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1 Introduction

Recently, behavior of high-frequency traders (HFTs) becomes a focus of intensive exami-

nation among practitioners, regulators, as well as academics. Although there is a growing

literature of HFTs in individual assets, their spillovers across different markets have not been

investigated in the literature. In this study, using a dataset that identifies transactions by

HFTs in Nasdaq OMX, we explore the spillovers between Nasdaq stock market and Foreign

exchange (Forex) markets. We find that HFTs trade on the common information more ag-

gressively and rapidly than non-HFTs and their order flows contain more information about

the Forex rates than those of the Forex themselves.

Stock prices and Forex rates are correlated. Figure 1 plots three Forex rates (EUR/JPY,

EUR/USD, USD/JPY), Nasdaq index, and the volume share of Nasdaq HFTs from January

2008 to August 2009. The plots shows that the correlation between Forex rates and the

stock index are time-varying. After September 2008, the correlation seems increased as the

volume share of HFTs rose. Then, what is the role of HFT in the determination of the

correlation between stocks and Forex? Recent studies on HFTs show that HFTs trade in the

same direction of permanent price changes and contribute to the price discovery as a market

maker (Hirschey (2013); Menkveld (2013); Hendershott (2011); Carrion (2013); Brogaard,

Hendershott and Riordan (2012)), but they do not investigate the spillovers of HFTs to

other markets or the source of better price discovery by HFTs.

We aim to answer HFT’s role in influencing cross-market correlation. To do so, we

combine Nasdaq OMX high-frequency trader dataset and EBS Forex dataset. Nasdaq dataset

identifies transactions by HFTs, allowing an analysis on HFTs as a group. By using the

dataset, we compare market-wide order flows in Nasdaq and Forex activities. A standard

vector auto-regression (VAR) is used to investigate the lead-lag, cross-price impacts, and the

information share of order flows among order flows in the Forex, Nasdaq HFT, non-HFT,

and the Forex returns.

Since we can interpret these empirical results in many ways, a theoretical framework
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which provides a consistent explanation of the results is presented. In the Kodres and

Pritsker (2002) framework, where traders can trade multiple-assets in a one-shot game, since

uninformed traders make signal extraction from prices, noise trading in one market can

influence the other markets. We numerically examine the estimated cross-price impacts and

price correlations and judge whether the model can replicate empirical results.

Our main empirical findings are as follows. First, we find strong evidence that HFT

order flows are very influential to the Forex market. In particular, an empirical results show

that order flows by Nasdaq HFTs proceed to the Forex activities but those by non-HFT

do not have such property. Forex returns and order flows lag to HFT’s order flows by 500

milliseconds. However, this lead-lag can occur due to not only some economic reasons but

also mechanical reasons such as a difference of trading architectures. Theoretical analysis

suggests that a response in a market to noise tradings in other markets can be different

depending on the price informativeness in each market. This asymmetry can be interpreted

as a short-run lead-lag relationship. To examine the informativeness, we estimate following

Hasbrouck (1991), each order flow’s contribution to the permanent changes of Forex rates. As

a result, we find that the contribution by Nasdaq HFT order flows dominate the contribution

from non-HFT order flows and Forex order flows. This result means that the HFT order

flows contain more market-wide information that affects both stocks and Forex rates.

Second, we find that HFTs and non-HFTs differs in the weight and reaction speed for

market-wide information. HFT order flows in individual stocks are more correlated with

market-wide order flows than non-HFT order flows.1 Since idiosyncratic order flows in in-

dividual stocks do not affect the Forex market at all, influences to Forex by Nasdaq traders

can be different between HFTs and non-HFTs. In addition, the spillovers from the Forex

are different between HFTs and non-HFTs. After the changes in Forex return, HFTs order

more aggressively than non-HFTs for less than around two seconds. After that, orders from

non-HFTs become larger than those from HFTs.

1Brogaard, Hendershott and Riordan (2012) also report this property.
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These results suggest that HFTs are equipped to aggregate market-wide information and

reflect them on prices more rapidly than non-HFTs. This makes their order flows informative

for market-wide information, providing the impacts on Forex activities.

Lastly, we report that the correlation between stock and Forex is increased during Septem-

ber 2008, when the Global financial crisis emerged. Based on the theoretical model, we can

interpret this transition as changes in currency’s exposure to the common risk factors. Dur-

ing this time, HFTs raised the share of trading volume at the Nasdaq. Since HFTs trade

more aggressively for the common information in stocks, the spillovers from HFT’s activities

to Forex are particularly pronounced during September 2008.

2 Related Literature

Theoretical background of inter-market relationships The theoretical market mi-

crostructure mechanism of multi-asset trading is studied by Admati (1985); Caballe and

Krishnan (1994); Kodres and Pritsker (2002); Bernhardt and Taub (2008). Among all, Ko-

dres and Pritsker (2002) extend the framework of Grossman and Stiglitz (1980) and study

the case when information about fundamentals are nested and traders are competitive. They

show that correlated macro shock affects prices through the information channel and portfolio

rebalancing channel. Through these channels, even a noise trading can cause the correlation

of price changes, because uninformed traders cannot tell whether the shock is from informed

traders or noise.

Price discovery by High-frequency traders and Algorithmic traders There is a

growing literature on behavior of high-frequency traders (HFTs) and Algorithmic traders

(ATs). Many studies show empirical evidence that HFTs (or ATs) improve liquidity and

price efficiency, which are represented as narrower spreads, reduced adverse selection, and
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reduced trade-related price discovery (e.g., Hendershott (2011); Hendershott and Menkveld

(2014)).

Using unique dataset at Nasdaq OMX, Hirschey (2013) shows that HFT’s liquidity de-

mand predicts future returns and non-HFT’s liquidity demand. Brogaard, Hendershott and

Riordan (2012) use the same dataset to ours, and show that HFTs trade against transitory

pricing error and improve price efficiency. Carrion (2013) also use the same dataset and shows

that HFTs engage in successful intra-day market timing. Hagströmer and Nordén (2013) use

data from Nasdaq OMX Stockholm which identify individual HFT firms, and report there

are two-types of HFT strategies: market-making and momentum. Taking tick size changes

as a natural experiment, they find that both HFTs mitigate intraday price volatility.

As for the correlation between HFT and market-wide trading activities, Brogaard, Hen-

dershott and Riordan (2012) point that HFT is more correlated with market-return, and

Carrion (2013) finds that price reflect more of the information in mast market return HFT’s

participation is high. Biais, Foucault and Moinas (2013) and Menkveld and Jovanovic (2012)

point that HFTs can react to public news such as index returns more rapidly than non-HFTs

because of their speed advantage. Public news are also refereed to as “hard” quantitative

information. Zhang (2012) reports that HFT react to hard information faster and stronger

than soft qualitative information.

HFT in the Foregin exchange (Forex) market is studied by Chaboud et al. (2014). Dif-

ferent from us, they use special data with identification of HFTs. Taking advantage of the

identification of HFTs, they show that HFTs take the opportunities of triangular arbitrage.

Ito et al. (2012) also study second-by-second triangular arbitrage opportunities and find that

the triangular arbitrage opportunities have become less likely and disappear more quickly as

the trading become more frequent.
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3 Market Structure: Data

3.1 EBS Forex dataset

We use the EBS level five data set. The data set contains transaction prices and trade

volume at a frequency of quarter-seconds from January 7, 2008 to August 30, 2009.2 The

EBS price history shows whether a deal is done on the bid side or the ask side. The EBS

global system consists of three regional computer sites, based in Tokyo, London, and New

York, and it matches orders either within the site or across different sites. The system offer

a colocation platform from 2005, which facilitates the high-speed and low-latency trading for

HFTs.

Among 24 currency pairs contained in the dataset, we use EUR/JPY, EUR/USD, and

USD/JPY. The original time-stamp of the data is based on GMT. In order to merge with

the Nasdaq data set, the time-stamp is adjusted to EST. Detailed data cleaning is found in

Appendix.

Below the summary of the data and its cleaning process is explained. In this dataset,

trades (or deals) at time t occurs between time t − 1 and t, or (t − 1, t]. The order book

information is a snapshot at the time-stamp. Price is defined as a mid-price that is a equally

weighted average of the best bid and best offer prices.3 The FX-return, rt, is defined as the

the log before-the-deal-price changes from t to t+1. Price changes occur when one or both of

the best bid or the best offer changes, which may be a result of quote addition, cancellation

or taken by transactions.

2The EBS level five dataset contains the following data fields: (1) Currency pair, (2) Date, (3) Time in
quarter-seconds, (4) Event type (quote or done), (5) Buy Sell indicator, (6) Distance of quote, (7) Price, (8)
Amount, (9) Quote count or Number of counterparty. In precise, the EBS dataset allows quarter-seconds
time stamps from January 24, 2008. EBS also started providing the 100 millisecond time stamps from August
31, 2009. Our dataset covers the dates after August 31, 2009, and we analyze them separately.

