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1. Introduction

In classical panel-data models for mean regression, fixed effects are commonly used to obtain

identification when time-invariant unobservables are correlated with included variables. While

this approach yields consistent estimates of the coefficients on time-varying variables, it precludes

identification of the coefficients of any time-invariant variables, as these variables are eliminated by

the within-group transformation. In an influential paper, Hausman and Taylor (1981) demonstrated

that exogenous between variation of time-varying variables can help to identify the coefficients of

time-invariant variables after their within variation has been used to identify the coefficients on

time-varying variables, thus yielding identification of the whole model without external instruments.

Our paper provides a quantile extension of the Hausman and Taylor (1981) classical linear panel

estimator.

We present our model in Section 2. To clarify the range of potential applications of our esti-

mator, we depart in the model from the usual panel-data terminology and refer to panel units as

groups (instead of as individuals; groups might be states, cities, schools, etc.) and to within-group

observations as individuals or micro-level observations (instead of as time observations; individuals

might be students, families, firms, etc.).1 The model is of practical significance when the researcher

has data on a group-level endogenous treatment and has microdata on the outcome of interest

within each group. For example, a researcher may be interested in the effect of a policy which

varies across states and years (a “group”) on the within-group distribution of micro-level outcomes.

In Section 2, we also explain how the problem we solve differs from others in the quantile regression

literature, and we demonstrate that, as in Hausman and Taylor (1981), micro-level covariates can

be used as internal instruments for the endogenous group-level treatment if they satisfy relevance

and exogeneity conditions. This last feature of the model is especially appealing because in practice

it may be difficult to find external instruments.

We introduce our estimator in Section 3. The estimator is computationally simple to implement

and consists of two steps: 1) perform quantile regression within each group to estimate effects of

micro-level covariates, or, if no micro-level covariates are included, calculate the desired quantile for

the outcome within each group; and 2) regress the estimated group-specific effects on group-level

covariates using either 2SLS, if the group-level covariates are endogenous, or OLS, if the group-

level covariates are exogenous, either of which cases would render standard quantile regression

(e.g. Koenker and Bassett 1978) inconsistent.2 Section 3 also highlights a variety of applied

micro settings in which our estimator is useful (with detailed example applications discussed in

1Similar terminology is used, for example, by Altonji and Matzkin (2005).
2Even in the absence of endogeneity, the Koenker and Bassett (1978) estimator will be inconsistent in our setting

because of group-level unobservables, akin to left-hand side measurement error; see Section 2 for details on our

setting. While posing no problems for linear models, left-hand side errors-in-variables can bias quantile estimation

(see Hausman (2001) and Hausman, Luo, and Palmer (2014)).
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Appendix A) and discusses Monte Carlo simulations (found in Appendix B) that demonstrate that

our estimator has much lower bias than that of the standard quantile regression estimator when

the group-level treatment is endogenous, even in small samples, and at larger sample sizes our

estimator outperforms quantile regression even when the treatment is exogenous. Section 3 also

highlights additional computational benefits of our estimator.

We derive theoretical properties of the estimator in Section 4. The results are based on asymp-

totics where both the number of groups and the number of observations per group grow to infinity.

While linear panel models, including Hausman and Taylor (1981), admit a simple unbiased fixed

effects estimator and hence do not require asymptotics in the number of observations per group,

quantile estimators are biased in finite samples leading to inconsistency of our estimator if the

number of observations per group remains small as the number of groups increases, and making the

estimator inappropriate in the settings with a small number of observations per group and a large

number of groups. However, since quantile estimators are asymptotically unbiased, we are able to

employ Bahadur’s representation of quantile estimators to derive weak conditions on the growth of

the number of observations per group that are sufficient for the consistency and asymptotic zero-

mean normality of our estimator. Importantly, the attractive theoretical properties of the estimator

remain valid even if the number of observations per group is relatively small in comparison with

the number of groups. We demonstrate that standard errors for the proposed estimator can be

obtained using traditional robust variance estimators for 2SLS (heteroskedasticity-robust and clus-

tered), making inference particularly simple. Finally, we show how to construct confidence bands

for the coefficient of interest which hold uniformly over a set of quantiles of interest via multiplier

bootstrap procedure.

Section 5 presents an empirical application which studies the effect of trade on the distribution

of wages within local labor markets. We build on the work of Autor, Dorn, and Hanson (2013), who

studied the effect of Chinese import competition on average wages in local labor markets. Using the

grouped IV quantile regression approach developed here, we find that Chinese import competition

reduced the wages of low-wage earners (individuals at the bottom quartile of the conditional wage

distribution) more than high-wage earners, particularly for females, heterogeneity which is missed

by focusing on traditional 2SLS estimates.

To the best of our knowledge, our paper is the first to present a framework for estimating

distributional effects as a function of group-level covariates. There is, however, a large literature

studying quantile models for panel data when the researcher wishes to estimate distributional effects

of micro-level covariates. See, for example, Koenker (2004), Abrevaya and Dahl (2008), Lamarche

(2010), Canay (2011), Galvao (2011), Kato and Galvao (2011), Ponomareva (2011), Kato, Galvao,

and Montes-Rojas (2012), Rosen (2012), Arellano and Bonhomme (2013), and Galvao and Wang

(2013). Our paper also contributes to the growing literature on IV treatment effects in quantile

models, such as Abadie, Angrist, and Imbens (2002), Chernozhukov and Hansen (2005, 2006, 2008),
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Lee (2007), Chesher (2003), and Imbens and Newey (2009). Our paper differs, however, in that this

literature focuses on the case where individual-level unobserved heterogeneity is correlated with an

individual-level treatment, whereas we focus on the case where a group-level, additively separable

unobservable is correlated with a group-level treatment.

Throughout the paper, we use the following notation. The symbol ‖ · ‖ denotes the Euclidean

norm. The symbol⇒ signifies weak convergence, and l∞(U) represents the set of bounded functions

on U . With some abuse of notation, `∞(U) also denotes the set of component-wise bounded vector-

valued functions on U . All equalities and inequalities concerning random variables are implicitly

assumed to hold almost surely. All proofs and some extensions of our results are contained in the

Appendix.

2. Model

We study a panel data quantile regression model for a response variable yig of individual i in

group g. We first present the model in its most general form in equations (1) and (2) below and

then discuss a particular operationalization of the model in equation (3) that will be particularly

appealing for applied work. In the general model, we assume that the uth quantile of the conditional

distribution of yig is given by

Qyig |zig ,xg ,αg(u) = z′igαg(u), u ∈ U (1)

αg,1(u) = x′gβ(u) + εg(u), u ∈ U , (2)

where Qyig |zig ,xg ,αg(u) is the uth conditional quantile of yig given (zig, xg, αg), zig is a dz-vector

of observable individual-level covariates (which we sometimes refer to as micro-level covariates),

αg = {αg(u), u ∈ U} is a set of group-specific effects with αg,1(u) being the first component of the

vector αg(u) = (αg,1(u), . . . , αg,dz(u))′, xg is a dx-vector of observable group-level covariates (xg

contains a constant), β(u) is a dx-vector of coefficients, εg = {εg(u), u ∈ U} is a set of unobservable

group-level random scalar shifters,3 and U is a set of quantile indices of interest. Thus, we assume

that the response variable yig satisfies the quantile regression model in (1) with group-specific

effects αg(u). We are primarily interested in studying how these effects depend on the group-level

covariates xg, and, without loss of generality, we focus on αg,1(u), the first component of the vector

αg(u). To make the problem operational, we assume that αg,1(u) satisfies the linear regression

model (2), in which we are interested in estimating the vector of coefficients β(u).

In empirical work, we envision that the most useful variant of the model (1)-(2) would be case

where the first element of zig corresponds to a constant and where coefficients on micro-level

3One interpretation of the term εg(u) in (2) is that it accounts for all unobservable group-level covariates ηg that

affect αg,1(u) but are not included in xg. In this case, εg(u) = ε(u, ηg). Note that we do not impose any parametric

restrictions on ε(u, ηg), and so we allow for arbitrary nonlinear effects of the group-level unobservable covariates that

can affect different quantiles in different ways.
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covariates do not vary by group, given by the model

Qyig |z̃ig ,xg ,εg(u) = z̃′igγ(u) + x′gβ(u) + εg(u), u ∈ U , (3)

which is obtained from (1)-(2) by assuming that (αg,2(u), . . . , αg,dz(u))′ = γ(u) for some non-

stochastic (dz − 1)-vector γ(u) and all g = 1, . . . , G, setting zig = (1, z̃ig)
′, and substituting (2) into

(1). This model allows for the analysis of location-shift effects of the group-level covariates xg on

the conditional distribution of yig in the group g.

As an example of where the above modeling framework is useful, consider a case in which a

researcher wishes to model the effects of a policy, contained in xg, which varies at the state-by-year

level (a “group” in this setting) on the distribution of micro-level outcomes (such as individuals’

wages within each state-by-year combination), denoted yig, conditional on micro-level covariates,

such as education level, denoted zig. The framework in (3) would model the location-shift effect of

the policy on conditional quantiles of wages within a group, given by β(u). The additional flexibility

of (1)-(2) would also allow for interaction effects. For example, a policy xg may have differential

effects on lower wage quantiles for the less-educated than for the higher-educated; model (1) would

capture this idea by allowing the researcher to specify a linear regression model of the form of (2)

for the component of αg that is the coefficient on education level, allowing the researcher to study

how the effect of education level on the wage distribution varies as a function of xg, the policy.4

In many applications, it is likely that the group-level covariates xg may be endogenous in the

sense that E[xgεg(u)] 6= 0, at least for some values of the quantile index u ∈ U . Therefore, to

increase applicability of our results, we assume that there exists a dw-vector of observable instru-

ments wg such that E[wgεg(u)] = 0 for all u ∈ U , E[wgx
′
g] is nonsingular, and yig is independent

of wg conditional on (zig, xg, αg).
5 The first two conditions are familiar from the classical lin-

ear instrumental variable regression analysis, and the third condition requires the distribution of

yig to be independent of wg once we control for zig, xg, and αg. It implies, in particular, that

Qyig |zig ,xg ,αg ,wg(u) = z′igαg(u) for all u ∈ U .6

4If the researcher is interested in modeling several effects, for example location-shift and some interaction effects,

she can specify a linear regression model of the form (2) for each effect.
5To understand the assumption that E[wgεg(u)] = 0 holds jointly for all u ∈ U , assume, for example, that

εg(u) = ε(u, ηg) where ηg is a vector of group-level omitted variables in regression (2). Then a sufficient condition for

the assumption E[wgεg(u)] = E[wgε(u, ηg)] = 0 is that E[ε(u, ηg)|wg] = 0. In turn, the restriction of the condition

E[ε(u, ηg)|wg] = 0 is that E[ε(u, ηg)|wg] does not depend on wg, which occurs (for example) if ηg is independent of

wg. Once we assume that E[ε(u, ηg)|wg] does not depend on wg, the further restriction that E[ε(u, ηg)|wg] = 0 is a

normalization of the component of the vector β(u) corresponding to the constant in the vector xg.
6The setting we model differs from other IV quantile settings, such as Chernozhukov and Hansen (2005, 2006,

2008). Consider, for simplicity, our model (3) and assume that U = [0, 1]. Then the Skorohod representation implies

that yig = z̃′igγ(uig) + x′gβ(uig) + εg(uig) where uig is a random variable that is distributed uniformly on [0, 1] and

is independent of (z̃ig, xg, εg). Here, one can think of uig as unobserved individual-level heterogeneity. In this model,

the unobserved group-level component εg(·) is modeled as an additively separable term. In contrast, the model in
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We assume that a researcher has data on G groups and Ng individuals within group g = 1, ..., G.

Thus, the data consist of observations on {(zig, yig), i = 1, . . . , Ng}, xg, and wg for g = 1, . . . , G.

Throughout the paper, we denote NG = min1≤g≤GNg. For our asymptotic theory in Section 4, we

will assume that NG gets large as G→∞. Specifically, for the asymptotic zero-mean normality of

our estimator β̂(u) of β(u), we will assume that G2/3(logNG)/NG → 0 as G→∞; see Assumption 3

below. Thus, our results are useful when both G and NG are large, which occurs in many empirical

applications, but we also note that our results apply even if the number of observations per group

is relatively small in comparison with the number of groups.

We also emphasize that, like in the original panel data mean regression model of Hausman and

Taylor (1981), an important feature of our panel data quantile regression model is that it allows for

internal instruments. Specifically, if some component of the vector zig, say zig,k, is exogenous in the

sense that E[zig,kεg(u)] = 0 for all u ∈ U , we can use, for example, N
−1/2
g

∑Ng
i=1 zig,k as an additional

instrument provided it is correlated with xg, including it into the vector wg. Since in practice it is

often difficult to find an appropriate external instrument, allowing for internal instruments greatly

increases applicability of our results.

Our problem in this paper is different from that studied in Koenker (2004), Kato, Galvao, and

Montes-Rojas (2012), and Kato and Galvao (2011).7 Specifically, they considered the panel data

quantile regression model

Qyig |zig ,αg(u) = z′igγ(u) + αg(u), u ∈ U , (4)

and developed estimators of γ(u). Building on Koenker (2004), Kato, Galvao, and Montes-Rojas

(2012) suggested estimating γ(u) in this model by running a quantile regression estimator of

Koenker and Bassett (1978) on the pooled data, treating {αg(u), g = 1, . . . , G} as a set of pa-

rameters to be estimated jointly with the vector of parameters γ(u) (the same technique can be

used to estimate γ(u) in our model (3) by setting αg(u) = x′gβ(u) + εg(u)). They showed that their

estimator is asymptotically zero-mean normal if G2(logG)3/NG → 0 as G → ∞. Making further

progress, Kato and Galvao (2011) suggested an interesting smoothed quantile regression estimator

Chernozhukov and Hansen (2005, 2006, 2008) assumes that εg(u) = 0 for all u ∈ [0, 1] and instead assumes that uig

is not independent of (z̃ig, xg). Thus, these two models are different and require different analysis.
7Our paper is also related to but different from Graham and Powell (2012) who studied the model that in our

notation would take the form yig = z′igαg(uig) where uig represents (potentially multi-dimensional) random unob-

served heterogeneity, and developed an interesting identification and estimation strategy for the parameter E[αg(uig)],

achieving identification when the number of observations per group remains small as the number of groups gets large

and, under certain conditions, allowing αg(·) = αig(·) to depend on i.
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of γ(u) that is asymptotically zero-mean normal if G/NG → 0.8 These papers do not provide a

model for our estimator of β(u), our primary object of interest, but instead focus solely on γ(u).

Our model is also different from that studied in Hahn and Meinecke (2005), who considered an

extension of Hausman and Taylor (1981) to cover non-linear panel data models. Formally, they

considered a non-linear panel data model defined by the following equation:

E
[
ϕ(yig, z

′
igγ + x′gβ + εg)

]
= 0

where ϕ(·, ·) is a vector of moment functions and x′gβ + εg is the group-specific effect. As in this

paper, the authors were interested in estimating the effect of group-level covariates (coefficient β)

without assuming that εg is independent (or mean-independent) of xg but assuming instead that

there exists an instrument wg satisfying E[wgεg] = 0. Importantly, however, they assumed that

ϕ(·, ·) is a vector of smooth functions, so that their results do not apply immediately to our model.

In addition, Hahn and Meinecke (2005) required that NG/G > c for some c > 0 uniformly over all

G to prove that their estimator is asymptotically zero-mean normal. In contrast, as emphasized

above, we only require that G2/3(logNG)/NG → 0 as G→∞, with the improvement coming from

a better control of the residuals in the Bahadur representation.9

3. Estimator

In this section we develop our estimator. Our main emphasis is to derive a computationally

simple, yet consistent, estimator. The estimator consists of the following two stages.

Stage 1: For each group g and each quantile index u from the set U of indices of interest, estimate

uth quantile regression of yig on zig using the data {(yig, zig) : i = 1, ..., Ng} by the classical quantile

regression estimator of Koenker and Bassett (1978):

α̂g(u) = arg min
a∈Rdz

Ng∑
i=1

ρu(yig − z′iga),

8To clarify the difference between the growth condition in our paper, which is G2/3(logNG)/NG → 0, and the

growth condition, for example, in Kato, Galvao, and Montes-Rojas (2012), which is G2(logG)3/NG → 0, assume,

for simplicity, that dx = 1, dz = 2, and xg and the second component of zig are constants, that is, xg = 1 and

zig = (z̃ig, 1)′. Then our model (1)-(2) reduces to Qyig|z̃ig,εg,αg (u) = z̃ig(β(u)+εg(u))+αg(u), which is similar to the

model (4) studied in Kato, Galvao, and Montes-Rojas (2012) with the exception that we allow for additional group-

specific random shifter εg(u). When εg(u) is present, our estimator β̂(u) of β(u) satisfies G1/2(β̂(u)−β(u))⇒ N(0, V1)

for some non-vanishing variance V1; see Section 4. When εg(u) is set to zero, however, V1 vanishes, making the limiting

distribution degenerate and leading to faster convergence rate of the estimator β̂(u). In fact, when V1 vanishes, one

obtains (GNG)1/2(β̂(u) − β(u)) ⇒ N(0, V2) for some non-vanishing variance V2. An additional N
1/2
G factor in turn

appears in the residual terms of the Bahadur representation of the estimator β̂(u), which eventually lead to stronger

requirements on the growth of the number of observations per group NG relative to the number of groups, explaining

the difference between the growth condition in Kato, Galvao, and Montes-Rojas (2012) and our growth condition.
9Appendix F contains additional discussion of the model, including an extension to a random coefficients setting.
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where ρu(x) = (u− 1{x < 0})x for x ∈ R. Denote α̂g(u) = (α̂g,1(u), . . . , α̂g,dz)
′.

