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1 Introduction

We study a class of in…nite-horizon nonlinear dynamic economic models in which preferences,
technology and laws of motion for exogenous variables can change over time either determin-
istically or stochastically, according to a Markov process, or both. A distinctive feature of
our analysis is that we allow for Markov processes with time-varying transition probabilities.
Unbalanced stochastic growth models …t into that class, but so do many other models and
applications such as the entry into a monetary union, a nonrecurrent policy regime switch or
deterministic seasonals. The studied models are nonstationary in the sense that the decision and
value functions are time-dependent and cannot be generally solved with conventional numerical
methods that construct stationary Markov equilibria.

Two clarifying comments are in order: First, some nonstationary models from the studied
class can be converted into stationary, for example, a nonstationary model with a balanced
growth path can be converted into stationary by using an appropriate change of variables. We
do not focus on those special cases but on a generic nonstationary model for which a stationary
representation is unknown. Second, Markov processes can be nonstationary even if all the
parameters and transition probabilities are time-invariant, for example, unit root and explosive
processes are nonstationary. The latter kind of nonstationary processes in not explicitly studied
in the present paper.

We introduce a quantitative framework, called extended function path (EFP), for calibrating,
solving, simulating and estimating the studied class of nonstationary Markov models. EFP is
aimed to accurately approximate time-varying decision functions in a nonstationary economy
during a given number of periods  . It assumes that in some remote period  À  , the economy
becomes stationary, and it proceeds in two steps: First, it constructs conventional stationary
Markov decision functions for the stationary economy for  ¸  ; and then, it …nds a path of
time-varying decision functions for periods  = 0  ¡ 1 that matches the given  -period
terminal condition (i.e., the stationary Markov decision functions for  ¸  ). If  is su¢ciently
large relatively to  , the EFP approximation in the …rst  periods is not sensitive to the speci…c
terminal condition used. Therefore, we obtain an accurate approximation for time-varying
decision and value functions in the …rst  periods (the remaining decision functions for the
periods  ¡  are discarded).

EFP resembles solution methods for …nite-horizon models with a given terminal condition
(e.g., life-cycle models), however, for the studied class of in…nite-horizon problems, there is no
terminal condition any …nite period. Hence, EFP constructs a …nite-horizon approximation to
an in…nite-horizon nonstationary problem by using an appropriate truncation.

We develop theoretical foundations for the EFP framework in the context of the constructed
class of nonstationary Markov models. First, we provide a set of assumptions under which the
optimal decision and value functions in the  -period stationary economy are state-contingent,
i.e., memoryless concerning a speci…c history that leads to the current state. In our case, time-
dependency takes a particular tractable form for the model’s endogenous variables, namely,
the optimal decision and value functions follow a Markov process with possibly time-varying
transition probabilities. Second, we prove a turnpike theorem that shows that a solution to
the  -period stationary model converges to the true solution of the nonstationary models as 
increases. This result implies that EFP is capable of approximating a solution to a nonstationary
in…nite-horizon problems with an arbitrary degree of precision.
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Another method in the literature that can solve nonstationary in…nite-horizon Markov mod-
els is the extended path (EP) framework of Fair and Taylor (1983). To deal with uncertainty,
Fair and Taylor (1983) propose to use the certainty-equivalence approach, namely, they replace
expectation of a function across states by a value of the function in the expected state. The
EP and EFP methods are similar in that they both extend the path, i.e., they both construct
an approximate solution for larger time horizon  than time horizon  for which the solution is
actually needed (to mitigate the e¤ect of an arbitrary terminal condition on the approximation
during the initial  periods). However, the two methods di¤er critically in the object they con-
struct and in the way they approximate expectation functions, namely, Fair and Taylor’s (1983)
method constructs a path for variables by using the certainty equivalence approach, while EFP
constructs a path for decision functions by using more accurate integration techniques such
as Monte Carlo, quadrature and monomial ones. As a result, EP can accurately solve linear
models with uncertainty (in such models, the certainty equivalence approach leads to exact
approximation of integrals), as well as nonlinear models without uncertainty, whereas EFP can
also accurately solve nonlinear models in which the certainty equivalence approach is either not
applicable or leads to inaccurate solutions.

Although numerical examples in the paper are limited to models with two or three state
variables, we design EFP in the way that makes it tractable in large-scale applications. A
speci…c combination of computational techniques that we use includes Smolyak sparse grids
(see, e.g., Krueger and Kubler (2004) and Judd, Maliar, Maliar and Valero (2014)), nonprod-
uct monomial integration methods (such methods are inexpensive and produce more accurate
approximations to integrals than Monte Carlo methods, see Judd, Maliar and Maliar (2011) for
comparison results) and derivative-free solvers (we use Gauss-Jacobi iteration in line with Fair
and Taylor (1983)); see Maliar and Maliar (2014) for surveys of these and other computational
techniques that are tractable in problems with high dimensionality (up to 100 state variables).
Examples of MATLAB code are provided in webpages of the authors.

Our numerical analysis includes two parts. First, we assess the performance of EFP in a
nonstationary test model with a balanced growth path for which a high-quality approximation
is available, and we …nd EFP to be both accurate and reliable. Then, we apply EFP to analyze
a collection of challenging nonstationary and unbalanced growth applications that do not admit
conventional stationary Markov equilibria. These applications are discussed below.

Capital augmenting technological progress. Acemoglu (2002) argues that technical change
may be directed toward di¤erent factors of production; and Acemoglu (2003) explicitly incor-
porates capital augmenting technological progress into a deterministic model of endogenous
technological change. However, the assumption of capital augmenting technological progress
is inconsistent with a balanced growth path in the standard stochastic growth model but only
is the assumption of labor augmenting technological progress; see King, Plosser and Rebello
(1988). In our …rst application, we use EFP to solve a unbalanced growth model with capital
augmenting technological progress that does not admit a stationary Markov equilibrium. Our
numerical results show that business cycle ‡uctuations are similar in the models with capital
and labor augmenting technological progresses, however, in the former model, the growth rate
of capital declines over time while in the latter model, it is constant.

Anticipated versus unanticipated regime switches. The literature on regime switches focuses
on unanticipated recurring regime switches (parameter shifts); see Sims and Zha (2006), Davig
and Leeper (2007, 2009), Farmer, Waggoner, and Zha (2011), Foerster, Rubio-Ramírez, Wag-
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goner and Zha (2013) and Zhong (2015), among others. However, there are regime switches
that are anticipated nonrecurrent, e.g., presidential elections with predictable outcomes, policy
announcements, anticipated legislative changes. The idea that anticipated shocks are impor-
tant for economic ‡uctuations is dated back to Pigou (1927) and is advocated in, e.g., Cochrane
(1994), Beaudry and Portier (2006), Schmitt-Grohé and Uribe (2012). An announcement of
accession of new members to the European Union produced important anticipatory e¤ects; see
Garmel, Maliar and Maliar (2008). In our second application, we use EFP to construct a non-
stationary Markov solution of a growth model that experiences a combination of anticipated
and unanticipated technological changes. Our analysis reveals important anticipatory e¤ects
relatively to naive solutions in which anticipated switches in regimes are ignored.

Seasonal changes. Seasonal adjustments are a special case of anticipated regime switches; see
Barsky and Miron (1989) for well documented evidence on the importance of seasonal changes
for the business cycle. Saijo (2013) argues that inadequate treatment of seasonal changes may
lead to a signi…cant bias in the parameter estimates. Two approaches are available in the
literature to study models with seasonal changes: …rst, Hansen and Sargent (1993, 2013) use
spectral density of variables to construct periodic optimal decision rules; and second, Christiano
and Todd (2002) linearize the model around a seasonally-varying steady state growth path and
solve for four distinct decision rules. EFP provides an alternative simple and general framework
for analyzing seasonal variations. As an example, we construct a nonstationary Markov solution
to a growth model with periodic anticipated seasonal changes, and we …nd a dramatic smoothing
e¤ect of seasonal changes on the model’s endogenous variables.

Parameter drifting. There is ample evidence in favor of parameter drifting in economic
models; see, e.g., Clarida, Galí and Gertler (2000), Lubick and Schorfheide (2004), Cogley and
Sargent (2005), Goodfriend and King (2009), and Canova (2009). Furthermore, Galí (2006)
argues that nonrecurrent regime changes with gradual policy variations are empirically relevant.
However, parameter drifting is generally inconsistent with Markov equilibrium because decision
functions gradually change (drift) over time. In our third application, we use EFP to construct
a nonstationary Markov solution of a stochastic growth model with parameter drifting. We
again observe important anticipatory e¤ects relative to naive solutions in which anticipated
parameter drifting is ignored.

Stochastic volatility versus deterministic trend in volatility. A large body of recent lit-
erature documents the importance of degrees of uncertainty for the business cycle behavior;
see, e.g., Bloom (2009), Fernández-Villaverde and Rubio-Ramírez (2010), Fernández-Villaverde,
Guerrón-Quintana and Rubio-Ramírez (2010). The literature normally assumes that the stan-
dard deviation of exogenous shocks either follows a Markov process or experiences recurring
Markov regime switches. However, there is empirical evidence that volatility of output has a
well pronounced time trend, for example, see Mc Connel and Pérez-Quiros (2000), Blanchard
and Simon (2001) and Stock and Watson (2003). In our experiment, we construct a nonsta-
tionary Markov solution of a growth model in which volatility of shocks gradually decreases
over time, as suggested by the analysis of Mc Connel and Pérez-Quiros (2000). As expected,
volatility of endogenous variables in our model gradually decreases over time in response to
decreasing volatility of shocks.

Calibration and estimation of parameters in nonstationary and unbalanced growth models.
There are econometric methods that estimate and calibrate parameters in economic models by
constructing and simulating numerical solutions, including simulated method of moments (e.g.,
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Canova (2007)); Bayesian analysis (e.g., Smets andWouters (2003), and Del Negro, Schorfheide,
Smets and Wouters (2007)); and maximum likelihood method (e.g., Fernández-Villaverde and
Rubio-Ramírez (2007)). In the fourth application, we illustrate how EFP can be used to cali-
brate and estimate parameters in an unbalanced growth model by constructing and simulating
nonstationary Markov solutions. We speci…cally consider a model in which the depreciation
rate of capital has both a deterministic time trend and a stochastic cyclical component. Shocks
to the depreciation rate are introduced in, e.g., Liu, Waggoner and Zha (2011), Gourio (2012)
and Zhong (2015); also, see Karabarbounis and Neiman (2014) for evidence on the evolution of
the depreciation rate over time. We simulate a time series solution using the …tted parameter
values, and we obtain unbalanced growth patterns that closely resemble those observed in the
data on the U.S. economy.

The proposed EFP framework is related to several streams of economic literature. First,
the theoretical foundations of EFP build on early theoretical literature that studies stochastic
growth models with deterministically time-varying utility and production functions; see Ma-
jumdar and Zilcha (1987), Mitra and Nyarko (1991) and Joshi (1997).1 Our main contributions
to that literature is that we propose a practical approach to constructing numerical solutions of
an empirically-relevant class of nonstationary Markov models, whereas the previous literature
was limited to purely theoretical existence results.

Second, EFP is related to conventional numerical techniques for constructing stationary
Markov decision functions. Although such techniques cannot be used for solving the studied
class of nonstationary models, they can be used as ingredients of EFP, including projection
techniques (see, e.g., Judd (1992), Christiano and Fisher (2000), Maliar and Maliar (2015));
perturbation techniques (see, e.g., Judd and Guu (1993), Collard and Juillard (2001), Schmitt-
Grohé and Uribe (2004)); stochastic simulation techniques (see, e.g., Den Haan and Marcet
(1990), Judd, Maliar and Maliar (2011)); and numerical dynamic programming techniques, in
particular, those designed to deal with large scale applications (see, e.g., Smith (1993), Rust
(1996), Carroll (2005), Maliar and Maliar (2013)).2 There are two classes of methods that are
particularly close to EFP. First, these are the methods for analyzing life-cycle models, developed
in Krueger and Kubler (2004, 2006) and Hasanhodzic and Kotliko¤ (2013). However, in a life-
cycle economy, the terminal condition is either given or is a choice variable (as in a life-cycle
model with bequests); see Ríos-Rull (1999) and Nishiyama and Smetters (2014) for reviews of
the literature on life-cycle economies. In turn, terminal condition is unknown in our in…nite
horizon nonstationary economy and must be constructed in a way that ensures asymptotic
convergence of the EFP approximation to the true in…nite horizon solution. Second, EFP
is related to a perturbation-based method of Schmitt-Grohé and Uribe (2012) that can solve
models with anticipated shocks of a …xed horizon (e.g., shocks that happen each fourth or eight
periods), however, unlike this method, EFP can handle anticipated shocks of any periodicity

1In turn, this literature on nonstationary models builds on mathematical tools developed for stationary
models in Brock and Gale (1969), Brock (1971), Brock and Mirman (1972, 1973), McKenzie (1976), Mirman
and Zilcha (1977), Brock and Majumdar (1978), Mitra and Zilcha (1981), among others.

2Surveys of numerical solution methods for stationary Markov models include Taylor and Uhlig (1990),
Gaspar and Judd (1997), Judd (1998), Marimon and Scott (1999), Santos (1999), Miranda and Fackler (2002),
Adda and Cooper (2003), Aruoba, Fernández-Villaverde and Rubio-Ramírez, (2006), Kendrik, Ruben-Mercado
and Amman (2006), Canova (2007), Heer and Maußner (2010), Lim and McNelis (2008), Stachurski (2009),
Kollmann, Maliar, Malin and Pichler (2011) and Maliar and Maliar (2014).
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and duration.
Finally, EFP is related to numerical methods that construct a path for variables, in particu-

lar, shooting methods for deterministic economies introduced to economics in Lipton, Poterba,
Sachs and Summers (1980) and an extended path method for economies with uncertainty pro-
posed by Fair and Taylor (1983).3 The related literature also includes solution methods for
continuous time models studied in Chen (1999); a framework for characterizing equilibrium in
life-cycle models with a deterministic aggregate path and idiosyncratic uncertainty, proposed by
Conesa and Krueger (1999); a parametric path method of Judd (2002); and a predictive control
method, developed in Grüne, Semmler and Stieler (2013); see also Atolia and Bu¢e (2009 a,b)
for a careful discussion of shooting methods. The main shortcoming of this class of methods
is that the assumption of certainty equivalence does not always provide su¢ciently accurate
approximations of expectation functions in nonlinear models. Adjemian and Juillard (2013)
propose a stochastic extended path method that approximates expectation functions more ac-
curately by constructing and averaging multiple paths for variables under di¤erent sequences of
exogenous shocks. EFP di¤ers from this literature in the way it deals with uncertainty, specif-
ically, EFP constructs time-varying state-contingent decision functions that include stochastic
shocks as additional arguments, whereas the above literature constructs one or several paths
for endogenous variables.

The rest of the paper is as follows: In Section 2, we construct a class of nonstationary Markov
models. In Section 3, we introduce EFP and provide its theoretical foundations. In Section
4, we describe the relation of EFP to the literature. In Section 5, we assess the performance
of EFP in a nonstationary test model with a balanced growth path. In Section 6, we solve a
collection of nonstationary applications; and …nally in Section 7, we conclude.

2 A class of nonstationary Markov economies

We study a class of in…nite-horizon nonlinear dynamic economic models in which preferences,
technology and laws of motion for exogenous variables can change over time either determin-
istically or stochastically, according to a Markov process with possibly time-varying transition
probabilities, or both. The constructed class of models is nonstationary because the optimal
decision and value functions are time dependent. The existence theorems for stochastic growth
models with time-varying fundamentals are established in Majumdar and Zilcha (1987), Mitra
and Nyarko (1991) and Joshi (1997), among others.

