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1 Introduction

The word robot comes from the Czech word ‘robota’, meaning forced labor.
Ever since the term’s invention in Karl C̆apek’s 1920 dystopian science fiction
masterpiece R.U.R, it has been associated with ambivalence about the power of
automation. The play begins with the general manager of Rossum’s Universal
Robots discussing the potential of his assembled beings to raise living standards.
He predicts that his robot laborers will lower the prices of goods to zero, ending
toil and poverty for all time. This plan hits a small snag when the robots decide
to overthrow their masters and destroy all humans. But was the manager’s
economic forecast even correct in the first place?

This paper investigates the implications of capital investments, in the form of
robots, which allow for production without labor. Our key finding is that an
increase in robotic productivity will temporarily raise output, but, by lowering
the demand for labor, can lower wages and consumption in the long run. In
what we term a paradox of robotic productivity, innovations that increase the
productivity of robotic investments can, after a generation, lower robotic and
total output, and lower the well-being (lifetime utility) of all future generations.
The mechanism for this immiserization is decreased wages of the workers with
whom the robots compete. We find this immiserization is most likely when the
future is heavily discounted, goods produced by robots are close substitutes for
goods created by human labor, and when traditional capital is a more important
factor in non-robotic production (so that the reduction of traditional capital has
a larger adverse impact on wages). In our richest setting, increases in robotic
productivity lower well-being until a threshold is reached. After reaching the
threshold, the economy may grow indefinitely.

The fact that a rise in robotics productivity may immiserize future generations
is paradoxical. After all, higher productivity enables society to produce more
output for the same level of inputs. If the market response to robotic innovations
does not lead to a positive result, this suggests that there may be an role for
government intervention. We show this intuition to be correct. Immiserization
may be overcome through redistributive policies of the state.

The paper proceeds as follows. A brief literature review puts current concerns
about automation in a historic context and surveys the research on robots and
growth. Section 3 introduces a basic overlapping generations setting in which
the generational impact of robots can be considered. Section 4 investigates the
one-sector version of the model, and section 5 analytically considers the two-
sector version. Section 6 gives a numerical analysis of the two-sector model.
Section 7 concludes.
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2 Literature Review

Even before the birth of modern science fiction, academics and ordinary people
have been concerned about the potential downsides of technological growth.1

The English Luddites of the late 18th and early 19th centuries famously orga-
nized raids and riots against the industrial machines they felt were taking their
jobs. In the second half of the 19th century, Marx (1867) bemoaned the fact
that under capitalism “all methods for raising the social productivity of labour
are put into effect at the cost of the individual worker”. In the first half of
the 20th century Keynes (1933) cautioned against overreaction to “technolog-
ical unemployment”, which, while painful for displaced workers, was merely a
“temporary phase of maladjustment”. Similarly, Schumpeter championed the
“creative destruction” of capitalism, in which older ways of doing work are,
not without pain, superseded by advances in technology as new types of more
productive work are created.

In the economic prosperity of the post-war era, the views of technological op-
timists generally held sway. However, recent wage stagnation and growing in-
equality across the developed world have led economists to take another hard
look at technological growth. Autor, Levy, and Murnane (2003), Acemoglu and
Autor (2011), and Autor and Dorn (2013) trace recent declines in employment
and wages of middle skilled workers to the development of smart machines.
Margo (2013) points to similar labor polarization during the early stages of
America’s industrial revolution. Goos, Manning, and Salomons (2010) offer ad-
ditional supporting evidence for Europe. Sachs and Kotlikoff (2013) present a
model in which robots immiserize future generations, a precursor of the models
studied in this paper. However, Mishel, Shierholz, and Schmitt (2013) argue
that ‘robots’ can’t be ‘blamed’ for post-1970’s U.S. job polarization given the
observed timing of changes in relative wages and employment. A literature in-
spired by Nelson and Phelps (1966) hypothesizes that inequality may be driven
by skilled workers more easily adapting to technological change, but generally
predicts only transitory increases in inequality.

A potential implication of our model is a decline, over time, in labor’s share
of national income. U.S. national accounts record a stable percent share of
national income going to labor during the 1980’s and 1990’s. But starting in
the 2000’s labor’s share has dropped significantly. Benedict and Osborne (2013)
try to quantify prospective human redundancy arguing that over 47 percent of
current jobs will likely be automated in the next two decades. Hemous and
Olson (2014) calibrate a model in which capital can substitute for low-skilled
labor while complementing high-skilled labor to explain trends in the labor share
of income and inequality.

The lessons of our model are also related to the endogenous growth literature.
In Rebelo’s (1991) AK model, sustained per capita output growth occurs so long
as there are no decreasing returns to scale in production. This model comple-
mented Romer (1990) which included open ended growth driven by endogenous
technological development in the tradition of learning by doing proposed by

1This section draws on Benzell et. al. (2015).
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Arrow (1962).

There are several models incorporating intergenerational transfers that find the
possibility for welfare improving transfers. Two papers that with mechanisms
more similar to this one are Sachs and Kotlikoff (2013) and Benzell et. al.

(2015). These papers also posit that technological changes may immiserize
future generations through the mechanism of reduced wages.