Stage 2: Estimate a 2SLS regression of α̂g,1(u) on xg using wg as an instrument to get an estimator

β̂(u) of β(u), that is,

β̂(u) =
(
X ′PWX

)−1
(
X ′PW Â(u)

)
whereX = (x1, ..., xG)′, W = (w1, ..., wG)′, Â(u) = (α̂1,1(u), . . . , α̂G,1(u))′, and PW = W (W ′W )−1W ′.

Intuitively, as the number of observations per group increases, α̂g,1−αg,1 shrinks to zero uniformly

over g = 1, . . . , G, and we obtain a classical instrumental variables problem. The theory presented

below provides a mild condition on the growth of the number of observations per group that is

sufficient to achieve consistency and asymptotic zero-mean normality of β̂(u).

Several special cases of our estimator are worth noting. First, when the model is given by

equation (3), the steps of our estimator consist of 1) group-by-group quantile regression of yig

on z̃ig and on a constant, saving the estimated coefficient α̂g,1(u) corresponding to the constant,

αg,1(u) = x′gβ(u) + εg(u), in each group; and 2) regressing those saved coefficients α̂g,1(u) on xg via

2SLS using wg as instruments. Second, if zig contains only a constant, the first stage simplifies to

selecting the uth quantile of the outcome variable yig within each group. Third, if xg is exogenous,

that is, E[xgεg(u)] = 0, OLS of α̂g,1(u) on xg may be used rather than 2SLS in the second stage.

In this latter case, the grouped quantile estimation approach provides the advantage of handling

group-level unobservables (or, alternatively, left-hand-side measurement error), which would bias

the traditional Koenker and Bassett (1978) estimator. When zig only includes a constant and xg is

exogenous, the grouped IV quantile regression estimator β̂(u) simplifies to the minimum distance

estimator described in Chamberlain (1994) (see also Angrist, Chernozhukov, and Fernandez-Val

2006).

This estimator has several computational benefits relative to alternative methods. First, note

that when the model is given by equation (3), another approach to perform the first stage of

our estimator would be to denote αg,1(u) = x′gβ(u) + εg(u) and estimate parameters γ(u) and

{αg,1(u) : g = 1, . . . , G} jointly from the pooled dataset as in Kato, Galvao, and Montes-Rojas

(2012). This would provide an efficiency gain given that in this case, individual-level effects γ(u)

are group-independent. Although the method we use is less efficient, it is computationally much

less demanding since only few parameters are estimated in each regression, which can greatly

reduce computation times in large datasets with many fixed effects.10 Second, even if no group-

level unobservables exist (consider model (3) with εg(u) = 0 for all g = 1, . . . , G), the grouped

estimation approach can be considerably faster than the traditional Koenker and Bassett (1978)

10In Monte Carlo experiments in Appendix B, we find that jointly estimating group-level effects can take over 150

times as long as the grouped quantile approach when G = 200. With G > 200, the computation time ratio drastically

increases further, with standard optimization packages often failing to converge appropriately.
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estimator (though both estimators will be consistent). This computational advantage occurs when

the dimension of xg is large: standard quantile regression estimates β(u) in a single, nonlinear step,

whereas the grouped quantile approach estimates β(u) in a linear second stage.11

Monte Carlo simulations in Appendix B highlight the performance of our estimator for β(u) in

(3) relative to the traditional Koenker and Bassett (1978) estimator (which ignores endogeneity of

xg as well as the existence of εg(u)). Even when NG and G are both small, the grouped IV quantile

approach has lower bias than traditional quantile regression when xg is endogenous. When xg is

exogenous but group-level unobservables εg(u) are still present, the bias of the grouped quantile

approach shrinks quickly to zero as NG grows but the bias of traditional quantile estimator does not.

When no group-level unobservables are present, and hence both the grouped estimation approach

and traditional quantile regression should be consistent, our estimator still has small bias, although

traditional quantile regression outperforms our method in this case.

As we demonstrate in Section 4 below, standard errors for our estimator β̂(u) may be obtained

using standard heteroskedasticity-robust or clustering approaches for 2SLS or OLS as if there were

no first stage.12 Section 4 also describes a multiplier bootstrap procedure that is suitable for

constructing uniform confidence bands for the case when the researcher is interested in the set U
of quantile indices u.

To conclude this section, we note that our estimator applies to a wide variety of settings in labor,

industrial organization, trade, public finance, development, and other applied fields. Appendix A

illustrates examples from Angrist and Lang (2004), Larsen (2014), Palmer (2011), and Backus

(2014).

4. Asymptotic Theory

In this section, we formulate our assumptions and present the main theoretical results of the

paper.

4.1. Assumptions. Let cM , cf , CM , Cf , CL be strictly positive constants whose values are fixed

throughout the paper. Recall that NG = ming=1,...,GNg. We start with specifying our main

assumptions.

A1 (Design). (i) Observations are independent across groups. (ii) For all g = 1, . . . , G, the pairs

(zig, yig) are i.i.d. across i = 1, . . . , Ng conditional on (xg, αg).

A 2 (Instruments). (i) For all u ∈ U and g = 1, . . . , G, E[wgεg(u)] = 0. (ii) As G → ∞,

G−1
∑G

g=1E[xgw
′
g]→ Qxw and G−1

∑G
g=1E[wgw

′
g]→ Qww where Qxw and Qww are matrices with

11One such example would be a case where a group is a state-by-year combination, and xg contains many state

and year fixed effects, in addition to the treatment of interest, as in Example 2 of Appendix A.
12Note that clustering in the second stage refers to dependence across groups, not within groups. For example,

if a group is a state-by-year combination, the researcher may wish to use standard errors which are clustered at the

state level.
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singular values bounded in absolute value from below by cM and from above by CM . (iii) For all

g = 1, . . . , G and i = 1, . . . , Ng, yig is independent of wg conditional on (zig, xg, αg). (iv) For all

g = 1, . . . , G, E[‖wg‖4+cM ] ≤ CM .

A3 (Growth Condition). As G→∞, we have G2/3(logNG)/NG → 0.

Assumption 1(i) holds, for example, if groups are sampled randomly from some population of

groups. This assumption precludes the possibility of clustering across groups (for example, if a

group is a state-by-year combination, there may be clustering on the state level). Since clustered

standard errors are important in practice, however, we derive an extension of our results relaxing

the independence across groups condition and allowing for clustering in Appendix E. Assumption

1(ii) allows for inter-dependence (clustering) within groups but imposes the restriction that the

inter-dependence between observations within the group g is fully controlled for by the group-level

covariates xg and the group-specific effect αg. Assumption 2 is our main identification condition.

Note that Assumption 2 allows for internal instruments. In particular, if wg = N
−1/2
g

∑Ng
i=1 zig,k

for some k, then Assumption 2(iii) automatically follows from Assumption 1(ii). Assumption 3

implies that the number of observations per group grows sufficiently fast as G gets large, and gives

a particular growth rate that suffices for our results. Note that our growth condition is rather weak

and, most importantly, allows for the case when the number of observations per group is small

relative to the number of groups.13

Next, we specify technical conditions that are required for our analysis. Let Eg[·] = E[·|xg, αg],
and let fg(·) denote the conditional density function of y1g given (z1g, xg, αg) (dependence of fg(·) on

z1g is not shown explicitly for brevity of notation). Also denoteBg(u, c) = (z′1gαg(u)−c, z′1gαg(u)+c)

for c > 0. We will assume the following regularity conditions:

A4 (Covariates). (i) For all g = 1, . . . , G and i = 1, . . . , Ng, random vectors zig and xg satisfy

‖zig‖ ≤ CM and ‖xg‖ ≤ CM . (ii) For all g = 1, . . . , G, all eigenvalues of Eg[z1gz
′
1g] are bounded

from below by cM .

A5 (Coefficients). For all u1, u2 ∈ U and g = 1, . . . , G, ‖αg(u2)− αg(u1)‖ ≤ CL|u2 − u1|.

A6 (Noise). (i) For all g = 1, . . . , G, E[supu∈U |εg(u)|4+cM ] ≤ CM . (ii) For some (matrix-valued)

function J : U ×U → Rdw×dw , G−1
∑G

g=1E[εg(u1)εg(u2)wgw
′
g]→ J(u1, u2) uniformly over u1, u2 ∈

U . (iii) For all u1, u2 ∈ U , |εg(u2)− εg(u1)| ≤ CL|u2 − u1|.

A7 (Density). (i) For all u ∈ U and g = 1, . . . , G, the conditional density function fg(·) is continu-

ously differentiable on Bg(u, cf ) with the derivative f ′g(·) satisfying |f ′g(y)| ≤ Cf for all y ∈ Bg(u, cf )

13Using the more common notation of panel data models, where N is the number of individuals (groups) and T is

the number of time periods (individuals within the group), Assumption 3 would take the form: N2/3(log T )/T → 0

as N →∞.
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and |f ′g(z′1gαg(u))| ≥ cf . (ii) For all u ∈ U and g = 1, . . . , G, fg(y) ≤ Cf for all y ∈ Bg(u, cf ) and

fg(z
′
1gαg(u)) ≥ cf .

A8 (Quantile indices). The set of quantile indices U is a compact set included in (0, 1).

Assumption 4(i) requires that both individual and group-level observable covariates zig and xg are

bounded. Assumption 4(ii) is a familiar identification condition in regression analysis. Assumption

5 is a mild continuity condition. Assumption 6(i) requires sufficient integrability of the noise

εg(u), which is a mild regularity condition. In fact, under Assumption 6(iii), which is also a mild

continuity condition, Assumption 6(i) is satisfied as long as E[|εg(u)|4+cM ] ≤ CM for some u ∈ U
(with a possibly different constant CM ). Assumption 6(ii) is trivially satisfied if the pairs (wg, εg)

are i.i.d. across g. Assumption 7 is a mild regularity condition that is typically imposed in the

quantile regression analysis. Finally, Assumption 8 excludes quantile indices that are too close to

either 0 or 1 (when the quantile index u is close to either 0 or 1, one obtains a so called extremal

quantile model, which requires a rather different analysis; see, for example, Chernozhukov (2005)

and Chernozhukov and Fernández-Val (2011)).

4.2. Results. We now present our main results. We start by deriving the asymptotic distribution

of our estimator in Theorem 1. Further, we show how to estimate the asymptotic covariance of

our estimator in Theorem 2. Finally, we demonstrate how to obtain uniform over u ∈ U confidence

bands for the parameter of interest {β(u), u ∈ U} via a multiplier bootstrap method in Theorem

3. The first theorem derives the asymptotic distribution of our estimator.

Theorem 1 (Asymptotic Distribution). Let Assumptions 1-8 hold. Then
√
G(β̂(·)− β(·))⇒ G(·), in `∞(U)

where G(·) is a zero-mean Gaussian process with uniformly continuous sample paths and covariance

function C(u1, u2) = SJ(u1, u2)S′ where S =
(
QxwQ

−1
wwQ

′
xw

)−1
QxwQ

−1
ww, Qxw and Qww appear in

Assumption 2, and J(u1, u2) in Assumption 6.

Remark 1. (i) This is our main convergence result that establishes the asymptotic behavior of our

estimator. Note that we provide the joint asymptotic distribution of our estimator for all u ∈ U .

In addition, Theorem 1 implies that for any u ∈ U ,
√
G(β̂(u)− β(u))⇒ N(0, V )

where V = SJ(u, u)S′, which is the asymptotic distribution of the classical 2SLS estimator.

(ii) In order to establish the joint asymptotic distribution of our estimator for all u ∈ U , we have

to deal with G independent quantile processes {α̂g,1(u)− αg,1(u), u ∈ U}. Since G → ∞, classical

functional central limit theorems do not apply. Therefore, we employ a non-standard but powerful

Bracketing by Gaussian Hypotheses Theorem, which is also related to majorizing measures for

Gaussian processes; see Theorem 2.11.11 in Van der Vaart and Wellner (1996).
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(iii) Since quantile regression estimators are biased in finite samples, our estimator α̂g,1(u) of

αg,1(u) does not necessarily satisfy E[(α̂g,1(u) − αg,1(u))wg] = 0. For this reason, our estimator

β̂(u) of β(u) is not consistent if Ng is bounded from above uniformly over g = 1, . . . , G and

G ≥ 2. We note, however, that quantile estimators are asymptotically unbiased, and so we use the

Bahadur representation of quantile estimators to derive weak condition on the growth of NG =

min1≤g≤GNg relative to G, so that consistent estimation of β(u) is indeed possible. Specifically,

we prove consistency and asymptotic zero-mean normality under Assumption 3 that states that

G2/3(logNG)/NG → 0 as G→∞, which is a mild growth condition. In principle, it is also possible

to consider bias correction of the quantile regression estimators. This would further relax the growth

condition on NG relative to G at the expense of stronger side assumptions and more complicated

estimation procedures.

(iv) The requirement that NG →∞ as G→∞ is in contrast with the classical results of Hausman

and Taylor (1981) on estimation of panel data mean regression model. The main difference is

that the fixed effect estimator in the panel data mean regression model is unbiased even in finite

samples leading to consistent estimators of the effects of group-level covariates with the number of

observations per group being fixed. �

The result in Theorem 1 derives asymptotic behavior of our estimator. In order to perform

inference, we also need an estimator of the asymptotic covariance function. We suggest using an

estimator Ĉ(·, ·) that is defined for all u1, u2 ∈ U as

Ĉ(u1, u2) = ŜĴ(u1, u2)Ŝ′

where

Ĵ(u1, u2) =
1

G

G∑
g=1

(
(α̂g,1(u1)− x′gβ̂(u1))(α̂g,2(u2)− x′gβ̂(u2))wgw

′
g

)
,

Ŝ = (Q̂xwQ̂
−1
wwQ̂

′
xw)−1Q̂xwQ̂

−1
ww, Q̂xw = X ′W/G, and Q̂ww = W ′W/G. In the theorem below, we

show that Ĉ(u1, u2) is consistent for C(u1, u2) uniformly over u1, u2 ∈ U .

Theorem 2 (Estimating C). Let Assumptions 1-8 hold. Then ‖Ĉ(u1, u2) − C(u1, u2)‖ = op(1)

uniformly over u1, u2 ∈ U .

Remark 2. Theorems 1 and 2 can be used for hypothesis testing concerning β(u) for a given

quantile index u ∈ U . In particular, we have that

√
GĈ(u, u)−1/2(β̂(u)− β(u))⇒ N(0, 1). (5)

Importantly for applied researchers, Theorems 1 and 2 demonstrate that heteroskedasticity-robust

standard errors for our estimator can be obtained by the traditional White (1980) standard errors

where we proceed as if α̂g,1(u) were equal to αg,1(u), that is, as if there were no first-stage estimation

error. Appendix E extends this result for clustered standard errors. �
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Finally, we show how to obtain confidence bands for β(u) that hold uniformly over U .14 Observe

that β(u) is a dx-vector, that is, β(u) = (β1(u), . . . , βdx(u))′. Without loss of generality, we focus

on β1(u), the first component of β(u). Let β̂1(u), V (u), and V̂ (u) denote the first component of

β̂(u), the (1, 1) component of C(u, u), and the (1, 1) component of Ĉ(u, u), respectively. Define

T = sup
u∈U

√
G|V̂ (u)−1/2(β̂1(u)− β1(u))|, (6)

and let c1−α denote the (1− α) quantile of T . Then uniform confidence bands of level α for β1(u)

could be constructed as β̂1(u)− c1−α

√
V̂ (u)

G
, β̂1(u) + c1−α

√
V̂ (u)

G

 . (7)

These confidence bands are infeasible, however, because c1−α is unknown. We suggest estimating

c1−α by the multiplier bootstrap method. To describe the method, let ε1, ..., εG be an i.i.d. se-

quence of N(0, 1) random variables that are independent of the data. Also, let ŵSg,1 denote the 1st

component of the vector Ŝwg. Then the multiplier bootstrap statistic is

TMB = sup
u∈U

1√
GV̂ (u)

G∑
g=1

(
εg(α̂g,1(u)− x′gβ̂(u))ŵSg,1

)
The multiplier bootstrap critical value ĉ1−α is the conditional (1 − α) quantile of TMB given the

data. Then a feasible version of uniform confidence bands is given by equation (7) with ĉ1−α

replacing c1−α. The validity of the method is established in the following theorem using the results

of Chernozhukov, Chetverikov, and Kato (2013).

Theorem 3 (Uniform Confidence Bands via Multiplier Bootstrap). Let Assumptions 1-8 hold. In

addition, suppose that all eigenvalues of J(u, u) are bounded away from zero uniformly over u ∈ U .

Then

P

β1(u) ∈

β̂1(u)− ĉ1−α

√
V̂ (u)

G
, β̂1(u) + ĉ1−α

√
V̂ (u)

G

 for all u ∈ U

→ 1− α

as G→∞.