2.1 The stochastic environment

Our exposition relies on standard measure theory notation; see, e.g., Stokey and Lucas with
Prescott (1989), Santos (1999) and Stachurski (2009). Time is discrete and in…nite,  = 0 1 .
Let (F   ) be a probability space:

3Earlier literature was aware that methods solving for a path of variables can be used in the context of
nonstationary problems. In particular, Lipton, Poterba, Sachs and Summers (1980, p.2) say "... we allow for a
possibility that  [model’s equations] may be time dependent (i.e., non-autonomous)". Also, Fair and Taylor
(1983) explicitly assume that the model’s equations are time dependent.
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a)  = ¦1=0 is a space of sequences  ´ (0 1) such that  2  for all , where 

is a compact metric space endowed with the Borel –…eld E. Here,  is the set of all
possible states of the environment at  and  2  is the state of the environment at .

b) F is the –algebra on  generated by cylinder sets of the form ¦1=0 , where  2 E

for all  and  =  for all but …nitely many  .

c)  is the probability measure on (F).

We denote by fFg a …ltration on , where F is a sub –…eld of F induced by a partial
history up of environment  = (0  ) 2 ¦

=0 up to period , i.e., F is generated by
cylinder sets of the form ¦

=0 , where  2 E for all  ·  and  =  for   . In
particular, we have that F0 is the course –…eld f0g, and that F1 = F. Furthermore,
if  consists of either …nite or countable states,  is called a discrete state process or chain;
otherwise, it is called a continuous state process. Our analysis focuses on continuous state
processes, however, can be generalized to chains with minor modi…cations.

2.2 A nonstationary optimization problem

As an example, we consider a nonstationary stochastic growth model in which preferences,
technology and laws of motion for exogenous variables change over time:

max
f+1g

1
=0

0

"
1X

=0

 ()

#

(1)

s.t.  + +1 = (1¡ )  +  ( ) , (2)

+1 =  ( +1) , (3)

where  ¸ 0 and  ¸ 0 denote consumption and capital, respectively; initial condition (0 0)
is given;  : R+ ! R and  : R

2
+ ! R+ and  : R

2 ! R are possibly time-dependent utility
function, production functions and law of motion for exogenous variable , respectively; the
sequence of ,  and  for  ¸ 0 is known to the agent in period  = 0; +1 is i.i.d;  2 (0 1)
is the discount factor;  2 [0 1] is the depreciation rate; and  [¢] is an operator of expectation,
conditional on a -period information set.

Stationary models. A well-known special case of the general setup (1)–(3) is a stationary
Markov models in which  ´ ,  ´  and  ´ . Such a model has a stationary Markov
solution in which the value function  ( ) and decision functions +1 =  ( ) and
 =  ( ) are both state-contingent and time-invariant; see, e.g., Stokey and Lucas with
Prescott (1989, p. 391).

Nonstationary models. In a general case, a solution to the model (1)–(3) is nonstationary.
The decision functions of endogenous variables  and  can be time-dependent for two reasons:
…rst, because  and  change over time; and second, because  and consequently, the transition
probabilities of exogenous variable  change over time.
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Remark 1. For presentational convenience, we assume that only  is a random variable
following a Markov process with possibly time-varying transition probabilities, while the other
model’s parameters evolve in a deterministic manner, i.e., the sequence of ,  and  for all
 ¸ 0 is deterministic. However, the quantitative framework we develop in the paper can be
used to solve models in which , , as well as the parameters of ,  and , are all random
variables, following a Markov process with time-varying transition probabilities. In particular,
in Section 6, we consider a version of the model in which  follows a Markov process with
time-varying transition probabilities.

2.3 Assumptions about exogenous variable

We provide some de…nitions that will be useful for explaining the assumption (3) about the
Markov process for exogenous variable ; these de…nitions are standard and closely follow
Stokey and Lucas with Prescott (1989, Ch. 8.2).

De…nition 1. (Stochastic process). A stochastic process on (F   ) is an increasing sequence
of –algebras F1 µ F2 µ  µ F ; a measurable space (Z); and a sequence of functions
 : !  for  ¸ 0 such that each  is F measurable.

Stationarity is commonly used assumption in economic literature.

De…nition 2. (Stationary process). A stochastic process  on (F   ) is called stationary if
the unconditional probability measure, given by

+1+ () =  (f 2  : [+1 ()   + ()] 2 g)  (4)

is independent of  for all  2 Z,  ¸ 0 and  ¸ 1.

A related notion is stationary (time-invariant) transition probabilities. Let us denote by
+1+ (j =   0 = 0) the probability of the event f 2  : [+1 ()   + ()] 2 g,
given that the event f 2  :  =  ()   0 = 0 ()g occurs.

De…nition 3. (Stationary transition probabilities). A stochastic process  on (F   ) is said
to have stationary transition probabilities if the conditional probabilities

+1+ (j =   0 = 0) (5)

are independent of  for all  2 Z,  2 ,  ¸ 0 and  ¸ 1.

The assumption of stationary transition probabilities (5) implies the property of stationarity (4)
provided that the corresponding unconditional probability measures exist. However, a process
can be nonstationary even if transition probabilities are stationary, for example, a unit root
process or explosive process is nonstationary; see Stokey and Lucas with Prescott (1989, Ch
8.2) for a related discussion. This kind of nonstationary processes is not studied explicitly in
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the present paper, i.e., we focus on nonstationarity that arises because transition probabilities
change from one period to another.

In general, +1+ () and +1+ (j¢) depend on the entire history of the events up
to  (i.e., the stochastic process  is measurable with respect to the sub –…eld F). However,
history-dependent processes are di¢cult to analyze in a general case. It is of interest to dis-
tinguish special cases in which the dependence on history has relatively simple and tractable
form. A well-known case is a class of Markov processes.

De…nition 4. (Markov process). A stochastic process  on (F   ) is (…rst-order) Markov if

+1+ (j =   0 = 0) = +1+ (j = ) , (6)

for all  2 Z,  ¸ 0 and  ¸ 1.

The key property of a Markov process is that it is memoryless, namely, all past history (  0)
is irrelevant for determining the future realizations except of the most recent past .

The literature typically assumed exogenous variables that are both stationary and Markov. As
follows from (3), we maintain the assumption of Markov process (6), however, we relax the
restriction of stationarity, namely, we allow for the case when transition probabilities (5) of 

change over time. Below, we show an example that illustrates the type of stochastic processes
that will be used in this paper for modeling exogenous variables.

Example 1. Consider a …rst-order autoregressive process

+1 =  + +1, (7)

where the sequences (0 1 ) and (0 1 ) are deterministically given at  = 0 and +1 »
N (0 1). The conditional probability distribution +1 » N ( ) depends only on the most
recent past  =  and is independent of history (  0) as required by (6) and hence, the
process is Markov. However, if  and  change over time, then the distribution N ( 

2
 )

depends not only on state  =  but also on a speci…c period , so that transitions (5) are not
stationary, and as a result, the process is nonstationary since it does not have time-invariant
unconditional probability measure (4). If  =  and  =  for all , then the conditional
probability distribution N ( 

2) depends only on state  =  but not on time, and the
transitions are stationary. If, in addition,   1, then the process is stationary in the sense
(4). Finally,  = 1 for all  corresponds to a unit root process, which is nonstationary even if
 =  for all ; and jj  1 for all  leads to an explosive process. As we said earlier, unit root
and explosive nonstationary processes are not explicitly studied in the present paper.

Remark 2. Mitra and Nyarko (1991) refer to a class of Markov processes with nonstationary
transition probabilities as semi-Markov processes because of their certain similarity to Lévy’s
(1954) generalization of the Markov renewal process for the case of random arrival times; see
Jansen and Manca (2006) for a review of applications of semi-Markov processes in statistics,
operation research and other …elds.
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2.4 Assumptions about the utility and production functions

We make standard assumptions about the utility and production functions that ensure exis-
tence, uniqueness and interiority of a solution. Concerning the utility function , we impose
the following assumptions for each  ¸ 0:

Assumption 1.  is twice continuously di¤erentiable on R+.
Assumption 2. 0  0, i.e.,  is strictly increasing on R+, where 0 ´



.

Assumption 3. 00  0, i.e.,  is strictly concave on R+, where 00 ´
2
2

.
Assumption 4.  satis…es the Inada conditions lim

!0
0 () = +1 and lim

!1
0 () = 0.

Concerning the production function , we make the following assumptions for each  ¸ 0:

Assumption 5.  is twice continuously di¤erentiable on R
2
+.

Assumption 6.  0 ( )  0 for all  2 R+ and  2 R+, where  0 ´


.

Assumption 7.  00 ( ) · 0 for all  2 R+ and  2 R+, where  00 ´
2
2

.
Assumption 8.  satis…es the Inada conditions lim

!0
 0 ( ) = +1 and lim

!1
 0 ( ) = 0 for

all  2 R+.

Let us de…ne a pure capital accumulation process fmax g1=0 by assuming  = 0 for all  in (2)
which for each history  = (0  ), leads to

max+1 =  (
max
  ) , (8)

where max0 ´ 0. We impose an additional joint boundedness restriction on preferences and
technology by using the constructed process (8):

Assumption 9. (Bounded objective function). 0
£P1

=0 
 (

max
 )

¤
1

This assumption insures that the objective function (1) is bounded so that its maximum exists.
In particular, Assumption 9 holds either (i) when  is bounded from above for all , i.e.,
 ()  1 for any  ¸ 0 or (ii) when  is bounded from above for all , i.e.,  ( )  1
for any  ¸ 0 and  2 . However, it also holds for economies with nonvanishing growth and
unbounded utility and production functions as long as  (

max
 ) does not grow too fast so that

the product  (
max
 ) still declines at a su¢ciently high rate and the objective function (1)

converges to a …nite limit.

2.5 Optimal program

De…nition 1 (Feasible program). A feasible program for the economy (1)–(3) is a pair of
adapted (i.e.,  measurable for all ) processes f g

1
=0 such that given initial condition 0

and history 1 = (0 1), they satisfy  ¸ 0,  ¸ 0 and (2) for all .

We denote by =1 a set of all feasible programs from given initial capital 0 and given history
1 = (0 1). We next introduce the concept of solution of the studied model.

10



De…nition 5 (Optimal program). A feasible program f1  1 g
1
=0 2 =

1 is called optimal if

0

"
1X

=0

 f (
1
 )¡  ()g

#

¸ 0 (9)

for every feasible process f g
1
=0 2 =

1.

Stochastic models with time-varying fundamentals are studied in Majumdar and Zilcha (1987),
Mitra and Nyarko (1991) and Joshi (1997), among others. The existence results for this class of
models have been established in the literature for a general measurable stochastic environment,
i.e., in the absence of restriction of Markov process (3). In particular, this literature shows that,
under assumptions Assumptions 1-9, there exists an optimal program f1  1 g

1
=0 2 =

1 in the
economy (1), (2), and it is both interior and unique; see Theorem 4.1 in Mitra and Nyarko
(1991) and see Theorem 7 in Majumdar and Zilcha (1987). The results of this literature apply
to us as well.

Remark 3. The existence of the optimal program in the economy (1)–(3) can be shown under
weaker assumptions. For example, Mitra and Nyarko (1991) use a joint boundedness restriction
on preferences and technology (the so-called Condition E) that is less restrictive than our
Assumption 9; Joshi (1997) characterizes the optimal programs in nonconvex economies by
relaxing our Assumptions 7 and 8, etc.

While the previous literature establishes the existence and uniqueness results for the constructed
class of nonstationary model for a general non-Markov stochastic environment, it does not o¤er
a practical approach for constructing time-dependent solutions in applications. In contrast, we
will see that our additional Markov restriction (3) on  leads to a tractable class of nonstationary
Markov models for which the solutions can be characterized both analytically and numerically.

3 Extended function path framework

We introduce a quantitative framework, which we call extended function path (EFP) framework,
for approximating an optimal program in the nonstationary Markov economy (1)–(3). In Section
3.1, we present the EFP framework, and in Section 3.2, we develop its theoretical foundations.

3.1 Introducing extended function path framework

To approximate the optimal program in the nonstationary economy (1)–(3), we introduce a
supplementary economy that becomes stationary in some remote period  .

De…nition 5 ( -period stationary economy). A  -period stationary economy is the version of
the economy (1)–(3) in which the utility and production functions and the laws of motions for
exogenous variables are time invariant for  ¸  , i.e.,  = ,  =  and  =  for all  ¸  .

The key idea of our EFP framework is to approximate an optimal program in the nonstationary
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Markov economy (1)–(3) during the initial  periods using a supplementary  -period stationary
economy.

Algorithm 1: Extended function path.

Step 0. Initialization. Choose some  À  and construct  -period stationary
economy such that  = ,  =  and  =  for all  ¸  .

Step 1. Construct a stationary Markov solution , i.e., …nd a stationary capital
function  satisfying:

0() =  [0(0)(1¡  +  0 (0  ( 0)))]
 = (1¡ )  +  ( )¡ 0

0 = (1¡ ) 0 +  (0  ( 0))¡ 00

0 =  ( ) and 00 =  (0  ( 0)).

Step 2. Construct a path for capital policy functions (0  ) that matches
the terminal condition  ´  and satis…es for  = 0  ¡ 1:

0() = 

£
0+1(+1)(1¡  +  0+1 (+1  ( +1)))

¤

 = (1¡ )  +  ( )¡ +1

+1 = (1¡ ) +1 + +1 (+1  ( +1))¡ +2

+1 =  ( ) and +2 = +1 (+1  ( +1)) 

The …rst  functions (0 ) constitute an approximate solution and
the remaining  ¡  functions (+1  ) are discarded.

A useful property of  -period stationary economy is that its optimal program is easy to
characterize. First, since the economy (1)–(3) becomes stationary at  , the optimal program
is stationary Markov for  ¸  , and Step 1 of EFP can be implemented by using conventional
solution methods. Second, given the terminal condition produced by the  -period stationary
economy, the sequence of  ¡1 Euler equations identi…es uniquely a path for decision functions
for  = 0   ¡ 1. To construct such a path, we can use backward induction, namely, given
the capital function  , we use the Euler equation to compute the capital function ¡1 at
 ¡ 1; given ¡1, we use it to compute ¡2; and so on until the entire path (  0) is
constructed.

The term extended path indicates that EFP constructs a path of functions for larger time
horizon  than the number of periods  for which an approximate solution is actually needed,
i.e., EFP extends the path from  to  . In this respect, EFP is similar to extended path (EP)
framework of Fair and Taylor (1983). By choosing su¢ciently large  , both EFP and EP miti-
gate the e¤ect of speci…c terminal condition on the approximation during the initial  periods.
In turn, the term path versus function path highlights the key di¤erence between the EP and
EFP methods: the former method constructs a path for variables, whereas the latter method
constructs a path for decision functions. To approximate expectation functions, Fair and Tay-
lor (1983) method relies on the assumption of certainty equivalence while the EFP method
uses more accurate integration methods such as Monte Carlo, Gauss-Hermite quadrature and
monomials methods. As a result, EP can accurately solve linear models with uncertainty (in
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such models, the certainty equivalence assumption leads to an exact approximation for inte-
grals), as well as nonlinear models without uncertainty, whereas EFP can also accurately solve
nonlinear models in which the certainty equivalence approach is either not applicable or leads
to inaccurate solutions; in Section 4.3, we discuss the relation between EP and EFP in more
details.

We implement EFP by using a combination of three techniques. First, to approximate de-
cision functions, we use Smolyak (sparse) grids. Second, to approximate expectation functions,
we use a nonproduct monomial integration rule. Finally, to solve for coe¢cients of the policy
functions, we use a Gauss-Jacobi method, which is a derivative-free …xed-point-iteration method
in line with Fair and Taylor (1983). The implementation details are described in Section 5.1
and Appendix B.

In Figure 1, we illustrate a sequence of functions (function path) produced by EFP for a
version of the model (1)–(3) with exogenous growth due to labor augmenting technological
progress (the model’s parameterization and implementation details are described in Section 5).

Figure 1. Function path, produced by EFP, for a growth model with technological progress

We plot the capital functions for periods 1, 20 and 40, (i.e., 2 = 1 (1 1), 21 = 20 (20 20)
and 41 = 40 (40 40)) which we approximate using Smolyak (sparse) grids. Here, in Step
1, we construct the capital function 40 by assuming that the economy becomes stationary in
period  = 40; and in Step 2, we construct a path of the capital functions that (1 39) that
matches the corresponding terminal function 40. The Smolyak grids are shown by stars in the
horizontal £  plane. The domain for capital (on which Smolyak grids are constructed) and
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the range of the constructed capital function grow at the rate of labor augmenting technological
progress.

