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1 Introduction 

The role of financial frictions in amplifying and propagating economic shocks has 

received significant attention in explaining fluctuations over the business cycle. Financial 

frictions introduce a wedge between the cost of external finance and the opportunity cost of 

internal funds. This external finance premium implies that the strength of firms’ balance sheets 

will affect the manner in which their investment activity reacts to economic shocks. Since 

current firm investment affects future balance sheet strength, a dynamic feedback loop is created 

that intertemporally propagates and amplifies economic shocks. Theoretical models of this so-

called “financial accelerator” have played an important role in the Macro-Finance literature (see, 

e.g., Bernanke and Gertler, 1989; Shleifer and Vishny, 1992; and Kiyotaki and Moore, 1997).1 

In spite of their importance, empirically testing financial accelerator models has proven 

to be difficult. There are at least three reasons why this is the case. First, a clean test of any 

financial accelerator model would involve exploiting exogenous shocks to firm productivity that 

affect the strength of firm balance sheet. Such shocks are hard to come by empirically and are 

difficult to measure. Second, measuring firm productivity, in and of itself, is quite challenging. 

Indeed, standard productivity measures, such as TFP, are often residuals of regressions relating 

(mismeasured) outputs and inputs. Finally, testing financial accelerator models is complicated by 

the fact that obtaining clean measures of collateral values, which often play an important role in 

financial accelerator models, is quite difficult. 

This paper tests the central predictions of financial accelerator models and measures the 

economic magnitudes of the underlying effects. In deriving our tests, we follow two canonical 

financial accelerator models. Following Bernanke and Gertler (1989), we first analyze the 

                                                 
1 See also Brunnermeier, Eisenbach, and Sannikov (2012) for a recent review of the literature.  
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propagation of productivity shocks over time, showing how current shocks to productivity affect 

future levels of productivity. Second, following Kiyotaki and Moore (1997), we examine how 

current negative shocks to productivity translate into decreases in current and future asset values. 

For our analysis, we focus on the agricultural sector in Iowa. This sector provides a 

natural setting, rich in data, to examine how shocks to productivity are propagated, both during 

normal times as well as during crises. As a source of identification, we use exogenous shocks to 

productivity arising from variation in weather. Such weather variation is well known to affect 

agricultural productivity, and at the frequencies in which our study is conducted, this variation is 

plausibly exogenous. To measure productivity, and relate it to productivity shocks as well as 

proxies of financial constraints, we exploit the rich data available on farm crop yields. Finally, 

focusing on the agricultural sector allows us to measure collateral values, as land is a main 

source of collateral for farms and data on farmland prices are readily available. 

To examine the effects of exogenous productivity shocks on future productivity levels as 

well as on asset values, we assemble a yearly, county-level dataset of weather and farm data 

from a variety of sources. Specifically, we collect weather, farmland prices, and farm crop yields 

spanning the time period from 1950 to 2010. We supplement this data with data on investment in 

farm machinery from 1995 to 2010, and data on farm debt levels from 1959 to 2010.  We exploit 

the well-documented finding in the agronomics literature that corn yields are highly sensitive to 

temperatures, especially during the flowering month of July (when pollination and fertilization of 

corn occur). As described below, corn yields are non-linear and non-monotonic in July 

temperature, with high and low values being associated with lower yields.  

As a first step in understanding accelerator effects, we examine the relation between past 

weather shocks on future farm yields and land values. Since weather will affect farm 
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productivity, farm balance sheets will vary with weather shocks. In line with accelerator models, 

weather shocks are thus expected to have persistent effects on future productivity and land 

values. We find that the effect of weather shocks is indeed persistent: past weather-driven shocks 

to productivity affect current farm yields, as well as current land values. These results hold after 

controlling for the direct effect of current weather on contemporaneous farm yields and land 

values. As such, they are not driven by any predictive power of lagged weather on future 

weather. Since all specifications include both year and county fixed effects, our identification 

strategy is driven by comparing, within a given year, counties that in the past received 

differential productivity shocks (as compared to their sample mean). Consistent with accelerator 

models, we find that, holding constant current weather, farms that experienced negative weather-

productivity shocks in the past exhibit lower current productivity as well as lower land values.  

To further investigate the persistence of weather shocks, and in particular the potential 

channel through which such an effect arises, we examine whether the persistence of weather 

shocks differs across counties with high and low per capita income. Financial accelerator models 

would predict that persistence and amplification of economic shocks should be higher when 

financial frictions rise. Thus, we expect that the persistent effect of weather shocks should be 

larger in lower income counties, where farm balance sheets are arguably weaker. Consistent with 

this, we find that in counties with lower per capita income, farm yields and land values do indeed 

display a higher sensitivity to past weather shocks. 

We next analyze the persistence of productivity weather shocks during the 1980s farm 

debt crisis—a well-known period of financial constraints in the agricultural sector.2 During the 

farm debt crisis, farmland values dropped precipitously and the supply of credit available to 

                                                 
2 The farm debt crisis of the early 1980s was triggered by two main factors: a sharp increase in interest rates by the 
Federal Reserve and the imposition of an embargo on U.S. agricultural imports by the Soviet Union (FDIC, 1997). 
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farmers contracted sharply, resulting in a significant decline in farm solvency (see Calomiris, 

Hubbard, and Stock, 1986, and Hubbard and Kashyap, 1992). Financial accelerator models 

would predict that during times of crisis—when there is widespread disruption in debt markets 

and balance sheets of farms are weaker—the effect of past productivity shocks on current 

productivity and collateral values will be amplified. Consistent with this, we find that the 

sensitivity of farm yields and land values to past weather shocks does indeed increase during the 

1980s farm debt crisis. The effect is economically substantial, with the sensitivity of yields and 

land values to past shocks increasing significantly during the debt crisis.  

To further gain insight into the channel through which weather shocks have a persistent 

effect on productivity, we examine the effect of past weather shocks on investment in farm 

machinery. The internal workings of accelerator models rely on a dynamic feedback loop 

between the strength of firm balance sheets—which have real effects due to the presence of 

financial frictions—and firm investment activity (see, e.g., Bernanke and Gertler, 1989). We thus 

expect that, following a positive past productivity shock, firms will be able to increase 

investment and enhance productivity. This is precisely what the data show. Farms increase their 

investment into machinery after beneficial weather shocks. The results are thus consistent with 

the feedback effects in accelerator models: with positive productivity shocks, firms increase their 

investments into machinery and land, which in turn increases productivity in subsequent periods. 

Finally, we examine the impact of weather shocks on the level of farm debt. Proxying for 

farm debt using the total amount of agricultural lending by banks within a county, we find that 

after a positive weather-driven shock, firms reduce borrowing. Thus, after a positive shock, firms 

borrow less (or pay down debt) and use more internal funds to finance investments. Greater 

availability of internal funds after a positive productivity shock seems to enable farms to reduce 
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reliance on external finance, which, due to financial frictions, is more expensive than internal 

funds. In line with our previous findings, the magnitudes of these effects are significantly larger 

during the debt crisis as compared to during normal times. 

While the results above suggest that the effect of past weather shocks on current yields 

and land values stem from the presence of financial frictions, we analyze other alternative 

explanations, perhaps most importantly, a biological channel related to the effect of weather on 

soil. In particular, weather shocks could have effects on soil quality, which in turn affect future 

yields and land values. To address this concern, we first include a host of contemporaneous soil 

quality measures as control variables. We find that the estimated effects of past weather shocks 

remain even after controlling for measures of soil quality. In addition, our finding that the effect 

of past weather shocks increases substantially during the 1980s farm debt crisis also speaks 

against the soil-biology channel. Specifically, while the financial accelerator framework predicts 

that the effect of past weather shocks will be intensified during periods of financial stress, a 

simple biology channel is invariant to financial frictions and would therefore not predict this. 

Similarly, the heterogeneous effects of past weather shocks on low versus high income counties 

would also not be predicted by a simple biology channel, as there is little reason to believe that 

the biological effect of weather on soil would vary in such a manner.3  

To better understand the direct impact of weather variation on productivity and farmland 

values, we also interviewed directors and senior executives of the Farm Credit System.4 These 

interviewees stated that one season of hot weather does not affect soil quality, and further, that 

one would need three to four consecutive years of hot temperature to have any impact on soil 

                                                 
3 Note again that all regressions are run with county fixed effects and so identification is not driven simply by the 
fact that low-income counties may be comprised of lower quality farmland that is more sensitive to weather shocks. 
4 As discussed below, the Farm Credit System is a $248 billion nationwide network of agricultural lending 
institutions in the United States. Many of the directors interviewed also own large farms and cultivate corn.  
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quality.5 Interviewees also confirmed that positive yield shocks affected farms’ financial 

constraints, thereby impacting investment, productivity, land values, and more generally, local 

farm affluence.   

As final evidence in favor of the financial accelerator, we find that the effect of past 

weather shocks on both land values and corn yields is not present in the latter part of the sample 

period, starting in 1990. This is consistent with the dramatic increase in the 1990s of large 

farming corporations within the industry. These large firms tend to be less constrained than the 

smaller farms that were more prevalent prior to this period. Large farming firms also brought 

about a change in the importance of localized economic conditions in pricing agriculture land. 