3 The Model Framework

The essential quality of robots, as we define them, is that they allow for out-
put without labor. To produce a unit of output from robotic technology, en-
trepreneurs need only make a capital investment. Innovation in robotic produc-
tion can therefore change labor’s share of national income. In a model with an
infinitely lived representative consumer, this is unlikely to have major effects.
However, if those earning labor and capital income have different propensities
to consume, then a change in labor’s share of income can have important effects
on saving and investment. We attempt to capture this effect in the simplest
possible setting.

The setup is an overlapping generations (OLG) model with two cohorts. This
allows for labor’s share of income to have a dynamic effect and straightforward
generational welfare analysis. Agents consume, work, and save while young, and
consume when old.

Households

All individuals live for two periods, working, saving and consuming while young,
and just consuming while old. Workers in this economy maximize a lifetime
utility function of the form

Ut = φu(~c1,t) + (1− φ)u(~c2,t+1), (1)

where ~c1,t and ~c2,t+1 are vectors of goods consumed by a household in the
first and second periods of life, and u(·) is a within-period homothetic utility
function. Henceforth, we will assume the within-period utility is logarithmic,
u(~ct) = ln(v(~ct)), where v is Cobb-Douglas with constant returns to scale. There
is no leisure.

A generation maximizes Ut subject to its lifetime budget constraint, which in
general may include government taxes and transfers.

wtLt +Gt = ~pt~c1,t +
~pt+1~c2,t+1

1 + [rt+1(1− τt)]
, (2)

where ~pt is a vector of prices, wt is the wage, Gt is the size of government grants
to the young, 1 + rt the interest rate, and τt is the capital income tax rate.
For convenience, define the net income of the young as the sum of their labor
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income and any government transfer, and the net interest rate of the old as net
of the government capital income tax. So,

wN
t = wtLt +Gt, (3)

and

rNt = rt(1− τt). (4)

Utility maximization leads to the well-known result that saving, St, equals a
fixed fraction (1− φ) of youth income,

St = (1− φ)(wN
t ). (5)

Households allocate savings with perfect foresight between available types of
physical assets to maximize returns.

4 The One-Sector Model

In this model framework the performance of labor markets is strongly linked
to the extent goods produced with human effort are replaceable by those that
robots create. When the outputs of robots are close substitutes for production
by humans and machinery, an increase in robotic productivity is likely to reduce
demand for labor. A fall in labor demand may trigger further declines in wages,
saving, and economic well-being. However, to the extent that workers produce
outputs that are imperfect substitutes of the outputs of robots, workers will
experience a rise in demand for their products, and this can result in a virtuous
circle of rising wages, savings, and production.

First we consider the one-sector version of the model in which the traditional
and robotic production technologies produce the same good.

Supply in the One-Sector Model

In the one-sector model, there are two types of firms. Time t production of
the consumption and investment good with the traditional output technology,
Xm,t, follows

Xm,t = DX,tM
ǫ
X,tL

1−ǫ
X,t , (6)

where MX,t is the amount of machines rented by these firms, LX,t is the amount
of labor hired, ǫ a Cobb Douglas parameter, and DX,t a total factor productivity
term. Production by robotic firms follow

Xr,t = ΘtRt, (7)

where Xr,t is the output of these firms, Rt is the amount of robots rented by
these firms, and Θt is the robotic productivity.
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Factor demands for robots, machines, and labor reflect

max
MX,tLX,t

Xm,t(MX,t, LX,t)− wtLX,t −mtMX,t (8)

and

max
Rt

Xr,t(Rt)− ρtRt, (9)

where mt is the rental rate for machines, and ρt is the rental rate for robots.

These yield the first order conditions

wt = (1− ǫ)DX,tM
ǫ
X,tL

−ǫ
X,t, (10)

mt = ǫDX,tM
ǫ−1
X,t L

1−ǫ
X,t , (11)

and

ρt = Θt. (12)

Households in the One-Sector Model

Utility is logarithmic in consumption of the one good.

u(xt) = ln(xt), (13)

Household demands for consumption and investment satisfy

x1,t = φwN
t (14)

and

x2,t = (1 + rNt )Kt, (15)

where Kt is capital of any type owned by the old.

Equilibrium in the One-Sector Model

The total output of the economy is the sum of the outputs of the two types of
firms,

Xt = Xm,t +Xr,t. (16)

The one-sector model is in equilibrium when the market for goods clears,

Xt = x1,t + x2,t + St, (17)

the labor market clears,
LX,t = Lt, (18)

the government is balancing its budget,

Gt = rtτtKt, (19)
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and the market for investments clears,

St = Kt+1 = MX,t+1 +RX,t+1, (20)

as capital depreciates fully each period.

Finally, investment seeks the highest return in the subsequent period with per-
fect foresight, and here we are only interested in the case where robots are
productive enough to be used, so investment must equalize the rate of return of
both forms of capital. Therefore,

1 + rt = mt = ρt = Θt. (21)

One-Sector Equilibrium Analysis

Consider the case where DX,t = Lt = 1 in all periods.

