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1 Introduction

We document that the implied volatility skew of S&P 500 index puts, defined as the implied

volatility (IV) of out-of-the money (OTM) puts minus the implied volatility of at-the-money

(ATM) puts is non-decreasing in the disaster index and risk-neutral (RN) variance. We dub

this the “skew response puzzle” because, as we demonstrate, a broad class of widely used

no-arbitrage models for pricing options that allow for stochastic volatility and price jumps

implies that the skew is a decreasing function of the disaster index and RN variance.

We address the skew response puzzle by departing from the class of no-arbitrage models

of pricing options and endogenizing the supply and demand of index puts. The key de-

parture lies in recognizing that the principal writers of index puts are market makers who

face credit constraints which are modeled here as an exogenously imposed Value-at-Risk

(VaR) constraint. The model captures the scenario where risk neutral market makers write

“overpriced” index puts to maximize their expected profit, subject to their credit constraint,

while risk averse customers buy the index to maximize their expected utility and hedge their

exposure to downside risk by buying index puts. The key to the puzzle lies in recognizing

that, as the disaster risk and variance increase, customers demand more puts as insurance

while market makers become more credit-constrained in writing puts. The resulting increase

in the equilibrium price is more pronounced in out-of-the-money than in at-the-money puts,

thereby steepening the IV skew and resolving the puzzle.

We define the “net buy” by public customers of index options of given moneyness and

maturity in a month as the average of the daily executed total buy orders by public customers

and firms (to open new positions or close existing ones) during the month minus their

daily executed total sell orders. The net buy is the equilibrium quantity determined at the

intersection of the supply and demand curves, unlike some earlier literature that treats the
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net buy as a proxy for demand. The shift in the supply and demand for S&P 500 put options

not only explains the IV skew puzzle but also explains a novel set of empirical observations

about the net buy of puts which challenge earlier models. In particular, these observations

suggest that the demand pressure hypothesis alone is deficient in explaining the net buy

of puts. The supply shift by credit-constrained market makers plays an important role in

explaining the net buy of puts. Our model provides implications regarding the net buy that

are born out in the data.

The model and the data consistently imply that the net buy of puts by public customers

is decreasing in the RN variance and disaster index. The intuition is that, when the RN

variance and/or disaster index increase, public customers like to buy more puts as insurance

but market makers become more credit-constrained. That is, both the supply and demand

curves shift. The supply shift turns out to be the driving factor in the decrease in the

equilibrium net buy of puts.

We also address the model implications regarding the relationship between the net buy

of puts and their price. The model implies that the net buy of OTM and ATM puts is

decreasing in their price. The intuition is the same as above. When the RN variance and/or

disaster index increase, public customers like to buy more puts as insurance but market

makers become more credit-constrained. The supply shift turns out to be the driving factor

in the decrease in the equilibrium net buy and the price increase of OTM puts. These

implications are born out in the data.

Our model implications regarding the relationship between the net buy and the IV skew of

puts are also consistent with the data. The data shows no significant relationship in general

except a decreasing relationship during the financial crisis. The model implies that the net

buy of OTM puts increases with the IV skew when the RN variance is fixed and we vary the

disaster risk. The net buy of OTM puts decreases the skew with when we fix the disaster
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risk and vary the RN variance. For ATM puts, our model implies that the net buy decreases

the skew when we vary the disaster risk and fix the RN variance, but may either increase

or decrease with the skew when we fix the disaster risk and vary the RN variance. Given

the correlation between the RN variance and disaster index, the relationship between the IV

skew and the net buy of OTM and ATM puts is complex.

Finally, we confirm the robustness of our results by constructing the net buy of OTM and

ATM options by using different ranges of moneyness and maturity; by de-trending the net

buy in different ways; and by studying the relation of the net buy with the RN variance,

disaster index, option prices, and IV skew for different sub-periods, before, during, and after

the financial crisis.

Our paper relates to the extensive literature on dealers’ and intermediaries’ credit con-

straints and funding liquidity in the form of VaR, margin, and leverage constraints. Rep-

resentative examples include Adrian and Shin (2014), Brunnermeier and Pedersen (2009),

Danielsson, Shin, and Zigrand (2004), Gromb and Vayanos (2002), He and Krishnamurthy

(2013), Shleifer and Vishny (1997), and Thurner, Farmer, and Gaenakoplos (2012). In

particular, Adrian and Shin (2014) provided evidence that the VaR constraint of financial

intermediaries, normalized by equity, is constant over the financial cycle.

Specific to the pricing of options, this literature examines the extent to which traders’

and intermediaries’ credit constraints and funding liquidity may explain difficulties with no-

arbitrage models of option pricing. In a prescient essay, Bates (2003) stated: “Relatively

few option market makers apparently have been writing crash insurance for a broad array of

money managers, which may pose institutional difficulties for the risk-sharing assumptions

underlying representative agent models. On the demand side, it is conceivable that especially

risk-averse money managers have been willing to buy crash insurance that never seems to

pay off.” Bollen and Whaley (2004) examined the relation between the net buying pressure
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of index options and found that the IV of index options is directly related to the buying

pressure for index puts.

Gârleanu, Pedersen, and Poteshman (2009) introduced exogenous shifts in the demand

by public customers for index options. An exogenous positive shift in the demand for a

certain option increases its price because risk-averse market-makers are unable to perfectly

hedge their inventories and their supply of options is less than perfectly elastic. In Section

6, we present empirical evidence that the net buy of both OTM and ATM S&P 500 puts

is decreasing in the respective put price, suggesting that the demand pressure hypothesis

alone does not explain the data. Whereas the Gârleanu et al. (2009) model does not address

the skew response puzzle, their Proposition 4 states that an exogenous positive shift in the

demand for a certain OTM put has a bigger pricing effect on the demand of deep OTM

puts than on slightly OTM puts, that is, the IV skew unambiguously becomes steeper with

higher net buy. In Section 6, we present empirical evidence that the IV skew is never

increasing in the net buy of puts and is actually decreasing during the financial crisis. These

considerations motivate the introduction of supply shifts, in addition to demand shifts, in

the options market.

Chen, Joslin, and Ni (2014) modeled the market makers’ risk aversion and credit con-

straints as an increasing function of the disaster risk. Their model implies that the demand

for crash insurance, proxied by the net buy of deep OTM puts, predicts the return on the

S&P 500 index. Our model significantly differs from that of Chen et al. (2014). First, our

model specifically addresses the supply and demand shifts of put options across moneyness

and addresses a comprehensive set of stylized facts regarding the implied volatility skew

and the net buy of puts. Second, we model the market makers’ credit constraint as a VaR

constraint that is driven by both the disaster risk and variance, unlike the credit constraint

in the Chen et al. (2014) model that is driven by disaster risk alone.
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Our paper also relates to the extensive literature on stochastic dominance violations by

option prices. Constantinides, Czerwonko, Jackwerth, and Perrakis (2011) and Constan-

tinides, Jackwerth, and Perrakis (2009) showed that OTM European calls on the S&P 500

index and OTM American calls on the S&P 500 index futures frequently imply stochastic

dominance violations: any risk averse investor who invests in a portfolio of the index and the

risk free asset increases his expected utility by writing OTM “overpriced” calls. By contrast,

these papers found that OTM puts on the S&P 500 index and the index futures rarely imply

stochastic dominance violations: a risk averse investor who invests in a portfolio of the index

and the risk free asset rarely increases his expected utility by writing OTM “overpriced”

puts. These findings motivate our focus on OTM puts, as opposed to OTM calls. In our pa-

per, we model investors as buyers, as opposed to sellers, of OTM puts to hedge the downside

risk of their investment in the market portfolio. This modelling choice is consistent with the

above findings on stochastic dominance.

