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1 Introduction

Canonical models of production consider labor as an input but are silent on two important

questions about how firms use workers’ time: First, how should worker availability be scheduled?

Second, how should work be distributed across workers conditional on availability? This paper

analyzes scheduling, a widespread form of coordination in organizations, as a principal-agent

problem.1 By defining boundaries of worker availability, schedules may open a margin for

distortionary behavior if the appropriate time to complete work tasks is private information.

In this paper, I theoretically and empirically consider the implications of this problem on

work assignment. If workers overvalue their leisure time relative to other consequences of their

workplace actions, schedules induce two distortions near end of shift (EOS): First, on an exten-

sive margin, workers “slack off” by accepting fewer tasks than socially optimal. Second, on an

intensive margin, workers may rush to complete their work, spending less time than socially op-

timal on tasks they do accept near EOS. Since workers usually have much more discretion on the

intensive margin, the second distortion could be significantly more costly and implies that some

slacking off is second-best optimal. While the empirical setting of this paper is in health care, the

setting shares characteristics with other time-sensitive and information-rich workplaces:2 Tasks

are uncertain and largely non-contractible; compensation contracts are based on availability (or

minimum quantity of hours worked); delaying assignment is costly; and worker-task specificity

imposes some cost of transferring tasks to other workers once assigned.

Emergency department (ED) shiftwork is well-suited to allow me to estimate the effect of

schedules on behavior. Shifts ending at different times allow me to separate effects related to

shift work from differences due to the time of day. Shifts of different lengths allow separating

1A large and active literature in operations management has viewed scheduling workers as mechanical inputs
(e.g., Perdikaki et al., 2012; He et al., 2012; Green, 2004, 1984), including recent investigations that describe
how worker throughput responds to environmental features such as “system load” (Kc and Terwiesch, 2009). In
economics, a team-theoretic literature (e.g., Marschak and Radner, 1972; Radner, 1993; Garicano, 2000) has taken
a similar approach. In practice, algorithmic approaches, e.g., using computerized staffing tools, are widely used
by firms (Maher, 2007).

2Examples of such workplaces could include large-scale construction, management consulting, and software
engineering. A number of online worker scheduling services have emerged, and case studies of client firms across
industries can be found, for example, at https://www.shiftplanning.com/casestudies. The industry need not
be 24-7, although the size of the economy involved in 24-7 activities has grown (Presser, 2003), and the number of
workers with non-standard work times has grown to more than two-fifths (Beers, 2000). The key factors involve
worker discretion and an assignment decision across workers.
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these effects from “fatigue,” which I consider to depend on the time since the beginning of shift.

Physicians work in virtually all types of shifts. I show that physicians accept fewer patients

near EOS. For patients they do accept, I also show that physicians shorten the duration of care

(“length of stay”) in the ED and increase formal utilization, inpatient admissions, and hospital

costs as the time of arrival approaches EOS. I find evidence that differential selection of patient

types (i.e., selecting healthier patients near EOS) is negligible compared to the size of the effect

on length of stay and in the opposite direction of utilization, admissions, and costs.

To interpret changes in patient care as distortions, I use another source of variation from

shift structure: the overlapping time between when a peer arrives on a new shift and when

the index physician reaches EOS. My identifying assumption is that, conditional on the volume

of work, the time from the beginning of the shift, and the time from the peer’s arrival, the

EOS should have no bearing on efficiency, since it is merely when physicians may go home if

work is complete. I show that distortions on the intensive margin of patient care are greatest

when physicians have the least time to offload work onto a peer before EOS. In fact, there is no

increased utilization or admissions when overlap is four or more hours.

This evidence suggests a policy tradeoff between the extensive and intensive margins of

distortion. On the extensive margin, workers “slack off” by accepting fewer patients. While

slacking off represents a waste of physicians’ time, it reduces workload when time becomes more

costly and, on the intensive margin, mitigates physicians inefficiently substituting other inputs

for time.3 Using a structural model based on the connection between workload-adjusted length

of stay and hospital costs, I consider a wider range counterfactual policies of patient assignment

near EOS, and I find that observed assignment patterns approximately minimize overall costs

of physician time, patient time, and hospital resources. Assigning more patients near EOS such

that physicians stay an additional hour induces an additional $5,500 in hospital spending per

shift; physicians also reveal that they are willing to spend more than $990 in hospital dollars

per each hour of leisure saved, which is eight times greater than the market wage.

This paper contributes to two strands of literature. First, a central economic question is how

3The idea of time per effective work is related to work by Coviello et al. (2014), who discuss of the effect
of dividing time among tasks, although with a single worker who works indefinitely. The time for completing a
project mechanically is lower when fewer projects are active because time is divided among fewer projects.
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to induce workers to work efficiently, analyzed through the lens of incomplete contracts and the

principal-agent problem (Simon, 1947; Hart and Holmstrom, 1987). Following seminal papers

that evaluate a manager’s second-best optimal policy under hidden action or information, (e.g.,

Shapiro and Stiglitz, 1984; Aghion and Tirole, 1997; Milgrom and Roberts, 1988), I apply this

framework to the design of scheduling and assignment, and I find that work assignment should

be lower than first-best near EOS. This paper also contributes to an empirical literature on

the relationship between workplace design and productivity.4 In particular, recent literature

suggests that workplaces that grant greater flexibility to workers in how, when, and where work

is performed have greater productivity (Ichniowski et al., 1996; Bloom et al., 2014).

Second, this paper sheds empirical light on the balance between extrinsic and intrinsic mo-

tivation (e.g., Benabou and Tirole, 2003). While workers no doubt care about their income and

leisure, a now-substantial literature in economics recognizes that workers care about the “mis-

sion” of their job.5 In medical care, where information is continuous, multidimensional, and

difficult to communicate, it would be extremely difficult to design incentives to provide the right

care for patients if physicians only cared about income and leisure. By construction, salaries

and schedules provide an environment in which extrinsic motives are muted relative to intrinsic

ones, but the boundaries of schedules present a unique opportunity to study the tradeoff between

private and intrinsic mission-oriented goals. In this paper, I find that the reduced-form tradeoff

depends on the time during shift and quickly grows large in favor of private goals.

The issues I study in this paper are particularly relevant to health care delivery, which has

experienced broad changes in the use of labor over the last few decades. Technological advances

have caused a proliferation in the diagnostic and therapeutic decisions that should be made

in rapid order from a patient’s presentation.6 Further, changes in work and society, including

the emergence of dual-earner families, have driven worker preferences for more predictable yet

4Relatedly, an interesting set of papers has studied timing distortions in nonlinear contracts such as sales
incentive plans and government budgets (e.g., Oyer, 1998; Liebman and Mahoney, 2013; Larkin, 2014).

5The general case of intrinsic motivation has been discussed by Tirole (1986) and in later papers (Dewatripont
et al., 1999; Akerlof and Kranton, 2005; Besley and Ghatak, 2005; Prendergast, 2007). Physicians balancing profit
and patient welfare has been considered by Ellis and McGuire (1986), for example. In contrast, related empirical
work has been relatively new, e.g., peer effects due to social incentives (Bandiera et al., 2005, 2009; Mas and
Moretti, 2009) and the response to information arguably orthogonal to profits (Kolstad, 2013).

6A related result of technological advances is specialized knowledge, which requires care delivered in teams.
Although technological advances have been widespread, see Messerli et al. (2005) for the particularly impressive
example of modern cardiovascular care, compared to Dwight Eisenhower’s heart attack treatment in 1955.
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flexible hours (e.g., Goldin, 2014; Presser, 2003). Thus, increasingly, health care is delivered by

organizations, and schedules play an important role in assigning uncertain work (e.g., Briscoe,

2006; Casalino et al., 2003). These changes of course have parallels in other industries, which

also feature increasingly interrelated and complex production.

The remainder of this paper is organized as follows: Section 2 describes the institutional

setting and data. Section 3 discusses a conceptual framework to consider EOS effects. Section

4 investigates physician acceptance of new patients. Section 5 reports EOS effects for patients

who are accepted and considers evidence for patient selection and physician fatigue. Section 6

considers the relationship between shift overlap, workload, and patient-care distortion. Section

7 presents simulations of counterfactual regimes of patient assignment. Section 8 discusses

additional points of interpretation, and Section 9 concludes.

2 Institutional Setting and Data

2.1 Shift Work

I study a large, academic, tertiary-care ED with a high frequency of patient visits. Like in

virtually all other EDs around the country, work is organized by shifts. In the study sample

from June 2005 to December 2012, shifts range from seven to twelve hours in length (`). Shifts

also differ in overlap with a previous shift (o) or with a subsequent shift (o) in the same location.

I observe 23,990 shifts in 35 different shift types summarized by 〈`, o, o〉 (Table A-5.2).

For physicians working in these shifts, the end of shift (EOS) is simply the time after which

they are allowed to go home if they have completed their work. Because I focus on behavior

at EOS, I pay special attention to o. This overlap is the time prior to EOS during which a

physician shares new work with another physician who has begun work in the same location.7

“Location” refers to a set of beds in the ED in which a physician may treat patients. This

managerial definition may differ from broader physical areas, or “pods,” where physicians may

see each other but may not share the same beds. That is, a pod may contain more than one

managerial location. During my sample period, I observe two to three pods, with a new pod

7I distinguish between shifts that end with the closure of a patient location, or “terminal shifts” with o = 0,
and those continuing patient care with another shift in the same location, or “transitioned shifts” with o > 0.
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opening in May 2011, that at various times were divided into two to five managerial locations.

In the study period, the ED underwent 15 different shift schedule changes at the location-

week level. Within each regime, the pattern of shifts could differ across day of the week. As

is common in scheduled work, shift times were designed around estimated workload needs, and

schedule changes reflected changes in the flow of patients to ED. Some shift regime changes were

merely minor tweaks in the times of specific shifts, while others involved larger changes.8 All

regime changes, however, can be summarized as a set of shifts, each described by a shift type

〈`, o, o〉, a starting day and time, location, and range of months that the shift was in effect (see

Figure A-5.1; Table A-1 details these shift descriptions).

Shifts are scheduled many months in advance, and physicians are expected to work in all

types of shifts at all times and locations. Physicians may only request rare specific shifts off,

such as holidays and vacation days, and shift trades are rare. During a shift, physicians cannot

control the volume of patients arriving to the ED or the patient types that the triage nurse

assigns to beds. Throughout the entire study period, physicians were exposed to the same

financial incentives: They were paid a clinical salary based on the number of shifts they work

with a 10% productivity bonus based on clinical productivity (measured by Relative Value Units,

or RVUs, per hour) and modified by research, teaching, and administrative metrics.9 Although

their salaries are based on numbers of shifts worked, physicians are not compensated for time

worked past EOS.10

2.2 Patient Care

After arrival at the ED, patients are assigned to a bed by a triage nurse. This assignment

determines the managerial location for the patient and therefore the one or more physicians

who may assume care for the patient. Once the patient arrives in a bed, a physician may sign

8In particular, the regime change in May 2011 included the introduction of a new pod to increase the number
of available beds to meet increasing ED volume.

9The metric of Relative Value Units (RVUs) per hour is a financial incentive that encourages physicians to
work faster, because RVUs are mostly increased on the extensive margin by seeing more patients and are rarely
increased by doing more for the same patients.

10This is the standard financial arrangement for salaried physicians across the US. Specifically, physicians
are exempt from overtime pay as per the Fair Labor Standards Act of 1938 (FLSA). A large number of
worker categories are exempt from overtime pay, including most positions with a high degree of discretion (see
http://www.dol.gov/elaws/esa/flsa/screen75.asp).
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up for that patient on the computer order entry system. Physicians are expected to complete

work on any patient for whom they have assumed care, in order to reduce information loss with

hand-offs (e.g., Apker et al., 2007), except in uncommon cases where the patient is expected to

stay much longer in the ED. Because of this, physicians report often staying two to three hours

past EOS.11 For patients arriving near EOS, physicians may opt not to start work and leave the

patient for another physician. This option is more acceptable if this physician peer will arrive

soon or has already arrived in the same location.

In addition to the attending physician (or simply “physician”), patient care is also provided

by resident physicians or physician assistants and by nurses (not to be confused with the triage

nurse). These other providers also work in shifts. Generally shifts of different team members

do not end at the same time as each other, except when a location closes. More importantly,

unlike physicians, care by nurses, residents, and physician assistants is more readily transferred

between providers in the same role when they end their respective shifts, perhaps reflecting the

lesser importance of their information in decision-making. For example, only physicians have

the formal authority to make patient discharge decisions.

For physicians in the ED, the concept of patient discharge is a matter of discretion. Patient

care is usually expected to continue after discharge, in either outpatient or inpatient settings.

The key criterion for completion of work – or discharge – is whether the physician believes that

sufficient information has been gathered for a discharge decision out of the ED. This decision

is often made with incomplete diagnosis and treatment. Rather, the physician may decide to

discharge a patient home with outpatient follow-up after “ruling out” serious medical conditions,

or the physician may admit the patient for inpatient care if the patient could still possibly have

a serious condition that would make discharge home unsafe.12

Physicians may gather the information they need to make the discharge decision in several

ways. Formal diagnostic tests are an obvious way to gain more information on a patient’s clinical

condition. Treatment can also inform possible diagnoses by patient response, such as response

11In shifts with greater overlap, which have become more common, physicians report staying shorter amounts
of time, but still up to one hour past EOS. Quantitative evidence using physician orders and patient discharge
times is presented in Figure A-5.2 with a brief discussion in Appendix A-5.

12In this ED, there is yet a third discharge destination to “ED observation,” if the patient meets certain criteria
that make discharge either home or to inpatient unclear and justify watching the patient in the ED for a substantial
period of time (usually overnight) to watch clinical progress.
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to bronchodilators for suspected asthma. But time – for a careful history and physical, serial

monitoring, or a well-planned sequence of formal tests and treatment – remains an important

input in the production of information. Diagnostic tests and treatments can be complements

or substitutes for time: Formal tests (e.g., CT and MRI scans) take time to complete and can

thus prolong the length of stay, but testing can also substitute for a careful questioning or serial

monitoring to gather information more rapidly.