Combining first order equations yields

wt = (1− ǫ)
ǫ

Θt

ǫ
1−ǫ

. (22)

Note that a rise in robot productivity reduces the wage. The reason is that
higher Θ shifts investment from machines into robots. This lowers the capital-
labor ratio in Xm firms, decreasing the marginal productivity of workers.

We can write the indirect utility function in terms of Θt and Θt+1. Ignoring
constant terms, and assuming no transfers (Gt = τt = 0) we have

Ut = lnwt + (1− φ)ln(1 + rt+1), (23)

or,

Ut =
−ǫ

1− ǫ
lnΘt + (1− φ)lnΘt+1. (24)

Notice that robot productivity has two opposing effects on lifetime utility. A
rise of Θt lowers the wage while a rise of Θt+1 raises the returns on saving. The
negative wage effect tends to dominate the saving effect the larger is the capital
share of income (ǫ) in the machine using firms is large, because this measures the
importance of machines in complementing the labor or workers. Immiserization
is also more likely when the discount rate φ is higher, because a high φ means
that the utility value of higher returns to saving is low.

Consider a one-step permanent rise of Θ at time T . That is for t < T , Θt = ΘL

and for t ≥ T , Θt = ΘH > ΘL. The lifetime utility across generations is
therefore as follows:

for t < T − 1

Ut =
−ǫ

1− ǫ
lnΘL + (1− φ)lnΘL, (25)

when t = T − 1

Ut =
−ǫ

1− ǫ
lnΘL + (1− φ)lnΘH , (26)
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and if t > T − 1

Ut =
−ǫ

1− ǫ
lnΘH + (1− φ)lnΘH . (27)

The rise in robot productivity in period T raises the welfare of generation T −1.
For that generation, the rise of robot productivity has not yet affected wages.
However, the return on saving increases by the rise in robotic productivity in
period T . Generation T − 1, in other words, will enjoy high wages when young
and high retirement income due to the surge of robot technology. Generations
T and after will not be so lucky. For them, the mixed effects of better robots
will be reflected in lower wages and a higher rate of return to saving.

An increase in robotic productivity will induce long-run immiserization as long
as2

ǫ

1− ǫ
> (1− φ). (28)

If (28) holds, the wage effect dominates and leads to a decline in lifetime utility.
Thus, when the parameter values allow for immiserization, only a single gen-
eration benefits from the rise of robot productivity, specifically the generation
born just before the improvement in robot productivity. That generation bene-
fits from higher returns to saving without incurring the negative shock of lower
wages.

Ensuring that all generations benefit from the rise in Θ

Could a managed rise of robots lead to a better long-run outcome? It is clear
that markets alone are not sufficient to ensure that a rise of robot productivity
raises the well-being of future generations. However, it seems likely that a pure
rise in productivity Θ, by pushing out the production possibility frontier, can
be made into a rise in lifetime utility for all generations with the right kind of
government intervention. To insure a better outcome, the income of the young
should be augmented by redistribution from the old.

Here’s how to turn the robotics innovation in time T into a rise in well-being
for all generations from time T-1 onward.

In every period T and after, the government levies a tax on the capital income
of retirees and transfers the proceeds as a grant Gt to the young. Let the
government set the grant equal to the decline of the wage caused by the rise
of Θ. Let wH be the market wage associated with ΘH and wL be the market
wage associated with ΘL. Then necessarily, wL > wH . The grant mechanism
will function as follows: For t > T − 1

Gt = wL
t − wH

t . (29)

2On the other hand, a reduction in long-run national consumption can only occur if Θ
increases above 1. This is because the golden rule (long-run consumption maximizing) level
of saving, given constant L and full depreciation is that which brings long-run interest rates
equal to 1. In cases where Θ increases from a level below 1 to a level closer to but still below
1, long-run consumption will increase although welfare may decrease.
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To pay for this grant, the government levies a capital-income tax at rate τt on
the old in each period. With saving St, pre-tax capital income is given by ΘHSt.
Therefore, the tax rate should be set such that for t ≥ T

Gt = (ΘH
− 1)τtKt. (30)

Of course, savers anticipate this capital income tax and plan their inter-temporal
spending decisions accordingly. Instead of earning a rate of return ΘH , savers
will earn a net-of-tax rate of return (1 + rNt+1) = 1 + (ΘH − 1)(1− τt). Because
of their logarithmic preferences this change in rate of return does not change
their saving behavior. The indirect lifetime utility function can be re-written
in terms of youth net-of-transfer income wN

t and rNt+1. Since policy fixes the
disposable wage at wL

t we have, ignoring constant terms,

UL
t = ln(wL

t ) + (1− φ)ln(1 + rNt+1). (31)

Every generation will be better off when Θ rises to ΘH , as net of tax lifetime
budget constraints must be larger than when ΘL.