Our paper also relates to the extensively literature on no-arbitrage option pricing mod-

els. Examples include Andresen, Benzoni, and Lund (2002), Andersen, Fusari, and Todorov

(2015a,b), Bakshi, Cao, and Chen (1997), Bates (2000, 2006), Broadie, Chernov, and Jo-

hannes (2007), Chernov, Gallant, Ghysels, and Tauchen (2003), Duffie, Pan, and Singleton

(2000), Eraker (2004), Eraker, Johannes, and Polson (2003), Heston (1993), Heston, Christof-

fersen, and Jacobs (2009), Lian (2014), and Pan (2002).

Finally, our paper relates to the literature that addresses the cross-sectional variation

in index option returns. Examples include Buraschi and Jackwerth (2001), Cao and Huang

(2008), Carverhill, Dyrting, and Cheuk (2009), Constantinides, Jackwerth, and Savov (2013),

and Jones (2006). Specifically, Constantinides et al. (2013) demonstrated that any one of

crisis-related factors incorporating price jumps, volatility jumps, and liquidity, along with

the market, explains the cross-sectional variation in index option returns. These findings
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motivate our focus on disaster risk and liquidity constrains in the form of VaR constraints.

The paper is organized as follows. In Section 2, we define the variables and describe the

data. In Section 3, we present the skew response puzzle. The model is stated in Section

4. In Section 5, we demonstrate that the model explains the IV skew puzzle. In Section

6, we discuss the model implications on the net buy by public customers and relate them

to the empirical evidence. In Section 7, we discuss extensions of the model and conclude.

Derivations are relegated to the appendix.

2 Definition of the Variables and Description of the

Data

2.1 Definition of the Variables

The Implied volatility (IV) is the Black-Scholes implied volatility. Moneyness is defined as

the ratio of the strike price to the index price, K/S. We compute the model-implied skew

as the difference between the IV of a one-month put with moneyness 0.85 and the IV of a

one-month ATM put. We compute the empirical skew from all ATM S&P 500 put options

with moneyness 0.97-1.03 and maturity 15-60 days; and OTM puts with moneyness 0.8-0.9

and maturity 15-60 days. Each day, we first compute the average IV of ATM and OTM puts.

We then calculate the skew as the difference between the average IV of the OTM and ATM

put options. Finally, we average these slopes across all trading days of the given calendar

month.

The Risk Neutral (RN) Variance, also known as the squared VIX, is defined as in Britten-
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Jones and Neuberger (2000):

RN V ariance =
2erT

T

[∫

K>S0

C(S0;K,T )

K2
dK +

∫

K≤S0

P (S0;K,T )

K2
dK

]

(1)

where S0 is the index price at the beginning of the month; K is the strike; T is one month;

C(S0;K,T ) is the European call price; P (S0;K,T ) is the European put price; and is the

continuously-compounded risk free rate.

Bakshi, Kapadia, and Madan (2003) derived the price of a volatility contract as

2erT

T

[∫

K>S0

(1−K/S0)C(S0;K,T )

K2
dK +

∫

K≤S0

(1−K/S0)P (S0;K,T )

K2
dK

]

(2)

Du and Kapadia (2012) showed that this is a variance measure that is more inclusive of

price jumps than the RN variance.

We define the Disaster Index as in Du and Kapadia (2012):

Disaster Index

=
2erT

T

[∫

K>S0

(1−K/S0)C(S0;K,T )

K2
dK +

∫

K≤S0

(1−K/S0)P (S0;K,T )

K2
dK

]

+
2

T
(erT − 1− rT )− 1

T
EQ(ST/S0)−RN V ariance (3)

We compute the RN variance and disaster index from available option prices. First, we

extract the B-S implied volatility from the B-S implied volatility surface at the two available

maturities closest to 30 calendar days. Cubic splines are first applied in the moneyness

dimension, defined as strike price divided by stock price and ranging from 0.003 to 3, to

interpolate the B-S implied volatility for each moneyness of a fixed maturity. Therefore, the

interpolated implied volatility as a smooth function of moneyness is obtained for each of
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the two option maturities. Next, for each moneyness in the previous step, we apply linear

interpolation using the B-S implied volatility of the two maturities to achieve the B-S implied

volatility at 30 days of maturity.

We define the model-implied net buy of puts as the model-implied number of puts pur-

chased by the customer at the beginning of the period. We construct our empirical measure

of the monthly net buy of S&P 500 put options by customers as follows. The daily net buy

of a given option on a given trading day is the sum of the open buy and close buy minus the

sum of open sell and close sell on that day by customers. We calculate the monthly net buy

of options for two moneyness ranges, OTM (0.8-0.9) and ATM (0.97-1.03, and maturity 15-

60 days. We next compute the monthly net buy for a given target moneyness and maturity

as the average of the daily net buy across all trading days of the given calendar month of all

options with the targeted moneyness and maturity range. Our measure of the monthly net

buy is the de-trended net buy that is computed as the realized net buy of a certain category

of options, such as OTM puts, dividend by the total trading volume of put options in this

maturity category.

We also de-trended the net buy by using the total trading volume of all puts in the same

moneyness and maturity, or total call or puts at the same maturity or same moneyness

category, and obtained similar results, not reported in the paper. We also considered an

alternative definition of net buy that includes the net buy by proprietary firms, in addition

to the net buy by customers. The results remained virtually unchanged because the net buy

by firms is a small fraction of the total net buy and are not reported in the paper.
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2.2 Description of the Data

The data for computing the net option buy is obtained from the Chicago Board Options

Exchange (CBOE) from the beginning of 1996 to the end of 2012. The data consists of a

daily record of traded contract volumes on open-buy, open-sell, close-buy, and close-sell for

each option by three types of public customers plus proprietary firms. The public customers

include small, medium, and large customers. We compute the net buy of each of these

groups of agents as the long interest minus the short interest of both open and close to

trade. According to the order size, an order size greater than 200 contracts is classified as

orders of a large customer, the order size between 101-200 contracts is classified as orders

of a median customer, and the order size less than 100 contracts is classified as the order of

a small customer. Small customers on S&P 500 options are not necessarily retail traders.

Instead, Chen, Goslin, and Ni (2014) showed that the small customers who sold deep OTM

S&P 500 puts are institutional traders. Our measure of net buy is the sum of the net buy

by the three categories of customers.

Option prices are obtained from a high-frequency dataset provided by the Chicago Board

Options Exchange (CBOE). It contains intra-day trades and quotes of the S&P 500 options.