Remark 3. Uniform confidence bands are typically larger than the point-wise confidence bands

based on the result (5). The reason is that uniform confidence bands are constructed so that

the whole function {β(u), u ∈ U} is contained in the bands with approximately 1 − α probability

whereas point-wise bands are constructed so that for any given u ∈ U , β(u) is contained in the

bands with approximately 1−α probability. Which confidence bands to use depends on the specific

purposes of the researcher. �

14In addition, Appendix C presents an approach for uniform inference on the {αg,1(u)} in the model (1)–(2). In

particular, we construct the confidence bands [α̂lg,1(u), α̂rg,1(u)] that cover the true group-specific effects αg,1 for all

g = 1, . . . , G simultaneously with probability approximately 1− α.
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5. The effect of Chinese import competition on the local wage distribution

5.1. Background on wage inequality. Over the past 40 years, wage inequality within the United

States has increased drastically.15 Economists have engaged in heated debates about the primary

causes of the rising wage inequality—such as globalization, skill-biased technological change, or

the declining real minimum wage—and how the importance of these factors has changed over the

years.16 Recent work in Autor, Dorn, and Hanson (2013) (hereafter ADH) focused on import

competition and its effects on wages and employment in US local labor markets. ADH studied the

period 1990–2007, when the share of US spending on Chinese imports increased dramatically from

0.6% to 4.6%. For identification, the authors used spatial variation in manufacturing concentration,

showing that localized US labor markets which specialize in manufacturing were more affected by

increased import competition from China. The authors found that those markets which were more

exposed to increased import competition in turn had lower employment and lower wages.

We contribute to this debate by studying the effect of increased trade, in the form of increased

import competition, on the distribution of local wages (rather than on the average local wages as in

ADH). Given that we exploit the same variation in import competition as in ADH, we first describe

the ADH framework below and then present our results.

5.2. Framework of Autor, Dorn, and Hanson (2013). To study the effect of Chinese import

competition on average domestic wages, ADH used Census microdata to calculate the mean wage

within each Commuting Zone (CZ) in the United States.17 The authors then estimated the following

regression:

∆lnwg = β1∆IPWU
g +X ′gβ2 + εg (8)

where ∆lnwg is the change in average individual log weekly wage in a given CZ in a given decade,

Xg are characteristics of the CZ and decade, including indicator variables for each decade. Note

that we have changed the notation slightly from that in ADH in order to improve clarity for our

application—a “group” g in this setting is a given CZ in a given decade. The variable of interest is

∆IPWU
g , which represents the decadal change in Chinese imports per US worker for the CZ and

decade corresponding to group g.18

15Autor, Katz, and Kearney (2008) documented that, from 1963 to 2005, the change in wages for the 90th percentile

earner was 55% higher than for the 10th percentile earner.
16See, for example, Leamer (1994), Krugman (2000), Feenstra and Hanson (1999), Katz and Autor (1999), as well

as many other papers cited in Feenstra (2010) or in Haskel, Lawrence, Leamer, and Slaughter (2012).
17The United States is covered exhaustively by 722 Commuting Zones (Tolbert and Sizer 1996), each roughly

corresponding to a local labor market.
18Due to data limitations, ADH proxy for the change in actual local imports per worker with the weighted average

of industry-level changes in the value of Chinese imports to the US with the weights corresponding to the beginning

of decade employment share of each industry in each CZ.



14 CHETVERIKOV, LARSEN, AND PALMER

To address endogeneity concerns (i.e. that imports from China may be correlated with unob-

served labor demand shocks), the authors instrumented for imports per last-period worker using

∆IPWO
g , a measure of import exposure that replaces the change in Chinese imports to the US in

a given industry with the change in Chinese imports to other similarly developed nations for the

same industry and uses one decade lagged employment shares in calculating the weighted average.

Using this 2SLS approach, the authors found that a $1,000 increase in Chinese imports per worker

in a CZ decreases average log weekly wage by -0.76 log points, corresponding to decrease in wages

for the average CZ of 0.9% from 1990–2000 and 1.4% from 2000–2007. When estimated separately

by gender, the effect was more negative for males (-0.89 log points) and less so for females (-0.61

log points).19

5.3. Distributional effects of increased import competition. We build on the ADH frame-

work to analyze whether low-wage earners were more adversely affected than high-wage earners by

Chinese import competition. To apply the grouped IV quantile regression estimator to this setting,

we replace ∆lnwg, the change in the average log weekly wage in equation (8) with ∆ lnwug , the

change in the u-quantile of log wages in the CZ and decade corresponding to group g. We calculate

these quantiles using micro-level observations from the Census Integrated Public Use Micro Samples

for 1990 and 2000 and the American Community Survey for 2006-2008, matching these observations

to CZs following the strategy described in ADH.20 We instrument for ∆IPWU
g using ∆IPWO

g as

described above. Recall that existing methods for handling endogeneity in quantile models are

suited for the case where the individual-level unobserved conditional quantile itself is correlated

with the treatment and would be inconsistent in this setting because the endogeneity consists of a

group-level treatment being correlated with the group-level unobservable additive term.

Figures 1, 2, and 3 display the results of the grouped IV quantile regression estimator for the

full sample, for males only, and for females only. Each figure displays u-quantile estimates for

u ∈ {0.05, 0.1, ..., 0.95}, along with pointwise 95% confidence bands about each estimate. The

figures also display the 2SLS effect found in ADH and 95% confidence intervals corresponding to

their IV estimate of Chinese import penetration on the change in CZ-level average wages.

19As discussed by ADH, the existence of an extensive-margin labor supply response—imports affecting whether

individuals are employed—makes these results likely a lower-bound for the effect on all workers because we don’t

observe wages for the unemployed population.
20The thought experiment behind the asymptotics in this application is that the estimator is consistent as the

number of groups (G = 722 CZs × two decades) and the number of individuals within each group (NG = 543,

the size of the smallest group) both grow large. We follow ADH by clustering at the state level and weighting by

start-of-decade CZ population in the second stage of our estimator. To cluster, we are relying on Appendix E, which

relaxes Assumption 1 to allow for observations to be dependent across groups. We also follow the ADH individual

weighting procedure in the first stage given that not all individuals can be mapped to a unique CZ.
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Each figure provides evidence that Chinese import competition affected the wages of low-wage

earners more than high-wage earners, demonstrating how increases in trade can causally exacer-

bate local income inequality. For all three samples, the magnitude of the estimated causal effect

of Chinese import penetration is much larger for lower quantiles of the conditional wage distribu-

tion. The point estimates suggest that the average negative effect of Chinese import penetration

estimated by ADH is primarily driven by large negative effects for those in the bottom tercile,

where the effect is twice as large as the average effect.21 Wages not in the bottom tercile were less

affected than the average—Figure 1 shows that for most wage-earners (from the 0.35 quantile and

above) the effect of Chinese import competition was one-third smaller in magnitude than the effect

on the average estimated by ADH. Comparing the pattern of the coefficients across two gender

subsamples in Figures 2 and 3, there is more distributional heterogeneity for females than males,

a finding that additional testing shows is even more pronounced for non-college educated females.

For each sample, we can reject an effect size of zero for almost all quantiles below the median but

cannot for all quantiles above the median.

21A coefficient of -1.4 log points, e.g. for the lower quantiles of Figure 1, corresponds to a 2.6% decrease in wages

from 2000–2007 for the average commuting zone’s change in Chinese import exposure.
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20 Figures

Figure 1. Effect of Chinese Import Competition on Conditional Wage Distribution:
Full Sample

Notes: Figure plots grouped IV quantile regression estimates of the effect of a $1,000 increase in Chinese imports
per worker on the conditional wage distribution (β1 in equation (8) in the text when the change in average log

wages for the commuting zone and decade corresponding to group g, ∆lnwg, is replaced with the change in the
u-quantile of log wages ∆ lnwug ). The dashed horizontal line is the ADH estimate of β1 in equation (8). 95%
pointwise confidence intervals are constructed from robust standard errors clustered by state and observations are
weighted by CZ population, as in ADH. Units on the vertical axis are log points.
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Figure 2. Effect of Chinese Import Competition on Conditional Wage Distribution:
Males Only

Notes: Figure plots grouped IV quantile regression estimates for the male-only sample of the effect of a $1,000
increase in Chinese imports per worker on the male conditional wage distribution (β1 in equation (8) in the text

when the change in average log wages for the commuting zone and decade corresponding to group g, ∆lnwg, is
replaced with the change in the u-quantile of log wages ∆ lnwug ). The dashed horizontal line is the ADH estimate of
β1 in equation (8). 95% pointwise confidence intervals are constructed from robust standard errors clustered by
state and observations are weighted by CZ population, as in ADH. Units on the vertical axis are log points.
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Figure 3. Effect of Chinese Import Competition on Conditional Wage Distribution:
Females Only

Notes: Figure plots grouped IV quantile regression estimates for the female-only sample of the effect of a $1,000
increase in Chinese imports per worker on the female conditional wage distribution (β1 in equation (8) in the text

when the change in average log wages for the commuting zone and decade corresponding to group g, ∆lnwg, is
replaced with the change in the u-quantile of log wages ∆ lnwug ). The dashed horizontal line is the ADH estimate of
β1 in equation (8). 95% pointwise confidence intervals are constructed from robust standard errors clustered by
state and observations are weighted by CZ population, as in ADH. Units on the vertical axis are log points.
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Appendix A. Examples of Grouped IV Quantile Regression

To help the reader envision applications of our estimator, in this section, we provide several

motivating examples of settings for which our estimator may be useful. Example 2 also provides

additional discussion of computational advantages of our estimator. Note that each of the following

examples involves estimation of a treatment effect that varies at the group level with all endogeneity

concerns also existing only at the group level.22

Example 1: Peer Effects of School Integration. Angrist and Lang (2004) studied how sub-

urban student test scores were affected by the reassignment of participating urban students to

suburban schools through Boston’s Metco program. Before estimating their main instrumental

variables model, the authors tested for a relationship between the presence of urban students in

the classroom and the second decile of student test scores by estimating

Qyigjt|mgjt,sgjt,ξgjt,αg ,βj ,γt(0.2) = αg + βj + γt + δmgjt + λsgjt + ξgjt (9)

where the left-hand-side represents the second decile of student test scores within a group, where

each group is a grade g × school j × year t cell. The variables sgjt and mgjt denote the class size

and the fraction of Metco students within each g × j × t cell, and αg, βj , and γt represent grade,

school, and year effects. The unobserved component, ξgjt, is analogous to the εg(0.2) of the special

form (3) of our model (1)–(2).

Angrist and Lang (2004) estimated equation (9) by OLS, which is equivalent to the non-IV

application of our estimator with no micro-level covariates. Similar to their OLS results on average

test scores, they found that classrooms with higher proportions of urban students have lower second

decile test scores. Once they instrumented for a classroom’s level of Metco exposure, the authors

found no effect on average test scores. However, by not estimating model (9) by 2SLS, they were

unable to address the causal distributional effects of Metco exposure.

In estimating (9), Angrist and Lang (2004) used heteroskedasticity-robust standard errors, which

we demonstrate in Section 4 is valid. The extension in Appendix E implies that the authors

could have instead allowed for clustering across groups in computing standard errors (for example,

clustering at the school level).

Example 2: Occupational Licensing and Quality. Larsen (2014) applied the estimator devel-

oped in this paper to study the effects of occupational licensing laws on the distribution of quality

within the teaching profession. This application uses a difference-in-differences approach. Similar

to Example 1, the explanatory variable of interest is treated as exogenous and the researcher is

concerned that there may be unobserved group-level disturbances. In this application, a group is

22This is in contrast to settings where the endogeneity exists at the individual level, i.e. when the individual

unobserved heterogeneity is correlated with treatment. Such situations require a different approach than the one

presented here, e.g. Chernozhukov and Hansen (2005), Abadie, Angrist, and Imbens (2002), or other approaches

referenced in Section 1.
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a state-year combination (s, t), and micro-level data consists of teachers within a particular state

in a given year.

Let qist represent the quality of teacher i in state s who began teaching in survey year t, where

quality is proxied for by a continuous measure of the selectivity of the teacher’s undergraduate

institution. The conditional uth quantile of quality is modeled as

Qqist|Lawst,εst(u) = γs(u) + λt(u) + Law′stδ(u) + εst(u) (10)

where γs is a state effect; λt is a year effect; Lawst is a three-element vector containing dummies

equal to one if a subject test, basic skills test, or professional knowledge test was required in state

s in year t; and εst(u) represents group-level unobservables.

Because no micro-level covariates are included, the first stage of the grouped quantile estimator

is obtained by simply selecting the uth quantile of quality in a given state-year cell. The second

stage is obtained via OLS, and the author used heteroskedasticity-robust standard errors, which

are valid by the results in Section 4. Using the grouped quantile estimator, Larsen (2014) found

that, for first-year teachers, occupational licensing laws requiring teachers to pass a subject test

lead to a small but significant decrease in the upper tail of quality, suggestive that these laws may

drive some highly qualified candidates from the occupation.

In this setting, if micro-level covariates, zist, were included in the first stage of estimation, the

researcher could also estimate interaction effects of the group-level treatment and a micro-level

covariate, such as the percent of minority students at the teacher’s school. This would be done by

1) estimating quantile regression of qist on zist (which includes the percent of minority students

measure) separately for each (s, t) group and 2) saving each group-level estimate for the coefficient

corresponding to the percent minority variable, and then estimating a linear regression of these

coefficients on Lawst and on the state and year fixed effects.

This example highlights another useful feature of grouped IV quantile regression. Including many

variables in a standard quantile regression drastically increases the computational time (see Koenker

(2004), Lamarche (2010), Galvao and Wang (2013), and Galvao (2011) for further discussion) and,

in our experience, can often lead standard optimization packages to fail to converge. The grouped

quantile approach, on the other hand, can handle large numbers of variables easily when these

variables happen to be constant within group, as in the case of state and year fixed effects in this

example, because the coefficients corresponding to these variables can be estimated in the second-

stage linear model, greatly reducing the number of parameters to be estimated in the nonlinear

first stage and hence reducing the computational burden significantly. Furthermore, this specific

computational advantage of the grouped quantile regression estimator exists even in cases where

both standard quantile regression and the grouped approach are valid (i.e. when no group-level

unobservables are present). Larsen (2014) found that the grouped approach was significantly faster

than estimating parameters in a single quantile regression.
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Example 3: Distributional Effects of Suburbanization. Palmer (2011) applied the grouped

quantile estimator to study the effects of suburbanization on resident outcomes. This application

illustrates the use of our estimator in an IV setting. In this application, a group is a metropolitan

statistical area (MSA), and individuals are MSA residents. As an identification strategy, Palmer

(2011) used the results of Baum-Snow (2007) in instrumenting suburbanization with planned high-

ways.23

The model is

∆Qyigt|xg ,sg ,εg(u) = β(u) · suburbanizationg + x′gγ1(u) + εg(u)

suburbanizationg = π(u) · planned highway raysg + x′gγ2(u) + vg(u)

where ∆Qy|xg ,sg ,εg(u) is the change in the uth quantile of log wages yigt within an MSA between

1950 and 1990 and xg is a vector of controls (including a constant) conditional upon which planned

highway raysg is uncorrelated with εg(u) and vg(u). The variable suburbanizationg is a proxy

measure of population decentralization, such as the amount of decline of central city population

density. β(u) is the coefficient of interest, capturing the effect of suburbanization on the within-

MSA conditional wage distribution. For example, if the process of suburbanization had particularly

acute effects on the prospects of low-wage workers, we may expect β(u) to be negative for u = 0.1.

For a given u, the grouped IV quantile approach estimates β(u) through a 2SLS regression.

Example 4: The Relationship Between Productivity and Competition. Backus (2014)

studied the relationship between competition and productivity in the ready-mix concrete industry.

The author discussed the fact that competition and productivity are positively correlated, and

studied whether this relationship is similar for firms of all productivity levels (e.g. through encour-

aging better monitoring of firm managers or better investments), or whether increased competition

primarily affects the lower tail of the productivity distribution (driving out less productive firms).

Let ρimt represent a measure of productivity of firm i in market m and time period t. Using

our notation, define a group as a pair m× t. The author assumes that ρimt satisfies the following

quantile regression model:

Qρmt|cmt,nmt,εmt(u) = βt(u) + cmtβc(u) + g(nmt, u) + εmt(u) (11)

where cmt is a group-level measure of competition, nmt is the number of firms in the group, g(nmt, u)

is the third order polynomial of nmt), and εmt is an unobserved group-level disturbance, which is

possibly correlated with cmt.

Backus (2014) instrumented for cmt using group-level measures which shift the demand for con-

crete. Thus, the IV regression in (11) represents an application of our estimator when group-level

23Baum-Snow (2007) instrumented for actual constructed highways with planned highways and estimated that

each highway ray emanating out of a city caused an 18% decline in central-city population.
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shocks are endogenous and no micro-level covariates are present. The author found some evi-

dence that the effect of competition on the left tail of the productivity distribution may be more

positive than at some quantiles in the middle of the distribution (consistent with selection of low-

productivity firms out of the industry), but was unable to reject the hypothesis of a constant

effect.