Finally, beginning in the 1990s, markets in crop insurance developed to the benefit of both large 

and smaller sized farms. In the context of a financial accelerator model, all three changes—the 

reduction in general financial constraints, markets for land becoming less localized, and the 

increased importance of hedging—would predict a muted effect of weather shocks in the latter 

part of the sample period, as the data show. 

This paper most directly relates to the literature on financial accelerators. Most empirical 

work in this area relies on calibrations using aggregate-level data, often employing vector 

autoregression analysis that analyzes impulse response functions (see, e.g., Bernanke and 

Gertler, 1995, and Bernanke, Gertler, and Gilchrist, 1999). In contrast to this line of work, our 

paper exploits micro-level data to identify the financial accelerator channel. Our paper is also 

related to the vast literature on financial frictions, and in particular to studies relating firm 

investment behavior to their cash flows.6 This large literature is focused on testing for the very 

                                                 
5 This response is also consistent with the findings of many studies that soil quality does not vary much over time 
and is generally quite static (see, e.g., Deschênes and Greenstone, 2007).  
6 See, for example, Hubbard and Kashyap (1992); Blanchard, Lopez-de-Silanes, and Shleifer (1994); Kaplan and 
Zingales (1997); Rauh (2006); Mian et al. (2013); Chaney et al. (2012); and Krishnan et al. (2014).  
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existence of financial constraints. While such constraints are an important ingredient within 

financial accelerator models, the empirical literature on financial constraints does not deal with 

the main predictions of accelerator models—namely, the persistence and amplification of shocks 

over time. In particular, as opposed to this literature, we focus on the intertemporal transmission 

of productivity shocks into future changes in asset values and productivity levels. 

Our results also add to the literature on cash-in-the-market pricing during financial crises 

(Shleifer and Vishny, 1992; Allen and Gale, 1994; Stein, 1995).7 We find that the effect of 

weather shocks on land values is significantly larger during the farm crisis (by a factor of three). 

Indeed, favorable weather shocks during the crisis should be viewed as positive cash infusions 

for affected firms. As such, cash constraints become less binding, implying an increase in asset 

values and firm productivity. The results, therefore, suggest that equity-like interventions—cash 

grants, tax subsidies, payroll tax deductions—may be effective at stemming productivity losses 

and boosting collateral values during a crisis.  

Finally, our results add to the literature that examines the role of credit constraints in the 

agricultural sector, especially in developing economies (see, Karlan and Murdoch, 2009; Beaman 

et al., 2014). The results show that temporary shocks to productivity can have persistent effects 

in the presence of credit constraints. If such constraints are large—as is generally thought to be 

the case in many developing countries—crop production and the agricultural sector will be 

particularly vulnerable to weather shocks. 

The remainder of this paper is organized as follows. Section 2 describes our empirical 

methodology and the construction of our dataset. In Section 3, we report our empirical findings 

and the interpretation of our results. Section 4 concludes. 

                                                 
7 See also Rajan and Ramcharan (2014a,b) for empirical evidence on the role of credit availability in determining the 
magnitude of farmland value boom and bust cycles during the Great Depression. 
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2 Empirical Methodology and Data  

2.1 Empirical Strategy 

Empirical identification of the financial accelerator is difficult. First, it is necessary to 

isolate exogenous shocks to productivity, as amplification and persistence of exogenous shocks 

are at the heart of financial accelerator models. Second, it is usually difficult to obtain clean 

estimates of firm productivity. Indeed, standard productivity measures, such as TFP, are often 

residuals of regressions relating (mismeasured) outputs and inputs. Third, data on collateral 

values are hard to obtain, in particular because collateral take a wide variety of forms across 

different firms and industries. 

The agriculture sector provides a natural laboratory to overcome these challenges, 

allowing us to isolate and examine the effects of financial accelerator models. First, as a source 

of identification, we use exogenous shocks to productivity arising from variation in weather. An 

extensive body of literature has shown that variation in weather has a strong effect on 

agricultural productivity (see Dell, Jones, and Olken, 2014, for a review). This variation is 

exogenous to farm-level activity, certainly within the frequency we study. Second, the 

productivity measure we use is yield per acre of planted crop, a measure that is well known to 

vary with variation in weather. Third, we use the price of farmland as a measure of collateral 

value, since farmland is the main source of collateral in the farming business. 

 We focus on the state of Iowa, which provides an ideal setting for examining the effects 

of weather on agricultural outcomes. Agricultural production is significant in Iowa and 

constitutes a large portion of economic activity for the state.8 Iowa also ranks first out of all 

states in terms of the production of corn, which is the most plentiful U.S. crop and which is also 

                                                 
8 According to the Iowa Farm Bureau, the agriculture sector brings $72 billion into Iowa's economy each year and 
creates one out of every six new jobs.  



 9

well understood in terms of its growth response to temperature fluctuations. Finally, and most 

importantly, agricultural data for Iowa are available at a more detailed level and for a much 

longer time period compared to other states, allowing for a more complete time series of our 

empirical tests.9 

Our main specification examines the persistent effect of past temperature shocks on 

current corn growing productivity, farmland values, debt, and investment. Corn is generally 

planted in Iowa in the last two weeks of April, with most of the corn harvested in October. While 

there are several factors that affect corn yields, high temperatures above a particular threshold, 

especially during the flowering month of July, when pollination and fertilization of corn occurs, 

has been documented in several studies as an important factor affecting yields (Thompson, 1963; 

Schlenker and Roberts, 2006, 2009).10 To measure temperature shocks, we therefore construct 

county-level measures of average temperature in July for each year. To account for the non-

monotonic effect of temperature, we follow the literature and include the square of July 

temperature in our specifications (see also Mendelson et al., 1994; Schlenker et al., 2005; 

Hornbeck, 2012). Our main specification, which includes two lags of weather shocks, is:  
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where Yi,t represents either average land value or productivity for county i in year t, July Temp 

represents the average temperature in July for county i in year t, ηt are year fixed effects, and λt 

                                                 
9 Farmland values are only available for Agricultural Census years (at five-year intervals) for most other states.  
10 Corn pollination and fertilization occur in the month of July, representing a crucial phase of crop development. 
Any plant stress during this time can result in decreased yields. Schlenker and Roberts (2009) report that yields are 
increasing up to 29 degrees Celsius but that above this threshold there is a sharp decline in yields. 
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are county fixed effects.11  

One question that often arises in using climate data is whether shocks to weather are 

independent and identically distributed. Regardless, for the purposes of our empirical strategy, 

we do not rely on the assumption that weather shocks are independent of each other: in all our 

specifications, we control for contemporaneous weather in order to take into account any 

autocorrelation in weather patterns.12 As stated above, all regression specifications also include 

year fixed effects as well as county fixed effects to take into account time-invariant omitted 

characteristics at the county level (like soil quality), or county-invariant shocks such as 

technological shocks or variation in the price of corn that could affect productivity levels. Our 

identification strategy is thus driven by comparing, within a given year, counties that in the past 

received differential productivity shocks (as compared to their sample mean). Finally, we also 

calculate standard errors adjusting for spatial correlation, since geographically-adjacent counties 

are likely to have weather that is more positively correlated than counties that are further away 

from each other.13 

One potential concern with the interpretation of the patterns found in the data is that a soil 

biology channel may be driving the results. For example, while including county fixed effects 

may control for geographical differences in soil quality that are invariant to time, it is possible 

that temporary bad weather shocks may affect soil quality reducing future productivity and land 

values. We address this important concern in Section 3.5 below. 

 

                                                 
11 We also run the estimations using the number of days in the growing season that are hotter than 83 degrees 
Fahrenheit to capture harmful effects of cumulative heat exposure, finding similar results (not reported). See also 
Massetti et al. (2014) for a discussion on the use of daily temperature versus the degree-days measure for estimating 
the effect of temperature on farmland values.  
12 In addition, we conduct placebo tests examining the effect of future, i.e., year t+1, weather variation on current, 
year t yields, and find no significant effects (see Table A1 in the Appendix).  
13 We use a uniform spatial weighting kernel, as in Conley (2008) with a distance cutoff of 100km. The results are 
robust to using other cutoffs such as 150km, 200km. See also Hsiang (2010).  
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2.2 Data Sources 

We construct a novel dataset of agricultural crop productivity, land values, debt, and 

investment at the county-level for Iowa. Our dataset is constructed using a variety of different 

sources. For our weather data, we collect daily weather station data for the U.S. from the 

National Oceanic and Atmospheric Administration (NOAA) from 1950 to 2010. Using this daily 

data, we then calculate the average temperature for the month of July for each weather station.14 

We then construct county-level estimates of average July temperature for Iowa using the 

procedure of Deschênes and Greenstone (2012). Using geographical data for each county in Iowa 

from the U.S. Census Bureau, we construct county-level average July temperature by using a 

weighted average of all weather station estimates within a 50km radius of the geographical 

center of each county. The weights are the inverse of the squared distance from each weather 

station to the geographical center of the county. As there are 99 counties in Iowa, this yields a 

total of 6,032 county-year temperature observations for our main regression specification. Our 

results are robust to an alternative construction of the weather dataset using the procedure of 