3The definition of mid-price can alternatively be defined by depth-weighted mid-prices. In addition to the
standard definitions, we examined these alternative definitions of return as well. We obtained the consistent
empirical results but we do not report them in this article for the interest of brevity.
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3.2 Nasdaq dataset

Nasdaq OMX also offer the colocation service for high frequency traders (or HFTs), and is

a one of the most liquid electric trading venue. For Nasdaq transaction data, we use data

provided by NASDAQ OMX for academic study of HFTs.4 The data is a sample of 120

randomly selected stocks listed on Nasdaq and the New York Stock Exchange. From three

market capitalization groups (high, medium, and low), each 40 firms are picked up. We use

the sample of trading date from January 7, 2008 to December 31, 2009.

Transaction records provide millisecond time stamps and identify the liquidity demander

and supplier as a HFT or non-high-frequency trader (or non-HFT).5 The transaction type

takes one of four values, HH, HN, NH or NN. The first letter represents the liquidity demander

group, and the second letter represents the liquidity provider group. Regardless of this

identification, we cannot identify all HFT because HFT firms that also engage in lower

frequency trading strategies are excluded (see Brogaard, Hendershott and Riordan (2012)

for the detail). HFTs are known to square positions by the end of trading days, but data

do not necessarily suggest the squaring the position. Each HFT firms can trade the same

stocks at different markets, their position cannot become zero at each end of day.

In order to match the Nasdaq data to the Forex data which differs from its fineness of

the time stamps, we consolidate the transactions of Nasdaq for every quarter second. To

capture the components of HFT behavior that affect the Forex market, we calculate the sum

of quoted order imbalances (OIBs) across stocks, and define aggregate order flows.6 To take

the advantage of HFT identification, we primary focus on order flows rather than prices.

We match the Nasdaq data to the Forex data by outer join. That is, we hold both

transactions at each clock-time, but drop the clock-time when there is no transaction at

4The HFT dataset provided by Nasdaq contains the following data fields: (1) Symbole, (2) Date, (3)
Time in miliseconds, (4) Shares, (5) Price, (6) Buy Sell indicator, (7) Type (HH,HN,NH,NN).

526 Trading firms are categorized as HFT based on Nasdaq’s knowledge of their customers and analysis
of firm’s trading (Brogaard, Hendershott and Riordan (2012)).

6We denote Nasdaq HFT’s OIB and non-HFT’s OIB as HFT-OIB and non-HFT-OIB. When we direct
both, we simply say Nasdaq OIB.
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both markets. This keeps 64% of clock-time. Because the number of transaction at whole-

Nasdaq stocks is far larger than that of the Forex, our estimation results could be affected.

To address this issue, we also construct matched data by inner join, which keeps transactions

at times when both markets have transactions. Since the qualitative results do not change

much, we present only the former results in this paper.

3.3 Descriptive statistics of data

Descriptive statistics are shown in Table 1. Panel A reports statistics about the Forex

market, and Panel B reports statistics about Nasdaq. Each panel reports the statistics by

each quarter sub-sample.

Panel A of Table 1 calculates volatility of quarter-second return (Std(rt)), average of

instantaneous price impact per one unit of deal (mean( rt
oib

)), average trade size, average

trade volume per day, standard deviation of volume and quoted-OIBs per quarter-second,

and probability of quote change and deals, and number of trade deals per quarter-second.

Panel B summarizes the trades ignited by either HFT or non-HFT (as for the trade type,

’HH’ and ’HN’ are of HFTs, ’NN’ and ’NH’ are of non-HFTs). Each trade is aggregated over

stocks for every quarter-second. The panel calculates the average quoted trade size per trade,

quoted trading volume per day, standard deviation of quoted trading volume and quoted-OIB

per quarter-second, trading frequency, and average number of trades per quarter-second.

Roughly, 3.41/(3.41+4.7) = 42% of the trading volume is HFT-originated trades, and

the proportion rises during 2008 (see Figure 1 as well). While Forex currency pairs have

a trade probability less than 10% over time, Nasdaq transactions are more frequent and

simultaneous transactions within a quarter-second is more likely.

Last column of Panel B measures the correlation between order flows of individual stocks

and aggregate order flows.7 Notably, HFT order flows is more correlated with the aggregate

order flows than non-HFT order flows, even though the proportion of volume is less for HFT.

7In fact, the values are the adjusted R-squared obtained by the regression of individual stock’s HFT-OIB
(or non-HFT-OIB) on the cross-sectional sum of OIBs.
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This figure provides simple evidence that HFTs trade on common stock fundamentals rather

than idiosyncratic ones. Later, we present a result that HFT leads Forex but non-HFT

does not. Why is this true even though market participants cannot tell HFT from non-HFT

orders? One answer can be the speed advantage of HFTs. Another answer can be that HFTs

put more weights on common component of stock values which also affect Forex markets. To

support this reasoning, we also show that idiosyncratic component of individual OIB does

not predict the Forex at all.

3.4 Time-series of Prices

The top panel of Figure 1 plots the time series of asset prices (Nasdaq Composite Index

(IXIC), EUR/JPY, EUR/USD, USD/JPY) and the proportion of HFT trading volume over

time. All the variables are normalized by the first observations. The middle panel plots a cen-

tered rolling correlation of IXIC and Forex (i.e., corr(Return of Nasdaq index,Return of Forex ratei,

i =EUR/JPY, EUR/USD, USD/JPY).8 The bottom panel plots rolling correlation of the

proportion of HFT trading volume and the stock-Forex correlation.

The top panel shows that proportion of the HFT trading volume was particularly high

during the financial crisis in 2008. In fact, HFTs tend to trade more when the market is

volatile. We can describe this fact by a following simple regression.

HFT sharet = 0.977
(65.8)

− 0.281
(−0.763)

×RetIXCI,t + 0.00518
(13.1)

× V IXt + 0.0106
(1.53)

×RetIXCI,t × V IXt.

The adjusted R-squared is 0.541. The regression is day-by-day with 402 observations, and

the values in parentheses are t-statistics. The standard errors are corrected by Newey-West

method. The volatility index, V IX, is of S&P 500. In this estimation, the most significant

variable is VIX, which has t-statistics of 13.1 The share of HFTs tend to become large in a

volatile market.

8The rolling sample window is 25 days.
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As observed in the middle panel, the stock-Forex correlation is not steady and differs

among currency pairs. Before the 2008 financial crisis (represented by the bankruptcy

of Lehman-brothers at Sep 15, 2008), IXIC is positively correlated with EUR/JPY and

USD/JPY but is negatively correlated with EUR/USD. After October 2008, each three

currency pair tends to behave in the same way. Since HFTs trade more on the common

component of stock values, high stock-Forex correlation can result in strong spillovers of

HFTs at the Forex market.

Thus, HFTs trade more when the market is volatile, and they influence the Forex market

more when the stock-Forex correlation is high. Findings are consistent with a view that

during a crisis (high VIX) period, HFT activities tend to become higher (comparing to non-

HFT), which contributes to increasing correlation between Nasdaq and currency markets.

Related to this, in section 5.6, we implement a regression analysis to examine when the HFTs

can predict the Forex markets.

3.5 Conditional frequency of the transactions

In this analysis, we use the return defined as rt3, i.e., the log-difference between after-the-

trade prices at t and before-the trade prices at t. Different from other analysis, we use

dataset ranges from 2009/09/09 to 2009/12/31. 9 Although we can take this advantage of

finer grids, the dataset is defined as event-time and still has gaps in real-time basis.10 We

construct the dataset by filling the no-entry (event with zero returns and zero transaction

volume.)

In order to overview the spillovers of trading, we first implement a simple event-study

analysis. We calculate the frequency of the transactions that both Nasdaq and Forex trades

occurs in the same direction around a designated event. The event is designed as a two-

standard deviation shock in market i, and calculate the frequency of the market j’s transac-

9After September 2009, EBS provides 100 millisecond time-stamps.
10Event-time means that the observation occurs only when quote changes or deals occur.
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tions in the same direction. For example, we compute the following.

Prob(OIBFX,−k > 0|OIBHF,0 > std(OIBHF,0)) =
count(OIBFX,t−k > 0 and OIBHF,t > 2std(OIBHF,t) over t)

count(OIBHF,t > std(OIBHF,t) over t)
,

where k is from -10 to +10 and t is from the beginning to the end of trading days.

count(·) simply counts the number of observations in the data that matches the statement.

This example describes the reaction of Forex order flows to the imbalances in HFT order

flows; we can calculate reaction of Forex returns, reaction of HFT (and non-HFT) to the

Forex events, vice versa. For normalization, we present the difference of the probabilities

between the directions, i.e.,

Prob(OIBFX,0−k > 0|OIBHF,0 > std(OIBHF,0))−Prob(OIBFX,0−k < 0|OIBHF,0 > std(OIBHF,0)).