Remark 4. In the paper, we analyze just one speci…c combination implementation of EFP but
there are many ways in which EFP can be implemented: First, to construct decision functions,
we can use a variety of grid techniques, integration rules, approximation methods, iteration
schemes, etc. that are used by conventional solution methods. Second, to construct a function
path, we can use any method that solves a system of nonlinear equations, including Newton-
style solvers, Gauss-Siedel iteration used by shooting methods, Gauss-Jacobi iteration used by
Fair and Taylor’s (1983) method, etc. Since EFP constructs not just one but many decision
functions (i.e., a separate decision function in each time period), we prefer techniques that
have relatively low computational expense. Furthermore, to make EFP tractable in large-scale
applications, we opt for techniques whose cost does not rapidly increase with the dimensionality
of the problem (number of state variables). Maliar and Maliar (2014) survey techniques that
are designed to deal with large-scale problems, including nonproduct sparse grids, simulated
grids, cluster grids and epsilon-distinguishable-set grids; nonproduct monomial and simulation
based integration methods, and derivative-free solvers.

Remark 5. The property of the  -period stationary economy that is essential for our analysis
is that decision functions are stationary Markov at  . In our baseline implementation of EFP,
we attain this property by assuming that the preferences, technology and laws of motion for
exogenous variables do not change starting from  =  , i.e.,  =  ,  =  and  = 

for all  ¸  . Instead, we can use other assumptions that lead to Markov decision functions
at  , for example, we can assume that at  , the economy switches to a balanced growth
path. Furthermore, we can assume that the economy arrives at a zero capital stock at  with
the corresponding trivial Markov solution  = 0 for all  ¸  (this case allows for standard
interpretation of a …nite horizon economy). Finally, we can use some  -period Markov terminal
condition  ( ) without specifying explicitly an economic model that generates this terminal
condition.

Remark 6. We have described a variant of EFP that constructs time-dependent capital func-
tions (0   ). Similarly, we can formulate a variant of EFP that constructs time-dependent
value functions (0  ). Such a value-iterative EFP …rst solves for  = +1 =  for the
 -period stationary economy and then it solves for a path (¡1  0) that satis…es the se-
quence of the Bellman equations for  = 0   and that meets the terminal condition  of
the  -period stationary economy.

3.2 Theoretical foundations of EFP framework

We now develop theoretical foundations of the EFP framework. We prove two theorems: The-
orem 1 shows that the optimal program in the  -period stationary economy is given by a
Markov process with possibly time-varying transition probabilities; and Theorem 2 shows that
the optimal program of the  -period stationary economy converges to the optimal program of
the original nonstationary Markov economy (1)–(3) as  increases.
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Theorem 1 (Optimal program of the  -period stationary economy). In the  -period stationary
economy (1)–(3), the optimal program is given by a Markov process with possibly time-varying
transition probabilities.

Proof. Under Assumptions 1-9, …rst-order conditions (FOCs) are necessary for optimality.
We will show that FOCs are also su¢cient both to identify the optimal program and to establish
its Markov structure. Our proof is constructive: it relies on backward induction and includes
two steps that correspond to Steps 1 and 2 of EFP, respectively.

Step 1. At  , the economy becomes stationary and remains stationary forever, i.e.,  ´ ,
 ´  and  ´  for all  ¸  . Thus, the model’s equations and decision functions are time
invariant for  ¸  . It is well known that under Assumptions 1-9, there is a unique stationary
Markov capital function  that satis…es the optimality conditions that are listed in Step 1 of
Algorithm 1; see, e.g., Stokey and Lucas with Prescott (1989, p. 391).

Step 2. Given the constructed  -period capital function  ´ , we de…ne the capital
functions ¡1 0 in previous periods by using backward induction. As a …rst step, we
write the Euler equation for period  ¡ 1,

0¡1(¡1) = ¡1 [
0
 ( )(1¡  +  0 (   ))] , (10)

where ¡1 and  are related to  and +1 in periods  and  ¡ 1 by

¡1 = (1¡ ) ¡1 + ¡1 (¡1 ¡1)¡  , (11)

 = (1¡ )  +  (   )¡ +1 (12)

By assumption (3),  follows a Markov process, i.e.,  =  (¡1 ). Furthermore, by con-
struction of the decision function  in Step 1, we have that +1 =  (   ) is a Markov
decision function. By substituting these two results into (10)–(12), we obtain a functional
equation that de…nes  for each possible state (¡1 ¡1). Therefore, the capital decisions at
period  ¡ 1 are given by a state-contingent function  = ¡1 (¡1 ¡1), i.e., capital deci-
sions today are independent of history that leads to the current state. However, the constructed
decision functions depend on the parameters of the utility and production functions and the
law of motions for shocks in periods  ¡ 1 and  , and it is not generally true that ¡1 6=  .
By proceeding iteratively backward, we construct a sequence of state-contingent and possibly
time-dependent capital functions ¡1 (¡1 ¡1)   0 (0 0) that satis…es (10)–(12) for
 = 0   ¡ 1 and that matches terminal function  (   ). De…nitions 3 and 4 imply that
+1 follows a Markov process with possibly time-varying transition probabilities. ¥

We now show that the optimal program of the  -period stationary economy approximates
arbitrary well the optimal program of the nonstationary economy (1)–(3) as  increases. Our
analysis is related to the literature that shows asymptotic convergence of the optimal program
of the …nite horizon economy to that of the in…nite horizon economy; see, e.g., McKenzie (1976)
and Joshi (1997). This kind of convergence results is referred to as turnpike theorems. Our
 -period stationary economy can be interpreted as a …nite horizon economy characterized by
a speci…c nonzero terminal condition; we therefore also refer to our convergence result as a
turnpike theorem.

Let us …x history 1 = (0 1) and initial condition (0 0) and construct the produc-
tivity levels fg


=0 using (3). We then use the constructed sequence of capital functions
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0 (0 0)   (   ) to generate the optimal program
©


  



ª1
=0

for the  -period sta-
tionary economy such that


+1 = 

¡


  

¢
, (13)

where 
0 = 0 and 

 satis…es the budget constraint (2) for all  ¸ 0. Then, we have the
following result.

Theorem 2 (Turnpike theorem): For any real number   0 and any natural number  , there
exists a threshold terminal date  ( ) such that for any  ¸  ( ), we have

¯
¯1 ¡ 



¯
¯  , for all  ·  , (14)

where f1  1 g
1
=0 2 =

1 is the optimal program in the nonstationary economy (1)–(3), and
©


  



ª

=0
is the optimal program (13) in the  -period stationary economy.

Proof. See Appendix A. ¥

The convergence is uniform: Our turnpike theorem states that for all  ¸  (  ), the con-
structed nonstationary Markov approximation

©




ª
is guaranteed to be within a given -

accuracy range from the true solution f1 g during the initial  periods (for periods    ,
our approximation may become insu¢ciently accurate and exit the -accuracy range). The
name turnpike theorem emphasizes the idea that turnpike is often the fastest route between
two points which are far apart even if it is not a direct route. In terms of the studied model,
this means that the optimal program of the  -period stationary economy

©




ª
follows for a

long time the optimal program of the nonstationary economy f1 g (turnpike) and it deviates
from turnpike only at the end to meet a given terminal condition (i.e. the …nal destination o¤
turnpike).

In Figure 2, we illustrate the convergence of the optimal program of the  -period stationary
economy to that of the original nonstationary economy. We again consider a version of the model
with long-run growth due to labor augmenting technological progress (the parameterization of
the model and the implementation details are described in Section 5). We …x the same initial
condition and realization of shocks in all experiments. Here, 1 denotes the true solution to the
in…nite-horizon nonstationary model (1)–(3) and ,  , 

0 and 00 denote the corresponding
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solutions to …nite-horizon economies characterized by di¤erent terminal conditions.
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Figure 2. Convergence of the optimal program of  -period stationary economy

We observe the convergence of the simulated path of  -period stationary economy to that of
the nonstationary economy under all terminal conditions considered. However, the convergence
is faster under terminal conditions 0 and 00, that are located relatively close to the true  -
period capital f1 g of the nonstationary economy, then under zero terminal condition that is
located farther away from the true solution. It is clear that a zero-capital terminal condition is
not an e¢cient choice for constructing an approximation to the in…nite horizon nonstationary
economy, namely, in the in…nite horizon economy, capital grows all the time, whereas in the
…nite horizon economy, capital needs to turn down at some point to meet a zero terminal
condition. Our  -period stationary economy delivers more e¢cient terminal condition than the
conventional …nite-horizon approximation.

Remark 7. Our turnpike theorem shows the convergence of the optimal program of the  -
period stationary economy to that of a nonstationary economy for a given initial condition
and given history. It is classi…ed as an early turnpike theorem in the literature; there are also
medium and late turnpike theorems that prove the convergence by varying initial conditions and
history, respectively; see McKenzie (1976) and Joshi (1997) for discussion. We do not prove
other turnpike theorems for our  -period stationary economy because they are not directly
related to the EFP quantitative framework introduced in the present paper.

4 Relation of EFP to the literature

EFP is related to three main steams of literature: (1) early theoretical literature that studies
properties of solutions of non-Markov stochastic growth models; (2) literature on numerical
methods for constructing solutions to stationary Markov models; (3) …nally, literature on solving
for a path for variables.
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4.1 Early literature on stochastic growth models

The early literature provides theoretical foundations for stochastic growth models and char-
acterizes the properties of their solutions; see Brock and Gale (1969), Brock (1971), Brock
and Mirman (1972, 1973), Mirman and Zilcha (1977), Brock and Majumdar (1978), Mitra and
Zilcha (1981), among others. In particular, Majumdar and Zilcha (1987), Mitra and Nyarko
(1991), and Joshi (1997) study in…nite horizon economies with deterministically time-varying
utility and production functions similar to ours. However, this literature is limited to purely
theoretical analysis and does not o¤er practical methods for constructing their nonstationary
solutions in applications.

Our main contributions relative to that literature are that we distinguish a tractable Markov
class of nonstationary models and propose an EFP framework for analyzing quantitative im-
plications of such models. In addition, we show new formal results. First, our Theorem 1
establishes Markov structure of the optimal program in the  -period stationary economy while
the previous literature establishes similar results for a …nite-horizon economy with a zero termi-
nal condition; e.g., Mitra and Nyarko (1991, Theorem 4.3). Second, our Theorem 2 (turnpike
theorem) focuses on terminal condition that is generated by a Markov solution to a class of  -
period stationary economies, whereas the turnpike theorems existing in the literature assumes a
speci…c zero terminal condition,  = 0 representing a …nite-horizon economy; see, e.g., Majum-
dar and Zilcha (1987), Mitra and Nyarko (1991) and Joshi (1997). Our two theorems provide
theoretical foundations for the EFP framework.

4.2 Methods constructing Markov decision functions

The mainstream of economic literature relies on stationary Markov models. There is a vari-
ety of methods for constructing solutions to such models, in particular, projection methods
(see, e.g., Judd (1992), Christiano and Fisher (2000), Maliar and Maliar (2015)); perturba-
tion methods (see, e.g., Judd and Guu (1993), Collard and Juillard (2001), Schmitt-Grohé and
Uribe (2004)); and stochastic simulation methods (see, e.g., Den Haan and Marcet (1990),
Judd, Maliar and Maliar (2011)); and numerical dynamic programming methods, in particu-
lar, those designed to deal with large scale applications (see, e.g., Smith (1993), Rust (1996),
Carroll (2005), Maliar and Maliar (2013)). For surveys of such methods, see Taylor and Uhlig
(1990), Rust (1996), Gaspar and Judd (1997), Judd (1998), Marimon and Scott (1999), Santos
(1999), Miranda and Fackler (2002), Adda and Cooper (2003), Aruoba, Fernández-Villaverde
and Rubio-Ramírez (2006), Kendrik, Ruben-Mercado and Amman (2006), Canova (2007), Heer
and Maußner (2010), Lim and McNelis (2008), and Stachurski (2009), Den Haan (2010). In
particular, Kollmann, Maliar, Malin and Pichler (2011) and Maliar and Maliar (2014) survey
numerical methods for analyzing problems with high dimensionality. The conventional methods
for constructing stationary Markov solutions cannot generally be used for solving models with
time varying parameters studied in the present paper, however, the techniques used by these
conventional methods can be used as ingredients of EFP, including a variety of grid techniques,
integration methods, numerical solvers, etc.

There are three groups of Markov methods that EFP is particularly close to. First of all,
EFP is related to numerical methods that construct decision functions in life-cycle models as in
Krueger and Kubler (2004, 2006) and Hasanhodzic and Kotliko¤ (2013). The decision functions
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in such models change from one generation to another, and the sequence of the generation-
speci…c decision functions resembles a function path constructed by EFP; see Ríos-Rull (1999)
and Nishiyama and Smetters (2014) for reviews of the literature on life-cycle economies. The
di¤erence is that terminal condition is either known in the life-cycle economy or is a choice
variable (as in an economy with bequests), while it is unknown in our in…nite-horizon economy
and must be constructed in the way that ensures the convergence of an EFP approximation to
the true nonstationary solution.

Furthermore, EFP is related to economic literature that studies Markov nonstationary mod-
els with balanced growth paths; see King, Plosser and Rebello (1988) for restrictions on prefer-
ences and technology that are consistent with a balanced growth path. However, this class of
models is limited; for example, models with labor augmenting technological progress are gen-
erally consistent with a balanced growth path but not models with either capital augmenting
or Hicks neutral technological progress. There are examples of constructing balanced growth
path for some models that do not satisfy the restrictions of King, Plosser and Rebello (1988)
but they are also limited.4

Finally, EFP is related to the literature that incorporates certain kinds of nonstation-
arity by augmenting the economic models to include additional state variables. In partic-
ular, Bloom (2009), Fernández-Villaverde and Rubio-Ramírez (2010), Fernández-Villaverde,
Guerrón-Quintana and Rubio-Ramírez (2010), among others, argue that the behavior of real-
world economies is a¤ected by degrees of uncertainty and introduce models with stochastic
volatility. Furthermore, Davig and Leeper (2009), Farmer, Waggoner and Zha (2011), Foerster,
Rubio-Ramírez, Waggoner and Zha (2013) and Zhong (2015), among others, advocate periodic
unanticipated changes in regimes. In particular, a recent paper of Schmitt-Grohé and Uribe
(2012) introduces a quantitative framework that allows for anticipated exogenous shocks of a
…xed periodicity and length. The key di¤erence of our analysis from this literature in that
it allows for time dependence of the model itself while the above literature expands the state
space of time-invariant models.

4.3 Methods constructing a path for variables

The EFP framework is related to numerical methods that construct a path for variables in
deterministic economies. To illustrate such methods, let us abstract from uncertainty by as-
suming that  depends on  but not on . By substituting  and +1 from (2) into the Euler
equation of (1)–(3), we obtain a second-order di¤erence equation,

0((1¡ )  +  ()¡ +1)

= 
£
0+1((1¡ ) +1 + +1 (+1)¡ +2)(1¡  +  0+1 (+1))

¤
. (15)

Initial condition 0 is given. Let us choose a su¢ciently large  and …x some +1 (typically,
the literature assumes that the economy arrives in the steady state +1 = ¤). This yields

4Two examples are as follows: Maliar and Maliar (2004) shows the existence of a balanced growth path
in a model with endogenous growth and cycles by removing a common stochastic trend representing randomly
arriving technological innovations; and Maliar and Maliar (2010) constructs a balanced growth path in a model
with capital-skill complementarity and several types of technical progress by imposing additional restrictions on
growth rates of variables.
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a system of  nonlinear equations (15) with  unknowns f1  g. The turnpike theorem
implies that in initial  periods, the solution to this system is insensitive to a speci…c terminal
condition used if  ¿  .

