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ABSTRACT

Climate change is real and dangerous. Exactly how bad it will get, however, is uncertain. Uncertainty
is particularly relevant for estimates of one of the key parameters: equilibrium climate sensitivity—how
eventual temperatures will react as atmospheric carbon dioxide concentrations double. Despite significant
advances in climate science and increased confidence in the accuracy of the range itself, the “likely”
range has been 1.5-4.5°C for over three decades. In 2007, the Intergovernmental Panel on Climate
Change (IPCC) narrowed it to 2-4.5°C, only to reverse its decision in 2013, reinstating the prior range.
In addition, the 2013 IPCC report removed prior mention of 3°C as the “best estimate.”

We interpret the implications of the 2013 IPCC decision to lower the bottom of the range and excise
a best estimate. Intuitively, it might seem that a lower bottom would be good news. Here we ask: When
might apparently good news about climate sensitivity in fact be bad news? The lowered bottom value
also implies higher uncertainty about the temperature increase, a definite bad. Under reasonable assumptions,
both the lowering of the lower bound and the removal of the “best estimate” may well be bad news.
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1. Introduction 
 
What if a study utilizing a new insight on equilibrium climate sensitivity—how 
temperatures react over time as carbon dioxide concentrations double—produced 
results significantly below what most climate models and scientists now assume? The 
natural response would be to celebrate, and to conclude that the value of stringent 
climate policy had diminished. 
 
That celebration would be premature. Countervailing the good news would be the 
recognition that current climate science, while sound on the big picture, did not 
understand a fundamental climate uncertainty as well as had been thought. If there is 
one certainty, it is that the new data will not reveal all. Temperature increases predicted 
by equilibrium climate sensitivity, after all, play out over decades and centuries. Thus, 
the substantial change in estimates would point to even more and deeper uncertainties 
than previously recognized. 
 
To put the same matter in statistical terms, our mean estimate on climate sensitivity 
might have shifted down, but our estimate of its standard deviation would have 
increased. Deeper uncertainty should magnify concerns, since marginal damages from 
rising temperatures increase rapidly. Quite possibly the magnified concerns from 
variability would outweigh any reassurance from a lowered estimate on the mean. 
Pindyck (2013), Weitzman (2009), Wagner and Weitzman (2015), and especially 
Lewandowsky et al. (2014a,b) and Pindyck (2014) discuss this tradeoff between mean 
and standard deviation (or variance).1 
 
We focus here on climate sensitivity for the simple reason that it’s the most iconic of 
climate metrics. It is also among the best-studied. Yet science has not been able to 
narrow its range in over three decades: double carbon dioxide concentrations and, 
consensus climate science tells us, expect long-run temperatures to rise by between 1.5 
and 4.5°C. That range has stood ever since Jule Charney chaired a National Academy of 
Sciences Ad Hoc Study Group on Carbon Dioxide and Climate in the late 1970s 
(Charney et al., 1979). In 1990, the Intergovernmental Panel on Climate Change (IPCC) 
picked up Charney’s range for equilibrium climate sensitivity.2 That verdict held for a 
further fifteen-plus years of increasingly intense scrutiny and increased recognition of 
its validity until 2007, when the IPCC decided to cut off the bottom of the range, which 
became 2°C. Apparent bad news: the lowest estimates for climate sensitivity seemed to 
be ever more out of reach. 
 
In 2013, the IPCC took two steps with respect to the climate sensitivity parameter. First, 
it widened the range once again, keeping the top value of 4.5°C but moving the lower 
bound of the “likely” range back down to 1.5°C. That step points to deep-seated 
uncertainties inherent in climate science and, thus, policy: thirty-five years of amazing 
advances in most every aspect of climate science apparently have not tightened the 
                                                   
1 Note that this focus is different from uncertainty due to high-impact, low-probability events, often 

referred to as ‘tail risks’ or ‘fat tails’. See, e.g., Weitzman (2009) and Wagner and Weitzman (2015). Tail 
risks magnify concerns, though they are not the focus of our analysis. 

2 See Wagner and Weitzman (2015) for more on the history and the IPCC’s detailed definitions. 
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range for the eventual realization of this fundamental parameter. Indeed, they have 
taught us to be more cautious in defining it. 
 
Second, the IPCC (2013) also removed its statement of a “best estimate” for climate 
sensitivity. No interpretation was given to this move in the report, and we don’t venture 
to second-guess the IPCC’s decision. We simply attempt to interpret the implication of 
removing the value itself by suggesting that any assumed climate sensitivity distribution 
may now have reduced ‘peakedness’ as a result. 3  Many others have attempted to 
calibrate distribution functions around the IPCC’s (2007) climate sensitivity 
pronouncements.4 The 2013 step of removing the “most likely” value might indicate that 
the chance of hitting close to the peak of any prior probability distribution has 
decreased. Once again, this additional level of uncertainty is apparent bad news: 
following Pindyck’s (2012, 2013) calibration, decreased peakedness, other factors equal, 
implies greater Willingness to Pay (WTP) out of current consumption to avoid climate 
damages in the future. 
 
In our subsequent analysis, we ask two sets of questions: 
 
1. When is good news bad? Specifically, under what conditions does a lowering of the 

lower bound of the “likely” climate sensitivity range lead to increased WTP to avoid 
global warming?5 
 

2. What should we make of the IPCC’s removal of its prior “best estimate”? How do we 
interpret knowing about the climate sensitivity range but not where within that 
range we might end up? And how does this affect our WTP to avoid global warming? 

 
We focus on the effect of increasing the uncertainty on WTP, while leaving the mean 
unchanged or lowering it, in section 2. Section 3 interprets the second set of questions 
around ‘peakedness’, or a lack thereof. Section 4 concludes. An extensive set of 
appendices presents proofs for our results, and looks for special cases with distinctive 
properties. 
 
 

2. When is good news bad? The mean-variance tradeoff 
 
A decrease in the mean climate sensitivity, ceteris paribus, is undoubtedly good news 
for the planet. We could expect eventual global average temperatures to rise less than 
previously feared. However, when that decrease in mean is due to a widening of the 
uncertainty range—for example, if it is due to a lowering of the lower bound—the news 
may not overall be good. In fact, that is what we find may be the case here. 

                                                   
3 We interpret peakedness using kurtosis, holding the mean and standard deviation fixed. As an alternate 

approach, we also look at the distribution changing both its kurtosis and standard deviation to keep the 
IPCC’s “likely” interval constant. 

4 See, for example, Pindyck (2012, 2013), Weitzman (2009, 2010), and Wagner and Weitzman (2015). 
5 We define WTP here following Pindyck (2012, 2013), in the sense of how much it is optimal for society to 

pay to avoid certain degrees of average global warming in order to maximize total societal well-being—
rather than in the behavioral-economic sense of the term. 
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We first develop the general economic framework that underlies our analysis in 
subsection 2.1. Subsequently, we consider the impact of a Mean Preserving Spread 
(MPS) on the distribution of future temperatures in subsection 2.2. We demonstrate 
that the description of climate sensitivity in Assessment Report 5 (IPCC, 2013) could be 
seen as an MPS of the description in Assessment Report 4 (IPCC, 2007). In such a 
scenario, and assuming that temperature changes and economic growth are 
independent, then for any convex damage function and any risk averse utility function, 
this will lead to an increased WTP. This is despite the fact that the IPCC’s 2013 position 
on climate sensitivity might superficially be viewed as ‘good’ news. 
 
In subsection 2.3, we turn to increases in the standard deviation of the distribution of 
climate sensitivity. Every MPS falls into this category when the increase in variance is 
mean-preserving, but the converse is not true. Therefore, subsection 2.3 contains a 
strictly broader category of increased risk than subsection 2.2. We demonstrate that 
WTP can increase even when expected climate sensitivity decreases under a broad range 
of conditions. 
 
In subsection 2.4, we briefly turn our attention to the situation where there is increased 
uncertainty over economic growth rather than climate sensitivity. 
 