Since buying and selling is equally likely on average, the unconditional spreads should be

close to zero. We compute the conditional frequencies for each three currency pairs for each

day, and take their means.

Figure 3 show the results. The first column panels show the reaction of the Forex market

conditional on the HFT’s (or non-HFT’s) events. The second panels do the reverse. The

results for EUR/JPY, EUR/USD, and USD/JPY are presented from the top to the bottom.

Events happen at t = 0, and the frequency is calculated by every 100 milliseconds. We focus

more on the shapes of the graphs than their values.

The first-column panels show asymmetric hump-shapes. The hump-shapes indicate that

such currencies tend to move in the same direction to U.S. stocks.11 This hump-shape is

slightly skewed toward right and the peak lags by 100 to 200 milliseconds. This indicates that

Forex tends to lag to stocks if the both Forex and stock react to the same public information.

To contrast, the second-column panels, showing the reaction of stocks to Forex events, have

hump-shapes skewed toward left. This figure indicates the same thing: stocks tend to lead

11This is not always the case. Reflecting economic situations, the relationships can change over-time (see
Figure 1 and 5).
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Forex. In addition to this finding, we can compare the HFT and non-HFT. In these plots,

the height of the graphs is higher for HFT-related shapes than those of non-HFT.

4 Structural Change of spillovers: A Model

In the literature of market microstructure, there are two possible mechanisms by which order

flows and asset returns in one market may spill over other markets. The first mechanism

is the information effect (King and Wadhwani (1990)). Since rational agents attempt to

draw information from prices at other markets, market prices correlates even though any

two markets do not have shared exposure to common risks. The second mechanism is the

portfolio balance effect which is stressed by Kodres and Pritsker (2002). Since order flows

through portfolio rebalance are misconstrued as being information-based, resulting price

movements are exaggerated. In both channels, comovements occur not only from information

shocks but also from noisy liquidity trading, because there are asymmetry of information and

uninformed traders cannot differentiate information from noise.

4.1 The trading model by Kodres and Pritsker (2002)

To address the theoretical background for our empirical results, we briefly review the model

of Kodres and Pritsker (2002) and why Nasdaq stock prices and Forex rates correlate.

We assume the economy with N risk assets with zero net supply, and a riskless asset as

the numeraire which is inelastically supplied. The risky assets are liquidated at the end of

trading game and generate the random vector of value ṽ. The riskless assets are assumed

to have zero net return. Investors trade the assets in the first period, and consume the

liquidation value of all assets in the second period, or the end of this game.

As in the model of Grossman and Stiglitz (1980), there are three types of agents: informed

traders, uninformed traders, and noise traders. The number of traders are denoted as µI , and

µU . Noise traders submit elastic supply of assets by following the probability distribution
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ẽ ∼ N(0,Σe). We assume Σe is diagonal. This represents independent liquidity shocks12.

In order to derive a meaningful equilibrium, informed traders and uninformed traders are

assumed to be risk-averse and have negative exponential utility function. The rate of relative

risk aversion is set to A > 0.

Informed traders receive information on the liquidation value before the first period, and

form the conditional expectation about ṽ. Namely,

ṽ = θ̃ + ũ.

Here, θ̃ is the informed trader’s conditional expectation E[ṽ|Information] and ũ is the re-

gression residual. The unconditional joint distribution of θ̃ and ũ is assumed to be normal:

 θ̃

ũ

 ∼ N


 θ̄

0

 ,

 Σθ 0

0 Σu


 . (1)

We also assume that these random variables are jointly distributed with ẽ. Note that the

information structure is hierarchical. Uninformed trader’s information set is nested by that

of informed traders. Also, informed traders obtain the “signal” to infer the liquidation value

for all markets at the same time. On the other hand, uninformed traders attempt to in-

fer information from prices. The presence of noise traders prevents the informed trader’s

information to be fully revealing.

The market makers receive the demand schedule from traders, and pins down a mar-

ket clearing prices. Denoting each demand function as XI(P̃ , θ̃) and XU(P̃ ), the market

clearing condition is

µIXI(P̃ , θ̃) + µUXU(P̃ ) + ẽ = 0. (2)

The assumptions of negative exponential utility function and their terminal wealth following

12Bernhardt and Taub (2008) proposes that Σe can be a only a source of contagion when investors are
risk neutral and internalize price impacts.
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normal distribution, both traders have linear demand functions:

XI(P̃ , θ̃) = A−1V ar−1(ṽ|θ̃)
(
E(ṽ|θ̃)− P̃

)
,

XU(P̃ ) = A−1V ar−1(ṽ|P̃ )
(
E(ṽ|P̃ )− P̃

)
. (3)

As we assumed, informed traders’ conditional expectation and conditional variance of the

liquidation values are E(ṽ|θ̃) = θ̃ and E[V ar(ṽ|θ̃)] = V ar(ṽ) − V ar(E(ṽ|θ̃)) = Σu =

V ar(ṽ|θ̃). Plugging investor’s demand functions (3) into the market clearing condition (2),

we can construct uninformed’s “signal” inferred by prices as follows.

θ̃P ≡ θ̃ +
A

µI
Σuẽ. (4)

The expected liquidation value conditional on prices coincides with that of conditional on

this signal:

E(ṽ|P̃ ) = E(ṽ|θ̃P ). (5)

Since ṽ, θ̃, and ẽ are jointly normally distributed, we can calculate this conditional expecta-

tion and the conditional variance by projection theorem. Thus we can obtain the expression

for the demand functions.

Equation (5) means that uninformed traders cannot differentiate the informed traders’

expectation from noise. Different from the model of Grossman and Stiglitz (1980), Σu takes

a matrix form, which defines the allocation of risky assets for informed traders. Thus, when

Σu is not diagonal, uninformed trader can confuse the shocks in the excess demand from

portfolio rebalancing with information shocks.

The rational expectations equilibrium is defined by the demand functions which maximize

each agent’s utility (or Equation 3), the prices that clear the market (or Equation 2), and

agent’s beliefs being consistent with information revealed by prices (or Equation 5).

Kodres and Pritsker (2002) show that there is no contagion when Σθ, Σu, and Σe are
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all diagonal (their Proposition 2). Namely, liquidity shocks on ẽk, information shock on θ̃k,

changes in order flows, and changes in prices in k th market do not affect other i 6= k markets’

variables. In next section, we specify these matrices.

4.2 Information structure between Equity and Forex markets

Based on this model, we specify following information structure with one stock and three

currency fundamentals.

ṽ = Φf̃ + η̃, Φ ≡



α1 0 0 0 β1

0 αE 0 0 βE

0 0 αU 0 βU

0 0 0 αJ βJ


, f̃ =



f̃1

f̃E

f̃U

f̃J

f̃c


.

f̃ are the risk factors where f̃c is a common factor and the others are the country (or

f̃E, f̃U , f̃J) or stock market (or f̃1) specific risk factors. They are independent each other. Φ

specify the exposure to the risk. ṽ1 is the fundamental of the stock market, and the others

are for country specific fundamentals. We assume that fundamentals take a log form, and

the difference of fundamentals represents the exchange rate. Since there are three Forex rates

for three currency fundamentals, the system loses a degree of freedom. Thus we have,

T ṽ =


ṽ1

ṽE − ṽJ

ṽE − ṽU

 = TΦf̃ + T η̃, T ≡


1 0 0 0

0 1 0 −1

0 1 −1 0

 .

Because we examine the correlation within quarter-seconds and look for the primary

cause of this rapid co-price-discovery process, we focus on the information channel. Along

with the notation of the general model, we define the expected fundamentals and the residual
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for informed traders.

θ̃ ≡ TΦf̃ , ũ ≡ T η̃.

The variance-covariance matrices of θ̃ and η̃ are not diagonal. Especially, the exposure to

the common risk factor determines the comovement between the stock market and the Forex

market. When the relative exposures β2 ≡ βE − βJ and β3 ≡ βE − βU are both equal to zero

and there are no correlated noise trading, there is no comovement between stock and Forex.

Kodres and Pritsker (2002) mainly assumes that information of common shocks are not

available for informed traders. In contrast, we assume that the common shocks are in-

cluded in the informed trader’s information set. In this model, we think that for relatively

short time length within one second, common information such as index future returns and

macroeconomic announcement are observable for the informed but not for the others.

4.3 Theoretical implications

We can interpret the correlation of prices in Figure 1 in line with this model. When Nasdaq

market is positively exposed to the common risk, or β1 > 0, Nasdaq’s positive comovement

with EUR/JPY and USD/JPY indicates the exposure to the common risk is stronger for

Euro and U.S. than Japan, i.e., βE − βJ > 0 and βU − βJ > 0.