2.3 Observations and Outcomes

From June 2005 to December 2012, I observe 442,244 raw patient visits to the ED. I com-

bine visit data with detailed timestamped data on physician orders, patient bed locations, and

physician schedules to yield a working sample of 372,224 observations. Details of the sample

definition process are described in Table A-5.1. In the sample, I observe the identities of 102

physicians, 1,146 residents and physician assistants, and 393 nurses.

Table A-5.2 summarizes the number of observations for each shift type, in terms of hours,

potential patients who arrive during a time when a shift of that type is in progress, and actual

patients who are seen by a physician working in a shift of that type. Because I focus on behavior

near EOS, I also present in Figure 1 key variation across the 23,990 shifts in the time of day for

EOS, shift length, and the overlap with another shift at EOS.

ED length of stay not only captures an important input of time in patient care but also

largely determines when a physician can leave work. I measure length of stay from the arrival at

the pod to entry of the discharge order. The timing of the discharge order, as opposed to actual

discharge, is relatively unaffected by downstream events (e.g., inpatient bed availability, patient

home transportation, or post-ED clinical care). I also use timestamped orders as measures

of utilization and to create intervals of time within length of stay that are likely to be rough

substitutes or complements with formal utilization, which I discuss further in Section A-2.

Since the primary product of ED care is the physician’s discharge decision, I focus on the

decision to admit a patient as a key outcome measure, which has has also received attention as

a source of rising system costs (Schuur and Venkatesh, 2012; Forster et al., 2003). I accordingly

measure total direct costs, including costs incurred both by formal utilization in the ED and
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during a subsequent admission.13 Finally, I measure thirty-day mortality, occurring in 2% of

the sample visits, and return visits to the ED within 14 days (“bounce-backs”), occurring in 7%

of the sample (Lerman and Kobernick, 1987). However, these latter outcomes are less strongly

influenced by the ED physician and depend on a host of factors outside the ED and hospital

system, reducing the precision of their estimated effects.

2.4 Patient Observable Characteristics

When patients arrive at the ED, they are evaluated by a triage nurse and assigned an

Emergency Severity Index (ESI), which ranges from 1 to 5, with lower numbers indicating a

more severe or urgent case (Tanabe et al., 2004). When the patient is assigned a bed, this

information is communicated via a computer interface, together with the patient’s last name,

age, sex, and “chief complaint” (a phrase that describes why the patient arrived at the ED). I

observe all this information displayed to physicians prior to patient acceptance.

In addition, I observe patient characteristics that are usually known (if ever) by physicians

only after patient acceptance – insurance status, language, race, zip code of residence, and rich

diagnostic information – since physicians do not interact with patients or examine their charts

prior to accepting them. I codify the diagnostic information into 30 Elixhauser indicators based

on diagnostic ICD-9 codes for comorbidities (e.g., renal disease, cardiac arrhythmias) that have

been validated for predicting clinical outcomes using administrative data (Elixhauser et al.,

1998). Diagnostic codes of course are also partly determined by patient care.

2.5 Descriptive Evidence

Figure 2 shows a plot of the distribution of visits over arrival time prior to EOS and length

of stay. Panel A shows the raw patient visit count in each fifteen-minute bin of arrival time

interacted with each fifteen-minute bin of length of stay. Some findings are apparent from these

visit plots. First, few patients are seen within the last two hours prior to EOS.14 Second, lengths

of stay are shorter for patients who arrive and are accepted by a physician closer to EOS than for

13Direct costs are for services that physicians control and are directly related to patient care. Indirect costs
include administrative costs (e.g., paying non-clinical staff, rent, depreciation, and overhead).

14Although relatively few patients are also seen arriving greater than nine hours prior to EOS, this fact reflects
that relatively few shifts are greater than nine hours in length.

8



patients farther from EOS. There also appears to be an additional density of visits just prior to

the 45-degree line mapping when length of stay roughly equals the time prior to EOS, implying

that patients are more likely to be discharged just prior to EOS than at times before or after.

In order to examine more closely the discharge of patients conditional on acceptance, I plot

in Panel B of Figure 2 the density of length of stay conditional on arrival time (and acceptance)

prior to EOS. This plot shows a greater density of early discharges with arrival times closer to

EOS. As in Panel A, for visits with arrival times between two to seven hours prior to EOS,

there appears to be a linear mass of discharges along the 45-degree line in which discharges are

roughly just prior to EOS.

3 Conceptual Framework

I introduce a simple model to consider how physician decisions – accepting patients and

choosing inputs to care – may be distorted under work schedules. While the model is tailored

to ED physicians, the key distortionary elements of the model are the following: (1) Workers

have private information about their tasks; (2) workers care less about the social consequences

of their actions, relative to their own income and leisure; and (3) ex post worker-task specificity

prevents workers from simply passing off tasks at EOS (Briscoe, 2007; Goldin, 2014).

3.1 Model Setup

Consider a physician in a shiftwork arrangement: She has a contract to arrive at shift

beginning t and stay until EOS t or whenever she discharges her last patient, whichever is later,

and she will receive a lump-sum payment y for this. Now consider a patient arriving at time

t < t. The relevant welfare parameters of her work environment is captured by Et ≡ (Wt,W ′t),

where Wt ≡ (t, wt) includes the start time of the physician’s shift, t, and her current workload,

wt, andW ′t ≡ (t′, w′t) describes similar information for a potential peer in the subsequent shift in

the same managerial location. The patient’s underlying health state, θ ∈ {0, 1}, is unobservable,

but Pr {θ = 1} = p is publicly known. The physician takes the following actions:
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1. Given t, Et, and p, the physician decides on a ∈ {0, 1}, whether to accept the patient

(a = 1) or not (a = 0).

2. If she accepts the patient, she observes private information I so that Pr {θ = 1|I} = p′,

and |p′ − θ| < |p− θ|.15 She decides on inputs z in patient care: time τ and formal tests

and treatments z.

3. The physician observes θ with probability q (z) ∈ (0, 1) and decides on d ∈ {0, 1} , to admit

(d = 1) or discharge home the patient (d = 0).

4. The patient’s health state θ is observed, and the physician receives the following utility:

u (t, Et; θ; a, z, d) =


y + λO (θ; Et) , a = 0

y − c̃τ (τ) + λ (V (θ, d)− c (z)) , a = 1

. (1)

Utility is stated in dollar terms, where physician income y does not depend on her actions.16

O (θ; Et) is the value of the “outside option” if a = 0, which depends on θ and the work

environment Et. V (θ, d) is the value of making the right discharge decision. c (z) is the

cost of patient care inputs, from which I separate c̃τ (τ), the cost of foregone leisure if

the physician stays past EOS. λ ∈ (0, 1), and 1 − λ is the wedge by which the physician

undervalues the mission of patient care.

To be clear about the wedge, first consider the social welfare function as equivalent to Equation

(1), except without λ (i.e., λ = 1). As λ → 1, physician utility approaches social welfare,

and the agency problem disappears. As λ → 0, utility approaches the standard labor supply

model in which workers only care about consumption and leisure. If λ = 0 (which I rule out),

the physician would have no incentive to make the right decisions (despite observing I and

sometimes θ).

15I rule out private information before patient acceptance in this model. This is generally consistent with the
institutional setting, and I examine selection empirically in Section 5.2.

16In scheduled work y for the most part depends ex ante availability, not ex post time past EOS. This model can
accommodate some rewards correlated with staying past EOS (e.g., financial incentives for seeing more patients,
social recognition); all that it requires is that physicians are relatively uncompensated for leisure.
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3.2 Patient Care

I first examine EOS effects on the inputs to patient care and the discharge decision, assuming

that the physician has chosen to accept the new patient (a = 1). Discharge decisions have

important efficiency implications for resource utilization and patient health. Formally, patients

with θ = 0 should be discharged home, while those with θ = 1 should be admitted: V (0, 0) >

V (0, 1) and V (1, 1) > V (1, 0). Discharging a sick patient home is particularly harmful, or

equivalently, physicians are risk-averse: V (1, 1)− V (1, 0) > V (0, 0)− V (0, 1). Because of this

last fact, if θ remains unobserved, the physician will admit if and only if p′ > p∗, where p∗ < 1
2 .17

Patient care increases the probability q of observing θ and therefore appropriate discharges.18

This probability is increased by formal diagnostic tests and treatment, z, and by clinical obser-

vation and reasoning over time, τ . q is increasing and concave with respect to τ and z. τ and z

may be net substitutes (∂2q/ (∂τ∂z) < 0) or net complements (∂2q/ (∂τ∂z) > 0) in production.

Effective time per patient is reduced with higher workload wt: ∂
2q/ (∂τ∂wt) < 0. This contrasts

with formal inputs, for which I make the normalizing assumption ∂2q/ (∂z∂wt) = 0.19 Costs

in c (z) and c̃τ (τ) are positive, continuous, increasing, and convex in their arguments. Define

c̃τ = 0 for τ + t− t ≤ 0. For simplicity, assume additive separability of each element of z in c (z).

Proposition 1. Denote decisions in Section 3.1 that maximize expected utility in Equation (1),

conditional on patient acceptance (a = 1), as τ∗, z∗, and d∗. Denote corresponding decisions

that maximize welfare as τFB, zFB, and dFB.

(a) As t→ t, τ∗ weakly decreases, z∗ may weakly increase (if τ and z are net substitutes) or

decrease (if τ and z are net complements), and E [d∗] weakly increases as long as Fp′ (p
∗) < 1

2 .

(b) For all t, τ∗ < τFB, and E [d∗] < E
[
dFB

]
.

(c) If τ and z are net substitutes, then z∗ > zFB, and z∗ − zFB weakly increases in wt,

17This can be straightforwardly shown by noting that E [V |d = 0, p′ = p∗] = E [V |d = 1, p′ = p∗].
18I abstract away from treatment within the ED that can improve the patient’s health. This can easily be

incorporated into the model and would not change qualitative results, except that if z∗ is increasing in p, then
physicians will be less likely to accept ex ante sicker patients.

19The intuition behind this is that with more patients, a physician has to divide her time and attention between
them, but formal utilization can be ordered with the click of a mouse. Any additional time implications (e.g.,
time for initial evalaution or to review CT scans) would be incorporated in τ . By the normalizing assumption, I
focus attention on substitutability or complementarity between time and formal utilization.
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holding t constant and for all t. The reverse is true if τ and z are net complements dominates.

As the physician nears EOS, she will shorten length of stay τ . The intensity of diagnostic

tests and treatments may increase or decrease, depending on whether τ and z are net substitutes

or complements, respectively. Finally, she observes θ with lower probability q. This increases

admissions, as long as Fp′ (p
∗) < 1

2 , where Fp′ (·) is the c.d.f. of p′ conditional on p and a∗ = 1

(i.e., as long as θ = 1 with sufficient probability). These distortions increase with workload wt,

which further increases the cost of time by reducing the effective time per patient to produce q.

3.3 Patient Assignment

I next consider the physician’s upstream decision to accept the new patient, a ∈ {0, 1}. The

physician compares the outside option under a = 0, including whether the patient is likely to

wait for care, and expected utility under a = 1,

E [u (t, Et; θ; 1, z∗, d∗)] = y + max
z

{
λ

(
E

[
max
d
V (θ, d)

]
− c (z)

)
− c̃τ (τ)

}
,

where

E

[
max
d
V (θ, d)

]
=


E [V (θ, 0)] + pq (V (1, 1)− V (1, 0)) , p < p∗

E [V (θ, 1)] + (1− p) q (V (0, 0)− V (0, 1)) , p ≥ p∗
.

Denote O∗ as the threshold rules such that accepting the patient maximizes expected utility

(a∗ = 1) if and only if E [O (θ; Et)] > O∗. It is easy to see thatO∗ = W (z∗, d∗)−
(
λ−1 − 1

)
c̃τ (τ∗),

where W (z, d) ≡ E [V (θ, d)] − c (z) − c̃τ (τ) . The corresponding first-best threshold that de-

termines the first-best acceptance aFB is OFB = W
(
zFB, dFB

)
, when optimal z and d can be

implemented. Finally, consider the second-best assignment policy, in which the patient may be

assigned as a policy, aSB ∈ {0, 1}, but the physician controls z and d. In this policy, aSB = 1 if

and only E [O (θ; Et)] > OSB = W (z∗, d∗).
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Proposition 2. Consider a∗ as the patient acceptance decision in Section 3.1 that maximizes

expected utility in Equation (1), aFB as the assignment that maximizes expected welfare when op-

timal z and d are publicly known and contractible, and aSB as the assignment that maximizes ex-

pected welfare when optimal z and d are either publicly unknown or non-contractible. Assignment

will follow threshold rules in which assignment occurs if and only if E [O (θ; Et)] is greater than

a threshold. The respective threshold rules are O∗, OFB, and OSB, where O∗ < OSB < OFB.

OFB −OSB and OSB −O∗ increase as t→ t decreases or as λ decreases.

There are first-best reasons for assignment to decrease near EOS. As t → t, the outside

option O (θ; Et) increases because a peer is more likely to be arriving soon or already present,

and W (z, d), holding z and d fixed, may also decrease due to fatigue and the possibility of

foregone leisure.20 However, beyond this decrease, patient acceptance a∗ will be inefficiently low

near EOS (O∗ < OFB). The second-best policy, in which physicians continue to choose z∗ and d,

will assign patients at a threshold OSB in between O∗ and OFB. The relative distance between

these policy thresholds will depend on the curvature of W (i.e.,
∣∣d2W/dτ2

∣∣): If W is not very

curved, then patient-care distortions, W
(
zFB, dFB

)
−W (z∗, d∗), will be greater relative to the

misvaluation of leisure,
(
λ−1 − 1

)
c̃τ (τ∗). Thus, OSB will be closer to O∗ than to OFB.

3.4 Remarks

The inefficiency in the model is fundamentally informational. First, physicians observe pri-

vate information p′, so management does not know zFB and dFB. Second, they are imperfect

agents, overvaluing consumption and leisure relative to patient care. The canonical way to im-

plement first-best would be to pay physicians an hourly overtime wage, in this case (1− λ) c̃′τ .21

However, this is impractical due to uncertainty and complexity, discussed in Weitzman (1974),

20Another version of the patient acceptance question is patient selection (i.e., how E [p| a∗ = 1] changes as
t → t). Selection will likely be towards healthier patients: For low p and as t → t, expected utility under a = 1
likely diminishes less quickly, and expected utility under a = 0 likely increases less quickly. I will examine this
empirically in Section 5.2.

