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1. Introduction

Inherent in the definition of Pareto efficiency is the idea that individuals have preference

orderings over allocations. If allocation A is Pareto dominated by allocation B, it is because all

individuals weakly prefer allocation B to allocation A and at least one individual strictly prefers

allocation B to allocation A. Further, although it may be possible for two individuals to have the

same preference ordering, it is not possible for one individual to have two preference orderings. The

individual’s preferences over allocations are what they are.

These obvious statements have an important implication. In this paper, we argue that the

requirement that a person have a unique preference ordering implies that in dynamic economies,

individuals born after the beginning of time must be indexed by the history that preceded their

births. That is, an individual born after one history is a different person (for the purposes of Pareto

comparisons across allocations) than an individual born at the same date but after a different

history. We then consider the implications of such a Pareto criterion on a repeated Mirrlees (1971,

1976) economy similar to that of Farhi-Werning (2007), where each period represents a lifetime for

an agent, but such an agent cares about the utility of his descendants. Here we show that the

set of Pareto efficient allocations that is consistent with this view is potentially larger than those

considered so far in the literature. In fact, we show that they are strictly larger, because we do not

restrict individuals to having insurance motives of the Harsanii-Rawls type against risks on their

own type realization and the realizations of their ancestors. We do, however, maintain insurance

motives of parents toward their children.

Even in our more general framework, efficiency criteria impose substantial restrictions on the

set of allocations. Interestingly, the restrictions are of a new nature. Our different, more natural

view has some important policy implications. The first is that some policy criteria (for example, the

progressive nature of taxes) cannot be defended on efficiency grounds, once the Harsanyi-Rawlsian



insurance criterion is rejected as normatively unsound. Second, we show that imposing no taxes of

any kind, coupled with each agent owning his own production, results in a Pareto efficient allocation.

2. Individuals as Histories

To illustrate the main idea, that individuals must be indexed by the history that preceded

their births, we begin with a simple economy in which one father in the first period has one son in

the second. The father knows his own economically relevant type (for example, his own skill), but

in the first period, he does not know the type of his son, who may have high or low skill. The father

cares about the happiness of the son. Upon his birth, the son knows his own type, immediately and

completely, and he is able to make all relevant decisions accordingly. In this model, the father has

an insurance motive: when he makes the relevant decisions, he has true uncertainty about the type

of the son, and since the son’s happiness affects his, he may want to insure against this risk. For

the son, the situation is different: at the moment in which he makes choices, he knows his type. Ex

ante, in this economy there are three persons, and three persons are relevant for efficiency analysis;

one person (the father) has true uncertainty and two persons (each of his potential sons) have not.

We may ask the realization of the son to go back in time, before his birth, and tell us his

order over allocations from this behind the veil point of view. If we impose some utility function

on him (for example, expected utility, as in Harsanyi (1955), or mini-max, as in Rawls (1971)), he

will give us answers, and in this hypothetical choice he would have reasons for insurance. That

is, we might impute to him an insurance motive of the Harsanyi-Rawls type. By doing so, note

that we are introducing and making relevant preferences that, in our simple model, are not held by

any individual at any point in time. Using the real preferences of the father and the hypothetical

preferences we have described, we would then be able to select allocations that are efficient in this

two-person economy. These allocations are typically efficient in our three potential persons economy;

they may be obtained by restricting the Pareto weights to depend only on the date of birth of the
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son. They are not, however, all of the Pareto efficient allocations. By introducing the Harsanyi-

Rawls thought experiment, we have arbitrarily restricted the set of efficient allocations. If we find

properties that all such allocations share, we cannot legitimately conclude that these properties are

shared by all efficient allocations.

This model is a simplification, even in some crucial aspects, which we have made explicit.

We will hold similar simplified assumptions in the first part of the paper, which considers a repeated

Mirrlees type environment, and then we will consider extensions. One very important restriction is

that the son knows his type immediately, completely, and at the moment in which he is able to make

competent decisions. This assumption allows for an unambiguous discussion about the son and his

preference ordering. Reality, however, is more complex: types are revealed progressively during the

lifetime; for example, the son may know his gender at birth, know his IQ at 12 years of age, and

be able to make competent decisions at 18. We consider these complexities later in the paper (see

section 6.), and discuss how much, if at all, they change our conclusions.

In our simple illustration, the set of all Pareto efficient allocations can be found if we insist

that, as mentioned earlier, individuals born after the beginning of time must be indexed by the

history that preceded their births. To further illustrate the implications of this criterion, including

the idea that entire histories must be included and not just an individual’s own type at birth, consider

the following single consumption good endowment economy. At the beginning of date t = 1, two

individuals with names i ∈ {1, 2} are born — one with a high endowment and one with a low

endowment. Let the aggregate state θ1 ∈ {θ1, θ2} be determined after these date t = 1 agents are

born and denote which agent has a high endowment. Each t = 1 individual consumes ci,1(θ1) of the

consumption good and then dies. At the beginning of date t = 2, two more individuals with names

j ∈ {1, 2} are born, and then state θ2 ∈ Θ2 is realized and each individual consumes cj,2(θ1, θ2)

of the consumption good and then dies. Thus, an allocation is a vector (ci,1(θ1), cj,2(θ1, θ2)) with
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2(2 + 2N(Θ2)) elements, where N(Θ2) is the number of elements of Θ2.

