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1 Introduction

Fama and French (FF, 1992, 1993) show that despite their similar market betas, firms with high

book-to-market equity (value firms) earn higher average stock returns than firms with low book-

to-market equity (growth firms). This stylized fact is commonly referred to as the value premium

puzzle. However, consistent with Ang and Chen (2007), we show that the FF evidence is specific

to the post-1963 sample. The Capital Asset Pricing Model (CAPM) captures the value premium

in the long U.S. sample from July 1926 to June 2014. The value premium is on average 0.52% per

month (t = 2.60), its CAPM alpha is 0.23% (t = 1.18), and its market beta is 0.45 (t = 3.52).

We study whether accounting for rare disasters helps explain the value premium puzzle. We em-

bed disasters into a standard investment-based asset pricing model. Our framework features three

key ingredients: (i) severe but rare declines in aggregate consumption and productivity growth; (ii)

asymmetric adjustment costs; and (iii) recursive preferences. The single-factor model explains the

failure of the CAPM in capturing the value premium in finite samples in which disasters are not

materialized, as well as its relative success in samples in which disasters are materialized.

Intuitively, with asymmetric adjustment costs, when a disaster hits, value firms are burdened

with more unproductive capital, and find it more difficult to reduce capital than growth firms. As

such, value firms are more exposed to the disaster risk than growth firms. Combined with higher

marginal utilities of the agent in disasters, the model implies a sizeable value premium.

More important, the disaster risk induces strong nonlinearity in the pricing kernel, making the

linear CAPM a poor empirical proxy to fully capture its pricing power. In particular, when disasters

are not materialized in a finite sample, estimate market betas only measure the weak covariation

of the value-minus-growth returns with market excess returns during normal times. However, the

value premium is mainly driven by the higher exposures of value stocks to the disaster risk than

growth stocks. Consequently, the CAPM fails to explain the value premium in normal times. In

contrast, when disasters are materialized in a finite sample, the estimated market betas provide an
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adequate account for the large covariation between the value-minus-growth returns and the pricing

kernel. As such, the CAPM captures the value premium in the sample with disasters. In all, we

provide a disaster-based explanation for the value premium puzzle.

FF (2006) refute the Ang and Chen (2007) evidence that the CAPM captures the value pre-

mium in the long sample, and argue that the CAPM’s general problem is that cross-sectional

variation in the market beta goes unrewarded. We confirm the flat relation between the market

beta and average returns, known as the beta anomaly, both in the post-1963 sample and in the long

sample. More important, we show that our single-factor model is largely consistent with the beta

“anomaly.” In simulated samples both with and without disasters, sorting on pre-ranking market

betas yields average return spreads that are small and insignificant, post-ranking beta spreads that

are significantly positive, and CAPM alpha spreads that are negative and sometimes significant.

The crux is that rolling market betas are a poor proxy for the true betas. Intuitively, based

on prior 60-month rolling windows, pre-ranking betas are average betas over the prior five years.

In contrast, true betas accurately and immediately reflect changes in aggregate and firm-specific

conditions. In simulations, true betas often mean-revert within a given rolling window, giving rise

to negative correlations with rolling betas, especially in samples without disasters.

Our work has important implications. Most important, FF’s (1992, 1993) claim of the death of

the CAPM might have been exaggerated, at least in the context of the value premium. Instead, we

lend credence to the largely overlooked work by Ang and Chen (2007). FF’s (2006) refutation of

their evidence based on pre-ranking beta sorts is suspect. Firm-level beta estimates come with a

great deal of measurement errors. We offer a fully specified model, in which rolling beta sorts yield

no average return spreads, yet the CAPM captures the value premium in time series regressions.

Building on Berk, Green, and Naik (1999), early investment-based asset pricing models repro-

duce the level of the value premium with only one aggregate shock (e.g., Carlson, Fisher, and

Giammarino (2004), Zhang (2005), and Cooper (2006)). However, the CAPM roughly holds in
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these models. More recent models try to break the tight link between the pricing kernel and mar-

ket excess returns by introducing multiple aggregate shocks.1 Although successful in explaining

the failure of the CAPM in the post-1963 sample, these models are at odds with the long-sample

evidence. In contrast, while retaining the single-shock structure to fit the long-sample evidence,

our model manages to fail the CAPM via disaster-induced nonlinearity.

Our work also expands the disaster literature, which uses disasters to explain asset pricing puz-

zles, so far mostly at the aggregate level. Barro (2006, 2009) revives the disaster explanation of the

equity premium in Rietz (1988), by calibrating the disaster model to international macroeconomic

data. Gourio (2012) embeds disasters into a production economy to jointly explain the equity pre-

mium and business cycles. Gabaix (2012) uses time-varying exposures of cash flow to disasters, and

Wachter (2013) uses time-varying disaster probability to explain time-varying risk premiums. We

integrate the disaster literature with investment-based asset pricing, and study the impact of the

disaster risk on the cross section of returns. In particular, we show how embedding disasters into a

standard investment model enables it to explain the failure of the CAPM in the post-1963 sample.

The rest of the paper is organized as follows. Section 2 presents the stylized facts. Section 3

constructs the model. Section 4 contains the quantitative results. Finally, Section 5 concludes.

2 Stylized Facts

Table 1 reports the monthly CAPM regressions for the ten book-to-market deciles and the value-

minus-growth decile in the U.S. data. The monthly returns data for the deciles, the value-weighted

market portfolio, and the one-month Treasury bill rate are from Kenneth French’s data library.

Confirming the well-known evidence reported in FF (1992, 1993), Panel A shows that the CAPM

fails to explain the value premium in the sample after July 1963. Moving from the growth decile to

the value decile, the average excess return rises from 0.42% per month to 0.93%, and the average

1Prominent examples include short-run and long-run risks in Ai and Kiku (2013), investment-specific technological
shocks in Kogan and Papanikolaou (2013), stochastic adjustment costs in Belo, Lin and Bazdresch (2014), shocks to
financing costs in Belo, Lin, and Yang (2014), and uncertainty shocks in Koh (2014).
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return spread (the value premium) is 0.51% (t = 2.75). Despite the nearly monotonic relation be-

tween book-to-market and average excess returns, the market beta is largely flat across the deciles.

The value-minus-growth decile has only a tiny market beta of 0.01 (t = 0.07). Accordingly, its

CAPM alpha is 0.51% (t = 2.26), which is identical in magnitude to the average value premium.

However, consistent with the evidence first reported (to our knowledge) in Ang and Chen (2007),

Panel B shows that the CAPM captures the value premium in the long sample from July 1926 to

June 2014. The average excess returns vary from 0.57% per month for the growth decile to 1.09%

for the value decile. The value premium is on average 0.52% (t = 2.60), which is close to that in

the post-1963 sample. More important, the CAPM captures the average value premium, with an

insignificant alpha of 0.23% (t = 1.18) and a significant market beta of 0.45 (t = 3.52). From Panel

C, the CAPM also performs well from July 1926 to June 1963. The average value premium is still

0.52% per month, albeit insignificant (t = 1.31). The market beta is large, 0.74 (t = 5.33). As

such, the CAPM alpha becomes negative, −0.11% (t = −0.34).

To shed light on the differences across the post-1963 sample and the long sample, Table 2 re-

ports large market swings with market excess returns below 1.5 and above 98.5 percentiles of the

empirical distribution, as well as the corresponding months and the value-minus-growth returns.

There are in total 32 such observations, 24 of which are from the Great Depression. When market

excess returns are low, the value-minus-growth returns tend to be low, and when market excess

returns are high, the value-minus-growth returns tend to be high. Their correlation is 0.73 across

these observations. In particular, the lowest value premium is −22.67% in March 1938, which

comes with an abysmally low market excess return of −23.80%. The highest value premium is

69.99% in August 1932, which comes with an exuberantly high market excess return of 36.41%.

More recently, following the bankruptcy of Lehman Brothers, the market excess return is −17.23%

in October 2008, in which the value-minus-growth return is −11.93%.

Figure 1 presents the scatter plots and fitted market regression lines for the value-minus-growth
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returns for the long sample (Panel A) and the post-1963 sample (Panel B). In Panel A, we highlight

in red the observations with monthly market excess returns below 1.5 and above 98.5 percentiles

of the empirical distribution. These observations clearly contribute to the market beta of 0.45

(t = 3.52) for the value-minus-growth decile in the long sample. In contrast, Panel B shows that

large swings in the stock market are scarce in the post-1963 sample, giving rise to a flat regression

line. In all, the CAPM does a good job in explaining the value premium in the long sample that

includes the Great Depression, but that the CAPM fails in the short post-1963 sample.

While large swings in the stock market have a large impact on the performance of the CAPM, its

relative success in the long sample is robust to extreme observations. Table 3 evaluates the robust-

ness of the long-term performance of the CAPM to extreme observations. From Panel A, even after

we remove the observations with extreme 3% of market excess returns, the CAPM continues to do

well with an alpha of 0.17% per month (t = 0.81) and a market beta of 0.20 (t = 2.54) for the value-

minus-growth decile. However, its average return, 0.30%, is only marginally significant. Removing

extreme 10% observations of market excess returns, we obtain an average value premium of 0.43%

(t = 2.72), an insignificant alpha of 0.28%, and a significant beta of 0.20. Perhaps surprisingly,

only after we remove 50% of market excess returns, do we observe a significant value-minus-growth

alpha of 0.56% (t = 2.18). The average return is 0.63% (t = 3.33), and the market beta is 0.07

(t = 0.53). The evidence suggests that the CAPM performs quite well in the long sample, and that

the Great Depression is important, with its risk priced in the value-minus-growth decile, even after

the extreme observations are removed (perhaps due to investor expectations of the disaster risk).