In contrast to EUR/JPY and USD/JPY, changes of correlation between Nasdaq and

EUR/USD indicates the exposure of Euro and U.S. to the common risk is time varying.

Before the beginning of September 2008, U.S. and Euro were equally exposed to the risk,

but after Lehman Brothers collapsed and TARP was introduced, the risk for Euro had been

more emphasized. The magnitude of exposure was βE > βU > βJ and Nasdaq stock market

was positively correlated with all the currency pairs.

From next section, we examine the high-frequency correlation between Nasdaq HFT

trading and Forex markets. Based on the model, we can draw a way to understanding the

results of the empirical analysis. Since this multiple-asset model does not produce a simple
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analytic expression, we rely on numerical comparative statics.

Figure 2 shows the numerical comparative statics for how correlation of prices and re-

sponses to liquidity shocks are influenced by the exposure to the common risk factor, the

aggressiveness of informed trading, and the magnitude of noise trading.13

First, when the price change at market k is less related to the common risk factor (or

small |βk|), uninformed trading at market k less relays on the other market. Thus, correlation

of prices between market k and other markets is in proportion to βk (top-left panel of Figure

2). The correlation becomes zero when βk = 0.

We are also interested in the relation between the volatility of market k and the cor-

relation with other markets. When the volatility of prices are induced by the changes in

idiosyncratic factor αk, the volatility of market k and the correlation have negative propor-

tional relationships (top-right panel of Figure 2 where k = 2).

Second, we investigate the case when the informed traders trade more aggressively in

market k than other markets. So far, we assume that µI and µU are a scalar. Here, we can

rewrite them as a diagonal matrix. That is, we assume that the proportion of informed and

uninformed traders differ across markets. Then we can interpret why trading aggressiveness

or informed traders differs in the two market. The numerical example of this case is illustrated

by the middle panel in Figure 2, which show how the price change of market i in response to

normalized liquidity shocks εk varies depending on the ratio of informed trading in market

1 (or stock market).14 The panels show that dP2

dε1
> dP1

dε2
and dX2

dε1
> dX1

dε2
when the ratio of

informed trading in market 1 is large enough.15

Third, when the noise trading is larger at market k, or Σe(k,k) is larger than other elements,

shocks in market k affect little to the other markets. This is because uninformed traders put

smaller weight for the noisy market k to predicting other markets. Thus, even though shocks

13For the numerical experiments, each parameters are set as follows: [β1, βE , βU , βJ ] = [1, 1, 0.5, 0.5]/
√

10;
For j = 1, E, U, J , αj = 1/

√
10; V ar(ẽj) = 10; V ar(ũj) = 10. µI = 0.1 and µU = 0.9. The risk factors are

assumed to follow the standard normal distribution.
14In this example, we assume that aggressiveness of informed trading in market 2 and 3 (or Forex markets)

are the same and µI = 0.1 and µU = 0.9.
15Here, Xk denotes the uninformed trading at market k.
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in Nasdaq market can affect the Forex market, the reverse is not necessarily true if trading

in the Forex market is noisier and less informative. This case is illustrated by the bottom

panels in Figure 2. The panels show that dP2

dε1
> dP1

dε2
when the variance of noise trading is

sufficiently large.

The first results can explain the time-variation of the spillover is governed by the variation

of the exposure to risks, or α and β. Based on this result, we can interpret the empirical

results in section 5.3 and 5.6. The second and third results explain the asymmetric lead-lag

between HFT and the Forex. If HFT is better at representing the common risk factors than

Forex traders, the Forex market can be influenced by HFTs while the reverse may not be

true (this intuition is related to the analysis in section 5.8). This result is already observed

in section 3.5, and are examined in section 5.1 and 5.2 by an alternate methodology.

The limitation of this model is that we do not distinguish the behavior of HFTs and non-

HFTs in stock market, and this is the reason that our theoretical model does not exactly

match our empirical analysis. There are a growing theoretical literature on this issue (e.g.,

Biais, Foucault and Moinas (2013); Menkveld and Jovanovic (2012)).

5 High-frequency VAR analysis

5.1 Base formulation

To measure the spillovers between Forex-OIB, HFT-OIB, non-HFT-OIB, and Forex-return,

we estimate the following system of vector autoregression (VAR):

OIBfx,t =
K∑

k=1

αfx,kOIBfx,t−k +
K∑

k=1

βfx,kOIBHFT,t−k +
K∑

k=1

γfx,kOIBnHFT,t−k +
K∑

k=1

ρfx,krt−k + εfx,t (6)

OIBHFT,t =
K∑

k=1

αhft,kOIBfx,t−k +

K∑
k=1

βhft,kOIBHFT,t−k +
K∑

k=1

γhft,kOIBnHFT,t−k +
K∑

k=1

ρhft,krt−k + εhft,t

(7)

OIBnHFT,t =
K∑

k=1

αnhf,kOIBfx,t−k+
K∑

k=1

βnhf,kOIBHFT,t−k+
K∑

k=1

γnhf,kOIBnHFT,t−k+
K∑

k=1

ρnhf,krt−k+εnhf,t

(8)
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rt =
K∑

k=1

αret,kOIBfx,t−k +
K∑

k=1

βret,kOIBHFT,t−k +
K∑

k=1

γret,kOIBnHFT,t−k +
K∑

k=1

ρret,krt−k + εret,t. (9)

In equations, OIBfx,t , OIBHFT,t, OIBnHFT,t are quoted signed orders, or quoted order

imbalances (quoted OIBs), of a Forex currency pair (EUR/JPY, EUR/USD, USD/JPY),

HFT, and non-HFT.16 rt is the Forex return of the currency pair. The time interval is

defined as an event time, and the minimum clock-time between t and t − 1 is a quarter

second. The return rt is defined based on the mid-quote-price between before-the-first trade

at t and before-the-first trade at t− 1.17

A concern about this formulation is the proper ordering of trades across different market:

we cannot identify the order of trades in a quarter second. This problem affects the variance

decomposition. We take care of this problem by deriving the lower and the upper limit of

the contribution to the variance.

We estimate Equations (6)-(9) with ten (K = 10) and 30 (K = 30) lags. K = 10

lag is determined by the Bayesian Information Criterion in a preliminary analysis for the

sample day of Jan 8, 2008. Using 30 lags, we can capture the reaction to a shock over

10 × 0.25 = 2.5 seconds. We estimate the system for day-by-day samples and present the

average of estimated coefficients and t-values. The standard errors are calculated using

Fama-MacBeth method. In Table 2, the t-values are from simple cross-sectional means.

Figure 4 presents the Fama-MacBeth t-statistics.

Estimation results

Table 2 presents the VAR(10) estimation results for EUR/JPY. In addition to the estimated

coefficients and the Fama-MacBeth t-statistics, we also present the proportion of samples

with less than one-percent p-values. For results, the coefficients of βfx,k and βret,k are positive

and statistically significant (at roughly 10 % significance level) for up to lag k = 5, providing

evidence that HFTs can predict Forex activities. To contrast, ρhft,k is significantly positive

16Forex OIB is divided by one million.
17Barclay and Hendershott (2003) defines this return as rt−1 and include contemporaneous terms of OIB

in VAR.
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up to three lags, meaning that HFT-OIB reacts to the Forex return and transmits the

information produced in the Forex market. To contrast, the t-statistics of γfx,k and γret,k are

barely significant up to lag k = 2. Thus, non-HFT have only limited predictive power for the

Forex activities. non-HFT-OIB also does not react to the Forex return. Therefore, in the

high-frequency world, common-information between the Forex and Equities are transmitted

mostly by the HFTs rather than non-HFTs. In later section, we confirm this statement by

looking into Granger-causality and variance decomposition.

Moreover, the economic magnitude of the spillover is not small. In Table 1, one standard

deviation of quoted OIB of Forex (EUR/JPY) and HFT are 51.9 million yen and 88.5 thou-

sands dollar. With αret,1 = 1.33 × 10−8 and βret,1 = 1.37 × 10−11, each deviations of OIBs

leads to 51.9 × 1.33 × 10−8 = 0.0069bp and 88.5 × 103 × 1.37 × 10−11 = 0.012bp increases

in the EUR/JPY rate. Thus, HFT’s order flows also have a significant impact on the Forex

returns. The calculation measures the response of returns in a quarter-second after the order.

The contemporaneous price impact is measured by mean( rt
OIB|t) in the summary statistics

table. For the long-run response, we implement the variance decomposition in section 5.5

following the method of Hasbrouck (1991).