The minute-level data of the index values of the S&P 500 index is from Tick Data Inc. The

recorded underlying S&P 500 index values for each option are the corresponding index levels

at the moment when the option bid-ask quote is recorded. The dividend yield of S&P 500

index is provided by OptionMetrics. For a given option, we extract the implied interest rate

from the put-call parity as in Constantinides, Jackwerth, and Savov (2013).
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3 The Skew Response Puzzle

A broad class of widely used no-arbitrage models extends the original Black and Scholes

(1973) and Merton (1973) model of pricing options by allowing for stochastic volatility and

jumps in the price and volatility. The Bates (2006) model, a representative model in this

class, is specified as follows in terms of the RN probability measure:

dlog(St) = (rt − qt −
Vt

2
− (λ0 + λ1Vt)µ)dt+

√

(Vt)dW1t + JtdNt (4)

dVt = k(θ − Vt)dt+ σ
√

VtdW2t (5)

where dlog(St) is the instantaneous stock market log return; rt is the risk free rate; qt is the

dividend yield; Vt is the instantaneous variance conditional upon no jumps; dW1t and dW2t

are Wiener processes with correlation ρ ; Nt is a Poisson counter with intensity λ0 + λ1Vt

for the incidence of jumps; and Jt ∼ N(µ, σ2
J) is a random Gaussian jump. The empirical

correlation between the disaster risk and the RN variance is around 0.96, which indicates

that a linear relationship between the disaster probability and RN variance is reasonable.

We estimate the model with daily S&P 500 call and put prices over the period 1996:Q1-

2012:Q4. The moneyness ranges from 0.85 to 1.15 and the maturity ranges from 15 to 360

days. We proxy the latent state variable Vt with the RN variance estimated from the cross-

section of S&P 500 options maturing in 30 days.1 We estimate the model by minimizing the

sum of squared errors of all options, where the error of one option is defined as the observed

IV minus the model-implied IV. The parameter estimates are σ = 0.27, λ0 = 2.89E − 9,

λ1 = 4.24, µ = −6.25, σJ = 14.99, κ = 0.038, θ = 0.95, ρ = −0.79. Since λ1 > 0, the model

1We justify ex post the procedure of proxying the latent state variable Vt with the squared RN implied
volatility as follows. We use the point estimates of the parameters to calculate the model-implied option prices
at different values of the state variable Vt, calculate the RN implied volatility, and regress the RN implied
volatility against

√
Vt. The regression coefficient is 0.857 and the intercept is 0.00677, thereby justifying the

commonly-used estimation procedure of proxying the latent state variable
√
Vt with the squared RN implied

volatility.
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has the plausible implication that the probability of disaster is increasing in the variance.

The parameter estimates are reported using a daily time interval and scaling the stock return

by 100, as is conventional in the time-series literature, such as Broadie et al. (2007), Eraker

(2002), and Lian (2014).

In figure 1, we display the IV skew as a function of the disaster index and the RN variance,

implied by the Bates (2006) model. The skew is decreasing in the RN variance. The flattening

skew is a common feature of this class of models. The intuition is that the distinction between

the IV of OTM puts and the ATM puts diminishes and the skew flattens as the RN variance

increases. The skew is decreasing also in the disaster index. If the RN variance were kept

constant, the IV skew would be increasing in the disaster risk. The reason that the IV skew

is decreasing in the disaster index is that in the Bates (2006) model the RN variance and

the disaster risk are perfectly positively correlated. The decreasing pattern indicates that

the disaster risk impacts the IV skew less than the RN variance does in the no-arbitrage

model. It would be unrealistic to construct a no-arbitrage model where the RN variance and

disaster risk are either uncorrelated or negatively correlated because, as figure 2 illustrates,

the RN variance and the disaster risk are strongly positively correlated in the data.

We also estimate the Bates (2006) model for the sub-periods before, during, and after

the 2008 crisis, and obtain the same pattern for the IV skew. We note that the regularities

displayed in figure 1 are invariant to assumptions about the price of volatility risk and

disaster risk because the Bates (2006) model is stated here in terms of only the risk neutral

probability measure without reference to the physical measure.

[Figures 1 and 2 here]

We verified similar results in other no-arbitrage models. The model in Andersen et al.

(2015a) is more flexible with a multifactor volatility process and jumps in price and volatility
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processes. They modeled the jump intensity as being linear in the volatility as in Bates

(2006). Their model has similar implications: the IV skew is decreasing in both the disaster

index and the RN variance. Naturally, it remains an open question whether a plausible

no-arbitrage model exists that displays a non-decreasing IV skew as a function of either the

disaster index or the RN variance and also captures the strong positive correlation between

the disaster index and the RN variance.

The puzzle is that the implications of the no-arbitrage model in figure 1 are inconsistent

with the empirical evidence. In figure 3 , we display the empirical IV skew of S&P 500

options as a function of the RN variance and disaster index over the time period January

1996-Decamber 2012; before the financial crisis, January 1996-November 2007; during the

crisis, December 2007-June 2009; and after the crisis, July 2009-December 2012. The figure

shows that the IV skew is non-decreasing in the disaster index and RN variance. (See also the

regression results in Table 1, discussed later on.) This observation motivates us to propose

a model for the pricing of puts that incorporates credit constraints faced by market makers.

[Figure 3 here]

In the following sections, we address the skew response puzzle and the observed behavior

of the net buy by departing from the class of no-arbitrage models of pricing options and

endogenizing their supply and demand. The key departure lies in recognizing that the

principal writers of index puts are market makers who face credit constraints, modeled here

as an exogenously imposed Value-at-Risk (VaR) constraint. In figure 4, we present the time

series of two measures of financial constraints, noise and the TED spread. The TED spread

is the difference between the 3-month LIBOR and the 3-month T-bill rate. The noise is a

fixed-income market based funding liquidity measure by Hu, Pan, and Wang (2013). The

financial constraints vary over time and peak during the financial crisis. After successfully

addressing the skew response puzzle, we also show that our model implications about the
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relationship between the net buy of puts and the disaster index, RN variance, put price, and

IV skew are consistent with the data.

[Figure 4 here]

4 A Model of the Supply and Demand for Index Put

Options

We consider a one-period model. Agents trade at the beginning of the period and consume

at the end of the period. There are three traded assets: risk free bonds, the market index

(stock), and one-period puts of given moneyness. Bonds are elastically supplied. Each bond

pays one unit of the consumption good at the end of the period. The bond price is the

numeraire at the beginning of the period. Therefore, without loss of generality, the risk free

rate is zero.

Shares of stock are elastically supplied. A share of stock pays S units of the consumption

good at the end of the period. A disaster occurs with probability p, 0 < p < 1. In the

no-disaster state, S = eµ+σZ and in the disaster state, S = eµJ+σJZ , where Z ∼ N(0, 1) and

µ, µJ , σ, σJ are parameters. The stock price at the beginning of the period is exogenous

and equals one. We assume that the expected equity premium is positive, (1 − p)eµ+σZ +

peµJ+σJZ > 1.

The parameters p, µ, µJ , σ and σJ are specific to a given month. We allow the RN variance

and disaster index to differ across months. Therefore, different months are associated with

different parameter values. We make no assumptions about the time-series process of these

parameters but estimate the disaster index and RN variance from the cross-section of puts

prices each month.
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The model-implied variance of log(S) on the real probability measure is

var {log(S)} = E
[

(1− p){p(µ− µJ) + σZ}2 + p{−p(µ− µJ) + σJZ}2
]

= (1− p)p(µ− µJ)
2 + (1− p)σ2 + pσ2

J (6)

Since the model-implied variance reduces to σ2, if we suppress disasters (p = 0), we define

the model-implied disaster index on the real probability measure as

[

(1− p)p(µ− µJ)
2 + (1− p)σ2 + pσ2

J

]

− σ2

= (1− p)p(µ− µJ)
2 + p(σ2

J − σ2) (7)

In Section 5, we calibrate the model and establish that the model-implied disaster index

and RN variance are very highly correlated with the expressions in equations (6) and (7),

respectively.