21This is less than the full marginal cost of labor because of the “compensating differential” utility physicians
gain from treating patients.
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leading firms to specify schedules and assign work. In fact, prespecifying schedules and pay

removes patient-care distortion within the shift.22

Implicit in this model is a cost that precludes physicians from passing off patients to another

physician at EOS or at any other point before patient discharge. With no transfer cost, there

would be no EOS distortion. Part of this transfer cost represents a loss of information (e.g.,

reducing q (z)) (Briscoe, 2006, 2007; Goldin, 2014), whereas another part may be due to social

distortions (e.g., the desire not give peers work). Patients are rarely transferred in this institu-

tional setting, and I do not observe the exact time of pass-off for the few who are transferred.

However, in Section 7, I will empirically assess lower bounds to transfer costs given observed

increases in resource-utilization costs.

In this informational environment, work assignment is a natural policy lever, since assignment

is easy to observe and influence. Physicians may be assigned too little work to justify the value of

their time. However, assigning more work worsens distortions in patient-care decisions, z and d,

both by assigning patients to physicians under time pressure, and via the dynamic of increasing

workload and therefore reducing effective time per patient.23 In Section 6.2, I empirically focus

on shift overlap o ≡ t− t′ as one mechanism that influences a∗t through changing O (θ; Et). More

broadly, at may be implemented by a variety of managerial instruments, such as piece-rate pay,

social norms, or formal assignment policies. Therefore, while I model at as a physician choice

here, in Section 7, I more generally consider it as a sufficient-statistic policy instrument.

4 Patient Assignment

In this section, I describe patient assignment near EOS. As in Proposition 2, it is natural

that physicians will be less likely to accept patients as EOS nears, because time for patient

care is more costly. Patient assignment to physicians can also be influenced by assignment to

locations (particularly in location-times with only one physician). The simple analysis in this

22This is possible as long as physicians can be guaranteed to leave by EOS, which can be mostly implemented
by avoiding new work near EOS, rather than discharging patients earlier within the shift.

23I have not explicitly modeled this dynamic. This may be formally considered in an expanded dynamic model
with two patients arriving at different times, t and t+1, and respective decisions (at, zt, dt) and (at+1, zt+1, dt+1) .
Increasing at increases wt+1 and thus, from Proposition 1, reduces welfare by worsening distortions in z∗t+1 and
d∗t+1.
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section presents unadjusted average rate of patient assignment to a physician nearing EOS across

a variety of shift types. In particular, I will verify that greater overlap o allows physicians to

decline patients earlier relative to EOS.

Figure 3 presents the hourly average rates of new patient visits, with each panel representing

shifts with a different o, for the index physician (patients accepted), for the location inclusive

of the index physician (patients assigned by the triage nurse), and for the entire ED (patients

arriving at the ED). Regardless of the shift type, physicians generally accept between two to

three new patients per hour at most, and rates of acceptance are highest near the beginning of

shift. Thereafter, in transitioned shifts with o > 0, the average rates of patient flow show two

consistent relationships with time. First, patient flow declines precipitously in the hour prior to

the transitioning peer’s arrival at the location. Second, patient flow declines close to zero in the

two to three hours prior to EOS. If there is sufficient o, patient flow is relatively constant but

diminished in that duration. In terminal shifts, where o = 0, the decline in patient flow begins

earlier, at least four hours prior to EOS.

Also in Figure 3, patients who are not accepted by the index physician may wait up to

an hour to be seen by a peer yet to arrive, but patient flow to transitioning peers generally

at least makes up for the decline in flow for the index physician. That is, despite declines in

patient acceptance, patients continue to arrive at the pod at similar or greater rates prior to the

peer’s transitioning shift. Finally, Figure 3 plots the flow of patients to the entire ED, showing

background patient flow to other pods that seems unrelated to flows to the index physician.

Naturally, overall ED flow appears more stable when averaged across greater shift observations

and variation across times of the day (see Figure 1, e.g., o = 1 and o = 6).

These relationships are remarkably consistent, over different o, despite being presented as

unadjusted averages. It is intuitive that physicians would decrease their acceptance of new

patients as they approach EOS, since the cost of seeing new patients increases with proximity

to EOS. The cost is both in the time cost to the physician ending her shift and also in terms of

the resulting distortion in patient care.

The earlier arrival of peers allows for earlier reductions in patient assignment relative to

EOS. This includes reductions prior to peer arrival, especially in shifts with shorter transitions,
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suggesting anticipatory behavior. For terminal shifts with no peer arriving in the same location,

remarkably, the long decline in patient flow rates is implemented by the triage nurse assigning

fewer patients to the physician nearing EOS. Thus, “slacking off” is achieved between coworkers

sharing a location and, in cases without coworkers, by managerial assignment itself.

5 Effect on Patient Care

5.1 Main EOS Effects

My main analysis addresses the following: What is the effect of a patient’s arrival near a

physician’s EOS on that patient’s care by that physician? Although I address patient selection

more directly later, I first control for a rich set of patient characteristics. I use variation within

the same health care providers working at different times and locations to control for fixed

provider unobservables. Using shift variation within locations and within times, I control for

unobservables (e.g., patient characteristics and ED resources) that vary by location and time

categories, such as time of the day or day of the week. I finally use variation in shift lengths to

control for fatigue, which I consider due to time relative to the beginning of shifts.24

In the full specification, I estimate the following equation:

Yijkpt =
−1∑

m=−6

αm1
(⌊
t− t (j, t)

⌋
= m

)
+
∑
m

γm1 (bt− t (j, t)c = m) + (2)

X′itβ + T′tη + ζp + νjk + εijkpt,

where outcome Yijkpt is indexed for patient i, physician j (in shift from t (j, t) to t (j, t)), assisting

team k (including the resident or physician assistant, and the nurse), pod p, and arrival time t.

The coefficients of interest in Equation (2) are {αm}, or the effect of arrival m hours (rounded

down to the nearest negative integer) prior to EOS. I control for time relative to the shift

beginning (t − t (j, t)), patient characteristics Xit, time categories Tt (for month-year, day of

the week, and hour of the day), pod identities ζp, and physician-team identities νjk.

Table 1 shows results for log length of stay, estimating coefficients {αm} for time prior to

24In alternative models, I also control for cubic splines of total number of patients seen prior to the index
patient’s arrival. Results (not shown) are essentially identical with these additional controls.
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EOS, from versions of Equation (2) with varying sets of controls. All models estimate highly

significant and negative coefficients for approaching time to EOS, with visits seven or more

hours prior to EOS being the reference category. The reduction in length of stay grows larger

in magnitude as time approaches EOS. By the last hour prior to EOS, versions of Equation (2)

estimate effects on log length of stay ranging from −0.53 to −0.72. The full model, shown in

the last column of Table 1 and plotted in Panel A of Figure 4, estimates an effect on log length

of stay of −0.59 in the last hour and serves as the baseline model for this paper.

The difference in estimates between the first and second columns in Table 1 reflects the

change in the estimated effect due to including a rich set of patient characteristics, which is

about 0.06 on log length of stay in the last hour prior to EOS. I explore selection more directly

below. The difference between the fourth and last columns represents the effect of time relative

to shift beginning, which can include fatigue and is separately identified from EOS effects due

to variation in shift lengths. This difference, about 0.13 in the last hour prior to EOS, also

accounts for only a minor portion of the overall effect.25

Table 2 shows results for other outcome measures, including the order count, inpatient

admission, log total cost, 30-day mortality, and 14-day bounce-backs. Estimates for αm are

generally insignificant for hours before the last hour prior to EOS, but are significantly positive

in the last hour. Patients arriving and accepted in the last hour prior to EOS have 1.4 additional

orders for formal tests and treatment, from a sample mean of 13.5 orders.26 These patients are

also 5.7 percentage points more likely to be admitted, which is 21% relatively higher than the

sample mean of 27%. Log total costs are 0.21 greater in the last hour prior to EOS. Mortality and

bounce-backs do not exhibit a significant effect with respect to EOS, although these outcomes

are either rare (mortality) or imprecisely predicted (bounce-backs). I plot coefficients for orders,

admissions, and total costs in Panels B to D of Figure 4.

5.2 Patient Selection

Physicians may accept or be assigned healthier patients as they approach EOS. However,

25See Appendix A-1 for more direct results on effects relative to shift beginning.
26This suggests that formal orders are a net substitute for time. See Appendix A-2 for more direct results

supporting this hypothesis.
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there are reasons why selection, especially on unobservables, is likely to be limited. Physicians

have little scope for selecting patients by characteristics unobservable in the data because norms

discourage them from looking behind curtains before choosing patients and thus usually only

observe a patient’s key descriptors on the computer interface prior to this decision. Furthermore,

there are no formal policies (which can be gamed) against engaging in selection, but there are

strong norms against such behavior between physicians in the same pod, who likely observe the

same information prior to acceptance. Finally, reducing the acceptance rate near EOS is an

explicitly tolerated policy, shown in all types of shifts (Section 4). In this section, I empirically

assess the extent of selection with four sets of evidence.

First, I summarize observable characteristics of accepted patients by arrival time relative to

EOS. In Figures A-3.1 to A-3.5 (details in Appendix A-3.1), mean observable characteristics,

such as age, ESI, race, and language, are stable and only slightly trending towards healthier

patients as arrival time of the accepted patients nears EOS. Observable EOS selection appears

slightly stronger in terminal shifts, in which all selection is due to triage nurse assignment, than

in shifts with overlap when physicians choose patients vis-a-vis a peer. Quantiles are also highly

stable and show no change in the (large) variation of patients characteristics with arrival time

relative to EOS (Figures A-3.6 and A-3.7).

Second, in Appendix A-3.2, I make use of patient characteristics generally unobservable at

the time of patient acceptance, such as ex post diagnoses or insurance status, in a regression

framework to quantify the degree of selection on unobservables. Using characteristics that

are generally observed before acceptance (Xprior
it ) and the full set that includes characteristics

generally only observed after acceptance (Xfull
it ), I form two predicted outcomes, Ŷ prior

ijkpt and

Ŷ full
ijkpt, respectively. I regress these predicted outcomes on arrival time prior to EOS as a method

to quantify the degree of selection on observables and the incremental degree of selection on

unobservables for each outcome. I find relatively small selection on observables in the direction

that predicts shorter lengths of stay near EOS (5.4% shorter in the last hour), but lower orders,

admissions, and costs, the opposite of what I find for these latter outcomes. More importantly,

incremental selection on unobservables is essentially nonexistent.

Third, in Appendix A-3.3, I undertake an analysis, based on Altonji et al. (2005), to compute
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the degree of selection on patient unobservables relative to selection on observables that would

be required to explain my length of stay results. This approach considers, for patients arriving

at each hour prior to EOS, the explanatory power of observables in determining whether these

patients are accepted and the explanatory power of observables in determining length of stay.

I find that selection on patient unobservables must be 475 times greater than selection on

observables in order to explain the entire effect on length of stay for patients arriving in the last

hour prior to EOS.

Fourth, in Appendix A-3.4, similar to an approach taken by Chetty et al. (2014), I only use

variation in the overall set of shifts in progress at a given hour for the entire ED. Averaging

patients within hour of arrival eliminates the potential bias due to unobserved selection across

physicians. I therefore compare predictions based on estimated EOS effects with actual residual

log length of stay, averaging both over patients within each hour, in order to estimate bias due

to selection across physicians within hour. In Panel A of Figure 6, the ED shift environment

predicts average actual length of stay, with no evidence of bias: The relationship between the

shift-environment prediction and actual log length of stay is linear with a slope of 1.029 (t-value

of 17.16). In contrast, in Panels B and C, the ED shift environment is unrelated to length

of stay predicted by Xprior
it or Xfull

it , suggesting that the arrival times of patients differing by

(observable) types are not correlated with the ED shift environment.

6 Shift Overlap, Workload, and Distortion

I evaluate how workload and patient-care effects vary across shifts with varying overlap

near EOS, for two purposes: First, this supports the interpretation that EOS effects reflect

inefficiency, under the identifying assumption that the EOS by itself has no first-best implications

for patient care, conditional on volume of work, time since beginning work, and time since a

peer’s arrival. Formal overlap (i.e., time between peer arrival and EOS) only changes when

a physician is allowed to leave work. Second, this analysis uses shift structure as a concrete

example of patient assignment as a policy lever. Through patient assignment, a planner can

influence the efficiency of patient care: Assigning fewer patients to physicians on schedules may

underutilize the value of their time, but assigning more patients worsens the EOS distortion in
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the use of time as an input to care.

6.1 Patient Censuses over Time

As a descriptive exercise, I first measure workload wjt as the number of patients cared for

by physician j (her “census”) at time t:

wjt =
∑

J(i,t′)=j

1
(
t ≥ t′

)
1
(
t ≤ t′ + τ

(
i, t′
))
, (3)

the patients accepted at t′ ≤ t and had length of stay τ (i, t′) such that t ≤ t′ + τ (i, t′), where

J (i, t′) is a function assigning patient i arriving at t′ to a physician.

Figure A-5.3 shows unadjusted census averages in 30-minute intervals in different shift types

by o. On average, censuses start at around two patients at the beginning of all shift types,

representing unstaffed patients from the previous shift, except for shift types with o = 2, which

happen not to transition from another shift. Patients remain on the census at EOS. The number

of patients remaining on census in the last 30 minutes prior to EOS is consistently close to four,

with the exception of shifts with o = 1, which have censuses of about six.

Because of client-worker specificity, physicians must usually either reduce censuses to close to

zero or at least have a well-defined pass-off plan to instruct another physician.27 With smaller o,

physicians are allowed to go home (at EOS) at an earlier point relative to peer arrival. Holding

constant time from beginning of shift and time from peer arrival, smaller o thus induces a greater

scope for distortionary care near EOS.

6.2 EOS Effects by Shift Overlap

I then consider how patient-care EOS effects may differ by shift overlap. Larger patient-care

effects with small o, conditional on time from beginning of shift, are consistent with distortionary

care. Further, the interaction provides evidence of the intuitive tradeoff between extensive and

intensive margins of distortion: If physicians have more time to slack off before EOS, workload

27As described in Section 2.2, physicians report that they therefore generally stay at least an hour after EOS.
This is also supported by the timing of physician orders relative to EOS, shown in Figure A-5.2. Also, while
physicians have an average of four patients at EOS in shifts with o = 0, these patients are much harder to transfer
than in transitioned shifts.
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near EOS will be lower, and patient-care distortions will be smaller.