2.1 The framework 
 
Let ݕ଴ denote current per-capita consumption levels and ݕ௧∗ be what Weitzman (2010, 
pp. 58–59) describes as “potential consumption in the complete absence of climate 
change because it is defined to be what consumption would be without any global 
warming” at some future time t  (his emphasis). Then realized consumption, ݕ௧ at time ݐ 
in the presence of climate change damage is given by ݕ௧ ൌ ሺ1 െ ሺܶሻܦ ௧∗, whereݕሺܶሻሻܦ ∈
ሾ0,1ሻ and ܦᇱሺܶሻ ൐ 0 is a multiplicative climate change damage function. We use ܶ, which 
represents the difference between global average temperatures at time ݐ  and pre-
industrial levels, as our proxy for climate change. It might, though, just as easily be 
interpreted as the rise in sea level, extreme weather events, or any other relevant 
climatic metric. When interpreting our results in terms of climate sensitivity, ܶ is equal 
to climate sensitivity due to a doubling of the level of carbon dioxide in the atmosphere. 
 
We consider the preferences of a rational social planner in a general economic setting. 
ܷሺݕ, ሻݐ represents the planner’s time-separable utility function with per-capita 
consumption and time as its elements.6 The amount of consumption, ݌, that the planner 
would be prepared to sacrifice today in order to prevent all future climate change 
damage at time ݐ is: 

                                                   
6 Though we talk about a social planner acting on behalf of all individuals, the formulation could be 

equally well conducted in per-capita terms for a representative individual within society. This analysis 
excludes the ‘real option’ of waiting to act in the future; see, for example, Gollier (2012a, Chapter 13). As 
the value of real options increase with volatility, the analysis would become significantly more complex 
if we incorporated the ability to ‘wait and see’ into the model. It also ignores issues associated with the 
limitations of using expected utility theory in the presence of ambiguity (rather than risk), as recently 
discussed by Millner, Dietz and Heal (2013). 
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(1)  ܷሺݕ଴, 0ሻ െ ܷሺݕ଴ െ ,݌ 0ሻ ൌ ,∗௧ݕሾܷሺܧ ሻሿݐ െ ,௧ݕሾܷሺܧ  .ሻሿݐ

 
The left-hand side of equation (1) represents the immediate gain in utility from not 
spending ݌ on mitigation today, while the right-hand side is the expected gain in future 
utility from mitigating climate change and, thus, consuming ݕ௧∗ rather than ݕ௧. For given 
we will define the value function to be ܸሺܶሻ ,ݐ ௧∗ andݕ ൌ ܷሺሺ1 െ ,∗௧ݕሺܶሻሻܦ  .ሻݐ
 
Assume that the planner’s utility function takes standard constant relative risk aversion 
form. No restrictions are placed on the parameter values ߩ and ߛ, which respectively 
represent the pure rate of time preference and the coefficient of relative risk aversion, 
except that the latter must be non-negative (ߛ ൒ 0):  

 

(2)  ܷሺݕ௧, ሻݐ ൌ ቊ
݁ିఘ௧൫ݕ௧

ଵିఊ െ 1൯/ሺ1 െ ሻߛ ߛ ് 1
݁ିఘ௧ln	ሺݕ௧ሻ ߛ ൌ 1

. 

 
By substituting (2) into (1), it follows that if ݃௧, the per-period logarithmic growth rate in 
consumption in the absence of climate change damage, is defined through the 
relationship ݃௧ ൌ   :଴ሻ, thenݕ/∗௧ݕଵ݈݊ሺିݐ
 

(3)  
ቀ௬బି௣

௬బ
ቁ
ଵିఊ

ln ቀ௬బି௣
௬బ

ቁ

ൌ 1 ൅ ݁ିఘ௧ܧ ቂቀ൫1 െ ሺܶሻ൯ܦ
ଵିఊ

െ 1ቁ ݁௧ሺଵିఊሻ௚೟ቃ ߛ ് 1

ൌ ݁ିఘ௧ܧሾlnሺ1 െ ሺܶሻሻሿܦ ߛ ൌ 1
, 

 
We focus on ݕ/݌଴. The value of preventative action now is directly measured by the 
proportion of consumption that we would willingly spend today to eliminate future 
climate change, all posited to be human induced.7 As the ratio increases, the implied 
value of policy to avoid climate change becomes stronger. This ratio is closely related to 
Pindyck’s (2012, 2013) WTP metric, who considers what fraction of consumption society 
would pay to limit damage to some pre-determined level. For this analysis, for 
expositional ease, we set that pre-determined level equal to zero climate change. The 
qualitative results are the same for other values. 
 
In general, the WTP will depend on both the change in temperature and economic 
growth. However, for the special case where utility is logarithmic, income and 
substitution effects offset each other, making ݕ/݌଴ independent of ݃௧ in (3). 
 
We will denote by ଵ݂ the probability density function that the social planner assigns to ܶ 
prior to the arrival of news. This density function is then amended to ଶ݂ if the news can 
be interpreted as an MPS, or ଷ݂ if the news increases variance in a way that may or may 
not preserve the mean. 
 
 

                                                   
7 If there is also natural variation in climate due to nature, this could be captured by introducing an 

additional random factor into the analysis. 
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2.2 IPCC’s lowering of the lower bound as a Mean Preserving Spread 
 

New information leads the social planner to update the probability density function for 
ܶ from ଵ݂ to ଶ݂. Let ݔ and ݒ be random variables drawn from ଵ݂ and ଶ݂ respectively. Then 
we say that ଶ݂ is an MPS of	 ଵ݂ if and only if we can express ݒ ൌ ݔ ൅  ሻ for a randomݔሺݖ
variable ݖሺݔሻ, where ܧሾݖሺݔሻ|ݔሿ ൌ 0 for all ݔ (Rothschild and Stiglitz, 1970).8 
 
An MPS results in the variance of ଶ݂ being greater than that of ଵ݂, with the means of the 
two distributions being the same. It can also be interpreted as follows: ଶ݂ is an MPS of	 ଵ݂ 
if and only if ଵ݂ second-order stochastically dominates ଶ݂ and the two distributions have 
the same mean. It should be noted, though, that not every mean-preserving increase in 
variance can be interpreted as an MPS. (See subsection 2.3.) 
 
We now present our main result and an immediate corollary: 
 
Result 1. Assume ܶ and ݃௧are independent. Then any MPS will increase the social 
planner’s WTP to avoid climate change if and only if ܸሺܶሻ is concave with respect to ܶ. 
 
Proof. See appendix A1. 
 
Corollary 1. Any weakly risk-averse utility function and any weakly convex damage 
function, with at least one of these two conditions being strong, provides sufficient 
conditions for ܸሺܶሻ to be concave with respect to ܶ, and hence for any MPS to increase 
the social planner’s WTP if ܶ and ݃௧ are independent 
 
Proof. See appendix A1. 
 
This is a sufficient condition for any monotonic increasing and non-convex utility 
function. If we restrict attention to specific utility functions, an analytic condition on the 
damage function that is weaker than convexity but is both necessary and sufficient can 
often be identified. We illustrate with the constant relative risk aversion form described 
in subsection 2.1.9 
 
Corollary 2. Assume that ܶ and ݃௧ are independent. Any MPS in the distribution of 
possible future temperatures will lead a social planner who has constant relative risk 
aversion utility to have a higher WTP to avoid future climate change if and only if: 
 

ᇱᇱሺܶሻܦ  (4) ൐ െ ఊ஽ᇲሺ்ሻమ

ଵି஽ሺ்ሻ
 

 

                                                   
8 An MPS can be interpreted as follows: At each possible temperature outcome, ଶ݂  introduces a new 

random gamble, ݖሺݔሻ. The distribution of ݖሺݔሻ can vary with ݔ, but the mean must be zero in all cases. 
Notice that this potentially includes the introduction of trivial gambles (ݖሺݔሻ ൌ 0 with probability = 1) 
for some, but not all, values of ݔ, a property we will use going forward. 

9 Equation (A5) in the appendix provides the less analytically tractable necessary and sufficient conditions 
for other utility functions. 
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In the case when 1=  this result extends to the situation when ܶ  and ݃௧  are not 
independent. 
 
Proof. See appendix A1. 
 
The proof of Corollary 2 follows from the fact that equation (4) is the necessary and 
sufficient condition for ܸሺܶሻ to be concave for any constant relative risk aversion utility 
function. The concave curvature of ܸሺܶሻ comes from the (weakly) concave shape of the 
constant relative risk aversion utility function, which more than compensates for the 
maximum permissible concavity of the damage function given condition (4). Given 
concavity for ܸሺܶሻ, from Corollary 1, greater uncertainty (an MPS) implies greater WTP 
to avoid climate change. 
 