A put option has strike K and pays [K − S]+ units of the consumption good at the end

of the period. Puts are in zero net supply. The put price at the beginning of the period is

P . The put price must be lower than the strike price, P ≤ K; otherwise a bond that pays

K dominates the put.

There are two classes of price-taking agents, the “customer” and the “market maker”.

The customer has initial endowment W0. He buys α shares of stock and β puts, and invests

W0 − α− βP units of the numeraire in bonds. He maximizes his expected quadratic utility:

max
α,β

E[U ] (8)
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where

U ≡ W0 − α− βP + αS + β[K − S]+ − A

2

(

W0 − α− βP + αS + β[K − S]+
)2

and A is a preference parameter. We specify the utility as quadratic merely for compu-

tational convenience. The customer’s marginal utility is positive, provided W0 − α − βP +

αS + β[K − S]+ < A−1. In our calibration, we set W0 ≪ A−1 and this guarantees that

the marginal utility is positive. The relative risk aversion coefficient is E[−(W0 − α− βP +

αS + β[K − S]+)U
′′

/U ′] ≈ −W0U
′′

/U ′. The objective function is concave in α and β. The

first-order conditions are affine functions of α and β and their optimal values are calculated

in the appendix in closed form.

The market maker (MM) has zero endowment (without loss of generality), buys shares of

stock and puts, and maximizes his expected payoff:

max
α̂,β̂

E
[

α̂(S − 1) + β̂
(

[K − S]+ − P
)

]

(9)

subject to an exogenous VaR constraint

prob
{

α̂(S − 1) + β̂
(

[K − S]+ − P
)

< W ∗
}

≤ h (10)

In equilibrium, the market maker writes puts. The constraint α̂ ≤ 0 captures the institu-

tional role of a market maker that he may choose to hedge his position by selling stock short

but does not speculate by buying stock. We model the market maker as risk neutral merely

for convenience. What is important is that the market maker is less risk averse than the

customer. In practice, market makers may or may not hedge their short positions in puts

but this does not change the nature of our problem because the providers of the hedging
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instruments to the market makers also face credit constraints.

The equilibrium put price is such that the put market clears, β + β̂ = 0. If the put price

is lower than the expected payoff of a put, P < E [[K − S]+], the MM does not write puts

and the supply of puts is zero. We calibrate the model in a way that the put price equals or

exceeds the expected payoff of a put, P ≥ E [[K − S]+]. This captures the situation where

the risk averse customer buys “overpriced” puts to hedge his investment in stock and the

risk neutral MM writes these puts to maximize profit.

5 Resolution of the Skew Response Puzzle

We calibrate the model as follows. We set the length of the time period as one month. We set

the range of p as 0.04 - 0.16, corresponding to 0.48 - 1.92 expected disasters per year. This

range of p is in line with the estimates in Pan (2002), Eraker (2004), Eraker, Johannes, and

Polson (2006), and Lian (2014). We set the range of σ as 0.02 to 0.14, which corresponds to

the annual volatility ranging from 0.07 to 0.48. We set µ = 0.005, corresponding to an annual

equity premium with mean 6% in the no-disaster state; µJ = −0.04 and σJ = 0.80/
√
12,

corresponding to annual volatility 80% of the equity premium in the disaster state. For

this range of parameters, the annual equity risk premium ranges from 2.86% to 17.04%

and the annual volatility ranges from 7.38% to 45.01%, consistent with the observed equity

premium and volatility of the S&P 500 index. We set the customer’s initial wealth at

W0 = 500 and preference parameter at A = 0.001. The customer’s marginal utility is positive

since 500 ≪ 0.001−1. The customer’s relative risk aversion coefficient is approximately

−W0U
′′

/U ′ = 500 × 0.001/(1 − 500 × 0.001) = 1, well within the range of the commonly

assumed level of risk aversion. Finally, we set the market maker’s initial wealth at zero, the

VaR threshold at W ∗ = −20, and the VaR probability at 1%.

17



In figure 5 , we display the supply and demand curves for ATM and OTM puts for and

monthly disaster probability 0.05 or 0.10. As the put price increases, the customer demands

fewer puts and the market maker offers to write more puts although the supply is quite

inelastic. When the volatility is 0.04 and the probability of disaster is 0.05, the net buy of

ATM puts is 101.44 and the net buy of OTM puts is 309.71; and when the volatility is 0.04

and the probability of disaster is 0.10, the net buy of ATM puts is 74.36 and the net buy of

OTM puts is 144.37.

[Figure 5 here]

We use a grid of parameter values p = 0.04, 0.045, ..., 0.16 and σ = 0.02, , 0.025, ..., 0.14.

For each parameter pair, we compute the cross-section of put prices with moneyness (K/S)

ranging from 0.8 to 1.15. From each cross-section of put prices, we compute the disaster

index, RN variance, and the IV skew. The RN variance has correlation 0.9998 with the

model-implied variance in equation (6); and the disaster index has correlation 0.8841 with

the model-implied disaster index in equation (7).

In figure 6 , we present the IV skew as a function of the disaster index and the RN variance.

In the first row, we fix as 0.04 or 0.08 and show that IV skew is increasing the disaster index.

In the second row, we fix as 0.06 or 0.10 and show the IV skew is decreasing in the RN

variance.

[Figure 6 here]

In Table 1, we report regressions of the observed IV skew on the observed disaster index

and RN variance. We compute the standard errors as in Newey and West (1987) with 15 lags

to correct for the autocorrelation of the IV skew. In univariate regressions, the coefficient of

the disaster index is positive and most significant during the crisis period. The coefficient of
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the RN variance is insignificant over the full period and subperiods, except during the crisis

when it is positive and significant. We also report bi-variate regressions with both the RN

variance and disaster index as independent variables. For the whole period and subperiods,

the IV skew is increasing in the disaster index and RN variance but the coefficients are

statistically significant only in the whole period and after the crisis. Overall, the results are

ambiguous because of the high correlation between the disaster index and the RN variance.

[Table 1 here]

As an alternative way to decompose the impact of the disaster index and RN variance on

the IV skew, we classify all the months over the time period January 1996-December 2012

into ten bins with equal number of months in each bin, based on increasing RN variance. For

each bin, we plot the IV skew as a function of disaster index and find a positive relationship,

consistent with the model. In the first row of figure 7, we show these graphs for the second

percentile of the RN variance (low volatility risk) and the ninth percentile of the RN volatility

(high volatility risk). Consistent with the model, the IV skew is increasing in the disaster

index.

Next, we classify all months over the time period January 1996-December 2012 into ten

bins with equal number of months in each bin, based on increasing disaster index. For each

bin, we plot the IV skew as a function of the RN variance and find a negative relationship,

consistent with the model. In the second row of figure 7, we show these graphs for the second

percentile of disaster index (low disaster risk) and the ninth percentile of disaster index (high

disaster risk). Consistent with the model, the IV skew is decreasing in the RN variance.

[Figure 7 here]
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6 Model Implications on the Net Buy of Puts and Em-

pirical Evidence

In this section, we present several testable implications of the model regarding the net buy

of puts. We find that the model implications regarding the relation between the net buy of

puts and the disaster index, RN variance, put price, and the IV skew are consistent with the

empirical evidence. In none of the regressions presented in this section do we use variance,

disaster risk, or index returns as control variables because the net buy of puts in our model

is endogenous with these variables so that these variables cannot serve as control variables.