I consider three categories of overlap at EOS – terminal shifts (o = 0), minimally transitioned

shifts (o = 1), and substantially transitioned shifts (o ≥ 2)28 – and estimate

Yijkpt =
−1∑

m=−6

∑
O

αms1
(⌊
ti − t (j, t)

⌋
= m

)
1
(
o (j, t) ∈ O

)
+ (4)

∑
m

γm1 (bt− t (j, t)c = m) + X′itβ + T′tη + ζp + νjk + εijkpt,

similar to Equation (2) but interacting the hourly EOS effects by overlap o (j, t) in categories

O. I normalize coefficients so that, as before, the reference category includes times seven hours

or greater prior to EOS in each of the overlap categories.

Figure 7 shows EOS effects, across the three categories of shift types, for length of stay,

orders, admission, and total costs. The EOS effect on length of stay is largely similar among

shift categories (Panel A). All three shift categories show a substantial decline in length of stay

as EOS approaches. However, EOS effects are notably absent in shifts with o ≥ 2 for orders,

admission probability, and total costs (Panels B to D). In contrast, shifts with o ≤ 1 show large

increases in orders, admissions, and total costs at EOS.

6.3 Effective Time per Patient

The evidence above supports highlights a link between patient assignment, workload, and

patient care: Assigning physicians more patients near EOS increases workload and thus decreases

the effective time physicians spend on each patient’s care. In order to operationalize this concept,

I create a new outcome measure of workload-adjusted length of stay, which normalizes length of

stay by the physician’s average census during the stay. That is, for patient i accepted at time t,

I divide length of stay (τit) by the average census under physician J (i, t) during the i’s length

of stay (wit):

τit/wit = τit

[
1

τit

ˆ
t̃∈[t,t+τit]

wJ(i,t),t̃dt̃

]−1

, (5)

28While I observe shifts with o ∈ {2, 3}, they entail very few observations, as listed in Table A-5.2. Results
are essentially unchanged whether I omit these observations or consider them as belonging to the minimally
transitioned shift category.
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where census wjt is defined by Equation (3).

I then regress the log of workload-adjusted length of stay using Equation (2).29 As shown in

the last column of Table 2, time relative to EOS has little effect on workload-adjusted length of

stay until the last hour prior to EOS, when this measure decreases significantly. Thus, adjusting

length of stay for workload reconciles previous results in which length of stay progressively

decreases as EOS approaches, but orders, admissions, and costs increase only in the last hour.

At least in sample, distortions in patient care, including the use of time, appear to only become

significant in the last hour prior to EOS. Similarly, in Table 3, I consider effects on workload-

adjusted length of stay by shift overlap and find that it also decreases substantially only in the

last hour prior to EOS when o ≤ 1. In contrast, when o ≥ 2, workload-adjusted length of stay

does not decrease near EOS and, if anything, slightly increases prior to the last hour of shift.30

7 Counterfactual Assignment Policies

Despite important variation in patient assignment across shifts with different o, observed

assignment – either between physician peers or by the triage nurse – dramatically diminishes

near EOS in all shifts. In this section, I consider the assignment of work as a sufficient statistic

for a wide range of managerial policies (e.g., rules, financial incentives) including but not limited

to shift overlap. Using a model of patient assignment, discharges, workload, and cost, I assess

the efficiency implications of a fuller range of counterfactual assignment policies.

The intuition is that, while work assignment is easily observable and therefore a natural

managerial policy, the downstream effects on patient care – particularly the use of time – are

much more difficult to monitor or manage. I therefore allow physicians full discretion in how

they respond to counterfactual assignment policies, and I empirically calibrate their behavior

to match data observed over the range of shift overlap. To evaluate welfare, I consider overall

costs due to physician time, patient time, and hospital resources. While assigning more patients

29This is different than controlling for current census; results in Table 1 are unchanged when flexible splines of
current census are included in Equation (2). Instead, workload-adjusted length of stay solely captures future ac-
tions by the physician, including future censuses. Otherwise including future censuses as covariates in a regression
framework would be problematic.

30Such potential increases in workload-adjusted length of stay above baseline do not appear to be associated
with increases or decreases in other outcomes of orders, admissions, or costs. This could be consistent with
increases in length of stay for strategic purposes, or “foot-dragging,” as discussed in Chan (2015).
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to physicians near EOS mechanically reduces the number of physician-hours (i.e., the amount

of overlap) to process patient flow, it worsens other resource costs by increasing workload when

there is distortionary pressure to leave work.

7.1 Simulation Routine

To calibrate this model with the data, I estimate discrete-time functions for patient assign-

ment and discharge that crucially depend on time to EOS. Patient discharge follows a hazard

model D (t, σs, wjt, τ̂ist) that depends on time t, shift characteristics σs for shift s (i.e., shift type

〈`, o, o〉s and time of EOS t (s)), physician j’s workload wjt at t, and patient i’s predicted length

of stay τ̂ist (details are given in Appendix A-4, including model fit, shown in Figure A-5.4). As-

signment A (t, σs, wj,t−1) follows a zero-inflated Poisson process that similarly depends on time t,

shift characteristics σs, and workload wj,t−1 from the previous period. Although realized assign-

ment is stochastic, I take the ex ante assignment policy as under the control of a planner.31 The

patient-assignment function allows a convenient specification of counterfactual policies in which

assignment is modified only by how time to EOS is considered. For example, a counterfactual

assignment policy may assign more patients one hour prior to EOS by assigning as if the time

were three hours prior to EOS. Although patient assignment may be modified by policy, physi-

cians continue to discharge patients with their own discretion. The discharge decision reflects

not only how time is used but also, through the relationship between workload-adjusted length

of stay and costs, determines additional costs that derive from the EOS distortion.

Specifically, I parameterize counterfactual assignment policies

A∆ (t, σs, wj,t−1) ≡ A
(
t̆ (t, s,∆) , σs, wj,t−1

)
,

where the index ∆ represents a time shift in observed assignment patterns near EOS. Intuitively,

if ∆ < 0, assignments are “curtailed,” using t̆ > t in the assignment function, by at most |∆|

hours earlier before EOS. If ∆ > 0, assignments are “extended” by at most ∆ hours, using t̆ < t.

Equation (A-4.17) describing t̆ (t, s,∆) and other details are in Appendix A-4. Figure 8 shows

31Of course, an “assignment policy” could result endogenously from physicians responding to shift structure,
as in the conceptual framework (Section 3), but I do not model this intermediate step and simply assume that
any assignment policy can be implemented.
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example counterfactual policies, for ∆ ∈ {−4,−2, 2, 4}.

For each counterfactual policy ∆ ∈ [−4, 4], I simulate assignments and discharges using

functions A∆ (t, σs, wj,t−1) and D (t, σs, wjt, τ̃ist), respectively, where τ̃ist is a further prediction

of τ̂ist to simplify computation. In each simulation r = 1, . . . , 100 of each policy ∆, I calculate

total counterfactual costs,

Costsr∆ = PhysicianTimer∆ + PatientTimer∆ + HospitalResourcesr∆, (6)

which I take as a measure of welfare, under the conservative assumption that patient health is

unaffected despite EOS distortions in time, formal utilization, and admissions.32

PhysicianTimer∆ captures additional wages that the ED must pay in order to meet patient

flow. Physician-time costs may increase for two reasons. First, if fewer patients are scheduled

prior to EOS, a peer must arrive earlier because backlog occurs earlier. This is mechanically

related to assignment. Second, if more patients are assigned prior to EOS, the index physician

must stay later past EOS, and this foregone leisure is valuable. This is not only related to

assignment, but also to physician discharge responses to patient load and time relative to EOS.

To value physicians time, I use a base-case wage of $120/hour, which is close to actual wages in

this ED and national averages of hourly pay, although results are insensitive to wages several

multiples higher. I also value patient time, in PatientTimeCostsr∆, a $20/hour, so that shorter

lengths of stay are valuable from a patient-perspective, all else equal.

HospitalResourcesr∆ captures changes in formal utilization and admissions as physicians

spend less time on patients. Based on evidence in Section 6.2, I consider changes in these

costs as distortions. Specifically, in each simulation of an assignment policy, I measure decreases

in workload-adjusted length of stay near EOS and then simulate increases in per-patient costs,

using a calibrated cost elasticity of −1.15 in response to workload-adjusted length of stay.33 As

32In sample, recall that I find no effect on mortality or bounce-backs (Table 2), although this may not hold out
of sample. However, this should not matter for the optimal assignment if the optimal assignment policy occurs
close to the observed assignment regime, which I show below.

33The elasticity estimate is motivated by the fact that both observed total costs (Figure 4) and observed
workload-adjusted length of stay (Figure A-5.5) increase only in the last hour prior to EOS, in Section 6.2. In
simulated data, I calculate workload-adjusted length of stay decreases by 18.1% in the last hour of shift when
∆ = 0, an estimate very close to but more conservative than based on actual data in Table A-5.3. Since total
costs increase by 20.8% in the last hour prior to EOS, I calculate the elasticity as 20.8%/− 18.1% = −1.15. More
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more patients are assigned near EOS, resource costs are distorted upwards, on a per-patient

basis and applied to more patients. These costs are empirically based on total direct costs in

the hospital accounting data, which reflect the value of resources such as nursing time, tests,

treatment, and ED and hospital bed availability.

7.2 Results

Increasing assignment near EOS results in a large increase in resource-utilization costs, which

dominates any physician-time savings that may accrue from a later-arriving peer. For example,

an assignment policy that results in physicians staying an extra hour past EOS also induces them

to spend an extra $5,500 in resource-utilization costs per shift. Figure 9 shows average changes

in total costs per shift, stated in Equation (6), under counterfactual policies, where policies are

shown in terms of changes in the number of patients assigned.34 Both curtailing and extending

patient assignment increase overall costs relative to those under the actual assignment policy,

suggesting that the observed pattern of assignment is approximately second-best optimal. This

is true even under an extreme assumption of a $600 per hour physician wage.

Another way to use this simulation is to assess the implicit tradeoff physicians make between

foregoing leisure and increasing resource-utilization costs. At each point in time relative to

normal completion, I compute the dollar value of extra resource-utilization costs incurred per

leisure hour gained, shown in Figure 10 (details in Appendix A-4.4). As indicated earlier, the

actual assignment policy results in minimal patient-care distortions, reflecting a low “value” of

leisure (below the market wage of $120 per hour) prior to actual completion of work, even though

normal completion is reportedly two to three hours past EOS. This could reflect norms to stay

past EOS, which I discuss in the subsequent section. However, the value of leisure quickly rises

above market wage at 15 minutes past the normal time of completion. By one hour past this

time, physicians are willing to expend $990 in order to avoid an additional hour at work. Under

a strict interpretation of Equation (1), this implies λ = $120/$990 = 0.12.35

detail is given in Appendix A-4.3.
34Changes in costs with respect to changes in patients assigned is easier to understand than the policy index

∆, since ∆ is only maximum amount of change in time in the counterfactual assignment policy (i.e.,
∣∣t̆− t∣∣ ≤ ∆).

This can be appreciated in plots of curtailed assignment policies in Figure 8, in which ∆ = −2 is still very similar
to ∆ = 0.

35Recall that I do not estimate a single λ during calibration. Rather, the simulation exercise calibrates the
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Finally, this simulation may shed light on the cost of transferring patients to another physi-

cian. Without this transfer cost, there would be no EOS distortion. While transferring patients

is uncommon, and while I do not explicitly model patient transfers after EOS, one way to view

the transfer cost is that it must at least as large as the additional cost induced by assigning

patients near EOS.36 Otherwise, physicians could reduce costs by transferring the additional

patients. I therefore estimate lower bounds on per-patient transfer costs, in assignment regimes

where more patients are assigned, by dividing increases in hospital-resource costs by increases

in patients assigned. As shown in Figure 11, these bounds are significant, ranging from $220 to

$1250 per patient, or 25% to 140% of the base hospital-resource costs.37

8 Discussion

The main focus of this paper is to assess a simple but, to my knowledge, unexplored conse-

quence of work schedules: When work past scheduled availability is undercompensated, workers

will avoid new work, and the use of time for work will be distorted, possibly in costly ways.

While these effects are illustrated concretely in the setting of health care, there are several

general points of interpretation. I discuss some of these briefly here.

Presenteeism and Slacking Off. The terms “presenteeism” and “slacking off” have

become common in everyday usage. Some definitions of presenteeism describe workers “stay[ing]

beyond the time needed for effective performance on the job” (Simpson, 1998).38 Slacking off has

been described as tapering work, particularly in the context of shirking near the end of scheduled

work.39 Both of these concepts are related to the phenomenon described in this paper. Despite

physician discharge decision to many moments in the data, e.g., average censuses and lengths of stay during each
30-minute interval for each shift type (see Figure A-5.4). Given no (assumed) worsening of patient health, these
values of extra resource-utilization costs per leisure hour gained thus reveals λ at each point in time.

36This exercise thus states the transfer cost in terms of dollars of hospital resources. As mentioned in Section 3,
however, the transfer cost includes both patient-care concerns (denominated in hospital dollars) and social costs
of violating norms or giving peers extra work (denominated in income dollars).

37These lower-bound estimates are monotonic with increasing assignment, which could reflect that they are
not binding at lower assignment levels, or that it is more costly to transfer patients under greater time pressure.
Further, components such as peer image that would be inflated at λ−1, which also increases with time (Figure
10). However, an implicit assumption in these calculations is that physicians do not change their transfer policy
with greater workloads at EOS. I confirm this in sample, and my counterfactuals only extend work completion
by at most one hour, but this would be increasingly tenuous under greater workloads.

38Other definitions have described presenteeism as showing up to work while ill.
39See, for example, definitions in the McGraw-Hill Dictionary of American Idioms and the American Heritage

Dictionary of Phrasal Verbs.
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the negative connotation of these terms, I argue that informational frictions imply some slacking

off – potentially a significant amount – in second-best optimal assignment, which may explain

why the practice is not only prevalent but also tolerated. That is, allowing workers to go home

at an earlier time ex ante while holding work constant, or assigning more work to them while

they are present, could worsen distortions further.