We can apply Result 1 directly to the IPCC’s altered descriptions of climate sensitivity. In 
Assessment Report 4, IPCC (2007) stated that there is a 66% chance that climate 
sensitivity lies between 2 and 4.5°C, that the most likely outcome is about 3°C, that the 
probability of it being below 1.5°C is below 10%, and that outcomes substantially higher 
than 4.5 degrees cannot be excluded.  
 
For expositional ease, we illustrate our argument using a discrete distribution, ଵ݂, for 
climate sensitivity. The possible outcomes are temperature increases of {1.40, 1.75, 3.00, 
4.75, 6.25} °C, with associated probabilities of {7%, 10%, 66%, 13%, 4%}.10 
 
Five years later, Assessment Report 5 changed the assessment of climate sensitivity 
primarily by lowering the lower bound from 2°C to 1.5°C, expanding the 66% likely 
range to 1.5 to 4.5°C (IPCC, 2013). Moreover, the IPCC assessed the probability of 
climate sensitivity less than 1°C at less than 5% (“extremely unlikely”) and the 
probability that it is greater than 6°C at less than 10% (“very unlikely”). For expositional 
ease, we can once again capture this assessment with a discrete distribution, ଶ݂, with six 
possible outcomes: temperature changes can equal {0.90, 1.40, 1.75, 3.3214, 4.75, 6.25} 
degrees, with associated probabilities {4%, 13%, 10%, 56%, 13%, 4%}. 
 
Figure 1 plots the cumulative density functions of these two distributions. 
 

                                                   
10 Contrast our discrete interpretation with that of, e.g., Weitzman (2009) or Wagner and Weitzman 

(2015), who use a continuous, log-normal calibration. We simply resort to a discrete function for ease of 
exposition.  
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Figure 1—Cumulative distribution functions for climate sensitivity under IPCC Assessment 
Reports 4 (AR4) and 5 (AR5). The distributions are represented by functions ࢌ૚ 
and ࢌ૛, respectively. 

 
Notice that ଶ݂  has increased the mass in the left-hand tail. The offsetting rightward 
distribution of mass, so as to preserve the mean, is in the center of the distribution. 
There is no increase in mass in the right-hand tail. 
 
This example is ready made for Result 1. Define ݖሺݔሻ ൌ 0 with probability = 1 for all 
values of ݔ  except ݔ ൌ 3 °C. Then set ݖሺ3ሻ ൌ ሼെ2.1	, െ1.6,൅0.3214ሽ  with associated 
probabilities {6.06%, 9.09%, 84.85%}. 11  Firstly, ܧሾݖሺݔሻ|ݔሿ ൌ 0  for all ݔ  in this case. 
That’s the “mean preserving” part. Second, when we add this ݖሺݔሻ onto ଵ݂, ଶ݂ emerges. In 
other words, ଶ݂ is an MPS of ଵ݂. 
 
Recall how 	 ଵ݂ is a representation of Assessment Report 4 and ଶ݂ is a representation of 
Assessment Report 5’s description of climate sensitivity. Result 1 then tells us that the 
IPCC’s 2013 step to lower the lower bound in a mean-preserving way—what superficially 
might have appeared to be ‘good’ news for the planet—was indeed bad news. Positing 

                                                   
11 One might think of the z gamble as scientists discovering additional uncertainties attached to the 

previous scenario leading to a 3°C temperature increase. There could also have been an MPS that added 
no density in either tail, and indeed was all concentrated on one or the other side of the median. 
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independence of ܶ and ݃௧, this holds true as long as ܸሺܶሻ is concave, which in turn holds 
true for any convex damage function and any weakly risk averse utility function. 
 
 

2.3 Increase in the variance of the distribution 
 

What if rather than an MPS, we interpreted the IPCC’s step of lowering the lower bound 
as an increase in the standard deviation? Assume that the original distribution 	 ଵ݂ 
changed to ଷ݂, where ߪଷ ൐  ଵ. At this point we place no other restrictions on the twoߪ
means (ߤଵ and ߤଷ) nor on the specific distribution of 	 ଵ݂ or 	 ଷ݂. 
 
The situation now becomes more complex. Knowing the properties of the mean and 
standard deviation of the distribution of future temperatures is generally insufficient to 
determine the social planner’s WTP. We return to this point in detail below and in the 
technical appendices. 
 

2.3.1 Logarithmic utility 
 

Though our initial analysis was in terms of an MPS, WTP can increase even when the 
expected value of climate sensitivity diminishes by a significant amount. An elegant 
illustration emerges if we assume a logarithmic utility and a negative quadratic 
exponential damage function of the type employed by Weitzman (2009) and Pindyck 
(2012, 2013), among others. Given these functional forms, even if IPCC (2013) reduced 
the expected value of climate sensitivity by a significant amount (>0.05°C) when 
compared to IPCC (2007), the WTP could still have increased. 
 
Result 2. Assume that the social planner has logarithmic utility and the damage 
function is defined as ܦሺܶሻ ൌ 1 െ ݁ିఉ்

మ
.12 Then moving from ଵ݂ to	 ଷ݂ increases the social 

planner’s WTP if and only if ߪଷ
ଶ െ ଵߪ

ଶ ൐ ଵߤ
ଶ െ ଷߤ

ଶ.  
 
Proof. In the case of logarithmic utility, subsituting the damage function into the value 
function gives ݁ିఘ௧ܧሾlnሺ1 െ ሺܶሻሻሿܦ ൌ െି݁ߚఘ௧ܧሾܶଶሿ.  This is a quadratic function with 
expectation determined solely by the mean and variance. Specifically, ܧሾܶଶሿ ൌ ଶሾܶሿܧ ൅
  :ሾܶሿ, and from equation (3)ݎܸܽ
 

(5)  ݈݊ ቀ௬బି௣
௬బ	

ቁ ൌ െି݁ߚఘ௧ሺܧሾܶଶሿ ൅  .ሾܶሿሻݎܸܽ

 
Hence, ݌ is monotonically increasing in ܧଶሾܶሿ ൅  ሾܶሿ. Therefore the social planner’sݎܸܽ
WTP is greater under ଷ݂than ଵ݂ if and only if ߤଷ

ଶ ൅ ଷߪ
ଶ ൐ ଵߤ

ଶ ൅ ଵߪ
ଶ. QED. 

 
Crucially, under the conditions of Result 2, any mean-preserving increase in variance 

                                                   
12 The damage function is convex if and only if ܶ ൏ ඥሺ2ߚሻିଵ. It also satisfy the inequality of equation (4) 

for all ܶ when ߛ ൒ 1, which includes log utility. For 	ߛ ൏ 1, the inequality is met if and only if ܶ ൏
ඥሺ2ߚሺ1 െ  ሻሻିଵ. Therefore complete convexity in the damage function is not required either for Result 2ߛ
(except in the case of risk neutrality) or Result 3 below. 
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will increase WTP. For logarithmic utility and exponential quadratic damage functions 
this is a stronger finding than Result 1 since not all mean-preserving increases in 
variance are also an MPS. 
 
Focusing on the mean climate sensitivity alone then could once again lead us astray. 
Consider the implications of Result 2 in the context of the discrete distribution functions 
for climate sensitivity given in the previous subsection. Keeping all other values the 
same, we can reduce the most likely value of ଶ݂ from 3.3214°C to 3.25°C to produce ଷ݂. 
The density function ଷ݂represents an unambiguous improvement over ଶ݂. The mean of ଷ݂ 
is less than ଵ݂: 3.08°C compared to 3.12°C. Yet, as ሺߪଷ

ଶ െ ଵߪ
ଶሻ െ ሺߤଵ

ଶ െ ଷߤ
ଶሻ ൌ0.125 > 0, we 

would still prefer to confront ଵ݂rather than ଷ݂. The WTP has gone up, even though the 
new distribution has a lower mean value of climate sensitivity, more mass in the left-
hand tail, and the same amount of mass in the right-hand tail. That is because outcomes 
got worse in the middle. What at first glance might have appeared to be ‘good’ news is, 
in fact, ‘bad’ news.13 
 

2.3.2 Non-logarithmic utility 
 

For non-logarithmic utility—values of ߛ ് 1—the impact on the social planner’s WTP of 
moving from ଵ݂  to ଷ݂ is more complex. This is because no natural damage function 
combines with non-logarithmic utility to give a quadratic value function. We are, 
therefore, no longer in the comfortable world of mean-variance decision-making, where 
Result 2 holds. However, we conjecture that if both (i) ଵ݂ and ଷ݂ belong to the same 
major traditional families of distributions and (ii) T and tg  are independent, then a 

mean-preserving increase in variance will generally increase the social planner’s WTP.14 
 