6.1 The Net Buy of Puts versus the Disaster Index and RN vari-

ance

We distinguish between a change in the net buy of OTM puts due to an increase in the

disaster index and a change in the net buy of OTM puts due to an increase in the RN

variance. First, we fix σ and vary p. For each value of p, we generate the cross-section of

OTM put prices and calculate the disaster index. In the top row of figure 8 , we present

the net buy of OTM puts as a function of the disaster index. The net buy is decreasing

in the disaster index. Second, we fix p and vary σ. For each value of σ, we generate the

cross-section of OTM put prices and calculate the RN variance. In the bottom row of figure

8 , we show that the net buy is decreasing in the RN variance. Thus the model predicts that

the net buy is decreasing in both the disaster index and the RN variance. These results are

consistent with our intuition. When the disaster index and/or the RN variance increase, the

customers like to buy more puts as insurance but the market makers become more credit-

constrained. That is, both the supply and demand curves shift. The supply shift turns out
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to be the driving factor in the decrease in the equilibrium net buy of puts.

[Figure 8 here]

Corresponding results for ATM puts are presented in figure 9. The model implies that

the net buy of ATM puts by customers is everywhere decreasing in the disaster index (top

row of figure 9). The model also implies that the net buy of ATM puts is increasing in the

RN variance when the variance level is low and decreasing in the variance when the variance

level is high (bottom row of figure 9).

[Figure 9 here]

In figure 10, we present the time series of the net buy by customers, the RN variance, and

the disaster index. Through most of the period January 1996 to December 2012, the net

buy of OTM puts is mostly positive, with a slight negative net buy when the RN variance

and disaster risk are relatively high, such as around 1999 (dot-com bubble) and after the

2008 financial crisis. The net buy of OTM puts began rising in 2004 as the RN variance and

disaster index began to fall, consistent with our model. In 2007 right before the financial

crisis, the net buy peaked. Since the financial crisis in 2008, the net buy of customers has

started to decrease while the RN variance and disaster index rose to unprecedented levels.

This indicates that the market markets have gradually decreased their supply though the

demand for OTM puts should be historically high. After the crisis, the net buy of OTM

puts decreases to be negative in some months along with the high RN variance and disaster

index. The net buy of ATM puts is mostly positive throughout this period. The time-series

pattern of ATM puts is similar as the pattern in the net buy of OTM puts. These patterns

are consistent with the basic premise of our model, that customers buy puts as insurance

while market makers write these puts.
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[Figure 10 here]

In Table 2, we report regressions of the monthly net buy of OTM puts by customers versus

the disaster index and the RN variance over the period 1996:1-2012:12. Here and throughout

this section we compute the standard errors in all of the regressions as in Newey and West

(1987) with 15 lags to correct for the autocorrelation of the net buy. Consistent with the

model implications, in univariate regressions, the net buy is significantly decreasing in both

the disaster index and the RN variance in the full period and subperiods. We interpret the

bivariate regressions with caution because of the high correlation between the disaster index

and the RN variance. In Table 3, we report the corresponding regressions for ATM puts.

Again the results are consistent with the model implications. In univariate regressions, the

net buy is significantly decreasing in both the disaster index and the RN variance in the full

period but the coefficients are insignificant in the subperiods.

[Tables 2 and 3 here]

6.2 The Price of Puts versus the Net Buy of Puts

The model implies that an increase in the put price positively shifts the supply and negatively

shifts the demand for both OTM and ATM puts. In figure 11 , we display the model-implied

net buy of OTM puts as a function of the put price, where the put price is stated in terms

of its Black-Scholes (B-S) implied volatility. We distinguish between an increase in the put

price due to an increase in the RN variance from an increase in the put price due to an

increase in the disaster index. Keeping the RN variance constant but varying the disaster

risk, the net buy of OTM puts is decreasing the price of OTM puts (top row of figure 11 ).

Keeping the disaster probability constant but varying the RN variance, the net buy of OTM

puts is decreasing in the price of OTM puts (bottom row of figure 11 ). Thus, our model
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implies that the net buy of OTM puts is decreasing in the price of OTM puts. Consistent

with our model implications, the observed net buy of OTM puts is decreasing in the price

of OTM puts (figure 12 ) for the full period and all the sub-periods.

[Figures 11 and 12 here]

In figure 13 we display the model-implied net buy of ATM puts as a function of the put

price, expressed in terms of its B-S implied volatility. Keeping the variance constant but

varying the disaster risk, the net buy of ATM puts is everywhere decreasing in the price

of ATM puts (top row of figure 13). Keeping the disaster risk constant but varying the

variance, the net buy of ATM puts is increasing in the price when the level of variance is low

and decreasing in the price when the variance level is high (bottom row of figure 13). Thus,

our model implies that the net buy of ATM puts may be either increasing or decreasing

in the price of ATM puts. Our model implies that the decreasing pattern between the net

buy and option prices is less significant for ATM puts than for OTM puts. Consistent with

our model implications, the observed net buy of ATM puts is decreasing in the put price

during the full sample period (figure 14). For the sub-periods, the plots do not show a clear

relationship between the net buy and the price of ATM puts.

[Figures 13 and 14 here]

In the top panel of Table 4 , we report regressions of the net buy of OTM puts on the

price of OTM puts. For the full period and the sub-periods, the regressions consistently

show a significant negative relationship between the net buy and the price of OTM puts. In

the bottom panel of Table 4 , we report regressions of the net buy of ATM puts on the price

of ATM puts. For the full period and the sub-periods, the regressions consistently show a

significant negative relationship between the net buy and the price of ATM puts. These

regressions are consistent with the model implications.
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[Table 4 here]

6.3 The IV Skew versus the Net Buy of Puts

Consistent with our model implications, the observed IV skew shows no consistent pattern

with the net buy of OTM and ATM puts. This contrasts with the implications of the model

in Gârleanu et al. (2009) which assumes exogenous demand shifts and no supply shifts. Their

Proposition 4 states that an exogenous positive shift in the demand for a certain OTM put

has a bigger pricing effect on the demand of deep OTM puts than on slightly OTM puts,

that is, the IV skew unambiguously becomes steeper.

As the disaster risk increases, keeping the RN variance constant, the price of both the

OTM and ATM puts increases. As we showed earlier in figure 6, the model implies that the

price of OTM puts increases faster than the price of ATM puts and the IV skew becomes

steeper. Furthermore, as we showed earlier in figures 8 and 9, the model implies that the

net buy of puts unambiguously decreases with the disaster index when the RN variance is

fixed. Therefore, the model predicts a negative relationship between the net buy and the IV

skew when the disaster index increases. This is illustrated in the bottom row of figure 15 for

OTM puts and the bottom row of figure 16 for ATM puts.

[Figures 15 and 16 here]

As the RN variance increases, keeping the disaster index constant, the net buy of OTM

puts and the IV skew is implied by our model as following. As we showed earlier in the

bottom row of figure 6, the model implies that the price of OTM puts increases slower than

the price of ATM puts and the IV skew becomes flatter. Furthermore, as we showed earlier

in the bottom row of figure 8, the model implies that the net buy of OTM puts also decreases

with the RN variance. Therefore, whether the net buy increases or decreases with the IV
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skew depends on whether the skew or the net buy decreases faster with higher RN variance.