Social and Behavioral Mechanisms of Distortion. It is standard to assume that

workers care about their own income and leisure more than the productive consequences of their

workplace actions. Therefore, a natural interpretation of distortions near EOS is that they arise

from strategic behavior, or moral hazard. However, other mechanisms could lead to the same

welfare-reducing distortions and would have equivalent implications on how availability should

be scheduled and worked assigned. For example, social norms may be that workers should not

stay too long after EOS (e.g., doing so would signal incompetence), so that moving EOS too

early without tapering work generates the same inefficient time pressure.40 Workers may take

schedules as a contractual “reference point” to be adhered to (Hart and Moore, 2008), and

there may even be accepted routines (e.g., sign-out rounds) that reinforce this sense. Finally,

although rational and forward-looking workers can always stay longer past EOS (and plan their

extra-work activities accordingly), workers in practice may underestimate the time it takes to

complete work, paying too much attention to when EOS is officially set.

Price and Budget Policies. It is reasonable to ask whether this inefficiency can be

mitigated by price or budget policies. For example, in the conceptual framework, a wage in

the form of overtime pay at (1− λ) c̃′τ per hour would exactly cancel out any distortionary

incentive near EOS. Similarly, one might speculate whether a global budget on spending for each

physician might restrain the incentive to overutilize formal resources and admit patients near

EOS. Under certainty and perfect information, prices (e.g., wages, or costs imposed on physicians

for utilization) and quantities (e.g., physician hours) are equivalent. However, under uncertainty,

control via quantities can be a superior when benefits are more concave than costs are convex,

which characterizes production within most organizations at least in the short term (Weitzman,

40A related distortion caused by social incentives is that ED physicians care more about their peers than
inpatient doctors they would be admitting their patients to. This is one (distortionary) source of client-worker
specificity.
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1974). Under asymmetric information and moral hazard, price or budget mechanisms are even

worse. For example, under a global budget, physicians have greater incentive to cherry-pick

healthier patients to stay within budget. If physicians already have the right incentives to care

for patients outside the scheduling distortion (i.e., V (θ, d) and c (z) are appropriately weighted),

then a global budget could distort care uniformly toward underprovision.

9 Conclusion

I examine ED physicians working in shifts and find evidence consistent with behavioral

distortions due to scheduled work: On an extensive margin, physicians are less likely to accept

new patients near EOS. On an intensive margin, physicians complete their work earlier as end

of shift (EOS) approaches. As the input of time becomes more costly, physicians modify the

mix of inputs in patient care, and as they produce less information for discharge decisions, they

are more likely to admit patients. This increases per-patient hospital costs by 21% in the last

hour prior to EOS.

The EOS phenomenon documented in this paper reflects a definitional issue of scheduled

work: Although scheduled availability begins and ends at set times, the true nature of work

usually blurs across these constructed boundaries. Further, ex post worker-task specificity is

often substantial in work that is information-rich. I show a tradeoff between extensive and

intensive margins of distortion. In fact, observed patterns of “presenteeism” or “slacking off”

may indeed be approximately second-best optimal. Key to this result is that physicians are

willing to spend increasingly large amounts of hospital dollars for each hour of their leisure time,

a finding that sheds light on the tradeoff between intrinsic and extrinsic motivations. This is

relevant for a wide set of policy levers that act via assignment. Attempting to prevent workers

from sitting idly could be quite costly when used at the wrong time in scheduled work.
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Figure 1: Shift Variation
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Note: This figure illustrates the variation in observations across shift types. Panel A plots shifts by shift

ending time and shift length. Panel B plots shifts by shift ending time and the length of overlapping

transition at the end of shift.
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Figure 2: Density of Visits on Arrival Time and Length of Stay
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Note: This figure plots the distribution of visits over arrival times relative to EOS and length of stay.

Panel A plots visit counts within fifteen-minute intervals of arrival time and length of stay. Panel B plots

the density of visits, conditional on arrival time.
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Figure 3: Flow of Patient Visits over Time

0
2

4
6

8
10

Vi
sit

s 
pe

r h
ou

r

-9 -6 -3 0
Hours relative to EOS

0 Hour Overlap

0
2

4
6

8
10

Vi
sit

s 
pe

r h
ou

r

-9 -6 -3 0
Hours relative to EOS

1 Hour Overlap
0

2
4

6
8

10
Vi

sit
s 

pe
r h

ou
r

-9 -6 -3 0
Hours relative to EOS

2 Hours Overlap

0
2

4
6

8
10

Vi
sit

s 
pe

r h
ou

r

-9 -6 -3 0
Hours relative to EOS

3 Hours Overlap

0
2

4
6

8
10

Vi
sit

s 
pe

r h
ou

r

-9 -6 -3 0
Hours relative to EOS

4 Hours Overlap

0
2

4
6

8
10

Vi
sit

s 
pe

r h
ou

r

-9 -6 -3 0
Hours relative to EOS

6 Hours Overlap

Note: This figure shows unadjusted average hourly rates of patient visits for each 30-minute interval

relative to end of shift (EOS). Each panel shows results for shifts with a given EOS overlap time. Patient

visits for the index physician are shown in closed circles; patient visits for the location are shown in open

circles; and patient visits for the entire ED are shown with a dashed line with no markers. Subsequent

shift starting times are marked with a vertical line.
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Figure 4: End of Shift Effects
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Note: This figure plots average effects for each hour prior to end of shift (EOS) on length of stay (Panel

A), orders (Panel B), inpatient admissions (Panel C), and costs (Panel D). Each outcome is estimated

separately using Equation (5). The reference category is any time greater than six hours prior to EOS.

Bracketed dashed lines represent 95% confidence intervals for each estimate.
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Figure 5: Patient Selection on Observables Relative to End of Shift
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Note: This figure shows selection on observables for each hour prior to end of shift (EOS) on length of

stay (Panel A), orders (Panel B), inpatient admissions (Panel C), and costs (Panel D). Each outcome is

predicted based on patient characteristics observable prior to acceptance (age, sex, ESI) (closed circles)

and on the full set of characteristics usually unobservable until after patient acceptance (e.g., 29 Elixhauser

indices, race, language) (short-dashed line, open circles). Coefficients are estimated for predicted outcome

using Equation (A-3.2). For reference, adjusted effects on actual outcomes from Figure 4 are shown with

the dashed line. The reference category is any time greater than six hours prior to EOS.
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Figure 7: End of Shift Effects by Shift Overlap
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Note: This figure shows heterogeneous end of shift (EOS) effects by EOS overlap times on length of

stay (Panel A), orders (Panel B), inpatient admissions (Panel C), and costs (Panel D). Each outcome

is estimated separately using Equation (4). Estimates for terminal shifts (o = 0) are shown in open

triangles; estimates for minimally transitioned shifts (o = 1) are shown in open circles; and estimates for

substantially transitioned shifts (o ≥ 2) are shown in closed circles.
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Figure 9: Change in Total Cost per Shift over Counterfactual Regimes
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Note: This figure plots changes in total cost during a shift averaged over 100 simulations for each

counterfactual assignment regime, as described in Section 7 and Appendix A-4. Assignment regimes may

either curtail or extend assignment, as illustrated in Figure 8. The x -axis is the change in total patients

assigned during a shift as a result of an assignment regime (“0” represents the actual assignment regime,

which by definition has a value of 0 on the y-axis). Daily costs include both physician-time, patient-time,

and hospital-resource costs. Changes in daily cost are plotted under the base-case assumption of a $120

hourly wage (solid circles) and an extreme case of a $600 hourly wage (hollow circles).
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Figure 10: Value of Leisure in Dollars of Patient Care
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Note: This figure plots the imputed value of leisure, revealed by increases in resource-utilization costs

that shorten the time for completion of work under simulated counterfactual assignment policies. For each

counterfactual assignment policy, data are simulated using the actual discharge policy and then again for

a counterfactual discharge policy that is insensitive to time relative to EOS. The difference between these

two discharge policies yields a tradeoff of resource-utilization costs for shortened work completion time.

The ratio between these two represents the value of leisure, denominated in hospital-resource dollars, and

is plotted on the y-axis. The x -axis is the change work completion time using the actual discharge policy.

The horizontal line drawn at $120 is the effective hourly wage for an hour of a physician’s (scheduled)

time. Details are described in Appendix A-4.

47



Figure 11: Lower Bound of Transfer Cost
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Note: This figure plots a lower bound of the cost of transferring patients to another physician at EOS.

This lower bound is given by the logic that increases in patient-costs could be eliminated if transfer costs

were zero and reduced if transfer costs were lower (by transferring the additional patients and incurring

the costs). For each counterfactual assignment policy that increases assigned patients over the actual

policy, I calculate this lower bound by dividing increases in resource-utilization costs with increases in

assigned patients. The x -axis shows the increase in assigned patients under a counterfactual regime; the

y-axis shows the per-patient lower bound transfer cost in dollars. Given a base per-patient cost of $894,

this lower bound ranges from 25% to 140%. Details are described in Appendix A-4.
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Appendix

A-1 Effects Relative to Shift Beginning

The literature on shift work has almost exclusively focused on cumulative health effects and

fatigue (e.g., Brachet et al., 2012; Shetty and Bhattacharya, 2007; Volpp and Rosen, 2007),

while I explore the possibility of strategic behavior in this paper. Unlike shifts of 36 hours in

the residency work-hours debate, significant fatigue is less likely near the end of a shift of nine

hours, the modal shift length in this setting. Nonetheless, I specifically address this issue by

exploiting variation in shift length to control for effects, such as fatigue, correlated with time

since the beginning of shift. I assume that, conditional on time since beginning of shift, fatigue

is independent of time to EOS.

In the full model of Equation (2), I show robust EOS effects controlling for time since the

beginning of shift. The effect attributable to time since shift beginning is minor compared to

the overall effect for length of stay. Here I illustrate the robustness of EOS effects more directly

by simply showing the effect on length of stay for each hour prior to EOS separately for three

categories of shift lengths. I study shifts that are nine hours in length, as well as shifts that

are seven or eight hours in lengths and shifts that are ten hours in length. Figure A-1.1 plots

coefficients αm from Equation (2) estimated separately for each shift-length category. Panel A

plots coefficients according to time relative to EOS and shows coefficients largely similar across

shift lengths and within hour prior to EOS. Panel B arranges the coefficients according to time

from shift beginning, illustrating the corollary that the EOS effect is largely independent of the

time since beginning the shift.

A-2 Time Components of Length of Stay

In Section 5, length of stay decreases while formal utilization increases near EOS. This suggests

that formal utilization is a net substitute for time in patient care. In this appendix, I further

examine this hypothesis by a closer look at the time components of length of stay. In practice,

time is not neatly divided into pure substitute or complement components with formal utilization

(call these components τ1 and τ2, respectively), but some intuitive distinctions can be made:

Time before the first formal order likely belongs to τ1 (e.g., time spent interviewing the patient

or performing serial abdominal examination as opposed to CT scan). Time after the last formal

order likely belongs to τ2, reflecting time needed to follow up on utilization (e.g., waiting for CT

scan report). Although time in between the first and last orders could belong to either τ1 or τ2,

the spacing of these orders often reflects clinical monitoring and reasoning more closely related

to τ1.

Measuring length of stay in three component shares – time between pod arrival and first

order, time between first and last (non-discharge) orders, and time between last and discharge
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orders – I estimate a fractional logit model (Papke and Wooldridge, 1996) using similar regressors

as in Equation (2). Figure A-2.1 presents results of marginal effects relative to EOS. Panel A

scales time shares by the median predicted length of stay in each hour prior to EOS according

(2); Panel B simply plots the unscaled proportional shares. These proportions remain relatively

unchanged except for the last hour prior to EOS, when the proportions for time prior to first order

and inter-order time both decrease. These results suggest relative reductions in τ1, particularly

in the last hour prior to EOS, and are consistent with the increase in formal utilization (net

substitution) in the last hour shown in Table 2 and Figure 4.

A-3 Selection of Patient Types

A-3.1 Summary Statistics of Observables

I first present plots of summary statistics of observable characteristics of accepted patients ar-

riving in each 30-minute interval relative to EOS. Figures A-3.1 to A-3.5 present mean age,

mean ESI, proportion white race, proportion black race, and proportion Spanish-speaking, re-

spectively. Selection is towards healthier patients (or disadvantaged patients, who tend to visit

the ED for less serious reasons) for all of these measures but is small.

In Figures A-3.1 to A-3.5, I also separately consider selection in shifts without overlap and

in shifts without overlap. Recall that overlap is the time prior to EOS during which a physician

shares new work with another physician who has begun work in the same location. Thus, shifts

without overlap are “terminal” shifts in which physicians are unable to decline patients who are

assigned to their managerial location, and selection must therefore occur by the triage nurse

assigning different types of patients to the managerial location. Of note, selection is relatively

greater in these shifts than in shifts with overlap, consistent with cultural norms against selection

between physicians sharing a location.

In Figures A-3.6 and A-3.7, I plot quantiles of continuous variables age and predicted log

length of stay, respectively. Predictions of log length of stay are based on cubic splines of age, an

indicator for male sex, indicators of ESI, indicators for race, and indicators for language. These

quantiles show persistently wide variation in the patients accepted within each 30-minute interval

relative to EOS. Each of these quantiles are stable and only slightly decreasing across times

relative to EOS. Thus, in addition to means, the entire distribution of these characteristics for

accepted patients does not change as EOS approaches. Similarly, Figure A-3.8 shows cumulative

proportions of patients by ESI. These proportions are also stable across time intervals.

A-3.2 Selection on Ex Ante Observables and Unobservables

This appendix section makes use of the fact that I observe ex post a richer set of patient

characteristics, including diagnoses and other characteristics, than generally are unobserved by

physician at patient acceptance. In this analysis, I evaluate patient selection based on two sets
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of characteristics: those that are observed by a physician or triage nurse prior to acceptance,

Xprior
it , and others that include rich diagnosis codes, insurance status, race, and language that

are at best incompletely observed until after patient acceptance, Xfull
it .