While it is beyond the scope of this paper to prove this conjecture for all possible 
families of distributions, all possible damage functions, and all potential values of ߛ, we 
can illustrate it for a particularly relevant case. Restrict both ଵ݂ and ଷ݂ to be drawn from 
a generalized gamma distribution where the second shape parameter is set to be 2; 
݂ሺܶሻ: ,ߙሺܩܩ 2,  :ሻߣ
 

(6)  ݂ሺܶሻ ൌ ଶ

ఒ୻ሺఈሻ
ቀ்
ఒ
ቁ
ଶఈିଵ

݁ିሺ்/ఒሻ
మ
, 

 
with ߙ, ߣ ൐ 0 and ܶ ൒ 0.15 Figure 2 illustrates the probability density function (6) for four 
different choices of parameter values. All assume that μ ൌ 3°C but vary in the value of 

                                                   
13 This result holds if we change the most likely value of ଷ݂ to any value higher than 3.2155°C, while leaving 

all other values unchanged, when ߤଷ ൌ3.06°C. 
14 If ܶ is drawn from a family of probability density functions whose members differ by location and scale 

only (“Two cumulative distribution functions 1ܩሺ∙ሻ  and 2ܩሺ∙ሻ  are said to differ only by location 
parameters ߙ and ߚ if 1ܩሺݔሻ 	ൌ 	ߙ2ሺܩ ൅ ߚ ሻ withݔߚ ൐ 0’’; Meyer 1987, p. 422), which includes normal 
and uniform distributions, then Result 2 will generalize to non-logarithmic utility functions. See Meyer 
(1987). 

15 This distribution is also known as a generalized normal distribution (Khodabina and Ahmadabadib, 
2010). Pindyck (2012, 2013), by contrast, relies on a displaced gamma distribution for his calibration. 
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σ.16 
 

 
Figure 2—The probability density function of future temperature changes, which are 

assumed to be generalized gamma distributed with second shape parameter 
equal to 2: 	ࢌሺࢀሻ: ,ࢻሺࡳࡳ ૛,  ,ࢀ are chosen so that the mean of ࣅ and ࢻ ሻ. The values ofࣅ
ࣆ	 ൌ ૜°۱ and the standard deviation of ࣌ ,ࢀ	 ∈ ሼ૙. ૞°۱, ૚. ૙°۱, ૚. ૞°۱, ૛°۱ሽ. 

 
In this parameterization, the probability density function, ݃ሺܶଶሻ, of the square of future 
temperature is given by a gamma distribution ݃ሺܶଶሻ ൌ Γሺߙ, ଶሻߣ , where the second 
parameter is the scale parameter. This distribution has a well-known moment 
generating function. 
 
Result 3. If ܦሺܶሻ ൌ 1 െ ݁ିఉ்

మ
, ݂ሺܶሻ: ,ߙሺܩܩ 2, ሻߣ ߛ , ് 1and ݃௧  and ܶ  are independent, 

then any mean-preserving increase in variance raises the WTP. 
 
Proof. We provide the full proof of Result 3 in appendix A3. The analytical derivation 
relies on the assumption that, for values of ߙ that are likely to be relevant for describing 
potential future climate change damage, ሺΓሺߙ ൅ 0.5ሻ Γሺߙሻ⁄ ሻଶ  is well approximated by 
െܣ ൅  The appendix also describes a series of empirical .ܣ for some positive constant ߙ

                                                   
16 If we center climate change damage around 	ߤ ൌ 3°C of warming, with a standard deviation of ߪ ൌ  ,ܥ1.5°

then this gives parameter values of ߙ ൌ 1.0876 and ߣ ൌ 3.2162. 
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tests of this result which do not rely on this approximation. Under a wide range of 
plausible parameter values, in no case is Result 3 found to be violated.  
 
Result 3 also implies that Result 2 extends to non-logarithmic utility for most plausible 
functional forms and parameter values. (See the technical appendix for 
counterexamples.) Figure 3 illustrates the empirical magnitude of this result. Let ݌௖ 
denote the value of ݌ if ܶ ൌ  ଴ݕ/௖݌ ଴ andݕ/݌ with certainty. Figure 3 presents values for ߤ
under the conditions of Result 3 and when ߩ ൌ ݃௧ ൌ 0 for different choices of ߛ (Panel 
A), ߪ (Panel B), and ߚ (Panel C).17 

 

 
Panel A: Risk aversion 

 

                                                   
17  The baseline parameter values used in these figures are: ߤ ൌ ܥ3° ߪ , ൌ ܥ1.5° ߛ , ൌ 3  (Panel B also 

includes	ߛ ൌ 0.5) and ߚ ൌ 0.006585. 
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Panel B: Standard deviation of temperature 

 
 

 
Panel C: Temperature damages 

Figure 3— This figure illustrates the amount that a rational social planner would spend as a 
proportion of current consumption to prevent climate change both in the 
presence, ࢖, and absence, ࢉ࢖, of future temperature uncertainty. Panels A, B and 
C respectively vary the coefficient of relative risk aversion, ࢽ, the standard 
deviation of future temperature, ࣌, and the extent of the damages caused by 
climate change ࢼ. 
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Even when the social planner is risk-neutral (ߛ ൌ 0), the predominantly convex damage 
function results in ݌ ൐  ,଴ rises: the more risk averse the planner isݕ/݌ ,increases ߛ ௖. As݌
the more the social planner is willing to pay today to tackle climate change when future 
temperature is uncertain. This particular illustration assumes ݃௧ ൌ 0 , although it 
extends to some (not all) situations when that is not the case (see the technical 
appendices). Moreover, as temperature uncertainty increases, so does ݕ/݌଴, consistent 
with Result 3. Finally, and as expected, the more that temperature change converts into 
actual damages (through ߚ), the higher is the WTP, and the greater is the difference 
between ݌ and ݌௖. 
 
In the technical appendices, we provide two sets of counter-examples to the general 
principle that WTP increases with a mean-preserving increase in the variance of the 
distribution that describes climate sensitivity. These are: 
 
(i) When ଵ݂  and ଷ݂  are highly different probability density functions. For non-

logarithmic utility, the value function will often result in a dislike of kurtosis as 
well as variance. It is therefore possible to construct examples with high variance 
(but low kurtosis) that give the social planner a lower WTP than under an alternate 
distribution with lower variance (but higher kurtosis). See Technical Appendix 
TA1. 
 

(ii) When the coefficient of relative risk aversion is high, and ݃௧  and ܶ are strongly 
positively correlated. In this case, the most severe tempertature damages occur 
when economic growth has been strong and society is richest. Because of the high 
coefficient of relative risk aversion, these states are discounted heavily. Therefore, 
the most severe temperature damages, which come when growth has been 
extremely positive, do not have a high present value. See Technical Appendix TA2. 
 

While these counter-examples are of academic interest, their relevance for real world 
policy making is uncertain. For example, it seems unlikely that news about climate 
sensitivity would significantly reduce kurtosis while simultaneously raising the variance 
of our prevailing climate sensitivity distribution. The correlation between temperature 
changes and economic growth could easily go in either direction. Under one possible 
evolution, dramatic scientific and engineering advances in green technologies 
simultaenously facilitate significant economic growth and much less temperature 
change. In this case, the correlation between ݃௧  and ܶ  is negative. In a much less 
beneficial scenario, policy makers pursue economic growth through existing ‘dirty’ 
technologies, resulting in ݃௧  and ܶ  being positively correlated. Given these divergent 
views, our base case illustrates for situations where ݃௧ and ܶ are uncorrelated. 
 
 

2.4 Economic growth 
 

So far we have focused on how changes in the distribution of climate sensitivity would 
affect WTP. Under a wide range of conditions, both an MPS and a potentially mean-
reducing increase in variance increases WTP. 
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We could imagine a similar analysis with respect to uncertainty regarding economic 
growth. For example: 
 
Result 4. Assume that ݃௧ and ܶ are independent and that ߛ ് 1. Then for any damage 
function ܦሺܶሻ ∈ ሾ0,1ሻ  and for any probability density function describing future 
temperature uncertainty, WTP increases following an MPS in the distribution of future 
consumption growth. For logarithmic utility (ߛ ൌ 1), WTP to avoid climate change is 
independent of the properties of ݃௧ even without independence from ܶ. 
 