Schlenker and Roberts (2009).15   

Our measure of corn yields come from the USDA's National Agricultural Statistics 

Service (NASS) yearly crop surveys. The NASS provides yearly data at the county level of 

average corn yields from 1950 to 2010, measured in bushels per acre harvested. Our measure of 

farmland values come from the Iowa State University Farmland Value Survey, which provides 

yearly county-level estimates (as measured in November of each calendar year) of the average 

value per acre of Iowa farmland from 1950 to 2010.16 The respondents to the survey are 

                                                 
14 In any given year, we only use weather stations that have non-missing data for every day in July. 
15 We thank Wolfram Schlenker for providing this data. 
16 A potential concern with the estimates of farmland value is that some parcels of land may be irrigated (thus 
leading to a higher value) while others may not. However, very little of the farmland in Iowa is irrigated, implying 
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individuals that are considered to be knowledgeable of land market conditions, such as 

agricultural real estate brokers. In each year, respondents are asked to provide their estimate of 

current farmland prices in the county they are located. Studies have shown that these survey 

values closely track actual land sales prices (see Stinn and Duffy, 2012, and Kuethe and Ifft, 

2013). To proxy for farm balance sheet strength, we use county-level income per capita data 

from the Bureau of Economic Analysis. We take our data on soil quality from Deschênes and 

Greenstone (2007) who obtain National Resource Inventory (NRI) estimates of soil quality from 

various sites across the U.S. and construct county-level measures through these estimates. As 

NRI sites are not located in every county in Iowa, the data cover 33 counties and run every five 

years from 1978 to 2002.  

Our measures of farm financial debt come from the Federal Reserve's Commercial Bank 

Data Call Reports. We use two measures of agricultural lending by banks. The first measure is 

total agricultural debt, which is defined as the combination of loans to finance agricultural 

production and real estate loans secured by farmland. The second measure is real estate loans 

secured by farmland. We construct county-level estimates of farm debt by summing all 

agricultural debt issued by banks located in the given county. The Call Report data run yearly 

from 1959 to 2010 (we use fourth quarter reports to construct end-of-year values). One 

shortcoming of the Call Report data is that all loans of a given bank are associated with the 

location of the headquarters of that bank. Results regarding debt levels should thus be interpreted 

with caution. 

Finally, data on machinery investment are provided by EDA (Equipment Data 

                                                                                                                                                             
that this is not a concern for our sample. For example, according to data from the U.S. Agricultural Census and the 
NASS, only roughly 2.6% of total Iowa farmland was irrigated in 2012.  
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Associates), a data service provider that assembles proprietary data on farm machinery 

transactions that were financed through collateralized debt for the time period from 1995 to 

2010. We construct yearly county-level estimates of machinery investment by summing the 

market value of farm machinery purchases in a given county and year. In doing so, we focus on 

farm machinery of the size class that is the most common in terms of number of transactions in 

order to capture more typical machinery investments. Examples of farm machines that fall into 

this class include corn heads, planters, cultivators, plows, tractors, and combines. 

 

2.3 Summary Statistics 

Summary statistics of all variables are provided in Table 1. As the table shows, the 

average temperature in July for Iowa counties is 74 degrees Fahrenheit (23.3 degrees Celsius). 

The overall standard deviation of temperature is roughly 2.87 degrees Fahrenheit, indicating a 

fair amount of variability in temperature.17 Figure 1, Panel A reports the density plots of the 

distribution of temperature over our entire sample, as well as for a number of particular years in 

our sample.  As the first plot indicates, the distribution of temperature across county-years in our 

sample appears bell shaped around a mean of 74 degrees, with a range from 65 degrees to 

roughly 85 degrees.  The density plots for the individual years indicate substantial variability 

across counties for any given year, with some years exhibiting substantially higher mean 

temperatures.  As our main specifications include county and year fixed effects, Figure 1, Panel 

A exhibits variation which we do not exploit in our identification strategy. Figure 1, Panel B 

therefore presents density plots of temperature variation demeaned with year and county fixed 

effects. The distribution of demeaned temperature for both plots are symmetric around zero, but 

                                                 
17 As will be seen below, relatively small variation in average July temperature has a significant effect on corn 
yields. 
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also exhibit substantial variation. The within standard deviation of temperature is 2.552, and the 

between standard deviation is 1.318.  

The productivity and economic outcome variables are given next in Table 1. The mean 

corn yield for counties in Iowa in our sample is roughly 107 bushels per acre of land harvested. 

Mean corn yields have increased over time from a value of 48.1 bushels per acre in 1950 to a 

value of 154.6 bushels per acre in 2010. The mean (real) value per acre of farmland for the 

sample is $2,777 per acre, again increasing over time from $1,916 per acre in 1950 to $5,062 per 

acre in 2010.  The mean amount of total county-level agricultural debt is roughly $81.2 million 

(in real 2010 values), but this varies substantially across counties, with some having substantially 

more agricultural debt than others. County-level measures of soil quality (permeability, K-factor, 

and moisture capacity) are presented last in Table 1. The estimates do not vary much over time—

the within standard deviation is close to zero—reflecting the fact that soil quality tends to be 

stable over time for a given geographical region. 

Figure A1 depicts average corn yield, land value, and agricultural debt across all counties 

for each year in the sample. Average corn yield increases over the sample period, as would be 

expected with technological improvements in agriculture.  Land values increase gradually from 

1950 to 1970 and then substantially from 1970 to 1980.  However, in the early 1980s, 

corresponding to the period of the farm debt crisis, land values drop precipitously.  By contrast, 

corn yields do not exhibit such a trend during the debt crisis, suggesting that changes in land 

productivity were not responsible for the large decline in farmland prices.  Finally, agricultural 

debt increases steadily from 1960 to 1980 but drops significantly during the farm debt crisis, as 

would be expected.  
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3 Empirical Results 

3.1 Effect of Temperature Shocks on Corn Yields and Land Values 

We begin the analysis by examining the effect of temporary temperature shocks on corn 

yields—i.e., agricultural productivity. In order to do so, we estimate regression (1) for our entire 

sample period relating temperature shocks and its lags to both yields and land values. The 

estimation results are given in Table 2. Column (1) includes the contemporaneous value of July 

Temp as well as squared July Temp. We find that July Temp has a positive and significant sign, 

while squared July Temp has a negative and significant sign. This indicates that increases in 

contemporaneous temperature have a positive effect on corn yields, but only up to a certain 

point. Extreme temperatures—either high or low—are detrimental to corn yields.  

Column (2) adds lagged July temperature and temperature-squared to analyze the 

persistent effect of shocks on productivity. Again, the coefficient of (July Temp)t–1 is positive 

and significant, while the coefficient of squared (July Temp)t–1 is negative and significant: past 

temperature shocks thus have an effect on current corn productivity, with values either too high 

or too low reducing current yields. As would be expected, the magnitudes of the lagged 

coefficients are smaller than those of the contemporaneous coefficients, so that while the effects 

of temperature shocks are persistent, they diminish over time.  

Columns (3) and (4) add temperature shocks from two-year and three-year lags to the 

regression covariates. The estimates are smaller than those for the first lag, and the coefficients 

are insignificant. Column (5) shows the results of regression (1) using robust standard errors 

clustered at the county level rather than spatially-corrected standard errors. When not correcting 

for spatial correlation, the effect of the persistence is stronger, as (July Temp)t–2 and squared
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(July Temp)t–2 become significant.18  

Figure 2, Panel A (left) exhibits the effect of past temperature on corn yields based on the 

regression estimates in Column (3) of Table 2. Yields achieve a maximum value at year t–1 July 

Temp of approximately 77 degrees Fahrenheit. Starting from this point and increasing one-year 

lagged temperature by three degrees—approximately the standard deviation of temperature—

reduces current yields by 1.7 percent. By way of comparison, increasing temperature from 77 to 

80 degrees Fahrenheit contemporaneously—i.e., in year t—reduces year t yields by 21 percent. 

Thus, the effect of lagged temperature shocks on future yields is 8 percent of the 

contemporaneous effect.19  

Table 3 examines the effect of lagged weather shocks on land values by re-estimating 

regression (1) using land values as a dependent variable. As can be seen from Column (1), the 

effect of temperature on land values is similar to the effect of temperature on corn yields. The 

coefficient on (July Temp)t is positive and significant, and squared (July Temp)t is negative 

though insignificant. Column (2) includes one-year lags of temperature and its square, while 

Column (3) includes temperature and squared temperature up to two lags. For both the first and 

second lags, July Temp is positive and significant, while squared July Temp is negative and 

significant. Thus, good temperature shocks, both one and two years in the past, increase current 

land values, while bad temperature shocks in the past—i.e., high or low values of July 

temperature—decrease current land values. The effects die out by three years after the shock, as 

shown in Column (4). Column (5) reports the same results as Column (3) but with standard 

                                                 
18 In unreported results, we control for July rainfall and its square, and find that July temperature continues to remain 
an important and significant predictor of yields. For robustness, we also estimate the model specified in Thompson  
(1963) that includes average contemporaneous temperature, precipitation for each month from May to August, pre-
season precipitation, the squared terms of precipitation and temperature, along with interactions for temperature and 
precipitation for the months of June, July, and August. We find that July temperature is the most important 
determinant of corn yields. 
19 This 8 percent effect is very much in line with the estimation of economic magnitudes using the IV approach 
described below. 
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errors clustered at the county-level and not accounting for spatial correlation.  