Separately for each set, I first generate predicted outcomes by

Yijkpt =
(
Xset
it

)′
βset + εijkpt, (A-3.1)

where set ∈ {prior , full}. Next, I estimate the following regression describing the relationship

between the predicted outcomes for selected patients, Ŷ set
ijkpt = β̂setXset

it , using β̂set estimated

from Equation (A-3.1), and the time of selection relative to EOS:

Ŷ set
ijkpt =

−1∑
m=−6

αset
m 1

(⌊
t− t (j, t)

⌋
= m

)
+
∑
m

γm1 (bt− t (j, t)c = m) + (A-3.2)

T′tη + ζp + νjk + εijkpt,

leaving out variables in Xit as regressors. I interpret each coefficient αset
m as the amount patient

selection, in terms of length of stay predicted by Xset
it . Comparing results between the two sets

of patient characteristics roughly assesses the degree of selection on characteristics unobservable

at the time of patient acceptance but observable to me.

Figure 5 presents estimates of selection for each set of patient characteristics and for each of

the outcomes of length of stay, orders, admission, and costs. To reference magnitude, selection

estimates are overlaid onto estimates for the EOS effect from Equation (2) for each respective

outcome. Coefficients for selection estimated using the two sets of characteristics are remarkably

similar, suggesting negligible additional selection on ex ante unobservables. Selection nearing

EOS appears to be in the direction of healthier or less resource-intensive patients: those expected

to have shorter lengths of stay, lower frequencies of admissions, and incur lower costs and fewer

orders. Predicted length of stay is 5.4% lower in the last hour prior to EOS compared to seven or

more hours prior to EOS, about an order of magnitude smaller than effects for actual length of

stay. All predicted outcomes show a decreasing relationship with proximity to EOS, in contrast

to increases in actual admission, costs, and orders.

A-3.3 Required Selection on Unobservables

This appendix section details a procedure similar to that outlined in Altonji et al. (2005). The

goal of this exercise is to quantify the amount of selection on unobservables necessary to explain

decreases in length of stay for patients accepted at each hour near EOS. The basic intuition is

that the possibility that selection on unobservables explains estimated effects can be quantified

by the extents to which selection and outcomes can be explained by observables.
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A-3.3.1 Conceptual Framework

Consider a condensed form of the outcomes regression Equation (2):

Y =
∑
m

αmA
m + Ω′Γ

=
∑
m

αmA
m + W′ΓW + ξ, (A-3.3)

where I omit subscripts for simplicity. Am ≡ 1
(⌊
t− t (j, t)

⌋
= m

)
is an abbreviation for the

familiar indicator for whether the time t that patient i was assigned to physician j was in the

mth hour from j’s EOS. αm is the causal effect of a patient being assigned in the mth hour

prior to EOS. Ω is the full set of other variables, both observed and unobserved, that determine

outcome Y , while W includes only observed patient, time, and provider characteristics (to be

distinguished from Xit in Equation (2), which only includes patient characteristics). Γ is the

causal effect of Ω on Y . ΓW is the subvector of Γ that corresponds to W within Ω, and ξ is an

index of the unobserved variables.

Since variables in W are likely correlated with ξ, rewrite Equation (A-3.3) as

Y =
∑
m

αmA
m + W′γW + ε, (A-3.4)

where γX and ε are constructed so Cov (ε,W) = 0 by definition. Thus γW captures both the

causal effect of W on Y (ΓW ), as well as the portion of ξ that may be correlated with W. Note

that, for the regression estimate of αm to be unbiased, the standard OLS assumption is that

Cov (ε,Am) = 0, or E [ε |Am = 1]− E [ε |Am = 0] = 0.

A-3.3.2 Measure of Selection on Unobservables

Altonji et al. (2005) argue for upper bound of selection on unobservables, specified by

E [ε |Am = 1]− E [ε |Am = 0]

Var(ε)
=
E [W′γW |Am = 1]− E [W′γW |Am = 0]

Var(W′γW )
, (A-3.5)

which states that the relationship between the index of unobservables in Equation (A-3.4) and

the indicator for selection Am is equal in magnitude to the relationship between unobservable

predictors of Y and Am, respectively normalizing for variance.

They argue that this condition represents an upper bound because of observed variables are

not randomly collected but rather represent characteristics that are collected precisely because

they are more important for outcomes of interest. Furthermore, because many observed variables

are in fact collected after the selection event, they include random shocks that cannot have

influenced the selection event. This latter argument is related to the fact that I observe a rich

set of patient characteristics that are either determined by the physician after accepting the
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patient or are rarely observable by the physician at the time of acceptance.

A-3.3.3 Estimation of Potential Bias

In order to estimate the potential bias at the upper bound implied by Equation (A-3.5), consider

the following linear selection equation:

Am = W′βmW + Ãm, (A-3.6)

where Ãm is a residual that is orthogonal to W. Then Equation (A-3.4) can be stated as

Y =
∑
m

αmÃ
m + W′

(
γW +

∑
m

αmβ
m
W

)
+ ε.

This leads to a statement of the potential bias due to selection on unobservables:

plim α̂m ≈ αm +
Cov

(
Ãm, ε

)
Var

(
Ãm
)

= αm +
Var (Am)

Var
(
Ãm
) (E [ε |Am = 1]− E [ε |Am = 0]) ,

From Equation (A-3.5), the bias can be stated in terms of E [W′γW |Am = 1]−E [W′γW |Am = 0]:

Bias =
Var (Am) Var (ε)

Var
(
Ãm
)

Var (W′γW )

(
E
[
W′γW |Am = 1

]
− E

[
W′γW |Am = 0

])
(A-3.7)

Under the null hypothesis that αm = 0, γW can be consistently estimated by Equation (A-3.3).

I can then arrive at a consistent estimate of bias in Equation (A-3.7) with the following

procedure, with results shown in Table A-3.1: For each m ∈ {−6, . . . ,−1}, I define Am ≡
1
(⌊
t− t (j, t)

⌋
= m

)
over all observations and empirically calculate V̂ar (Am) for each m. I

also calculate V̂ar
(
Ãm
)

after estimating Equation (A-3.6) for each m. Similarly, I estimate

V̂ar (ε) = 0.160 and V̂ar (W′γW ) = 0.580 from Equation (A-3.4). Equation (A-3.4) also allows

me to form an estimate of selection on observables, Ê [W′γW |Am = 1]− Ê [W′γW |Am = 0], for

each m. Using the Altonji et al. (2005) condition in Equation (A-3.5) that normalized selection

on unobservables is bounded by normalized selection on observables, I then calculate an upper

bound of the bias due to selection on unobservables with Equation (A-3.7). As shown in Table

A-3.1, the upper bound of the bias in α̂−1, the effect of arriving in the last hour of shift on the

length of stay, estimated by Equation (2), is −0.00124. Given that α̂−1 = −0.5873, this implies

that normalized selection on unobservables would have to be 475 times greater than normalized

selection on observables. As a comparison, in their example of the impact of Catholic school
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on educational attainment, Altonji et al. (2005) argue that selection on unobservables is highly

unlikely with an ratio 3.55.

A-3.4 Eliminating Selection between Physicians

This appendix section considers an additional robustness check by eliminating selection between

contemporaneous physicians who could accept the same patient arriving at a given hour. Instead

of using variation in the identity of the accepting physician (or more precisely, the time within

that physician’s shift), I only use variation in the overall composition of ED shifts at the patient’s

time of arrival.

The intuition behind this approach is that it, although patients may be assigned by the triage

nurse or chosen by physicians as a margin of selection, it is less likely for patients to arrive at

the ED at different times specifically related to the timing of shifts. Because I control for hour

of the day, day of the week, and month-year interactions, correlations between patient arrival

and underlying ED shift structure would have to be conditional on these time categories.

This approach is closely related to one used by Chetty et al. (2014). First, I estimate “leave-

shift-out” (jackknife) EOS effects specific to shift s, using Equation (2) on all observations

except those corresponding to s (Jacob et al., 2010). I denote these estimates as {α̂ms}. This is

method allows us to exclude idiosyncratic (but not systematic) shocks, including selection, on

both length of stay and the right-handside of Equation (2), that would otherwise introduce bias

into {α̂ms}. Next, I construct hourly patient-weighted averages (at the level of the entire ED)

that represent the overall ED shift environment. That is, for patients i arriving at time tai = t,

where t is defined at an hourly level, construct the average EOS effect

Qt ≡
∑

i 1 (tai = t)
∑−1

m=−6 α̂ms1
(⌊
t− t (J (i, t) , t)

⌋
= m

)
1 (S (J (i, t) , t) = s)∑

i 1 (tai = t)
, (A-3.8)

where J (i, t) is a physician assignment function for patient i at time t, and S (j, t) is a shift

assignment function for physician j at time t.

A-3.4.1 Unobservable Selection between Physicians within Hour

I evaluate systematic bias of {α̂ms} due to selection (on unobservables) between physician within

hour. To do this, I average out within-hour selection by constructing patient-weighted averages

Yt of (residualized) length of stay Ỹijkpt:

Yt ≡
∑

i 1 (tai = t) Ỹijkpt∑
i 1 (tai = t)

(A-3.9)
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where

Ỹijkpt ≡ Yijkpt −

[∑
m

γ̂m1 (bt− t (j, t)c = m) + X′itβ̂ + T′tη̂ + ζ̂p + ν̂k

]
. (A-3.10)

Coefficients γ̂m, β̂, η̂, ζ̂p, and ν̂k are estimated using within-EOS variation from an equation

very similar to Equation (2):

Yijkpt =

−1∑
m=−6

αm1
(⌊
t− t (j, t)

⌋
= m

)
+
∑
m

γm1 (bt− t (j, t)c = m) +

X′itβ + T′tη + ζp + νk + εijkpt,

where I use physician fixed effect νk instead of physician-team fixed effects νjk to broaden

the number of observations for which I observe an identified residual. This approach, which

includes effects for time to EOS, only uses within-EOS-time variation to estimate coefficients

and therefore provides consistent estimates even if the covariates are correlated with time relative

to EOS.

The regression

Yt = a+ bQt + χt, (A-3.11)

quantifies the degree of “forecast bias” due to systematic selection of patients arriving within t

across physicians,

B (α̂ms) = Cov (εijkpt, α̂ms) /Var (α̂ms) , (A-3.12)

for bt− t (j, t)c = m and S (j, t) = s. B (α̂ms) = 1− b, under the assumption that

Cov (At, χt) = 0. (A-3.13)

This assumption states that there is no selection of unobservable patient types across ED times

conditional on time categories (i.e., hour of the day, day of the week, and month-year interac-

tions). This assumption is much more plausible than the baseline assumption that there is no

selection of unobservable patient types arriving at the same time across physicians.

Column 1 of Table A-3.2 reports estimates of b from Equation (A-3.11). The point estimate

of b is 1.029 with a robust standard error of 0.060 (clustered at each hour of t), which reflects

tight estimation indistinguishable from 1 (i.e., I cannot reject the hypothesis of B (α̂ms) = 0).

That is, under the assumption of no selection of unobservable patient types across ED times, I

cannot show that there is bias caused by selection of unobservable patient types arriving at the

same time across physicians. Panel A of Figure (6) plots the relationship between Yt and Qt

nonparametrically, dividing the data into 20 equal-sized groups (“vigintiles”) according to Qt.

This plot nonparametrically represents the conditional expectation function of Yt conditional on

Qt. The relationship is highly linear, with slope close to 1.
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A-3.4.2 Observable Selection between Hours

I use a similar exercise to consider the amount of selection on observables across hours, con-

ditional on time categories. Similar to the analysis in Appendix A-3.2, I consider two sets of

ex post observable characteristics, Xprior
it and Xfull

it , to form predictions about length of stay.

The former set includes characteristics that are observable to the physician prior to acceptance,

while the latter set is a superset that also includes characteristics that generally are not observ-

able to the physician until after acceptance. However, as with Yt, I average predictions for all

patients within a given hour, again eliminating selection across physicians within hour. This

exercise therefore evaluates the degree of selection remaining across hours (on characteristics

nevertheless controlled for in estimating EOS effects).

For each variable in Xfull
it , I form residualized variables obtained after subtracting predictions

of each variable based on time categories, Tt, and indicators for hours relative to shift beginning,

bt− t (j, t)c. Using sets of residualized characteristics, X̃prior
it and X̃full

it , I construct predictions

Ŷ prior
ijkpt and Ŷ full

ijkpt. Similar to Equation (A-3.9), I average these predictions over all patients

arriving at a given hour:

Ŷ set
t ≡

∑
i 1 (tai = t) Ŷ set

ijkpt∑
i 1 (tai = t)

, (A-3.14)

where t denotes an hour, and set ∈ {prior , full}.
The regression

Ŷ set
t = a+ bsetQt + χt (A-3.15)

quantifies the degree of selection across hours, as predicted by characteristics Xset
it : Under (A-

3.13) , bset = Cov
(
α̂ms, Ŷ

set
t

)
/Var (α̂ms) for bt− t (j, t)c = m and S (j, t) = s. Although the

assumption in Equation (A-3.13) is not directly testable, a lack of observable selection (bset is

indistinguishable from 0) supports this assumption.

Columns 2 and 3 of Table A-3.2 report of estimates bprior and bfull , respectively, from Equa-

tion A-3.15. Both estimates are small and indistinguishable from 0: The point estimate of bprior is

0.029 (robust standard error 0.025), and the point estimate of bfull is 0.024 (robust standard

error 0.026). Panels B and C of Figure (6) show corresponding nonparametric expectations of

Ŷ prior
t and Ŷ full

t , respectively conditional on Qt, where the data is again divided into vigintiles

of Qt. The relationship is again linear, but consistent with the regression results, there is no

relationship between length of stay predicted by time relative to EOS (Qt) and that predicted

by patient characteristics. I consider this as strong evidence supporting (A-3.13).

A-4 Structural Model Implementation

This appendix details the procedure to simulate observations under counterfactual assignment

policies and impute overall costs under these policies, as discussed more briefly in Section 7.
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To summarize, I first estimate arrival and discharge functions in discrete time. Actual arrivals

and discharges imply patient censuses, or the number of patients under the care of a physician

at each point in discrete time, i.e., those who have arrived and have not yet been discharged.

I create counterfactual assignment policies by modifying time in the arrival function, and I

simulate of patient observations (including arrival times, discharge times, and patient censuses)

using this modified arrival function and the (unmodified) discharge function. Finally, I impute

of overall costs by regressing simulated workload-adjusted length of stay on time relative to EOS

and translating decreases in workload-adjusted length of stay into increases in resource-utilization

costs. Overall costs are the sum of costs due to patient care and physician time.