It is possible to solve the system (15) numerically by using a Newton-style or other numerical
solvers, however, it could be expensive. As an alternative, the literature developed numerical
methods that exploit the recursive structure of the system (15). A well known is a class
of shooting methods that solve for path (1   )by using Gauss-Siedel iteration. There
are two type of shooting methods: a forward shooting and a backward shooting. A typical
forward shooting method expresses +2 in terms of  and +1 and constructs a forward path
(1  +1); it iterates on 1 until the path reaches a given terminal condition +1 = ¤. In
turn, a typical reverse shooting method expresses  in terms of +1 and +2 and constructs
a backward path f   0g; it iterates on  until the path reaches a given initial condition
0. Shooting methods are introduced to economics in Lipton, Poterba, Sachs and Summers
(1980) who also noticed their potential for solving nonstationary models. A shortcoming of
shooting methods is that they tend to produce explosive paths, in particular, forward shooting
methods; see Atolia and Bu¢e (2009 a, b) for a careful discussion and possible treatments of
this problem.

Fair and Taylor (1983) introduced an extended path method that can be used to solve eco-
nomic models with uncertainty. Their method relies on a certainty-equivalence approximation,
namely, it replaces expectation of a function across states with a value of the function in the
expected state. In terms of the economy (1)–(3), this means



£
0+1 (+1) (1¡  +  0(+1 +1))

¤

¼ 0+1 (+1) (1¡  +  0+1(+1 [+1])) (16)

This kind of approximation is exact for linear and linearized models, and it can be su¢ciently
accurate for models that are close to linear; see Cagnon and Taylor (1990), and Love (2010).
However, it becomes highly inaccurate when either volatility and/or the degrees of nonlinearity
increase; see our accuracy evaluations in Section 5.

To avoid explosive behavior, Fair and Taylor’s (1983) method iterates on the economy’s path
at once in line with Gauss-Jacobi iteration. Namely, it guesses the economy’s path (1  +1),
substitute the quantities for  = 1  + 1 it in the right side of  Euler equations (15),
respectively, and obtains a new path (0   ) in the left side of (15); and it iterates on the
path until the convergence is achieved. Also, Fair and Taylor (1983) propose a simple procedure
for determining  that is su¢cient to insure that a speci…c terminal condition used does not
a¤ect the quality of approximation, namely, they suggested to increase  (i.e., extend the
path) until the solution in the initial period(s) becomes insensitive to further increases in  . In
Appendix C, we describe a speci…c implementation of Fair and Taylor’s (1983) method, which
we used in Section 5 for comparison with EFP.

There are other methods in the literature that solve for path. In particular, Chen (1999)
propose methods for …nding a solution to continuous time models. Conesa and Krueger (1999)
introduce a framework for characterizing equilibria in nonstationary life-cycle models in which
the aggregate economy’s path is deterministic but there is idiosyncratic uncertainty. Judd
(2002) proposes a parametric path method that approximates a deterministic path using a
family of polynomial functions. Heer and Maußner (2010) implement Fair and Taylor’s (1983)
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method using a Newton-style solver. Finally, Grüne, Semmler and Stieler (2013) develop a
nonlinear model predictive control method that solves for a path of variables by maximizing
the objective function with a numerical solver directly, without using …rst-order conditions.
Applications of path methods in economics are numerous, e.g., Chen, Imrohoro¼glu and Imro-
horo¼glu (2006), Bodenstein, Erceg and Guerrieri (2009), Coibion, Gorodnichenko and Wieland
(2011), Braun and Körber (2011) and Hansen and Imrohoro¼glu (2013).

Adjemian and Juillard (2013) propose a modi…cation of Fair and Taylor’s (1983) method,
called stochastic extended path method, that improves on accuracy of approximation of condi-
tional expectation functions. The main idea of their method is to construct a tree of all possible
future shocks and to solve for multiple paths for variables on all branches of the tree. The ex-
pectation functions is approximated with a weighted average of the corresponding variables on
multiple paths. The number of tree branches and paths grows exponentially with the path
length and so does the cost of this method but the authors propose a clever way of reducing
the cost by restricting attention to paths that have highest probability of occurrence.

The EFP construction of function path is similar to the construction of variables path in the
above literature however EFP di¤ers from this literature in the object it constructs and in the
way it deals with uncertainty. Namely, EFP constructs a sequence of Markov state-contingent
decision functions that include stochastic shocks as one of the arguments rather than solving
for a path under some sequences of shocks. In this respect, EFP is similar to conventional
numerical approaches that construct state-contingent solutions to stationary Markov models.

5 Assessing EFP accuracy in a test model with balanced

growth

To assess the quality of approximations produced by EFP in nonstationary environments, we
need a test application for which a su¢ciently accurate solution is available. We use a version
of the model (1)–(3) with labor augmenting technological progress parameterized by Cobb-
Douglas utility and production functions,

 () =
1¡

1¡ 
 and  ( ) = 1¡

  (17)

where   0 and  2 (0 1);  = 0

 represents a labor augmenting technological progress

with an exogenous constant growth rate  ¸ 1. The process for the productivity level (3) is
given by

ln +1 =  ln  + +1 +1 » N (0 1)  (18)

where  2 (¡1 1),  2 (01). This version of the model is consistent with balanced growth
and can be converted into a stationary model; see King, Plosser and Rebelo (1988). We can
…rst solve the stationary model very accurately using conventional solution methods, and we
can then recover an accurate solution to the original nonstationary model (1)–(3) to be used
for a comparison; see Appendix 7 for a description of the stationary model.
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5.1 Implementation details of EFP

EFP solves the original, nonstationary growth model (1)–(3) without converting it into sta-
tionary. The path of function produced by EFP is shown in Figure 1. Below, we discuss some
implementation details of EFP; further implementation details are provided in Appendix B.

First, EFP begins by constructing a sequence of grids for  = 0   on which a sequence
(path) of the decision functions will be approximated. An important practical question is where
the grids must be centered in  = 0   . In the conventional stationary model, we typically
center a grid in the deterministic steady state. However, in a growing economy, the steady state
does not exist. To address this issue, we de…ne an analogue of steady state for non-stationary
economies as a path for the model’s variables that constitutes a solution to an otherwise identical
deterministic model in which all shocks are shut down. We call such a solution a growth path
and we denote it by "¤" superscript. For example, in Figure 1, we show growth path for capital
¤1 , 

¤
20 and ¤40 for periods 1, 20 and 40, respectively; see the centers of Smolyak grids in the

 £  plane.
In the special case of balanced growth model (1)–(3), the growth path can be constructed

analytically, by using the deterministic steady state of the corresponding stationary model.

Namely, in the stationary model, the steady state is given by ¤0 ´ 0

µ


 ¡  + 



¶1(¡1)
,

and in  = 1   , it evolves as ¤ = ¤0

. In unbalanced growth models, the growth path

must be in general constructed using numerical techniques and requires to specify initial and
terminal conditions; see Section 6.1 for a discussion and examples.

Second, EFP requires us to specify a terminal condition in the form of  -period decision
functions. (For example, in Figure 1, the terminal period is  = 40 and the terminal decision
function is 40). What terminal condition do we choose? Again, for a special case of balanced
growth model, it is possible to infer the "exact" terminal condition from the solution to the
stationary model; see Appendix D for details. However, in a general case, a balanced growth
path and an appropriate terminal condition is unknown. To assess the role of the terminal
condition in the accuracy of solutions, we compare two di¤erent EFP solutions: in one solution,
we use the "exact" terminal condition, which is the  -period decision functions inferred from
the balanced growth model; and in the other solution, we use a stationary Markov solution to
a  -period stationary economy which stops growing at  .

Finally, our turnpike analysis states that we can always …nd a su¢ciently large  so that
the approximation produced by EFP is su¢ciently accurate during the …rst  periods. But how
do we choose  and  in applications? A popular implementation of Fair and Taylor’s (1983)
method builds on  = 1, namely, we …rst construct a path between given 0 and +1 and we
take only 1 from the constructed path; we then constructs a path between 1 and +2 and
takes only 2; and so on until the path of a required length is constructed. In contrast, we
implement EFP by using much larger values of  such as 50 or 100 by considering also larger
 ’s in order to economize on cost.

5.2 A comparison of four solution methods

We solve the nonstationary growth model (1)–(3) using four alternative solution methods: (1)
a conventional method that constructs a solution to the stationary model with a balanced
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growth path; (2) EFP method that solves a nonstationary model directly; (3) Fair and Taylor’s
(1983) method that uses a certainty equivalence assumption (16) to approximates expectation
functions; (4) a naive method that replaces a nonstationary model with a sequence of stationary
models and that solves such models one by one. The naive method di¤ers from EFP in that
it neglects the connection between the decision functions of di¤erent periods. We refer to the
solutions produced by the four methods considered as exact solution, EFP solution, Fair and
Taylor’s solution and naive solution, respectively.

The solution that we call exact is not exact but very accurate, namely, unit-free maximum
residuals in the model’s equations are of order 10¡6 on a stochastic simulation of 10,000 obser-
vations; see Maliar and Maliar (2014) and Judd, Maliar, Maliar and Valero (2014) for accuracy
evaluations of Smolyak methods. It will su¢ce for us to show that EFP can attain the same
accuracy levels for nonstationary models as the state-of-the-art conventional solution methods
do for similar stationary models.

For all experiments, we …x  = 036,  = 099,  = 0025 and  = 095. The remaining
parameters are set in the benchmark case at  = 5,  = 003,  = 101 and  = 200, and we
vary these parameters across experiments. For all simulations, we use the same initial condition
and the same sequence of productivity shocks.

Our code is written in MATLAB 2013a, and we use a desktop computer with Intel(R)
Core(TM) i7-2600 CPU (3.40 GHz) with RAM 12GB. The running times for EFP can be
reduced considerably if we use parallelization (our iteration, which is in line with Gauss-Jacobi
method, is naturally parallelizable).

5.2.1 Critical role of expectations in the accuracy of solutions

In the left panel of Figure 3, we represent the growing time-series solutions for the four solution
methods, as well as the (steady state) growth path for capital. In the right panel, we plot the
time series solutions after detrending the growth path.

As is evident from the both panels, the EFP solution and the exact solution are visibly
indistinguishable except at the end of the time horizon – the last 10 ¡ 15 periods, which
suggests that the accuracy range  may be large in this particular example. Fair and Taylor’s
(1983) and naive methods produce the solutions that are visibly below the exact solution; and
the naive solution is the least accurate of all.
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Figure 3. Comparison of the solution methods for the test model with balanced growth

We assess the accuracy of the constructed solutions numerically. We …rst simulate each
of the four solutions for 100 times and we then compute the mean and maximum absolute
di¤erences in log 10 units between the exact solution and the remaining three solutions across
100 simulations for the intervals [0 50], [0 100], [0 150], [0 175], and [0 200]. This kind of
accuracy evaluation shows how the accuracy of the approximations depends on  . We report
the accuracy results in Table 1, where we also report the time needed for computing and
simulating 100 solutions of length  (in seconds).

In Table 1, the di¤erence between the exact and EFP solutions is less than 10¡6 ¼ 00001%
over the …rst 50 periods for the three experiments considered (di¤ering in time horizon and
terminal condition). Thus, the EFP method delivers a remarkably accurate solution for  = 50
with time horizon  = 200.

Furthermore, the di¤erences between the exact solution and Fair and Taylor’s (1983) solution
are around 10¡16 ¼ 25% in Table 1. Fair and Taylor’s (1983) method has relatively low
accuracy because formula (16) used for approximating conditional expectation is inaccurate.
Fair and Taylor’s (1983) method is more accurate for models with a smaller variance of shocks
and /or smaller degrees of nonlinearities. For example, we assess the di¤erence between the
exact solution and Fair and Taylor’s (1983) solutions for the model with  = 1,  = 001,
 = 101 and  = 200, and we found that such a di¤erence is around 01% (this experiment
is not reported).

Finally, the di¤erence between the exact and naive solutions in Table 1 can be as large
as 10%. The poor performance of the naive may seem surprising given that such a method
does take into account the technology growth when constructing solutions. Namely, a naive
method solves each -period stationary model by assuming that productivities at  and  + 1
are correctly given by  = 0


 and +1 = 0

+1
 , respectively. Why is the naive method so



Table 1: Comparison of four solution methods.

Fair-Taylor (1983) Naive EFP method EFP method
method,  = 1 method  = 1  = 200

Terminal Steady Steady - Balanced  -period Balanced  -period
condition state state growth stationary growth stationary

 200 400 200 200 200 400 200 200 400

Mean errors across  periods in log10 units
 2 [0 50] -1.60 -1.60 -1.36 -7.30 -6.97 -7.15 -7.23 -6.75 -7.01
 2 [0 100] -1.42 -1.42 -1.19 -7.06 -6.81 -6.98 -7.03 -6.19 -6.81
 2 [0 150] -1.34 -1.35 -1.11 -6.96 -6.73 -6.91 -6.94 -5.47 -6.73
 2 [0 175] -1.32 -1.32 -1.09 -6.93 -6.71 -6.89 -6.91 -5.09 -6.70
 2 [0 200] -1.30 -1.31 -1.07 -6.91 -6.69 -6.87 -6.90 -4.70 -6.68

Maximum errors across  periods in log10 units
 2 [0 50] -1.29 -1.29 -1.04 -6.83 -6.63 -6.81 -6.82 -6.01 -6.42
 2 [0 100] -1.18 -1.18 -0.92 -6.69 -6.42 -6.68 -6.68 -4.39 -5.99
 2 [0 150] -1.14 -1.14 -0.89 -6.66 -6.39 -6.67 -6.66 -2.89 -5.98
 2 [0 175] -1.14 -1.13 -0.89 -6.66 -6.40 -6.66 -6.66 -2.10 -5.98
 2 [0 200] -1.14 -1.13 -0.89 -6.66 -6.37 -6.66 -6.66 -1.45 -5.92

Running time, in seconds
Solution 1.2(+4) 6.1(+4) 28.9 216.5 8.6(+3) 1.9(+4) 104.9 99.1 225.9
Simulation - - 2.6 2.6 2.6 5.8 2.6 2.8 5.7
Total 1.2(+4) 6.1(+4) 31.5 219.2 8.6(+3) 1.9(+4) 107.6 101.9 231.6

Notes: "Mean errors" and "Marimum errors" are, respectively, mean and maximum unit-free absolute di¤erence

between the exact solution for capital and the solution delivered by a method in the column. The di¤erence

between the solutions is computed across 100 simulations.
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inaccurate? The reason is that in each time period, the naive method computes a stationary
solution under the assumption that technology will remain at the current levels  and +1

forever, meanwhile in the true nonstationary economy, technical change continues forever. As
a result, in the former case, the agent is "unaware" about the future permanent productivity
growth and has expectations that are systematically more pessimistic than those of the agent
in the true nonstationary growing economy. It was pointed out by Cooley, Leroy and Raymon
(1984) that naive-style solution methods are logically inconsistent: agents are unaware about a
possibility of parameter changes when they solve their optimization problems, however, they are
later confronted with parameter changes in simulations. Our analysis suggests that this e¤ect is
particularly large in growing economies. We conclude that approximating expectation functions
accurately is critical for constructing accurate solutions to nonstationary growth models.

5.2.2 Terminal condition and the "tail" of simulation

As Figure 3 shows, the exact and EFP solutions di¤er in the tail considerably; this di¤erence
is especially well seen for the detrended time series in the right panel. The di¤erence in the tail
is due to the di¤erence in the terminal conditions. Namely, to construct the exact solution, we
assume that the economy grows forever while to construct the EFP solution, we assume that
it stops growing at  . If we use the same terminal conditions in both cases, then the EFP
solution would be visually indistinguishable from the exact solution everywhere in the …gure.

In Table 1, we …rst consider a version of EFP that constructs the function path under  = 1
(this is similar to the implementation of Fair and Taylor’s (1983) method used in the literature).
Namely, given the capital function in the  -period stationary economy, we solve for decision
functions for  = 0   ¡ 1, store 0 and discard the rest of the functions. Next, given +1,
we solve for decision functions for  = 1   , store 1 and discard the rest of the functions.
We proceed forward until the whole path (0  ) is constructed. We consider two di¤erent
lengths of time horizon  = 200 and  = 400, and we consider two di¤erent terminal conditions:
one comes from the solution of the stationary balanced growth model (and can be viewed as
"exact" terminal condition) and the other comes from the  -period stationary economy (and
is far from the "exact" terminal condition).

EFP method with  = 1 is very accurate in the studied example independently of speci…c
terminal condition used, namely, the EFP solution di¤ers from the exact solution by less than
10¡6 = 00001%. This result illustrates that the e¤ect of speci…c terminal condition on the very
…rst element of the path  = 1 is negligible if the length of the path  is su¢ciently large.