While Nasdaq OIB can affect the Forex market, the reverse causality seems weaker. Since

the t-statistics of αHFT,k and αnHFT,k are both close to zero, Forex-OIB does not predict both

HFT- and non-HFT-OIB. Since the t-statistics of ρHFT,k and ρnHFT,k are smaller than βHFT,k

or βnHFT,k, the Forex return also has limited predictive power to future Nasdaq OIBs. As

we explained in section 4.3, this finding is consistent with the case when the Forex market

is less informative because of less accurate information signals and greater noise trading.

Informativeness of order flows are estimated in section 5.5, supporting this argument.

For other currency pairs, Figure 4 shows the results. It shows the Fama-MacBeth t-

statistics of the day-by-day estimation of VAR(30) for three currency pairs. For HFT-

OIB and Forex variables, we observe the similar lead-lag relationships analyzed above. The

pattern of coefficients are also very similar among the currencies. The estimated coefficients
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in sub-sample, however, show that the spillovers are time-varying. In section 5.3, we examine

the time-series plot of the predictability of FX-returns by Nasdaq OIBs.

5.2 Granger-causality tests

Table 3 reports pairwise Granger-causality tests. For the null hypothesis that variable j

does not Granger-cause variable i, we test whether the lagged coefficients of j are jointly

zero when i is the dependent variable in the VAR.

In Table 3, (i, j) cell shows the p-value of the F-test (the causality of j → i). A day-by-

day VAR are conducted the means of p-value over time are presented. For results, HFT-OIB

Granger-causes Forex-OIB, non-HFT-OIB, and Forex returns. For the reverse causality, we

only find the significant spillover from the Forex returns to Nasdaq HFT-OIB.18 We also find

that non-HFT-OIB does not Granger-cause Forex variables.

Thus, Granger-causesality tests also confirm that the causality from Nasdaq-HFT to

Forex exists. The reverse causality result implies HFTs are common information aggregators.

5.3 Time-series plot

In an earlier section, it was shown that the correlation between Nasdaq Index and Forex

rates are time-varying. By plotting the spillover coefficients over time, the interdependence

of markets and the role of HFTs related to this phenomenon can be shown clearly.

Figure 5 plots the time series of the sum of t-statistics for y = rfx over time.19 This

plots shows the intensity of spillover between Nasdaq and Forex in terms of their order

flows. We focus on the sum of t-statistics of HFT-OIB and non-HFT-OIB (i.e, Σ10
k=1βret,k

and Σ10
k=1γret,k). The top panel shows the t-statistics of HFT-OIB, and the bottom one shows

that of non-HFT-OIB.

18When we keep the data only when both Nasdaq and Forex have observations, the Granger-causesality
(FX-return→ HFT-OIB) becomes stronger (estimation results are omitted from this paper). Thus this result
can be partly driven by the scarcity of the Forex transactions. But still, the Nasdaq HFT have significant
spillovers to the Forex market.

19We present these values because the level of coefficients have different units and are less comparable.
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The spillovers between EUR/JPY and USD/JPY are mostly stable than EUR/USD, but

they become relatively high between November 2008 and January 2009. To contrast, the

spillover with EUR/USD is varying over time. It is close to zero before the end of May and

goes downward between June and September in 2008. After September, it goes upward and

the sign becomes positive.

The above results are consistent with the conventional view on the financial crisis. At the

midst of the financial crisis, Japanese yen had become a safe haven currency (or exposure

to the common shock is small). Thus, any good (bad) sentiment about the financial crisis

push up (down) Nasdaq market and Japanese yen depreciates (appreciates) relative to other

currencies. During 2008, it had been ambiguous which of U.S. or EU is hit by the financial

crisis harder. Since many European banks had invested in “toxic” assets that were earlier

created in the U.S., and dollar liquidity shortage was severe in Europe. This ambiguity

is reflected in the time-varying sign of the reaction in EUR/USD. Before September 2008,

U.S. economy was thought to be more sensitive to the crisis, leading the negative correlation

between Nasdaq order flows and EUR/USD. After the collapse of the Lehman Brothers in

September 2008, the financial crisis propagated to the Eurozone crisis, and Nasdaq order

flows began to be positively correlated with EUR/USD.

During 2008-09, non-HFT exhibit the smaller variation of the spillover over time. The

time-series of HFT, however, exhibits the clearer patterns. For example, during October in

2008, the spillovers by HFTs rose for every currency pairs. This result may provide evidence

that HFTs have superior ability to trading on market-wide information, which is captured

as the clearer spillovers on the Forex market.

5.4 Intraday Pattern

Intraday patterns of Forex and Stock market are different. Ito and Hashimoto (2006) showed

that the Forex activity has three peaks at the beginning of each of London, New York, and

Tokyo stock market, but it does not have peaks at the closing of each stock market. To
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contrast, stock markets have so called U-shape patterns for the activity. Also, the Forex

market is the most liquid at the opening in each time-zone, but stock markets are illiquid

at the opening. Do these different intraday patterns affect the spillovers between the two

markets?

To examine the changes of spillovers along the intraday time of day, we separate a day

into thirteen 30-minutes-windows and estimated the day-by-day VAR for each time window.

The number of each sub-sample is as many as 5000, and we can estimate the same VAR

system.

Figure 6 shows the Fama-MacBeth t-statistics o for y = OIBfx and y = rfx equations.

Here, we only presents EUR/JPY results but the other currency pairs also show similar

patterns. We estimated the VAR with 30 lags, but show only up to 10 lags for presentation

purpose.

For both y = OIBfx and y = rfx, the Fama-MacBeth t-statistics for HFT-OIB are larger

in the morning than in the end of the trading day. Not only Nasdaq OIBs, but also Forex-OIB

and returns show smaller significance and delayed responses in the afternoon session.

Related to this finding, Hirschey (2013) reports that HFT-OIB is more strongly corre-

lated with future non-HFT-OIB in the morning than in the middle of the trading day. He

explains this fact due to the impatient non-HFTs in the morning when there are much pri-

vate information accumulated during overnight. In our context, the variable intensity of the

spillovers can be caused by the informativeness, or amount of private information, of the

equity market order flows.

5.5 Variance decomposition (Hasbrouck 1991)

To address the importance of Nasdaq transactions to the price formation process in the Forex

market, we follow Hasbrouck (1991, 1995) to decompose the variance of the efficient price

into the portion of total price discovery that is correlated with Forex, HFT, and Nasdaq

nonon-HFT trades.
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Following Hasbrouck (1991), the VAR system is modified to incorporating a contempo-

raneous term of Forex-OIB for y = rfx regression:

rt−αret,0OIBfx,t =

K∑
k=1

αret,kOIBfx,t−k+

K∑
k=1

βret,kOIBHFT,t−k+

K∑
k=1

γret,kOIBnHFT,t−k+

K∑
k=1

ρkrt−k+εret,t.

(10)

The other equations are unchanged. After estimating Equation (10), we transform this little SVAR

model to VAR. Then we invert the system to generate a vector moving average model. We

obtain

yt = Ψ(L)εt,

where yt and εt are the (4 × 1) column vectors of independent and error variables. The

variance decomposition is done through calculating the fraction of total price discovery from

private information revealed through trades. The bid-ask midpoint pt can be decomposed

into a random-walk component mt and a stationary component st: pt = mt + st, where

mt = mt−1 + vt and vt ∼ N(0, σ2
v) with E[vtvs] = 0 for t 6= s. mt is referred to the

permanent component of price, and st is referred to the transitory component of price.

Thus, rt = pt − pt−1 = vt + ∆st. Matching the autocovariance generating function of this

expression and that of VMA representation of equations (6) - (8) and (10) , we can decompose

the variance of the permanent component of the quote changes σ2
v into price changes triggered

by the Forex trades, HFT and nonon-HFT trades, and the arrivals of public information20.

Assuming that the covariance matrix of the residuals var(εt) is diagonal, we have

σ2
v = ψdiag([σ2

fx, σ
2
hft, σ

2
nhf , σ

2
ret])ψ

′, ψ ≡
[
ψfx, ψhft, ψnhf , ψret

]
= Ψ(1)(4,:)

where Ψ(1) = I + Ψ1 + Ψ2 + · · · . Intuitively, Ψ(1)εt means the long-run impact of a

disturbance on each dependent variables. ψ is the vector of the VMA coefficients for y = rt,

or the fourth row vector of Ψ(1). σ2
j is the variance of the residuals for j’s regression

20See Hasbrouck (1991) for the detailed proof.
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equation. Empirically, twenty lags of the VMA coefficients are used. The information share

of j’s variable is defined as

ISj ≡
(ψjσj)

2

σ2
v

.

We interpret the measure as the component of price discovery attributable to public infor-

mation and the private information revealed by some party of traders. For example, the

ratio of private information conveyed by HFT trades is IShft.