When Θ rises, it is easy to see that Xt rises instantaneously as well. This is
because the level of capital is unchanged, but its productivity has increased.
Now, consider total output from the perspective of factor income. Since there
are no profits, Xr,t = ΘRt andXm,t = wt+ΘMt, we have thatXt = wt+Θ(Rt+
Mt) = wt+ΘSt−1. By (5), St depends only on the net income of the young wN

t .
The transfer system keeps the disposable wage equal to wL

t , so saving St also
remains unchanged when Θ rises. When Θ rises, the overall rise of Xt ensures
that wH

t + ΘHSt > wL
t + ΘLSt. Therefore, wH

t − wL
t + ΘHSt > ΘLSt. Since

wL
t − wH

t equals Gt, which is also equal to (1 + (ΘH − 1)τt)St−1 , we find that
(1 + (ΘH − 1)τt)St−1 > ΘLSt. Hence, (1 + rNt+1) = (1 + (ΘH − 1)τt) > ΘL.

This reasoning establishes a key result. By taxing the capital of the old, and
transferring the proceeds to the young, the government keeps the net income
of the young unchanged while the net-of-tax rate of return on saving is higher.
Therefore, the rise of robot productivity to ΘH combined with the fiscal transfer
system raises the well-being of all generations compared with the utility when
productivity equals ΘL.

The result is important in light of discussions as to whether robotics will nec-
essarily raise or lower well-being. The answer is that higher productivity is
a potential gain for all generations, but only if government undertakes redis-
tributive policies to ensure that indeed all generations benefit. Without such
redistribution, it is possible, we have seen, that the robotics innovation improves
the well-being of just one generation, while lowering the lifetime well-being of
all future generations.

5 The Two-Sector Model

An important critique of the one-sector model is that it takes robotic and labor
produced goods as identical. In reality, there are many goods that robots cannot
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create or might only create with greatly diminished productivity. Examples
include many personal services that depend intrinsically on human-to-human
interactions, and various kinds of creative activities not reducible to computer
algorithms, e.g. in the arts.

To allow for complementaries in consumption between robotic and non-robotic
goods, we move to a richer two-sector setting. Here two goods are produced
and consumed, but only one is automatable (i.e. eligible for production by
robots). The core insights of the one-sector model are maintained, but complex
additional dynamics emerge.

Supply in the Two-Sector Model

In the two-sector model, there are three types of firms. The X sector is identical
to the one-sector case, so

Xm,t = DX,tM
ǫ
X,tL

1−ǫ
X,t , (32)

and

Xr,t = ΘtRt. (33)

But in addition there are firms producing the consumption good Y , with tech-
nology

Yt = DY M
α
Y,tL

1−α
Y,t , (34)

where Yt is the output of these firms at time t, MY,t is the amount of machines
rented by these firms, LY,t is the amount of labor they hire, α is capital’s share
of output in production of Y , and DY is a total factor productivity term.

We will refer to the X sector as the robotic or automatable sector interchange-
ably. We will refer to the Y sector as the non-robotic, non-automatable, or
traditional sector interchangeably.

Factor demands for robots, machines, and labor reflect

max
MX,tLX,t

Xm,t(MX,t, LX,t)− wtLX,t −mtMX,t, (35)

max
Rt

Xr,t(Rt)− ρtRt, (36)

and

max
MY,tLY,t

ptYt(MY,t, LY,t)− wtLY,t −mtMY,t, (37)

where pt is the price of the non-automatable good in terms of the potentially
robotic good. All factor inputs must be non-negative.

Assuming that the non-negative input constraint does not bind for any type of
firm, first order conditions are

wt = (1− ǫt)DX,tM
ǫ
X,tL

−ǫ
X,t, (38)
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wt = (1− αt)ptDY,tM
α
Y,tL

−α
Y,t , (39)

mt = ǫtDX,tM
ǫ−1
X,t L

1−ǫ
X,t , (40)

mt = αptDY,tM
α−1
Y,t L1−α

Y,t , (41)

and

ρt = Θt. (42)

Households in the Two-Sector Model

Within period utility is logarithmic in the Cobb-Douglas combination of the
two types of consumption.

ut(xt, yt) = βln(xt) + (1− β)ln(yt). (43)

This specification implies that individuals want to spend constant shares of their
consumption on the automatable and non-automatable good.3

The household budget constraint is

wN
t = x1,t + pty1,t +

x2,t+1 + pt+1y2,t+1

1 + rNt+1

. (44)

Household demands for consumption and investment at time t satisfy

x1,t = βφwN
t , (45)

x2,t = (1 + rNt )βKt, (46)

y1,t =
(1− β)φwN

t

pt
, (47)

y2,t =
(1− β)(1 + rNt )Kt

pt
, (48)

and

St = (1− φ)wN
t , (49)

where Kt is capital of any type owned by the old.