5.2.3 How to extend the path

A shortcoming of the described version of EFP with  = 1 is its high computational expense:
the running time under  = 200 and  = 400 is 15 and 30 minutes, respectively. The cost is
high because we need to recompute a sequence of decision functions each time when we extend
the path by one period ahead. E¤ectively, we solve the model  times and not just once.

Our turnpike theorem suggests a cheaper version of EFP in which we construct a longer
function path but do it just once; the results for such EFP method are provided in the last
three columns of Table 1. We now observe that the terminal condition plays a critical role
in the accuracy of solutions near the tail. If we use the terminal condition from the  -period
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stationary economy, the errors increase as we advance in time and reach nearly 4% at the
end of simulation. In contrast, if we use the terminal condition from the stationary balanced
growth model, the EFP solution is very accurate everywhere including the tail. Finally, the
most important result is shown in the last column. If we construct a function path of length
 = 400, however, use only the …rst  = 200 decision functions, the solution for the …rst  = 200
periods is almost as accurate as that produced by a sequence of functions with  = 1. This
is true even though we use the terminal condition from the  -period stationary economy that
is far away from the exact solution. We draw attention to the fact that constructing a longer
path is relatively inexpensive: the running time increases from about 2 minutes to 4 minutes
under  = 200 and  = 400, respectively.

5.2.4 Cost of …nding solution and cost of simulation

An important advantage of EFP relatively to methods that solve for a path of variables is its
low simulation cost. Under EFP, we construct a path for decision functions just once, and
we can use the constructed functions to simulate the model as many times as needed under
di¤erent sequences of shocks. In contrast, under Fair and Taylor’s (1983) and other methods
that solve for a path of variables, the solution and simulation steps are combined: in order
to produce a new simulation, we need to entirely recompute a solution to the model under a
di¤erent sequence of shocks. The time that EFP needs to compute a solution and simulate it
100 times is about 2 and 4 minutes for  = 200 and  = 400, respectively, while the respective
times for Fair and Taylor’s (1983) method are 20 and 60 minutes.

5.2.5 Sensitivity analysis

On the basis of the results in Table 1, we advocate the version of EFP that constructs a su¢-
ciently long path just once by using  À  . In Table 2, we assess the accuracy of this preferred
EFP version with  = 400 under di¤erent parameterizations. As a terminal guess, we use
decision rules produced by the  -period stationary economy. We consider several combinations
of the values of the parameters f  g such that  2 f01; 1; 5; 10g,  2 f001; 003g and
 2 f1; 101; 105g. Our benchmark values (see "Model 1") are f;; g = f5; 003; 101g.

Depending on a speci…c parameterization, the di¤erence between the exact and EFP solu-
tions in the model’s equations for  = 200, vary between 10¡6 = 00001% and 10¡7 = 000001%,
which are high accuracy levels. The running time for all cases except for Model 5 is between
155 seconds and 306 seconds, which is reasonable. There is one case when the computational
time increases to 842 seconds, which corresponds to to a low degree of risk aversion parameter
 = 01. (We …nd that with low degree of risk aversion, the convergence is more fragile and we
had to decrease the damping parameter from  = 005 to  = 01). Overall, our results suggests
that the EFP method can solve nonstationary growth models both accurately and reliably in
a wide range of the model’s parameters at a relatively modest cost.



Table 2: Sensitivity analysis for the EFP method.

Parameters Model 1 Model 2 Model 3 Model 4 Model 5 Models 6 Model 7
 5 5 5 5 0.1 1 10
 0.03 0.03 0.03 0.01 0.01 0.01 0.01
 1.01 1.00 1.05 1.01 1.01 1.01 1.01

Mean errors across  periods in log10 units
 2 [0 50] -7.01 -6.67 -7.34 -7.03 -7.03 -6.61 -7.30
 2 [0 100] -6.82 -6.44 -7.25 -6.84 6.92 -6.48 -7.08
 2 [0 150] -6.73 -6.33 -7.22 -6.76 -6.89 -6.43 -6.98
 2 [0 175] -6.70 -6.29 -7.22 -6.74 -6.87 -6.41 -6.95
 2 [0 200] -6.68 -6.26 -7.21 -6.72 -6.87 -6.37 -6.93

Maximum errors across  periods in log10 units
 2 [0 50] -6.42 -6.31 -7.13 -6.66 -6.08 -6.24 -6.81
 2 [0 100] -5.99 -6.12 -7.05 -6.54 -5.97 -6.18 -6.36
 2 [0 150] -5.98 -6.04 -7.05 -6.52 -5.97 -6.18 -6.35
 2 [0 175] -5.98 -6.01 -7.05 -6.52 -5.97 -6.13 -6.33
 2 [0 200] -5.92 -5.99 -7.05 -6.51 -5.96 -5.88 -6.24

Running time, in seconds
Solution 225.9 150.0 193.0 216.98 836.5 300.7 245.9
Simulation 5.6 5.7 5.8 5.66 5.6 5.6 5.7
Total 231.6 155.7 198.8 222.64 842.1 306.3 251.6

Notes: "Mean errors" and "Marimum errors" are, respectively, mean and maximum unit-free absolute di¤erence

between the exact solution for capital and the solution delivered by EFP under the parameterization in the

column. The di¤erence between the solutions is computed across 100 simulations. The time horizon is  = 400
and the terminal condition is constructed by using T-period stationary economy in all experiments.
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6 Numerical analysis of nonstationary and unbalanced

growth applications

We provide a collection of numerical examples that illustrate how EFP can be used for calibrat-
ing, solving, estimating and simulating nonstationary problems. Our examples include models
with an unbalanced growth path, expected and unexpected technology shocks, seasonal adjust-
ments and deterministically changing volatility of productivity shocks, as well as an example
of calibrating and estimating parameters in an unbalanced growth model using the data on
the U.S. economy. These applications do not allow for stationary Markov equilibria and hence,
cannot be studied with conventional solution methods. The model’s parameterization, time
horizon and terminal condition di¤er across applications – we describe them separately for each
application considered.

6.1 Application 1: An unbalanced growth model with a CES pro-
duction function and capital-augmenting technological progress

The previous section focused on a nonstationary growth model that can be converted into
a stationary model and that can be studied with conventional solution methods. We now
consider a nonstationary model that cannot be converted into a stationary model and cannot
be studied with conventional methods. Namely, we assume a constant elasticity of substitution
(CES) production function, and we allow for both labor and capital augmenting technological
progresses,

 ( ) = [()
 + (1¡ )()

]1  (19)

where  = 0


;  = 0



;  · 1;  2 (0 1);  and  are the rates of capital

and labour augmenting technological progresses, respectively. We assume that labor is supplied
inelastically and normalize it to one  = 1 for all , and we denote the corresponding production
function by () ´  ( 1). The model with capital augmenting technological progress does
not satisfy the assumptions in King, Plosser and Rebelo (1988) and does not admit a balanced
growth path.

The assumption of capital augmenting technological progress is advocated in the literature
on directed technical change. Acemoglu (2002) points out that in most cases, technical change
does not apply to the same …xed factors of production all the time but is endogenously directed
to those factors of production that can give the largest improvement in the e¢ciency of pro-
duction.5 An implication of this argument that is relevant for our analysis is that technical
change can be directed either to capital or to labor or other production factors depending on a
particular case.

Furthermore, Acemoglu (2003) explicitly incorporates capital augmenting technological progress
into a deterministic model of endogenous technical change with both labor and capital aug-
menting innovations. Empirical estimates of the growth rates of the capital augmenting tech-
nical change can be found in, e.g., Klump, Mc Adam and Willman (2007), and León-Ledesma

5Namely, endogenous technical change is biased toward a relatively more scarce factor when the elasticity
of substitution is low (because this factor is relatively more expensive); however, it is biased toward a relatively
more abundant factor when the elasticity of substitution is high (because technologies using such a factor have
a larger market).
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León-Ledesma, Mc Adam and Wilman (2015). Below, we show how the model with capital
augmenting technological progress can be studied by using EFP.

6.1.1 A growth path for a nonstationary economy

Our …rst goal is to de…ne a growth path around which the sequence of grids will be centered. For
constructing the growth path, we shut down uncertainty by assuming  = 1 for all  (similar
to what we do for a model with balanced growth) and we rewrite the model’s equations in the
way that is convenient for identifying the path.

First, the Euler equation of period , evaluated on the steady state path, is

1 = 

·
0(¤+1)

0(¤ )
(1¡  +  0

n


+1(
¤
+1)

¡1
£
(+1

¤
+1)

 + (1¡ )
+1

¤(1¡)
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where ¤ and ¤ are the variables on the growth path. From the last equation, we express ¤+1
as

¤+1 = (1¡ )1 +1

+1
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(0+1)
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 ¢ +1
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 (20)

where 0+1 ´
0(¤+1)

0(¤ )
follows from the budget constraints (2) for  and + 1:
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¤1
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i  (21)

Thus, we obtain a system of  ¡1 equations (20) with +1 unknowns ¤0   
¤
+1. This system

does not have a unique solution unless we impose two additional restrictions.

6.1.2 Identifying restrictions on initial and terminal conditions

There are many possible ways to impose identifying restrictions on the solution of system (20),
(21). In this speci…c application, we restrict the initial and terminal capital stocks, ¤0 and ¤+1.
Namely, we restrict ¤0 by assuming that the capital growth rate is the same in the …rst two

periods ¤1
¤0

=
¤2
¤1
, and we restrict ¤+1 by assuming such a growth rate is the same in the last

two periods
¤

¤¡1
=

¤+1
¤

. This pins down the initial and terminal capital stocks on the growth

path in terms of (¤1   
¤
 ),

¤0 =
(¤1)

2

¤2
and ¤+1 =

(¤ )
2

¤¡1
 (22)

The model satis…es the assumptions of King, Plosser and Rebelo (1988) if there is only labor
augmenting technological progress, i.e.,  grows at a constant, exogenously given rate 

and  =  for all . In this special case, the model has a balanced growth path on which
all variables grow at a constant rate 

and this is in particular true for initial and terminal
periods, i.e., condition (22) is satis…ed exactly.
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In the case of capital augmenting technological progress, the growth rate of endogenous
variables changes over time in an unbalanced manner even if we assume that  grows at a
constant, exogenously given growth rate 

and  =  for all . By imposing two additional
restrictions in (22), we solve for ¤0   

¤
+1 satisfying (20), (21). In our applications, changes

in the growth path ¤0  
¤
+1 had only a minor e¤ect on the quality of the approximations.

This is because a speci…c growth path does not identify the solution itself but only a set of
points in which the Smolyak grids are centered. Centering a grid in a slightly di¤erent point
will not signi…cantly a¤ect the properties of solution in a typical application. The assumption
in (22) can be modi…ed if needed.

6.1.3 Results of numerical experiments

For numerical experiments, we assume  = 260,  = 1,  = 036,  = 099,  = 0025,
 = 095,  = 001,  = ¡042; the last value is taken in line with Antrás (2004) who estimated
the elasticity of substitution between capital and labor to be in the range [0641 0892] that
corresponds to  2 [¡012¡056]. We solve two models: the model with labor augmenting
progress parameterized by 0 = 11130,  = 100153 and 0 =  = 1 and the model
with capital augmenting progress parameterized by 0 = 1,  = 09867 and 0 =  = 1.
(The parameters 0, 

, 0, 
for both models are chosen to approximately match the

initial and terminal capital stocks for time-series solutions of both models).
Figure 4 plots the time-series solutions for models with labour and capital augmenting

progresses, as well as their growth paths.
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Figure 4: Technological progress in the model with the CES production

The solution of the model with labor augmenting technological progress is typical for a balanced
growth model. There is an exponential growth path with a constant growth rate and cyclical
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‡uctuations around the growth path. (In the …gure, the growth path in the model with labor
augmenting technological progress is situated below the linear growth path shown by a solid
line). In turn, the solution of the model with capital augmenting progress has a pronounced
concave growth pattern that shows that the rate of return to capital decreases as the economy
grows (In the …gure, the growth path in the model with capital augmenting technological
progress is situated above the linear growth path shown by a solid line). Finally, the cyclical
properties of both models look similar (provided that growth is detrended). These are novel
results since the properties of stochastic growth models with capital augmenting progress are
not studied yet in the literature (to the best of our knowledge).

6.2 Application 2: A nonstationary model with a parameter shift

The recent literature on regime switches addresses the critiques of naive solution methods of
Cooley, Leroy and Raymon (1984) and provides a logically consistent way of modeling unan-
ticipated regime switches. Speci…cally, this literature assumes that agents solve maximization
problems in which regime are possible, and thus, they can adequately react to regime changes
in simulation as implied by their decision functions; see Sims and Zha (2006), Davig and Leeper
(2007, 2009), Farmer, Waggoner, and Zha (2011), Foerster, Rubio-Ramírez, Waggoner and Zha
(2013) and Zhong (2015), among others.

The above literature assumes that the regimes come at random, drawn from a stationary
probability distribution. However, there are real-world situations in which parameter shifts
are nonrecurrent and anticipated by agents in advance, e.g., seasonal changes, presidential
elections with anticipated outcome, forward-looking policy announcements, anticipated tech-
nological advances, etc. A prominent example of an anticipated shock is an accession of new
members to the European Union that was announced many years in advance and that resulted
in quantitatively-important anticipatory e¤ects; see Garmel, Maliar and Maliar (2008) for a
discussion and a quantitative assessment of such e¤ects in a three-country general equilibrium
model.

Schmitt-Grohé and Uribe (2012) propose a computational approach that allows to deal
with anticipated parameter shifts of …xed time horizons in the context of stationary Markov
models (the parameter shifts systematically occur, for example, each fourth or each eighth
periods). However, if the anticipated parameter shifts are either nonrecurrent and do not have
…xed anticipation horizons, the model does not admit stationary Markov solutions and cannot
be studied using conventional solution methods. However, EFP can solve models with such
anticipated shocks. As an example, we show how to solve a model with anticipated technology
shocks, and we compare the solution produced by EFP to naive solutions in which shocks are
unanticipated.

6.2.1 Anticipated technology shocks

The idea that anticipated shocks play an important role in business cycle ‡uctuations goes
back to Pigou (1927). The literature that advocates the importance of anticipated shocks
for aggregate ‡uctuations includes, e.g., Cochrane (1994), Beaudry and Portier (2006), and
Schmitt-Grohé and Uribe (2012).
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We consider a version of the model (1), (2), (17) and (18) in which the technology level
 can take two values,  = 1 (low) and ¹ = 12 (high). A special case of this setup is
a model in which  and ¹ are unanticipated and randomly drawn from a given probability
distribution. Such a model has a stationary Markov solution that can be studied using the
approaches described in the literature on regime switches, e.g., Davig and Leeper (2007, 2009).

In contrast, we focus on the case when the regime switches are both nonrecurrent and
anticipated by the agent from the beginning. As an example, we consider a scenario when the
economy starts with  at  = 0, switches to ¹ at 0 = 250 and then switches back to  at
00 = 550 (instead, we could have considered any other scenario for technology levels). We show
the technology pro…le in the upper panel of Figure 5.
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Figure 5. Anticipated versus unanticipated technology shocks

The other parameters are  = 900,  = 1,  = 036,  = 099,  = 0025,  = 095,  = 001.
The agent solves the utility-maximization problem at  = 0 given the technology pro…le.

The implementation of the EFP method for this case is similar to the one with technological
progress studied in the previous section (as initial and terminal values of the growth path, ¤0
and ¤+1, we use a steady state of the model with ). In the case of the naive solution, shocks
are unexpected. We construct two stationary naive solutions under  and ¹. The agent follows
the …rst solution until the …rst switch at 0 = 250, then the agent follows the second solution
until the second switch at 00 = 550 and …nally, the agent goes back to the …rst solution for the
rest of the simulation.