Our model predicts a positive relationship between the IV skew and the net buy of OTM

puts when we increase the RN variance. This is illustrated in the bottom row of figure 15.

In contrast, as the RN variance increases, keeping the disaster index constant, the relation

between the net buy of ATM puts and the IV skew is implied by our model as following.

as we showed earlier in the bottom row of figure 9, the model implies that the net buy of

ATM puts increases with the RN variance when the variance is relatively low and decreases

with the RN variance when the variance is relatively high. On the other hand, the IV skew

always decreases with the RN variance. Therefore, when the variance is relatively low, the

skew is relatively high and meanwhile the skew is decreasing in the RN variance. Therefore,

our model implies that the net buy is decreasing in the IV skew when the IV skew is high.

However, when the variance is relatively high, the IV skew is low and meanwhile both the

net buy and the skew are decreasing in the variance risk. Therefore, the pattern of the net

buy versus the skew again depends on which of the two decreases faster in the RN variance.

In the top row of figure 16, our model predicts that the net buy is decreasing in the IV skew

when the IV skew is high and increasing in the IV skew when the IV skew is low.

Since the RN variance and disaster index are highly correlated, our model is ambiguous

regarding the relationship between the net buy and the IV skew of both OTM and ATM

puts. These implications are consistent with the data. This is illustrated in figure 17 for

OTM puts and figure 18 for ATM puts and the regressions in Table 5 . Note that in both

figures 17 and 18 and Table 5 , before, during, and after the crisis, the relationship between

the net buy of OTM and ATM puts and the IV skew do not show a recognizable pattern.

[Table 5 and Figures 17 and 18 here]

The decreasing pattern between the skew and the net buy is most significant during the
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crisis and for OTM puts. This is the period when the net buy of puts was primarily driven by

changes in the disaster probability rather than the RN variance. During the financial crisis,

the disaster risk is high and the market makers face a tighter constraint in terms of the VaR

even if the variance risk is the same as in other sub-periods. This leads to a steeper the

IV skew together with a less net buy of puts. Therefore, we observe a significant negative

relationship between the IV skew and net buy of both OTM and ATM puts, though the

pattern is more significant for OTM puts because of more demand in OTM puts as crash

insurance.

7 Concluding Remarks

We document the skew response puzzle: no-arbitrage models imply that the IV skew is de-

creasing in the RN variance and disaster index, contrary to the empirical evidence on S&P

500 put options. We explain the puzzle by modeling the endogenous supply and demand of

index puts. The key lies in recognizing that the principal suppliers of index puts are market

makers who are subject to exogenous credit constraints. The model captures the scenario

where risk neutral market makers write “overpriced” puts while the risk-averse public cus-

tomers buy the index to maximize their utility and hedge their exposure to downside risk by

buying index puts. The model implies that the IV skew is increasing in the disaster index

and decreasing in the RN variance. Since the RN variance and disaster index is highly cor-

related, this leads to the observed non-decreasing IV skew in the RN variance and disaster

index.

The shift in the supply and demand for S&P 500 put options not only explains the IV

skew puzzle but also explains a novel set of empirical observations about the net buy of puts.

The model and the data consistently imply that the net buy of puts is decreasing in the RN
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variance and disaster index. The model and the data also consistently imply that the net

buy of puts is decreasing in their price.

In our model, different months are associated with different parameter values. We make

no assumptions about the time-series process of these parameters. In future research, it is

of interest to model the time-series process of these parameters and study the time-series

process of option prices and the net buy.

The paper focuses on OTM put options that derive their value from the left-hand tail of

the index price distribution and give rise to a pronounced IV skew, unlike OTM call options

that derive their value from the right-hand tail of the distribution and give rise to either a

faint IV skew or a faint smirk. Constantinides, Czerwonko, Jackwerth, and Perrakis (2011)

and Constantinides, Jackwerth, and Perrakis (2009) showed that OTM European calls on

the S&P 500 index and OTM American calls on the S&P 500 index futures frequently imply

stochastic dominance violations: any risk averse investor who invests in a portfolio of the

index and the risk free asset increases his expected utility by writing OTM “overpriced”

calls. Therefore, even the risk-averse customers have an incentive to write OTM calls. Our

model does not capture the trading behavior of market makers and customers in OTM calls.

We leave it as a project for future research to develop a model that captures the trading

behavior of market makers and customers in OTM calls.
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Appendix: The Customer’s Problem

For a given put price P , we numerically calculate the customer’s optimal decisions (α, β)

and the MM’s optimal decisions (α̂, β̂). Finally, we numerically search for the put price that

satisfies the market clearing condition β + β̂ = 0.

Before we compute the expectation in the customer’s objective function, we compute the

following:

E[eµ+σZ) = eµ+σ2/2 = E1(µ, σ)

E[
(

eµ+σZ
)2
) = e2µ+2σ2

= E2(µ, σ)

E
[

[

K − eµ+σZ
]+

]

=

∫ +∞

−∞

(K − eτ )+f(τ)dτ = K

∫ log(K)

−∞

f(τ)dτ −
∫ log(K)

−∞

eτf(τ)d]τ

= KΦ(
log(K)− µ

σ
)− eµ+σ2/2Φ

(

log(K)− µ− σ2

σ

)

= F1(µ, σ;K)

E[((K − eµ+σZ)+)2] =

∫ +∞

−∞

((K − eτ )+)2f(τ)dτ =

∫ log(K)

−∞

(K2 − 2Keτ + e2τ )f(τ)dτ

= K2

∫ log(K)

−∞

f(τ)dτ − 2K

∫ log(K)

−∞

eτf(τ)dτ +

∫ K

−∞

e2τf(τ)dτ

= K2Φ(
log(K)− µ

σ
)− 2Keµ+σ2/2Φ

(

log(K)− µ− σ2

σ

)

+e2µ+2σ2

Φ

(

log(K)− µ− 2σ2

y

)

= F2(µ, σ;K)

E[eµ+σZ(K − eµ+σZ)+] =

∫ +∞

−∞

eτ (K − eτ )+f(τ)dτ = K

∫ log(K)

−∞

eτf(τ)dτ −
∫ log(K)

−∞

e2τf(τ)dτ

= Keµ+σ2/2Φ

(

log(K)− µ− σ2

σ

)

− e2µ+2σ2

Φ

(

log(K)− µ− 2σ2

y

)

= F3(µ, σ;K)

where f(·) is the density function and Φ(·) is the CDF of the standard normal distribution.
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We write the objective function of the customer as

max
α,β













































α(1− p)(1− AW0)[E1(µ, σ)− 1] + β(1− p)(1− AW0)[F1(µ, σ;K)− P ]

−α2A
2
(1− p)[E2(µ, σ)− 2E1(µ, σ) + 1] + αβA(1− p)[F1(µ, σ;K)

−F3(µ, σ;K) + PE1(µ, σ)− P ]− β2A
2
(1− p)[F2(µ, σ;K)

−2PF1(µ, σ;K) + P 2] + αp(1− AW0)[E1(µJ , σJ)− 1]

+βp(1− AW0)[F1(µJ , σJ ;K)− P ]

−α2A
2
p[E2(µJ , σJ)− 2E1(µJ , σJ) + 1] + αβAp[F1(µJ , σJ ;K)

−F3(µJ , σJ ;K) + PE1(µJ , σJ)− P ]− β2Ap
2
[F2(µJ , σJ ;K)