FF (2006) refute the evidence that the CAPM captures the value premium in the long sample

(Table 1, Panel A). FF argue that the CAPM’s problem is that cross-sectional variation in the mar-

ket beta goes unrewarded. This flat relation between the market beta and average returns, known

as the beta anomaly, has a long tradition in empirical finance (e.g., Fama and MacBeth (1973), FF

(1992, 1993), and Frazzini and Pedersen (2014)). Table 4 presents evidence on this flat relation.
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At the end of June of each year t, we sort all stocks into deciles based on the NYSE breakpoints

of pre-ranking betas, which are estimated from rolling-window regressions of firm-level excess re-

turns on the market excess returns in the prior 60 months (24 months minimum). We calculate

value-weighted decile returns, and the deciles are rebalanced in June. Table 4 reports the average

returns and the CAPM regressions for the market beta deciles. The sample starts in July 1928

because we use the data from the first two years to estimate the pre-ranking betas in June of 1928.

Panel A shows that, contradicting the CAPM, the relation between the market beta and the

average return in the post-1963 sample is largely flat. Moving from the low to high beta decile, the

average excess return rises from 0.51% per month to 0.63%, and the spread of only 0.12% is within

0.5 standard errors from zero. More seriously, the pre-ranking beta sorts yield a large spread in

the post-ranking beta, 1.04 (t = 11.41), across the extreme deciles. As a result, the CAPM alpha

for the high-minus-low decile is large and negative, −0.40%, albeit insignificant (t = −1.48).

From Panel B, the evidence from the long sample seems even stronger. The average excess

return rises from 0.57% per month for the low beta decile to only 0.81% for the high beta decile.

The average return spread of 0.24% is within one standard error from zero. More important, the

post-ranking beta moves from 0.57 to 1.70, and the spread of 1.12 is more than 18 standard errors

from zero. As a result, the CAPM alpha for the high-minus-low beta decile is significantly negative,

−0.47% (t = −2.40). Panel C reports largely similar evidence for the pre-1963 sample. The average

return for the high-minus-low beta decile is 0.40% (t = 0.88), and its post-ranking beta is 1.18

(t = 16.04). The CAPM alpha is large, −0.56%, albeit only marginally significant (t = −1.94).

3 An Investment Model with Disasters

Our model is constructed by combining elements from the investment-based asset pricing model of

Zhang (2005) and the Rietz-Barro disasters model (e.g., Rietz (1988) and Barro (2006, 2009)). The

economy consists of a representative agent with the Epstein-Zin (1989) utility and heterogenous

firms. The firms take the representative agent’s intertemporal rate of substitution as given when
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determining their optimal policies. The production technology is subject to both aggregate and

firm-specific shocks. The aggregate shock contains a disaster state as well as a recovery state.

3.1 The Representative Agent

The representative agent has the recursive utility, Ut, defined over aggregate consumption, Ct:

Ut =

[
(1− ι)C

1− 1

ψ

t + ι
(
Et

[
U1−γ
t+1

]) 1−1/ψ
1−γ

] 1

1−1/ψ

, (1)

in which ι is the time discount factor, ψ is the intertemporal elasticity of substitution, and γ is the

relative risk aversion. The pricing kernel is given by:

Mt+1 = ι

(
Ct+1

Ct

)− 1

ψ


 U1−γ

t+1

Et

[
U1−γ
t+1

]




1/ψ−γ
1−γ

. (2)

Consumption Dynamics

The log consumption growth, denoted gct ≡ log(Ct/Ct−1) is specified as:

gct = g + gt, (3)

in which gt follows a first-order autoregressive process per Mehra and Prescott (1985). Specifically,

gt+1 = ρggt + σgǫt+1, (4)

in which ǫt+1 is a standard normal shock, and the unconditional mean of gt is zero.

After calibrating the parameter values of ρg and σg to the consumption growth data in normal

times (Section 4.1), we use the Rouwenhorst (1995) procedure to discretize gt into a grid with five

values {g1, g2, g3, g4, g5}. The discretization also produces a transition matrix, P⋆, given by:

P⋆ =




p11 p12 . . . p15

p21 p22 . . . p25
...

...
. . .

...

p51 p52 . . . p55



, (5)
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in which pij, for i, j = 1, . . . , 5, is the probability of gt+1 = gj conditional on gt = gi.

To incorporate disaster risk into the model, we modify directly the discretized gt grid and its

transition matrix, following Danthine and Donaldson (1999). Specifically, we insert into the gt grid

a disaster state, g0 = λD, in which λD < 0 is the disaster size, as well as a recovery state, g6 = λR,

in which λR > 0 is the recovery size. Accordingly, we form the transition matrix, P , by modifying

P⋆ to incorporate the disaster and recovery states as follows:

P =




θ 0 0 . . . 0 1− θ

η p11 − η p12 . . . p15 0

η p21 p22 − η . . . p25 0
...

...
...

. . .
...

...

η p51 p52 . . . p55 − η 0

0 (1− ν)/5 (1− ν)/5 . . . (1− ν)/5 ν




. (6)

In the modified transition matrix, η is the probability of entering the disaster state from any of

the normal states, and θ is the probability of remaining in the disaster state next period conditional

on the economy being in the disaster state in the current period. As such, θ is the persistence of

the disaster state. Similarly, ν is the persistence of the recovery state. In addition, in constructing

the transition matrix, we have implicitly assumed that the economy can only enter the recovery

state following a disaster. Once in the recovery state, the economy can enter any of the normal

states with an equal probability, (1−ν)/5, but cannot fall immediately back into the disaster state.

Finally, it should be emphasized that our model retains only one aggregate state, gt, in the economy.

3.2 Firms

The economy is also populated by heterogeneous firms, indexed by i.
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Production

Firms produce output with capital, and are subject to both aggregate and firm-specific shocks.

Operating profits, Πit ≡ Π(Kit, Zit,Xt), for firm i are given by:

Πit = (XtZit)
1−ξKξ

it − fKit, (7)

in which ξ > 0 is the curvature parameter, Xt is the aggregate productivity, Zit is the firm-specific

productivity, and Kit is capital. The fixed costs of production are fKit, with f > 0, and are scaled

by capital to ensure that these costs do not become trivially small along the balanced growth path.

The aggregate productivity growth, gxt ≡ log(Xt/Xt−1), is linked to the consumption growth:

gxt = g + φgt, (8)

in which φ > 0. The firm-specific productivity for firm i, Zit, has a transition function given by:

zit+1 = (1− ρz)z + ρzzit + σzeit+1, (9)

in which zit ≡ logZit, z is the unconditional mean of zit common to all firms, and eit+1 is an

independently and identically distributed standard normal shock. We assume that eit+1 and ejt+1

are uncorrelated for any i 6= j, and ǫt+1 and eit+1 are uncorrelated for all i.

Adjustment Costs

Let Iit denote firm i’s investment at time t. Capital accumulates as follows:

Kit+1 = Iit + (1− δ)Kit, (10)

in which δ is the rate of depreciation. Capital investment entails asymmetric adjustment costs:

Φit ≡ Φ(Iit,Kit) =





a+Kit +
c+

2

(
Iit
Kit

)2
Kit for Iit > 0

0 for Iit = 0

a−Kit +
c−

2

(
Iit
Kit

)2
Kit for Iit < 0

, (11)
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in which a− > a+ > 0 and c− > c+ > 0 capture the nonconvex adjustment costs.

Value Maximization

Upon observing current period productivity levels Xt and Zit, firm i makes optimal investment

decision, Iit, and optimal exit decision, χit, to maximize its market value of equity. Let Dit ≡

Πit − Iit −Φ(Iit,Kit) denote dividends. The cum-dividend market value of equity, Vit, is given by:

Vit ≡ V (Kit, Zit,Xt) = max
{χit}

(
max
{Iit}

Dit + Et [Mt+1V (Kit+1,Xt+1, Zit+1)] , sKit

)
, (12)

in which s > 0 is the liquidation value parameter, subject to the capital accumulation equation (10).

When Vit ≥ sKit, which is the exit threshold, firm i does not exit from the economy,

i.e., χit = 0. For incumbent firms that remain in the economy, evaluating the value func-

tion at the optimum yields Vit = Dit + Et[Mt+1Vit+1]. Equivalently, Et[Mt+1Rit+1] = 1, in

which Rit+1 ≡ Vit+1/(Vit − Dit) is the stock return, and Et[Rit+1] = rft + βM
it λMt, in which

rft ≡ 1/Et[Mt+1] is the real interest rate, βM
i ≡ −Covt[r

S
it+1,Mt+1]/Vart[Mt+1] is the true beta,

and λMt ≡ Vart[Mt+1]/Et[Mt+1] is the price of risk.

When Vit < sKit, firm i exits from the economy at the beginning of time t, i.e., χit = 1. We set

its stock return from the beginning of period t− 1 to the beginning of t, Rit, to be a predetermined

delisting return. Shumway (1997) shows that the average delisting return is −30% for stocks on

New York Stock Exchange and American Stock Exchange. Shumway and Warther (1999) show

that the average delisting return is −55% for stocks on National Association of Securities Dealers

Automated Quotations. We set the delisting return to be −42.5%, which is the average estimate.

When firm i exits from the economy at the beginning of time t, we assume that it enters an

immediate reorganization process. The current shareholders of the firm receive sKit as the liquida-

tion value and leaves, and the old firm ceases to exit. New shareholders take over the remainder of

the firm’s capital, (1− s− κ)Kit, in which κ ∈ (0, 1 − s) is the reorganization cost parameter. For

simplicity, we assume that the reorganization process occurs instantaneously. At the beginning of
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t, the old firm is replaced by a new firm with an initial capital of (1−s−κ)Kit owned by new share-

holders. The new firm draws a firm-specific log productivity, zit, from its unconditional distribution,

which is normal with a mean of zero and a standard deviation of σz/
√

1− ρ2z. For computational

tractability, our modeling of entry and exit keeps the number of firms constant in the economy.