The two time-series solutions for capital and consumption are shown, respectively, in the
middle and lower panels of Figure 5. In simulation, we set  = 1 for all  to make the
anticipatory e¤ects more visible. Remarkably, in the solution with the expected regime switches,
we observe a strong anticipatory e¤ect: about 50 periods before the switch from  and ¹
takes place, the agent starts gradually increasing her consumption and to decrease her capital
stock in order to bring some part of the bene…ts from future technology growth to present.
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When the technology switch actually occurs, it has only a minor e¤ect on consumption. (The
tendencies reverse when there is a switch from ¹ to ). In contrast, consumption-smoothing
anticipatory e¤ects are absent for the naive solution. Here, unexpected technology shocks lead
to large jumps in consumption in the exact moment of technology switches. The di¤erence
in the solutions is quantitatively signi…cant under our empirically plausible parameter choice.
Finally, in the Appendix E, we plot the simulated solution by considering both deterministic
technology switches and stochastic productivity shocks following an AR(1) process (37); see
Figure 10. Anticipatory e¤ects are well pronounced in those experiments as well.

6.2.2 A model with seasonal changes

One empirically-relevant application that our EFP framework can deal with is a growth model
with seasonal changes. An important role of seasonal ‡uctuations in the total variation in
aggregate economic variables is well documented in the literature; see, e.g., Barsky and Miron
(1989). Ignoring seasonality when estimating dynamic stochastic general equilibrium models
may lead to substantial errors in the estimated parameters; see, e.g., Saijo (2013).

Two approaches have been proposed in the literature to model seasonality. Hansen and
Sargent (1993, 2013) characterize seasonality in terms of the spectral density of variables. They
assume that seasonality comes either from seasonality in exogenous shock processes (with spec-
tral peaks at seasonal frequencies) or from propagation mechanisms determined by preferences
and technology (e.g., seasonal habit persistence) or from seasonal periodicity in the parame-
ters of the preferences and technologies; in these cases, the optimal decision rules are periodic.
Second, Christiano and Todd (2002) develop a model in which exogenous shocks contain deter-
ministic seasonal dummies and in which investment process is period-speci…c (an investment
project requires four quarters to complete, and current-period total investment depends on
the projects started in the current and three previous periods); to solve such a model, they
linearize around the model’s seasonally varying steady state growth path and solve for four
distinct decision rules.

We now show how to solve economic models with seasonal changes by using EFP. As an
example, we assume that every forth period,  takes a high value, and the rest of the periods,
it takes a low value ; for example, this pattern can be observed in a country on a seacoast in
which there is a high productivity season in summer. Thus, we obtain the following sequence
of technology levels:  . In addition to the seasonal changes, the agent
faces the conventional productivity shocks (37), so that the resulting path for the productivity
level is given by a composition of expected seasonal changes in  and unexpected stochastic
changes in productivity levels given by a stationary autoregressive process. The parameters are
the same as in the previous model except that we use  = 2,  = 097,  = 098 and  = 106
(these parameters are …xed for expositional convenience). To construct the growth path for the
EFP method, we set both the initial and terminal conditions at 34¤ + 14

¤
, where ¤ and


¤
are the steady states of capital in the models with  and , respectively. In Figure 6, we

plot time series for productivity, capital and consumption (we normalize the initial values of all
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series to one).
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Figure 6. Seasonality

An interesting …nding in Figure 6 is that the size of seasonal consumption and capital ‡uctua-
tions is very small compared to the size of seasonal productivity ‡uctuations. A consumption-
smoothing agent knows that the seasonal shock is temporary and that it does not pay to react
much on the impact of such a shock. Instead, the agent adjusts her capital and consumption
to take advantage of seasonal productivity growth on average, as permanent consumption hy-
pothesis suggests. A magnitude of seasonal ‡uctuations in the model’s variables is far larger
and comparable in size to seasonal productivity ‡uctuations in a naive solution in which the
seasonal shocks are unexpected as naive agents would fail to take into account anticipatory
e¤ects (we do not provide the naive solution to avoid a clutter).

6.3 Application 3: A nonstationary model with a parameter drift

A class of models with parameter drifting is another interesting and empirically relevant type of
economic applications that are characterized by nonstationary solutions. There is ample empiri-
cal evidence in favor of parameter drifting, see, e.g., Clarida, Galí and Gertler (2000), Lubick and
Schorfheide (2004), Cogley and Sargent (2005), Goodfriend and King (2009), Canova (2009).
The assumption of parameter drifting is advocated in Galí (2006). The previous literature fo-
cuses on economic models with stationary Markov equilibria by assuming that the model’s pa-
rameters follow a stationary autoregressive process; see, e.g., Fernández-Villaverde and Rubio-
Ramírez (2007), Fernández-Villaverde, Guerrón-Quintana and Rubio-Ramírez (2010). However,
if the model’s parameters follow a pattern with a pronounced time trend, the equilibrium de-
cision rules change from one period to another and the conventional solution methods are not
applicable. Below, we show how to use EFP to solve an example of the model with parameter
drift that includes time trends.
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6.3.1 A growth model with a productivity drift

We consider a scenario that is similar to the one in Application 2, however, we now assume
that technology does not switch to a higher/lower level in one period but increases/decreases
gradually. To be speci…c, the level of technology is low, , for the …rst 200 periods; it increases
linearly to a high level, , for the next 100 periods; it stays constant for the following 300
periods; it decreases linearly back to a low level, , for 200 periods and …nally, it stays there
for the remaining period of time. The above productivity pro…le is shown in Figure 7.

0 100 200 300 400 500 600 700 800
0.95

1

1.05

1.1

1.15

1.2

time

P
ro

d
u

ct
iv

ity

0 100 200 300 400 500 600 700 800
35

40

45

50

55

C
a

p
it
a
l

time

 

 

0 100 200 300 400 500 600 700 800
2.5

3

3.5

4

C
o

n
s
u

m
p
ti
o

n

time

 

 

EFP solution

Naive solution

EFP solution

Naive solution

Figure 7. Technology drift

To calibrate the model, we use the same parameters as in Application 2.
We plot the EFP time-series solution of the model with a parameter drift in the middle

and lower panel of Figure 7. For a comparison, we also provide a naive solution in which
shocks are always unanticipated. To produce the naive solution, we solve a stationary model
100 times under each level of technology that occurs in the parameter drift, and we jump from
one stationary naive solution to another after each technology change. Again, to simulate the
solution, we set  = 1 for all  for a better visibility of anticipatory e¤ects.

Similar to Application 2, we observe well-pronounced smoothing of consumption at the cost
of anticipatory adjustments of capital. In particular, the consumption path with an expected
parameter drift is smoother than the one in the naive solution in those places where the para-
meter shift begins / ends and we observe the kink. In the Appendix E, we provide a plot of
the simulated solution with both deterministic productivity shifts and stochastic productivity
shocks; see Figure 11. Again, anticipatory e¤ects are well pronounced in that case as well.

6.3.2 Example of a parameter drift: diminishing volatility

A large body of recent literature documents the importance of degree of uncertainty for the
business cycle. This literature argues that volatility changes over time. They model volatility
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(e.g., standard deviation of the productivity level) as a stochastic process or as a regime switch;
see, e.g., Bloom (2009), Fernández-Villaverde and Rubio-Ramírez (2010), Fernández-Villaverde,
Guerrón-Quintana and Rubio-Ramírez (2010). The literature normally assumes that the stan-
dard deviation of exogenous shocks either follows a Markov process or experiences recurring
Markov regime switches. In the latter case, volatility can be treated as an additional state
variable, and in the former case, the regime is an additional state variable; in both cases, it is
possible to cast the model with changing volatility into the conventional stationary framework.

However, there is evidence that the volatility has a well pronounced time trend, for example,
Mc Connel and Pérez-Quiros (2000) document a monotone structural decline in the volatility
of real GDP growth in the U.S. economy. Blanchard and Simon (2001) …nd a nonmonotone
pattern of the decline in the U.S. GDP volatility: there was a steady decline in the volatility
from the 1950s to 1970, then there was a stationary pattern and …nally, there was another
decline in the late 1980s and the 1990s. Stock and Watson (2003) …nd a sharp reduction in
volatility of U.S. GDP growth in the …rst quarter of 1984. This kind of evidence cannot be
reconciled in a model in which stochastic volatility follows a standard AR(1) process with time-
invariant parameters. We show how to use EFP to study a model in which the volatility has
both a stochastic and deterministic components.

We speci…cally consider the standard neoclassical stochastic growth model, modi…ed to
include a diminishing volatility of the productivity shock:

ln  =  ln ¡1 +   =



  » N (0 1)  (23)

where  is a scaling parameter, and  is a parameter that governs the volatility of . The
standard deviation of the productivity shock  decreases over time, reaching zero in the

limit, lim!1



= 0.
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Figure 8. Diminishing volatility

In our numerical example, we use  = 500,  = 1,  = 036,  = 099,  = 0025,  = 095,
 = 001,  = 1 and  = 105. To solve this model, we use EFP in which we build a
grid around the deterministic steady state value of capital. In Figure 8, we plot a sequence
of simulated productivity levels; as we see, initially, there are large productivity ‡uctuations
but gradually, these ‡uctuations become smaller. As expected, ‡uctuations in capital and
consumption also decrease in amplitude in response to diminishing volatility.
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6.4 Application 4: Calibrating a growth model with a parameter
drift to unbalanced U.S. data

There is a large group of econometric methods that estimate and calibrate economic models
by constructing numerical solutions explicitly, including simulated method of moments (e.g.,
Canova (2007)); Bayesian estimation method (e.g., Smets and Wouters (2003), and Del Negro,
Schorfheide, Smets and Wouters (2007)); and maximum likelihood method (e.g., Fernández-
Villaverde and Rubio-Ramírez (2007)). Normally, the related literature imposes restrictions on
the model that lead to a balanced growth path, converts the model into stationary model and
solves it for stationary Markov equilibrium by using conventional methods.

However, there are two potential problems with this approach. First, the restrictions that
are necessary to impose for balanced growth might not be the empirically-relevant ones. For ex-
ample, we might want to analyze a model with nonhomothetic utility and production functions,
several kinds of technical progress and parameter shifts and drifts. However, any deviation from
the restrictions in King, Plosser and Rebelo (1988) destroys the property of balanced growth
and hence, destroys the conventional Markov stationary equilibria. Second, the real world data
are not always consistent with the assumption of balanced growth, in particular, di¤erent vari-
ables might grow at di¤erent and possibly time-varying rates. In this section, we illustrate how
EFP can be used to calibrate and estimate parameters in an unbalanced growth model by using
the data on U.S. economy.

6.4.1 Time series to match

We took macroeconomic data on the U.S. economy from the webpages of the Bureau of Eco-
nomic Analysis and the Federal Reserve Bank of St. Louis (namely, the data on capital and
investment come from the former data base, while the data on the remaining time series, as well
as that on the implicit price de‡ator, come from the latter data base); the sample spans over
the period 1964:Q1 - 2011:Q4. Investment is de…ned as nonresidential and residential private
…xed investment. Consumption is de…ned as a sum of nondurables and services. Capital is
given by a sum of …xed assets and durables; capital series are annual (in contrast to the other
series which are quarterly); we interpolate annual series of capital to get quarterly series using
spline interpolation. Output is obtained as a sum of consumption and investment. We de‡ate
the constructed variables with the corresponding implicit price de‡ator and we convert them
in per capita terms by dividing them by the series of the total population.

6.4.2 The model with a depreciation rate drift

While the constructed data are grossly consistent with Kaldor’s (1961) facts, we still observe
visible di¤erences in growth rates across variables. We do not test whether or not such dif-
ferences in growth rates are statistically signi…cant but formulate and estimate an unbalanced
growth model in which di¤erent variables can grow at di¤ering rates. We speci…cally extend
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the model (1)–(3) to include time-varying depreciation rate of capital,

max
f+1g=01

0

1X

=0

() (24)

s.t.  + +1 = 

 + (1¡ )  (25)

ln  =  ln ¡1 +   » N
¡
0 2

¢
 (26)

ln  =  ln ¡1 +   » N
¡
0 2

¢
 (27)

where  stands for a time-varying depreciation rate with  being a trend component of
depreciation,  = 0


, and  being a stochastic shock to depreciation. Our assumption of a

time trend in depreciation rate is consistent with the data of the Bureau of Economic Analysis.
In particular, the aggregate depreciation rate changes over time because the compositional
of aggregate capital changes over time even if depreciation rates of each type of capital are
constant; see Karabarbounis and Brent (2014). In turn, shocks to depreciation rate can result
from the economic obsolescence of capital and are studied in, e.g., Liu, Waggoner and Zha
(2011), Gourio (2012) and Zhong (2015), in particular, this literature argues that a shock
to the capital depreciation rate plays an important role in accounting for the business cycle
‡uctuations.

6.4.3 Calibration and estimation of the model’s parameters

To identify the model’s parameters, we formulate the following set of restrictions
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We set  = 1 and we search for  that matches best the growth rates of variables in the data.
First, given some , we construct  using (28) , and we estimate the parameters  

2
 ,

 in the process for productivity  = 

¡1 exp() using a linear regression method. To

identify a growing and cycle components,  and , respectively, we assume 0 = 1. Second,
we construct the data on  using (29), and we estimate the parameters  

2

,  in the

process for productivity  = 

¡1 exp() using a linear regression. Again, to separate growth

and cycles,  and , respectively, we assume 0 = 1. Finally, we calibrate the discount factor
by using the Euler equation (30).

Our estimation-calibration procedure gives the following values of parameters:  = 09013,
 = 09890 ,  = 00054,  = 1002,  = 09538 ,  = 00381 and  = 1002. We observe
a considerable positive growth rate in the depreciation rate  = 1002. Furthermore, we …nd
that the best …t of our criteria for the growth rate is obtained under  = 07. This value for the
capital share in output is larger than is typically used in the business cycle literature, however,
it is roughly in line with the recent …nding of Karabarbounis and Neiman (2014) that labor
shares gradually declined over time; the implied gross capital shares reach 055.
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We know that on the tail, the EFP solution will depend on a speci…c terminal condition
used and may be insu¢ciently accurate. To deal with this issue, we extrapolate the data for 80
periods forward, using the growth rates that we estimate from the data on consumption, capital,
output, and investment under the assumption of exponential growth. We implement EFP to
match the initial and terminal conditions in the extrapolated data, i.e., we use  =  + 80.
To identify the growth path in our unbalanced growth model, we use assumption (22). We
construct a sequence of growing Smolyak grids. There are three state variables (  ) in this
application and the corresponding second-level Smolyak grid consists of 25 multidimensional
grid points. After we compute the EFP solution, we simulate the model using the sequence of
shocks reconstructed from the data.

6.4.4 Fitted time series

Figure 9 presents the simulated time-series solution for capital, output, investment and con-
sumption; for comparison, we also provide the corresponding time series from the data. To
appreciate the di¤erences in growth rates, we scaled all four panels to have the same percent-
age change in .
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Figure 9. Matching nonstationary macroeconomic data on the U.S. economy

First of all, we can visually appreciate the nonstationarity in the data: investment grows
considerably faster than other variables. With the assumption of time-varying depreciation
rate, the model (24)–(27) can closely reproduce the growth rates of all model’s variables.

The main goal of this application is not to advocate the role of time-varying depreciation
rate or some speci…c estimation and calibration technique. Rather, we would like to illustrate
how estimation and calibration of the parameters can be carried out in the context of a nested
…xed-point problem without assuming stationarity and balanced growth. Similar to the depre-
ciation rate, we could have made all other parameters time dependent, including the discount
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factor , the share of capital in production  and the parameters of the process for the pro-
ductivity level (27). Furthermore, our simple estimation-calibration technique can be replaced
by more sophisticated econometric techniques such as maximum likelihood, simulated method
of moments, etc.

7 Conclusion

Stationary Markov dynamic economic models are a dominant framework in recent economic lit-
erature. A shortcoming of this framework is that it generally restricts the structural parameters
of economic models to be constant, and it restricts the behavior patterns to be time invariant.
In this paper, we construct a more ‡exible class of nonstationary Markov models that allows for
time-varying preferences, technology and laws of motions for exogenous variables. We propose
EFP framework for solving, calibrating, simulating and estimating of such models. EFP enables
us to analyze economic models that do not admit stationary Markov equilibria and that cannot
be studied with conventional solution methods. Literally, EFP makes it possible to analyze a
unique historical path of real-world economies.