−2PF1(µJ , σJ ;K) + P 2]













































The first-order conditions are:

(1− p)(1− AW0)[E1(µ, σ)− 1]− αA(1− p)[E2(µ, σ)− 2E1(µ, σ) + 1]

+βA(1− p)[F1(µ, σ;K)− F3(µ, σ;K) + PE1(µ, σ)− P ]

+p(1− AW0)[E1(µJ , σJ)− 1]− αAp[E2(µJ , σJ)− 2E1(µJ , σJ) + 1]

+βAp[F1(µJ , σJ ;K)− F3(µJ , σJ ;K) + PE1(µJ , σJ)− P ]

= 0

(1− p)(1− AW0)[F1(µ, σ;K)− P ] + αA(1− p)[F1(µ, σ;K)− F3(µ, σ;K)

+PE1(µ, σ)− P ]− βA(1− p)[F2(µ, σ;K)− 2PF1(µ, σ;K) + P 2]

+p(1− AW0)[F1(µJ , σJ ;K)− P ] + αAp[F1(µJ , σJ ;K)− F3(µJ , σJ ;K)

+PE1(µJ , σJ)− P ]− βAp[F2(µJ , σJ ;K)− 2PF1(µJ , σJ ;K) + P 2]

= 0
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with solution






α

β






=







a11 a12

a21 a22







−1 





c1

c2







where,

a11 = A(1− p)[E2(µ, σ)− 2E1(µ, σ) + 1] + Ap[E2(µJ , σJ)− 2E1(µJ , σJ) + 1]

a12 = A(1− p)[−F1(µ, σ;K) + F3(µ, σ;K)− PE1(µ, σ) + P ] + Ap[−F1(µJ , σJ ;K)

+F3(µJ , σJ ;K)− PE1(µJ , σJ) + P ]

a21 = A(1− p)[−F1(µ, σ;K) + F3(µ, σ;K)− PE1(µ, σ) + P ] + Ap[−F1(µJ , σJ ;K)

+F3(µJ , σJ ;K)− PE1(µJ , σJ) + P ]

a22 = −A(1− p)[F2(µ, σ;K)− 2PF1(µ, σ;K) + P 2]− Ap[F2(µJ , σJ ;K)

−2PF1(µJ , σJ ;K) + P 2]

c1 = (1− p)(1− AW0)[E1(µ, σ)− 1] + p(1− AW0)[E1(µJ , σJ)− 1]

c2 = (1− p)(1− AW0)[F1(µ, σ;K)− P ] + p(1− AW0)[F1(µJ , σJ ;K)− P ]
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[27] Gârleanu, N., L. H. Pedersen, and A. M. Poteshman. 2009. Demand-Based Option

Pricing. Review of Financial Studies 22: 4259-4299.

[28] Gromb, D. and D. Vayanos. 2002. Equilibrium and Welfare in Markets with Financially

Constrained Arbitrageurs. Journal of Financial Economics 66: 361-407.

[29] He, Z. and A. Krishnamurthy. 2013. Intermediary Asset Pricing. American Economic

Review 103: 732-770.

[30] Heston, S. L. 1993. A Closed-Form Solution for Options with Stochastic Volatility with

Applications to Bond and Currency Options. Review of Financial Studies 6: 327-343.

[31] Heston, S. L., P. Christoffersen, and K. Jacobs. 2009. The Shape and Term Structure

of the Volatility Smirk. Management Science 55: 1914-1932.

[32] Hu, G. X., J. Pan, and J. Wang. 2013. Noise as Information for Illiquidity. The Journal

of Finance 68: 2341-2382.

33



[33] Jones, C. S. 2006. A Nonlinear Factor Analysis of S&P 500 Index Options Returns. The

Journal of Finance 61: 2325-2363.

[34] Lian, L. 2014. The Role of Volatility Jumps in the Cross-Section of Option Prices.

Working paper, University of Massachusetts at Amherst.

[35] Merton, R. C. 1973. Theory of Rational Option Pricing. Bell Journal of Economics and

Management Science 4: 141-183.

[36] Pan, J., 2002. The Jump-Risk Premia Implicit in Options: Evidence from an Integrated

Time-Series Study. Journal of Financial Economics 63: 3-50.

[37] Shleifer, A. and R. Vishny. 1997. The Limits of Arbitrage. The Journal of Finance 52:

35-55.

[38] Thurner, J., D. Farmer, and J. Gaenakoplos. 2012. Leverage Causes Fat Tails and

Clustered Volatility. Quantitative Finance 5: 695-707.

34



Table 1: The Empirical IV Slope versus the Empirical VIX and Disaster Risk, Annual Data,
1996:1-2012:12

The table reports regressions of the IV skew on the disaster index and RN variance for the full sample period,
before the crisis, during the crisis, and after the crisis. The variables are defined in Section 2.The OTM puts
are S&P 500 puts with moneyness 0.80 - 0.90 and maturity 15 - 60 days. The ATM puts are S&P 500 puts
with moneyness 0.97 - 1.03 and maturity 15 - 60 days.

Full Period Before Crisis
Disaster 1.152 11.40∗∗ 3.603∗ 10.24
Index (0.967) (3.668) (1.556) (5.294)

RN 0.0104 -0.706∗∗ 0.0707 -0.493
Variance (0.0386) (0.227) (0.136) (0.276)

constant 0.118∗∗∗ 0.120∗∗∗ 0.134∗∗∗ 0.110∗∗∗ 0.112∗∗∗ 0.122∗∗∗

(0.00458) (0.00515) (0.00725) (0.00440) (0.00727) (0.00699)
N 204 204 204 143 143 143
adj. R2 0.022 -0.004 0.224 0.096 0.003 0.212

During Crisis After Crisis
Disaster 1.103∗∗∗ 1.675 1.029 25.21∗∗∗

Index (0.227) (1.196) (0.906) (1.543)
[1em] RN 0.0757∗∗∗ -0.0407 -0.0262 -1.680∗∗∗

Variance (0.0160) (0.0892) (0.0420) (0.0882)

constant 0.0988∗∗∗ 0.0962∗∗∗ 0.100∗∗∗ 0.140∗∗∗ 0.144∗∗∗ 0.169∗∗∗

(0.00467) (0.00515) (0.00783) (0.00283) (0.00234) (0.00194)
N 19 19 19 204 204 204
adj. R2 0.281 0.265 0.238 0.022 -0.004 0.224

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 2: Observed Net Buy of OTM Puts versus the Disaster Index and the RN variance

The table reports regressions of the net buy of OTM puts on the disaster index and RN variance for the full
sample period, before the crisis, during the crisis, and after the crisis. The variables are defined in Section
2.The OTM puts are S&P 500 puts with moneyness 0.80 - 0.90 and maturity 15 - 60 days.