Figure 2, Panel A (right) illustrates the effect of one-year lagged temperature on current 

land values, using the regression estimates from Column (3).  Consistent with the effects 

reported for corn yields above, increases in lagged temperature up to 77 degrees are beneficial to 

land values, while temperature increases beyond 77 degrees decrease land values.  In terms of 

economic magnitudes, a three-degree increase in lagged July Temp from 77 degrees Fahrenheit 

to 80 degrees Fahrenheit—approximately a one-standard deviation change—reduces year t land 

values by 0.4 percent.20 

The persistent effects of temporary temperature shocks on land values match the 

predictions of financial accelerator models. Indeed, there are two reasons for why positive 

weather shocks will increase land values in the presence of financial frictions. First, assuming 

some degree of localization in the market for land, positive weather shocks will increase the net 

worth of local buyers—i.e., nearby farmers—and hence push up the price of land. This is a cash-

in-the-market pricing effect as in Shleifer and Vishny (1992) and Allen and Gale (1994).21 

Second, following positive weather shocks, buyers anticipate that they will be less financially 

constrained going forward, which in turn will enable them to increase future yields through 

productive investment. The increase in expected future yields will then be capitalized into land 

prices. This feedback loop between increased future productivity and asset values is discussed in 

Kiyotaki and Moore (1997).  

To conclude, it is instructive to obtain a back-of-the-envelope estimate for the effect of 

weather shocks on farm balance sheets. First note that farming involves low profit margins—on 

                                                 
20 Note that this estimate is derived from the entire sample period and not solely from periods of tight financial 
constraints, where balance sheet effects are predicted to be particularly large. Consistent with this, we find larger 
propagation effects of weather shocks on land values and yields during the 1980s farm debt crisis (described below). 
21 Note that some form of market segmentation is at the heart of accelerator models that rely on variation in asset 
values. For market segmentation in farmland, see, e.g., Rajan and Ramcharan (2014b). 
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the order of 6%.22 Consider then a shock that shifts average July temperature from 77 to 80 

degrees Fahrenheit, which as discussed above, reduces contemporaneous yields by 21%. 

Assuming conservatively that costs do not move following a bad weather shock, profits are 

expected to decline by 350%, implying a loss greater than three times the normal gain.23 Thus, 

because of small profit margins, variation in weather can have a large influence on farm cash 

positions—a standard operating leverage effect—which can feed into land prices as well as farm 

investment. 

 

3.2 Interaction of Financial Constraints with Temperature Shocks 

We proceed by testing an important prediction of accelerator models—namely that 

amplification and persistence of temporary shocks should be more prevalent amongst financially 

constrained firms. As a first step, we proxy for local financial constraints using average county 

income per capita. We thus estimate regression (1) using corn yield as the dependent variable but 

include interactions of weather shocks with average county income per capita. The results are 

provided in Columns (1) through (3) of Table 4. 

Column (1) of Table 4 shows the effect of the interaction of income per capita and lagged 

temperature on current corn yields. Similar to prior results, lagged July Temp enters with a 

positive sign and squared July Temp enters with a negative sign both contemporaneously and for 

the first lag. Lagged temperature shocks thus affect current year yields as shown above. 

Importantly though, the interaction between the lagged temperature terms and county income per 

capita enter with the opposite sign to the non-interacted temperature term (for example, the 

                                                 
22 See USDA Economic information bulletin, May 2006.   
23 With a 6% profit margin, P=0.06R and C=0.94R, where P, R, and C are profit, revenue, and cost, respectively. 
Since the weather shock reduces revenue by 21%, the resultant profit, post-weather shock, will be -0.15R rather than 
0.06R. Profit thus declines by 350%. 
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coefficient on July Temp × Income Capita in year t–1 is negative while that on July Temp is 

positive). Thus, consistent with the importance of financial frictions in amplifying shocks, the 

effect of variation in lagged temperature is larger in lower income counties. 

Figure 2, Panel B (left) depicts these results graphically.  The figure compares how corn 

yields respond to changes in lagged July temperature for a county in the 30th percentile of 

income per capita versus a county in the 70th percentile of income per capita. As can be seen, the 

curve for counties with higher income per capita is significantly flatter than that for counties with 

low income per capita, indicating that the response of yield to lagged temperature changes is 

smaller for wealthier counties. 

While the effects are significant for temperature changes one year prior, they are 

insignificant for temperature changes two years prior (Columns (2) and (3) of Table 4), which is 

consistent with the results of Section 3.1 that the effects of temperature shocks on corn yields last 

for one year after the shock but are insignificant by two years after the shock. 

We next examine the effect of the interaction of income per capita and temperature 

shocks on land values. The results are given in Columns (4) through (6) of Table 4. Once again, 

the interaction between the lagged temperature terms and county income per capita enters with 

the opposite sign to the non-interacted temperature term. Put differently, similar to the results on 

yields, land values in poorer counties are more sensitive to past temperature shocks than those in 

richer counties. Figure 2, Panel B (right) shows this effect graphically, comparing the response 

of land values to changes in prior year July temperature for a county in the 30th percentile of 

income per capita to a county in the 70th percentile of income per capita. As can be seen, the 

curve is flatter for higher income counties, indicating that land values are less sensitive to 

changes in lagged temperature in these counties.  Similar to the results documented in Section 



 20

3.1, the effects last for two years after the initial temperature shock.  

Interestingly, Table 4 also shows that the contemporaneous effect of temperature on 

yields is stronger in lower income counties. One explanation for this is that high income farms 

can utilize their financial resources to counteract the effect of bad weather by undertaking 

various costly adjustments. These might include more and higher quality fertilizer, greater labor 

investment, and more intensive capital use. In contrast, lower income farms cannot as easily 

counteract detrimental weather shock using costly alternate inputs. In a frictionless capital 

market, they would raise capital to do so, but in the presence of financial frictions, such 

financing is costly.24 A similar pattern is observed with respect to land values: temperature has a 

greater effect on contemporaneous land values in low income counties as compared to high 

income counties.25  

 

3.3 The 1980s Farm Debt Crisis 

This section analyzes the propagation of productivity shocks during the 1980s farm debt 

crisis. This crisis provides an ideal setting to understand the quantitative effects of financial 

constraints on the accelerator mechanism during times when financial frictions are expected to 

be particularly large. Specifically, we explore how the impact of weather-driven productivity 

shocks on land values and future productivity are different over the full sample period (from 

1950 to 2010) as compared to those exhibited during the farm debt crisis. 

The farm debt crisis in the 1980s was triggered by the combination of a sharp increase in 

interest rates to combat inflation undertaken by the Federal Reserve under Paul Volcker and 

                                                 
24 See Hornbeck (2012) for evidence suggesting that credit constraints inhibited farmers from making necessary 
adjustments to counteract the effects of large soil erosion during the 1930s American Dust Bowl. 
25 Recall that land values are measured in December of each calendar year—i.e., five months after the realization of 
July temperature. 
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Russia’s imposition of an embargo on U.S. agricultural imports. The result was a period of 

severe financial distress for farmers leading to significantly weaker farm balance sheets (see 

Calomiris, Hubbard, and Stock, 1986). Financial accelerator models predict that during such a 

period, there will be an increase in the magnitude and persistence of past weather shocks on 

current productivity and asset (i.e., collateral) values. To analyze this prediction, we estimate 

regression (1) for corn yields and land values during the period of the farm debt crisis (from 

1981 to 1986). The analysis is given in Table 5, with Columns (1) through (3) providing results 

for corn yields and Columns (4) through (6) exhibiting the results for farmland values. 

As Table 5 shows, the signs of the coefficients on temperature are similar to those found 

above, and the persistent effects on both corn yields and land values are also present. However, 

the magnitudes of the coefficients are significantly larger than the magnitudes found in Table 2 

and Table 3, which cover the entire sample period. As would be predicted by financial 

accelerator models, the effect of past temperature shocks on corn yields and land values are 

indeed larger during the farm debt crisis. Comparing the coefficients in Table 2 to those in Table 

5 shows that the effect of lagged temperature on farm yields is 1.5 times larger during the debt 

crisis than over the entire sample period. Similarly, comparing Table 3 to Table 5 shows that the 

effect of lagged temperature on land values is three times larger during the debt crisis. Further, 

not only are the magnitudes of the lagged temperature coefficients larger, we also find that 

current yields are sensitive to weather shocks for up to two year lags, as compared to one year 

lag for the entire sample period. The persistence of shocks is therefore longer as well. 

In terms of economic magnitudes, during the farm debt crisis, a three-degree increase in 

lagged July Temp from 77 to 80 degrees Fahrenheit—approximately a one-standard deviation 

change—reduces year t yields by 2.5 percent and land values by 1.3 percent. Note that, as in all 
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specifications, the regressions in Table 5 are run with year fixed effects. The results are thus 

driven by variation in weather occurring within a year across different counties, and not by a 

general trend affecting all counties during the debt crisis, such as overall changes in investment 

opportunities.  