Proof.  See appendix A4.  

 
This result draws parallels with the well-known finding around a declining social 
discount rate given uncertain future growth.18 
 
 

3. Removal of “best estimate” as decreased peakedness 
 
The previous section focused on how the increase in uncertainty that is associated with 
the IPCC’s decision to widen the “likely” range of climate sensitivity in its Assessment 
Report 5 may well have increased the WTP. In this section, we turn to the other 
important recent change in the way it reports estimates of this parameter. The IPCC’s 
2007 report included a “best estimate” for climate sensitivity of 3°C. No longer. In its 
2013 report the IPCC abandoned its statement identifying a “best estimate.”19 
 
We interpret the resulting change as one that seems to be best captured by a look at the 
distribution’s decreased ‘peakedness’. To isolate the implications, we shift our analysis 
of climate sensitivity to a normal distribution while keeping mean and standard 
deviation constant. In particular, we use a probability-density function considered by 
Zeckhauser and Thompson (1970): 
 

(7)  ݂ሺݖ; ,ߤ ,ߪ ሻߠ ൌ ሾ2ߪΓሺ1 ൅ ݌ݔሻሿିଵ݁ߠ/1 ൜െ ቚ௭ିఓ
ఙ
ቚ
ఏ
ൠ 

 
with ߪ ൐ 0 and ߠ ൐ 0, where ߠ defines the distribution’s kurtosis: the higher is ߠ, the 
lower is its kurtosis, and vice versa. Trimming the peak in effect decreases the kurtosis 
of the distribution. Figure 4 shows the effects: the higher is ߠ , the lower is the 
distribution’s peakedness.20 
 

                                                   
18 See, for example, Arrow et al. (2013, 2014) and Cropper et al. (2014). 
19 There is a mention of a “mean” climate sensitivity parameter of 3.2°C in Chapter 12 of the full IPCC 

report. However, in a break from IPCC (2007), neither the Summary for Policy Makers nor the chapter 
summaries themselves include a statement of the “best estimate” (IPCC 2013, and Wagner and 
Weitzman, 2015). 

20 Importantly, Zeckhauser and Thompson’s (1970) ߠ is not equal to kurtosis. It is rather a parameter that 
directly affects kurtosis (what we call peakedness throughout the text), even though it operates in the 
opposite direction. For a normal distribution, ߠ ൌ 2, while kurtosis = 3. ߠ increases with a decrease in 
peakedness. The kurtosis of a uniform distribution equals 1.8, while ߠ ൌ ∞. 
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Figure 4—Climate sensitivity distribution, calibrating a standard normal distribution to the IPCC’s 
“likely” range of 1.5 to 4.5°C. 

 
The assumed distribution is symmetric, and is not cut off at zero. These properties make 
it far from perfect to describe climate sensitivity. In fact, they tilt our results toward 
conservatism in the sense that we are clearly underestimating the true uncertainties 
involved, in particular on the upper tail of what might more accurately be captured by a 
skewed distribution. 
 
Result 5. Removing the “best estimate” for climate sensitivity, a step we interpret as 
decreasing peakedness of the distribution, increases WTP. 
 
Proof. We rely on Pindyck’s (2012, 2013) model to analyze the implications of varying 
kurtosis, plugging in the Zeckhauser-Thompson distribution from (7) in lieu of 
Pindyck’s displaced gamma distribution. The lower is peakedness (the higher is ߠ), the 
higher is the WTP to avoid damages from climate change, in particular for a constant 
1.5-4.5°C “likely” range (Figure 5). 
 



17 
 

 
Figure 5—Willingness to Pay (WTP) to avoid climate damages at various levels of peakedness 
(inversely related to ࣂ). 

 
“Constant ߪ” in Figure 5 shows the results of varying ߠ, while keeping everything else 
constant. That shows the cleanest possible trade-off of various levels of peakedness. 
However, it also changes the probabilities of climate sensitivity between 1.5 and 4.5°C. 
In particular, increasing ߠ without other adjustments increases the likelihood of being 
between 1.5 and 4.5°C, cutting off tails (on both ends) even further. 
 
By adjusting the standard deviation, ߪ, in addition to ߠ, we keep the IPCC’s “likely” 
probability constant. The difference is small but important in itself. A constant “likely” 
probability guarantees that WTP is a strictly increasing function for reasonable values of 
 Any amount of increased uncertainty within the 66% likely range—a decrease in .ߠ
peakedness—leads to an increased WTP to avoid climate damages. 
 
Importantly, this result plays out entirely within the “likely” climate sensitivity range. 
Higher ߠ (lower peakedness) implies less density in the tails, which typically drive the 
results.21 Hence, here WTP increases with decreased peakedness despite decreased mass 
in the upper tail, not because of it. That decreased density in the upper tail is also the 

                                                   
21 Weitzman (2009), Wagner and Weitzman (2015). 
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reason why the WTP-line for constant standard deviation tilts downward slightly with ߠ 
above 3, and why the WTP for a constant 66% “likely” line tapers off.22 
 
Given that, it is important to add a warning: Figure 5 highlights the importance of 
relative differences across WTP levels with different levels of peakedness; the absolute 
WTP levels are largely irrelevant, as the uncertainty of climate sensitivity here does not 
play out in the all-important (fat) upper tail of the distribution. It only operates solely 
within the 1.5 to 4.5°C IPCC “likely” range. 
 
 

4. Conclusion 
 
Climate sensitivity—the eventual temperature outcome based on a doubling of carbon 
dioxide concentrations in the atmosphere—is a key parameter to determine long-run 
global average temperature outcomes and, thus, the costs of failing to take significant 
steps to mitigate future climate change. Doubling of carbon dioxide concentrations in 
the atmosphere is not a hypothetical. Concentrations are already up over 40 percent 
from preindustrial levels of around 280 parts per million (ppm) to around 400 ppm. At 
the current rate, pre-industrial levels will double well before the end of the century. 
 
The title question is not a hypothetical either. While carbon dioxide emissions have 
picked up this past decade, leading to the relentless upward trend in concentrations in 
the atmosphere, global average surface warming has fallen short of past projections.23 
Perhaps an even more fundamental reconsideration is the newly discovered importance 
of black carbon. Put together, these new facts have led IPCC (2013) to reconsider the full 
implications for long-term equilibrium warming and have led it to widen the “likely” 
range, once again, to 1.5 to 4.5°C. In addition, the IPCC removed its prior “best 
estimate” of 3°C. 
 
Unambiguous conclusions are hard to reach in this arena where uncertainties are large. 
Bearing this caution in mind, our analysis strongly suggests that, ceteris paribus, the 
IPCC’s recent widening of the “likely” range of temperature change by reducing its 
bottom value may well increase appropriately calibrated WTP to avoid such change in 
the future. The same holds for the removal of the “best estimate.” Given the increasing 
marginal costs of global warming, greater uncertainty raises the return for taking action 
to curb greenhouse emissions—and the IPCC’s steps reflect greater uncertainty. 
  

                                                   
22 If we did not have the result of diminished peakedness in the updated IPCC report, we might think that 
ߠ ൏ 2 , implying a higher peak but much more density in the tails as compared with a normal 
distribution. Whether this would be better or worse than the normal case would depend on both the 
form of the damage and utility functions. 