Next, consider two allocations A and B such that cA1,2(θ1, θ2) > cB1,2(θ1, θ2) and cA1,2(θ2, θ2) <

cB1,2(θ2, θ2) for all θ2. That is, person j = 1 born at date t = 2 receives more consumption for each θ2

realization under allocation A than B if θ1 = θ1 and more consumption for each θ2 under allocation

B than A if θ1 = θ2. (The idea here is that allocations A and B are such that person j = 1 at

date t = 2 consumes more regardless of the state at date t = 2 if his “father,” the person with the

same name at date t = 1, has a high endowment than if his father has a low endowment.) If at

date t = 2 person j = 1 is selfish (certainly an allowable preference ordering), then how he ranks

allocations A and B depends on the realization of θ1. But if our concept of an individual requires

a single preference ordering over allocations, then person j = 1 born at date t = 2 after realization

θ1 = θ1 is a different person than person j = 1 born at date t = 2 after realization θ1 = θ2, for he

ranks allocations differently. One cannot make Pareto comparisons between allocations A and B

without indexing date t = 2 agents by θ1. In this example, where θ1 can take on two values, there

are six individuals (persons 1 and 2 at date t = 1 and persons 1 and 2 at date t = 2 for each value

of θ1).

But what if we change this example so that each person i at date t = 1 lives for two periods,

and persons j at t = 2 are never born? In this second environment, an allocation is exactly the same

object as in the previous environment — a vector (ci,1(θ1), cj,2(θ1, θ2)). However, most standard

analysis would define Pareto efficiency relative to only two preference orderings: those of persons 1

and 2 at the beginning of date t = 1. But the other four preference orderings (those of each person

for each realization of θ1 at the beginning of date t = 2) still exist. To compare allocations under the

Pareto criterion taking into account only the first two preference orderings (those of persons 1 and 2

at the beginning of date t = 1) is to ignore these other four people. For most cases, we believe this

approach is correct. For instance, when an economist argues that outlawing insurance is inefficient,
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he or she is ignoring the preference ordering of those individuals whose houses did not burn down

and would prefer not to pay to rebuild the houses that did. But when these “ex post” individuals

are actually separate human beings and not simply the future self of a pre-existing human, it is no

longer clear to us that their preference orderings should be ignored.

A more specific example may be useful. Let the preferences of person i born at date t = 1

be represented by ∑
θ1,θ2

π(θ1)π(θ2)
(
u(ci,1(θ1)) + u(ci,2(θ1, θ2))

)
(1)

and the preferences of person i born at date t = 2 after history θ1 be represented by

∑
θ2

π(θ2)u(ci,2(θ1, θ2)). (2)

Such an example represents a world in which a parent cares about the consumption of his child

(but the children care only for themselves). Or, if individuals live for two periods, equation (1)

represents person i’s preferences at the beginning of date t = 1 and equation (2) represents person

i’s preferences at the beginning of period t = 2 after history θ1.

At date t = 1, let θ1 ∈ Θ1 = {θ1, θ2} be revealed. At date t = 2, let Θ2 = {θ2} (a singleton)

denoting that all uncertainty is revealed at date t = 1. If θ1 = θ1, person 1 has an endowment of

three in date t = 1 and an endowment of one in date t = 2, and person 2 has an endowment of one

in date t = 1 and an endowment of three in date t = 2. If θ1 = θ2, person 1 has an endowment

of one in date t = 1 and an endowment of three in date t = 2, and person 2 has an endowment of

three in date t = 1 and an endowment of one in date t = 2.

Consider two allocations. In allocation A (autarky), c1,1(θ1) = 3, c1,2(θ1) = 1, c1,1(θ2) = 1,

c1,2(θ2) = 3, c2,1(θ1) = 1, c2,2(θ1) = 3, c2,1(θ2) = 3, and c2,2(θ2) = 1. Let allocation B (borrowing

and lending) have ci,t(θ1) = 2 for i ∈ {1, 2}, t ∈ {1, 2}, and θ1 ∈ {θ1, θ2}. Assuming standard

assumptions on u and no societal ability to transfer the consumption good across periods, this is

the equilibrium outcome when individuals can borrow and lend.
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In this example, allocation B is strictly preferred to allocation A by both individuals born

at date t = 1. But allocation A is strictly preferred to allocation B from the perspective of person

2 at date t = 2 after history θ1 = θ1 as well as by person 1 at date t = 2 after history θ1 = θ2.

If these date t = 2 people are interpreted as simply the future selves of those born at date t = 1,

then this reversal simply expresses the desire to not repay a loan. But if these date t = 2 people are

interpreted as new individuals, then this reversal expresses the desire to not repay a loan taken out

by someone else.