Our analysis can be extended in three possible directions: First, our numerical results are
produced by an Euler equation version of EFP that …nds a path of decision functions to satisfy
a sequence of Euler equations. It is also of interest to explore the performance of an analogous
value-iterative version of EFP that …rst constructs a value function for some remote period 
and then constructs a path of time-varying value functions that matches the given terminal
value function.

Second, we build EFP on global approximation techniques that construct decision functions
on a sequence of domains covered with Smolyak grids. It is of much practical interest to
develop also a version of EFP that builds on local perturbation techniques. The conventional
EP method of Fair and Taylor (1983) is incorporated in the Dynare software platform, and
possibly, a perturbation-based version of the proposed EFP framework can be added there as
well.6

Finally, the goal of the present paper is to introduce the EFPmethodology, and the standard
optimal growth model is a convenient framework for this goal. In our ongoing research, we use
EFP framework for analyzing challenging nonstationary and unbalanced growth applications
that go beyond the standard growth model. In one project, we incorporate a production
function with capital-skill complementarity in a general equilibrium unbalanced growth model
with the aim of explaining unbalanced growth patterns in the U.S. economy data. Our analysis
builds around production functions studied in Katz and Murphy (1992) and Krusell, Ohanian,
Ríos-Rull and Violante (2000). In another project, we augment a new Keynesian model, studied
in Maliar and Maliar (2015) and extend epsilon-distingushable-set and cluster-grid methods,
to include nonrecurrent switches in monetary policy regimes, and we attempt to reproduce
the sequence of events during the Great Recession. Our explanation follows the analysis of
Taylor (2012), who documents a historical sequence of events that led to the recent 2008-2013
Great Recession and argues that the recession is likely to be related to changes in monetary
policy; also, see Del Negro, Giannoni and Schorfheide (2015) for related evidence. In our other

6For more details on the Dynare software, see http://www.dynare.org and the Dynare reference manual by
Adjemian, Bastani, Juillard, Mihoubi, Perendia, Ratto, and Villemot (2011).
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project, we investigate the role of anticipated stabilization policies in nonstationary economies
with default risk by combining the EFP framework with the value-iterative envelope condition
method, introduced in Maliar and Maliar (2013) and Arellano, Maliar, Maliar and Tsyrennikov
(2014). These are just three examples but many interesting and empirically relevant questions
can be addressed by using EFP framework.
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Appendix A. Asymptotic convergence of  -period station-

ary economy to nonstationary economy

This section elaborates the proof of Theorem 2 (turnpike theorem) formulated in Section 3.2,
speci…cally, it shows that the optimal program of the  -period stationary economy converges
to the optimal program of the nonstationary economy (1)–(3) as  !1. The proof relies on
three lemmas presented in Appendices A1-A3. In Appendix A1, we construct a limit program
of a …nite horizon economy with a terminal condition  = 0. In Appendix A2, we show that
the optimal program of the  -period stationary economy, constructed in Section 3.1, converges
to the same limit program as does the …nite horizon economy with a zero terminal condition
 = 0. In Appendix A3, we show that the limit program of the …nite horizon economy with a
zero terminal condition  = 0 is also an optimal program for the in…nite horizon nonstationary
economy (1)–(3). Finally, in Appendix A4, we combine the results of Appendices A1-A3 to
establish the claim of Theorem 2. Our construction relies on mathematical tools developed in
Majumdar and Zilcha (1987), Mitra and Nyarko (1991), Joshi (1997). We use the convention
that equalities and inequalities hold almost everywhere (a.e.) except for a set of measure zero.

Appendix A1. Limit program of …nite horizon economy with a zero

terminal capital

In this section, we consider a …nite horizon version of the economy (1)–(3) with a given terminal
condition for capital  . Speci…cally, we assume that the agent solves

max
f+1g


=0

0

"
X

=0

 ()

#

(31)

s.t. (2), (3), (32)

where initial condition (0 0) and terminal condition  are given. We …rst de…ne feasible
programs for the …nite horizon economy.

De…nition A1 (Feasible programs in the …nite horizon economy). A feasible program in the
…nite horizon economy is a pair of adapted (i.e., F measurable for all ) processes f g


=0
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such that given initial condition 0 and a partial history  = (0   ), they reach a given
terminal condition  at  , satisfy  ¸ 0,  ¸ 0 and (2), (3) for all  = 1  .

In this section, we focus on a …nite horizon economy that reaches a zero terminal condition,
 = 0, at  . We denote by =0 a set of all …nite horizon feasible programs from given initial
capital 0 and given partial history  ´ (0   ) that attain given  = 0 at  . We next
introduce the concept of solution for the …nite horizon model.

De…nition A2 (Optimal program in the …nite horizon model). A feasible …nite horizon program
n
0

  0


o

=0
2 =0 is called optimal if

0

"
X

=0


n
(

0
 )¡  ()

o
#

¸ 0 (A1)

for every feasible process f g

=0 2 =

0.

The existence result for the …nite horizon version of the economy (31), (32) with a zero terminal
condition is established in the literature. Namely, under Assumptions 1-9, there exists an

optimal program
n
0

  0


o

=0
2 =0 and it is both interior and unique. The existence of the

optimal program can be shown by using either a Bellman equation approach (see Mitra and
Nyarko (1991), Theorem 3.1) or an Euler equation approach (see Majumdar and Zilcha (1987),
Theorems 1 and 2).

We next show that under terminal condition 0
 =  = 0, the optimal program in the …nite

horizon economy (31), (32) has a well-de…ned limit.

Lemma 1. A …nite horizon optimal program
n
0

  0


o

=0
2 =0 with a zero terminal

condition 0
 = 0 converges to a limit program

©
lim  lim

ª1
=0

when  !1, i.e.,

lim ´ lim
!1

0
 and lim ´ lim

!1
0

 , for  = 0 1  (A2)

Proof. The existence of the limit program follows by three arguments:
i) Extending time horizon from  to  + 1 increases  -period capital of the …nite horizon

optimal program, i.e., +10
  0

 . To see this, note that the model with time horizon 
has zero (terminal) capital 0

 = 0 at  . When time horizon is extended from  to  + 1,
the model has zero (terminal) capital +10

+1 = 0 at  + 1 but it has strictly positive capital

+10
  0 at  ; this follows by the Inada conditions–Assumption 4.
ii) The optimal program for the …nite horizon economy has the following property of

monotonicity with respect to the terminal condition: if f0 
0
g


=0 and f

00
  

00
 g


=0 are two op-

timal programs for the …nite horizon economy with terminal conditions 0  00, then the
respective optimal capital choices have the same ranking in each period, i.e., 0 · 00 for all
 = 1  . This monotonicity result follows by either Bellman equation programming tech-
niques (see Mitra and Nyarko (1991, Theorem 3.2 and Corollary 3.3)) or Euler equation pro-
gramming techniques (see Majumdar and Zilcha (1987, Theorem 3)) or lattice programming
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techniques (see Hopenhayn and Prescott (1992)); see also Joshi (1997, Theorem 1) for general-

izations of these results to nonconvex economies. Hence, the stochastic process
n
0



o

=0
shifts

up (weakly) in a pointwise manner when  increases to  + 1, i.e., +10
 ¸ 0

 for  ¸ 0.

iii) By construction, the capital program from the optimal program
n
0

  0


o

=0
is bounded

from above by the capital accumulation process f0 max g
=0 de…ned in (8), i.e., 

0
 · max 1

for  ¸ 0. A sequence that is bounded and monotone is known to have a well-de…ned limit.
¥

Appendix A2. Limit program of the  -period stationary economy

We now show that the optimal program of the  -period stationary economy, introduced in
Section 3.1, converges to the same limit program (A2) as the optimal program of the …nite
horizon economy (31), (32) with a zero terminal condition. We denote by = a set of all feasible
…nite horizon programs that attains a terminal condition of the  -period stationary economy.
(We assume the same initial capital (0 0) and the same partial history  ´ (0   ) as
those …xed for the …nite horizon economy (31), (32)).

Lemma 2. The optimal program of the  -period stationary economy
©


  



ª

=0
2 = con-

verges to a unique limit program
©
lim  lim

ª1
=0

2 =1 de…ned in (A2) as  ! 1 i.e., for all
 ¸ 0

lim ´ lim
!1


 and lim ´ lim

!1


  (A3)

Proof. The proof of the lemma follows by six arguments.
i). Observe that, by Assumptions 1-8, the optimal program of the  -period stationary

economy has a positive capital stock 
  0 at  (since the terminal capital is generated by the

capital decision function of a stationary version of the model), while for the optimal program
n
0

  0


o

=0
2 =0 of the …nite horizon economy, it is zero by de…nition, 0

 = 0.

ii). The property of monotonicity with respect to terminal condition implies that if 
 

0
 , then 

 ¸ 0
 for all  = 1   ; see our discussion in ii). of the proof to Lemma 1.

iii). Let us …x some  2 f1  g. We show that up to period  , the optimal program
©


  



ª

=0
does not give higher expected utility than

n
0

  0


o

=0
, i.e.,

0

"
X

=0


n


¡




¢
¡ (

0
 )
o
#

· 0 (A4)

Toward contradiction, assume that it does, i.e.,

0

"
X

=0


n


¡




¢
¡ (

0
 )
o
#

 0. (A5)

Then, consider a new process f0 
0
g


=0 that follows

©


  



ª

=0
2 = up to period  ¡ 1

and that drops down at  to match 0
 of the …nite horizon program

©


  



ª

=0
2 =0, i.e.,

52



f0 
0
g


=0 ´

©


  



ª¡1

=0
[
©


 + 
 ¡ 0

  0


ª
. By monotonicity ii). we have 

 ¡ 0
 ¸ 0,

so that

0
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X

=0


©
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0
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¡




¢ª
#

=

= 0
£

©
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¢ª¤
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where the last inequality follows by Assumption 2 of strictly increasing .

iv). By construction f0 
0
g


=0 and

n
0

  0


o

=0
reach the same capital 0

 at  . Let us

extend the program f0 
0
g


=0 to  by assuming that it follows the process

n
0

  0


o

=0
from

the period  + 1 up to  , i.e., f0 
0
g


=+1 ´

n
0

  0


o

=+1
. Then, we have

0
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X
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n
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o
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X
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n
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where the last two inequalities follow by result (A6) and assumption (A5), respectively. Thus,
we obtain a contradiction: The constructed program f0 

0
g


=0 2 =

0 is feasible in the …nite
horizon economy with a zero terminal condition, 0 = 0, and it gives strictly higher expected

utility than the optimal program
n
0

  0


o

=0
2 =0 in that economy.

v). Holding  …xed, we compute the limit of (A4) by letting  go to in…nity:

lim
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n
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lim
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vi). The last inequality implies that for any  ¸ 1, the limit program
©
lim  lim

ª1
=0

2 =1

of the …nite horizon economy
n
0

  0


o

=0
2 =0 with a zero terminal condition 0

 = 0

gives at least as high expected utility as the optimal limit program
©


  



ª

=0
2 = of the

 -period stationary economy. Since Assumptions 1-8 imply that the optimal program is unique,
we conclude that

©
lim  lim

ª1
=0
2 =1 de…ned in (A2) is a unique limit of the optimal program

©


  



ª

=0
2 = of the  -period stationary economy. ¥

Appendix A3. Convergence of …nite horizon economy to in…nite hori-
zon economy

We now show a connection between the optimal programs of the …nite horizon and in…nite
horizon economies. Namely, we show that the …nite horizon economy (31), (32) with a zero
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terminal condition 0
 = 0 converges to the nonstationary in…nite horizon economy (1)–(3) as

 !1.

Lemma 3. The limit program
©
lim  lim

ª1
=0

is a unique optimal program f1  1 g
1
=0 2 =

1

in the in…nite horizon nonstationary economy (1)–(3).
Proof. We prove this lemma by contradiction. We use the arguments that are similar to

those used in the proof of Lemma 2.
i). Toward contradiction, assume that

©
lim  lim

ª1
=0

is not an optimal program of the in…nite
horizon economy f1  1 g

1
=0 2 =

1. By de…nition of limit, there exists a real number   0
and a subsequence of natural numbers f1 2 g µ f0 1 g such that f1  1 g

1
=0 2 =

1

gives strictly higher expected utility than the limit program of the …nite horizon economy©
lim  lim

ª1
=0

, i.e.,

0

"
X

=0


©
 (

1
 )¡ (

lim
 )
ª
#

  for all  2 f1 2 g . (A9)

ii). Let us …x some  2 f1 2 g and consider any …nite  ¸ . Assumptions 1-8 imply
that 1  0 while 0

 = 0 by de…nition of the …nite horizon economy with a zero terminal
condition. The monotonicity of the optimal program with respect to a terminal condition
implies that if 1  0

 , then 1 ¸ 0
 for all  = 1   ; see our discussion in ii). of the

proof of Lemma 1.
iii). Following the arguments in iii). of the proof of Lemma 2, we can show that up to period

, the optimal program f1  1 g

=0 does not give higher expected utility than

n
0

  0


o

=0
,

i.e.,

0

"
X

=0


n
 (

1
 )¡ (

0
 )
o
#

· 0 for all . (A10)

iv). Holding  …xed, we compute the limit of (A10) by letting  go to in…nity:

lim
!1

0
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X

=0


n
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1
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o
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= 0

"
X

=0

 (
1
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¡
lim

¢
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· 0 for all . (A11)

However, result (A11) contradicts to our assumption in (A9).
v). We conclude that for any subsequence f1 2 g µ f0 1 g, we have

0

"
X

=0


©
 (

1
 ) ¡ (

lim
 )
ª
#

· 0 for all . (A12)

However, under Assumptions 1-8, the optimal program f1  1 g
1
=0 2 =

1 is unique, and hence,
it must be that f1  1 g

1
=0 coincides with

©
lim  lim

ª1
=0

for all  ¸ 0. ¥
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Appendix A4. Proof to the turnpike theorem

We now combine the results of Lemmas 1-3 together into a turnpike-style theorem to show the
convergence of the optimal program of the  -period stationary economy to that of the in…nite
horizon nonstationary economy. To be speci…c, Lemma 1 shows that the optimal program

of the …nite horizon economy with a zero terminal condition
n
0

  0


o

=0
2 =0 converges

to the limit program
©
lim  lim

ª1
=0

. Lemma 2 shows that the optimal program of the  -

period stationary economy
©


  



ª

=0
also converges to the same limit program

©
lim  lim

ª1
=0

.

Finally, Lemma 3 shows that the limit program of the …nite horizon economies
©
lim  lim

ª1
=0

is optimal in the nonstationary in…nite horizon economy. Then, it must be the case that the

limit optimal program of the  -period stationary economy
©


  



ª

=0
is optimal in the in…nite

horizon nonstationary economy. This argument is formalized below.

Proof to Theorem 2 (turnpike theorem). The proof follows by de…nition of limit and Lemmas
1-3. Let us …x a real number   0 and a natural number  such that 1 ·  1.

i). Lemma 1 shows that
n
0

  0


o

=0
2 =0 converges to a limit program

©
lim  lim

ª1
=0

as  !1. Then, de…nition of limit implies that there exists 1  0 such that
¯
¯
¯

0
 ¡ lim

¯
¯
¯  

3

for  = 0   .
ii). Lemma 2 implies that the …nite horizon problem of the  -period stationary economy
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ª

=0
also converges to limit program

©
lim  lim

ª1
=0

as  !1. Then, there exists 2  0

such that
¯
¯lim ¡ 



¯
¯  

3
for  = 0   .

iii). Lemma 3 implies the program
n
0

  0


o

=0
2 =0 converges to the in…nite horizon

optimal program f1  1 g
1
=0 as  !1. Then, there exists 3  0 such that

¯
¯
¯

0
 ¡ 1

¯
¯
¯  

3

for  = 0   .
iv). Then, the triangular inequality implies
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¯
¯ =
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¯
¯
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¯
¯
¯

·
¯
¯

 ¡ lim

¯
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3
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3
= ,

for  ¸  ( ) ´ max f1 2 3g. ¥

Remark A1. Our proof of the turnpike theorem addresses a technical issue that does not arise
in the literature that focuses on …nite horizon economies with a zero terminal condition; see, e.g.,
Majumdar and Zilcha (1987), Mitra and Nyarko (1991) and Joshi (1997). Their construction
relies on the fact that the optimal program of the …nite horizon economy is always pointwise
below the optimal program of the in…nite horizon economy, i.e., 

 · 1 , for  = 1   , and
it gives strictly higher expected utility up to  than does the in…nite horizon optimal program
(because excess capital can be consumed at terminal period  ). This argument does not directly
applies to our  -period stationary economy: our …nite horizon program can be either below or
above the in…nite horizon program depending on a speci…c  -period terminal condition; see the
experiments with terminal conditions 0 and 00 in Figure 1, respectively. Our proof addresses
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this issue by constructing in Lemma 2 a separate limit program for the  -period stationary
economy.