23 Economist (2013). See Nuccitelli & Mann (2013) for a factual rejoinder. Cowtan and Way (2013) show 
how global average surface warming since 1997 might have been underestimated by half. Economist 
(2014) provides a summary. 
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Appendix 
 
A1. Proof of Result 1 and Corollaries 1 and 2 

 
 
Let ݔ be a random variable describing ܶ before the introduction of an MPS and ݒ ൌ ݔ ൅
ሿݔ|ሻݔሺݖሾܧ ሻ be a random variable describing ܶ after the introduction of an MPS withݔሺݖ ൌ
0 for all ݔ. Let ݌௫ and ݌௩ respectively denote the amount the planner is willing to pay before and 
after the introduction of the MPS. Then, by rearranging equation (1) in the body of the text: 
 

(A1)  	ܷሺݕ଴ െ ,௩݌ 0ሻ െ ܷሺݕ଴ െ ,௫݌ 0ሻ ൌ ݔ൫ܸൣܧ ൅ ሻ൯൧ݔሺݖ െ  .ሻሿݔሾܸሺܧ
 
Since the utility function is monotonic increasing, ݌௩ ൐  ௫ if and only if the right hand݌
side of the previous offset equation is negative. By the law of iterated expectations, the 
right hand side can be rewritten as: 
 

(A2)  ܧ௬೟∗,௫ ቂܧ௭ሺ௫ሻൣܸ൫ݔ ൅ ,∗௧ݕ	ห	ሻ൯ݔሺݖ ൧ቃݔ െ  .ሻሿݔሾܸሺܧ
 
If ܸሺܶሻ is concave, then by Jensen’s inequality: 
 

(A3)  ܧ௬೟∗,௫ ቂܧ௭ሺ௫ሻൣܸ൫ݔ ൅ ,∗௧ݕ	ห	ሻ൯ݔሺݖ ൧ቃݔ ൏ ݔ௬೟∗,௫ൣܸ൫ܧ	 ൅ ,∗௧ݕ|ሻݔሺݖ௭ሺ௫ሻሾܧ  .ሿ൯൧ݔ
 
From the conditions of the MPS, ܧሾݖሺݔሻ│ݔሿ ൌ 0  for all ݔ . The independence of 
temperature and growth will also ensure that ݕ௧∗ will have no conditioning information 
for ݔ. Then ܧ௭ሺ௫ሻሾݖሺݔሻ|ݕ௧∗, ሿݔ ൌ 0 and 
 

(A4)  ܧ௭ሺ௫ሻൣܸ൫ݔ ൅ ,∗௧ݕ	ห	ሻ൯ݔሺݖ ൧ݔ ൏ ܸሺݔሻ 
 
This establishes that the right-hand side of equation (A1) is negative, completing the 
proof of Result 1. 
 
 
To establish Corollary 1, notice that: 
 
ሺA5ሻ  ܸᇱᇱሺݔሻ ൌ ሺܶሻଶܷ′′ሺሺ1′ܦ௧∗ଶݕ െ ,∗௧ݕሻሻݔሺܦ ሻݐ െ ᇱᇱሺܶሻܷ′ሺ൫1ܦ∗௧ݕ െ ,∗௧ݕሺܶሻ൯ܦ 	.ሻݐ

 
As ܷᇱᇱሺ∙ሻ ൏ 0 ᇱሺ∙ሻܦ , ൐ 0  and ܦᇱᇱ ൐ 0  (with potentially one of the second derivatives 
equalling zero), then the concavity of ܸሺݔሻ is assured. Setting the right hand side of 
equation (A5) to be less than zero is the general necessary and sufficient condition for 
WTP to increase with an MPS for any utility function. 
 
Turn now to Corollary 2. In the case of a constant relative risk aversion utility, when 
ܷᇱሺݔሻ ൌ ሻݔఊ and ܷᇱᇱሺିݔ ൌ െିݔߛሺఊାଵሻ, equation (A5) becomes: 
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(A6)  ܸᇱᇱሺݔሻ ൌ ݁ିఘ௧ሺ1 െ ௧ݕሺܶሻሻିሺఊାଵሻܦ
∗ሺଵିఊሻൣെܦߛᇱሺܶሻଶ െ ᇱᇱሺܶሻ൫1ܦ െ  	.ሺܶሻ൯൧ܦ

 
The term outside the square bracket is strictly positive. Therefore, the term inside this 
bracket must be negative to make the value function concave. This is equivalent to: 
 

(A7)  െܦߛᇱሺܶሻଶ ൏ ᇱᇱሺܶሻ൫1ܦ െ  ,ሺܶሻ൯ܦ
 
and Corollary 2 follows directly. Notice that, for logarithmic utility, the independence of 
ܶ and ݃௧ is not required as ݃௧ does not feature in pricing equation (3) in the body of the 
text when ߛ ൌ 1. 
 
 
A2. Proof of Result 2 
 
(Given in the main text.) 
 
 
A3. Proof of Result 3 
 
We prove this result analytically under the approximation that ሺΓሺߙ ൅ 0.5ሻ Γሺߙሻ⁄ ሻଶ ൎ
െܣ ൅ ߙ  for some positive constant ܣ. We then further check this result numerically 
without invoking this approximation. 
 
Analytical Proof. In the case when ݂ሺܶሻ: ,ߙሺܩܩ 2, ሻߣ  and ሺܶሻܦ	 ൌ 1 െ ݁ିఉ்

మ
, define 

ܹሺܶሻ ൌ eఉሺఊିଵሻ்
మ
	 for ߛ ് 1  

 
(A8)  ܧሾܹሺܶሻሿ ൌ ఉሺఊିଵሻ்݁ൣܧ

మ
൧ ൌ ሺ1 ൅ ሺ1ߚ െ  ,ଶሻିఈߣሻߛ

 
where the second equality comes from the moment generating function of the gamma 
distribution ݃ሺܶଶሻ ൌ Γሺߙ, :ଶ). When ݂ሺܶሻߣ ,ߙሺܩܩ 2,  ,ߤ ,ሻ, future temperature has a meanߣ
and variance, ߪଶ, given by: 
 

(A9)  ߤ ൌ ఒ୻ሺఈା଴.ହሻ

୻ሺఈሻ
 

 
and 
 
(A10)  ߪଶ ൌ ߙଶߣ െ  ,ଶߤ

 
respectively. To proceed from here algebraically is not straightforward because the term 
for ߤ is analytically intractable. We therefore invoke the approximation of Tricomi and 
Erdélyi (1951), who show that, for large ߙ: 
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(A11)  
ఒ୻ሺఈା଴.ହሻ

୻ሺఈሻ
ൌ ߙ√ െ

ଵ

଼√ఈ
൅ ܱሺ|ߙ|ିଶሻ.24 

 
Ignoring the error term, this means that: 
 

(A12)  ቀఒ୻
ሺఈା଴.ହሻ

୻ሺఈሻ
ቁ
ଶ
ൌ ߙ െ ଵ

ସ
൅ ଵ

଺ସఈ
. 

 
To simplify further, limit this to the first two terms and use the approximation: 
 

(A13)  ቀఒ୻
ሺఈା଴.ହሻ

୻ሺఈሻ
ቁ
ଶ
ൎ െܣ ൅  ߙ

 
where, from the previous offset equation, we would expect ܣ to be slightly less than 
0.25. 
 
We estimate the value of 	ܣ empirically by running a linear regression of Γଶሺߙ ൅ 0.5ሻ/
Γଶሺߙሻ  against ߙ  over the interval ߙ ∈ ሾ0.01,5ሿ . The constant from this regression is 
ܣ ൌ 0.1759 and the gradient is 0.9817, which is close to 1. The fit of the linear regression 
is good, with an adjusted ܴଶ ൌ 99.96%. The accuracy of the approximation (A13) for 
ܣ	 ൌ 0.1759 is shown in Figure A1. 

 

 
Figure A1— This shows the accuracy of the approximation ડ૛ሺહ ൅ ૙. ૞ሻ/ડ૛ሺહሻ ൌ െۯ ൅ હ for 
constant 	࡭ ൌ ૙. ૚ૠ૞ૢ. 

 
This linear representation performs well for values of ߙ ൐ 0.4. At ߙ ൌ 0.4, Γଶሺ0.4 ൅ 0.5ሻ/
Γଶሺ0.4ሻ ൌ 0.232, while the approximate value െܣ ൅ 0.4 ൌ 0.224. 

                                                   
24 If ߙ ൐ 0.5, the accuracy of this approximation can also be considered using a double-bound given in 

Mortici (2010, Equation 4). 
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Using this linear approximation within equation (A9) and rearranging: 

 

(A14)  ߙ ൌ ܣ ቀఓ
మ

ఙమ
൅ 1ቁ, 

 
and 
 

(A15)  ߣ ൌ ටఙమ

஺
. 

 
Based on ߤ ൌ 3Ԩ  and ߪ ൌ 1.5Ԩ  respectively, this approximation gives estimates of 
ߙ ൌ 0.879 and ߣ ൌ 3.577, which are precisely consistent with a ܩܩሺߙ, 2,  ሻ distributionߣ
with mean of 2.93Ԩ  and standard deviation of 1.64Ԩ . Again, it is clear that the 
approximation works well. By substituting these expressions for ߙ and ߣ into equation 
(A8): 
 

(A16)  ܧሾܹሺܶሻሿ ൌ ሺ1 ൅ ሺ1ߚ െ ሻߛ ఙ
మ

஺
ሻି஺ሺ

ഋమ

഑మ
ାଵሻ 

 

under the regularity condition that 1 ൅ ሺ1ߚ െ ሻߛ ఙ
మ

஺
൐ 0. 