In both Phelan (2006) and Farhi and Werning (2007, 2010), Pareto efficiency is examined from

another perspective as well. Applied to this example economy, both papers consider the rankings

of individuals born in period t = 1 as well as mythical individuals who, in essence, exist from the

beginning of time but know they will be born at date t = 2. Thus, they do not know the state θ1

and therefore rank allocations according to

∑
θ1,θ2

π(θ1)π(θ2)u(ci,2(θ1, θ2)). (3)

Like those born at date t = 1, allocation B is strictly preferred over allocation A by an individual

with a preference ordering represented by (3).

One implication of considering the ranking of such a mythical individual is that any allocation

that is Pareto efficient in relation to individuals with rankings represented by equations (1) and (3)

is also Pareto efficient in relation to individuals with rankings represented by equations (1) and (2).

(If for a given allocation, an alternative allocation is weakly worse for all i and θ1 under criterion

(2), then it is weakly worse given criterion (3) since (3) is an average of (2) over realizations θ1.)

However, allocations that are Pareto efficient in relation to individuals with rankings represented

by equations (1) and (2) are not necessarily Pareto efficient in relation to individuals represented by

rankings (1) and (3). In the preceding example, allocation B is preferred to allocation A by these

“pre-existing” individuals with a ranking represented by (3). Thus, if only allocations A and B are
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feasible, only allocation B is Pareto efficient if preference orderings (1) and (3) are the only ones

considered. But allocation A is Pareto efficient as well if preference ordering (2) is considered for

all θ1.

It is now time to proceed with a formal analysis.

3. The Model

Consider a repeated Mirrlees economy with T +1 dates (generations), t ∈ {0, 1, . . . , T} where

at each date t, there exists a unit continuum of agents with family names i ∈ [0, 1]. At each date

t, each agent i has a type θi,t ∈ Θ, where Θ is a finite set of positive real numbers. For a type θ

agent to produce y ≥ 0 units of the single consumption good, he must exert y
θ units of labor effort.

Agents live for one period, but an agent from family i at each date t < T (a father) is associated

with a single agent from family i at date t + 1 (his son). Thus, associated with each agent from

family i at date t is the history of shocks of his dynasty, θti = {θi,0, . . . , θi,t}. Let π(θ|θ−) denote

the probability that a type θ− father has a type θ son. The transition matrix π is such that for all

θ ∈ Θ, f(θ) =
∑

θ− π(θ|θ−)f(θ−), so the fraction of agents of each type is constant over time, and

such that for all (θ, θ−), π(θ|θ−) > 0, which ensures that all future θ paths are possible given past

realizations.

An allocation is a collection {{ci,t(θt), yi,t(θt)}T−1
t=0 }i∈[0,1]. A symmetric allocation is an allo-

cation such that for all (i, j), t and θti = θtj , ci,t(θ
t
i) = cj,t(θ

t
j) and yi,t(θ

t
i) = yj,t(θ

t
j), and thus is

denoted {ct(θt), yt(θt)}T−1
t=0 . Let θs,t = {θs, . . . , θt} denote a family’s realized types between dates s

and t. Symmetric allocations are feasible if

T∑
t=0

∑
θt

1

Rt
f(θ0)π(θ1|θ0) . . . π(θt|θt−1)(ct(θ

t)− yt(θt)) ≤ 0, (4)

where R > 1. From here on, we consider only symmetric allocations.

Agents have identical preferences over the consumption-labor pairs of themselves and their
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descendants. We assume an agent born at date t with family history θt ranks allocations according

to

Ut(θ
t) ≡ u(ct(θ

t))− h(
yt(θ

t)

θt
) +

T∑
s=t+1

βs−t
∑
θt+1,s

π(θt+1|θt) . . . π(θs|θs−1)

[u(cs(θ
t, θt+1,s))− h(

ys(θ
t, θt+1,s)

θs
)], (5)

where u is assumed differentiable, strictly increasing, strictly concave, and with limc→0 u
′(c) =

∞, and h(`) = `ψ for some ψ > 1. That h takes this functional form ensures that the utility

possibilities set is convex when θ realizations are private information. This ranking also assumes

restrictions regarding altruism toward descendants. In particular, we assume that a father cares

about the expectation of the discounted dynastic utility of his son, where β ∈ (0, 1). Exponential

discounting ensures time consistency regarding the preferences of a father toward his grandchild and

the preferences of his son toward that grandchild. This assumption is restrictive and important for

some efficiency results detailed later in this paper.

The type realization θt of an agent born at date t to family i is alternatively assumed to be

publicly observed (the full information case) or privately observed by that agent (the private infor-

mation case). In both cases, all other objects, such as an agent’s consumption, c, and production,

y, are assumed publicly observed with one exception: in the case of private information, an agent’s

labor effort, y
θ , is also assumed to be privately observed by that agent. (Otherwise, one could infer

an agent’s θ type from his labor effort and output.)

In the full information case, a symmetric allocation {ct(θt), yt(θt)}Tt=0 specifies consumption

and required output levels as functions of the date and a family’s realized type outcomes. In the pri-

vate information case, an allocation is understood to specify consumption and required output levels

as functions of the date, and the family’s announcements of type outcomes, where the announcement

of θt is made by the family member living at date t.
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In the case of private information, an allocation is considered incentive compatible if for all

t, θt, and θ̂ 6= θt,

Ut(θ
t) ≥ u(ct(θ

t−1, θ̂))− h(
yt(θ

t−1, θ̂)

θt
) +

T∑
s=t+1

βs−t
∑
θt+1,s

π(θt+1|θt) . . . π(θs|θs−1) (6)

[u(cs(θ
t−1, θ̂, θt+1,s))− h(

ys(θ
t−1, θ̂, θt+1,s)

θs
)].