4 Quantitative Results

We calibrate the model in Section 4.1, present the results on the CAPM in Section 4.2, discuss the

key intuition in Section 4.3, conduct comparative statics on the CAPM performance in Section 4.4,

and examine the model’s implications on the beta anomaly in Section 4.5.

4.1 Calibration

We calibrate the model in monthly frequency. Table 5 reports the parameter values for the bench-

mark calibration. For the preference parameters, we set the intertemporal elasticity of substitution,

ψ, to be 1.5 as in Bansal and Yaron (2004). The relative risk aversion, γ, is five. The time discount

factor, ι, is set to be 0.99035 to generate an average risk free rate about 1.8% per annum.

For the parameters that govern the consumption dynamics in normal times, we set the average

growth rate, g, to be 0.019/12, the persistence ρg = 0.6, and the conditional volatility σg = 0.0025 to

be consistent with the data of per capita real consumption (nondurables and services) growth from

1947 to 2013.2 The implied consumption growth volatility is 1.43% per annum in simulated quar-

terly data, and is not far from 1.02% in the real data. In simulated annual data, the consumption

growth volatility is 1.7%, which is not far from 1.25% in the real data.3 The first-order autocorre-

lation is 0.49 in simulated quarterly data and 0.26 in simulated annual data. While the former is

higher than 0.30 in the real quarterly data, the latter is lower than 0.49 in the real annual data.

For the parameters that govern the disaster dynamics, we set the disaster persistence, θ = 0.97,

2The quarterly and annual consumption data are from National Income and Product Accounts (NIPA) Table 7.1.
3We have also experimented with an alternative estimation, in which the consumption growth volatility is 1.8%

per annum from 1947 to 2013 in the real data. In this calculation, we scale nondurables and services from NIPA Table
1.1.5 by the consumer price index from Bureau of Labor Statistics and then by population from NIPA Table 7.1.

11



which is the probability that the economy remains in the disaster state in the next month con-

ditional on it being in the disaster state in the current month. This monthly persistence accords

with the quarterly persistence of 0.973 = 0.914 in Gourio (2012). As such, the average duration

of disasters is 1/(1 − 0.97) = 33 months (roughly three years), consistent with the evidence in

Barro and Ursua (2008). We set the disaster probability η to be 0.028/12, which implies an annual

disaster probability of 2.8% estimated in Nakamura, Steinsson, Barro and Ursua (2013). Gourio

uses a quarterly disaster probability of 0.72%, also consistent with an annual probability of 2.8%.

We still have three disaster parameters remaining, including the disaster size, λD, the recovery

size, λR, and the recovery persistence, ν. We experiment with different values so that the impulse

response of log consumption to a disaster shock in the model mimics that in the real data (e.g., Naka-

mura, Steinsson, Barro and Ursua (2013)). This procedure yields λD = −0.0275, λR = 0.0325, and

ν = 0.95. Figure 4 reports that the model’s impulse response is roughly comparable with that in the

data. In particular, the maximum short-term effect of disasters in the model is a fall of about 23% in

log consumption, which is somewhat smaller than 29% in the data reported by Nakamura et al. (Ta-

ble 2). The log-term negative effect is 15% fall in log consumption, which is close to 14% in the data.

The remaining parameters govern the various technologies in the economy. We set the curvature

parameter in the production function, ξ = 0.65, which is close to the estimate of Hennessy and

Whited (2007). The monthly depreciation rate, δ, is 0.01, which implies an annual rate of 12% as

estimated by Cooper and Haltiwanger (2006). The persistence, ρz, and conditional volatility, σz, of

the firm-specific productivity are set to be 0.985 and 0.5, respectively, which are somewhat larger

than the corresponding values in Zhang (2005) after adjusting for the curvature parameter ξ. We

do so to enlarge the cross-sectional dispersion of firms. The long-run mean of log firm-specific pro-

ductivity, z̄, is −9.75, so that the long-run average detrended capital is around unity in simulations.

We set the liquidation parameter, s = 0, meaning that shareholders receive nothing in the

event of bankruptcy. The reorganizational cost parameter, κ, is 0.25. The leverage for the aggre-
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gate productivity, φ, is set to be unity to generate an annual output growth volatility of 2.43% in

normal times. This volatility is close to 2.30% in the data, in which output is the per capita real

gross domestic product from 1947 to 2013 (NIPA Table 7.1). Finally, we set the adjustment cost

parameters a+ = 0.035, a− = 0.05, c+ = 75, c− = 150, and the fixed costs parameter, f = 0.005.

Because of the lack of direct evidence on their values, we calibrate these parameters to match the

properties of the book-to-market deciles. Section 4.4 contains extensive comparative statics on the

quantitative impact of these parameter values on our key results.

4.2 Explaining the Performance of the CAPM

We simulate 2,000 artificial samples from the model, each with 5,000 firms and 1, 500 months. We

start each simulation by setting the initial capital stocks of all firms at unity and by drawing their

firm-specific productivity from the unconditional distribution of Zit. We drop the first 444 months

to neutralize the impact of the initial condition. The remaining 1, 056 months of simulated data are

treated as those from the economy’s stationary distribution. The sample size is comparable to the

period from July 1926 to June 2014 in the real data (Table 1). We calculate the model moments

on each artificial sample and report cross-simulation averaged results.

Table 6 reports the model’s key results under the benchmark calibration. Panel A shows the

CAPM regressions for ten book-to-market deciles in the samples with at least one disaster episode

(1,847 out of 2,000 samples). The average returns of the deciles increase with book-to-market from

0.74% per month for the growth decile to 1.19% for the value decile. The average value-minus-

growth return is 0.45% per month, which is not far from 0.52% in the data (Table 1, Panel A). How-

ever, despite the lower value premium in the model, its t-statistic is 5.83, which is more than twice

as large as 2.60 in the data. As such, the volatility of the value-minus-growth returns in the model is

less than one half of that in the data. Similarly, the t-statistics for the individual deciles in the model

are more than three times larger than those in the data. As such, stock return volatilities in our

model are lower than those in the data, in line with the aggregate-level results in Barro (2006, 2009).
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The CAPM holds in the model’s artificial samples with disasters. The value-minus-growth alpha

is −0.21% (t = −1.72), and its 95% confidence interval across simulations spans from −0.46% to

0.06%. Accordingly, the market beta is estimated to be 0.82 (t = 6.82). The beta also aligns mono-

tonically with book-to-market, rising from 0.82 for the growth decile to 1.64 for the value decile.

Panel B reports the CAPM regressions for the book-to-market deciles in the samples without

disasters (153 out of 2,000 samples). The average returns continue to align monotonically with

book-to-market, going from 0.77% per month to 1.21%. The average return of the value-minus-

growth decile, 0.45% per month, is identical to that from the disaster samples. More important,

Panel B shows that the CAPM fails badly in the no-disaster samples. The CAPM regression of the

value-minus-growth decile yields an alpha of 0.47% (t = 3.71). The 95% confidence interval for the

alpha spans from 0.22% to 0.75%. In addition, the market beta for the value-minus-growth decile is

insignificantly negative, −0.03 (t = −0.24). Finally, the R2 is in effect zero. In all, the quantitative

results in Table 6 on the CAPM regressions are largely aligned with the evidence in Table 1.

4.3 Inspecting the Mechanism

What is the driving force behind the quantitative results in Table 6? To shed light on this impor-

tant issue, we first show that value stocks are more exposed to disaster risk than growth stocks. We

then illustrate how the disaster risk is reflected in the CAPM regressions of the value-minus-growth

returns. Finally, we examine how the disaster risk induces strong nonlinearity in the pricing kernel.

The Impact of Disaster Risk on Firm-level Risk and Risk Premiums

We characterize the impact of disaster risk using the model’s solution and impulse responses. First,

we use the model’s solution on the K̂it-gt-zit grid to plot the true beta, βMit , and the expected risk

premium, Et[Rit+1]− rft, against the detrended capital, K̂it, and the log firm-specific productivity,

zit. To examine the impact of disaster risk, we make the plots for two values of the detrended

consumption growth, gt, including the disaster state, λD, and the mean of normal states (zero).
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Panel A in Figure 3 shows that in disasters, low-z firms, which tend to be value firms, are

substantially riskier than high-z firms, which tend to be growth firms. The mechanism is similar in

nature to, but more powerful quantitatively than that in Zhang (2005) and Cooper (2006). Briefly,

because of asymmetric adjustment costs, value firms are burdened with more unproductive capital,

finding it more difficult to downsize than growth firms. As such, value firms are riskier than growth

firms in bad times. While prior studies describe the working of the mechanism in recessions, Panel

A extends the mechanism to rare disasters. Accordingly, Panel B shows that low-z firms charge

substantially higher risk premiums than high-z firms in the disaster state.

In contrast, Panels C and D show that risk and risk premiums are largely flat across firms in the

normal states. When the overall economy is doing fine, even low-z value firms do not have strong

incentives to disinvest. As such, the mechanism of asymmetric adjustment costs fails to take strong

effect, giving rise to weak spreads in risk and risk premiums across firms. Also, in each panel,

only a portion of the K̂it-zit grid is plotted. This missing region is where firms exit the economy.

Naturally, low-z firms are more likely to exit than high-z firms. In addition, because the fixed costs

of production are proportional to capital, high-K̂ firms are more likely to exit than low-K̂ firms.

In simulations, value firms tend to have lower z but higher K̂ than growth firms.