3This is an important assumption. We do not have a strong intuition about whether
technological innovations will shift consumption demand towards or away from goods that
are relatively labor intensive. Good arguments can be made for both perspectives. If demand
does indeed shift towards robotic goods, then our immiserizing mechanism will be amplified
and vice versa.
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Equilibrium in the Two-Sector Model

The potentially robotic good is an investment and consumption good, while the
non-robotic sector produces only a consumption good. Capital depreciates fully
each period. Equilibrium requires

Xt = Xm,t +Xr,t, (50)

Xt = x1,t + x2,t + St, (51)

Yt = y1,t + y2,t, (52)

Lt = LX,t + LY,t, (53)

Gt = rtτtKt, (54)

and

St = Kt+1 = MX,t+1 +MY,t+1 +RX,t+1. (55)

Phases of the Two-Sector Economy

As in the one-sector model, investors allocate capital with perfect foresight
to maximize returns. Here this means that the non-negative input constraint
sometimes binds. When robotic productivity and capital stocks are low, it is
inefficient to invest in robots, and only traditional manufacturing will be done
in the automatable sector. When robotic productivity and capital stocks are
high, traditional manufacturing is not competitive in the X sector, and only
robotic investments are made. Finally, there is a range of values for Θt and Kt

where both traditional manufacturing and robots are used in the automatable
sector. Taking Gt = τt = 0, this will occur whenever,

Kt < Θ
−1

1−ǫ

t

(

(

(1− ǫ)D
1

1−ǫ

X,t ǫ
ǫ

1−ǫ

)( φβ

1− β
+

φα

(1− α)(1− β)

)

)

, (56)

and

Kt > Θ
−1

1−ǫ

t

(

φLtD
1

1−ǫ

X,t ǫ
ǫ

1−ǫ [(1− β)α+ βǫ]
)

. (57)

When (57) is violated, no machines or labor are used in the automatable sector.
When (56) is violated, the model reduces to the normal two-sector OLG and no
robots are used. Note that when DX,t = 0 it must be the case that no labor is
used in the automatable sector as its productivity must be zero. As Θt → 0,
there is never enough capital to make robotic production competitive and only
the first case is possible.

The paper proceeds by considering these three cases in turn.
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Case 1: No Robots Used

When capital stocks per unit of labor are low, the marginal productivity of
capital is high. If capital stocks per unit of labor are low enough, investing all
savings in the form of traditional machines will yield a higher interest rate than
Θ, the rate of return on robots. In such periods, the interest rate will not be
fixed by Θ but will be a function of capital stocks. It must be that 1+ rt > Θt.
The economy will behave as in the well-known two-sector OLG case.

Over time, the economy will grow or contract towards a steady state level of
capital. If the Θ = 0 steady state level of capital is high enough, accumulating
capital stocks will eventually cross the threshold level given by (57), and some
savings will be invested in the form of robots. One of the following two cases
will hold. Exogenous changes in parameters, importantly Θ, may also move the
economy into one of the following phases.

As this type of economy is well understood, we will now move on to cases of
greater interest.

Case 2: Mixed Production of the Automatable Good

When both (56) and (57) hold, robots and traditional manufacturing compete
head to head in the creation of the same products. Rt, LY,t, and LX,t > 0.
Optimization requires 1 + rt = Θt.

Insights from the one-sector model carry over into this case. Assume for now
that there are no transfers. Combining first order conditions, the price of the
non-automatable good may be written as

pt =
Θt

αDY,t

[
Mt,y

Lt,y

]1−α. (58)

Factor demands also imply

Mt,y

Lt,y

=
α(1− ǫ)

ǫ(1− α)

Mt,x

Lt,x

, (59)

and

Mt,x

Lt,x

=
(ǫDX,t

Θt

)

1

1−ǫ

. (60)

This allows for the rewriting of prices in terms of Θt.

pt = Θ
α−ǫ

1−ǫ

t

1

αDY,t

(α(1− ǫ)

ǫ(1− α)

)1−α

(ǫDX,t)
1−α

1−ǫ . (61)

Equation (61) demonstrates two important properties of this economy. First,
prices do not depend on the level of capital. While the economy uses all three
productive processes, capital and labor migrate across sectors keeping prices
fixed. Second, Θt has an ambiguous effect on the price. When capital intensity
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in the traditional sector, α, is less than the capital intensity of labor-based
production in the robotic sector, an increase in Θt lowers prices and vice-versa.
This is because the increase in robotic productivity draws capital away from
investment in both types of machines, and this will affect output of the more
machine intensive sector more. A larger reduction in output requires a change
in relative prices. As it is intuitive that capital should be more important in
the production of the automatable good, we take this to be the standard case.

To better understand how α influences the impact of a change in robot produc-
tivity, consider α = 0. Also, take Lt = 1 in all periods.

The first order condition for the non-automatable good reduces to

pt =
wt

DY,t

. (62)

So the price will be a function of the wage, which can be thought of as being
set in the X sector. In the X sector, an increase in robotic productivity will
redistribute capital investment from machines to robots. Because this reduces
the marginal productivity of labor while leaving the price ofX unchanged, wages
must decrease.

Taking the limit of the price equation as α → 0 yields

pt = Θ
−ǫ

1−ǫ

t

1

DY,t

[
(1− ǫ)

ǫ
][ǫDX,t]

1

1−ǫ . (63)

Prices and wages are both decreasing in Θ.

The wage in the general case will be

wt = pt(1− α)DY,t[
Mt,y

Lt,y

]α, (64)

which can be rewritten as

wt = pt(1− α)DY,t[
α(1− ǫ)

ǫ(1− α)
]α[

ǫDX,t

Θt

]
α

1−ǫ . (65)

The wage is not a function of capital either. This means that in the period after
a change in Θ the economy will jump to its new steady state.