In words, this condition requires that an agent born at date t to a family with history θt weakly

prefers to announce his true type given that his descendants will truthfully announce their true

types.

Let the full information symmetric utility possibilities set be the set of collections {{Ut(θt)}θt∈Θt}Tt=0

that can be generated by an allocation satisfying the resource condition (4). Let the private infor-

mation utility possibilities set be such collections that also satisfy the incentive condition (6). A

symmetric allocation is considered Pareto efficient if no other feasible symmetric allocation generates

a profile {{Ut(θt)}θt∈Θt}Tt=0 that weakly dominates it and strictly dominates it for at least one t and

θt. Likewise, a symmetric allocation is considered constrained Pareto efficient if no other feasible

and incentive compatible symmetric allocation generates a dominating utility profile.

Lemma 1. The full information and private information utility possibilities sets are each convex.

Proof. Define ut(θ
t) ≡ u(ct(θ

t)) and ht(θ
t) ≡ (yt(θ

t)
θt

)ψ. Then a symmetric allocation can be consid-

ered a specification {ut(θt), ht(θt)}Tt=0. The utility of each type Ut(θ
t) is then a linear function of

the allocation. The incentive condition becomes for all t, θt, and θ̂ 6= θt,

Ut(θ
t) ≥ ut(θ

t−1, θ̂)− (
θ̂

θt
)ψht(θ

t−1, θ̂) +
T∑

s=t+1

βs−t
∑
θt+1,s

π(θt+1|θt) . . . π(θs|θs−1) (7)

[us(θ
t−1, θ̂, θt+1,s)− hs(θt−1, θ̂, θt+1,s)],

which is a linear function of the allocation. Finally, the resource constraint becomes

T∑
t=0

∑
θt

1

Rt
f(θ0)π(θ1|θ0) . . . π(θt|θt−1)(u−1(ut(θ

t))− θtht(θt)
1
ψ ) ≤ 0, (8)
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a condition that a convex function of the allocation be weakly less than zero.

Define the planner’s problem as that of maximizing a weighted sum of lifetime utilities, where

γt(θ
t) ≥ 0 is the weight the planner gives to an agent born at date t into a family with history θt:

PP : max
ct(θt),yt(θt)

T∑
t=0

∑
θt

f(θ0)π(θ1|θ0) . . . π(θt|θt−1)γt(θ
t)Ut(θ

t) (9)

subject to ct(θ
t) and yt(θ

t) non-negative for all t and θt, resource feasibility (4), and, for the case

of private information, incentive compatibility (6). The principal difference between our approach

and that in Phelan (2006) or Farhi-Werning (2007, 2010) is that here γt(θ
t) is allowed to depend on

θt. Farhi-Werning (2007) essentially restricts γt(θ
t) to be equal across all θt, whereas Phelan (2006)

essentially restricts γt to be equal across dates t as well.

Note that if we let

Γt(θ
t) ≡ γt(θ

t) +
t∑

s=1

βsγt−s(θ
t−s) = γt(θ

t) + βΓt−1(θt−1),

(or Γt(θ
t) is the weight the planner puts on the instantaneous utility of a type (t, θt) agent), then

the planner’s problem becomes

PP : max
ct(θt),yt(θt)

T∑
t=0

∑
θt

f(θ0)π(θ1|θ0) . . . π(θt|θt−1)Γt(θ
t)(u(ct(θ

t))− h(
yt(θ

t)

θt
)) (10)

again subject to ct(θ
t) and yt(θ

t) non-negative for all t and θt, resource feasibility (4), and, for the

case of private information, incentive compatibility (6). Note that given weights Γt(θ
t), one can

also back out the implied weights γt(θ
t) = Γt(θt) − βΓt−1(θt−1). In particular, note that although

arbitrary weights γt(θ
t) ≥ 0 imply weights Γt(θ

t) ≥ 0, that Γt(θ
t) ≥ 0 for all t, θt does not imply

γt(θ
t) ≥ 0 for all t, θt.

4. Full Information

In this section, we consider the implications of Pareto efficiency when θ realizations are public

information.
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Lemma 2. Every Pareto efficient symmetric allocation solves the planner’s problem for some

weights Γt(θ
t) > 0 for all t ≥ 0 and θt ∈ Θt. Likewise, if a symmetric allocation solves the

planner’s problem given weights Γt(θ
t) > 0 for all t ≥ 0 and θt ∈ Θt, then it is Pareto efficient if

and only if Γt(θ
t) − βΓt−1(θt−1) ≥ 0 for all t ≥ 0 and θt ∈ Θt (or, alternatively, if γt(θ

t) ≥ 0 for

all t and θt).