We also quantify the impact of disaster via impulse responses. We simulate the economy for

150,000 months, a period that contains slightly more than 300 disaster episodes. An episode starts

with the economy switching from a normal state to the disaster state, and ends with it switching

from the recovery state to a normal state. We trace the responses in risk and risk premiums for 25

years after an initial disaster shock, and calculate the average responses across the disaster episodes.

Figure 4 reports the mean responses for the value decile, the growth decile, and the averages

across all ten book-to-market deciles. From Panel A, the true value beta jumps up by 0.37, and the

true growth beta up by almost 0.20, in response to a disaster shock. To get a sense of the magnitude,

the long-term average is around 0.04 for the value beta and 0.02 for the growth beta. As such, disas-
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ters cause an enormous jump in risk, more so for value than for growth firms. Accordingly, Panel B

shows that in response to a disaster shock, the expected risk premium of the value decile jumps up

by more than 400% over the subsequent two years, and that of the growth decile up by almost 100%

over the same period. Again, to get a sense of the magnitude, the long-term average is about 15%

per annum for the value decile and 9% for the growth decile. In all, consistent with the evidence in

Section 2, our model implies that value stocks are more exposed to disaster risk than growth stocks.

Nonlinearity in the CAPM Regressions

The disaster risk has important implications on the CAPM regressions. Figure 5 reports the scat-

ter plots for the CAPM regressions of the value-minus-growth decile. Panel A is the scatter plot

from stacking the simulated data for all the 1,847 out of 2,000 artificial samples (the same samples

used in Table 6) with at least one disaster episode. Panel B is the scatter plot from stacking the

simulated data for the remaining 153 samples without disasters.

The basic patterns mimic those in Figure 1 based on the long U.S. sample. From Panel A of

Figure 5, the value premium covaries strongly with market excess returns in disaster samples. Both

returns are large and negative in disasters, and large and positive in the subsequent recoveries. As

a result, the market beta for the value-minus-growth decile is 0.86, which is a population moment

because of the large number of simulations. However, the CAPM alpha is −0.24% per month,

meaning that the CAPM does not hold exactly in our dynamic single-factor model, even though

the CAPM alpha is insignificant in finite samples (Table 6, Panel A).

In contrast, Panel B of Figure 5 shows that the value premium does not covary at all with

market excess returns in artificial samples with no disasters. Without the large swings in the same

direction in the value premium and market excess returns in disasters as well as in subsequent

recoveries, the CAPM regression line of the value premium is flat. As population moments, the

market beta is in effect zero, and the CAPM alpha is 0.45% per month. This simulation result

reproduces the U.S. evidence from 1963 to 2014 (Figure 1, Panel B).
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Nonlinearity in the Pricing Kernel

The disaster risk induces strong nonlinearity in the pricing kernel, nonlinearity which in turn implies

that the CAPM is a poor proxy of the pricing kernel. If the CAPM holds exactly, the pricing kernel

can be expressed as a linear function of the market excess return, RMt+1, i.e., Mt+1 = l0+ l1RMt+1,

in which l0 and l1 are constants (e.g., Cochrane (2005)). Panels C and D of Figure 5 show that the

pricing kernel in the model is far from a linear function of the market excess return.

In particular, Panel C reports the scatter plot for regressing the pricing kernel on the market

excess return based on the disaster samples. (The results from all the 2,000 artificial samples are

quantitatively similar.) The regression yields a slope of −0.35 but an R2 of only 25%, despite the

model’s single-factor structure. The linear CAPM fits poorly the observations from the disaster

state, with very high realizations of the pricing kernel (marginal utilities), and the observations

from the recovery state, with very low realizations of the pricing kernel. Panel D shows that the

CAPM is an even worse proxy for the pricing kernel in the samples without disasters. The slope

from regressing the pricing kernel on the market excess return is only −0.03, falling in magnitude

from −0.35 from the disaster samples. The R2 also drops from 25% to 11%.

4.4 Comparative Statics

To gain further insights into the working of the key mechanism, we conduct comparative static

experiments on a wide array of parameters. We group the parameters into three categories: (i)

disaster dynamics: the disaster size, λD, the disaster persistence, θ, the disaster probability, η, the

recovery persistence, ν, and the recovery size, ν; (ii) technology: the adjustment costs parameters,

a+, a−, c+, and c−, the curvature in production, ξ, the fixed costs parameter, f , the productivity

growth leverage, φ, the liquidation value parameter, s, the reorganizational costs parameter, κ, and

the delisting return, R̃; as well as (iii) preferences: the risk aversion, γ, and the intertemporal elastic-

ity of substitution, ψ. In each experiment, we only vary one parameter, while keeping all the others

unchanged from the benchmark calibration. The only exception is that, when necessary, we adjust
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the time discount factor, ι, to pin the average interest rate at around 1.8% per annum. Finally, for

each parameter, we consider two values, with one above and the other below the benchmark value.

Disaster Dynamics

From the first four columns in the upper panel of Table 7, increasing the disaster size and persistence

raises the value premium, and worsens the failure of the CAPM in samples without disasters. Intu-

itively, a higher magnitude for λD and θ strengthens the nonlinear, disaster dynamics, making the

linear CAPM an even poorer proxy for the pricing kernel, especially in normal times. The effect of

raising the disaster probability, η, goes in the same direction, but its quantitative impact is minimal.

Intuitively, η mainly determines the percentage of samples with at least one disaster episode out of

2,000 simulations. This percentage is 92% in the benchmark calibration with η = 0.23%, and 74%

with η = 0.13% and 97% with η = 0.33%. However, conditional on at least one disaster appearing

in a given sample, the nonlinear dynamics are mostly governed by the disaster size and persistence.

The recovery size and persistence have little impact on the magnitude of the value premium

and the performance of the CAPM. Intuitively, risk and risk premiums are mostly determined by

the model’s dynamics in bad times, particularly rare disasters, in which the representative agent’s

marginal utilities are the highest. In contrast, in the recovery state, in which marginal utilities are

at their lowest level, the risk and risk premium spreads between value and growth firms are tiny.

Technology

The last eight columns in the upper panel of Table 7 report the comparative statics with the four

adjustment costs parameters. The upward nonconvex costs parameter, a+, and its downward coun-

terpart, a−, work in the opposite direction. While increasing a+ reduces the value premium and its

CAPM alpha in normal times, increasing a− does the opposite. The a− effect works through the

familiar Zhang-Cooper asymmetry mechanism. A high value of a− means that value firms face a

higher hurdle in reducing their unproductive capital, giving rise to higher risk and risk premiums.
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Why does the upward nonconvex costs parameter, a+, work differently? Intuitively, firms dis-

invest very infrequently. In a typical simulation, only 0.5% of the firm-month observations have

negative investment. Such a low disinvestment frequency means that a+ is the main parameter that

determines the magnitude of nonconvex costs of adjustment, a+Kit. A lower value of a+ means

that firms would in general have higher capital, including value firms. When a disaster hits, value

firms would be burdened with more unproductive capital, reinforcing the asymmetry mechanism.

As such, a lower a+ value increases the value premium and its CAPM alpha in no-disaster samples.

The upward convex costs parameter, c+, works in the same direction as its downward counter-

part, c−. A higher value of c− restricts the flexibility of value firms in reducing their unproductive

capital. Although applying to positive investment, c+ also limits value firms in adjusting their cap-

ital. However, the c+ effect works in the opposite direction as the a+ effect. The crux is that c+ in-

volves quadratic adjustment costs, which do not reduce capital as directly as a+ in nonconvex costs.

From the first two columns in the lower panel of Table 7, decreasing the curvature in the pro-

duction function by increasing ξ from 0.6 to 0.7 raises the value premium and the market beta of

the value-minus-growth decile, especially in disaster samples. Intuitively, the sensitivity of profits

to the aggregate productivity is ∂Πit/∂Xt = (1 − ξ)Z1−ξ
it Kξ

itX
−ξ
t . In general, the relation between

this sensitivity and ξ is ambiguous. However, the relation tends to be positive for value firms with

high Kit and low Zit, but negative for growth firms with low Kit and high Zit. Also, the relation

is more likely to be positive when Xt is particularly low, as in disasters.

The next two columns in the lower panel show that reducing the fixed costs parameter, f ,

increases the value premium and its CAPM alpha in no-disaster samples. At first glance, this

result seems to contradict Zhang (2005), who reports that higher fixed costs imply a higher value

premium. The crux is that the fixed costs are proportional to capital in our economy with bal-

anced growth, whereas the fixed costs are constant, independent of capital, in Zhang’s stationary

economy. While the constant fixed costs work as operating leverage in his model, the fixed costs
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work in a similar way as the upward nonconvex costs of adjustment, a+, in our model.

Increasing the productivity growth leverage, φ, raises the value premium and its CAPM alpha in

normal times. Intuitively, a higher φ implies a proportionally larger aggregate shock, including that

in the disaster state. More severe disasters in aggregate productivity increases the value premium,

and strengthens the disaster dynamics, giving rise to a higher CAPM alpha in no-disaster samples.

The next three technological parameters involve entry and exit, including the liquidation value

parameter, s, the reorganizational costs parameter, κ, and the delisting return, R̃. Increasing s

reduces the value premium and its CAPM alpha in no-disaster samples. Intuitively, in the event of

exit, existing shareholders extract a higher liquidation value of sKit, which is in effect a free aban-

donment option, acting as an insurance hedge against the disaster risk. The abandonment option is

especially attractive for shareholders of value firms, which tend to have more unproductive capital

than growth firms. Consequently, instead of facing asymmetric adjustment costs in disasters, the

shareholders opt to exit, thereby reducing the risk for value firms relative to growth firms. In

contrast to the strong s effect, the impact of the reorganizational costs parameter and the delisting

return is quantitatively negligible. With s = 0, meaning existing shareholders receive nothing when

exiting the economy, the percentage of exit firms is very low, only about 0.09% in simulations.