Following Hasbrouck (1995), we can also calculate the lower and the upper bound of the

information share when we consider the structure of V ar(εt). To do so, we first make a

Cholesky factorization of var(εt), and denote the lower triangular matrix as F . Thus we

have εt = Fzt with E[zt] = 0 and var(zt) = I. The information share is now defined as

ISj ≡
([ψF ]j)

2

ψvar(εt)ψ
′

where [ψF ]j is the jth element of the row matrix ψF . The calculation of the information

shares now depends on the order of the VAR system. The factorization imposes a hierarchy

that maximizes the information share on the first variable and minimizes the information

share on the last variable. 21

Table 4 reports the variance decomposition results, including the average of the decompo-

sition results for day-by-day estimations, associated with the standard deviation; the lower

and the upper bounds of the information shares (ISj
−

and ¯ISj) by taking a permutation of

the orders of the VAR system. Note that the ISj under the independence assumption does

not necessarily lie between the lower and the upper bounds, because of negative correlations

between the residuals. In addition to the statistics using all samples, sub sample statistics

for every quarter are presented.

The result confirms that HFTs have significant spillovers on the price discovery in the

Forex market. The fraction of total price discovery due to HFTs is 4.27% for EUR/JPY,

21In fact, as Hasbrouck (2002) points, this ordering does not ensure the correct lower and upper bound.
We check all the permutation to provide the lower and upper bounds.
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1.87% for EUR/USD, and 3.23% for USD/JPY. These figures are high relative to the Forex

OIB.22 For EUR/USD, the spillovers by HFT-OIB is relatively smaller. This negative result

can be caused by the time-variation of the spillovers between the currency and U.S. stocks:

while the price discovery by HFT-OIB is smaller in the first and second quarters, it becomes

higher in the third and fourth quarter.

Although HFTs take a significant role in the price discovery process of the Forex market,

non-HFTs do not. For all currency pairs, the fraction of price discovery due to non-HFT-OIB

is the lowest. Price discovery by the quote changes dominate. Probably this is because the

frequency of quotes change is 10 times as much as that of trades (see summary statics table).

In the sub-sample analysis, we can observe that the contribution by HFT-OIB varies

over time and is not monotonically increasing. The pattern across currency pairs also differs.

Since the contribution varies in time-series as much as cross-sectional, it is likely that these

variation can be due to the correlation between the currency rate and U.S. stock market

rather than the changes of HFT’s activities.

These results about price discovery confirms that Nasdaq order flows (especially those

by HFTs) are informative for Forex rate. As our theoretical prediction tells, this leads the

asymmetric response to the noise trading in markets, which can be viewed as a lead-lag

between the markets.23

5.6 Determinants of predictability

The theoretical model predicts that the correlation of price between markets i and k, or

corr(Pi, Pk), depends on the covariance structure of the fundamentals defined by the id-

iosyncratic risk exposures α and common risk exposures β (top panels in Figure 2). When

the asset k’s price volatility is ascribed to the increase in αk (or βk), the volatility is neg-

22The estimated values depend on the formation of data, especially returns. We repeated this analysis for
different formation of data and confirm that the qualitative results are similar.

23For stating this argument, we have to show that Forex variables are not very informative for the price
discovery in the Nasdaq market. We do not implement this analysis here, but this is highly likely because
Forex variables are mostly insignificant to determine the Nasdaq OIBs.

25



atively (or positively) correlated with corr(Pi, Pk). Both αk and βk refer to the degree of

asymmetric information and contribute to the price volatility, but their effect on corr(Pi, Pk)

are opposite.

Based on these observation, we examine the determinants of predictability of Forex re-

turns. Using the price volatility and the measure of asymmetric information |OIB|
V OL

, we esti-

mate the following equation.24

logit

(
1−

R2
−hf
R2

)
= b1σp,fx + b2

|OIBfx|
V OLfx

+ b3rfx

b4σp,nas + b5
|OIBnas|
V OLnas

+ b6rnas + b7
V OLhft
V OLall

+
∑
k=1:4

b7+kDummy.Qk

Time subscripts are omitted. All the variables are at daily frequency. The dependent variable

is the logit transformation of the percentage loss of the R-squared by omitting HFT-OIBs

from the VAR equation (9). This gives a measure of predictive power of HFT to the Forex

returns. Independent variables include the volatility, absolute OIB to volume ratio, and

returns of both market. Here, the Nasdaq variables are the sum of HFT’s and non-HFT’s.

The price volatility is defined by using the daily high and low prices25. The regression also

includes HFT-volume to All-volume ratio and seasonal dummies for each quarter periods.

All independent variables but dummies are standardized. The estimation is done through

the OLS with the Newey-West standard errors.

Table 5 presents the regression results for each currency pair. The daily volatility σfx and

absolute OIB to volume ratio
|OIBfx|
V OLfx

tend to have negative coefficients. This implies that

the Forex volatility and information asymmetry is mainly induced by idiosyncratic factors,

reducing the predictability of Forex-returns by Nasdaq variables. To contrast, absolute OIB

to volume ratio in Nasdaq is more like insignificant and the volatility tend to have mixed

results. Thus, the volatility in Nasdaq is more likely to capture the varying exposure to

24The rationale for using |OIB|
V OL as a measure of asymmetric information, please refer to Kaul, Lei and

Stoffman (2008); Easley et al. (2008); Easley, O’Hara and Marcos (2012).
25i.e., σ2

nas =
(Phigh−Plow)2

4log(2) .
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common risk factors.

The HFT-volume ratio has significantly positive spillovers on the predictability measure.

The more HFTs trade, the predictability of Forex by HFTs increases more. This provides

evidence that HFT can improve the efficiency not only of the stock market, which is discussed

in past literature, but also of the Forex market.

5.7 HFT v.s. non-HFT

In previous sections, a focus of investigation was on the reaction of Forex to the HFT and

non-HFT order flows. In this section, the reverse is examined: the reaction of HFT and

non-HFT to the fluctuation at Forex, with emphasis on the difference between the HFT and

non-HFT.

To this aim, the difference of turnover captured by OIBHFT −OIBnHFT is used. When

this measure is positive (negative), HFT accumulate long (short) position more aggressively

than non-HFT. We estimate the following equation:

OIBHFT,t −OIBnHFT,t =
K∑
k=1

αfx,kOIBfx,t−k +
K∑
k=1

ρfx,krt−k + εfx,t.

We estimate this equation for day-by-day samples for each three currency pairs.The

Fama-MacBeth t-statistics are reported in Figure 8.

The result shows that the coefficients on OIBfxare negative and those on returns move

from positive to negative as the number of lag increases. This result indicates that HFTs

trade more aggressively than non-HFT for around 2.5 seconds after a shock in Forex returns.

After 2.5 seconds, non-HFTs become more aggressive. Potentially, this difference of reaction

can explain why HFT-OIB predicts non-HFT OIB. HFTs aggregate market-wide information

from real-time financial information including Forex markets, and move faster than non-

HFTs.
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5.8 Idiosyncratic stock trading matters for Forex?

So far aggregate OIB was used to represent the activities in Nasdaq. Does idiosyncratic

fluctuation in each stock have predictive power to the Forex market? In this section, we use

individual stock transaction data and examine if idiosyncratic component matters or not.

The same VAR formula is used but replace the aggregate OIB with idiosyncratic component

of stock i’s OIB, and repeat stock-day by stock-day regressions.

To extract the idiosyncratic component, we regress the following equation for each stock

i:

OIBi,t = constant+ β
120∑
i=1

OIBi,t + εt.

OIBi is quoted order imbalances of stock i and can be either HFT’s or non-HFT’s. The

predicted values and residuals are denoted as ÔIBi,t and ÕIBi,t. ÔIBi,t is the common

component of stock i and ÕIBi,t is the idiosyncratic component. The revised regression

equation for Forex-return on Forex-OIB, stock i’s HFT and non-HFT-OIB is

rt =
K∑

k=1

αret,kOIBfx,t−k +
K∑

k=1

(βc,ret,kÔIBHFT,i,t−k + βid,ret,kÕIBHFT,i,t−k) (11)

+
K∑

k=1

(γc,ret,kÔIBnHFT,i,t−k + γid,ret,kÕIBnHFT,i,t−k) +
K∑

k=1

ρkrt−k + εret,t.

This equation is estimated stock-day by stock-day, and take the average of estimated

coefficients across time. The estimation results of Equation (11) are summarized in Fig-

ure 7. Here we present the sum of stock i’s Fama-MacBeth t-statistics up to ten lags

for HFT-OIB and non-HFT-OIB coefficients, or
∑10

k=1 FMi(βid,ret,i,k),
∑10

k=1 FMi(βc,ret,i,k),∑10
k=1 FMi(γid,ret,i,k), and

∑10
k=1 FMi(γc,ret,i,k).

The results show that an idiosyncratic component of OIB has almost zero predictive

power to the future Forex-returns. Most of the predictive power comes from the common

components. This findings holds for both HFT-OIB and non-HFT-OIB coefficients.