Appendix B. Simulations

In order to investigate the properties of our estimator and compare to traditional quantile re-

gression, we generate data according to the following model:

yig = zigγ(uig) + δ(u) + xgβ(uig) + εg(uig) (12)

xg = πwg + ηg + νg (13)

εg(u) = uηg −
u

2
(14)

where wg, νg, and zig are each distributed exp(0.25∗N [0, 1]); uig and ηg are both distributed U [0, 1];

and random variables wg, νg, zig, uig, and ηg are mutually independent. Note that the form

εg(u) = uηg − u
2 implies E[εg(u)|wg] = E[uηg − u/2|wg] = E[uηg − u/2] = u/2 − u/2 = 0. The

quantile coefficient functions are γ(u) = β(u) = u1/2 and δ(u) = u/2. The parameter π = 1.

We employ three variants of the data generating process described in (12)–(14). The first case is

exactly as in (12)–(14), with the group-level treatment of interest, xg, being endogenous (correlated

with εg through ηg). We estimate β(u) in this case using the grouped IV quantile estimator as well

as standard quantile regression (which ignores the endogeneity as well as the existence of εg). In

the second case xg is exogenous, where we set xg = wg in (13). We estimate β(u) again in this

case using the grouped quantile approach as well as standard quantile regression, where the latter

ignores the existence of εg. In the third case xg is exogenous and no group-level unobservables are

included, where we set xg = wg and εg = 0. In this latter case, both grouped quantile regression

and standard quantile regression should be consistent.

We perform these exercises with the number of groups (G) and the number of observations per

group (N) given by (N,G) =(25,25), (200,25), (25,200), (200,200). 1,000 Monte Carlo replications

were used. The results are displayed in Table I. Each panel displays the bias from the procedure

for each decile (u = 0.1, ..., 0.9) as well as the average absolute value of that bias, averaged over the

nine deciles.

The top panel of Table I demonstrates that in the endogenous group-level treatment case the

magnitude of the bias is much smaller in our estimator than in standard quantile regression, and the

bias of our estimator disappears as N and G increase, while the bias of quantile regression remains

constant (0.196 on average). The middle panel considers the case where xg is exogenous but group-

level unobservables are present (or, equivalently, left-hand-side measurement error exists in the

quantile regression). At some quantiles, standard quantile regression has a bias which is smaller in
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magnitude than the grouped approach, in particular in the cases where N = 25. However, as N

increases, the magnitude of the bias of the grouped estimator falls close to zero on average while

that of standard quantile regression remains about three times as high at 0.01. Finally, the bottom

panel focuses on the case in which no group-level unobservables exist and hence standard quantile

regression is unbiased. In this case, we find that the bias of standard quantile regression is indeed

lower than that of the grouped quantile approach, but the bias of the grouped quantile method

also diminishes rapidly as N and G grow.

To illustrate the computational burden which our estimator overcomes, we redid the first stage

estimation with γ(·) and group-level fixed effects—αg from Section 2—estimated jointly in one large

quantile regression rather than estimating group-by-group quantile regression. We performed 100

replications due to the computational burden of the joint estimation. We found that in the (N,G) =

(25, 25) case the joint estimation took only slightly longer than than the group-by-group approach;

with (N,G) = (200, 25) the group-by-group approach was ten times faster; with (N,G) = (25, 200)

the group-by-group approach was over forty times as fast; and in the (N,G) = (200, 200) the group-

by-group approach was over 150 times as fast, with estimation on a single replication sample for

the nine deciles taking over three minutes, while the the grouped quantile approach performed the

same exercise in 1.22 seconds.24 This exercise illustrates the benefit of the group-by-group approach

to estimating αg and also illustrates that, in general, standard quantile regression can be very slow

when a large number of explanatory variable is included. The grouped quantile approach can

greatly reduce this computational burden by handling all group-level explanatory variables linearly

in the second stage (implying that the grouped quantile approach can be especially beneficial if the

dimension of xg is large).

Appendix C. Joint Inference on Group-Specific Effects

In this section, we are concerned with inference on group-specific effects αg,1(u), g = 1, . . . , G,

in the model (1)-(2) defined in Section 2. In particular, we are interested in constructing the

confidence bands [α̂lg,1, α̂
r
g,1] for αg,1(u) that are adjusted for multiplicity of the effects, that is, we

would like to have the bands satisfying

P (αg,1(u) ∈ [α̂lg,1, α̂
r
g,1] for all g = 1, . . . , G)→ 1− α. (15)

Thus, the confidence bands [α̂lg,1, α̂
r
g,1] cover the true group-specific effects αg,1 for all g = 1, . . . , G

simultaneously with probability approximately 1− α.

The main challenge here is that we have G parameters αg,1(u), g = 1, . . . , G, and only Ng obser-

vations to estimate αg,1 where Ng is potentially smaller than G (recall that we impose Assumption

24With G > 200, the computation time ratio drastically increases further, with standard optimization packages

often failing to converge appropriately.
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3, according to which G2/3(logNG)/NG → 0 as G→∞ where NG = ming=1,...,GNg). To decrease

technicalities, in this section we assume that U = {u}, that is, U is a singleton.

It is well-known that as Ng →∞, N
1/2
g (α̂g,1(u)−αg,1(u))⇒ N(0, Ig) where Ig is the (1, 1)th ele-

ment of the matrix u(1−u)Jg(u)−1Eg[zigz
′
ig]Jg(u)−1; see, for example, Koenker (2005). Therefore,

letting c1−α be the (1− α) quantile of |Y | where Y ∼ N(0, 1), we obtain

P

(
αg,1(u) ∈

[
α̂g,1(u)− c1−α

√
Ig
Ng

, α̂g,1(u) + c1−α

√
Ig
Ng

])
→ 1− α as Ng →∞. (16)

In practice, Ig is typically unknown, however, and has to be estimated from the data. For example,

one can use a method developed in Powell (1984). Letting Îg denote a suitable estimator of Ig, it

is standard to show that (16) continues to hold if we replace Ig with Îg as long as Îg →p Ig.

The drawback of the confidence bands in (16), however, is that they do not take into account

multiplicity of the effects αg,1(u), g = 1, . . . , G. This is especially important given that G is large.

To fix this problem, we would like to adjust the constant c1−α in (16) so that the events under the

probability sign in (16) hold simultaneously for all g = 1, . . . , G with probability asymptotically

equal to 1 − α. The theorem below shows that this can be achieved by replacing c1−α with cM1−α,

the (1 − α) quantile of max1≤g≤G |Yg| where Y1, . . . , YG are i.i.d. N(0, 1) random variables. To

decrease technicalities, we assume in the theorem that all Ig’s are known.

Theorem 4 (Joint Inference on Group-Specific Effects). Let Assumptions 1-8 hold. In addition,

suppose that Ig ≥ cM for all g = 1, . . . , G and N̄G/NG ≤ CM where NG = min1≤g≤GNg and

N̄G = max1≤g≤GNg. Let cM1−α be the (1− α) quantile of max1≤g≤G |Yg| where Y1, . . . , YG are i.i.d.

N(0, 1) random variables. Then

P

(
αg,1(u) ∈

[
α̂g,1(u)− cM1−α

√
Ig
Ng

, α̂g,1(u) + cM1−α

√
Ig
Ng

]
for all g = 1, . . . , G

)
→ 1− α

as G→∞.

Appendix D. Sub-gaussian Tail Bound

In this section, we derive the sub-gaussian tail bound for the quantile regression estimator. This

bound plays an important role in deriving the asymptotic distribution of our estimator, which is

given in Theorem 1.

Theorem 5 (Sub-Gaussian Tail Bound for Quantile Estimator). Let Assumptions 1-8 hold. Then

there exist constants c̄, c, C > 0 that depend only on cM , cf , CM , Cf , CL such that for all g = 1, ..., G

and x ∈ (0, c̄),

P

(
sup
u∈U
‖α̂g(u)− αg(u)‖ > x

)
≤ Ce−cx2Ng . (17)
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Remark 4. The bound provided in Theorem 5 is non-asymptotic. In principle, it is also possible

to calculate the exact constants in the inequality (17). We do not calculate these constants because

they are not needed for our results. Since α̂g,1(u) is the classical Koenker and Bassett’s (1978)

quantile regression estimator of αg(u), Theorem 5 may also be of independent interest. The theorem

implies that large deviations of the quantile estimator from the true value are extremely unlikely

under our conditions. �

Appendix E. Clustered Standard Errors

In this section, we consider the model from the main text, which is defined in equations (1)–(2),

but we seek to relax the independence across groups condition appearing in Assumption 1(i). In

particular, in this section we allow for cluster sampling and derive the results that are analogous

to Theorems 1 - 3 in the main text.

We assume that the data consist of M = MG clusters of groups, and that there exists a cor-

respondence CG : {1, . . . ,M} ⇒ {1, . . . , G} such that (i) for each m = 1, . . . ,M , CG(m) denotes

the set of groups corresponding to cluster m, (ii) for m,m′ = 1, . . . ,M with m 6= m′, the set

CG(m) ∩ CG(m′) is empty, and (iii) for any g = 1, . . . , G, there exists m = 1, . . . ,M such that

g ∈ CG(m). Thus, the correspondence CG(·) partitions groups into M clusters. Using this nota-

tion, we replace Assumption 1 with the following condition:

A1′ (Design). (i) Observations are independent across clusters m = 1, . . . ,M . (ii) For all g =

1, . . . , G, the pairs (zig, yig) are i.i.d. across i = 1, . . . , Ng conditional on (xg, αg). (iii) For each

m = 1, . . . ,M , the number of elements in the set CG(m) is bounded from above by some constant

C̄, which is independent of G.

Assumption 1′(i) relaxes Assumption 1(i) from the main text by requiring independence across

clusters instead of independence across groups. Assumption 1′(ii) is the same as Assumption 1(ii).

Assumption 1′(iii) imposes the condition that the number of groups within each cluster remains

small as the number of groups gets large.

In addition, we replace Assumption 6 with the following condition:

A6′ (Noise). (i) For all g = 1, . . . , G, E[supu∈U |εg(u)|4+cM ] ≤ CM . (ii) For some (matrix-valued)

function JCS : U × U → Rdw×dw ,

1

G

M∑
m=1

E

 ∑
g∈CG(m)

εg(u1)wg

 ∑
g∈CG(m)

εg(u1)w′g

→ JCS(u1, u2)

uniformly over u1, u2 ∈ U . (iii) For all u1, u2 ∈ U , |εg(u2)− εg(u1)| ≤ CL|u2 − u1|.

Assumptions 6′(i) and 6′(iii) are the same as Assumptions 6(i) and 6(iii). Assumption 6′(ii) is a

modification of Assumption 6(ii) adjusting the asymptotic covariance function ofG−1/2
∑G

g=1 εg(·)wg
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to allow for clustering. When CG(m) contains only one group for each m = 1, . . . ,M , Assumption

6′(ii) reduces to Assumption 6(ii).

Like in the classical cross-section cluster sampling setup, allowing for clustering in our model

does not require adjusting the estimator. Therefore, we study the properties of the estimator β̂(u)

of parameter β(u), u ∈ U , defined in Section 3. Our first theorem in this section describes the

asymptotic distribution of β̂(u).

Theorem 6 (Asymptotic Distribution under Cluster Sampling). Let Assumptions 1′, 2-5, 6′, 7,

and 8 hold. Then
√
G(β̂(·)− β(·))⇒ GCS(·), in `∞(U)

where GCS(·) is a zero-mean Gaussian process with uniformly continuous sample paths and covari-

ance function CCS(u1, u2) = SJCS(u1, u2)S′ where S = (QxwQ
−1
wwQ

′
xw)−1QxwQ

−1
ww, Qxw and Qww

appear in Assumption 2, and JCS(u1, u2) in Assumption 6′.

Next, we discuss how to estimate the covariance function CCS(·, ·) of the limiting Gaussian process

GCS(·). We suggest estimating CCS(·, ·) by ĈCS(·, ·) defined for all u1, u2 ∈ U as

ĈCS(u1, u2) = ŜĴCS(u1, u2)Ŝ′

where

ĴCS(u1, u2) =
1

G

M∑
m=1

 ∑
g∈CG(m)

(α̂g,1(u1)− x′gβ̂(u1))wg

 ∑
g∈CG(m)

(α̂g,2(u2)− x′gβ̂(u2))w′g

 ,

Ŝ = (Q̂xwQ̂
−1
wwQ̂

′
xw)−1Q̂xwQ̂

−1
ww, Q̂xw = X ′W/G, Q̂ww = W ′W/G. In the theorem below, we show

that ĈCS(u1, u2) is consistent for CCS(u1, u2) uniformly over u1, u2 ∈ U .

Theorem 7 (Estimating CCS under Cluster Sampling). Let Assumptions 1′, 2-5, 6′, 7, and 8 hold.

Then ‖ĈCS(u1, u2)− CCS(u1, u2)‖ = op(1) uniformly over u1, u2 ∈ U .

Finally, we show how to obtain confidence bands for β(u) that hold uniformly over U . Observe

that β(u) is a dx-vector, that is, β(u) = (β1(u), . . . , βdx(u))′. As in the main text, we focus on β1(u),

the first component of β(u), and we suggest constructing uniform confidence bands via multiplier

bootstrap method. An important difference from the results in the main text is that now we should

bootstrap on the cluster level.

Specifically, let β̂1(u), V CS(u), and V̂ CS(u) denote the 1st component of β̂(u), the (1, 1)st

component of CCS(u, u), and the (1, 1)st component of ĈCS(u, u), respectively. Define

T = sup
u∈U

√
G|V̂ (u)−1/2(β̂1(u)− β1(u))|, (18)

and let c1−α denote the (1 − α) quantile of T . As in the main text, we estimate c1−α by the

multiplier bootstrap method. Let ε1, ..., εM be an i.i.d. sequence of N(0, 1) random variables that



Appendix 31

are independent of the data. Also, let ŵSg,1 denote the 1st component of the vector Ŝwg. Then the

multiplier bootstrap statistic is

TMB = sup
u∈U

1√
GV̂ (u)

M∑
m=1

εm

 ∑
g∈CG(m)

(α̂g,1(u)− x′gβ̂(u))ŵSg,1


The multiplier bootstrap critical value ĉ1−α is the conditional (1 − α) quantile of TMB given the

data. Our final theorem in this section explains how to construct uniform confidence bands using

ĉ1−α.

Theorem 8 (Uniform Confidence Bands via Multiplier Bootstrap under Cluster Sampling). Let

Assumptions 1′, 2-5, 6′, 7, and 8 hold. In addition, suppose that all eigenvalues of JCS(u, u) are

bounded away from zero uniformly over u ∈ U . Then

P

β1(u) ∈

β̂1(u)− ĉ1−α

√
V̂ (u)

G
, β̂1(u) + ĉ1−α

√
V̂ (u)

G

 for all u ∈ U

→ 1− α

as G→∞.

Appendix F. Further Discussion of the Model in Section 2

In this section, we provide further discussion of our model in Section 2, give a structural inter-

pretation, and outline possible extensions.

F.1. Structural Model Justifying the Model in Section 2. Consider the following structural

model:

yig = z′igα̃g(ũig) (19)

where yig is the response variable of individual i in group g, zig is a vector of observable individual-

level covariates, ũig is unobserved scalar heterogeneity with values in [0, 1], and α̃g = {α̃g(u), u ∈
[0, 1]} is a group-specific effect. We assume that the group-specific effect α̃g is determined by

vectors of observable and unobservable group-level covariates xg and ψg, respectively, that is,

α̃g(u) = α̃(u, xg, ψg) for some function α̃.

In many empirical settings, it is natural to expect that the distribution of ũig varies across groups,

so that the distribution function Fg : [0, 1]→ [0, 1] of ũig in group g is indexed by g. We assume that

Fg is determined by a vector of unobservable group-level covariates νg, that is, Fg(u) = F (u, νg)

for some function F . Let F−1(u, νg) denote the (generalized) inverse of the function u 7→ F (u, νg).

Further, we assume that ũig is independent of zig conditional on (xg, ψg, νg), which can be

considered analogous to the usual independence condition of quantile regression analysis for cross-

sectional data adapted to group/panel data as considered here. Under this condition,

ũig = F−1(uig, νg)
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for a random variable uig that is distributed uniformly on [0, 1] and that is independent of (zig, xg, ψg, νg).

Therefore, denoting

αg(u) = α(u, xg, ψg, νg) = α̃(F−1(u, νg), xg, ψg),

rewriting the model (19) as

yig = z′igα(uig, xg, ψg, νg),

and assuming that the function u 7→ z′igα(uig, xg, ψg, νg) is strictly increasing with probability one,

we obtain the following quantile regression model:

Qyig |zig ,xg ,ψg ,νg(u) = z′igαg(u), u ∈ [0, 1],

which in turn implies that

Qyig |zig ,xg ,αg(u) = z′igαg(u), u ∈ [0, 1], (20)

where Qyig |zig ,xg ,ψg ,νg(u) denotes the uth quantile of the conditional distributional of yig given

(zig, xg, ψg, νg) and Qyig |zig ,xg ,αg(u) denotes the uth quantile of the conditional distribution of yig

given (zig, xg, αg) with αg = {αg(u), u ∈ [0, 1]}.
Equation (1) with any U ⊂ [0, 1] in Section 2 follows from (20). In turn, equation (2) in Section

2 arises if α1(u, xg, ψg, νg), the first component of the vector α(u, xg, ψg, νg), can be reasonably

well approximated by x′gβ(u) + εg(u) where εg(u) = ε(u, ψg, νg), which is a typical assumption in

applied regression analysis. This provides a structural interpretation of the model in Section 2.