Preferences

The last four columns in the lower panel report the results for the risk aversion, γ, and the intertem-

poral elasticity of substitution, ψ. Not surprisingly, increasing either parameter strengthens the

nonlinear disaster dynamics, raising the value premium and its CAPM alpha in no-disaster samples.

4.5 Further Implications on the Beta Anomaly

Our model is also largely consistent with the flat beta-return relation. Mimicking the empirical

procedure in Table 4, we sort stocks in simulated panels at the end of each June based on pre-

ranking market betas from prior 60-month rolling windows. We calculate value-weighted decile
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returns, and rebalance the deciles in June. Panel A of Table 8 shows that in artificial samples with

disasters, the average excess return rises from 0.76% per month for the low rolling beta decile only

to 0.79% for the high decile, and the spread of 0.04% is within 0.5 standard errors from zero. The

pre-ranking market beta sorts also yield a spread in the post-ranking betas, although its magnitude,

0.30 (t = 2.49), is smaller than that in the data. The CAPM alpha of the high-minus-low decile is

−0.21%, albeit insignificant (t = −1.73). From Panel B, results from no-disaster samples are quan-

titatively similar. The high-minus-low beta decile has an average return of −0.06% (t = −0.93), a

CAPM alpha of −0.44% (t = −3.49), and a post-ranking market beta of 0.47 (t = 3.49).

It is perhaps surprising that our risk-based model can reproduce the flat beta-return relation in

simulations. The crux is that the rolling market beta contains a great deal of measurement errors,

and is, consequently, a poor proxy for the true market beta. Because of our single-factor structure,

all aggregate variables are conditionally perfectly correlated, including the pricing kernel and the

expected market risk premium, Et[RMt+1] − rft. As such, the conditional CAPM holds exactly

in theory (but not the unconditional CAPM), meaning that the true market beta can be backed

out as (Et[Rit+1] − rft)/(Et[RMt+1] − rft). The true market beta differs from the true beta with

respect to the pricing kernel, βMit , which is calculated as (Et[Rit+1]− rft)/λMt.

Panels C and D in Table 8 show that, not surprisingly, sorting on true market betas yields large

average return spreads, over 1.2% per month, across extreme deciles in the model. The (uncon-

ditional) CAPM fails to price these deciles both in disaster samples and no-disaster samples. In

disaster samples, the post-ranking rolling betas overshoot, giving rise to a negative CAPM alpha

of −0.73% (t = −1.98). In no-disaster samples, the rolling betas move in the opposite direction

as the true market betas, with a spread of −1.23 (t = −11.21). Accordingly, the CAPM alpha is

2.23% (t = 21.52), which is substantially higher than the average return spread of 1.22%.

To illustrate measurement errors in rolling market betas, Figure 6 presents the scatter plots of

true market betas against their corresponding rolling betas, using deciles formed on rolling market
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betas as the testing portfolios. From Panel A, these deciles show substantial variations in rolling

betas, ranging from −40 to 40, in disaster samples. However, such substantial variations only

transform to small variations in true market betas from 0.5 to 2.5. In no-disaster samples, Panel

B shows that rolling betas range from −20 to 20, and true market betas from 0.5 to 1.8. The cor-

relation between the true and rolling market betas is weakly negative, −0.03, in disaster samples,

but strongly negative, −0.35, in no-disaster samples.

Panels C and D present the scatter plots using deciles formed on true market betas as the

testing portfolios. The variations in true market betas range from zero to 12 in disaster samples,

and from zero to four in no-disaster samples. Rolling market betas remain a poor proxy for true

market betas. Their correlations is weakly positive, 0.08, in disaster samples, but reliably negative,

−0.20, in no-disaster samples. It is surprising how poor the rolling betas are as a proxy for true

market betas, especially in no-disaster samples. Intuitively, based on 60-month rolling windows, the

rolling betas are basically prior five-year averaged betas. In contrast, true market betas accurately

and immediately reflect changes in aggregate and firm-specific conditions. Within a given rolling

window, true market betas can even mean-revert, giving rise to opposite rankings in rolling betas.

5 Conclusion

Rare disasters help explain the value premium puzzle that value stocks earn higher average returns

than growth stocks, despite their similar market betas. In an investment model augmented with

disasters, we show that value stocks are more exposed to disaster risk than growth stocks. More

important, the disaster risk induces strong nonlinearity in the pricing kernel. In finite samples,

in which disasters are materialized, the CAPM does an adequate job in accounting for the value

premium. More important, in finite samples without disasters, estimated market betas fail to mea-

sure the higher exposures of value stocks to the disaster risk than growth stocks. This nonlinearity

allows the model to replicate the failure of the CAPM in the post-1963 sample. In addition, due

to severe measurement errors in rolling betas, the relation between pre-ranking betas and average
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returns is flat in the model’s simulations, despite a strong positive relation between true betas and

expected returns. As such, the model is also consistent with the beta anomaly.
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A Detrending

Because the model features a balanced growth path, we first detrend the model before solving for its
stationary equilibrium. We define the following stationary variables: Ût ≡ Ut/Ct, Π̂it ≡ Πit/Xt−1,
V̂it ≡ Vit/Xt−1, K̂it ≡ Kit/Xt−1, Îit ≡ Iit/Xt−1, Φ̂it ≡ Φit/Xt−1, and D̂it ≡ Dit/Xt−1. We then
rewrite the model’s key equations in terms of the detrended, stationary variables as follows:

The utility-to-consumption ratio:

Ût =


(1− ι) + ι

(
Et

[
Û1−γ
t+1

(
Ct+1

Ct

)1−γ
]) 1−1/ψ

1−γ




1

1−1/ψ

. (A.1)

The pricing kernel:

Mt+1 = ι

(
Ct+1

Ct

)− 1

ψ


 Û1−γ

t+1
(Ct+1/Ct)

1−γ

Et

[
Û1−γ
t+1

(Ct+1/Ct)1−γ
]




1/ψ−γ
1−γ

. (A.2)

Profits:

Π̂it =

(
Xt

Xt−1

)1−ξ

Z1−ξ
it K̂ξ

it − fK̂it. (A.3)

Capital accumulation:

K̂it+1

(
Xt

Xt−1

)
= (1− δ)K̂it + Îit. (A.4)

The adjustment costs function:

Φ̂it =





a+K̂it +
c+

2

(
Îit
K̂it

)2
K̂it for Îit > 0

0 for Îit = 0

a−K̂it +
c−

2

(
Îit
K̂it

)2
K̂it for Îit < 0

. (A.5)

Dividends:
D̂it = Π̂it − Îit − Φ̂it. (A.6)

The value function, V̂it = V̂
(
K̂it, Zit,Xt/Xt−1

)
:

max
{χit}

[
max
{Îit}

D̂it + Et

[
Mt+1V̂

(
K̂it+1,

Xt+1

Xt
, Zit+1

)](
Xt

Xt−1

)
, sK̂it

]
. (A.7)

Finally, the stock return for an incumbent firm:

Rit+1 =
V̂it+1 (Xt/Xt−1)

V̂it − D̂it

. (A.8)
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B Computation

To solve for the pricing kernel, we first iterate on the log utility-to-consumption ratio, ût ≡ log(Ût):

exp(ût) =

[
(1− ι) + ιEt [exp [(1− γ)(ût+1 + ḡ + gt+1)]]

1−1/ψ
1−γ

] 1

1−1/ψ

, (B.1)

as a function of gt. The pricing kernel can then be rewritten as:

Mt+1 ≡M(gt, gt+1) = ι exp

(
−
1

ψ
(ḡ + gt+1)

)(
exp [(1− γ)(ût+1 + ḡ + gt+1)]

Et [exp [(1− γ)(ût+1 + ḡ + gt+1)]]

) 1/ψ−γ
1−γ

. (B.2)

We iterate on the following recursion to compute the value and policy functions:

V̂ (K̂it, Zit, gt) = max
{χit}

[
max
{Îit}

D̂it + Et

[
Mt+1V̂ (K̂it+1, Zit+1, gt+1)

]
exp(g + φgt), sK̂it

]
. (B.3)

We discretize the state space using 100 grid points for Kit, 13 points for zit, and seven grid
points for gt. We specify the lower bound of the capital grid to be 0.01 and the upper bound to be
25. The interval is so large enough that the two bounds are never binding in simulations. We con-
struct the capital grid recursively, following McGrattan (1999), i.e., Kj = Kj1+ ck1 exp(ck2(j−2)),
in which j = 1, ..., 100 is the index of grid points, and ck1 and ck2 are two constant parameters
chosen to provide the desired number of grid points and the upper bound of the capital grid, given a
predetermined lower bound of 0.01. We use the piecewise linear interpolation to obtain firm value,
investment, and expected returns that do not lie directly on the grid points. Finally, we use a simple
global search routine in maximizing the right-hand side of equation (B.3). The objective function
is computed on a grid of Kit+1 between 0.01 and 25 with 12,000 points, and a simple maximum
is taken. We solve for the value function sequentially. After the value function is obtained on the
coarse Kit+1 grid, we use it as the initial condition in the next stage of maximization with a finer
grid of Kit+1. The final results are from a Kit+1 grid with 120,000 points.
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Table 1 : The Market Regressions for the Book-to-market Deciles, July 1926–June 2014

For each report the average excess return (m), the CAPM alpha, the market beta, their t-statistics adjusted

for heteroscedasticity and autocorrelations, and the R2. “V−G” is the value-minus-growth decile.