Table 5 also shows that the effect of temperature on contemporaneous yields is far larger 

during the farm debt crisis as compared to the effect calculated over the entire sample period. For 

example, comparing Column (2) of Table 2 and Table 5 shows that the coefficients on (July 

Temp)t  and squared (July Temp)t are approximately three times larger during the farm debt crisis 

than over the entire sample period. This result is similar to that found when comparing low 

income counties to high income counties described above: When financial constraints are 

tighter—as was the case during the 80s debt crisis—farms cannot easily substitute other inputs 

for bad weather shocks. Doing so will often involve raising external capital to finance additional 

inputs, which will be prohibitively costly, or simply unavailable, in periods of financial stress. As 

such, during crises farms are more vulnerable to detrimental variation in weather. 

 

3.4 The Intertemporal Elasticity of Productivity 

To further understand the economic magnitude of the propagation of productivity shocks 

over time, we employ an instrumental variable approach.  Specifically, we run: 

 

        log yieldi,t = b0 + b1(July Temp)i,t + b2(July Temp)i,t
2  + b3 log(yield)i,t–1 + ηt + λi + εi,t ,   (2) 

 
where log(yield)i,t–1 is log yield instrumented with (July Temp)t–1 and (July Temp)t–2.26 To 

understand the specification, note first that current—i.e., year t—temperature obviously has a 

                                                 
26 As usual, ηt and λi are year and county fixed effects. 
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direct impact on year t yields, and is hence included as a control in the regression. The 

identifying assumption, however, is that lagged temperature, i.e. in years t–1 and t–2, affect 

current year t yields only through their impact on year t–1 yields and the resultant accelerator 

effects.27 Under this identification assumption, lagged temperature exogenously shift lagged 

yields, and hence the coefficient b3 provides an estimate of the elasticity of current yields to 

variation in past yields. 

The results are shown in Table 6. Column (1) of the table shows the results of the first 

stage of the IV approach in which lagged yields, log(yieldi,t–1), is regressed on all of the second 

stage control variables—(July Temp)t, (July Temp)t–1, (July Temp)t–2, as well as their squares. 

Column (2) of Table 6 provides the results of the second stage, where log(yieldi,t–1) is replaced by 

the predicted value from the first stage (as specified in estimation equation (2)). As can be seen 

from the coefficient on b3, the intertemporal elasticity of yields is 0.094. Put differently, a 10% 

increase in productivity in year t implies a 1% increase in following year productivity. Column 

(3) of the table repeats the analysis but examines the intertemporal effect of productivity shocks 

on future asset prices by replacing log(yield) on the left hand side with log(Land Value). We find 

that the elasticity of year t land values to year t–1 shocks in productivity is 0.048.  

 

3.5 The Biology and Optimism Channels  

While the results above suggest that the effect of past weather shocks on current yields 

and land values stem from the presence of financial frictions, one important concern is that they 

are driven by a biological channel related to the effect of weather on soil. In particular, weather 

shocks could have long-lasting effects on soil quality, which in turn affect future yields and land 

values. The effect of weather shocks on land values and productivity would therefore be 
                                                 
27 For example, this assumption would clearly be violated under the soil biology channel discussed in Section 3.6.  
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persistent not because of financial friction accelerator effects, but rather due to a direct biological 

channel. 

We address this concern in a number of ways. First, we test whether the soil biology 

channel can account for our findings by including measures of soil quality over time as 

covariates in our baseline specification. We consider the three standard measures of soil quality: 

permeability; K-factor, which captures soil erodability; and soil moisture capacity. As discussed 

earlier, soil quality measures are from the National Resource Inventory (NRI) estimates of soil 

quality. Note that the NRI samples soil only every five years, and sites are not located in every 

county in Iowa so that data coverage is limited.  The results are presented in Table 7. 

Column (1) shows the results of temperature shocks on corn yields, after controlling for 

soil permeability and year fixed effects. High soil moisture permeability is good for soil growth, 

a fact reflected in the positive coefficient on the Permeability variable. Column (2) adds county 

fixed effects, which make the coefficient on permeability insignificant. This is consistent with 

the argument in the agricultural economics literature that soil variables are quite static and do not 

change dramatically over short periods of time. In both specifications, both with and without 

county fixed effects, the coefficients for the effects of temperature on yields remain significant. 

Columns (3) through (6) include K-factor and soil moisture capacity as control variables, both 

with and without fixed effects, showing similar results.28  

In addition to directly controlling for soil quality, the results regarding the farm debt 

crisis and the heterogeneous effect of past weather shocks based on per capita income also speak 

against the biology channel. In particular, a simple biology channel in which weather directly 

affects soil quality would not predict an increase in the impact of weather shocks during the farm 

debt crisis, as we find in the data. Similarly, a direct biology channel in which soil quality is 
                                                 
28 K-factor proxies for soil erodibility that is bad for plant growth.  
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changing with weather shocks would not naturally predict a stronger effect of weather shocks 

amongst poorer counties.  

Another possible explanation for the impact of current weather shocks on future 

productivity and land values is a behavioral channel in which farmers overreact to small weather 

variations. For example, after observing a positive weather shock, farmers may believe that 

future weather patterns will be more favorable, and as a result, they increase investment as well 

as bid up the price of land. Current weather shocks would then be correlated with greater future 

productivity and farmland values. Refuting such a behavioral channel is difficult: as is always 

the case, individual behavioral biases can always be manipulated to fit the data. Still, the 

behavioral channel is hard to justify. First, it is not at all clear why farmers’ behavioral response 

to current weather shocks, and their extrapolation of these shocks into the future, would intensify 

during farm debt crises. Similarly, given the data, one would need to argue that farmers in poorer 

counties suffer from greater behavioral biases than do those in richer counties—an observation 

that is arguably difficult to justify. Finally, we show below that the effect of weather on 

productivity and land values is concentrated in the pre-1990 sample period, a fact that a simple 

optimism channel would not directly predict.29  

 

3.6 Effect of Temperature Shocks on Investment and Debt Levels 

An important feature of many financial accelerator models is the link between 

productivity shocks and both current, as well as future, investment. According to this, temporary 

shocks to net worth have a persistent effect on firm investment and output: reduced financial 

                                                 
29 An additional potential concern is that, when planting, farmers use seeds that are derived from their prior-year’s 
crop. If seed quality deteriorates following a negative weather shock, this could explain the persistent effect of such 
shocks. However, corn seeds are generally purchased from seed companies, negating this concern. It is, of course, 
possible that financial constraints lead farmers to purchase cheaper, lower quality seeds, but this would be a 
particular manifestation of a financial accelerator effect. 
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constraints increases firm investment, which relaxes financial constraints in the future, in turn 

increasing subsequent investment still further. To analyze this feature within the context of our 

empirical framework, we estimate regression (1) using the value of machinery purchases as a 

dependent variable and include either one or two lags of temperature shocks.  

The results are given in Table 8, Columns (1) through (3). As can be seen, the relation 

between temperature and investment is non-monotonic, with high or low temperature values—

i.e., those associated with negative shocks—associated with reductions in investment. This effect 

is persistent as well—it lasts for a year following the initial shock, but then becomes insignificant 

two years following the initial shock.  

We next analyze how temperature shocks affect farm debt levels. Within the context of 

accelerator models, while the effect of a past positive productivity shock on current productivity 

and land values is unambiguously positive, the effect of productivity shocks on debt levels is 

ambiguous.30 On the one hand, when balance sheets strengthen following a positive productivity 

shock, firms’ borrowing constraints are relaxed, and to the extent that this constraint was initially 

binding, they will find it profitable to increase borrowing to fund investment (as in, e.g., Kiyotaki 

and Moore, 1997). Under these circumstances, positive productivity shocks will be correlated 

with higher debt levels. On the other hand, if external finance is sufficiently costly—i.e., the 

external finance premium is high—and borrowing constraints are not binding, firms may find it 

useful to use internal funds and rely less on debt, either by borrowing smaller amounts or by 

repaying liabilities. In particular, when the external finance premium is high, firms will use 

proceeds of exogenous productivity shocks to both undertake investment as well as pay down 

debt (in doing so, equating the marginal return of investment to the external finance premium). 

                                                 
30 This ambiguity extends to the effect of shocks on loan to value ratios as well. 
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Under these circumstances, debt levels will decline following positive productivity shocks.31   

We empirically examine the effect of productivity shocks on debt levels by estimating 

our baseline regression using total farm debt and farm real estate debt as dependent variables. 

The results are given in Table 9. Column (1) estimates the regression using total agricultural debt 

as the dependent variable, while Column (2) uses agricultural real estate debt as the dependent 

variable. For total agricultural debt, the coefficient for contemporaneous July Temp is negative 

and significant, while the coefficient for squared July Temp is positive and significant. Thus, 

following a positive temperature shock, farmers decrease debt, and following a negative 

temperature shock they increase it. The effect is persistent for one lag, as lagged temperature is 

negative and significant while lagged squared temperature is positive (though marginally 

insignificant). For farm real estate debt in Column (2), the signs of the coefficients are similar, 

but they are insignificant. 

