the value of     . We choose a multiplicative factor for ease of interpretation: the 

policy variable represents the fraction of total anthropogenic forcing that is eliminated via SGE. The next 
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column notes that all of the previous studies except one allow for damages from SGE (apart from their 

implementation costs). We, like Gramstad and Tjotta (2010), allow for these damages to be a quadratic 

function of SGE intensity and to be a multiplier on gross output; in this way they are modeled 

analogously to damages from climate change. Next, only this paper and Goes et al. (2011) and Bickel and 

Agrawal (2013) modify DICE's damages from climate change function. The other two papers allow for 

damages to be a function both of temperature and of the rate of temperature change, based on the fact 

that SGE can lead to rapid temperature changes (Matthews and Caldeira 2007). Their damage function is 

taken from Lempert et al. (2000). We are more direct in that we allow for damages to be a function of 

more than just temperature; this innovation is unique to this paper. 

 There are other modifications as well. Bickel and Lane (2009) is the only paper that also 

considers carbon capture, and Goes et al. (2011) and Bickel and Agrawal (2013) make several other 

modifications, including using a different climate model altogether.  

 

Additional sensitivity analyses 

 

 We consider sensitivity analysis over parameters unrelated to SGE.  Because SGE is a substitute 

for abatement, any change in the relative price of abatement affects optimal SGE deployment.  

Appendix Figure 7 shows sensitivity analysis over the value of the main parameter of the abatement cost 

function,   . In DICE,     is the exponent of the abatement cost function:                    
  , 

where this cost is in terms of the fraction of gross output sacrificed to abate a fraction    of emissions in 

period  . The base case value is       , and in Appendix Figure 7 we also consider three other values 

for   .  Since the abatement rate    is a fraction between zero and one, a larger    means cheaper 

abatement.  Therefore, larger    yields a higher optimal level of abatement and a lower optimal level of 

SGE.  
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Appendix Table 1 – Summary of modifications to DICE 

 Radiative 
Forcing 

Damages from 
SGE 

Climate 
Change 
Damages 

Other 
modifications 

Outcomes 

Bickel and 
Lane (2009) 

Linear term in 
forcing 
equation 

None No 
Modifications 

Also model 
carbon capture 
geoengineering 

Cost-benefit 
analysis for 
fixed levels of 
SGE; carbon 
price 

Gramstad and 
Tjotta (2010) 

Linear term in 
forcing 
equation 

Quadratic 
multiplier on 
gross output 

No 
Modifications 

None Cost-benefit 
analysis for 
fixed levels of 
SGE 

Goes et al. 
(2011) and 
Bickel and 
Agrawal 
(2013) 

Linear term in 
forcing 
equation 

Linear function 
of aerosols 
deployed 

Damages a 
function of 
temperature 
and rate of 
temperature 
change 

Alter 
discounting 
formula; 
change climate 
model to 
DOECLIM; 
intermittency 
in GE 

Cost-benefit 
analysis for 
fixed levels of 
SGE and for 
optimal 
SGE/abatement 
mix; Bickel and 
Agrawal (2013) 
considers 
sensitivity 
analysis of 
Goes et al. 
(2011) 

This paper Multiplicative 
factor in 
forcing 
equation 

Quadratic 
multiplier on 
gross output 

Damages a 
function of 
temperature, 
atmospheric 
carbon, and 
ocean carbon 

Uncertainty 
analysis of 
equilibrium 
climate 
sensitivity 

Optimal levels 
of SGE and 
abatement; 
carbon price; 
sensitivity 
analyses 
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Appendix Figure 1 – Sensitivity Analysis over Equilibrium Climate Sensitivity Distributions  

Note: Appendix Figure 1 shows a set of 9 lognormal distributions with different location ( ) and scale ( ) 

parameters. Each pair of these parameters define a unique distribution that is shown in the bottom right 

corner of Appendix Figure 1, roughly calibrated to match Millner et al. (2013) Figure 1.  For each 

distribution, we run the uncertainty model from 1000 draws and calculate the median value for the 

state variables and optimal policies. The first five panels of Appendix Figure 1 Appendix Figure represent 

the median values of policy variables for different distributions. 
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Appendix Figure 2 – SGE as Insurance – Stochasticity in Geoengineering Damages  
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Appendix Figure 3 – Sensitivity analysis – Cost of SGE 
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Appendix Figure 4 – Sensitivity analysis – Effectiveness of SGE 
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Appendix Figure 5 – Sensitivity analysis – Damages from SGE 
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Appendix Figure 6 – Sensitivity analysis – Discount Rate 
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Appendix Figure 7 – Sensitivity analysis over Abatement Cost Function Parameter 
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