An advantage of this interpretation is that it yields additional intuition behind the condition

that E[wgεg(u)] = 0 for all u ∈ U imposed on the instrument wg in Section 2. In particular, as

explained in footnote 5, as long as the vector xg contains the constant, this condition follows if

wg is independent of ηg where ηg is such that εg(u) = ε(u, ηg). In this section, we have εg(u) =

ε(u, ψg, νg), so that ηg = (ψg, νg). Thus, the instrument wg should be independent both of ψg, a

vector of unobserved group-level covariates governing group-specific effects α̃g(u) = α̃(u, xg, ψg),

and of νg, a vector of unobserved group-level covariates governing the distribution of unobserved

heterogeneity Fg(u) = F (u, νg). Both of these conditions are reasonable in our empirical application

in Section 5.

F.2. Extension based on a Random Coefficient Model. One of the conditions we used in

the discussion above is a functional form assumption that α1(u, xg, ψg, νg) can be reasonably well

approximated by a linear form x′gβ(u) + εg(u) where εg(u) = ε(u, ψg, νg). Here linearity in xg is a

rather flexible assumption because we can always replace xg by a set of different transformations

of xg whose linear combinations can approximate the function xg 7→ α1(u, xg, ψg, νg) sufficiently

well. On the other hand, additive separability of x′gβ(u) and εg(u) may be difficult to justify on

theoretical grounds. If this is the case, a better approximation of α1(u, xg, ψg, νg) can be given by
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x′gβg(u) where βg(u) = β(u, ψg, νg). Therefore, in this section, we briefly comment on how one can

estimate the model given by

Qyig |zig ,xg ,αg(u) = z′igαg(u), u ∈ U ,

αg,1(u) = x′gβg(u), u ∈ U , (21)

where we use the same notation as above and where (21) can be thought of as a random coefficient

model since βg(u) = β(u, ψg, νg). Throughout this section, we assume that the instrument wg is

independent of the pair (ψg, νg), which, as explained above, strengthens the condition E[wgεg(u)] =

0 for all u ∈ U used in Section 2. Observe that this assumption implies that βg(u) is independent

of wg.

In this model, one can use the same first stage procedure to estimate group-specific effects

αg(u), that is, one can run a quantile regression on the data {(zig, yig), i = 1, . . . , Ng} separately in

each group g to find the estimators α̂g(u) of αg(u). If the number of observations per group grows

sufficiently fast as the number of groups gets large, α̂g(u) will consistently estimate αg(u) uniformly

over g = 1, . . . , G. In the second stage, we will have to replace the 2SLS estimator suitable for (2) by

an estimator suitable for (21). Given that βg(u) is independent of wg, several approaches developed

in the literature can be applied to learn some features of the distribution of βg(u) = β(u, ψg, νg)

depending on what side conditions we impose on the model; see, for example, Imbens and Angrist

(1994), Heckman and Vytlacil (1998), Florens, Heckman, Meghir, and Vytlacil (2008), and Masten

and Torgovitsky (2014). For concreteness, we describe here the approach developed by Masten and

Torgovitsky (2014), which, under certain control variable assumptions and some other technical

assumptions, yields consistent estimates of β̄(u) = E[βg(u)].

To explain their procedure, assume, for simplicity, that there is only one endogenous covariate

among the vector of covariates xg, that is, xg = (1, x̃g, xg,dx)′ where x̃g = (xg,2, . . . , xg,dx−1)′ is

independent of (ψg, νg). Assume that xg is continuously distributed, and xg,dx = h(wg, vg) where

the function v 7→ h(wg, v) is increasing with probability one, and the (scalar) random variable

vg is such that wg is independent of (ψg, νg, vg) (control variable assumption). Then Masten and

Torgovitsky (2014) show that under some further technical conditions, β̄(u) = E[βg(u)] can be

consistently estimated by

β̂(u) =

∫ 1

0
β̂(u, r)dr

where

β̂(u, r) =

 1

G

G∑
g=1

k̂g(r)xgx
′
g

−1 1

G

G∑
g=1

k̂g(u)xgαg(u)

 , (22)

k̂g(r) = h−1K(h−1(R̂g − r)), h is the bandwidth value satisfying h = hG → 0 as G → ∞, K

is the kernel function, R̂g = F̂ (xg,dx |wg), and F̂ (x|w) is an estimator of F (x|w), the conditional

probability that xg,dx ≤ x given wg = w.
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Note, however, that αg(u) is unknown in our setting, and so this estimator is infeasible. To

obtain a feasible estimator, one can substitute α̂g(u) calculated in the first stage instead of αg(u) in

(22). Using the same techniques as those developed in this paper, it is then possible to show that

the feasible estimator is asymptotically equivalent to the infeasible estimator under weak condition

on the growth of the number of observations per group as the number of groups gets large, and

so the feasible estimator has the same asymptotic properties as those of β̂(u), which are in turn

developed in Masten and Torgovitsky (2014).

Appendix G. Proofs

In this Appendix, we first prove some preliminary lemmas. Then we present the proofs of the

theorems stated in the main text as well as the proof of Theorems 4 and 5 stated in Appendices

C and D. In all proofs, c and C denote strictly positive generic constants that depend only on

cM , cf , CM , Cf , CL whose values can change at each appearance.

We will use the following notation in addition to that appearing in the main text. Let

A(u) = (α1,1(u), ..., αG,1(u))′,

β̃(u) = (X ′PWX)−1(X ′PWA(u)), (23)

Jg(u) = Eg[z1gz
′
1gfg(z

′
1gαg(u))].

For η, α ∈ Rdz , and u ∈ U , consider the function fη,α,u : Rdz × R→ R defined by

fη,α,u(z, y) = (z′η) · (1{y ≤ z′α} − u). (24)

Let F = {fη,α,u : η, α ∈ Rdz ;u ∈ U}; that is, F is the class of functions fη,α,u as η, α vary over Rdz

and u varies over U . For α ∈ Rdz and u ∈ U , let the function hα,u : Rdz × R→ Rdz be defined by

hα,u(z, y) = z(1{y ≤ z′α} − u),

and let hk,α,u denote kth component of hα,u. Let Hk = {hk,α,u : α ∈ Rdz ;u ∈ U}. Note that

Hk ⊂ F for all k = 1, ..., dz.

We will also use the following notation from the empirical process literature,

Gg(f) =
1√
Ng

Ng∑
i=1

(f(zig, yig)− Eg[f(zig, yig)])

for f ∈ F ,H, or Hk, k = 1, . . . , dz.

Preliminary Lemmas. In all lemmas, we implicitly impose Assumptions 1-8.

Lemma 1. As G→∞,

Q̂xw =
1

G

G∑
g=1

xgw
′
g →p Qxw, (25)
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Q̂ww =
1

G

G∑
g=1

wgw
′
g →p Qww (26)

where Qxw and Qww appear in Assumption 2.

Proof. We only prove (25). The proof of (26) is similar. To prove (25), observe thatG−1
∑G

g=1E[xgw
′
g]→

Qxw by Assumption 2. Therefore, it suffices to prove that

1

G

G∑
g=1

(
xgw

′
g − E[xgw

′
g]
)
→p 0. (27)

In turn, (27) follows from Assumptions 2(iv) and 4(i) and Chebyshev’s inequality. Hence, (25)

follows. This completes the proof of the lemma. �

Lemma 2. As G→∞,

1

G

G∑
g=1

εg(u1)εg(u2)wgw
′
g →p J(u1, u2)

uniformly over u1, u2 ∈ U .

Proof. Observe that we cannot apply a uniform law of large numbers with bracketing directly

because the data are not necessarily i.i.d. across g. Therefore, we provide a complete proof.

Since

1

G

G∑
g=1

E
[
εg(u1)εg(u2)wgw

′
g

]
→ J(u1, u2)

uniformly over u1, u2 ∈ U by Assumption 6(ii), it suffices to prove that

1

G

G∑
g=1

(εg(u1)εg(u2)wg,kwg,l − E [εg(u1)εg(u2)wg,kwg,l])→p 0 (28)

uniformly over u1, u2 ∈ U for all k, l = 1, . . . , dw.

To this end, fix u1, u2 ∈ U and k, l = 1 . . . , dw. We first show (28) for these values of u1, u2,

k, and l. Note that we cannot use Chebyshev’s inequality here because E[(εg(u1)εg(u2)wg,kwg,l)
2]

is not necessarily finite. Instead, we use a more delicate method as presented in Theorem 2.1.7 of

Tao (2012). Let δ = cM/4. Then by Hölder’s inequality,

E[|εg(u1)εg(u2)wg,kwg,l|1+δ] ≤
(
E[|εg(u1)εg(u2)|2+2δ] · E[|wg,kwg,l|2+2δ]

)1/2
.

In turn,

E[|εg(u1)εg(u2)|2+2δ] ≤ E
[
sup
u∈U
|εg(u)|4+4δ

]
≤ CM ,

E[|wg,kwg,l|2+2δ] ≤ E
[
‖wg‖4+4δ

]
≤ CM

by Assumptions 6(i) and 2(iv). Hence,

E[|εg(u1)εg(u2)wg,kwg,l|1+δ] ≤ CM ,
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and so denoting Xg = εg(u1)εg(u2)wg,kwg,l − E[εg(u1)εg(u2)wg,kwg,l], we obtain

E[|Xg|1+δ] ≤ C. (29)

With this notation, (28) is equivalent to G−1
∑G

g=1Xg →p 0.

Now for N > 0 to be chosen later, denote Xg,≤N = Xg ·1{|Xg| ≤ N} and Xg,>N = Xg ·1{|Xg| >
N}. Then by Fubini’s theorem and Markov’s inequality,

|E[Xg,>N ]| ≤ E[|Xg,>N |] =

∫ ∞
0

P (|Xg| · 1{|Xg| > N} > t)dt

=

∫ N

0
P (|Xg| > N)dt+

∫ ∞
N

P (|Xg| > t)dt

≤ N · E[|Xg|1+δ]

N1+δ
+

∫ ∞
N

E[|Xg|1+δ]

t1+δ
dt

=
E[|Xg|1+δ]

N δ
+
E[|Xg|1+δ]

δN δ
≤ CN−δ

where in the last inequality we used (29). Hence, by Markov’s inequality, for any ε > 0,

P
(∣∣∣ 1

G

G∑
g=1

Xg,>N

∣∣∣ > ε
)
≤ 1

εG

G∑
g=1

E[|Xg,>N |] ≤
C

εN δ
,

and since |E[Xg,≤N ]| = |E[Xg,>N ]| ≤ CN−δ,

P
(∣∣∣ 1

G

G∑
g=1

Xg,≤N

∣∣∣ > ε+ CN−δ
)
≤ P

(∣∣∣ 1

G

G∑
g=1

(Xg,≤N − E[Xg,≤N ])
∣∣∣ > ε

)

≤ 1

εG2

G∑
g=1

E[X2
g,≤N ] ≤ N2

εG
.

Thus, setting N = G1/3, we obtain G−1
∑G

g=1Xg →p 0, which is equivalent to (28) for given u1,

u2, k, and l.

Next, to show that (28) holds uniformly over u1, u2 ∈ U , for δ > 0, let Uδ be a finite subset of U
such that for any u ∈ U , there exists u′ ∈ Uδ satisfying |εg(u)− εg(u′)| ≤ δ. Existence of such a set

Uδ follows from Assumption 6(iii). Then

sup
u1,u2∈U

∣∣∣ 1

G

G∑
g=1

(εg(u1)εg(u2)wg,kwg,l − E[εg(u1)εg(u2)wg,kwg,l])
∣∣∣

≤ max
u1,u2∈Uδ

∣∣∣ 1

G

G∑
g=1

(εg(u1)εg(u2)wg,kwg,l − E[εg(u1)εg(u2)wg,kwg,l])
∣∣∣

+
2δ

G

G∑
g=1

(
sup
u∈U
|εg(u)| · |wg,kwg,l|+ E

[
sup
u∈U
|εg(u)| · |wg,kwg,l|

])
= op(1) + δ ·Op(1)

by the result above and Chebyshev’s inequality. Since δ is arbitrary, this completes the proof. �
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Lemma 3. As G→∞,

1√
G

G∑
g=1

wgεg(·)⇒ G0(·), in `∞(U)

where G0 is a zero-mean Gaussian process with uniformly continuous sample paths and covariance

function J(u1, u2) for all u1, u2 appearing in Assumption 6.

Proof. For any finite set U ′ ⊂ U , it follows from Assumption 6(ii), Lindeberg’s Central Limit

Theorem, and the Cramér-Wold device (see, for example, Theorems 11.2.5 and 11.2.3 in Lehmann

and Romano (2005)) that

( 1√
G

G∑
g=1

wgεg(u)
)
u∈U ′

⇒ (N(u))u∈U ′

where (N(u))u∈U ′ is a zero-mean Gaussian vector with covariance function J(u1, u2) for all u1, u2 ∈
U ′. Therefore, it follows from the second part of Theorem 14 that the asserted claim of the lemma

holds if for any k = 1, . . . , dw and Zg(u) = G−1/2wg,kεg(u), g = 1, . . . , G and u ∈ U , the sequence∑G
g=1 Zg(·) is asymptotically tight in `∞(U). Fix k = 1, . . . , dw. To prove that

∑G
g=1 Zg(·) is

asymptotically tight in `∞(U), we apply the first part of Theorem 14 with Gaussian-dominated

semi-metric ρ : U ×U → R+ defined by ρ(u1, u2) = C|u2−u1| for sufficiently large constant C > 0;

see discussion in front of Theorem 14 for the definition of Gaussian-dominated semi-metrics.

Condition (i) of Theorem 14 holds because for any η > 0 and δ = 1 + cM/2,

G∑
g=1

E

[
sup
u∈U
|Zg(u)| · 1

{
sup
u∈U
|Zg(u) > η

}]
≤ 1

ηδG1/2+δ/2

G∑
g=1

E

[
sup
u∈U
|εg(u)|1+δ|wg,k|1+δ

]

≤ 1

ηδG1/2+δ/2

G∑
g=1

(
E

[
sup
u∈U
|εg(u)|2+2δ

]
· E
[
|wj,k|2+2δ

])1/2

→ 0

by Hölder’s inequality and Assumptions 2(iv) and 6(i).

Condition (ii) of Theorem 14 holds because for any u1, u2 ∈ U ,

G∑
g=1

E[(Z(u2)− Z(u1))2] =
1

G

G∑
g=1

E[(wg,kεg(u2)− wg,kεg(u1))2]

≤ C

G

G∑
g=1

E[w2
g,k|u2 − u1|2] ≤ C|u2 − u1|2 ≤ ρ2(u1, u2)

by Assumptions 2(iv) and 6(iii) since the constant C in the definition of ρ(u1, u2) is large enough.

Finally, condition (iii) of Theorem 14 holds because by Markov’s inequality for any ε > 0,

sup
t>0

G∑
g=1

t2P

(
sup

ρ(u1,u2)≤2ε
|Zg(u2)− Zg(u1)| > t

)
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≤ 1

G

G∑
g=1

E

[
sup

ρ(u1,u2)≤2ε
|wg,kεg(u2)− wg,kε(u1)|2

]
≤ C sup

ρ(u1,u2)≤2ε
|u2 − u1|2 ≤ ε2

by Assumptions 2(iv) and 6(iii) since the constant C in the definition of ρ(u1, u2) is large enough.

Therefore, Theorem 14 implies that the sequence
∑G

g=1 Zg(·) is asymptotically tight in `∞(U).

The asserted claim follows. �

Lemma 4. There exist constants c, C > 0 such that (i) for all u ∈ U and g = 1, . . . , G, all

eigenvalues of Jg(u) are bounded from below by c, and (ii) for all u1, u2 ∈ U and g = 1 . . . , G,

‖J−1
g (u2)− J−1

g (u1)‖ ≤ C|u2 − u1|.

Proof. For any u ∈ U and α ∈ Rdz with ‖α‖ = 1,

α′Jg(u)α ≥ cfα′Eg[z1gz
′
1g]α ≥ cfcM (30)

where the first inequality follows from Assumption 7(ii) and the second from Assumption 4(ii).

This gives the first asserted claim.

To prove the second claim, observe that

‖J−1
g (u2)− J−1

g (u1)‖ ≤ ‖J−1
g (u1)‖‖J−1

g (u2)‖‖Jg(u2)− Jg(u1)‖ ≤ ‖Jg(u2)− Jg(u1)‖
(cfcM )2

where the second inequality follows from (30). Hence, it suffices to show that ‖Jg(u2)− Jg(u1)‖ ≤
C|u2 − u1| for some C > 0. To this end, note that

|z′1gαg(u2)− z′1gαg(u1)| ≤ ‖z1g‖‖αg(u2)− αg(u1)‖ ≤ CMCL|u2 − u1|

where the second inequality follows from Assumptions 4(i) and 5. Thus, if |u2−u1| < cf/(CMCL),

then z′1gαg(u2) ∈ Bg(u1, cf ), and so

‖Jg(u2)− Jg(u1)‖ ≤
∥∥Eg[z1gz

′
1g ·
∣∣fg(z′1gαg(u2))− fg(z′1gαg(u1))

∣∣]∥∥
≤ CfCMCL|u2 − u1| · ‖Eg[z1gz

′
1g]‖ ≤ CfC3

MCL|u2 − u1|

where the second inequality follows from Assumption 7(i) and the derivation above, and the third

from Assumption 4(i). On the other hand, if |u2 − u1| ≥ cf/(CMCL), then

‖Jg(u2)− Jg(u1)‖ ≤ ‖Jg(u1)‖+ ‖Jg(u2)‖ ≤ 2Cf‖Eg[z1gz
′
1g]‖

≤ 2CfC
2
M ≤ c−1

f CfC
3
MCL|u2 − u1|

where the first inequality follows from the triangle inequality, the second from Assumption 7(ii),

and the third from Assumption 4(i). This gives the second asserted claim and completes the proof

of the lemma. �

Lemma 5. There exist constants c, C > 0 such that for all g = 1, . . . , G,

‖Eg[hα,u(z1g, y1g)]− Jg(u)(α− αg(u))‖ ≤ C‖α− αg(u)‖2, (31)
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Eg[(α− αg(u))′hα,u(z1g, y1g)] ≥ c‖α− αg(u)‖2. (32)

for all u ∈ U and α ∈ Rdz satisfying ‖α− αg(u)‖ ≤ c.