Columns (3) and (4) of Table 9 re-estimate regression (1) for the period of the farm debt 

crisis, a period of financial distress and depressed net worth, as previously discussed. Consistent 

with the results using the full sample, during the farm debt crisis, farmers also decrease net debt 

holdings in response to a positive temperature shock, but in line with the predictions of financial 

accelerator models, the magnitude of the effect of temperature on debt is considerably larger. 

Further, in contrast to results from the full sample, the coefficient on real estate debt is now 

significant. Finally, temperature shocks persist for a longer period of time, with effects 

significant up to two years after the initial shock. 

 

 

                                                 
31 Indeed, in a Kiyotaki and Moore (1997) model where production exhibits diminishing marginal returns, debt 
levels can be decreasing in productivity shocks. 
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3.7 Effect of Temperature Shocks in the Period Post-1990 

As a final test, we analyze the effect of weather shocks in the sample period post-1990. 

During this period, two important changes occurred which in the context of a financial 

accelerator model would predict a reduced impact of weather shocks on subsequent productivity 

and farmland values. First, beginning in the 1990s, larger farming corporations began to exhibit a 

more dominant role within the industry (Sumner, 2014). Since these firms are arguably less 

constrained than smaller (private or family owned) farms, we predict that the effect of weather 

shocks post 1990 will be diminished. Further, large farming corporations caused markets for 

farmland to be less localized: potential buyers of land need not have been neighboring farms but 

could also be larger firms with geographically dispersed operations. Past local weather 

conditions would therefore have a smaller impact on the liquidity available to potential land 

purchasers, and hence local weather variation would be predicted to have a smaller effect on the 

demand for and price of land. 

Beyond the rise of large farming corporations, the second important change to occur 

during the 1990s was the increased use of crop insurance. Crop insurance offered by both the 

U.S. government and private insurers allowed farmers to protect themselves against shortfalls in 

either crop revenue or crop yields due to weather fluctuations.32 The use of insurance became 

widespread starting in the mid-1990s after the Federal Crop Insurance Reform Act of 1994 

expanded federal subsidies for crop insurance (Glauber, 2013). The development of crop 

insurance markets—both federal and private—would naturally make local weather variation less 

important in determining local farm liquidity, investment, and land prices.33 

The reduction in financial constraints due to the increased role of farming corporations 

                                                 
32 See also Karlan et al. (2014) for evidence on the effects of crop insurance provision on agricultural investment. 
33 Indeed, hedging within a Kiyotaki and Moore (1997) framework eliminates acceleration effects. 
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and the increased usage of crop insurance would both predict a muted effect of weather shocks 

on future productivity and land values in the latter part of the sample period. To test this 

prediction, Table 10 reruns our baseline specification during the sample period post-1990 and 

reports the results of the effects of weather shocks on both corn yields and land values. As 

predicted, while we continue to find a contemporaneous effect of July temperature on yields, we 

do not find persistence.34 Further, as hypothesized, there is no relation, contemporaneous or 

otherwise, between weather shocks and land values post-1990.  

 

3.8 Insider Econometrics 

To obtain a first-hand understanding of the importance of financial constraints in the 

intertemporal effect of productivity shocks, we interviewed directors and senior executives of 

lending institutions providing credit to farmers.35 36 Apart from having a working knowledge of 

the agricultural sector through their lending activities, many of the directors own large farms 

themselves. The interviews revealed two main findings. First, interviewees stated that bad 

weather during one growing season does not noticeably affect soil quality and that three to four 

years of hot temperature would be necessary before any noticeable effect on soil nutrients would 

arise. The participants also added that flooding was of far greater importance for soil quality, and 

even in that regard, soil nutrients begin to run off only when land is waterlogged for a prolonged 

period of time. The interviews also confirmed that cash constraints of local farmers, and in 

particular constraints that arise from poor crop yields, affect both farmland values as well as farm 

                                                 
34 Weather shocks will clearly continue to affect contemporaneous yields even in the complete absence of financial 
frictions. 
35 We interviewed 26 directors and senior executives of the Farm Credit System—a $248 billion nationwide network 
of agricultural lending institutions in the United States. This credit system serves as one of the most important 
sources of credit to farmers, providing more than one third of total agricultural credit in the U.S. 
36 See Ichniowski and Shaw (2013) for pioneering use of “Insider Econometrics,” a methodology that involves field 
interviews in combination with data analysis.  
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investment. Respondents observed that when farmers’ cash position deteriorates, demand for 

farmland is suppressed. However, the participants also added that the development of crop 

insurance helped attenuate the effect of adverse weather shocks on farm balance sheets.  

 

4 Conclusion 

In this paper, we examine the amplification and propagation of economic shocks, testing 

key features of financial accelerator models (e.g., Bernanke and Gertler, 1989, and Kiyotaki and 

Moore, 1997). In order to do so, we construct a novel database in the agricultural industry and 

use weather shocks as a source of exogenous productivity shocks. We then examine the relation 

between past weather shocks and farm productivity, land values, debt, and investment.  

We find that temporary temperature shocks have persistent effects on productivity and 

farmland values. The effects are economically significant and persist up to two years following 

the shock. In addition, during periods of financial market disruption, we find that the effects are 

substantially larger and longer-lasting. Overall, our study provides evidence in support of 

financial accelerator models: in the presence of financial frictions, temporary shocks that affect 

firm balance sheets create a dynamic feedback effect that generates persistence and amplification 

of shocks. 

Our approach highlights the potential value of focusing on micro-level data within a 

particular industry—in contrast to aggregate data—to understand and quantify financial 

acceleration effects. Our results are directly applicable to the large agricultural sector in the 

world economy, and particularly so in developing countries where financial constraints are 

generally larger. However, we expect the results to be relevant to other industries where financial 

constraints play an important role.  
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Table 2: Temperature Shocks on Corn Yields
This table provides regression results for the effects of temperature shocks on corn yields.
All variables represent county-level values in the indicated year. CornY ield is defined as
bushels of corn produced per acre of harvested land. July Temp is the average temperature
in July, recorded in Fahrenheit. Standard errors are given in parentheses, and are either
robust and clustered at the county level, or corrected for spatial correlation (as in Conley,
2008), as indicated. *, **, and *** indicate significance at the 10%, 5%, and 1% level,
respectively. All regressions include an intercept term (not reported). Reported coefficient
estimates are scaled by a factor of 10 in order to ease interpretation. Results are run from
1950 to 2010.

Dependent Variable: log(CornY ield)t
(1) (2) (3) (4) (5)

(July Temp)t 6.334*** 6.144*** 6.028*** 6.097*** 6.028***
(0.913) (0.901) (0.897) (0.871) (0.361)

(July Temp)2t -0.045*** -0.044*** -0.044*** -0.044*** -0.044***
(0.006) (0.006) (0.006) (0.006) (0.002)

(July Temp)t−1 1.859*** 1.822** 1.768** 1.822***
(0.710) (0.714) (0.734) (0.325)

(July Temp)2t−1 -0.012** -0.012** -0.012** -0.012***
(0.005) (0.005) (0.005) (0.002)

(July Temp)t−2 0.682 0.626 0.682***
(0.646) (0.659) (0.256)

(July Temp)2t−2 -0.004 -0.004 -0.004**
(0.004) (0.004) (0.002)

(July Temp)t−3 0.231
(0.784)

(July Temp)2t−3 -0.001
(0.005)

Standard Errors Spatial Spatial Spatial Spatial Robust
County Fixed Effects Yes Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes Yes
Adjusted R2 0.915 0.911 0.906 0.907 0.906
Observations 6,032 5,926 5,820 5,714 5,820



Table 3: Temperature Shocks on Land Values
This table provides regression results for the effects of temperature shocks on farm land
values. All variables represent county-level values in the indicated year. LandV alue is the
dollar value of farmland per acre. July Temp is the average temperature in July, recorded
in Fahrenheit. All dollar amounts are scaled by the Consumer Price Index (CPI), and are
reported in real 2010 dollars. Standard errors are given in parentheses, and are either robust
and clustered at the county level, or corrected for spatial correlation (as in Conley, 2008),
as indicated. *, **, and *** indicate significance at the 10%, 5%, and 1% level, respectively.
All regressions include an intercept term (not reported). Reported coefficient estimates are
scaled by a factor of 10 in order to ease interpretation. Results are run from 1950 to 2010.