Explicitly,

Kt+1 = C1[
1

Θt

]
ǫ

1−ǫ , (66)

where

C1 =
(1− φ)(1− ǫ)

ǫ
(ǫDX,t)

1

1−ǫ .

Note that wages and future capital are decreasing in Θt.
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Plugging wages and interest rates into the utility function yields an indirect
utility function in terms of parameters

U1,t(Θ) = C̃ − [
ǫ+ φ(1− β)(α− ǫ)

1− ǫ
] lnΘt + (1− φ)[1−

(1− β)(α− ǫ)

1− ǫ
] lnΘt+1,

(67)
where C̃4 is a function of parameters other than robotic productivity. The
utility of the young is always decreasing in today’s robotic productivity, while
the effects of robotic productivity in their retirement has ambiguous.

The long-run impact welfare impact of a permanent increase in Θ will be nega-
tive if

(1− φ) <
(1− β)α

1− ǫ
+

ǫβ

1− ǫ
. (68)

The impact of increased robotic productivity will be positive if the discount
factor is low enough. When labor-based production of the robotic good is more
capital intensive, robotic productivity changes will tend to be more damaging
to welfare as more labor will be forced out of robotic production and into lower
marginal product tasks. Similarly, when the capital share of production in the
Y sector is small, output of the non-automatable good is more resistant to
reallocation of investment, and the threshold for immiserization is higher.

By similar logic as in the one-sector model, a government transfer can turn an
increase in robotic productivity into a long-term welfare improvement. Gov-
ernment transfers of the type discussed above will not change the pre-transfer
wage, and therefore must increase capital stocks that are linear in post-transfer
wage. An increase in capital stocks must increase output. If the transfer is set
so as to bring wN

t after innovation equal to wt before the innovation, no profits
necessitates that the old consume more because total output has increased.

An economy can evolve move from this case to either the no-robot or only
robot case in one of two ways. Most simply, if a parameter such as Θ were to
change then either equation (56) or (57) may bind. More subtly, if Kt+1(Θt)
is large or small enough then an economy in the mixed case at (Kt,Θt) will
immediately jump to one of the other cases. This can lead to permanent cycles
in the economy if in the only-robot case the economy contracts.

Case 3: Only Robots Produce the Automatable Good

In the final case of the economy, robotic productivity is so high that no machines
or labor are used in the automatable sector. This is intuitive, as when labor is
relatively scarce firms should substitute for it as much as they can.

Without transfers, and economy in this case is set on a path towards a perma-
nent growth or temporary contraction similarly to an AK model. The potential
for permanent growth arises from the fact that the rise of Θ raises the relative

4C̃ = φβ ln(βφ) + φ(1 − β) ln([1 − β]φ) + (1 − φ)β ln(β) + (1 − φ)(1 − β) ln(1 − β) + (1 −

β)( 1−ǫ
1−α

ln(αDX,t)− ln(ǫDY,t) + (1− ǫ) ln(
ǫ[1−α]
α[1−ǫ]

)) + φ ln( 1−ǫ
ǫ

) + φ

1−ǫ
ln(ǫDX,t)
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price of Y , which can in turn raise the wage, the level of saving, and invest-
ment. At the initial price level, a rise in Θ shifts capital to robotic investment,
thereby raising the output of X and lowering the output of Y . Yet demand for
the traditional good rises because retirees boost their overall demand, of which
traditional consumption is a fixed share. The result is an excess demand for the
traditional good, requiring a rise in prices to clear the market. As the price rises,
so too can wages. The effect on wages will be the net of the increase in price and
the decrease in the marginal productivity of labor due to capital flight. If there
is an increase in the wage, this causes a rise in national saving and thereby a rise
in investment. With more saving there is also more demand for the traditional
good, which is limited by the fixed supply of labor. An ongoing cycle of growth
will continue despite the fixed input of labor.

Robots will necessarily be utilized, so 1 + rt = mt = Θt. The non-negativity
constraint for inputs to machine production of the automatable good binds, so
LY,t = Lt and MX,t = Kt−Rt. Assume that there are no government transfers.
Then rearranging first order conditions yields

wtLt = Mt

Θt(1− α)

α
. (69)

Combining the robotic production function with the robotic market clearing
condition yields

ΘtRt = x1,t + x2,t +Kt+1, (70)

and substituting household demands gives,

Θt[Kt −Mt] = (1− φ)wtLt + φβwtLt + βΘtKt, (71)

which may be reduced to

Mt =
α(1− β)

1− (1− α)φ(1− β)
Kt, (72)

giving a law of motion for capital

Kt+1 =
(1− β)(1− φ)(1− α)

1− (1− α)φ(1− β)
ΘtKt. (73)

Thus, capital evolves linearly across periods. When the term multiplying Kt

is less than 1, the economy will contract. When greater than 1, it will grow
indefinitely. Note that this term is not dependent on DY but it is increasing
in robotic productivity. This is because increases in the price of the traditional
good guarantee that a stable fraction of the robotics output is devoted to sav-
ing for more robots. Increased robotic productivity may lead the world from
poverty into permanent growth but increasing traditional productivity will have
no effect on growth rates. If total factor productivity in the traditional sector
were to increase, its price would drop by precisely the amount to keep the wage
constant. The multiplier is also increasing in the saving rate 1−φ. Government
interventions to increase saving have the potential to move the economy from
steady contraction to unconstrained growth.