Full Period Before Crisis
Disaster -3.436∗ 3.469∗ -6.997∗ 1.908
Index (1.422) (1.388) (3.205) (1.109)

RN -0.196∗∗∗ -0.315∗∗∗ -0.302∗∗∗ -0.345∗∗∗

Variance (0.0583) (0.0712) (0.0527) (0.0661)

constant 0.0261∗∗∗ 0.0608∗∗∗ 0.0792∗∗∗ 0.0350∗∗∗ 0.0851∗∗∗ 0.0907∗∗∗

(0.00581) (0.0130) (0.0140) (0.00819) (0.0112) (0.0125)
N 204 204 204 143 143 143
adj. R2 0.081 0.172 0.190 0.099 0.223 0.221

During Crisis After Crisis
Disaster -1.466∗∗∗ 1.226 -5.916∗∗∗ -2.283
Index (0.154) (1.063) (1.310) (2.380)

RN -0.0902∗∗∗ -0.156∗ -0.203∗∗∗ -0.130
Variance (0.00909) (0.0639) (0.0449) (0.0915)

constant 0.0202∗∗∗ 0.0406∗∗∗ 0.0545∗∗ 0.0150∗∗∗ 0.0453∗∗∗ 0.0348∗

(0.00292) (0.00416) (0.0144) (0.00273) (0.00863) (0.0140)
N 19 19 19 42 42 42
adj. R2 0.120 0.160 0.117 0.160 0.166 0.147

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 3: Observed Net Buy of ATM Puts versus the Disaster Index and the RN variance

The table reports regressions of the net buy of ATM puts on the disaster index and RN variance for the full
sample period, before the crisis, during the crisis, and after the crisis. The variables are defined in Section
2.The ATM puts are S&P 500 puts with moneyness 0.80 - 0.90 and maturity 15 - 60 days.

Full Period Before Crisis
Disaster -2.724∗ -3.677 -1.425 -5.553
Index (1.119) (2.493) (4.421) (4.364)

RN -0.0830 0.0435 0.0368 0.160
Variance (0.0623) (0.113) (0.113) (0.128)

constant 0.0494∗∗∗ 0.0616∗∗∗ 0.0420∗ 0.0536∗∗∗ 0.0443 0.0278
(0.00569) (0.0136) (0.0186) (0.00831) (0.0225) (0.0222)

N 204 204 204 143 143 143
adj. R2 0.034 0.018 0.030 -0.004 -0.005 0.008

During Crisis After Crisis
Disaster -1.086∗∗∗ 1.927∗ -0.296 13.39∗∗

Index (0.180) (0.761) (1.097) (4.528)

RN -0.0713∗∗∗ -0.174∗∗ -0.0629 -0.490∗

Variance (0.0111) (0.0488) (0.0605) (0.186)

constant 0.0155∗∗∗ 0.0321∗∗∗ 0.0538∗∗∗ 0.0341∗∗∗ 0.0468∗∗∗ 0.108∗∗∗

(0.00240) (0.00443) (0.0116) (0.00406) (0.0112) (0.0295)
N 19 19 19 42 42 42
adj. R2 0.059 0.105 0.079 -0.025 -0.006 0.076

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 4: Observed Net Buy of OTM and ATM Puts versus the Put Price in IV Units

The table reports regressions of the net buy of OTM and ATM puts for the full period and sub-periods on
the disaster index and RN variance. Full sample period: 01/1996-12/2012; before crisis: 01/1996-11/2007;
during crisis: 12/2007-06/2009; after crisis: 07/2009-12/2012. The variables are defined in Section 2.The
OTM puts are S&P 500 puts with moneyness 0.80 - 0.90 and maturity 15 - 60 days. The ATM puts are
S&P 500 puts with moneyness 0.97 - 1.03 and maturity 15 - 60 days.

Net Buys of OTM Puts
Full Period Before Crisis During Crisis After Crisis

B-S IV (OTM) -0.211∗∗∗ -0.296∗∗∗ -0.0927∗∗∗ -0.233∗∗∗

(0.0604) (0.0611) (0.00954) (0.0526)

constant 0.0848∗∗∗ 0.112∗∗∗ 0.0492∗∗∗ 0.0786∗∗∗

(0.0193) (0.0195) (0.00505) (0.0163)
N 204 143 19 42
adj. R2 0.186 0.203 0.165 0.181

Net Buys of ATM Puts
Full Period Before Crisis During Crisis After Crisis

B-S IV (ATM) -0.0893∗ 0.0406 -0.0791∗ -0.0721
(0.0360) (0.0667) (0.0369) (0.0930)

constant 0.0610∗∗∗ 0.0444∗∗∗ 0.0329∗∗ 0.0469∗

(0.00754) (0.0120) (0.0106) (0.0182)
N 204 143 19 42
adj. R2 0.018 -0.005 0.113 -0.004

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

38



Table 5: Observed Net Buy of OTM and ATM Puts versus IV Skew

The table reports regressions of the net buy of OTM and ATM puts for the full period and sub-periods on
the IV skew. Full sample period: 01/1996-12/2012; before crisis: 01/1996-11/2007; during crisis: 12/2007-
06/2009; after crisis: 07/2009-12/2012. The variables are defined in Section 2.The OTM puts are S&P 500
puts with moneyness 0.80 - 0.90 and maturity 15 - 60 days. The ATM puts are S&P 500 puts with moneyness
0.97 - 1.03 and maturity 15 - 60 days.

OTM Puts
Full Period Before Crisis During Crisis After Crisis

IV Skew -0.233 -0.0148 -0.623∗ -0.234∗

(0.139) (0.238) (0.223) (0.112)

constant 0.0470∗∗ 0.0269 0.0768∗∗ 0.0354∗

(0.0160) (0.0250) (0.0240) (0.0174)
N 204 143 19 42
adj. R2 0.014 -0.007 0.063 -0.010

ATM Puts
Full Period Before Crisis During Crisis After Crisis

IV Skew -0.101 -0.103 -0.0246 0.235
(0.199) (0.257) (0.209) (0.327)

constant 0.0560∗ 0.0635∗ 0.0113 -0.0000772
(0.0254) (0.0279) (0.0233) (0.0476)

N 204 143 19 42
adj. R2 -0.002 -0.005 -0.059 -0.010

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Figure 1: The IV Skew versus the RN variance and Disaster Index Implied by the Bates
(2006) No-Arbitrage Model
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Figure 3: Observed IV Skew versus the RN variance and Disaster Index
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Figure 4: Time Series of Noise and the TED Spread as Measures of Financial Constraints
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Figure 5: Model-Implied Supply and Demand for Put Options
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Figure 6: Model-Implied IV Skew as a Function of the Disaster Index and RN variance
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Figure 7: The Observed IV Skew versus the Observed Disaster Index and RN variance
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Figure 8: Model-Implied Net Buy of OTM Puts by Customers versus the Disaster Index and
RN variance

σ = 0.06 σ = 0.08
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Figure 9: Model-Implied Net Buy of ATM Puts by Customers versus the Disaster Index and
RN variance

σ = 0.06 σ = 0.08
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Figure 10: Time Series of the Observed Net Buy, RN variance, and Disaster Index
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Figure 11: Model-Implied Net Buy versus the Price of OTM Puts in IV Units

p = 0.06 p = 0.10
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Figure 12: Observed Net Buy versus the Price of OTM Puts in IV Units
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Figure 13: Model-Implied Net Buy versus the Price of ATM Puts in IV Units
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Figure 14: Observed Net Buy versus the Price of ATM Puts in IV Units
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Figure 15: Model-Implied IV Skew versus the Net Buy of OTM Puts

σ = 0.06 σ = 0.08
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Figure 16: Model-Implied IV Skew versus the Net Buy of ATM Puts

σ = 0.06 σ = 0.08
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Figure 17: Observed IV Skew versus the Net Buy of OTM Puts
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Figure 18: Observed IV Skew versus the Net Buy of ATM Puts
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