Dependent Variable: log(LandV alue)t
(1) (2) (3) (4) (5)

(July Temp)t 0.586* 0.478 0.300 0.304 0.300**
(0.355) (0.361) (0.361) (0.357) (0.125)

(July Temp)2t -0.004 -0.003 -0.002 -0.002 -0.002**
(0.002) (0.002) (0.002) (0.002) (0.001)

(July Temp)t−1 0.819** 0.710** 0.587* 0.710***
(0.352) (0.352) (0.353) (0.108)

(July Temp)2t−1 -0.005** -0.005* -0.004 -0.005***
(0.002) (0.002) (0.002) (0.001)

(July Temp)t−2 0.821** 0.715** 0.821***
(0.345) (0.347) (0.132)

(July Temp)2t−2 -0.005** -0.005** -0.005***
(0.002) (0.002) (0.001)

(July Temp)t−3 0.508
(0.320)

(July Temp)2t−3 -0.003
(0.002)

Standard Errors Spatial Spatial Spatial Spatial Robust
County Fixed Effects Yes Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes Yes
Adjusted R2 0.982 0.983 0.983 0.984 0.983
Observations 6,032 5,926 5,820 5,714 5,820



Table 4: Temperature Effects, Interaction with Financial Constraints
This table provides regression results for the effects of temperature shocks on corn yields and land values, and
the interaction with financial constraints as measured by county income per capita. All variables represent
county-level values in the indicated year. CornY ield is defined as bushels of corn produced per acre of
harvested land. LandV alue is the dollar value of farmland per acre. July Temp is the average temperature
in July, recorded in Fahrenheit. Income is county income per capita, in thousands of dollars. All dollar
amounts are scaled by the Consumer Price Index (CPI), and are reported in real 2010 dollars. Standard
errors are given in parentheses, and are either robust and clustered at the county level, or corrected for
spatial correlation (as in Conley, 2008), as indicated. *, **, and *** indicate significance at the 10%, 5%,
and 1% level, respectively. All regressions include (Income)t−1, (Income)t−2, and an intercept term (not
reported). Reported coefficient estimates are scaled by a factor of 10 in order to ease interpretation. Results
are run for 1959, and 1969 to 2010.

(1) (2) (3) (4) (5) (6)

Dependent Variable: log(CornY ield)t log(LandV alue)t

(Income)t 13.321** 13.651** 13.651*** 2.635 3.993* 3.993***

(6.204) (6.182) (2.678) (2.173) (2.128) (1.091)

(July Temp)t 17.173*** 17.378*** 17.378*** 2.485 3.520** 3.520***

(5.268) (5.253) (2.139) (1.655) (1.623) (0.789)

(July Temp)t × (Income)t -0.365** -0.375** -0.375*** -0.075 -0.112* -0.112***

(0.171) (0.171) (0.074) (0.059) (0.057) (0.029)

(July Temp)2t -0.121*** -0.123*** -0.123*** -0.017 -0.024** -0.024***

(0.036) (0.036) (0.015) (0.011) (0.011) (0.005)

(July Temp)2t × (Income)t 0.003** 0.003** 0.003*** 0.001 0.001** 0.001***

(0.001) (0.001) (0.001) (0.000) (0.000) (0.000)

(July Temp)t−1 9.369*** 9.204*** 9.204*** 3.880** 3.955** 3.955***

(3.340) (3.253) (1.613) (1.595) (1.669) (0.826)

(July Temp)t−1 × (Income)t−1 -0.309** -0.307** -0.307*** -0.117** -0.120** -0.120***

(0.125) (0.121) (0.063) (0.055) (0.057) (0.032)

(July Temp)2t−1 -0.061*** -0.060*** -0.060*** -0.026** -0.027** -0.027***

(0.022) (0.022) (0.011) (0.011) (0.011) (0.006)

(July Temp)2t−1 × (Income)t−1 0.002** 0.002** 0.002*** 0.001** 0.001** 0.001***

(0.001) (0.001) (0.000) (0.000) (0.000) (0.000)

(July Temp)t−2 -0.683 -0.683 4.434** 4.434***

(3.200) (1.442) (2.095) (1.202)

(July Temp)t−2 × (Income)t−2 0.043 0.043 -0.158** -0.158***

(0.115) (0.055) (0.077) (0.045)

(July Temp)2t−2 0.005 0.005 -0.030** -0.030***

(0.022) (0.010) (0.014) (0.008)

(July Temp)2t−2 × (Income)t−2 -0.000 -0.000 0.001** 0.001***

(0.001) (0.000) (0.001) (0.000)

Standard Errors Spatial Spatial Robust Spatial Spatial Robust

County FE Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes

Adjusted R2 0.853 0.854 0.854 0.986 0.986 0.986

Observations 4,045 3,939 3,939 4,045 3,939 3,939



Table 5: Temperature Shocks During the Farm Debt Crisis
This table provides regression results for the effects of temperature shocks on corn yields for
the period from 1981 to 1986. All variables represent county-level values in the indicated year.
CornY ield is defined as bushels of corn produced per acre of harvested land. LandV alue is
the dollar value of farmland per acre. July Temp is the average temperature in July, recorded
in Fahrenheit. All dollar amounts are scaled by the Consumer Price Index (CPI), and are
reported in real 2010 dollars. Standard errors are given in parentheses, and are either robust
and clustered at the county level, or corrected for spatial correlation (as in Conley, 2008),
as indicated. *, **, and *** indicate significance at the 10%, 5%, and 1% level, respectively.
All regressions include an intercept term (not reported). Reported coefficient estimates are
scaled by a factor of 10 in order to ease interpretation.

(1) (2) (3) (4) (5) (6)

Dependent Variable: log(CornY ield)t log(LandV alue)t

(July Temp)t 18.597*** 20.241*** 20.241*** 1.797** 1.881** 1.881***

(4.950) (5.295) (2.886) (0.762) (0.783) (0.428)

(July Temp)2t -0.129*** -0.140*** -0.140*** -0.012** -0.012** -0.012***

(0.034) (0.036) (0.020) (0.005) (0.005) (0.003)

(July Temp)t−1 4.302** 5.672*** 5.672*** 1.050* 1.088* 1.088***

(1.823) (2.171) (1.053) (0.555) (0.598) (0.299)

(July Temp)2t−1 -0.028** -0.037** -0.037*** -0.007* -0.007* -0.007***

(0.012) (0.015) (0.007) (0.004) (0.004) (0.002)

(July Temp)t−2 3.604* 3.604*** 0.601 0.601*

(2.022) (1.025) (0.667) (0.309)

(July Temp)2t−2 -0.023* -0.023*** -0.004 -0.004*

(0.013) (0.007) (0.004) (0.002)

Standard Errors Spatial Spatial Robust Spatial Spatial Robust

County FE Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes

Adjusted R2 0.768 0.770 0.770 0.995 0.995 0.995

Observations 594 594 594 594 594 594



Table 6: Instrumental Variable Estimates
This table provides instrumental variable estimates for corn yield and land values, instru-
menting for past yields using past temperature. All variables represent county-level values in
the indicated year. CornY ield is defined as bushels of corn produced per acre of harvested

land. LandV alue is the dollar value of farmland per acre. ̂log(yield) is instrumented log
corn yields. July Temp is the average temperature in July, recorded in Fahrenheit. All
dollar amounts are scaled by the Consumer Price Index (CPI), and are reported in real 2010
dollars. Standard errors are given in parentheses, and are either robust and clustered at the
county level, or corrected for spatial correlation (as in Conley, 2008), as indicated. *, **, and
*** indicate significance at the 10%, 5%, and 1% level, respectively. All regressions include
an intercept term (not reported). Reported coefficient estimates are scaled by a factor of 10
in order to ease interpretation. Results are run from 1950 to 2010.

(1) (2) (3)
Dependent Variable: log(CornY ield)t−1 log(CornY ield)t log(LandV alue)t̂log(yield)t−1 0.094*** 0.048***

(0.029) (0.015)

(July Temp)t -0.535 6.354*** 0.438***
(0.607) (0.278) (0.139)

(July Temp)2t 0.004 -0.046*** -0.003***
(0.004) (0.002) (0.001)

(July Temp)t−1 5.972***
(0.919)

(July Temp)2t−1 -0.043***
(0.006)

(July Temp)t−2 2.550***
(0.648)

(July Temp)2t−2 -0.017***
(0.004)

Standard Errors Spatial Robust Robust
County FE Yes Yes Yes
Year FE Yes Yes Yes
Adjusted R2 0.916 0.909 0.984
F-statistic 379.17
Observations 5,280 5,820 5,820



Table 7: Temperature Shocks on Corn Yields, Controlling for Soil Quality
This table provides regression results for the effects of temperature shocks on corn yields, controlling
for the effects on soil quality. All variables represent county-level values in the indicated year.
CornY ield is defined as bushels of corn produced per acre of harvested land. July Temp is the
average temperature in July, recorded in Fahrenheit. Permeability is a measure of soil permeability.
K factor represents the soil erodability factor. Moisture is the soil moisture holding capacity.
Standard errors are given in parentheses, and are corrected for spatial correlation (as in Conley,
2008), as indicated. *, **, and *** indicate significance at the 10%, 5%, and 1% level, respectively.
All regressions include an intercept term (not reported). Reported coefficient estimates are scaled
by a factor of 10 in order to ease interpretation. Results are run for every five years from 1978 to
2002.