Growth 2 3 4 5 6 7 8 9 Value V−G

Panel A: July 1963 to June 2014

m 0.42 0.52 0.55 0.55 0.54 0.59 0.68 0.71 0.79 0.93 0.51
tm 2.00 2.72 2.95 2.89 2.97 3.25 3.81 3.88 4.07 3.91 2.75
α −0.12 0.01 0.06 0.06 0.08 0.13 0.24 0.27 0.32 0.39 0.51
tα −1.28 0.15 0.92 0.57 0.83 1.45 2.27 2.28 2.92 2.50 2.26
β 1.06 1.01 0.98 0.99 0.91 0.93 0.88 0.88 0.94 1.07 0.01
tβ 40.79 46.28 34.55 29.35 27.50 28.34 22.89 17.53 20.85 15.44 0.07
R2 0.86 0.92 0.90 0.87 0.83 0.85 0.78 0.76 0.76 0.66 0.00

Panel B: July 1926 to June 2014

m 0.57 0.68 0.68 0.68 0.73 0.76 0.77 0.92 1.03 1.09 0.52
tm 3.24 4.09 4.05 3.67 4.12 4.04 3.86 4.43 4.36 3.82 2.60
α −0.09 0.06 0.05 −0.01 0.08 0.07 0.05 0.18 0.21 0.14 0.23
tα −1.27 1.20 0.89 −0.13 1.02 0.93 0.58 1.93 1.83 0.94 1.18
β 1.00 0.95 0.97 1.06 1.00 1.05 1.09 1.14 1.27 1.45 0.45
tβ 47.76 28.52 59.63 20.06 27.74 16.04 16.14 15.40 13.46 13.38 3.52
R2 0.90 0.92 0.92 0.90 0.89 0.87 0.84 0.82 0.79 0.72 0.14

Panel C: July 1926 to June 1963

m 0.78 0.90 0.86 0.85 0.99 0.99 0.88 1.21 1.36 1.30 0.52
tm 2.56 3.06 2.81 2.42 2.93 2.68 2.18 2.84 2.74 2.20 1.31
α −0.04 0.11 0.03 −0.09 0.08 0.02 −0.18 0.09 0.09 −0.15 −0.11
tα −0.48 1.56 0.36 −1.07 0.80 0.15 −1.28 0.74 0.43 −0.55 −0.34
β 0.96 0.92 0.97 1.10 1.06 1.13 1.24 1.30 1.48 1.70 0.74
tβ 42.94 20.05 50.80 14.68 26.14 12.58 16.54 16.82 14.50 14.24 5.33
R2 0.94 0.92 0.94 0.92 0.93 0.89 0.89 0.88 0.84 0.77 0.32
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Table 2 : Large Swings in the Stock Market and the Corresponding Value-minus-growth

Returns, July 1926–June 2014

This table reports market excess returns, MKT, that are below 1.5 and above 98.5 percentiles in the long

U.S. sample. V−G is the value premium. Both MKT and V−G are in monthly percent.

Month MKT V−G Month MKT V−G

November 1928 11.79 −0.41 August 1933 12.03 4.92
October 1929 −20.07 7.57 January 1934 12.63 34.10
June 1930 −16.25 −3.54 September 1937 −13.57 −10.90
May 1931 −13.16 −3.09 March 1938 −23.80 −22.67
June 1931 13.75 14.80 April 1938 14.49 8.76
September 1931 −29.07 −5.03 June 1938 23.77 15.22
December 1931 −13.42 −16.73 September 1939 16.94 56.61
April 1932 −17.98 −2.85 May 1940 −21.93 −15.49
May 1932 −20.44 3.61 October 1974 16.10 −13.58
July 1932 33.47 45.73 January 1975 13.66 19.70
August 1932 36.41 69.99 January 1976 12.16 15.04
October 1932 −13.09 −12.97 March 1980 −12.90 −9.02
February 1933 −15.06 −7.45 January 1987 12.47 −2.98
April 1933 37.93 22.41 October 1987 −23.24 −1.21
May 1933 21.36 45.01 August 1998 −16.08 6.33
June 1933 13.05 10.29 October 2008 −17.23 −11.93
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Table 3 : The Performance of the CAPM, July 1926–June 2014, Sensitivity Analysis

In Panel A, we delete monthly observations with market excess returns below 1.5 and 98.5 percentiles of the

empirical distribution. As such, we remove in total 3% of extreme observations for market excess returns.

The procedures in other panels are defined analogously.

Growth 2 3 4 5 6 7 8 9 Value V−G [t]

Panel A: 3%

m 0.60 0.71 0.69 0.65 0.70 0.73 0.67 0.82 0.88 0.90 0.30 1.85
α −0.08 0.06 0.06 0.00 0.09 0.10 0.03 0.15 0.15 0.09 0.17 0.81
β 1.04 1.00 0.97 0.98 0.93 0.96 0.99 1.01 1.11 1.23 0.20 2.54
R2 0.86 0.90 0.89 0.86 0.83 0.82 0.78 0.76 0.73 0.63 0.03

Panel B: 5%

m 0.62 0.74 0.72 0.67 0.72 0.74 0.70 0.83 0.91 0.93 0.31 1.99
α −0.09 0.06 0.06 0.00 0.08 0.09 0.03 0.15 0.16 0.10 0.19 0.97
β 1.03 1.00 0.97 0.98 0.94 0.95 0.99 1.01 1.10 1.22 0.18 2.48
R2 0.85 0.89 0.88 0.85 0.81 0.81 0.76 0.75 0.72 0.60 0.02

Panel C: 10%

m 0.64 0.78 0.76 0.76 0.80 0.83 0.80 0.90 1.00 1.07 0.43 2.72
α −0.13 0.04 0.04 0.03 0.11 0.11 0.08 0.17 0.20 0.15 0.28 1.42
β 1.03 1.00 0.97 0.98 0.93 0.97 0.98 0.99 1.09 1.24 0.20 2.61
R2 0.82 0.87 0.86 0.83 0.79 0.79 0.73 0.72 0.68 0.57 0.02

Panel D: 20%

m 0.74 0.85 0.83 0.82 0.85 0.88 0.83 0.97 1.10 1.19 0.45 2.81
α −0.12 0.02 0.00 0.01 0.09 0.12 0.02 0.13 0.22 0.17 0.29 1.47
β 1.04 1.01 1.01 0.99 0.93 0.92 0.98 1.01 1.07 1.23 0.19 2.29
R2 0.77 0.82 0.82 0.77 0.73 0.72 0.68 0.67 0.61 0.48 0.01

Panel E: 30%

m 0.81 0.90 0.90 0.86 0.85 0.92 0.87 1.00 1.15 1.22 0.41 2.46
α −0.11 0.03 0.01 −0.01 0.03 0.10 0.01 0.09 0.23 0.16 0.27 1.30
β 1.05 0.99 1.02 0.99 0.93 0.92 0.98 1.03 1.06 1.22 0.17 1.72
R2 0.71 0.76 0.77 0.71 0.66 0.66 0.59 0.60 0.52 0.40 0.01

Panel F: 40%

m 0.82 0.89 0.93 0.88 0.87 0.94 0.97 1.09 1.24 1.34 0.52 2.98
α −0.16 −0.03 0.03 0.01 0.03 0.12 0.10 0.17 0.28 0.20 0.36 1.65
β 1.08 1.01 0.99 0.96 0.92 0.90 0.96 1.01 1.05 1.25 0.18 1.63
R2 0.65 0.70 0.69 0.63 0.60 0.57 0.52 0.51 0.45 0.34 0.01

Panel G: 50%

m 0.83 0.90 0.94 0.91 0.89 0.98 1.01 1.14 1.34 1.46 0.63 3.33
α −0.23 −0.09 −0.00 0.00 0.07 0.14 0.15 0.26 0.41 0.34 0.56 2.18
β 1.12 1.06 1.00 0.97 0.87 0.90 0.92 0.93 0.99 1.19 0.07 0.53
R2 0.59 0.64 0.59 0.54 0.49 0.48 0.40 0.36 0.32 0.24 0.00
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Table 4 : The CAPM Regressions for the Market Beta Deciles, July 1928–June 2014

For each market beta decile, we report the average return (m), the CAPM alpha, the post-ranking market

beta, their t-statistics adjusted for heteroscedasticity and autocorrelations, and the R2. “H” is the highest

pre-ranking market beta decile, “L” the lowest decile, and “H−L” the high-minus-low decile.

L 2 3 4 5 6 7 8 9 H H−L

Panel A: July 1963 to June 2014

m 0.51 0.52 0.52 0.56 0.66 0.54 0.68 0.53 0.62 0.63 0.12
tm 3.64 3.46 3.11 3.15 3.46 2.67 3.06 2.25 2.33 1.92 0.43
α 0.22 0.17 0.11 0.12 0.17 0.02 0.10 −0.08 −0.06 −0.18 −0.40
tα 2.03 1.75 1.32 1.39 1.89 0.22 1.17 −0.83 −0.47 −0.90 −1.48
β 0.57 0.68 0.81 0.87 0.98 1.03 1.14 1.22 1.35 1.61 1.04
tβ 12.29 16.79 19.13 20.74 27.23 30.22 46.72 41.42 34.60 30.04 11.41
R2 0.54 0.68 0.77 0.79 0.86 0.86 0.88 0.86 0.84 0.78 0.43

Panel B: July 1928 to June 2014

m 0.57 0.63 0.64 0.73 0.82 0.71 0.80 0.72 0.82 0.81 0.24
tm 4.80 4.51 4.23 4.33 4.36 3.55 3.69 2.99 3.04 2.59 0.94
α 0.21 0.17 0.12 0.14 0.16 0.01 0.04 −0.13 −0.11 −0.26 −0.47
tα 2.68 2.18 2.04 2.37 2.29 0.11 0.54 −1.53 −1.09 −1.80 −2.40
β 0.57 0.74 0.82 0.93 1.05 1.12 1.22 1.36 1.49 1.70 1.12
tβ 22.94 29.62 35.56 40.62 41.07 40.12 46.51 36.08 26.55 40.59 18.46
R2 0.67 0.81 0.85 0.88 0.90 0.90 0.91 0.90 0.88 0.85 0.58