Proof. Second-order Taylor expansion around αg(u) and the law of iterated expectation give

Eg[hα,u(z1g, y1g)] = Eg[z1g(1{y1g ≤ z′1gα} − u)] = Eg[z1g(Fg(z
′
1gα)− u)]

= Eg[z1g(Fg(z
′
1gαg(u))− u)] + Jg(u)(α− αg(u)) + rn(u),

where rn(u) is the remainder and Fg(·) is the conditional distribution function of y1g given (z1g, αg).

The first claim of the lemma follows from Eg[z1g(Fg(z
′
1gαg(u)) − u)] = 0, which holds because

z′1gαg(u) is the uth quantile of the conditional distribution of y1g, and from ‖rn(u)‖ ≤ C‖α−αg(u)‖2

for some C > 0, which holds by Assumptions 4(i) and 7(i).

To prove the second claim, note that if ‖α−αg(u)‖ is sufficiently small, then ‖(α−αg(u))′rn(u)‖ ≤
c‖α− αg(u)‖2 for an arbitrarily small constant c > 0. On the other hand,

(α− αg(u))′Jg(u)(α− αg(u)) ≥ c‖α− αg(u)‖2

by Lemma 4. Combining these inequalities gives the second claim. �

Lemma 6. The function class F , defined in the beginning of this section, is a VC subgraph class

of functions. Moreover, for all k = 1, ..., dz, Hk is a VC subgraph class of functions as well.

Proof. A similar proof can be found in Belloni, Chernozhukov, and Hansen (2006). We present the

proof here for the sake of completeness. Consider the class of sets {x ∈ Rdz+1 : a′x ≤ 0} with a

varying over Rdz+1. It is well known that this is a VC subgraph class of sets; see, for example,

exercise 14 of chapter 2.6 in Van der Vaart and Wellner (1996). Further, note that

{(z, y, t) : fη,α,u(z, y) > t} =
(
{y ≤ z′α} ∩ {z′η > t/(1− u)}

)
∪
(
{y > z′α} ∩ {z′η < −t/u}

)
.

Therefore, the first result follows from Lemma 2.6.17(ii,iii) in Van der Vaart and Wellner (1996).

The second result follows from the fact that Hk ⊂ F . �

Lemma 7. For any ϕ ≥ 1, there exists a constant C > 0 such that for all g = 1, . . . , G

Eg

[
sup
u∈U
‖Gg(hαg(u),u)‖ϕ

]
≤ C.

Proof. Observe that

Eg

[
sup
u∈U
‖Gg(hαg(u),u)‖ϕ

]
≤ C

dz∑
k=1

Eg

[
sup
u∈U
|Gg(hk,αg(u),u)|ϕ

]
≤ C

dz∑
k=1

Eg

[
sup
f∈Hk

|Gg(f)|ϕ
]
.
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Further, all functions in Hk are bounded by some constant C > 0 by Assumption 4(i) and the set

of functions Hk is a VC subgraph class by Lemma 6. Therefore, combining Theorems 9 and 11

gives Eg[supf∈Hk |G
g(f)|] ≤ C, and so Theorem 13 shows that

Eg

[
sup
f∈Hk

|Gg(f)|ϕ
]
≤ C.

The asserted claim follows. �

Lemma 8. There exist constants c, C > 0 such that for all g = 1, . . . , G,

Eg

[
sup

u2∈U :|u2−u1|≤ε
‖Gg(hαg(u2),u2)−Gg(hαg(u1),u1)‖4

]
≤ Cε

for all ε ∈ (0, c) and u1 ∈ U .

Proof. Fix some u1 ∈ U . Observe that

Eg

[
sup

u2∈U :|u2−u1|≤ε
‖Gg(hαg(u2),u2)−Gg(hαg(u1),u1)‖4

]

≤ C
dz∑
k=1

Eg

[
sup

u2∈U :|u2−u1|≤ε
|Gg(hk,αg(u2),u2)−Gg(hk,αg(u1),u1)|4

]
.

Consider the function F : Rdz × R→ R given by

F (z, y) = C
(
1{|y − z′αg(u1)| ≤ Cε}+ ε

)
for some sufficiently large C > 0. By Assumptions 4(i) and 5, |z′ig(αg(u2)− αg(u1))| ≤ C|u2 − u1|
for some C > 0. Therefore, for all u2 ∈ U satisfying |u2 − u1| ≤ ε,∣∣hk,αg(u2),u2(zig, yig)− hk,αg(u1),u1(zig, yig)

∣∣ ≤ F (zig, yig)

by Assumption 4(i). Note that Eg[F
2(zig, yig)] ≤ Cε for some C > 0 by Assumption 7(ii) if ε ≤ 1.

Also, for M = max1≤i≤Ng F (zig, yig), we have E[M2] ≤ Cnε. Further, by Lemma 6, Hk is a

VC subgraph class of functions, so that the function class H̃k = {hk,αg(u2),u2 − hk,αg(u1),u1 : u2 ∈
[u1 − ε, u1 + ε]} is a VC type class by Theorem 9. So, applying Theorem 11 with F as an envelope

yields

Eg

[
sup

u2∈U :|u2−u1|≤ε
|Gg(hk,αg(u2),u2)−Gg(hk,αg(u1),u1)|

]
≤ C
√
ε,

and so Theorem 13 shows that

Eg

[
sup

u2∈U :|u2−u1|≤ε
|Gg(hk,αg(u2),u2)−Gg(hk,αg(u1),u1)|4

]
≤ Cε.

The asserted claim follows. �
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Lemma 9. There exist constants c, C > 0 such that for all g = 1, . . . , G,

Eg

[
sup
u∈U

sup
α∈Rdz :‖α−αg(u)‖≤ε

‖Gg(hα,u)−Gg(hαg(u),u)‖2
]
≤ C

(
ε log(1/ε) +N−1

g log2(1/ε)
)

for all ε ∈ (0, c).

Proof. Observe that

Eg

[
sup
u∈U

sup
α∈Rdz :‖α−αg(u)‖≤ε

‖Gg(hα,u)−Gg(hαg(u),u)‖2
]

(33)

≤ C
dz∑
k=1

Eg

[
sup
u∈U

sup
α∈Rdz :‖α−αg(u)‖≤ε

|Gg(hk,α,u)−Gg(hk,αg(u),u)|2
]
. (34)

Consider the function class

H̃k = {hk,α,u − hk,αg(u),u : u ∈ U ;α ∈ Rdz ; ‖α− αg(u)‖ ≤ ε}.

By Lemma 6 and Theorem 9, F is a VC type class, and so Theorem 10 implies that H̃k ⊂ F − F
is also a VC type class. In addition, all functions from H̃k are bounded in absolute value by some

constant C > 0 by Assumption 4(i). Moreover, for any f ∈ H̃k, Eg[f(zig, yig)
2] ≤ Cε if ε ≤ 1.

Thus, applying Theorem 11 with the function class H̃k yields

Eg

[
sup
u∈U

sup
α∈Rdz :‖α−αg(u)‖≤ε

|Gg(hk,α,u)−Gg(hk,αg(u),u)|

]
≤ C

(√
ε log(1/ε) +N−1/2

g log(1/ε)
)
,

and so Theorem 13 gives

Eg

[
sup
u∈U

sup
α∈Rdz :‖α−αg(u)‖≤ε

|Gg(hk,α,u)−Gg(hk,αg(u),u)|2
]
≤ C

(
ε log(1/ε) +N−1

g log2(1/ε)
)
.

The asserted claim follows. �

Lemma 10. Uniformly over u ∈ U ,

1√
G

G∑
g=1

J−1
g (u)Gg(hαg(u),u)w′g = Op(1).

Proof. To prove this lemma, we use Theorem 14 with the semi-metric ρ(u1, u2) = C|u2 − u1|1/4

defined for all u1, u2 ∈ U and some sufficiently large constant C > 0. Clearly, ρ is Gaussian-

dominated; see discussion before Theorem 14 for the definition. Define vg(u) = J−1
g (u)Gg(hαg(u),u)

and

Zg,k,m(u) = vg,k(u)wg,m/
√
G

where vg,k(u) and wg,m denote kth and mth components of vg(u) and wg, respectively. Then the

asserted claim is equivalent to the statement that

G∑
g=1

Zg,k,m(u) = Op(1) uniformly over u ∈ U (35)
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for all k and m. To prove (35), observe first that by Assumptions 1(i) and 2(iii), zero-mean processes

Zg,k,m(·) are independent across g. Also, for any a > 0,

G∑
g=1

E

[
sup
u∈U
|Zg,k,m(u)| · 1

{
sup
u∈U
|Zg,k,m(u)| > a

}]

≤ a−1
G∑
g=1

E

[
sup
u∈U

Z2
g,k,m(u) · 1

{
sup
u∈U
|Zg,k,m(u)| > a

}]

≤ 1

aG

G∑
g=1

E

[
sup
u∈U

(vg,k(u)wg,m)2 · 1
{

sup
u∈U
|vg,k(u)wg,m| >

√
Ga

}]
. (36)

Further, pick some 0 < ϕ < 2. The expression under the sum in (36) is bounded from above by

Lemma 4 by

C

aϕGϕ/2
E

[
sup
u∈U
‖Gg(hαg(u),u)‖2+ϕ‖wg‖2+ϕ

]

≤ C

aϕGϕ/2

(
E

[
sup
u∈U
‖Gg(hαg(u),u)‖

4(2+ϕ)
2−ϕ

]) 2−ϕ
4 (

E
[
‖wg‖4

]) 2+ϕ
4 ≤ C

aϕGϕ/2
→ 0

uniformly over g = 1, . . . , G where the second line follows from Hölder’s inequality, Assumption

2(iv), and Lemma 7. This gives condition (i) of Theorem 14.

Next, we verify condition (ii) of Theorem 14. For any u1, u2 ∈ U ,

G∑
g=1

E
[
(Zg,k,m(u2)− Zg,k,m(u1))2

]
=

1

G

G∑
g=1

(
E[w4

g,m]
)1/2 · (E[(vg,k(u2)− vg,k(u1))4]

)1/2
.

Further, using an elementary inequality (a+ b)4 ≤ C(a4 + b4) for all a, b ∈ Rp gives

Eg[(vg,k(u2)− vg,k(u1))4] ≤ CEg[‖J−1
g (u2)‖4 · ‖Gg(hαg(u2),u2 − hαg(u1),u1)‖4]

+ CEg[‖J−1
g (u2)− J−1

g (u1)‖4 · ‖Gg(hαg(u1),u1)‖4]

≤ CEg[‖Gg(hαg(u2),u2 − hαg(u1),u1)‖4]

+ CEg[‖Gg(hαg(u1),u1)‖4] · |u2 − u1|4

where the second inequality follows from Lemma 4. In addition,

Eg[‖Gg(hαg(u2),u2 − hαg(u1),u1)‖4] ≤ C|u2 − u1| and Eg[‖Gg(hαg(u1),u1)‖4] ≤ C (37)

where the first inequality follows from Lemma 8 and the second is easy to check directly. Therefore,

Eg[(vg,k(u2)− vg,k(u1))4] ≤ C|u2 − u1|,

and so
G∑
g=1

E
[
(Zg,k,m(u2)− Zg,k,m(u1))2

]
≤ C|u2 − u1|1/2 ≤ ρ2(u1, u2)
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by Assumption 2(iv) since the constant C in the definition of ρ(u1, u2) is sufficiently large. This

gives condition (ii) of Theorem 14.

Finally, condition (iii) of Theorem 14 holds because for any ε > 0 and u1 ∈ U ,

sup
t>0

G∑
g=1

t2P

(
sup

u2∈U :ρ(u1,u2)≤ε
|Zg,k,m(u2)− Zg,k,m(u1)| > t

)

≤
G∑
g=1

E

[
sup

u2∈U :ρ(u1,u2)≤ε
|Zg,k,m(u2)− Zg,k,m(u1)|2

]

=
1

G

G∑
g=1

E

[
sup

u2∈U :ρ(u1,u2)≤ε
|vg,k(u2)− vg,k(u1)|2w2

g,m

]
≤ ε2

where the second line follows from Markov’s inequality, and the last inequality follows by selecting

sufficiently large constant C in the definition of ρ and using the same argument as that in verification

of condition (ii) since the first inequality in (37) used in the verification of condition (ii) can be

replaced by

Eg

[
sup

u2∈U :ρ(u1,u2)≤ε
‖Gg(hαg(u2),u2 − hδg(u1),u1)‖4

]
≤ cε4

for arbitrarily small c > 0 by selecting the constant C in the definition of ρ(u1, u2) large enough

and using Lemma 8. The claim of the lemma now follows by applying Theorem 14. �

Proofs of Theorems.

Proof of Theorem 1. The proof consists of two steps. First, we show that
√
G(β̂(u)− β̃(u)) = op(1)

uniformly over u ∈ U where β̃(u) is defined in (23). Second, we show that
√
G(β̃(·)− β(·))⇒ G(·)

in `∞(U). Combining these steps gives the result.

Step 1. Denote Q̂xw = X ′W/G and Q̂ww = W ′W/G. Then

√
G(β̂(u)− β̃(u)) =

(
Q̂xwQ̂

−1
wwQ̂

′
xw

)−1
Q̂xwQ̂

−1
ww

(
W ′(Â(u)−A(u))/

√
G
)
.

By Lemma 1, X ′W/G→p Qxw and W ′W/G→p Qww where matrices Qxw and Qww have singular

values bounded in absolute values from above and away from zero by Assumption 2(ii), and so

Ŝ =
(
Q̂xwQ̂

−1
wwQ̂

′
xw

)−1
Q̂xwQ̂

−1
ww →p

(
QxwQwwQ

′
xw

)−1
QxwQ

−1
ww = S. (38)

Therefore, to prove the first step, it suffices to show that

S(u) =
1√
G

G∑
g=1

(α̂g(u)− αg(u))w′g = op(1)

uniformly over u ∈ U . To this end, write S(u) = S1(u) + S2(u) where

S1(u) =− 1√
G

G∑
g=1

J−1
g (u)Gg(hαg(u),u)w′g/

√
Ng,
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S2(u) =
1√
G

G∑
g=1

(
J−1
g (u)Gg(hαg(u),u) +

√
Ng(α̂g(u)− αg(u))

)
w′g/

√
Ng.

Since NG = ming=1,...,GNg →∞ by Assumption 3, Lemma 10 implies that S1(u) = op(1) uniformly

over u ∈ U .

Consider S2(u). Let

Kg = C

√
N−1
g logNg (39)

for sufficiently large constant C > 0 so that Theorem 5 implies that

P

(
sup
u∈U
‖α̂g(u)− αg(u)‖ > Kg

)
≤ CN−3

g .

Let DG be the event that

max
g=1,...,G

sup
u∈U
‖α̂g(u)− αg(u)‖ ≤ Kg,

and let DcG be the event that DG does not hold. By the union bound, P (DcG) ≤ CGN−3
g . By

Assumption 3, CGN−3
g → 0. Therefore,

S2(u) = S2(u)1{DG}+ S2(u)1{DcG} = S2(u)1{DG}+ op(1)

uniformly over u ∈ U . Further, ‖S2(u)‖1{DG} ≤ C
∑G

g=1(r1,g + r2,g + r3,g)/
√
GNg where

r1,g = sup
u∈U

sup
α∈Rdz :‖α−αg(u)‖≤Kg

∥∥J−1
g (u)(Gg(hα,u)−Gg(hαg(u),u))

∥∥ ‖wg‖,
r2,g = sup

u∈U

∥∥∥∥∥∥J−1
g (u)

1√
Ng

Ng∑
i=1

hα̂g(u),u(zig, yig)

∥∥∥∥∥∥ ‖wg‖,
r3,g = sup

u∈U
sup

α∈Rdz :‖α−αg(u)‖≤Kg

∥∥∥Eg [√Ng(J
−1
g (u)hα,u(zig, yig)− (α− αg(u)))

]∥∥∥ ‖wg‖.
We bound the three terms r1,g, r2,g, and r3,g in turn. By Lemma 4 and Hölder’s inequality,

E[r1,g] ≤
(
E[‖wg‖2]

)1/2(
E

[
sup
u∈U

sup
α∈Rdz :‖α−αg(u)‖≤Kg

∥∥Gg(hα,u)−Gg(hαg(u),u)
∥∥2

])1/2

≤ C

(√
logNg

Ng
logNg

)1/2

=
(logNg)

3/4

N
1/4
g

where the second line follows from the definition of Kg, Assumption 2(iv), and Lemma 9. Further,

using Lemma 4 again gives

sup
u∈U

∥∥∥∥∥∥J−1
g (u)

1√
Ng

Ng∑
i=1

hα̂g(u),u(zig, yig)

∥∥∥∥∥∥ ≤ C sup
u∈U

∥∥∥∥∥∥ 1√
Ng

Ng∑
i=1

hα̂g(u),u(zig, yig)

∥∥∥∥∥∥ ≤ C√
Ng
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by the optimality of α̂g(u) and since yig has a continuous conditional distribution. Hence, E[r2,g] ≤
C/
√
Ng. Finally, by Lemmas 4 and 5,

E[r3,g] ≤ C
√
NgK

2
g ≤

C logNg√
Ng

.