Remark A2. We also proved a similar turnpike theorem for a more general version of the
economy (1)–(3) (proofs are not provided). First, we relax the assumption of Markov structure
of the stochastic process (3) (i.e., we consider a general stochastic environment that satis…es only
a weak assumptions of measurability); and second, we relax the assumption that the terminal
condition comes from the  -period stationary economy (i.e., we consider an arbitrary terminal
condition  ). To save on space, we do not include this more general turnpike theorem in the
paper but limit ourselves to the nonstationary Markov setup that is actually studied.
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Appendix B. Implementation of EFP

In this section, we describe the implementation of the EFP method used to produce the nu-
merical results in the main text.

Algorithm 1 (implementation). Extended function path.

The goal of EFP.

EFP is aimed at approximating a solution of a nonstationary model during the …rst  periods,

i.e., it …nds approximating functions
³
b0  b

´
such that b ¼  for  = 1  , where

 and b are a -period true capital function and its parametric approximation, respectively.

Step 0. Initialization.

a. Choose time horizon  À  for constructing  -period stationary economy.

b. Construct a deterministic path f¤ g

=0 for exogenous state variable fg


=0 satisfying

¤+1 =  (
¤
   [+1]) for  = 0   .

c. Construct a deterministic path f¤ g

=0 for endogenous state variable fg


=0 satisfying

0(
¤
 ) = 0(

¤
+1)(1¡  +  0+1

¡
¤+1 

¤
+1

¢
).

¤ + ¤+1 = (1¡ ) ¤ +  (
¤
  

¤
 ) for  = 0   .

d. For  = 0   :

Construct a grid f( )g

=1 centered at (¤  

¤
 ).

Choose integration nodes, , and weights,  for  = 1   .
Construct future shocks 0 =  ( ).

e. Write a -period discretized system of the optimality conditions:

i). 0() = 
P

=1


h
0(

0
)

n
1¡  + +1

³
0 

0


´oi

ii).  + 0 = (1¡ )  +  ( )

iii). 0 + 00 = (1¡ )0 + +1

³
0 

0


´

iv). 0 =
b ( ) and 00 =

b+1

³
0 

0


´


d. Assume that the model becomes stationary at  .

Step 1. Solving the  -period stationary model.

Find b = b+1 that approximately solves the system i).-iv). on the grid for the  -period
stationary economy +1 =  , +1 =  , +1 =  .

Step 2. Solving for a function path for  = 0 1   ¡ 1.

a. Construct the function path
³
b0  b¡1 b

´
that approximately solves the system i).-iv)

for each  = 0   and that matches the given terminal function b constructed in Step 1.

The EFP solution:

Use
³
b0  b

´
as an approximation to (0  ) and discard the remaining  ¡  functions.

The EFP method is more expensive than conventional solution methods for stationary
models because decision functions must be constructed not just once but for  periods. We

57



implement EFP in the way that keeps its cost relatively low: First, to approximate decision
functions, we use a version of the Smolyak (sparse) grid technique. Speci…cally, we use a
version of the Smolyak method that combines a Smolyak grid with ordinary polynomials for
approximating functions o¤ the grid. This method is described in Maliar, Maliar and Judd
(2011) who …nd it to be su¢ciently accurate in the context of a similar growth model, namely,
unit-free residuals in the model’s equations do not exceed 0.01% on a stochastic simulation
of 10,000 observations). For this version of the Smolyak method, the polynomial coe¢cients
are overdetermined, for example, in a 2-dimensional case, we have 13 points in a second-level
Smolyak grid, and we have only six coe¢cients in second-degree ordinary polynomial. Hence,
we identify the coe¢cients using a least-squares regression; we use an SVD decomposition,
to enhance numerical stability; see Judd, Maliar and Maliar (2011) for a discussion of this
and other numerically stable approximation methods. We do not construct the Smolyak grid
within a hypercube normalized to [¡1 1]2, like do Smolyak methods that rely on Chebyshev
polynomials used in, e.g., Krueger and Kubler (2004) and Judd, Maliar, Maliar and Valero
(2014). Instead, we construct a sequence of Smolyak grids around actual steady state and thus,
the hypercube, in which the Smolyak grid is constructed, grows over time as shown in Figure
1.

Second, to approximate expectation functions, we use Gauss-Hermite quadrature rule with
10 integration nodes. However, a comparison analysis in Judd, Maliar and Maliar (2011) shows
that for models with smooth decision functions like ours, the number of integration nodes
plays only a minor role in the properties of the solution, for example, the results will be the
same up to six digits of precision if instead of ten integration nodes we use just two nodes
or a simple linear monomial rule (a two-node Gauss-Hermite quadrature rule is equivalent to
a linear monomial integration rule for the two-dimensional case). However, simulation-based
Monte-Carlo-style integration methods produce very inaccurate approximations for integrals
and are not considered in this paper; see Judd, Maliar and Maliar (2011) for discussion.

Third, to solve for the coe¢cients of decision functions, we use a simple derivative-free …xed-
point iteration method in line with Gauss-Jacobi iteration. Let us re-write the Euler equation
i). constructed in the initialization step of the algorithm by pre-multiplying both sides by
-period capital

b0 = 
X

=1



·
0(

0
)

0()

©
1¡  + +1

¡
0

¤
+1 

0


¤
+1

¢ª
¸

0 (33)

We use di¤erent notation, 0 and
b0, for -period capital in the left and right side of (33),

respectively, in order to describe our …xed-point iteration method. Namely, we substitute 0

in the right side of (33) and in the constraints ii). and iii). in the initialization step to compute
 and 0, respectively, and we obtain a new set of values of the capital function on the

grid b0 in the left side. We iterate on these steps until convergence.

Our approximation functions b are ordinary polynomial functions characterized by a time-
dependent vector of parameters , i.e., b = b (¢; ). So, operationally, the iteration is

performed not on the grid values 0 and
b0 but on the coe¢cients of the approximation

functions. The iteration procedure di¤ers in Steps 1 and 2.
In Step 1, we construct a solution to  -period stationary economy. For iteration , we …x

some initial vector of coe¢cients , compute 0+1 = b (   ; ), …nd  and 0
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to satisfy constraints ii) and iii), respectively and …nd b0+1 from the Euler equation i). We

run a regression of b0+1 on b (   ; ¢) in order to re-estimate the coe¢cients b and we

compute the coe¢cients for iteration +1 as a weighted average, i.e., (+1) = (1¡ ) ()+b(),
where  2 (0 1) is a damping parameter (typically,  = 005). We use partial updating instead
of full updating  = 1 because …xed-point iteration can be numerically unstable and using
partial updating enhances numerical stability; see Maliar, Maliar and Judd (2011). This kind
of …xed-point iterations are used by numerical methods that solve for equilibrium in conventional
stationary Markov economies; see e.g., Judd, Maliar and Maliar (2011), Judd, Maliar, Maliar
and Valero (2014).

In Step 2, we iterate on the path for the polynomial coe¢cients using Gauss-Jacobi style
iterations in line with Fair and Taylor (1983). Speci…cally, on iteration , we take a path for

the coe¢cients vectors
n

()
1   

()


o
, compute the corresponding path for capital quantities

using 0 =
b

³
 ; 

()


´
, and …nd a path for consumption quantities  and 0 from

constraints ii) and iii), respectively, for  = 0   . Substitute these quantities in the right side
of a sequence of Euler equations for  = 0   to obtain a new path for capital quantities in
the left side of the Euler equation b0 for  = 0   ¡ 1. Run  ¡ 1 regressions of b0 on

polynomial functional forms b ( ; ) for  = 0   ¡ 1 to construct a new path for

the coe¢cients
n
b
()
0  b

()
¡1

o
. Compute the path of the coe¢cients for iteration  + 1 as a

weighted average, i.e., 
(+1)
 = (1¡ ) 

()
 + b

()
 ,  = 0   ¡ 1, where  2 (0 1) is a damping

parameter which we again typically set at  = 005. (Observe that this iteration procedure

changes all the coe¢cients on the path except of the last one 
()
 ´ , which is a given terminal

conditions that we computed in Step 1 from  -period stationary economy).
In fact, the problem of constructing a path for function coe¢cients is similar to the problem

of constructing a path for variables: in both cases, we need to solve a large system of nonlinear
equations. The di¤erence is that under EFP, the arguments of this system are not variables
but parameters of the approximating functions. Instead of Gauss-Jacobi style iteration on
path, we can use Gauss-Siedel …xed-point iteration (shooting), Newton-style solvers or any
other technique that can solve a system of nonlinear equations; see Lipton, Poterba, Sachs and
Summers (1980), Atolia and Bu¢e (2009a,b), Heer and Maußner (2010), and Grüne, Semmler
and Stieler (2013) for examples of such techniques.

Appendix C. Fair and Taylor’s (1983) method

This appendix describes the version of Fair and Taylor’s (1983) method used to produce the
results in the main text. We illustrate this method in the context of the growth model (1)–(3)
(we assume  = 1 and  () = ln () for expository convenience). The Euler equation and
budget constraint, respectively, are:

1



= 

·
1

+1

(1¡  + +1
0(+1))

¸



 + +1 = (1¡ )  +  () 
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Combine the above two conditions to get

+1 =  ()¡

·



µ
+1

0(+1))

+1 (+1)¡ +2

¶¸¡1
¼

 ()¡


+1 (+1)¡ +2


+1

0(+1))
 (34)

where the expectation function 
+1 =  [+1] is approximated as implied by certainty equiv-

alence assumption (16). For example, for the standard AR(1) process for productivity levels
(18), this approximation means that for each , we have 

+1 =  [+1] = 
  [exp()], where

 » (0 2). To solve for the path of variables, Fair and Taylor (1983) use a derivative-free
iteration in line with Gauss-Jacobi method :

Algorithm 2. Extended path (EP) framework by Fair and Taylor (1983).

The goal of EP framework of Fair and Taylor (1983).

EFP is aimed at approximating a path for variables satisfying the model’s equations during

the …rst  periods, i.e., it …nds b0 b such that
°
°
° ¡ b

°
°
°   for

 = 1  , where   0 is target accuracy, k¢k is an absolute value, and  and b are the -period
true capital stocks and their approximation, respectively.

Step 0. Initialization.

a. Choose time horizon  À  and terminal condition +1.
b. Construct and …x a sequence of shocks fg=0 .

c. Construct and …x
©


+1

ª
=0

such that 
+1 =  [+1] for all .

d. Guess an equilibrium path
n

(1)


o

=1 0
for iteration  = 1.

e. Write a -period system of the optimality conditions in the form:

+1 =  ()¡
+1 (+1)¡+2

+1
0(+1))



Step 1. Solving for a path using Gauss-Jacobi method.

a. Substitute a path
n

()


o

=1 0
into the right side of (34) to …nd


(+1)
+1 = 

³

()


´
¡

+1



()
+1


¡

()
+2

+1
0(

()
+1))

,  = 1  

b. End iteration if the convergence is achieved
¯
¯
¯
(+1)
+1 ¡ 

()
+1

¯
¯
¯  tolerance level.

Otherwise, increase  by 1 and repeat Step 1.

The EP solution:

Use the …rst  constructed values 0   as an approximation
to the true solution    and discard the last  ¡  values.

In the original version of their EP method, Fair and Taylor (1983) use  = 1, i.e., they

keep only the …rst element b1 from the constructed path
³
b1  b

´
and disregard the rest of
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the path; then, they solve for a new path
³
b1 b+1

´
starting from b1 and ending in a given

b+1 and store b2, disregarding the rest of the path; and they advance forward until the path
of the given length  is constructed.  is chosen so that further its extensions do not a¤ect the
solution in the initial period of the path. For instance, to …nd a solution b1, Fair and Taylor
(1983) solve the model several times under  + 1  + 2  + 3  and check that b1 remains
the same (up to a given degree of precision). Finally, it is also possible to use Fair and Taylor’s
(1983) method under larger values of  such as  = 100; in this respect, Fair and Taylor’s
(1983) method is similar to EFP.

As is typical for …xed-point-iteration style methods, Gauss-Jacobi iteration may fail to
converge. To deal with this issue, Fair and Taylor (1983) use damping, namely, they update

the path over iteration only by a small amount 
(+1)
+1 = 

(+1)
+1 + (1¡ ) 

()
+1 where  2 (0 1)

is a small number close to zero (e.g., 0.01).
Steps 1a and 1b of Fair and Taylor’s (1983) method are called Type I and Type II iterations

and are analogous to Step 2 of the EFP method when the sequence of the decision functions is
constructed. The extension of path is called Type III iteration and gives the name to Fair and
Taylor (1983) method.

In our examples, we implement Fair and Taylor’s (1983) method using a conventional New-
ton style numerical solver instead of Gauss-Jacobi iteration; a similar implementation is used
in Heer and Maußner (2010). The cost of Fair and Taylor’s (1983) method can depend consid-
erably on a speci…c solver used and can be very high (as we need to solve a system of equations
with hundreds of unknowns numerically). In our simple examples, a Newton-style solver was
su¢ciently fast and reliable. In more complicated models, we are typically unable to derive
closed-form laws of motion for the state variables, and derivative-free …xed-point iteration ad-
vocated in Fair and Taylor (1983) can be a better alternative.

Appendix D. Solving the test model using the associated

stationary model

We …rst convert the nonstationarymodel (1), (2), (17), (18) with labor augmenting technological

progress into a stationary model using the standard change of variables b =  and b =
. This leads us to the following model

max
f+1g

=01

0

1X

=0

(¤)
b1¡



1¡ 
(35)

s.t. b + 
b+1 = (1¡ )b + 

b
  (36)

ln +1 =  ln  + +1 +1 » N (0 1)  (37)

where ¤ ´ 1¡
 . We solve this stationary model by using the same version of the Smolyak

method that is used within EFP to …nd a solution to  -period stationary economy.
After a solution to the stationary model (35)–(37) is constructed, a solution for nonstation-

ary variables can be recovered by using an inverse transformation  = b and  = b.
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For the sake of our comparison, we also need to recover the path of nonstationary deci-
sion functions in terms of their parameters. Let us show how this can be done under poly-
nomial approximation of decision functions. Let us assume that a capital policy function
of the stationary model is approximated by complete polynomial of degree , namely, ̂+1 =P

=0

P
=0 +

(¡1)(+2)
2

+1
̂

 ¡
 , where  is a polynomial coe¢cient,  = 0  + (¡1)(+2)

2
+1.

Given that the stationary and nonstationary solutions are related by ̂+1 = +1
¡
0

+1


¢
, we

have

+1 = 0
+1
 ̂+1 = 0

+1


X

=0

X

=0


+

(¡1)(+2)
2

+1
̂

 ¡
 =

0

X

=0

X

=0


1¡(¡1)

+
(¡1)(+2)

2
+1


 ¡

  (38)

For example, for …rst-degree polynomial  = 1, we construct the coe¢cients vector of the
nonstationary model by premultiplying the coe¢cient vector  ´ (0 1 2) of the stationary

model by a vector
¡
0

+1
  0 0

+1


¢>
, which yields +1 ´

¡
00

+1
  10 20

+1


¢
,

 = 0   , where  is time horizon (length of simulation in the solution procedure). Note that
a similar relation will hold even if the growth rate  is time variable.

Appendix E. Additional …gures

In Figure 10, we plot the simulated solution to the model with both deterministic technology
switches and stochastic productivity shocks following an AR(1) process (37);
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Figure 10. Deterministic technology switches and stochastic productivity shocks

In Figure 11, we provide a plot of simulated solution with both productivity drift and
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stochastic productivity shocks.
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Figure 11. Productivity shifts and stochastic productivity shocks
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