The result also is indirect evidence of why only HFT-OIB predict Forex: To predict

Forex, only common component of Nasdaq OIB matters and HFT-OIB better represents the
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common component. Forex traders do not differentiate HFT-OIB from non-HFT-OIB but

they just respond to the common component of OIB which is more likely to be driven by

HFTs.

6 Discussion

Lead-lag relationships Our dataset has the identification of HFTs for Nasdaq but not

for Forex. This limitation of data, in fact, makes it difficult to compare HFTs in Nasdaq and

HFTs in Forex. What we compare is HFTs in Nasdaq with Forex overall. Therefore there is

a possibility that HFTs in Forex are as faster as HFTs in Nasdaq and make the Forex rates

more efficient. Since our VAR analysis shows that OIBs in Forex do not predict Nasdaq

HFT-OIB but returns in Forex do, market makers in Forex are less likely to lag to Nasdaq

HFTs. The response should be less than 200 milliseconds, which is hard for human traders

to catch up and is likely to be an algorithm trader. We leave this possibility to future works.

Another concern over our lead-lag analysis is that Nasdaq system may simply be quicker

than that of EBS. In this situation, although public news is received by traders in the

both markets simultaneously, the difference in technological architecture may generate an

apparent comovement with lead-lag relationship. Our rational expectations model, however,

proposes that the comovement also occurs from liquidity trading shocks because uninformed

traders try to infer information from prices and order flows. The model also implies that

the reactions can be asymmetric between markets when one market is noiser. In fact, our

empirical evidence suggests such an asymmetry, supporting the second view.

Hard information and HFTs The reason why only HFTs can lead Forex activities is

that HFT-OIBs are more correlated with the market-wide activities than non-HFT-OIBs.

Since the Forex market only reacts to the common component of Nasdaq OIBs, HFTs tend

to predict the Forex activities better. Then, why are HFT-OIBs correlated with market-

wide activities? Unfortunately, this paper does not answer this question. Potentially, HFTs
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engage in aggregating “hard” quantitative information in different markets such as Index

futures, Government bond futures, and so on.

In fact, as suggested in the significant estimation of ρhft in the VAR system, HFTs put

the Forex information together and reflect it in the stock prices. When we examine stock-

by-stock trading, HFTs respond to the Forex rates more rapidly than non-HFTs and quickly

reverse their trades. If HFTs respond to other financial assets in the same fashion, their

trades necessarily predict non-HFT’s behavior as literature claims.

7 Conclusion

In this paper, cross-market spillovers of returns, order flows and transactions between NAS-

DAQ and the foreign exchange markets, in a fraction of one second, literally, were examined,

exploiting high-frequency data sets in the two markets. In our research, a distinction be-

tween high-frequency traders (HFTs) and non-HFTs in the NASDAQ is important. It is

expected that HFTs react to new arrival of news faster than non-HFTs, and we quantify the

difference. The lead-lag relationship between order flows in Nasdaq and foreign exchange

markets is examined, distinguishing HFTs and non-HFTs.

Major findings are summarized as follows. First, HFTs in the Nasdaq market are found to

use market information of the foreign exchange market as well as the Nasdaq market. There

is a strong evidence that HFTs in the Nasdaq aggregate information in the two market in

order to place orders.

Second, HFTs react to the market conditions of the foreign exchange market faster than

non-HFTs, by roughly 250 millisecond. The degree of the lag by non-HFTs may be surpris-

ingly small, but it would make a large difference in return performance over the time.

Third, order flow imbalances and returns in the Nasdaq leads those in the foreign exchange

market. Possible reasons were discussed in Section 6.

Four, when the share of HFT trades in total trade increases, the correlation between
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Nasdaq returns and foreign exchange returns becomes higher.

Five, during a crisis period, the degree of the above findings—such as the correlation

of HFTs trading share and return co-movement between Nasdaq and foreign exchange—is

intensified. The crisis period increases risk and opportunities of trading assets and advantages

of HFTs over non-HFTs become more distinctive.

In sum, the strong presence of HFTs in the Nasdaq market contributes to faster price

discovery not only in Nasdaq market but in the foreign exchange market with lag of a

fraction of one second. The novelty of this paper is to match the high-frequency datasets in

the two market and found the above-mentioned empirical findings. Theoretical framework

and prediction of the Kodres and Pritsker (2002) is confirmed by our empirical examination.
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A Data construction

• Nasdaq OMX High-frequency trading data

1. Making second-by-second data

(a) For each HFT or non-HFT initiated trades, trades are summed up within

a quarter-second. We calculate total quoted-volume and quoted order im-

balance (OIB). OIB is defined as buyer-initiated quoted trade volumes less

seller-initiated quoted trade volumes. Thus we have OIB of individual stocks

for each HFT and non-HFT. This individual data is used in section 5.8.

(b) The volume and OIB are aggregated across individual stocks for each quarter-

second, generating HFT-aggregate data and non-HFT-aggregate data.

(c) There are gaps between transactions when there is no trade within some

quarter-second. We fill in the gap and keep the time-stamp as real clock

time. This interpolated data is used to calculate the descriptive statistics

and conditional frequencies.

2. Making daily frequency data

(a) We calculate the daily return, volume, and OIB. Daily frequency data are

used to analyze the determinant of the magnitude of the spillovers (in section

5.6).

• ICAP EBS Foreign Exchange data (refer Table 6 to the dataset after data-cleaning

below)

1. Making quarter-second by quarter-second data

(a) Original level-five data have quarter-second by quarter-second time stamps.

i. When there are multiple trades within a quarter-second, the orders have

the same time stamp. We calculate the total volume and OIB by summing

up within the quarter-second.
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ii. When there are both quotes and prices within a quarter-second, the

records do not specify the correct ordering of the transactions. In this

case, we identify the order for matching the direction of deals and the

prices on the LOB. For example, buying orders are followed by the in-

crease of the LOB prices while selling orders are followed by the drop of

prices. When the prices on the LOB do not change before and after the

deals, we can safely ignore the orders: we randomly determine the orders.

iii. When there are no quotes update between subsequent trades, we consol-

idate the trades and give the youngest time-stamp.

(b) The price is defined as a mid-price calculated form the order book data .26

We define two prices during a time segment t: the log-price before the first

trade within a quarter-second (denoted as pb,t) and the log-price after the

last trade within a quarter-second (denoted as pa,t). When there is only one

quote change between trades, another quote is interpolated. Forex returns are

defined in three ways. The first one, or rt1, is defined by the log-price changes

between the before-the-trade-prices at t+1 and the before-the-trade-prices at

t, or pb,t+1 − pa,t. Thus, the return rt1 represents the price changes involving

trades. The second one, rt2, is defined by the log-price changes between the

before-the-trade prices at t + 1 and the after-the-trade prices at t. rt2 does

not include the price changes that is caused by trades. The last definition,

rt3, is the log-difference between the after-the-trade price at t and the before-

the-trade price at t. The definition rt1 and rt2 have a bias in the time-stamp.

The time-stamp shows the occurrence of the price change too early especially

when price changes are less frequent. This is because the returns at t use

future prices at t + 1. This problem pronounces when we focus on real-time

rather than event-time. To contrast, the disadvantage of using rt3 is that

26The price can also be defined as a depth weight mid-price. In this article, we take a equally weighted
mid-price.
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it misses inter-seconds price changes. Since inter-second price changes occur

when a trade is not associated. In this article, we employ rt1 for regression

analysis and use rt3 for calculating conditional probability of order directions

.

(c) The Forex data are analyzed currency pair by currency pair. We do not

aggregate the data like Nasdaq data.

(d) We fill in the gap of the time to calculate the descriptive statistics and con-

ditional frequencies.

2. Making daily frequency data

(a) We make daily frequency data in a similar manner of the Nasdaq case.

We merge the two data-set for estimations.

• Merge the Nasdaq and Forex data

1. We convert the time-stamp of Forex from GMT to EST.

2. We discard the observation before 9:30 and after 16:00 EST for both the Nasdaq

and Forex data-set.

3. We merge each data by outer join, meaning that we keep all the transactions.

Thus we have event-time data. We use the combined data for estimating the

VAR.