When the economy is on the contraction side of knife-edge growth, savings and
capital will decrease until (57) no longer holds. If the case that the economy
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moves into then leads to an increase in capital stocks, the economy may remain
in an endogenous business cycle of growth and contraction indefinitely. An
example is given in the simulations below.

It is easy to see that the knife-edge growth case will have a positive long-run
effect on utility. The knife edge growth case is growing precisely because wages
are increasing, and the increase in capital stocks (while the interest rate remains
constant) indicates that the old have higher incomes as well.

To better understand the difference between the one-sector model and this phase
of the two-sector model, consider α = 0, that is, no machines are used in
producing Y . Then the two production functions are

Xt = ΘtRt, (74)

Yt = DY,tLt, (75)

and since L = 1,
Yt = DY,t. (76)

First, consider what happens when the two goods are perfect substitutes as in
the one-sector model. The wage wt is simplyDY,t, and the economy immediately
reaches a steady state with

R = (1− φ)DY,t, (77)

and

X = Θt(1− φ)DY,t. (78)

There is no growth. A rise in Θ increases lifetime utility for all generations by
raising the return on saving. There is no adverse wage effect, as there is no
capital flight to reduce the productivity of labor.

Now consider the very different outcome in the two-sector, only-robots case.
The wage wt now equals ptDY,t. Saving is St = (1 − φ)ptDY,t. Total demand
for Xt is

Xt = φβptDY,t +ΘtβRt + (1− φ)ptDY,t. (79)

We therefore can find pt by equating the supply and demand forXt. Specifically,

pt = Θt(1− β)Rt/[φβDY,t + (1− φ)DY,t]. (80)

Using the relationship Rt+1 = St = (1−φ)ptDY,t, we find a difference equation
in Rt,

Rt+1 = Θt(1− β)(1− φ)Rt/[φβ + (1− φ)]. (81)

In both this and the more general case, a fixed share of robotic output is devoted
to investment.

When only robots are used for producing the automatable good, transfers still
have the potential to increase long-run welfare. For transfers satisfying

−
[1− (1− β)φ]

(

1−α
α

)

+ 1
(

1−α
α

)

[θ(1− β) + βT ]
< 1− φ <

[1− (1− β)φ]
(

1−α
α

)

+ 1
(

1−α
α

)

[θ(1− β) + βT ]
, (82)
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the economy will converge to a steady state. Otherwise the economy will expe-
rience AK growth/contraction. This means that the economy has the potential
to be shunted out of contraction by a transfer.

When (82) holds, capital stocks converge to

Kss =
(1− φ)T

1−
(1−φ)( 1−α

α
)

[(1−(1−β)φ)( 1−α

α )+1]

. (83)

6 Simulating The Two-Sector Model

In figures 1 and 2 we display the path of an economy with parameters given
in table 1. These figures demonstrate how a government transfer program can
turn a potentially utility-reducing rise in robotic productivity into a welfare
improvement for all generations. In this simulation in all periods the model
is in case two, where both robots and machines used in the production of the
automatable good. From periods zero through four, the economy is in its steady
state. In period five Θ increases from 1.25 to 2. Without transfers, this leads
to a temporary boom. High savings carried over from period four are combined
with the new technology and create high levels of output, most of which accrue
to the old due to the decrease in labor’s share of income. From period five on,
citizens suffer as a result of the increase in productivity. Welfare falls far below
the dashed line indicating their utilities had the technological innovation never
occurred.

Introducing a transfer changes the outlook for the economy. Capital income
taxes, set at rate of about 70 percent, fund a transfer that keeps the net in-
come of the young constant. This keeps capital stocks constant while prices
are unchanged. Relatively higher capital stocks outweigh the impact of the tax
and increase the net income of the old. Every generation benefits from the
combination of technological change and transfers.

Figures 3 and 4 investigate a more complex case. The economy begins in period
zero just below the steady state level of capital given initial Θ. For the initial
level of Θ, in the steady state robots are too inefficient to be used. The economy
is in case one. In this second pair of simulations, we investigate the consequences
of robotic productivity innovations occurring every five periods beginning in
period five.

First, consider the consequences for the economy without transfers. After the
first innovation, the economy moves into case two (mixed production of the
automatable good). Welfare hits a local maximum as the old receive large
retirement incomes from the interest rate increase. But the increase in robotic
investment lowers wages. In the period after the innovation utilities move to
their new lower level due to lower wages and capital. In period ten another
innovation occurs, but the economy remains in the second case. Another local
maximum in welfare follows, before welfare falls even further.
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In period fifteen innovators strike again. In the period of the third innovation,
there is a third local maximum in the utility of the old. The economy has
moved into the third case where only robots are used in production. However,
the multiplier on Kt in (73) is less than one, and the economy immediately
begins to contract because of low wages. Wages are low because the negative
wage effect of losing an opportunity for employment in the automatable sector
dominates the positive effect of increases in non-automatable good prices (which
are in turn due to their increased relative scarcity).