Proof. If a symmetric allocation {ct(θt), yt(θt)}Tt=0 is Pareto efficient, then it must lie on the frontier

of the utility possibilities set. The convexity of the utility possibilities set then ensures that it solves

PP for some specification γt(θ
t) ≥ 0 for all t and θt. Next, the assumptions on u and h ensure any

Pareto efficient allocation has ct(θ
t) and yt(θ

t) each strictly positive for all t and θt. (Otherwise,

one could generate a Pareto improvement by marginally increasing both yt(θ
t) and ct(θ

t).) The

planner’s first order condition with respect to c0(θ0) implies that

γ0(θ0)u′(c0(θ0)) = λ > 0, (11)

where λ is the Lagrange multiplier on the resource constraint. Thus, γ0(θ0) = Γ0(θ0) > 0 for all θ0.

From the definition of Γt(θ
t), this ensures Γt(θ

t) > 0 for all t and θt.

Next assume that {ct(θt), yt(θt)}Tt=0 solves PP for weights Γt(θ
t) > 0 for all t and θt such

that Γt(θ
t)−βΓt−1(θt−1) ≥ 0. This then implies that γt(θ

t) ≥ 0 for all t and θt. That the allocation

is Pareto efficient is then immediate given that u is strictly increasing (non-satiation).

We now turn to the main characterization result for the full information economy.

Proposition 1. Assume for all dates t, a dynasty’s history of shocks θt is public information. Then

allocation {ct(θt), yt(θt)}Tt=0 is Pareto efficient if and only if it satisfies the resource condition (4)

with equality and for all t, and (θt, θt+1),

u′(ct(θ
t))θt = h′(

yt(θ
t)

θt
), (12)
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and

u′(ct(θ
t)) ≥ βRu′(ct+1(θt, θt+1)). (13)

Proof. From Lemma 2, if {ct(θt), yt(θt)}Tt=0 is Pareto efficient, then it solves PP for some Γt(θ
t) > 0

for all t, θt. That the resource condition must hold with equality is then immediate. That (12) must

hold follows from comparing the planner’s first order conditions with respect to ct(θ
t) and yt(θ

t).

Next, the planner’s first order condition with respect to c0(θ0) implies that

γ0(θ0)u′(c0(θ0)) = λ, (14)

where λ is the Lagrange multiplier on the resource constraint. Thus γ0(θ0) > 0 for all θ0. Next, the

planner’s first order condition with respect to ct(θ
t) implies for all t ≥ 0 that

γt+1(θt+1) =
Γt(θ

t)(u′(ct(θ
t))− βRu′(ct+1(θt+1)))

Ru′(ct+1(θt+1))
. (15)

Applying this sequentially from t = 0 on then delivers that u′(ct(θ
t)) ≥ βRu′(ct+1(θt+1)) is both

necessary and sufficient for γt+1(θt+1) to be non-negative.

Next, assume that {ct(θt), yt(θt)}Tt=0 satisfies (4) at equality, condition (12) for all t ≤ T and

θt, and (13) for all t < T and θt+1. Since PP is a concave programming problem, these are sufficient

for {ct(θt), yt(θt)}Tt=0 to solve PP with weights γt(θ
t) ≥ 0 defined by (15). Lemma 2 then implies

Pareto efficiency.

The intuition behind this result is that an allocation is Pareto efficient if it does not waste

resources, that no individual can be made better off by varying his labor effort and letting him

consume the resulting variation in output, and finally, that no type θt individual can be made

better off by reducing his consumption by ε and increasing the consumption of his type θt+1 son by

ε R
π(θt+1|θt) . Note that these conditions are exactly the same conditions as when periods are interpreted
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as dates in a T + 1 lived individual’s life as opposed to generations, with the single exception that

condition (13) is a weak inequality instead of an equality. This condition implies that no father has

an unsatisfied desire to give a positive gift to any particular type son at an actuarially fair rate of

return. We next show that progressive estate taxes are not necessary for Pareto efficiency.

A. Full Information Tax Implementation

From Proposition (1), zero marginal labor taxes are necessary for any decentralized imple-

mentation of a Pareto efficient allocation.

Next, for any given allocation, define the implicit inheritance tax τt+1(θt+1) on a type θt+1

son as solving

u′(ct(θ
t)) = βRu′(ct+1(θt+1))(1− τt+1(θt+1)). (16)

This is the inheritance tax necessary to induce a type θt father to make exactly a zero transfer to

his θt+1 son if he takes the allocation as given but then is allowed to make positive or negative type

conditional transfers to his possible sons at actuarially fair rates of return.

The next result characterizes full information implied inheritance taxes in terms of the planner

weights.

Proposition 2. The full information inheritance tax is

τt+1(θt+1) =
−γt+1(θt+1)

βΓt(θt)
. (17)

Proof. The proof is immediate from the first order conditions of the full information planner’s

problem.

Proposition (2) implies that in any Pareto efficient full information allocation, the implicit

inheritance tax on a type θt+1 son is weakly negative and strictly negative if the son receives positive

weight γt+1(θt+1) in the social planner’s problem.

13



If one sets T = 1 (so t ∈ {0, 1}), the resulting two period economy is very close to being a

full-information version of the private information two-period model of Farhi-Werning (2010) (the

only difference being that in Farhi-Werning (2010), second period agents have no θ type and cannot

work) and thus sheds some light on their result regarding the optimality of progressive inheritance

taxes.