4. For robustness check, we also combined the data by keeping calender time, which

allows no transactions in both markets. We use the data in our unreported

manuscript.
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Figure 1: (Top) Time series plots of Nasdaq Composite Index and Forex rates. This figure
plots the daily assets price at 16:00 (EST) over time. The prices are normalized by the prices
at Jan 7, 2008.
(Middle) The centered rolling correlation between the Nasdaq Composite Index return and
Forex returns. The rolling window is 25 days.
(Bottom) The centered rolling correlation between the level of the proportion of HFTs trading
volume and the stock-Forex correlations. The rolling window is 25 days.
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Figure 2: Simulation results of the model. This simulation describes how the price and
order flows can be influenced by the changes in underlying parameters such as the exposure
to the risk, number of informed traders, quantities of noise trading.
(1) Top-left panel: The correlation of prices P1 and P2 as a function of common exposure
to the fundamentals β2 = βe − βj.
(2) Top-right panel: The relationships between corr(P1, P2) and V ar(P2) as a function of
idiosyncratic risk exposure α2.
(3) Middle panels: The impacts on noise order flows X1 and X2 (left) and prices P1 and P2

(right) as a function of the proportion of informed traders µI of asset 1.
(4) Bottom panels: The impacts on noise order flows (left) and prices (right) as a function
of the variance of noise trading of asset 2 σ2

e,2.
In panels (3) and (4), the gaps between blue (response of asset 2 to shocks in 1) and green
(response of asset 1 to shocks in 2) show the asymmetric spillovers.

Note: Baseline parameters are set as follows: [β1, βE, βU , βJ ] = [1, 1, 0.5, 0.5]/
√

10;
For j = 1, E, U, J , αj = 1/

√
10; V ar(ẽj) = 10; V ar(ũj) = 10. µI = 0.1 and µU = 0.9.
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Figure 5: Time series plots of the sums of t-statistics in the equation of y = OIBfx. For
each day-estimation, the sum of t-statistics are calculated for the coefficients of OIBHFT,t−k
(top) and OIBnHFT,t−k (bottom) up to 10 lags, i.e.,

∑
k=1,...,10 tt−k.
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Figure 6: The VAR results for time-of-day regression. The currency pair is EUR/JPY. The
dependent variable is either FX OIB or FX return. The way of presentation is the same as
Figure 4: the horizontal axis shows the independent variables. (1) FX-OIB (α), (2) HFT-OIB
(β) (3) non-HFT-OIB (γ), and (4) FX-return (ρ). Each independent variable has coefficients
(and t-statistics) from one to 10 lags which are plotted from left to right.
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Figure 7: Plot of
∑

k=1,...,10 tβret,k (top) and
∑

k=1,...,10 tγret,k (bottom) for idiosyncratic resid-
ual component and the common expected component, sorted by the number of trades from
the smallest (x=1) to largest (x=120).
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Figure 8: A Plot of t-satistics for the regression coefficients:

OIBhf,t −OIBnhf,t =
∑30

k=1 αfx,kOIBfx,t−k +
∑30

k=1 ρfx,krt−k + εfx,t.

The currency pairs are EUR/JPY, EUR/USD, and USD/JPY (from top to bottom).
This plot describes who becomes a net-aggressive-buyer after the shocks for Forex OIBs
and Forex returns. When OIBhf,t − OIBnhf,t is positive (negative), HFT accumulate long
(short) position more aggressively than non-HFT. Therefore the positive coefficients imply
future relative intensity of aggressive buying for HFTs to non-HFTs.
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EUR/JPY FX-OIB NS HFT-OIB NS non-HFT-OIB FX-Return
FX-OIB 0 0.053 0.294 0

NS HFT-OIB 0.414 0 0 0.0128
NS non-HFT-OIB 0.467 0 0 0.151

FX-Return 0 0 0.179 0
EUR/USD

FX-OIB 0 0.202 0.405 0
NS HFT-OIB 0.498 0 0 0.178

NS non-HFT-OIB 0.534 0 0 0.364
FX-Return 0 0.108 0.366 0

USD/JPY
FX-OIB 0 0.166 0.289 0

NS HFT-OIB 0.383 0 0 0.0205
NS non-HFT-OIB 0.533 0 0 0.175

FX-Return 0 0.00967 0.275 0

Table 3: Granger Causality Tests (Null hypothesis: for (i, j) element, column variable j does
not Granger-cause row variable i) for the data using inner join. The figures are the p-value
of the test. The p-values less than 0.001 are rounded to zero.

unit = % ALL Q1 Q2 Q3 Q4

mean std ISj
−

¯ISj

EUR/JPY FX-OIB 0.604 0.529 0.584 0.614 0.838 0.79 0.441 0.424

HFT-OIB 4.27 3.37 3.88 7.36 4.46 3.16 5.72 3.93

non-HFT-OIB 0.378 0.464 0.345 1.43 0.516 0.241 0.424 0.282

FX-ret 91.6 16.8 88.5 91.4 91.2 92.8 90.4 91.4

EUR/USD FX-OIB 4.41 1.98 4.37 4.41 5.66 5.37 3.59 3.42

HFT-OIB 1.87 2.2 1.72 3.08 0.125 1.48 3.19 2.63

non-HFT-OIB 0.16 0.259 0.149 0.586 0.0672 0.111 0.242 0.186

FX-ret 90.4 16.4 89.2 90.3 91.1 90 90 89.8

USD/JPY FX-OIB 2.83 1.29 2.76 2.82 3.76 2.82 2.23 2.65

HFT-OIB 3.23 2.8 2.97 5.56 4.61 4.2 3.37 0.925

non-HFT-OIB 0.311 0.446 0.287 1.11 0.559 0.262 0.274 0.108

FX-ret 90.5 16.6 88.2 90.3 88.1 89.7 91.1 92.3

Table 4: Long-run variance decomposition of the efficient prices. The figures are denoted
as percentage to the total variance. The higher figure indicates stronger spillovers on the
efficient price discovery.

48



y = logit

(
1− R2

−hft

R2

)
EUR/JPY EUR/USD USD/JPY

volatility of Pfx -0.0166 0.0967 *** -0.0236

(-0.32) (5.82) (-0.49)
|OIBfx|
V OLfx

-0.172 * -0.0473 -0.163 **

(-1.47) (-0.668) (-1.92)

FX-return 0.0651 0.0873 * 0.036

(1.1) (1.49) (0.573)

volatility of Pnas -0.118 ** -0.0444 0.0867 *

(-1.92) (-0.63) (1.51)
|OIBnas|
V OLnas

0.00235 0.0821 ** -0.0148

(0.0497) (1.75) (-0.337)

Nasdaq return -0.0847 * 0.00375 -0.0229

(-1.52) (0.077) (-0.4)

VOL.HFT/VOL.ALL 0.296 *** 0.453 *** 0.474 ***

(3.11) (3.77) (4.52)

Dummy Q1 0.0291 -3.67 *** -0.723 ***

(0.204) (-17.7) (-4.52)

Dummy Q2 -0.74 *** -2.49 *** -0.729 ***

(-4.51) (-15.1) (-5.8)

Dummy Q3 -0.717 *** -2.14 *** -1.91 ***

(-3.21) (-7.87) (-8.3)

Dummy Q4 -0.0779 -1.01 *** -2.04 ***

(-0.521) (-5.81) (-7.44)

# of obs 402 402 402

R2 0.1117 0.6282 0.333

Table 5: Determinants of predictability. All the variables are at daily frequency.
The dependent variable is the logit transformation of the percentage loss of the R-squared
by omitting HFT-OIBs for the regressor from the VAR.
For independent variables, we have the volatility, absolute OIB to volume ratio, and return
for both market. We also have HFT-volume to All-volume ratio and seasonal dummies.
Dummies are for each quarter periods. The Nasdaq variables are the sum of HFT’s and
non-HFT’s. The volatility of Nasdaq is calculated from the prices of daily high and low. All
independent variables but dummies are standardized.
The estimation is done through the OLS with Newey-West standard errors.

49



Date Time Deal/Quote Price before deal Price after deal Buy # Sell # OIB rt1 rt2 rt3

20080121 136864 Q 153.715 153.715 0 6.5e-05 6.50e-05 0

20080121 136868 Q 153.725 153.725 0 0 0 0

20080121 136872 D 153.725 153.715 0 1 -1 -6.5e-05 0 -6.5e-05

20080121 136876 Q 153.715 153.715 0 0 0 0

20080121 136880 Q 153.715 153.715 0 -3.25e-05 -3.25e-05 0

20080121 136884 Q 153.710 153.710 0 0 0 0

Table 6: Example of the Forex dataset (EUR/JPY). Time-stamp is a quarter-second from
GMT00:00. When there is no deals at the interval, the price after deals is equal to the price
before deals. Each price is a mid-price and is obtained from the state of the limit order
book.
Return rt1 is defined as log(Price before deals at t + 1) − log(Price before deals at t).
Return rt2 is defined as log(Price before deals at t + 1) − log(Price after deals at t).
Thus, Return rt1 includes the price change associated with trades, while Return rt2 does
not. The deals at t is defined as a deals occurring in (t − 1, t]. Return rt3 is defined as
log(Price after deals at t)− log(Price before deals at t).
In this example, the deal at 136872 occurs in (136871,136872]. Nasdaq orders are matched
with these intervals.
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