A-4.1 Estimating Arrival and Discharge Functions

In each fifteen-minute time interval of each of the 23,990 shifts during the study period ranging

from June 2005 to December 2012, I calculate the number of patients assigned to the physician

on shift s during time interval t. Restricting to t ∈
[
t (s)− 3 hours, t (s)

]
yields 1,151,888

observations over t and s with patient arrival (or “assignment”) numbers

Nst ≡
∑
i

1 (tai = t) 1 (S (J (i) , tai ) = s) ,

where tai is the arrival time of patient i, S (j, t) is a shift assignment function for physician j and

time t, and J (i) is a physician assignment function, assuming for notational convenience that

each patient has only one visit.

Of
∑

s,tNst = 370, 843 patients arriving during valid times, I further restrict the estimation

sample to arrivals and discharges of 350,053 patients whose length of stay is at most twelve hours

and who arrived at most twelve hours prior to EOS. The remaining 20,790 patients, whom I

denote as i ∈ Ioutside, are therefore not modeled in either arrivals or discharges, but I count them

toward workload defined below. As I describe in Section A-4.2, I take arrivals and discharges of

patients i ∈ Ioutside as fixed in every simulation.

For Nst, I estimate a zero-inflated Poisson model. I call this an arrival or assignment function

A (t, σs, wj,t−1) , which depends on t, shift characteristics σs of s (i.e., shift type 〈`, o, o〉s and

time of EOS t (s)), and physician j’s census (or workload) wj,t−1 in the previous period (for j

satisfying s (j, t) = s). wjt is defined in Equation (3), which I slightly rephrase here as

wjt ≡
∑
i

1 (tai ≥ t) 1
(
t ≤ tdi

)
1 (j = J (i)) , (A-4.16)

where tdi is the corresponding discharge order time for patient i, again taking advantage of the

notational assumption that i refers to a unique patient visit.

As introduced by Lambert (1992), the zero-inflated Poisson model allows for two “regimes,”

one which always yields Nst = 0, and the second which follows a Poisson process leading to
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Nst ≥ 0. In particular,

Pr (Nst = 0) = Pr (Regime 1) + Pr (Nst = 0|Regime 2) Pr (Regime 2) ;

Pr (Nst = n) = Pr (Nst = n|Regime 2) Pr (Regime 2) , n = 1, 2, . . . ,

where Pr (Regime 1) + Pr (Regime 2) = 1. In standard fashion, Pr (Regime 1 |t, σs ) is specified

as the logistic function of a linear combination of shift-type indicators interacted with splines of

ts − t. Pr (Nst = n|Regime 2) is specified as a Poisson model:

Pr (Nst = n|Regime 2) =
exp (−λst)λnst

n!
, n = 0, 1, 2, . . . ,

where log λst = logE [Nst| t, σs, wj,t−1] is a linear combination of splines of time of the day,

splines of month-year interactions, indicators for day of the week, splines of ts − t, splines of

wj,t−1, interactions between splines of ts − t and splines of wj,t−1, and interactions between

shift-type indicators interacted with splines of ts − t.
For discharge times tdi , I estimate a logit hazard model as

Pr
(
tdi = t

∣∣∣tdi ≥ t− 1
)
≡ D (t, σs, wjt, τ̂ist) =

1

1 + exp (−h (t, σs, wjt, τ̂ist))
,

where h (t, σs, wjt, τ̂ist) is estimated, separately for shifts of different length `, as a linear com-

bination of indicators for hour of the day of tai , splines of t − tai , splines of t (s) − t, splines

of t (s) − tai , splines of wjt, predicted log length of stay (τ̂ist), interactions between splines of

t − tai and splines of t (s) − tai , interactions between splines of t (s) − t and splines of wjt, and

interactions between τ̂ist and splines of t (s)− tai .
Predicted log length of stay (τ̂ist) is a linear combination of indicators for day of the week,

month-year interactions, patient age and squared age, sex, ESI indicators, Elixhauser indicators,

race indicators, language indicators, pod indicators, and physician-nurse-resident joint indica-

tors. As a separate model, I estimate a model τ̃ist of τ̂ist based on day of the week, month-year

interactions, pod indicators, shift-type indicators interacted with splines of t (s)− t, and physi-

cian indicators. The reason for the first prediction (τ̂ist of τijkpt) is to condense a large number

of characteristics about the patient visit into a single linear score for ease of estimation. The

reason for the second prediction (τ̃ist of τ̂ist) is to allow simulation of predicted log length of stay

without simulating many of the characteristics that enter into τ̂ist, such as nurse and resident

identities, which I discuss in the next section.

A-4.2 Simulating Patient Observations

After estimating arrival and discharge functions from actual data, I simulate patient arrivals

and discharges under counterfactual assignment policies. I create the counterfactual policies,

A∆ (t, σs, wj,t−1) ≡ A
(
t̆ (t, s,∆) , σs, wj,t−1

)
, by modifying patient assignment indexed by a time
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shift ∆, so that patients are assigned as if time were t̆ (t, s,∆) rather than t. Starting at |∆|
hours before EOS, assignments are “curtailed” assignments with t̆ > t if ∆ < 0 or “extended”

with t̆ < t if ∆ > 0. Formally,

t̆ (t, s,∆) =


t+ κmax

(
1 + t− t (s) ,∆

)
, ∆ < 0

t, ∆ = 0

t+ max
(
0,min

(
∆ + t− t (s) ,∆

))
, ∆ > 0

, (A-4.17)

where κ = max
(
0,min

(
1, t− t (s)−∆

))
∈ [0, 1] is a scale to ensure that t̆ is continuous in t

when ∆ < 0. Figure 8 shows example counterfactual policies. While assignments are explicitly

modified in these policies, parameters of the underlying discharge function is unchanged and

remains under the control of the physicians. Discharge behavior of course responds to wjt, as it

increases or decreases near EOS, with ∆ > 0 or ∆ < 0, respectively.

Specifically, I follow this procedure for each simulation r of counterfactual policy ∆:

1. Start t at three hours before the beginning of each shift s. Set w∆,r
j,t−1 = 0.

2. Determine new assignments at t for each s.

(a) Simulate N∆,r
st new assignments for s at t, using A∆. Denote each of these new

assignments with an unused i /∈ Soutside, note that ta∆,r,i = t, and simulate predicted

log length of stay τ̃∆,r
ist .

(b) Assign patients i ∈ Ioutside where toutside,a
i = t to the relevant shifts s.

3. Calculate workload w∆,r
jt by Equation (A-4.16).

4. If t ≥ t (s) and w∆,r
jt > 0, determine discharges at t for each s.

(a) Simulate d∆,r
it ≡ 1

(
td∆,r,i = t

)
for each i /∈ Soutside where d∆,r

i,t−1 = 0, using D.

(b) Discharge patients i ∈ Soutside where toutside,d
i = t from the relevant shifts s.

5. The procedure is complete for s such that t ≥ t (s) and w∆,r
jt = 0. For the remaining s,

revise t = t+ 1 and return to Step #2.

The resulting collection of ta∆,r,i, t
d
∆,r,i, and w∆,r

jt form the underlying simulated data. Simulated

workload-adjusted length of stay for patient i under physician j can be calculated by dividing i’s

simulated length of stay by simulated average censuses under j during i’s length of stay. Slightly
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adapting Equation (5) to discrete time,

Ỹ ∆,r
ij ≡ τ∆,r

i /w∆,r
ij ,

= 0.25 ·max
(
td∆,r,i − ta∆,r,i, 0.3

) 1

td∆,r,i − ta∆,r,i + 1

td∆,r,i∑
t̃=ta∆,r,i

w∆,r

jt̃


−1

. (A-4.18)

The term 0.25 · max
(
td∆,r,i − ta∆,r,i, 0.3

)
reflects that, in actual data, Ê [τi] ≈ 0.075 hours if

tdi = tai , but otherwise Ê [τi] ≈ 0.25
(
tdi − tai

)
hours if tdi > tai (recall that t is in fifteen-minute

intervals).

A-4.3 Imputing Costs

Having simulated arrival and discharge data, I am now in the position to impute overall costs

for each counterfactual simulation r of ∆. Overall costs include physician-time, patient-time,

and hospital-resource costs. Repeating Equation (6):

Costsr∆ = PhysicianTimer∆ + PatientTimer∆ + HospitalResourcesr∆. (A-4.19)

The first cost, physician-time costs, represents the value of leisure foregone. Physician hours

can increase either if a peer must arrive earlier before the index physicians EOS, or if the index

physician must stay longer past EOS:

PhysicianTimer∆ = Wage×
∑
s

(
WorkCompletionTimes,r∆ − PeerArrivalTimes,r∆

)
.

“Slacking off” in the assignment policy occurs earlier relative to EOS mechanically requires

peers to arrive earlier. In the actual data, there are generally two unseen patients at the time

of peer arrival (see Figure A-5.3). I therefore model PeerArrivalTimes,r∆ as when there are two

unseen patients near t(s), based on the assignment policy and an exogenous pod flow rate of 2.22

patients per hour (see Figure 3). I model WorkCompletionTimes,r∆ (when the physician on shift

s leaves the ED) as the time between when all but one or two patients have been discharged.

This empirically matches the stated work completion time of generally two to three hours past

EOS, although results are insensitive to the precise definition of work completion. Implicit in

this rule is that physicians are not more likely to pass off patients with more work at EOS; given

that work completion time is really insensitive to being assigned more work at EOS (due to

quicker discharges), this is unlikely to be quantitatively important. I multiply physician-hours

by a base-case wage of $120 per hour but also consider the extreme case of $600 per hour.
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The second cost, patient-time costs, reflects the value of patient time:

PatientTimer∆ = TimeValue×
∑
i

(
τ∆,r
i − E

[
τ0,r
i

])
,

where TimeValue = $20/hour, or roughly the average hourly wage in the US.

The third cost in Equation (A-4.19), hospital-resource costs, represents resource costs, via

formal utilization and admissions, incurred by the physician. As shown in Section A-2 and Table

2, workload-adjusted length of stay, formal orders, admissions, and total costs all increase only

in the last hour of shift, suggesting that workload-adjusted length of stay is a good measure

of time that increases patient-care costs as it is decreased. In each simulation r of each policy

∆, I estimate the EOS effect on workload-adjusted length of stay by coefficients α̂∆,r
m in this

regression:

log Ỹ ∆,r
ij = α∆,r +

−1∑
m=−6

α∆,r
m 1

(⌊
ta∆,r,i − t

(
S
(
j, ta∆,r,i

))⌋
= m

)
+ (A-4.20)

g
(
ta∆,r,i − t

(
S
(
j, ta∆,r,i

)))′
γ∆,r
g + ε∆,r

ij ,

where Ỹ ∆,r
ij is simulated workload-adjusted length of stay from Equation (A-4.18), and g (·)

creates a vector of cubic splines of assignment time relative to shift beginning.

In simulated data with ∆ = 0, I estimate α̂0
−1 ≡ 1

100

∑100
r=1 α̂

0,r
−1 = −0.240 and α̂0

−2 ≡
1

100

∑100
r=1 α̂

0,r
−2 = −0.059, which implies that workload-adjusted length of stay decreases by 18.1%

in the last hour of shift under the observed assignment policy. Note that this difference is slightly

smaller (more conservative) than that implied by coefficients α̂−1 = −0.232 and α̂−2 = −0.069

estimated without simulation using actual data (Table A-5.3). Given that total costs increase

by 20.8% in the last hour prior to EOS, I estimate the elasticity of hospital-resource costs to

workload-adjusted length of stay, for decreases in workload-adjusted length of stay that are 5.9%

below baseline, as 20.8%/− 18.1% = −1.15. I thus calculate hospital-resource costs as

HospitalResourcesr∆ =
∑
s

t(s)∑
t=t(s)

1
(⌊
t− t (s)

⌋
= m

)
N∆,r
st × (A-4.21)

∑
m

exp
(
BaseLogCosts− 1.15 ·min

(
0, α̂∆,r

m − α̂0
−2

))
,

where BaseLogCosts = [log $ +] 6.750. Note hospital-resource costs increase with greater assign-

ments (higher ∆) both because per–patient costs increase, and the number of patients that this

applies to also increases. As discussed in the main paper, I conservatively assume no negative

effects on patient health, even as physicians produce less information for the discharge decision,

since I observe none in sample (Table 2).
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A-4.4 Imputing the Value of Leisure

I can also impute the revealed value of leisure in terms of hospital-resource costs by calculating

the ratio between extra hospital-resource costs incurred and leisure time gained as a result of

the physician discharge behavior near EOS. The revealed discharge function D (t, σs, wjt, τ̂ist)

increases the discharge hazard as t approaches t (s), shortening patient-adjusted length of stay

and increasing hospital-resource costs. Similar to modifying t in the assignment policy t̆ (t, s,∆),

Equation (A-4.17), I examine what discharges would look like if not influenced by EOS be-

havior by modifying t in the discharge function. That is, I consider D0 (t, σs, wjt, τ̂ist) ≡
D
(
t̃ (t, s) , σs, wjt, τ̂ist

)
as a modified discharge function, where

t̃ (t, s) = min
(
t, t (s)− 4

)
,

ensuring that discharge behavior does not reflect EOS behavior, even if t approaches t (s), since

t̃ (t, s) is at least four hours before EOS.

I then evaluate differences in hospital-resource costs and work-completion time under both

of these discharge functions. The ratio between these two differences reveals physicians’ implicit

valuation of an hour of leisure in terms of hospital-resource costs:

LeisureValuer∆ = − HospitalResourcesr∆|D −HospitalResourcesr∆|D0

WorkCompletionTimer∆|D −WorkCompletionTimer∆|D0
.

A-5 Additional Results

In this appendix, I present the following additional empirical results, as well as a brief discussion

of some of these results:

• Table A-5.1 describes the process of constructing the sample, including the number of

observations in each step.

• Table A-5.2 lists the number of observations for each shift type. Observations are counted

in terms of unique shifts, hours, potential patients (who could be assigned to a shift of

that shift type at time of arrival), and actual patients (who are assigned to a shift of that

shift type).