In particular, Farhi-Werning (2010) assumes a social welfare function that is equivalent to

assuming that the Pareto weight on a son, γ1, cannot depend on the type of the father, θ0. Letting

T = 1 and requiring γ1(θ0, θ1) = γ1 (a constant) delivers

τ1(θ0) =
−γ1

βγ0(θ0)
. (18)

Thus, the higher the consumption of the date t = 0 father (which follows directly from a higher

γ0(θ0)), the higher (closer to zero) the common inheritance tax on his sons. That is, when γ1 is

restricted to be a constant, inheritance taxes are progressive.

But next consider allowing the Pareto weight of the son, γ1(θ0, θ1), to depend on the type

of the father, θ0. (We can continue to restrict it to not depend on θ1, the type of the son, for this

example.) Then (17) becomes

τ1(θ0) =
−γ1(θ0)

βγ0(θ0)
, (19)

and implicit inheritance taxes in a full information Pareto efficient allocation can be regressive

through an appropriate choice of γ1(θ0). In particular, if we let θ0 ∈ {θ, θ} with γ0(θ0) > γ0(θ0) > 0

and set γ1(θ) > 0 and γ1(θ) = 0, then inheritances taxes are negative for the “rich” (θ types) and

zero for the “poor” (θ types) and thus regressive.

B. Full Information Property Rights Implementation

In this section, we establish that although inheritance taxes may be necessary to achieve a

particular Pareto efficient allocation, no taxes of any kind are necessary to achieve Pareto efficiency

14



in general.

To this end, define the full information laissez-faire allocation {c`t(θt), y`t (θt)}Tt=0 as follows:

First, for all θT ∈ Θ, let

V `
T (θT ) ≡ max

y
u(y)− h(

y

θT
). (20)

That is, V `
T (θT ) is the value to a date T born agent of type θT of receiving a zero inheritance but

having a property right to his own production. Next, for t ∈ {0, . . . , T −1} (and working backwards

from t = T − 1 to t = 0), define

V `
t (θt) ≡ max

ct,yt,{cs(θt+1,s),ys(θt+1,s)}Ts=t+1

u(ct)− h(
yt
θt

) +

T∑
s=t+1

βs−t
∑
θt+1,s

π(θt+1|θt) . . . π(θT |θT−1)

[u(cs(θ
t+1,s))− h(

ys(θ
t+1,s)

θs
)], (21)

subject to a budget condition

ct − yt +

T∑
s=t+1

1

Rs−t

∑
θt+1,s

π(θt+1|θt) . . . π(θT |θT−1)(cs(θ
t+1,s)− ys(θt+1,s)) ≤ 0, (22)

and a no-enslaving-your-descendents condition, for all s ≥ t+ 1 and θt+1,s,

u(cs(θ
t+1,s))− h(

ys(θ
t+1,s)

θs
) +

T∑
n=s+1

βn−s
∑
θs+1,n

π(θs+1|θs) . . . π(θT |θT−1)

[u(cn(θt+1,n))− h(
yn(θt+1,n)

θn
)] ≥ V `

s (θs). (23)

Here, V `
t (θt) is the value to a date t < T born agent of type θt of receiving a zero inheritance,

again having a property right to his own production, and further having the ability to control the

production and consumption of his descendants, as long as the expected discounted consumption

of himself and his descendants does not exceed their production (which implies the ability to make

actuarially fair conditional transfers to descendants) and these descendants do no worse than what

they could achieve on their own with a zero inheritance and these same rights. (Thus, condition

(23) implies that conditional inheritances be non-negative.) Once V `
t (θt) is thus calculated for all
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t ∈ {1, . . . , T}, the laissez-faire allocation then corresponds to the solution to the t = 0 problem

above for all θ0.

Proposition 3. The full information laissez-faire allocation is Pareto efficient.

Proof. It is straightforward to show that the laissez-faire allocation has (22) hold as an equality for

each θ0 type. (Otherwise, each θ0 type could simply consume the extra resources himself.) That

is, under the laissez-faire allocation, the expected discounted dynastic consumption of each θ0 type

equals its expected discounted dynastic output.

Suppose there exists an allocation that Pareto dominates the laissez-faire allocation. That

β > 0 and π(θ|θ−) > 0 for all (θ, θ−) implies that at least one first generation θ0 type agent is strictly

better off in this Pareto-improving allocation. Further, since the allocation is a Pareto improvement,

it satisfies (23) for all s ≥ 1 and (θ1,s). Thus, it must be the case that for this first generation θ0

type, (22) is violated, otherwise the first generation θ0 type would have chosen it. That is, under the

Pareto-improving allocation, the expected discounted dynastic consumption of at least one θ0 type

exceeds its expected discounted dynastic output. The society-wide resource constraint then implies

that for at least one θ0 type, say θ̂0, its expected discounted dynastic output exceeds its expected

discounted dynastic consumption. Further, since the new plan is a Pareto improvement, conditions

(23) are satisfied for the θ̂0 type’s problem. Thus, the θ̂0 type could have chosen his part of the

Pareto-improving allocation with (22) holding as a strict inequality, which is a contradiction.