Hence, by Assumption 3,

E

[
sup
u∈U
‖S2(u)‖1{DG}

]
≤ C
√
G(logNG)3/4

N
3/4
G

= o(1),

implying that
√
G(β̂(u)− β̃(u)) = op(1) uniformly over u ∈ U and completing the first step.

Step 2. To prove that
√
G(β̃(·)− β(·))⇒ G(·) in `∞(U), observe that

√
G(β̃(·)− β(·)) = Ŝ · 1√

G

G∑
g=1

wgεg(·).

As explained in Step 1, Ŝ →p S. Also, by Lemma 3,

1√
G

G∑
g=1

wgεg(·)⇒ G0(·), in `∞(U)

where G0 is a zero-mean Gaussian process with uniformly continuous sample paths and covariance

function J(u1, u2). Therefore, by Slutsky’s theorem,

√
G(β̃(·)− β(·))⇒ G(·), in `∞(U) (40)

where G is a zero-mean Gaussian process with uniformly continuous sample paths and covari-

ance function C(u1, u2) = SJ(u1, u2)S′. Combining (40) with Step 1 gives the asserted claim and

completes the proof of the theorem. �

Proof of Theorem 2. Equation (38) in the proof of Theorem 1 gives Ŝ →p S. Therefore, it suffices to

prove that ‖Ĵ(u1, u2)−J(u1, u2)‖ = op(1) uniformly over u1, u2 ∈ U . Note that αg,1(u)−x′gβ(u) =

εg(u). Hence,

α̂g,1(u)− x′gβ̂(u) = (α̂g,1(u)− αg,1(u))− x′g(β̂(u)− β(u)) + εg(u)

= I1,g(u)− I2(u) + εg(u)

where I1,g(u) = α̂g,1(u)− αg,1(u) and I2(u) = x′g(β̂(u)− β(u)). Further, we have

1

G

G∑
g=1

εg(u1)εg(u2)wgw
′
g →p J(u1, u2)

uniformly over u1, u2 ∈ U by Lemma 2. In addition, it was demonstrated in the proof of Theorem

1 that

P

(
max

g=1,...,G
sup
u∈U
‖α̂g(u)− αg(u)‖ > Kg

)
≤ CGN−3

g = o(1)
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by Assumption 3 where Kg = C(N−1
g logNg)

1/2 for sufficiently large constant C. Thus, setting

KG = maxg=1,...,GKg, we obtain∥∥∥∥∥∥ 1

G

G∑
g=1

I1,g(u1)I1,g(u2)wgw
′
g

∥∥∥∥∥∥ ≤ K2
G

G

G∑
g=1

‖wg‖2 + op(1)

≤ Op(K2
G) + op(1) = op(1)

uniformly over u1, u2 ∈ U by Assumption 2(iv) and Chebyshev’s inequality. Further,∥∥∥∥∥∥ 1

G

G∑
g=1

I1,g(u1)εg(u2)wgw
′
g

∥∥∥∥∥∥ ≤ KG

G

G∑
g=1

|εg(u2)|‖wg‖2 + op(1)

≤ KG

G

G∑
g=1

sup
u∈U
|εg(u)|‖wg‖2 + op(1) = op(1)

uniformly over u1, u2 ∈ U by same argument as that used in the proof of Lemma 2 since Hölder’s

inequality implies that

E

[
sup
u∈U
|εg(u)|‖wg‖2

]
≤
(
E

[
sup
u∈U
|εg(u)|2

])1/2 (
E[‖wg‖4]

)1/2 ≤ C
by Assumptions 2(iv) and 6(i). Similarly,∥∥∥∥∥∥ 1

G

G∑
g=1

I2(u1)I2(u2)wgw
′
g

∥∥∥∥∥∥ ≤ C

G

G∑
g=1

‖wg‖2 sup
u∈U
‖β̂(u)− β(u)‖2 = op(1),

∥∥∥∥∥∥ 1

G

G∑
g=1

I2(u1)εg(u2)wgw
′
g

∥∥∥∥∥∥ ≤ C

G

G∑
g=1

|εg(u2)|‖wg‖2 sup
u∈U
‖β̂(u)− β(u)‖ = op(1)

uniformly over u1, u2 ∈ U by Assumption 4(i). Finally,∥∥∥∥∥∥ 1

G

G∑
g=1

I1,g(u1)I2,g(u2)wgw
′
g

∥∥∥∥∥∥ ≤ CKG

G

G∑
g=1

‖wg‖2‖ sup
u∈U
‖β̂(u)− β(u)‖+ op(1) = op(1)

uniformly over u1, u2 ∈ U . Combining these inequalities gives the asserted claim. �

Proof of Theorem 3. Observe that the statement

β1(u) /∈

β̂1(u)− ĉ1−α

√
V̂ (u)

G
, β̂1(u) + ĉ1−α

√
V̂ (u)

G

 for some u ∈ U

is equivalent to the statement that T > ĉ1−α. Therefore, it suffices to prove that

P (T > ĉ1−α)→ α. (41)
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To prove (41), recall the process G(·) = (G1(u), . . . ,Gdx(u))′ appearing in Theorem 1. Define a

Gaussian process G̃(·) on U with values in R by

G̃(u) = V (u)−1/2G1(u), u ∈ U

where V (u) = C1,1(u, u), the (1, 1)st component of C(u, u) = SJ(u, u)S′. It follows from conditions

of the theorem that V (u) is bounded away from zero uniformly over u ∈ U . Therefore, since G(·)
has uniformly continuous sample paths, the process G̃(·) also has uniformly continuous sample

paths. The covariance function of the process G̃(·) is

C̃(u1, u2) = V (u1)−1/2C1,1(u1, u2)V (u2)−1/2.

Further, for G ≥ 1, define processes ĜG(·) and G̃G(·) on U with values in R by

ĜG(u) =
1√

GV̂ (u)

G∑
g=1

(
εg(α̂g,1(u)− x′gβ̂(u))ŵSg,1

)
, u ∈ U

G̃G(u) =
1√

GV (u)

G∑
g=1

εgεg(u)wSg,1, u ∈ U

where wSg,1 and ŵSg,1 are the 1st component of the vectors Swg and Ŝwg, respectively, and V̂ (u) =

Ĉ1,1(u, u).

Observe that ĉ1−α is the (1 − α) conditional quantile of supu∈U |ĜG(u)| given the data. Also,

for β ∈ (0, 1) and V ⊂ U , let c0
β,V be the βth quantile of supu∈V |G̃(u)|, and let cβ,V,G be the βth

quantile of supu∈V |G̃G(u)| given the data.

Now, since the process G̃(·) has uniformly continuous sample paths, it follows that supu∈U |G̃(u)| <
∞, and so Theorem 2.1 of Chernozhukov, Chetverikov, and Kato (2014b) implies that supu∈U |G̃(u)|
has continuous distribution. Therefore, for any δ > 0, there exists η > 0 such that

P

(
sup
u∈U
|G̃(u)| > c0

1−α−η,U − η
)
≤ α+ δ,

P

(
sup
u∈U
|G̃(u)| > c0

1−α+η,U + η

)
≥ α− δ.

In addition, Theorem 1 combined with continuous mapping theorem implies that T ⇒ supu∈U |G̃(u)|,
and so

P (T > c0
1−α−η,U − η) ≤ α+ δ + o(1),

P (T > c0
1−α+η,U + η) ≥ α− δ + o(1).

Hence, to prove (41), it suffices to show that for any η > 0,

P (c0
1−α−η,U − η ≤ ĉ1−α ≤ c0

1−α+η,U + η)→ 1. (42)
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To prove (42), fix some η > 0. Since G̃(·) has uniformly continuous sample paths, there exists a

finite U(η, 1) ⊂ U such that

c0
1−α−η,U − η ≤ c0

1−α−η/2,U(η,1) − η/2, (43)

c0
1−α+η,U + η ≥ c0

1−α+η/2,U(η,1) + η/2. (44)

Further, let AG be the event that G−1
∑G

g=1(wSg,1)2 ≤ C for some sufficiently large C > 0. Note

that P (AG)→ 1 as G→∞. Also, on AG, for any u1, u2 ∈ U ,

Eε

[( 1√
G

G∑
g=1

εg(εg(u2)− εg(u1))wSg,1

)2]
=

1

G

G∑
g=1

(εg(u2)− εg(u1))2(wSg,1)2 ≤ C|u2 − u1|2

by Assumption 6(iii) where Eε[·] denotes expectation with respect to the distribution of ε1, . . . , εG

(and keeping everything else fixed). Therefore, combining Borell’s inequality (see Proposition of

Van der Vaart and Wellner (1996)) and Corollary 2.2.8 of Van der Vaart and Wellner (1996) show

that one can find finite U(η, 2) ⊂ U such that on AG,

c1−α+η/2,U(η,2),G + η/3 ≥ c1−α+η/3,U ,G + η/4, (45)

c1−α−η/2,U(η,2),G − η/3 ≤ c1−α−η/3,U ,G − η/4. (46)

Now, observe that whenever the inequalities (43) - (46) are satisfied, the same inequalities are also

satisfied with U(η, 1) and U(η, 2) replaced by U(η) = U(η, 1) ∪ U(η, 2).

Next, conditional on the data, (G̃G(u))u∈U(η) is a zero-mean Gaussian vector with covariance

function

C̃G(u1, u2) = V (u1)−1/2
( 1

G

G∑
g=1

εg(u1)εg(u2)(wSg,1)2
)
.

By Lemma 2, C̃G(u1, u2)→P C̃(u1, u2) uniformly over u1, u2 ∈ U(η) where C̃(u1, u2) is the covari-

ance function of a zero-mean Gaussian vector (G̃(u))u∈U(η). Hence, by Lemma 3.1 of Chernozhukov,

Chetverikov, and Kato (2013),

P (c0
1−α+η/2,U(η) + η/2 > c1−α+η/2,U(η),G + η/3)→ 1,

P (c0
1−α−η/2,U(η) − η/2 < c1−α−η/2,U(η),G − η/3)→ 1.

Combining this with inequalities (43) - (46) where we replace U(η, 1) and U(η, 2) by U(η) gives

P (c0
1−α+η,U + η > c1−α+η/3,U ,G + η/4)→ 1,

P (c0
1−α−η,U − η < c1−α−η/3,U ,G − η/4)→ 1.

To complete the proof, it suffices to show that

P (c1−α−η/3,U ,G − η/4 ≤ ĉ1−α ≤ c1−α+η/3,U(η) + η/4)→ 1. (47)
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To prove (47), observe that

sup
u∈U

∣∣∣∣∣∣ 1√
G

G∑
g=1

εgx
′
g(β̂(u)− β(u))wSg,1

∣∣∣∣∣∣ ≤ sup
u∈U
‖β̂(u)− β(u)‖ ·

∥∥∥∥∥∥ 1√
G

G∑
g=1

εgw
S
g,1xg

∥∥∥∥∥∥→P 0

since supu∈U ‖β̂(u)− β(u)‖ →P 0 by Theorem 1 and ‖G−1/2
∑G

g=1 εgw
S
g,1xg‖ = OP (1) by Assump-

tions 2(iv) and 4(i). Also,

sup
u∈U

∣∣∣∣∣∣ 1√
G

G∑
g=1

εg(α̂g,1(u)− αg,1(u))wSg,1

∣∣∣∣∣∣→P 0

by the same argument as that used in Step 1 of the proof of Theorem 1. Therefore, since εg(u) =

αg,1(u) − x′gβ(u), supu∈U |V̂ (u) − V (u)| →P 0 by Theorem 2, V (u) is bounded away from zero

uniformly over u ∈ U , and Ŝ →P S as in the proof of Theorem 1, we obtain

sup
u∈U
‖G̃G(u)− ĜG(u)‖ →p 0.

Since ĉ1−α is the (1−α) conditional quantile of supu∈U |Ĝ(u)| given the data and cβ,U ,G is the βth

conditional quantile of supu∈U |G̃(u)| given the data, (47) follows. This completes the proof of the

theorem. �

Proof of Theorem 4. We split the proof into two steps.

Step 1. Here we wish to show that for sufficiently large C > 0,

P

(
max

1≤g≤G

∥∥∥J−1
g (u)Gg(hαg(u),u) +

√
Ng(α̂g − αg)

∥∥∥ > C(logNG)3/4

N
1/4
G

)
→ 0 (48)

Set Kg = C(N−1
g logNg)

1/2 for sufficiently large C > 0 so that Theorem 5 implies that

P (‖α̂g(u)− αg(u)‖ > Kg) ≤ CN−3
g .

Let DG be the event that

max
1≤g≤G

‖α̂g(u)− αg(u)‖ ≤ Kg

and let DcG be the event that DG does not hold. By the union bound, P (DcG) ≤ CGN−3
g → 0.

Now, on the event DG,∥∥∥J−1
g (u)Gg(hαg(u),u) +

√
Ng(α̂g − αg)

∥∥∥ ≤ r1,g + r2,g + r3,g

where

r1,g = sup
α∈Rdz :‖α−αg(u)‖≤Kg

‖J−1
g (u)(Gg(hα,u)−Gg(hαg(u),u))‖,

r2,g =

∥∥∥∥∥∥J−1
g (u)

1√
Ng

Ng∑
i=1

hα̂g(u),u(zig, yig)

∥∥∥∥∥∥ ,
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r3,g = sup
α∈Rdz :‖α−αg(u)‖≤Kg

‖Eg[
√
Ng(J

−1
g (u)hα,u(zig, yig)− (α− αg(u)))]‖.

By Lemma 4 and optimality of α̂g(u),

r2,g ≤

∥∥∥∥∥∥ C√
Ng

Ng∑
i=1

hα̂g(u),u(zig, yig)

∥∥∥∥∥∥ ≤ C√
Ng

.

Also, by Lemmas 4 and 5,

r3,g ≤ C
√
NgK

2
g ≤

C logNg√
Ng

.

Finally, by Lemma 4 and Talagrand’s inequality (see, for example, Theorem B.1 in Chernozhukov,

Chetverikov, and Kato (2014b)),

r1,g ≤ C sup sup
α∈Rdz :‖α−αg(u)‖≤Kg

‖Gg(hα,u)−Gg(hαg(u),u)‖ ≤ C
√
Kg logG =

C log3/4Ng

N
1/4
g

with probability at least 1−G−2. Combining these bounds gives (48) and completes this step.

Step 2. Here we complete the proof. For g = 1, . . . , G and i = 1, . . . , N̄G, define qig as follows.

If i > Ng, set qig = 0. If i ≤ Ng, set

qig = (N̄G/Ng)
1/2I−1/2

g z̄ig(1{yig ≤ z′igαg(u)} − u)

where z̄ig denotes the first component of the vector J−1
g (u)zig. By Step 1 and assumptions that

Ig ≥ cM and N̄G/NG ≤ CM , it follows that

P

(
max

1≤g≤G

√
Ng/Ig|α̂g,1(u)− αg,1(u)| ≤ cM1−α

)

≤ P

 max
1≤g≤G

∣∣∣∣∣∣ 1√
N̄G

N̄G∑
g=1

(qig − Eg[qig])

∣∣∣∣∣∣ ≤ cM1−α +
C log3/4Ng

N
1/4
g

+ o(1) (49)

In turn, since under our assumptions |qig| ≤ C, by Corollary 2.1 in Chernozhukov, Chetverikov,

and Kato (2014d), the probability in (49) is bounded from above by

P

(
max

1≤g≤G
|Yg| ≤ cM1−α +

C log3/4NG

N
1/4
G

)
+ o(1)

≤ P
(

max
1≤g≤G

|Yg| ≤ cM1−α
)

+
C(log3/4NG) · (log1/2G)

N
1/4
G

+ o(1) = 1− α+ o(1)

where in the second line we used Theorem 3 in Chernozhukov, Chetverikov, and Kato (2014c).