Dependent Variable: log(CornY ield)t
(1) (2) (3) (4) (5) (6)

(Permeability)t 0.697** -0.763

(0.337) (3.487)

(K factor)t -6.312*** -6.928

(1.836) (99.073)

(Moisture)t -0.132 21.160

(6.368) (133.080)

(July Temp)t 4.446*** 4.618*** 4.336*** 4.611*** 4.510*** 4.612***

(1.023) (0.905) (0.955) (0.917) (0.951) (0.905)

(July Temp)2t -0.032*** -0.033*** -0.031*** -0.033*** -0.032*** -0.033***

(0.007) (0.006) (0.007) (0.006) (0.006) (0.006)

(July Temp)t−1 3.853*** 2.108* 4.163*** 2.110* 4.194*** 2.132*

(1.306) (1.167) (1.216) (1.170) (1.277) (1.172)

(July Temp)2t−1 -0.026*** -0.016** -0.028*** -0.016** -0.028*** -0.016**

(0.009) (0.008) (0.008) (0.008) (0.009) (0.008)

Standard Errors Spatial Spatial Spatial Spatial Spatial Spatial

County FE No Yes No Yes No Yes

Year FE Yes Yes Yes Yes Yes Yes

R2 0.767 0.866 0.771 0.866 0.758 0.866

Observations 198 198 198 198 198 198



Table 8: Effect of Temperature Shocks on Machinery Investment
This table provides regression results for the effects of temperature shocks on the value of machinery
purchases. All variables represent county-level values in the indicated year. MachPurchase is the
total value of machinery purchases. July Temp is the average temperature in July, recorded in
Fahrenheit. All dollar amounts are scaled by the Consumer Price Index (CPI), and are reported in
real 2010 dollars. Standard errors are given in parentheses, and are corrected for spatial correlation
(as in Conley, 2008), as indicated. *, **, and *** indicate significance at the 10%, 5%, and 1%
level, respectively. All regressions include an intercept term (not reported). Reported coefficient
estimates are scaled by a factor of 10 in order to ease interpretation. The results run from 1995 to
2010.

(1) (2) (3)
Dependent Variable: (MachPurchase)t (MachPurchase)t (MachPurchase)t

(July Temp)t 3.996* 4.404* 4.225*
(2.414) (2.396) (2.370)

(July Temp)2t -0.028* -0.031* -0.030*
(0.016) (0.016) (0.016)

(July Temp)t−1 4.561* 4.523*
(2.561) (2.572)

(July Temp)2t−1 -0.031* -0.031*
(0.017) (0.018)

(July Temp)t−2 -0.679
(2.302)

(July Temp)2t−2 0.005
(0.016)

Standard Errors Spatial Spatial Spatial
County FE Yes Yes Yes
Year FE Yes Yes Yes
Adjusted R2 0.626 0.626 0.624
Observations 1,575 1,569 1,562



Table 9: Temperature Shocks on Debt Levels
This table provides regression results for the effects of temperature shocks on debt levels.
All variables represent county-level values in the indicated year. AgDebt is defined as total
agricultural debt issued by banks in the given county. REDebt is defined as total real
estate debt secured by farmland issued by banks in the given county, and is winsorized at
the 1% level. July Temp is the average temperature in July, recorded in Fahrenheit. All
dollar amounts are scaled by the Consumer Price Index (CPI), and are reported in real 2010
dollars. Standard errors are given in parentheses, and are corrected for spatial correlation
(as in Conley, 2008), as indicated. *, **, and *** indicate significance at the 10%, 5%, and
1% level, respectively. All regressions include an intercept term (not reported). Reported
coefficient estimates are scaled by a factor of 10 in order to ease interpretation. Columns
(1) and (2) give results for 1959 to 2010, while columns (3) and (4) give results for 1981 to
1986.

Full Sample Farm Debt Crisis
(1) (2) (3) (4)

Dependent Variable: log(AgDebt)t log(REDebt)t log(AgDebt)t log(REDebt)t

(July Temp)t -1.753* -2.056 -4.565*** -7.024**
(0.986) (1.402) (1.338) (2.980)

(July Temp)2t 0.013** 0.014 0.031*** 0.044**
(0.007) (0.009) (0.009) (0.020)

(July Temp)t−1 -1.457 -1.007 -6.083*** -8.833**
(0.964) (1.451) (1.700) (3.530)

(July Temp)2t−1 0.011* 0.007 0.041*** 0.057**
(0.006) (0.010) (0.011) (0.024)

(July Temp)t−2 -0.145 -0.116 -5.336*** -6.825**
(0.982) (1.635) (1.550) (3.303)

(July Temp)2t−2 0.003 0.001 0.035*** 0.043*
(0.007) (0.011) (0.010) (0.022)

Standard Errors Spatial Spatial Spatial Spatial
County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Adjusted R2 0.759 0.819 0.934 0.836
Observations 5,063 5,062 594 594



Table 10: Effects Post-1990s
This table provides results of the effects in the period post-1990. The sample period runs from
1990 to 2010. All variables represent county-level values in the indicated year. CornY ield is
defined as bushels of corn produced per acre of harvested land. LandV alue is the dollar value
of farmland per acre. July Temp is the average temperature in July, recorded in Fahrenheit.
All dollar amounts are scaled by the Consumer Price Index (CPI), and are reported in
real 2010 dollars. Standard errors are given in parentheses, and are corrected for spatial
correlation (as in Conley, 2008), as indicated. *, **, and *** indicate significance at the
10%, 5%, and 1% level, respectively. All regressions include an intercept term (not reported).
Reported coefficient estimates are scaled by a factor of 10 in order to ease interpretation.

(1) (2) (3) (4)
Dependent Variable: log(CornY ield)t log(LandV alue)t

(July Temp)t 4.820*** 4.780*** -0.529 -0.520
(0.711) (0.706) (0.372) (0.370)

(July Temp)2t -0.034*** -0.034*** 0.003 0.003
(0.005) (0.005) (0.003) (0.003)

(July Temp)t−1 -1.093 -0.267
(1.236) (0.364)

(July Temp)2t−1 0.008 0.002
(0.008) (0.002)

Standard Errors Spatial Spatial Spatial Spatial
County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Adjusted R2 0.845 0.846 0.987 0.987
Observations 2,072 2,065 2,072 2,065



Figure 1: Temperature Density Plots
Panel A shows density plots for temperature. The first graph indicates the distribution of temperature for all
county-years in the sample. The second graph indicates the distribution of temperature for counties in 1955.
The third graph indicates the distribution of temperature for counties in 1980. The fourth graph indicates
the distribution of temperature for counties in 1995. Panel B shows de-meaned density plots for temperature.
The left graph shows the distribution of temperature in excess of each county’s mean temperature for all
county-years in the sample. The right graph shows the distribution of temperature in excess of each year’s
mean temperature for all county-years in the sample. All temperatures are in degrees Fahrenheit.

Panel A: Temperature Density Plots

Panel B: De-meaned Temperature Density Plots



Figure 2: Effect of Temperature on Corn Yields and Land Values

Panel A: Past Temperatures on Yields and Land Values
The left curve shows the effect of changing July temperature from one year prior on current
corn yields, while the right curve shows the effect on land values. Temperature is measured
in degrees Fahrenheit. Corn yields are measured in log bushels per acre, and land values are
measured in log dollars per acre (in real 2010 dollars).

Panel B: Past Temperatures on Yields and Land Values at Different Levels of Income
The left figure depicts the effect of July temperature on Iowa corn yields at different levels of
income per capita, while the right figure depicts the effect for land values. The solid red line
shows the effect of changing July temperature from one year prior on current yields or land
values, for counties at the 30th percentile of income per capita. The long-dashed blue line
shows the effect of changing July temperature from one year prior on current yields or land
values, for counties at the 70th percentile of income per capita. Temperature is measured in
degrees Fahrenheit. Corn yields are measured in log bushels per acre, and land values are
measured in log dollars per acre (in real 2010 dollars).



Appendix: For Online Publication

Table A1: Robustness—Placebo Regressions
This table provides placebo regression results. All variables represent county-level values in the indicated
year, and results run from 1950 to 2010. CornY ield is defined as bushels of corn produced per acre of
harvested land. LandV alue is the dollar value of farmland per acre. July Temp is the average temperature
in July, recorded in Fahrenheit. All dollar amounts are scaled by the Consumer Price Index (CPI), and
are reported in real 2010 dollars. Standard errors are given in parentheses, and are corrected for spatial
correlation (as in Conley, 2008), as indicated. *, **, and *** indicate significance at the 10%, 5%, and 1%
level, respectively. All regressions include an intercept term (not reported). Reported coefficient estimates
are scaled by a factor of 10 in order to ease interpretation.

(1) (2)

Dependent Variable: log(CornY ield)t log(LandV alue)t

(July Temp)t+1 -0.535 -0.132

(0.607) (0.367)

(July Temp)2t+1 0.004 0.001

(0.004) (0.002)

(July Temp)t 5.972*** 0.457

(0.919) (0.364)

(July Temp)2t -0.043*** -0.003

(0.006) (0.002)

(July Temp)t−1 2.550*** 0.880**

(0.648) (0.363)

(July Temp)2t−1 -0.017*** -0.006**

(0.004) (0.002)

Standard Errors Spatial Spatial

County and Year Fixed Effects Yes Yes

Adjusted R2 0.913 0.982

Observations 5,820 5,820



Figure A1: Time-series of Yields, Land Values, and Debt
All graphs are time-series averages (across all counties for each year). Corn yield is measured
in bushels per acre. Land values are given in dollars per acre of farmland. Total agricultural
debt is in thousands of dollars. All dollar amounts are scaled by the Consumer Price Index
(CPI), and are reported in real 2010 dollars.