The Pareto efficient full information laissez-faire allocation can be implemented with no taxes

whatsoever (no labor taxes, no inheritance taxes). It does require property rights and sufficient

insurance markets, however. In particular, fathers need to be able to make conditional transfers to

their sons, and the sons need to be protected from fathers making negative conditional transfers.

In fact, these property rights for children not to receive a negative inheritance is where
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positive Pareto weights γt(θ
t) occur. Recall from (15) that

γt+1(θt+1) =
Γt(θ

t)(u′(ct(θ
t))− βRu′(ct+1(θt+1)))

Ru′(ct+1(θt+1))
. (24)

That is, a type θt+1 agent is associated with a strictly positive Pareto weight when u′(ct(θ
t)) >

βRu′(ct+1(θt+1)) or precisely when, under the laissez-faire allocation, his father wishes he could

make him a negative conditional transfer. Likewise, sons who receive a positive inheritance, which

from the father’s intertemporal first order condition when (23) is slack ensures that u′(ct(θ
t)) =

βRu′(ct+1(θt+1)), have γt+1(θt+1) = 0.

5. Private Information

With private information, characterization of the set of Pareto efficient allocations is less

straightforward. In this section, we present three main results. First, we completely characterize

the set of Pareto efficient allocations for the two-period economy of Farhi-Werning (2010) subject

to a restriction that θ ∈ {θ, θ} and show that, like the economy with full information, in constrained

efficient allocations, implicit inheritance taxes can be either progressive or regressive, depending on

the particular constrained efficient allocation. That is, we show the result of Farhi-Werning (2010)

that optimal implicit inheritance taxes are progressive depends crucially on their assumption that

societal preferences toward unborn generations reflect, in their words, a “preference for equality”

regarding the consumption of unborn generations. In our environment, in which a son born to a

father of one θ type is considered a different person (for the purpose of Pareto efficiency comparisons)

than a son born to a father of a different θ type, this progressivity result no longer holds.

Second, we show that the “inverse Euler condition” result of Golosov, Kocherlakota, and

Tsyvinski (2003) (hereafter, GKT) (itself a generalization of Rogerson (1985)) holds as a necessary

condition for any incentive constrained Pareto efficient allocation, but as an inequality as opposed

to an equality as in GKT. This result is an interesting parallel to our similar result given full
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information. There, the normal (non-inverse) Euler condition u′(ct(θ
t)) ≥ βRu′(ct+1(θt+1)) holds

necessarily as an equality when only the first generation receives positive Pareto weights and holds

as an inequality when future generations are given positive direct, history-dependent Pareto weights.

Here, for the case of private information, we again show that the exact same necessary condition

that holds as an equality when only the first generation receives positive Pareto weights — now the

inverse Euler condition — holds as a weak inequality when future generations are given positive

direct, history-dependent Pareto weights.

Finally, we consider the efficiency of the laissez-faire allocation given private information.

Here, we first show that if θ0 (the skill realization of the initial generation) is public but θt is private

for all t ≥ 1, then the laissez-faire allocation is constrained efficient. We then consider the case in

which θ0 is private as well.

A. Farhi-Werning (2010)

Farhi-Werning (2010) (hereafter, FW) is a two-period version of our economy with one basic

exception: in FW, second period agents (children) cannot produce. In this section, we completely

characterize the set of constrained Pareto efficient allocations in such an economy (when types are

restricted to be either low or high) and show that implicit inheritance taxes are progressive if the

Pareto weights on children are restricted to be independent of their father’s type, as FW essentially

assume in their social welfare function approach, but can be either progressive or regressive if the

Pareto weights on children can depend on the type of their father (or children of high types are

assumed to be different people, for the purposes of Pareto comparisons, than the children of low

types). The next proposition characterizes the set of constrained efficient allocations.

Proposition 4. For the two-period economy t ∈ {0, 1} such that only t = 0 agents can produce,

an incentive compatible, resource feasible allocation (c∗0(θ), y∗(θ), c∗1(θ)), θ ∈ {θ, θ} is constrained
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Pareto efficient if and only if

1. the resource constraint holds with equality,

2. the low type has a weak residual motive to work more, or

u′(c∗0(θ))θ ≥ h′(y
∗(θ)

θ
) (25)

(and with equality if the incentive constraint, u(c∗0(θ)) − h(y
∗(θ)

θ
) + βu(c∗1(θ)) > u(c∗0(θ)) −

h(y
∗(θ)

θ
) + βu(c∗1(θ)), is slack),

3. the high type has a weak residual motive to work less, or

u′(c∗0(θ))θ ≤ h′(y
∗(θ)

θ
) (26)

(and with equality if the incentive constraint, u(c∗0(θ)) − h(y
∗(θ)
θ ) + βu(c∗1(θ)) > u(c∗0(θ)) −

h(y
∗(θ)
θ ) + βu(c∗1(θ)), is slack),

4. for each θ ∈ {θ, θ} the date t = 0 father has a weak residual motive to transfer consumption

from his son to himself, or

u′(c∗0(θ)) ≥ βRu′(c∗1(θ)). (27)