Thus,

P

(
max

1≤g≤G

√
Ng/Ig|α̂g,1(u)− αg,1(u)| ≤ cM1−α

)
≤ 1− α+ o(1). (50)

Similar arguments also give

P

(
max

1≤g≤G

√
Ng/Ig|α̂g,1(u)− αg,1(u)| ≤ cM1−α

)
≥ 1− α− o(1). (51)
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Rearranging the terms under the probability signs in (50) and (51) completes the proof of the

theorem. �

Proof of Theorem 5. Recall the definition of the function fη,α,u in (24). Since x 7→ ρu(x) = (u −
I{x < 0})x is convex, for x > 0, ‖α̂g(u)− αg(u)‖ ≤ x for all u ∈ U if

inf
u∈U

inf
η∈Rdz ;‖η‖=1

Ng∑
i=1

fη,αg(u)+xη,u(zig, yig)/Ng > 0. (52)

Now, since fη,α,u = η′hα,u, Lemma 5 implies that

inf
u∈U

inf
η∈Rdz ;‖η‖=1

Eg[fη,αg(u)+xη,u(zig, yig)] > cx

if the constant c̄ in the statement of the theorem is sufficiently small. Therefore, it follows that

(52) holds if

inf
u∈U

inf
η∈Rdz ;‖η‖=1

Ng∑
i=1

(
fη,αg(u)+xη,u(zig, yig)− Eg[fη,αg(u)+xη,u(zig, yig)]

)
/Ng ≥ −cx,

which in turn follows if

inf
u∈U

inf
η,α∈Rdz ;‖η‖=1

Gg(fη,α,u) ≥ −cx
√
Ng. (53)

Note that for any η ∈ Rdz satisfying ‖η‖ = 1, |fη,α,u| ≤ 2‖zig‖ ≤ C for some C > 0 by Assumption

4(i). In addition, it follows from Lemma 6 and Theorem 9 that the conditions of Theorem 12 hold

for the function class {fη,α,u ∈ F : u ∈ U ; η, α ∈ Rdz ; ‖η‖ = 1}. Therefore, Theorem 12 shows that

(53) holds with probability not smaller than

1− C exp(−cx2Ng)

for some c, C > 0. The asserted claim follows. �

Appendix H. Proofs of Theorems 6-8

The proofs are analogous to those of Theorems 1-3. Therefore, we only discuss important dif-

ferences. First, the constants c, C > 0 in the proofs now depend on cM , cf , CM , Cf , CL, and C̄.

Second, among Lemmas 1 - 10, Lemmas 4 - 9 deal with within group variation, and so apply under

our conditions without changes. The statement of Lemma 1 holds without changes but in the proof,

Chebyshev’s inequality applies on cluster level, that is, for k = 1, . . . , dx and l = 1, . . . , dw,

E
[( 1

G

G∑
g=1

(xg,kwg,l − E[xg,kwg,l])
)2]

=
1

G2

M∑
m=1

E
[( ∑

g∈CG(m)

(xg,kwg,l − E[xg,kwg,l])
)2]

≤ C

G2

M∑
m=1

E
[ ∑
g∈CG(m)

(xg,kwg,l − E[xg,kwg,l])
2
]
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=
C

G2

G∑
g=1

E[(xg,kwg,l − E[xg,kwg,l])
2]→ 0

where in the second line we used Assumption 1′(iii) that the number of groups in each cluster is

bounded from above by C̄.

Lemma 2 should be replaced with the statement that G→∞,

1

G

M∑
m=1

( ∑
g∈CG(m)

εg(u1)wg

)( ∑
g∈CG(m)

εg(u1)w′g

)
→P J

CS(u1, u2) (54)

uniformly over u1, u2 ∈ U . To prove this statement, observe that by Assumption 6′(ii),

1

G

M∑
m=1

E
[( ∑

g∈CG(m)

εg(u1)wg

)( ∑
g∈CG(m)

εg(u1)w′g

)]
→ JCS(u1, u2)

uniformly over u1, u2 ∈ U . Further, for δ = cM/4 and k, l = 1, . . . , dw,

E
[∣∣∣( ∑

g∈CG(m)

εg(u1)wg,k

)( ∑
g∈CG(m)

εg(u2)wg,l

)∣∣∣1+δ]
≤ CE

[ ∑
g,g′∈CG(m)

|εg(u1)wg,kεg′(u2)wg′,l|1+δ
]

≤ CE
[ ∑
g,g′∈CG(m)

(
|εg(u1)wg,k|2+2δ + |εg′(u2)wg′,l|2+2δ

)]
≤ C,

where the last inequality can be proven by the same argument as that used in the proof of Lemma

2. From this point, the proof of 54 is analogous to the proof used in Lemma 2.

The statement of Lemma 3 holds with J(u1, u2) replaced by JCS(u1, u2). To prove the new

statement, first observe that for any finite U ′ ⊂ U ,

( 1√
G

G∑
g=1

wgεg(u)
)
u∈U ′

⇒ (N(u))u∈U ′

where (N(u))u∈U ′ is a zero-mean Gaussian vector with covariance function JCS(u1, u2) for all

u1, u2 ∈ U ′. The rest of the proof follows from Theorem 14 by the same arguments as those used

in Lemma 3 and those explained above where we replace Zg(u) = G−1/2wg,kεg(u) by Zm(u) =

G−1/2
∑

g∈CG(m)wg,kεg(u), and we replace sums over g = 1, . . . , G by sums over m = 1, . . . ,M

where appropriate.

The statement of Lemma 10 holds without changes but in the proof, we replace Zg,k,l(u) =

vg,k(u)wg,l/
√
G by Zm,k,l(u) =

∑
g∈CG(m) vg,k(u)wg,l/

√
G and we replace sums over g = 1, . . . , G

by sums over m = 1, . . . ,M where appropriate, and employ the arguments explained above.

With the new versions of Lemmas 1 - 10, the proof of Theorem 6 is the same as the proof of

Theorem 1. The proof of Theorem 7 is analogous to that of Theorem 2 where, using the same
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notation as that in the proof of Theorem 2, we employ the bound∥∥∥ 1

G

M∑
m=1

( ∑
g∈CG(m)

I1,g(u1)wg

)( ∑
g∈CG(m)

I1,g(u2)w′g

)∥∥∥
≤ 1

G

M∑
m=1

∑
g,g′∈CG(m)

‖I1,g(u1)I1,g′(u2)wgw
′
g‖ ≤

K2
g

G

G∑
g=1

‖wg‖2 + oP (1) = oP (1),

and we bound all other terms in the proof similarly. The proof of Theorem 8 is analogous to that

of Theorem 3.

Appendix I. Tools

In Appendix G, we used several results from the empirical process theory. For ease of reference,

we describe these results in this section.

Let (T, ρ) be a semi-metric space. For ε > 0, an ε-net of (T, ρ) is a subset Tε of T such

that for every t ∈ T , there exists a point tε ∈ Tε with ρ(t, tε) < ε. The ε-covering number

N(ε, T, ρ) of T is the infimum of the cardinality of ε-nets of T , that is, N(ε, T, ρ) = inf{Card(Tε) :

Tε is an ε net of T}.
Let F be a class of measurable functions defined on some measurable space (S,S). For any

probability measure Q on (S,S) and p ≥ 1, let Lp(Q) denote the space of functions f on S with

the norm ‖f‖Q,p = (
∫
|f(s)|pdQ(s))1/p < ∞. The function class F is called VC-subgraph class if

the collection of all subgraphs of the functions in F forms a VC-class of sets; see Section 2.6.2 of

Van der Vaart and Wellner (1996) for the definitions. In addition, we say that the function class

F is VC type class of functions with an envelope F : S → R+ and constants A ≥ e, and v ≥ 1 if

all functions in F are bounded in absolute value by F and the following condition holds:

sup
Q
N(ε‖F‖Q,2,F , L2(Q)) ≤ (A/ε)v

for all ε ∈ (0, 1) where the supremum is taken over all finitely discrete probability measures Q on

(S,S).

Finally, let X1, . . . , Xn be an i.i.d. sequence of random variables taking values in (S,S) with a

common distribution P . Define the empirical process:

Gn(f) =
1√
n

n∑
i=1

(
f(Xi)− E[f(Xi)]

)
, f ∈ F .

The following theorems are used in Appendix G:

Theorem 9. There exists a universal constant K such that for any VC subgraph class F of func-

tions with an envelope F , any p ≥ 1, and 0 < ε < 1,

sup
Q
N(ε‖F‖Q,p,F , Lp(Q)) ≤ KV (F)(16e)V (F)

(
1

ε

)r(V (F)−1)
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where V (F) is a finite constant that depends only on the function class F (and called VC dimension

of the class F). Thus, any VC-subgraph class of functions F is also a VC type class of functions

with some constants A ≥ e and v ≥ 1 depending only on F .

Proof. See Lemma 19.15 in Van der Vaart (1998). �

Theorem 10. Let F1, . . . ,Fk be classes of measurable functions S → R to which measurable

envelopes F1, . . . , Fk are attached, respectively, and let φ : Rk → R be a map that is Lipschitz in the

sense that

|φ ◦ f(s)− φ ◦ g(s)|2 ≤
k∑
j=1

L2
j (s)|fj(s)− gj(s)|2,

for every f = (f1, . . . , fk), g = (g1, . . . , gk) ∈ F1× . . .Fk = F and every s ∈ S, where L1, . . . , Lk are

non-negative measurable functions on S. Consider the class of functions φ(F) = {φ ◦ f : f ∈ F}.
Denote (

∑k
j=1 L

2
jF

2
j )1/2 by L · F . Then we have

sup
Q
N(ε‖L · F‖Q,2, φ(F), L2(Q)) ≤

k∏
j=1

sup
Qj

N(ε‖Fj‖Qj ,2,Fj , L2(Qj))

for every 0 < ε < 1.

Proof. See Lemma A.6 in Chernozhukov, Chetverikov, and Kato (2014a). �

Theorem 11. Let F be a VC type class of functions with an envelope F and constants A ≥ e and

v ≥ 1. Denote σ2 = supf∈F E[f(X1)2] and M = max1≤i≤n F (Xi). Then

E

[
sup
f∈F
|Gn(f)|

]
≤ K

(√
vσ2 log

(
A‖F‖P,2

σ

)
+
v‖M‖2√

n
log

(
A‖F‖P,2

σ

))

for some absolute constant K where ‖M‖2 = (E[M2])1/2.

Proof. See Corollary 5.1 of Chernozhukov, Chetverikov, and Kato (2014a). �

Theorem 12. Let F be a class of functions f : X → [0, 1] that satisfies

sup
Q
N(ε, C, L2(Q)) ≤

(
K

ε

)V
, for every 0 < ε < K

where supremum is taken over all probability measures Q. Then for every t > 0,

P

(
sup
f∈F
|Gn(f)| > t

)
≤
(
Dt√
V

)V
e−2t2

for a constant D that depends on K only.

Proof. See Theorem 2.14.9 in Van der Vaart and Wellner (1996). �
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Theorem 13. Let X1, . . . , Xn be independent, zero-mean stochastic processes indexed by an arbi-

trary index set T with joint probability measure P . Then∥∥∥‖Sn‖∥∥∥
P,p
≤ K p

log p

(∥∥∥‖Sn‖∥∥∥
P,1

+
∥∥∥ max

1≤i≤n
‖Xi‖

∥∥∥
P,p

)
for any p > 1 where Sn = X1 + · · · + Xn, ‖Sn‖ = supt∈T |Sn(t)|, ‖Xi‖ = supt∈T |Xi(t)|, and K is

a universal constant.

Proof. See Proposition A.1.6 in Van der Vaart and Wellner (1996). �

Finally, we provide a reference for Central Limit Theorem with bracketing by Gaussian hypothe-

ses, which we use several times in Section G. A semi-metric ρ : F × F → R+ is called Gaussian if

it can be defined as

ρ(f, g) =
(
E[(G(f)−G(g))2]

)1/2
where G is a tight, zero-mean, Gaussian random element in l∞(F). A semi-metric ρ is called

Gaussian-dominated if it is bounded from above by Gaussian metric. In particular, it is known

that any semi-metric ρ satisfying ∫ ∞
0

√
logN(ε,F , ρ)dε <∞

is Gaussian-dominated; see discussion on page 212 in Van der Vaart and Wellner (1996).

Theorem 14 (Bracketing by Gaussian Hypotheses). For each n, let Zn1, ..., Znmn be independent

stochastic processes indexed by an arbitrary index set F . Suppose that there exists a Gaussian-

dominated semi-metric ρ on F such that

(i)

mn∑
i=1

E [‖Zni‖F · 1{‖Zni‖F > η}]→ 0, for every η > 0,

(ii)

mn∑
i=1

E
[
(Zni(f)− Zni(g))2

]
≤ ρ2(f, g), for every f, g,

(iii) sup
t>0

mn∑
i=1

t2P

(
sup

f,g∈B(ε)
|Zni(f)− Zni(g)| > t

)
≤ ε2,

for every ρ-ball B(ε) ⊂ F of radius less than ε and for every n. Then the sequence
∑mn

i=1(Zni −
E[Zni]) is asymptotically tight in l∞(F). It converges in distribution provided it converges marginally.

Proof. See Theorem 2.11.11 in Van der Vaart and Wellner (1996). �
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Table A1. Bias of Grouped IV Quantile Regression vs. Standard Quantile Regression

Quantile 
(u)

True 
Coeff. Q. Reg.

Grouped 
IV Q. Reg. Q. Reg.

Grouped 
IV Q. Reg. Q. Reg.

Grouped 
IV Q. Reg. Q. Reg.

Grouped 
IV Q. Reg.

0.1 0.316 0.042 -0.055 0.040 -0.007 0.038 0.018 0.039 -0.005
0.2 0.447 0.076 0.015 0.078 -0.003 0.077 0.008 0.077 0.000
0.3 0.548 0.116 -0.024 0.116 -0.044 0.117 0.005 0.116 -0.003
0.4 0.632 0.155 -0.128 0.154 -0.031 0.154 0.007 0.155 -0.002
0.5 0.707 0.194 -0.182 0.193 -0.023 0.192 0.010 0.194 -0.006
0.6 0.775 0.236 -0.192 0.233 -0.039 0.228 0.003 0.232 -0.006
0.7 0.837 0.273 -0.161 0.270 -0.067 0.267 -0.002 0.270 -0.004
0.8 0.894 0.312 -0.106 0.311 -0.056 0.306 -0.010 0.309 -0.003
0.9 0.949 0.365 -0.106 0.361 -0.060 0.360 -0.013 0.362 -0.001

0.197 0.108 0.195 0.037 0.193 0.008 0.195 0.003

Quantile 
(u)

True 
Coeff. Q. Reg.

Grouped 
IV Q. Reg. Q. Reg.

Grouped 
IV Q. Reg. Q. Reg.

Grouped 
IV Q. Reg. Q. Reg.

Grouped 
IV Q. Reg.

0.1 0.316 0.005 0.010 -0.004 -0.016 0.002 -0.011 0.001 -0.006
0.2 0.447 0.005 0.027 0.001 -0.010 0.002 -0.018 0.003 -0.008
0.3 0.548 0.006 -0.006 0.006 -0.012 0.003 -0.017 0.005 -0.005
0.4 0.632 0.011 -0.021 0.007 -0.010 0.005 -0.017 0.007 0.002
0.5 0.707 0.008 -0.039 0.008 -0.002 0.007 -0.020 0.009 0.003
0.6 0.775 0.004 -0.021 0.009 -0.004 0.009 -0.015 0.011 0.002
0.7 0.837 0.006 -0.011 0.007 -0.003 0.009 -0.014 0.011 0.000
0.8 0.894 -0.010 -0.007 -0.011 -0.001 -0.011 -0.008 -0.011 0.000
0.9 0.949 -0.031 0.008 -0.038 0.003 -0.028 -0.009 -0.031 -0.001

0.010 0.017 0.010 0.007 0.009 0.014 0.010 0.003

Quantile 
(u)

True 
Coeff. Q. Reg.

Grouped 
IV Q. Reg. Q. Reg.

Grouped 
IV Q. Reg. Q. Reg.

Grouped 
IV Q. Reg. Q. Reg.

Grouped 
IV Q. Reg.

0.1 0.316 0.002 0.019 0.001 -0.006 0.000 -0.009 0.000 -0.004
0.2 0.447 0.008 0.009 0.003 -0.002 0.000 -0.008 -0.001 -0.007
0.3 0.548 0.005 -0.023 0.004 0.000 0.001 -0.010 -0.001 -0.007
0.4 0.632 0.007 -0.015 0.004 -0.003 0.002 -0.001 0.000 -0.005
0.5 0.707 0.005 -0.027 0.000 -0.003 0.001 -0.002 0.000 -0.004
0.6 0.775 0.004 -0.037 0.001 -0.011 0.000 -0.002 0.000 -0.002
0.7 0.837 0.003 -0.027 0.000 -0.005 0.000 -0.002 0.000 0.000
0.8 0.894 0.000 -0.022 0.000 -0.003 0.001 0.000 0.000 0.002
0.9 0.949 -0.003 -0.023 0.000 -0.003 -0.001 -0.005 0.000 0.001

0.004 0.023 0.002 0.004 0.001 0.004 0.000 0.004

(N,G) = (200, 200)

Avg. abs. bias

Avg. abs. bias

Avg. abs. bias

(N,G) = (25, 25) (N,G) = (200, 25) (N,G) = (25, 200)
I. Mean Bias for Endogenous Group-level Treatment

II. Mean Bias for Exogenous Group-level Treatment

III. Mean Bias for Exogenous Group-level Treatment and No Group-level Unobservables

Notes: Table shows mean bias for estimation of β(u) from 1,000 Monte Carlo simulations using standard quantile
regression (Q. Reg.) and our estimator (Grouped IV Q. Reg.) for cases where (N,G) = (25,25), (200,25), (25,200),
(200,200). Panel I displays results when the group-level treatment is endogenous, panel II displays results when the
group-level treatment is independent of group-level unobservables, and panel III displays results when there are no
group-level unobservables. Each panel displays results for quantiles u ∈ {0.1, ..., 0.9} as well as the average absolute
value of the bias, averaged over the nine deciles.