After a single period capital has dissipated enough that case two binds again.
In period sixteen, although capital is scarcer, wages are higher than in the
previous period because workers are being used to produce the automatable
good again. High wages increase savings and future capital, moving the economy
into the third case. Periods where only robots are used have low wages, reducing
savings. The economy is on the bad side of knife-edge AK growth. In subsequent
periods, capital stocks are low enough that the second case binds. Laborers
find work again in the automatable sector and wages increase. Capital stocks
and the economy expand, moving the economy back into the third case. These
oscillations have important welfare implications as those retired in periods where
robots are used and working when case two binds have high wages when young
and high retirement incomes when old. Those unlucky to be born in the other
period of the business cycle are worse off. Cycles of more than one period are
possible, although the economy will not spend more than one period in case two
per cycle.

The economy would oscillate indefinitely were it not for a final innovation in
period twenty. This moves the economy on to the good side of knife-edge growth.
The positive effect on wages of high non-automatable good prices dominates.
The economy grows indefinitely with benefits for all future generations. For a
wide variety of parameterizations, a noisy U-shaped path of utility as Θ increases
will occur. In early periods robotic productivity leads to immiserization, but
eventually robots are so super-productive that indefinite growth must kick in.

The path of welfare can be improved through government transfers. Here is dis-
played one of a large set of transfer schedules that turn the series of innovations
into an improvement for all generations over robots being banned. Curiously,
the transfer improves welfare by depressing labor’s share of income even further
in some periods. This is due to greater investment, which requires the output of
the more capital intensive X sector and leads to higher future capital income.

Figure 5 shows the long-run impact of a robotic productivity improvement on an
economy in case two. Unsurprisingly, when the saving rate is high the increase
in robotic technology (and hence interest rates) is more likely beneficial. When
capital’s share of income in production of the traditional good is higher, robotic
innovations are more likely to immiserize by crowding out investment in a more
important complement to labor.
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7 Conclusion

The rise of the robots is already creating major disruption in labor markets,
essentially turning production processes more capital intensive. When robots
are close substitutes for production by labor and machinery, the demand for
labor is likely to decline, threatening a decline of wages, saving, and economic
well-being of current and future generations. We have qualified that intuition,
however, in two important ways. First, government redistribution can ensure
that a pure productivity improvement raises well-being of all generations. In the
example shown in the paper, government taxes the capital owned by retirees and
distributing the proceeds to young workers. Second, to the extent that workers
produce outputs that are imperfect substitutes of the outputs of robots, workers
will experience a rise in demand for their products, and this can result in a
virtuous circle of rising wages, savings, and production, producing the open-
ended constant growth of an AK model.
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Table 1

Parameters for First Simulation
Model Parameter Role Value

ǫ X Sector Capital Input Share Param. 0.33
α Y Sector Capital Input Share Param. 0.33
Θ Robot Productivity Varies

1− φ Saving Rate 0.3
L Labor Supply 1
G Transfer to Young Varies
β X Sector Consumption Share 0.5
K0 Initial Capital .104
DX,t TFP in X Sector 1
DY TFP in Y Sector 1

Table 1: This table gives parameter values for the first pair of illustrations of the

model.

Table 2

Parameters for Second Simulation
Model Parameter Role Value

ǫ X Sector Capital Input Share Param. 0.33
α Y Sector Capital Input Share Param. 0.33
Θ Robot Productivity Varies

1− φ Saving Rate 0.3
L Labor Supply 1
G Transfer to Young Varies
β X Sector Consumption Share 0.5
K0 Initial Capital .29
DX TFP in X Sector 1
DY TFP in Y Sector 1

Table 2: This table gives parameter values for the second pair of illustrations of the

model.
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Figure 1

Simulation 1: Welfare
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Figure 1: Utility and Θ paths for an economy with and without transfers before and

after an increase in Θ. Welfare is lifetime utility of those retired in a period. Parameter

values are as in Table 1.
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Figure 2

Simulation 1: Other Economic Variables
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Figure 2: Economic variable paths for an economy with and without transfers before

and after an increase in Θ. Wage is before transfers. All prices are identical with and

without transfers. Parameter values are as in Table 1
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Figure 3

Simulation 2: Welfare
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Figure 3: Utility paths for an economy with and without transfers before and after

several increases in Θ. Welfare is lifetime utility of those retired in a period. Parameter

values are as in Table 2.
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Figure 4

Simulation 2: Other Economic Variables
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Figure 4: Economic variable paths for an economy with and without transfers before

and after several increases in Θ. Parameter values are as in Table 2.
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Figure 5

Role of Parameters in Determining the Welfare Impact of ∆Θ in the

Mixed Case

Figure 5: The green zone indicates indicates the range of parameter values such that

an increase in robotic productivity has a positive long-run impact on utility; for the red

zone the opposite holds. The economy begins in the steady state with Θ = 1.25 and is

compared to the steady state with robotic productivity slightly elevated. Parameters

not on axes are as in table 1
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