 
For notational convenience, let ܺ ൌ ሺ1ߚ െ ܻ ,ܣ/ሻߛ ൌ െߤܣଶ, and ܼ ൌ െܣ. Then we can 
show that: 
 

(A17) 
ப

பσమ EሾWሺTሻሿ ൌ XሺσଶX ൅ 1ሻ୞ା
ౕ
σమିଵ ቀZ ൅ ଢ଼

σమቁ െ	
ଢ଼

σర ሺlnሺσ
ଶX ൅ 1ሻሻሺσଶX ൅ 1ሻ୞ା

ౕ
σమ, 

 
which has the same sign as:  
 
(A18)  ݍ ൌ ܺሺܼߪସ ൅ ଶሻߪܻ െ ܻሺlnሺ1 ൅ ଶܺߪଶܺሻሻሺߪ ൅ 1ሻ. 

 
Now define ܳ ൌ ߛ is an indicator variable that is equal to +1 if ߡ where ,ݍߡ ൐ 1 and -1 if 
ߛ ൏ 1. The next step is to prove that ܳ is strictly positive: First we can show that ܳ is 
positive when ߛ ൌ 1 ൅  The .ߝ irrespective of the sign of ߝ for some very small value of  ߝ

partial derivative 
ௗொ

ௗ௬
 is positive when ߛ ൐ 1 and negative when ߛ ൏ 1. This implies that, 

as ߛ gets further away from 1 in either direction, ܳ become more positive. Hence, ܳ ൐ 0. 
 
Let ߛ ൌ 1 ൅  Then, to high .(either positive or negative)  ߝ for some very small value of ߝ
accuracy, ln	ሺ1 ൅ ଶܺሻߪ ൎ  ଶܺ. From the previous offset equation, it follows that ܳ hasߪ
the same sign as ݐሺܼܺ െ ܻܺଶሻ ൌ ߝߚሺݐ ൅ ሻܣ/ଶߝଶߚଶߤ  when ߛ  is close to 1. As ߝ → 0, so 
ሺܼܺ െ ܻܺଶሻ →  Therefore, because of the presence of the indicator variable, for small .ߝߚ
 .of either sign, ܳ is positive ߝ
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How does the sign of the partial derivative change as ߛ moves further away from 1?  
 

(A19) 
డொ

డఊ
ൌ డொ

డ௑

డ௑

డఊ
ൌ ସߪሾܼݐ െ ଶߪܻ lnሺܺߪଶ ൅ 1ሻሿ ିఉ

஺
ൌ ଶߪߚݐ ቂߪଶ െ ଶߤ ln ቀఉ

ሺଵିఊሻఙమ

஺
൅ 1ቁቃ 

 
has the same sign as the indicator variable if and only if: 
 

(A20)  ߛ ൐ 1 െ ஺

ఉఙమ
ሺexp ቀఙ

మ

ఓమ
ቁ െ  .ሻߡ

 
Under the baseline calibration of ܣ ൌ ߚ,0.1759 ൌ ߤ ,0.006585 ൌ 3, and ߪ ൌ 1.5 , this 
places a restriction that ߛ ൐ െ2.37. Therefore the partial derivative is positive for all
risk-averse decision makers.  
 
This has established that, as variance increases, all else unchanged, ܧሾܹሺܶሻሿ increases 
(decreases) for ߛ ൐ ߛ) 1 ൏ 1ሻ. Substituting the damage function into equation (3) in the 
body of the text, for non-logarithmic utility and independent temperature change and 
growth, 
 

(A21)  ቀ௬బି௣
௬బ

ቁ
ଵିఊ

ൌ 1 ൅ ݁ିఘ௧ܧሾሺܹሺܶሻ െ 1ሻሿܧሾ݁௧ሺଵିఊሻ௚೟ሿ 

 
Increasing uncertainty in temperature therefore increases (decreases) the right hand 
side of equation (A21) for ߛ ൐ ߛ) 1 ൏ 1ሻ.  It is easily established that the left hand side of 
this equation is monotonic increasing (decreasing) in ݌ for ߛ ൐ ߛ) 1 ൏ 1ሻ. QED. 
 
In order to check that this result is not entirely dependent on the approximation in 
equation (A15), we run a range of empirical estimates of ܧሾܸሺܶሻሿ for ߤ ∈ ሾ0.5Ԩ, 6Ԩሿ, 
ߪ ∈ ሾ0.1ߤ, ߚ ሿߤ0.6 ∈ ሾ0.002, 0.01ሿ, and ߛ ∈ ሾ0,7ሿ. At the lower bound of ߚ, climate change 
damage at 4Ԩ is 3.1% of potential GDP. At the upper bound, it is 14.8%. For each value 
of ߤ and ߪ, we find consistent values of ߙ and ߣ. We then exclude calibrations where 
1 ൅ 1/ሺ0.01ିߣଶሻ ൏ 9 since the left hand side of this expression is the upper bound for ߛ 
when ߚ takes its maximum value of 0.01 (see equation (A8)). We then select a range of 
values for ߚ  and ߛ  in order to calculate ܧሾܹሺܶሻሿ. In total, we construct 1,341,270 values 
of this expectation. Then, for fixed ߚ ,ߤ, and ߛ, we examine whether ݌  increases or 
decreases as ߪଶ  rises. In no case is Result 3 violated. 
 
 
A4. Proof of Result 4 
 
From equation (3) in the body of the text, ݃௧ does not enter the pricing equation for 
ߛ ൌ 1. For non-logarithmic utility, from equation (A21), ݃௧ enters the pricing equation 
through the term ܧሾexpሺݐሺ1 െ ߛ ሻ݃௧ሻሿ whenߛ ് 1 and temperature and growth are 
independent. As exponential functions are convex, the proof of Result 4 is analogous to 
that of Result 1.  
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We present two further technical appendices to demonstrate that a mean-preserving 
increase in the variance of future temperatures does not always raise the social planner’s 
WTP when utility is non-logarithmic. 
 
 
Technical Appendix TA1 
 
Result A1. If ܦሺܶሻ ൌ 1 െ exp	ሺെܶߚଶሻ ߛ , ് 1  and ݃௧  and ܶ  are independent, then a 
mean-preserving increase in the variance of ܶ does not necessarily imply that we should 
take stronger action now to prevent climate change. 
 
Proof.   This is proved by counter-example. Assume that ߩ ൌ 0  and ݃௧ ൌ 0  with 
certainty.  Consider the following two discrete distributions for ܶ, denoted by ଵ݂, ଶ݂.  
Both have three possible outcome for ܶ, expressed in degrees Celsius: 
 
 ଵ݂  ଶ݂ 
Outcome  0.720°   3.935°   8.000°   2.461°   6.586°   8.000°  
Probability 33.07%   63.79%   3.15% 88.31%   7.65%   4.04% 
     3°    3°  
     1.75°     1.5°   
Skewness    0.1°     2.5°   
Excess Kurtosis    0.1°     4.5°   
 
Both of these distributions are ‘fat-tailed’ in the sense of Lewandowsky et al. (2014a, 
Section 3.1) as “values of climate sensitivity far above the central location of the 
distribution are more likely than values far below”. Here, both probability density 
functions allow for outcomes 5°C above the mean, but prohibit temperatures more than 
2.28° below the mean.  The distributions are also fat-tailed in the sense that each has 
positive excess kurtosis.25 
 
Let ߚ ൌ 0.006585, so that all possible outcomes lie on the convex part of the damage 
function. Let the value of ݌ associated with these temperature distributions be given by 
,ଵ݌  ଶ. If the strength of the appropriate mitigative response is positively associated with݌
greater uncertainty (as measured by the standard deviation of ܶ ), then ݌ଵ ൐ ଶ݌ . 
However, this is not necessarily always the case, as the following table shows: 
 
  ଴ݕ/ଶ݌   ଴ݕ/ଵ݌   
  0.06741   0.07378   0= ߛ
  0.06933   0.07503   0.5= ߛ
  0.07140   0.07636   1.00001= ߛ
  0.08805   0.08645   4= ߛ
 
First, for ߛ ൌ 1.0001 , which is almost identical to logarithmic utility, ݌ଵ ൐ ଶ݌  as 
expected. It is also easily verified that these values are equal to those given by Result 2 in 
                                                   
25 The distributions are, though, not fat-tailed in the sense of Weitzman (2009), where this term is used to 

characterize probability density functions with non-finite moment generating functions. 
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the body of the paper (to within an approximation error reflecting the fact that ߛ ൎ 1). 
For low values of ߛ, it continues to be the case that higher uncertainty strengthens the 
argument to mitigate now, as measured by ݌. But, for ߛ ൌ 4, the situation is reversed, 
with the higher value of ݌ being associated with the distribution with the lower standard 
deviation. This counterexample completes the proof.  
 