• Table A-5.3 reports coefficients for EOS effects on workload-adjusted length of stay, as a

continuation of Table 3. Results in this table are estimated with the full set of controls

but only control for time relative to shift beginning. Results are estimated on both actual

and simulated data.

• Figure A-5.1 shows example weekly pod schedules.
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• Figure A-5.2 shows evidence on how long physicians stay past EOS in terms of when three

types of orders are written: the last order by the attending physician of record (AOR), the

first (non-resident) physician order after the AOR’s orders, and the last discharge order.

• Figure A-5.3 shows average patient counts (“censuses”) for physicians in shifts with dif-

ferent overlap o.

• Figure A-5.4 shows the fit between actual and simulated data, where the simulated as-

signments, length of stay, and censuses are calculated by discrete-time functions of patient

assignment and discharge.

• Figure A-5.5 shows coefficients for EOS effects on workload-adjusted length of stay, re-

ported in Table A-5.3, estimated on both actual and simulated data.

In Table A-5.3, I present evidence qualitatively consistent with results in Table 3, except that

I do not control for patient characteristics, time indicators other than time relative to shift

beginning, and provider identities. I consider these more parsimonious regressions in Table

A-5.3 to operationalize workload-adjusted length of stay as the key substitute for hospital-

resource costs in the structural model in Section 7, in which simulating the rich set of covariates

would either be impractical. Specifically, as workload-adjusted length of stay decreases, hospital-

resource costs increase via increased formal utilization and admission likelihood. Tables 3 and

A-5.3 both show that workload-adjusted length of stay increases above baseline in the hours

before the last of shift (while utilization is unchanged). This could be consistent with “foot-

dragging” in which physicians delay discharge but do not otherwise change patient care Chan

(2015); in the structural model, I therefore assume that increases in workload-adjusted length

of stay do not change hospital-resource costs.

Figure A-5.2 shows the cumulative densities of orders relevant to physicians staying past

EOS. I do not observe when physicians actually go home, but I can create some relevant bounds

based on three types of orders: the last order by the attending physician of record (AOR), the

first (non-resident) physician order after the AOR’s orders, and the last discharge order. As

described in the figure notes, most visits do not have orders written by physicians (i.e., most

visits have orders solely written by resident physicians). Cumulative densities for physician

orders are calculated using visits in which the relevant physician order is observed at least once.

Physicians obviously must be present to write their own orders, but the last AOR order is a

definite lower bound, since most visits do not have AOR orders, and work such as dictating

patient notes does not require orders. Orders by the next non-resident physician are definitive

proof that another physician has started to assume the care of some of the index physicians’

original patients, although it is still possible that the physician may be staying to finish work

on other patients, including work that does not require orders. The last discharge order is likely

an overestimate of the time spent past EOS, since some patients may be passed off or have

well-defined discharge plans before the discharge order.
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Figure A-5.4 shows the fit between actual data and simulated data from the structural

model described in Sections 7 and A-4. Assignments (Panel A) are simulated according to

a zero-inflated Poisson model, and length of stay (Panel B) results from discharges simulated

according to a logit hazard model, both of which consider time in fifteen-minute discrete intervals.

Censuses (Panel C) – or workload as measured by numbers of patients under a physician’s

care (between assignment and discharge) – are simulated by both the assignment and discharge

models. Workload-adjusted length of stay, calculated by Equation (5), is derived from discharges

and censuses. Figure A-5.5 shows the fit in regression coefficients (also reported in Table A-5.3)

of workload-adjusted length of stay between actual and simulated data.
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Table A-3.2: Mean EOS Effect on Mean Actual and Predicted Log Length of Stay

(1) (2) (3)

Mean
actual, Yt

Mean
predicted,
Ŷ prior
t

Mean
predicted,
Ŷ full
t

Mean EOS effect, Qt
1.029***
(0.060)

0.029
(0.025)

0.024
(0.025)

Number of visits 409,352 409,352 409,352
Number of shifts 22,501 22,501 22,501
Number of hour cells 63,345 63,355 63,355

Note: This table reports coefficient estimates and standard errors in parentheses for Equation (A-3.11)

in Column 1 and for Equation (A-3.15) in Columns 2 and 3. Predicted and actual log lengths of stay

are all averaged within hour cell and weighted by visit. The key independent variable is the log length of

stay predicted by the times to EOS, defined by Equation (A-3.8) as Qt. Qtis calculated as follows: First,

coefficients on time relative to EOS are calculated from (2) using a leave-shift-out sampling. Next, these

coefficients are averaged across shifts in process at hour t, weighted by visits. I calculate the dependent

variable for Column 1 as follows: I calculate residualized actual log length of stay, by subtracting expected

log length of stay based on all covariates listed in the note for Table 1, using only variation within

time to EOS. To calculate predicted log length of stay by patient characteristics (Columns 2 and 3), I

residualize the characteristics by time categories and use within-EOS-time variation to predict log length

of stay. Patient characteristics and time categories are described in the notes for Figure 5 and Table 1,

respectively. IOLS is performed keeping visits as observations, but standard errors are clustered by the

hour of patient arrival. * denotes significance at 10% level, ** denotes significance at 5% level, and ***

denotes significance at 1% level.
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Table A-5.2: Shift Type Observation Numbers

Shift type Shifts Hours
Potential
patients

Actual
patients

〈7, 0, 1〉 95 665 1,645 1,160
〈7, 1, 0〉 237 1,659 6,674 2,597
〈7, 1, 1〉 101 707 4,281 1,783
〈8, 0, 1〉 319 2,552 8,453 4,952
〈8, 1, 0〉 174 1,392 7,440 1,981
〈9, 0, 1〉 3,453 30,879 84,292 58,589
〈9, 0, 2〉 325 2,349 6,411 4,541
〈9, 0, 4〉 408 2,898 9,326 4,839
〈9, 0, 6〉 364 3,276 16,186 5,899
〈9, 1, 0〉 3,414 30,528 118,030 59,897
〈9, 1, 1〉 2,909 26,181 116,108 54,221
〈9, 1, 4〉 2,249 19,170 80,279 28,694
〈9, 1, 5〉 60 540 2,554 892
〈9, 1, 6〉 211 1,899 8,157 2,524
〈9, 2, 0〉 464 3,294 12,027 6,317
〈9, 3, 1〉 485 3,277 17,013 6,699
〈9, 3, 3〉 60 540 3,226 1,089
〈9, 4, 0〉 347 2,347 9,996 3,994
〈9, 4, 1〉 212 1,908 8,974 3,370
〈9, 4, 3〉 426 2,752 16,730 5,344
〈9, 4, 4〉 772 5,094 26,094 9,413
〈9, 4, 6〉 2,141 19,269 99,726 29,007
〈9, 5, 3〉 60 540 2,851 1,043
〈9, 6, 0〉 634 5,706 34,943 9,244
〈9, 6, 1〉 1,504 13,536 61,197 21,861
〈9, 6, 4〉 575 5,175 31,088 9,597
〈9, 9, 1〉 353 3,177 15,965 4,598
〈10, 0, 0〉 176 1,760 4,812 2,578
〈10, 0, 1〉 243 2,430 5,783 4,615
〈10, 0, 2〉 137 1,040 2,631 1,901
〈10, 0, 4〉 139 1,050 3,616 2,378
〈10, 1, 0〉 277 2,770 9,092 4,401
〈10, 4, 0〉 139 1,050 4,335 1,834
〈12, 0, 0〉 142 1,704 4,119 2,423
〈12, 4, 9〉 319 3,828 16,490 5,566
Total 23,924 206,942 860,544 369,841

Note: This table lists the number of observations for each shift type, each defined as 〈`, o, o〉, where `

is the shift length in hours, o is the overlap in hours with a previous shift, and o is the overlap in hours

with a subsequent shift in the same location. Observations are counted in terms of unique shifts, hours,

potential patients (patients who arrive at the ED during a time when there is a shift of type 〈`, o, o〉 in

progress), and actual patients (patients who are treated by a physician on a shift of type 〈`, o, o〉).
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Figure A-1.1: Effects on Length of Stay by Shift Length
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B: Shift Beginning

Note: This figure shows coefficients from Equation (2) estimated separately for shifts of seven or eight

hours in length (open circles), nine hours in length (closed circles), and ten hours in length (open trian-

gles). Panel A arranges estimates by hours relative to end of shift (EOS). Panel B arranges estimates by

hours relative to shift beginning.
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Figure A-2.1: Time Components
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B: Proportion of Time

Note: This figure plots time components of length of stay as a function of hours relative to end of shift

(EOS): time from pod arrival to first order (open circles), time from first to last (non-discharge) order

(open triangles), and time from last order to discharge order (closed circles). Panel B shows marginal

effects from a fractional logit model on these shares. Panel A represents these results as time in hours,

incorporating results on the EOS effect on length of stay.
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Figure A-3.1: Mean Age of Accepted Patients by Arrival Time
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Note: This figure shows mean age of accepted patients in each 30-minute bin of arrival time. The solid line

shows means across all shifts. The short-dashed line shows means across shifts without overlap (“terminal

shifts”), in which patient “acceptance” near EOS is simply patient assignment by the triage nurse to the

managerial location. The long-dashed line shows means across shifts with overlap (“transitioned shifts”),

in which patients are chosen between at least two physicians near EOS.
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Figure A-3.2: Mean ESI of Accepted Patients by Arrival Time
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Note: This figure shows mean Emergency Severity Index (ESI) of accepted patients in each 30-minute

bin of arrival time. ESI is an integer from 1 (most severe) to 5 (least severe), evaluated by the triage

nurse and determined by algorithm (Tanabe et al., 2004). The solid line shows means across all shifts.

The short-dashed line shows means across shifts without overlap (“terminal shifts”), in which patient

“acceptance” near EOS is simply patient assignment by the triage nurse to the managerial location. The

long-dashed line shows means across shifts with overlap (“transitioned shifts”), in which patients are

chosen between at least two physicians near EOS.
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Figure A-3.3: Proportion White of Accepted Patients by Arrival Time
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Note: This figure shows the proportion white race of accepted patients in each 30-minute bin of arrival

time. The solid line shows proportions across all shifts. The short-dashed line shows proportions across

shifts without overlap (“terminal shifts”), in which patient “acceptance” near EOS is simply patient

assignment by the triage nurse to the managerial location. The long-dashed line shows proportions across

shifts with overlap (“transitioned shifts”), in which patients are chosen between at least two physicians

near EOS.
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Figure A-3.4: Proportion Black of Accepted Patients by Arrival Time
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Note: This figure shows the proportion black race of accepted patients in each 30-minute bin of arrival

time. The solid line shows proportions across all shifts. The short-dashed line shows proportions across

shifts without overlap (“terminal shifts”), in which patient “acceptance” near EOS is simply patient

assignment by the triage nurse to the managerial location. The long-dashed line shows proportions across

shifts with overlap (“transitioned shifts”), in which patients are chosen between at least two physicians

near EOS.
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Figure A-3.5: Proportion Spanish-speaking of Accepted Patients by Arrival Time
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Note: This figure shows the proportion Spanish-speaking of accepted patients in each 30-minute bin of

arrival time. The solid line shows proportions across all shifts. The short-dashed line shows proportions

across shifts without overlap (“terminal shifts”), in which patient “acceptance” near EOS is simply patient

assignment by the triage nurse to the managerial location. The long-dashed line shows proportions across

shifts with overlap (“transitioned shifts”), in which patients are chosen between at least two physicians

near EOS.
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Figure A-3.6: Age Quantiles of Accepted Patients by Arrival Time
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Note: This figure shows age quantiles of accepted patients in each 30-minute bin of arrival time. The

solid line shows medians; dashed lines show 25th and 75th percentiles; and short-dashed lines show 5th

and 95th percentiles.
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Figure A-3.7: Predicted Length of Stay Quantiles of Accepted Patients by Arrival Time
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Note: This figure shows predicted log length of stay quantiles of accepted patients in each 30-minute

bin of arrival time. Log length of stay is preeicted by cubic splines of age, an indicator for sex, indicators

for ESI, indicators for language, and indicators for race. The solid line shows medians; dashed lines show

25th and 75th percentiles; and short-dashed lines show 5th and 95th percentiles.
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Figure A-3.8: ESI Proportions of Accepted Patients by Arrival Time
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Note: This figure shows (cumulative) proportions by Emergency Severity Index (ESI) of accepted pa-

tients in each 30-minute bin of arrival time. The dotted line shows the proportion of patients with ESI 1;

the short-dashed and long-dash shows the proportion of patients with ESI at least 2 and 3, respectively;

the solid line shows the proportion ofp atients with ESI at least 4.
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Figure A-3.9: Actual and Predicted Mean Log Length of Stay
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A: Actual
-.0

8
-.0

6
-.0

4
-.0

2
0

.0
2

No
rm

al
ize

d 
lo

g 
le

ng
th

 o
f s

ta
y

1 5 10 15 20
Vigintile

B: Predicted by Patient Characteristics

Note: This figure presents binned results in Figure 6 in a different manner. The dashed line in both

panels represents mean hourly predictions based on times relative to EOS among shifts for each arrival

hour, Qt. Panel A shows the relationship between Qt and mean actual log length of stay. Panel B shows

the relationship betwen Qt and predicted log length of stay based on patient characteristics; predictions

based on “ex ante” and full patient characteristics are shown as solid and hollow dots, respectively. See

note for 6 for more detail.
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Figure A-5.2: Evidence from Orders of Staying Past EOS
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Note: This figure shows the following cumulative density plots, in order from left to right: last order

by the attending physician of record (the physician on the bill for patient care, or AOR, corresponding

to the physician whose shift is matched to a patient visit), the first (non-resident) physician order after

AOR orders, and the last discharge order. The cumulative density of the last order by the AOR at EOS

is approximately 86% (i.e., 14% of AORs write orders after their EOS). The median time for the first

physician order after AOR orders is 1.7 hours. Only 35% of patient visits have an order by the AOR. Of

these visits, only 6% of visits have a subsequent order by an attending physician. Cumulative densities

for physician orders are calculated using visits in which the relevant physician order is observed at least

once. See notes for this figure in Appendix A-5 for further comments.
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Figure A-5.3: Censuses over Time
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Note: This figure plots average censuses over time relative to the end of shift (EOS). Each panel shows

results for physicians in shifts with a given EOS overlap time. Subsequent shift starting times are marked

with a vertical line.
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