Panel C: July 1928 to June 1963

m 0.66 0.79 0.81 0.98 1.05 0.96 0.99 1.00 1.11 1.06 0.40
tm 3.15 3.00 2.91 3.02 2.85 2.44 2.32 2.07 2.06 1.76 0.88
α 0.19 0.16 0.14 0.19 0.16 0.01 −0.04 −0.17 −0.17 −0.36 −0.56
tα 1.73 1.53 1.72 2.41 1.70 0.09 −0.42 −1.14 −0.91 −1.68 −1.94
β 0.58 0.77 0.83 0.98 1.10 1.17 1.28 1.45 1.58 1.76 1.18
tβ 20.61 28.37 30.76 50.20 30.53 29.28 31.99 34.52 21.46 34.34 16.04
R2 0.79 0.90 0.92 0.94 0.93 0.93 0.93 0.93 0.90 0.89 0.72

30



Table 5 : Parameter Values in the Monthly Benchmark Calibration

Parameters Value Description

Panel A: Preferences

ι 0.99035 The subjective discount factor
γ 5 The relative risk aversion
ψ 1.5 The elasticity of intertemporal substitution

Panel B: Consumption dynamics

ḡ 0.019/12 The average consumption growth
ρg 0.6 The persistence of consumption growth
σg 0.0025 The conditional volatility of consumption growth
η 0.028/12 The disaster probability
λD −0.0275 The disaster size

θ 0.9141/3 The disaster persistence
λR 0.0325 The recovery size
ν 0.95 The recovery persistence

Panel C: Technology

ξ 0.65 The curvature parameter in the production function
δ 0.01 The capital depreciation rate
f 0.005 Fixed costs of production
z −9.75 The long-run mean of log firm-specific productivity
ρz 0.985 The persistence of log firm-specific productivity
σz 0.5 The conditional volatility of log firm-specific productivity
φ 1 The leverage of productivity growth
a+ 0.035 Upward nonconvex adjustment costs
a− 0.05 Downward nonconvex adjustment costs
c+ 75 Upward convex adjustment costs
c− 150 Downward convex adjustment costs
s 0 The liquidation value parameter
κ 0.25 The reorganizational cost parameter

R̃ −0.425 The delisting return
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Table 6 : The CAPM Regressions for the Book-to-market Deciles in the Model

Results are averaged across 2,000 simulated economies. The mean excess returns, denotedm, and the CAPM

alphas are in monthly percent. We also report the 2.5 and 97.5 percentiles for the alphas and betas. The

t-statistics are adjusted for heteroscedasticity and autocorrelations.

Growth 2 3 4 5 6 7 8 9 Value V−G

Panel A: Samples with disasters

m 0.74 0.74 0.73 0.74 0.75 0.77 0.81 0.86 0.96 1.19 0.45
tm 13.83 13.61 13.43 13.24 13.15 13.07 13.10 13.07 13.17 13.61 5.83
α 0.08 0.06 0.04 0.01 −0.00 −0.03 −0.05 −0.09 −0.13 −0.13 −0.21
tα 1.38 1.09 0.76 0.32 −0.08 −0.53 −0.82 −1.15 −1.40 −1.38 −1.72
α, 2.5% −0.04 −0.05 −0.06 −0.08 −0.11 −0.15 −0.20 −0.25 −0.32 −0.34 −0.46
α, 97.5% 0.20 0.17 0.14 0.12 0.10 0.08 0.07 0.07 0.07 0.11 0.06
β 0.82 0.85 0.87 0.90 0.94 1.00 1.08 1.19 1.37 1.64 0.82
tβ 18.82 23.74 28.64 33.03 33.72 30.60 26.47 20.63 16.00 18.05 6.82
β, 2.5% 0.64 0.73 0.79 0.83 0.86 0.89 0.93 0.99 1.07 1.38 0.47
β, 97.5% 0.98 0.97 0.97 1.00 1.07 1.19 1.32 1.48 1.69 1.87 1.10
R2 0.45 0.47 0.49 0.50 0.52 0.55 0.57 0.60 0.64 0.65 0.24

Panel B: Samples without disasters

m 0.77 0.76 0.75 0.75 0.75 0.77 0.80 0.85 0.95 1.21 0.45
tm 18.58 18.43 18.09 17.98 18.11 18.57 19.32 20.52 22.55 24.99 7.10
α −0.01 −0.02 −0.06 −0.11 −0.10 −0.08 −0.02 0.08 0.23 0.46 0.47
tα −0.07 −0.24 −0.73 −1.26 −1.24 −0.95 −0.18 0.99 2.83 5.02 3.71
α, 2.5% −0.23 −0.16 −0.23 −0.25 −0.26 −0.24 −0.19 −0.11 0.04 0.27 0.22
α, 97.5% 0.15 0.14 0.10 0.03 0.04 0.07 0.15 0.23 0.39 0.67 0.75
β 0.95 0.96 1.00 1.05 1.05 1.05 1.00 0.95 0.89 0.92 −0.03
tβ 11.07 10.87 11.32 11.98 11.89 11.88 11.47 10.95 9.85 9.00 −0.24
β, 2.5% 0.79 0.79 0.83 0.89 0.87 0.88 0.84 0.77 0.68 0.71 −0.29
β, 97.5% 1.15 1.13 1.19 1.21 1.23 1.25 1.15 1.12 1.07 1.11 0.24
R2 0.11 0.12 0.12 0.14 0.14 0.13 0.13 0.11 0.10 0.08 0.00
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Table 7 : Comparative Statics

Results are averaged across 2,000 simulations. In each experiment, we vary one parameter, while keeping all the others unchanged from the

benchmark calibration. For each parameter, for example, the disaster size, λD, we consider two values, with one above, −0.03, and the other below,

−0.025, the benchmark value, −0.0275. See Table 5 for the descriptions of the symbols.

λD θ η ν λR a+ a− c+ c−

−0.025 −0.03 0.955 0.985 0.13% 0.33% 0.935 0.965 2.75% 3.75% 0.025 0.045 0.035 0.065 50 100 100 200
Disaster samples

m 0.34 0.55 0.29 0.47 0.42 0.46 0.46 0.43 0.45 0.44 0.48 0.29 0.25 0.47 0.37 0.49 0.39 0.46
tm 4.78 6.75 4.49 5.62 5.72 5.78 5.94 5.61 5.83 5.70 6.57 3.75 3.73 5.97 4.64 6.59 5.25 5.90
α −0.22 −0.20 −0.21 −0.16 −0.21 −0.21 −0.20 −0.22 −0.21 −0.21 −0.25 −0.23 −0.21 −0.23 −0.24 −0.20 −0.21 −0.22
tα −1.98 −1.51 −2.08 −1.33 −1.60 −1.89 −1.66 −1.80 −1.75 −1.78 −1.91 −2.05 −1.66 −1.82 −2.04 −1.61 −1.82 −1.80
β 0.77 0.86 0.74 0.77 0.79 0.86 0.85 0.78 0.85 0.81 0.96 0.64 0.61 0.89 0.73 0.90 0.76 0.85
tβ 6.65 7.11 6.56 7.39 6.01 7.80 6.74 6.75 6.74 7.04 6.42 6.19 4.32 6.77 7.23 6.57 6.57 6.85
R2 0.24 0.24 0.25 0.21 .21 0.27 0.23 0.25 0.24 0.25 0.33 0.16 0.15 0.27 0.20 0.27 0.22 0.25

Samples without disasters

m 0.33 0.54 0.28 0.55 0.42 0.46 0.45 0.43 0.44 0.45 0.45 0.28 0.22 0.46 0.38 0.49 0.39 0.46
tm 5.63 8.08 5.24 7.89 6.74 7.29 7.09 6.90 6.99 7.06 8.48 4.24 3.84 7.32 5.54 8.42 6.35 7.29
α 0.24 0.71 0.07 0.86 0.43 0.50 0.49 0.45 0.47 0.47 0.63 0.14 0.26 0.49 0.27 0.62 0.41 0.49
tα 2.14 4.96 0.67 5.66 3.38 3.97 3.88 3.52 3.72 3.77 5.39 1.10 2.16 3.83 1.98 5.12 3.27 3.89
β 0.12 −0.19 0.32 −0.33 −0.02 −0.05 −0.05 −0.02 −0.04 −0.04 −0.23 0.16 −0.04 −0.04 0.13 −0.17 −0.02 −0.04
tβ 0.89 −1.35 2.56 −2.32 −0.13 −0.35 −0.41 −0.19 −0.31 −0.34 −1.71 1.20 −0.32 −0.31 0.96 −1.25 −0.15 −0.36
R2 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

ξ f φ s κ R̃ γ ψ

0.6 0.7 0 0.015 0.8 1.2 0.15 0.3 0 0.5 −0.3 −0.55 3.5 6.5 1 2
Disaster samples

m 0.44 0.51 0.47 0.40 0.20 0.62 0.20 −0.03 0.45 0.45 0.47 0.44 0.18 0.57 −0.06 0.51
tm 5.15 7.24 6.30 4.86 3.50 6.83 2.95 −0.28 5.79 5.87 6.08 5.64 2.61 7.19 −2.67 5.74
α −0.18 −0.27 −0.21 −0.22 −0.21 −0.21 −0.27 −0.35 −0.21 −0.21 −0.19 −0.23 −0.23 −0.11 −0.29 −0.18
tα −1.49 −2.20 −1.71 −1.89 −2.31 −1.62 −2.72 −3.80 −1.72 −1.73 −1.58 −1.89 −2.48 −0.81 −10.00 −1.60
β 0.72 1.02 0.87 0.75 0.72 0.82 0.63 0.48 0.82 0.83 0.83 0.83 0.75 0.67 1.74 0.67
tβ 6.69 7.53 6.61 7.25 5.84 8.46 7.06 6.57 6.84 6.80 6.75 6.85 6.24 5.29 10.34 8.43
R2 0.19 0.39 0.27 0.19 0.15 0.31 0.16 0.09 0.24 0.24 0.24 0.24 0.37 0.13 0.24 0.28