The word “necessarily” is crucial in Result A1. As is clear from the first two rows of the 
last table, and is discussed in more detail in the body of the paper, it is generally the case 
that when ݃௧ and ܶ are independent and ߛ ് 1, increasing the standard deviation of ܶ 
will increase ݌.  Yet, as shown here, it is straightforward to construct counter-examples 
to this rule.  To understand the intuition behind this result, notice that from equation 
(3) in the body of the paper when ߩ ൌ 0 and ݃௧ ൌ 0 with certainty: 
 

(TA1)    ቀ௬బି௣
௬బ

ቁ
ଵିఊ

ൌ ߛሺߚሾexpሺܧ െ 1ሻܶଶሻሿ	 

 
The expectation of the exponential of a random variable is determined by all of its 
moments and not just the first two.26  For example, if we take a second order Taylor’s 
series expansion of the left hand side of the previous offset equation around 1, and a 
second order power series expansion of the exponential function on the right hand side, 
for 0 , it follows that 0/yp  is approximately given by: 

 
(TA2)   

௣

௬బ
ൎ ଵ

ఊ
൫ඥ1 ൅ ଶߤሺߛߚ2 ൅ ଶሻߪ ൅ ߛሺߛଶߚ െ 1ሻܧሾܶସሿ െ 1൯ 

 
For fixed mean and variance, increasing (decreasing) ܧሾܶସሿ raises the value of ݕ/݌଴ 
when ߛ ൐ ߛ) 1 ൏ 1). The effect of the fourth non-central moment of ܶ and higher order 
terms (when the power expansion is taken beyond the second term), can dominate the 
impact of ߪଶ, which can lead to instances where ݌ is higher for distributions with lower 
standard deviation. 
 
 
Technical Appendix TA2 
 
For ߛ ് 1, the discussion in the main body of the paper is based on the assumption that 
݃௧ and ܶ are independent. Relaxing this assumption necessitates a numerical approach. 
As before, let ܦሺܶሻ ൌ 1 െ exp	ሺെܶߚଶሻ  with ߚ ൌ 0.006585 , ݂ሺܶሻ: ,ߙሺܩܩ 2, ሻߣ  with ߙ ൌ
1.0876 ߣ , ൌ 3.2162 , and ߩ ൌ 0 . Further, assume that per-period logarithmic 
consumption growth is normally distributed with constant mean, ܯ, and variance, ܵଶ, 
and zero autocorrelation. Then ݃ݐ௧~ܰሺܯݐ, ܯ ଶሻ. We setܵݐ ൌ 1.9%  and ܵ ൌ 3.0%, which 
are broadly consistent with long-run historical real per-capita annual consumption 
growth in the US. 

                                                   
26 There is a link here with portfolio theory and skewness/kurtosis preference in financial economics.  An 

investor is a mean-variance decision maker if and only if she has quadratic utility. Equation (TA1) has 
parallels with exponential utility, where preferences are determined by moments higher than the 
second. 
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We then run 25,000 simulations where ݃ݐ௧  and ܶ  are drawn from their respective 
distributions and with correlation between them of ߟ . The value of 

௣

௬బ
 is calculated 

numerically via equation (3) in the main body of the paper.  This is then compared to 
three certainty equivalent values. These respectively correspond to the case when (i) 
temperature is non-stochastic and equals ߤ  with certainty but consumption growth 
remains uncertain (݌ଵ௖), (ii) consumption growth is non-stochastic and equals ܯ with 
certainty but temperature change remains uncertain (݌ଶ௖), and (iii) all uncertainty is 
removed from both ܶ and ݃௧ (݌ଷ௖). From equation (3) in the main body of the paper we 
can derive: 
 
(TA3) 

௣ೖ೎
௬బ

ൌ

ە
۔

1ۓ െ ൫1 ൅ ൫exp൫ሺߛ െ 1ሻߤߚଶ൯ െ 1൯ expሺݐሺ1 െ ܯሻߛ ൅ ሺ1ݐ0.5 െ ሻଶܵଶሻ൯ߛ
ଵ ሺଵିఊሻ⁄

			݇ ൌ 1

1 െ ሺ1 ൅ ሺሺ1 െ ߛሺߚ െ 1ሻߣଶሻିఈ െ 1ሻ expሺݐሺ1 െ ሻሻଵܯሻߛ ሺଵିఊሻ⁄ 																																		݇ ൌ 2

1 െ ൫1 ൅ ሺexp	൫ሺߛ െ 1ሻߤߚଶ൯ െ 1ሻ expሺݐሺ1 െ ሻ൯ܯሻߛ
ଵ ሺଵିఊሻ⁄

																																						݇ ൌ 3

 

 
Figure TA1 shows the results: Panels A and B show the case when ݐ ൌ 50 years, ߛ ൌ 5 
(Panel A) and ߛ ൌ 0.5 (Panel B) for ߟ ∈ ሾെ1,൅1ሿ. 
 

 
Panel A: ࢽ ൌ ૞ 
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Panel B: ࢽ ൌ ૙. ૞ 
 

 
Panel C: ࢽ ൌ ૞, varying ࣌ 
 
Figure TA1— This figure illustrates the amount that a rational social planner would spend 
as a proportion of current consumption to prevent climate change, ࢖. This is when there is 
uncertainty concerning both future temperature levels and potential consumption growth 
and shown for a range of different correlations between these two variables. Other lines 
reflect the equivalent amounts when (i) temperature change is known but consumption is 
stochastic (࢖૚ࢉ), (ii) consumption is known and temperature is stochastic (࢖૛ࢉ), and (iii) 
they are both non-stochastic (࢖૜ࢉ). Panel A (B) are respectively for ࢽ ൌ ૞ (ࢽ ൌ ૙. ૞). Panel C 
reflects the case for three different values of ࣌ when ࢽ ൌ ૞. 
 
The most important comparison here is between ݌௖ and ݌ଵ௖, reflecting the presence and 
absence of temperature uncertainty when consumption growth is stochastic. Consistent 
with Result 3 in the body of the text, when ߟ ൌ ݌ ,0 ൐  ,ଵ௖ in Panels A and B. However݌
for high ߛ  and strongly positive correlation (greater than approximately 0.4), then 
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݌ ൏  ଵ௖, meaning that higher temperature uncertainty does not necessarily lead to a݌
stronger economic rationale for acting now. 
 
We can draw a number of further observations. Consistent with Result 4 in the body of 
the paper, ݌ ൐ ߟ ଶ௖ when݌ ൌ 0, and ݌ଵ௖ ൐  ,When ܶ and ݃௧ are independent .ߟ ଷ௖ for all݌
stochastic consumption growth justifies a stronger climate response than known 
consumption growth with the same mean for a given distribution of ܶ. Again, though, 
for highly positive ߟ and ߛ ൌ 5, situations arise where ݌ ൏  ଶ௖. This is also true when݌
ߛ ൌ 0.5 and the correlation is more than mildly negative. In addition, and in contrast to 
Panel A in Figure 3 of the body of the paper, stronger risk aversion is now associated 
with a weaker justification for taking substantive action now. The reason is that ߛ 
captures not only the desire to smooth consumption across states at any given time but 
also reflects the social planner’s desire to smooth consumption across time. In contrast 
to the examples in the previous section, where ݃௧ ൌ 0 with certainty, consumption is 
now very likely to grow over the long term implying that future generations will be 
wealthier than our own. With higher	ߛ, this reduces the incentive to spend money now 
to help with their problems.27 
 
Panel C of TA1 shows the effects of varying ߪ  on ݕ/݌଴  in the case when ߛ ൌ 5. For 
negative and slightly positive values of ߟ, greater uncertainty leads to higher values of ݌, 
increasing WTP. That is not the case for strongly positive values of 28.ߟ 
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