Samples without disasters

m 0.44 0.48 0.45 0.40 0.18 0.63 0.27 0.10 0.44 0.45 0.46 0.44 0.15 0.60 −0.07 0.50
tm 6.14 9.90 7.78 5.81 3.65 9.01 4.37 1.68 7.07 7.11 7.27 7.03 3.18 8.47 −3.15 7.10
α 0.52 0.52 0.54 0.31 −0.10 0.89 0.34 0.20 0.47 0.47 0.48 0.47 −0.12 0.96 −0.31 0.82
tα 3.77 4.59 4.42 2.31 −1.09 5.79 2.78 1.74 3.68 3.69 3.76 3.65 −1.64 5.87 −11.70 5.23
β −0.09 −0.04 −0.10 0.11 0.47 −0.25 −0.09 −0.13 −0.03 −0.03 −0.03 −0.03 0.51 −0.34 1.98 −0.30
tβ −0.70 −0.35 −0.77 0.76 3.58 −1.88 −0.66 −1.01 −0.22 −0.23 −0.22 −0.25 4.35 −2.45 17.67 −2.27
R2 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.26 0.01
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Table 8 : The CAPM Regressions for Deciles Formed on Rolling Market Betas and True

Market Betas in the Model

Results are based on 2,000 simulations.

L 2 3 4 5 6 7 8 9 H H−L

Panel A: Rolling market betas, samples with disasters

m 0.76 0.78 0.81 0.83 0.85 0.86 0.86 0.85 0.83 0.79 0.04
tm 13.72 14.09 14.04 13.89 13.55 13.41 13.08 12.65 11.79 11.50 0.53
α 0.04 0.06 0.06 0.04 0.01 −0.01 −0.04 −0.08 −0.16 −0.17 −0.21
tα 0.69 1.29 1.17 0.82 0.29 −0.05 −0.49 −0.89 −1.45 −2.10 −1.73
α, 2.5% −0.09 −0.05 −0.04 −0.07 −0.10 −0.13 −0.19 −0.27 −0.44 −0.41 −0.55
α, 97.5% 0.17 0.18 0.17 0.17 0.13 0.13 0.11 0.11 0.06 0.01 0.06
β 0.90 0.90 0.95 0.99 1.04 1.08 1.12 1.16 1.23 1.20 0.30
tβ 19.75 25.57 33.62 34.40 31.60 25.92 21.23 18.56 15.11 17.35 2.49
β, 2.5% 0.77 0.80 0.85 0.88 0.92 0.91 0.93 0.93 0.95 0.99 −0.03
β, 97.5% 1.08 1.03 1.04 1.08 1.14 1.21 1.28 1.38 1.56 1.47 0.67
R2 0.53 0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.60 0.61 0.06

Panel B: Rolling market betas, samples without disasters

m 0.80 0.82 0.84 0.85 0.85 0.86 0.84 0.82 0.79 0.74 −0.06
tm 20.12 20.36 20.48 20.45 19.82 20.00 19.58 18.98 18.24 16.65 −0.93
α 0.01 0.12 0.17 0.19 0.15 0.16 0.11 0.03 −0.09 −0.42 −0.44
tα 0.16 1.55 2.15 2.28 1.75 1.88 1.30 0.39 −1.06 −4.98 −3.49
α, 2.5% −0.12 −0.02 0.02 0.04 −0.03 0.01 −0.06 −0.11 −0.24 −0.58 −0.68
α, 97.5% 0.14 0.26 0.31 0.33 0.31 0.31 0.27 0.18 0.05 −0.24 −0.19
β 0.97 0.86 0.82 0.82 0.86 0.86 0.90 0.97 1.08 1.43 0.47
tβ 11.79 10.20 9.50 9.27 9.30 9.15 9.72 10.37 11.67 15.74 3.49
β, 2.5% 0.80 0.68 0.63 0.65 0.69 0.64 0.72 0.79 0.92 1.26 0.24
β, 97.5% 1.13 1.04 0.98 1.00 1.05 1.04 1.09 1.15 1.23 1.61 0.76
R2 0.13 0.10 0.09 0.09 0.09 0.09 0.10 0.11 0.14 0.23 0.01

Panel C: True market betas, samples with disasters

m 0.54 0.74 0.87 0.92 1.03 1.08 1.18 1.26 1.40 1.80 1.26
tm 13.68 16.17 16.52 16.09 16.50 15.66 15.41 14.44 13.35 11.43 8.98
α −0.04 0.07 0.07 0.05 0.04 −0.00 −0.04 −0.13 −0.28 −0.77 −0.73
tα −0.29 2.04 1.48 0.87 0.47 −0.23 −0.69 −1.29 −1.70 −2.30 −1.98
α, 2.5% −0.16 0.00 −0.01 −0.03 −0.06 −0.13 −0.19 −0.35 −0.74 −1.87 −1.93
α, 97.5% 0.07 0.15 0.20 0.17 0.18 0.15 0.14 0.11 0.08 −0.07 0.07
β 0.72 0.83 0.99 1.09 1.23 1.36 1.53 1.74 2.12 3.23 2.51
tβ 11.79 38.88 26.53 25.90 21.97 18.91 16.06 13.68 10.68 8.40 5.54
β, 2.5% 0.60 0.69 0.85 0.96 1.10 1.17 1.29 1.45 1.63 2.20 1.38
β, 97.5% 0.87 0.90 1.08 1.17 1.33 1.51 1.76 2.09 2.83 4.99 4.31
R2 0.68 0.69 0.73 0.74 0.78 0.77 0.79 0.78 0.77 0.76 0.58

Panel D: True market betas, samples without disasters

m 0.56 0.75 0.88 0.94 1.05 1.09 1.18 1.26 1.39 1.78 1.22
tm 18.51 29.08 36.15 35.03 45.87 40.65 45.68 42.68 39.49 38.96 22.70
α −0.89 0.25 0.56 0.58 0.80 0.80 0.93 0.99 1.06 1.34 2.23
tα −28.60 5.15 11.73 11.23 17.85 15.17 18.11 17.01 15.39 14.81 21.52
α, 2.5% −0.96 0.14 0.41 0.45 0.64 0.62 0.78 0.80 0.82 1.05 1.75
α, 97.5% −0.71 0.34 0.65 0.70 0.89 0.92 1.03 1.11 1.21 1.54 2.44
β 1.77 0.62 0.40 0.43 0.30 0.36 0.31 0.33 0.41 0.54 −1.23
tβ 54.41 12.05 7.60 7.57 6.03 6.19 5.39 5.14 5.38 5.43 −11.21
β, 2.5% 1.56 0.51 0.28 0.33 0.20 0.23 0.20 0.20 0.24 0.34 −1.49
β, 97.5% 1.85 0.75 0.57 0.61 0.50 0.59 0.55 0.61 0.71 0.93 −0.63
R2 0.76 0.13 0.06 0.06 0.04 0.04 0.03 0.03 0.03 0.03 0.12
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Figure 1 : The CAPM Regressions for the Value-minus-growth Decile, July 1926–June 2014

The figure presents the scatter plot and the fitted line for the market regression of the value-minus-growth

decile. For the long sample in Panel A, the scatter points with the monthly market excess returns below the

1.5 and above 98.5 percentiles are dated in red.

Panel A: July 1926–June 2014 Panel B: July 1963–June 2014
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Figure 2 : The Impulse Response of Log Consumption to a Disaster Shock in the Model

In simulated data, when the economy enters the disaster state, we calculate the cumulative drop in log

consumption for 25 years after the impulse. Consumption is time-aggregated from the monthly to annual

frequency. The impulse response is averaged across more than 20,000 disaster episodes.
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Figure 3 : The Impact of Disaster on Firm-level Risk and Risk Premiums in the Model

Results are based on the model’s solution. The detrended consumption growth (gt) is in the disaster state

(λD) in Panels A and B, and is the mean of the normal states (zero) in Panels C and D. In each panel,

capital is the detrended capital, K̂it, and z is the log firm-specific productivity.
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Figure 4 : The Impulse Responses for the Value and Growth Portfolios to a Disaster Shock

in the Model’s Simulations

Results are based on 300 simulations of a disaster shock in year one, and we trace the responses for 25 years

afterward. The solid blue lines are for the value decile, the broken red lines the growth deciles, and the black

dotted lines are the average responses across ten book-to-market deciles.

Panel A: True beta, βM
it Panel B: Expected risk premium, Et[Rit+1]− rft
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Figure 5 : The CAPM Regressions of the Value Premium and the Pricing Kernel in Artificial

Samples with and without Disasters

Based on 2,000 simulations, the figure presents the scatter plots and fitted lines for the CAPM regression of

the value premium (Panels A and B) and the pricing kernel (Panels C and D) in the model.

Panel A: The value premium, disaster samples Panel B: The value premium, normal times
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Figure 6 : True Market Betas and Rolling Market Betas in Artificial Samples with and

without Disasters in the Model

The figure presents the scatter plots and fitted lines from regressing true market betas against rolling market

betas in the model. The testing deciles are formed on rolling market betas in Panels A and B, and on true

market betas in Panels C and D.

Panel A: Deciles on rolling market betas,
disaster samples

Panel B: Deciles on rolling market betas,
samples without disasters

Panel C: Deciles on true market betas,
disaster samples

Panel D: Deciles on true market betas,
samples without disasters
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