5. Finally, let MC(θ) ≡ f(θ)
u′(c∗0(θ)) , or MC(θ) equals the marginal societal cost of providing utility

from consumption to type θ, and let MU(θ) ≡ f(θ)
(

1
u′(c∗0(θ)) −

θ
h′(y∗(θ)/θ)

)
, or MU(θ) equals

the marginal societal cost of increasing both consumption and output for type θ such that the

utility for type θ stays constant. Then (as part of the necessary and sufficient conditions for

(c∗0(θ), y∗(θ), c∗1(θ)) to be constrained efficient), one needs for θ = θ, θc = θ as well as θ = θ,

θc = θ,

MC(θ) ≥ MU(θc)

( θ
c

θ )
ψ − 1

− MU(θ)

( θθc )
ψ − 1

. (28)

Proof. That the resource constraint must hold as an equality is immediate. (Increasing first period

consumption to raise the utility of each type of father by an equal amount is incentive compatible and
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Pareto improving.) Thus, (c∗0(θ), h∗(θ), c∗1(θ)) is Pareto efficient if and only if there exist γ0(θ) ≥ 0

and γ1(θ) ≥ 0 such that (u∗0(θ), h
∗
(θ), u∗1(θ)) ≡ (u(c∗0(θ)), h(y

∗(θ)
θ ), u(c∗1(θ))) solve

min
u0(θ),h(θ),u1(θ)

∑
θ

f(θ)[u−1(u0(θ))− θh−1(h(θ)) +
1

R
u−1(u1(θ))] (29)

subject to the incentive conditions that for θ = θ, θc = θ as well as θ = θ, θc = θ,

u0(θ)− h(θ) + βu1(θ) ≥ u0(θc)− h(θc)(
θc

θ
)ψ + βu1(θc), (30)

and

∑
θ

f(θ)[γ0(θ)(u0(θ)− h(θ) + βu1(θ)) + γ1(θ)u1(θ)] (31)

≥
∑
θ

f(θ)[γ0(θ)(u∗0(θ)− h∗(θ) + βu∗1(θ)) + γ1(θ)u∗1(θ)].

If each of the constraints is subtracted from the objective function to form a Lagrangian (with

multipliers f(θ)µ(θ, θc) on the incentive constraints and λ on equation (31)), then the derivatives of

this Lagrangian with respect to u0(θ), u1(θ), and h(θ) give rise to the following first order conditions:

f(θ)u−1′(u0(θ)) =
f(θ)

u′(c0(θ))
= f(θ)µ(θ, θc)− f(θc)µ(θc, θ) + λf(θ)γ0(θ), (32)

f(θ)

R
u−1′(u1(θ)) =

f(θ)

Ru′(c1(θ))
= f(θ)βµ(θ, θc)− f(θc)βµ(θc, θ) + λf(θ)(βγ0(θ) + γ1(θ)), (33)

−f(θ)h−1′(h(θ))θ = − f(θ)θ

h′(y(θ)
θ )

= −f(θ)µ(θ, θc) + f(θc)(
θ

θc
)ψµ(θc, θ)− λf(θ). (34)

If one adds (32) and (34), one can solve for

µ(θ, θc) =
f(θc)

f(θ)

1
u′(c0(θc)) −

θc

h′( y(θ
c)

θc
)

( θ
c

θ )ψ − 1
. (35)

If µ(θ, θc) = 0, this then implies that u′(c0(θc))θc = h′(y(θc)
θc ). If µ(θ, θc) > 0, it is necessary that the

sign of the numerator, 1
u′(c0(θc))−

θc

h′( y(θ
c)

θc
)
, agrees with the sign of the denominator, ( θ

c

θ )ψ−1. If θ = θ

and θc = θ, then the denominator is positive and thus 1
u′(c0(θ)

> θ

h′( y(θ)
θ

)
, or u′(c0(θ))θ < h′(y(θ)

θ
). If

θ = θ and θc = θ, then the denominator is negative and thus u′(c0(θ))θ > h′(y(θ)

θ
).

20



Next, if one solves (32) for f(θ)µ(θ, θc)− f(θc)µ(θc, θ) and substitutes into (33), one has

1

u′(c0(θ))
=

1

βRu′(c1(θ))
− λγ1(θ). (36)

Since γ1(θ) ≥ 0, this implies that u′(c0(θ)) ≥ βRu′(c1(θ)).

Finally, substituting (35) into (32) delivers

MC(θ)− MU(θc)

( θ
c

θ )ψ − 1
+

MU(θ)

( θθc )ψ − 1
= f(θ)λγ0(θ). (37)

Since f(θ)λγ0(θ) ≥ 0, this delivers (28) as a necessary condition.

For sufficiency, note that if one finds an allocation (c0(θ), y(θ), c1(θ)) satisfying the derived

necessary conditions, these solve the Lagrangian above (which in the transformed choice variables

has a convex objective function and linear constraints and thus satisfies the Kuhn-Tucker conditions)

with λγ0(θ) ≥ 0 defined by (37) and λγ1(θ) ≥ 0 defined by (36).

Next we show that implicit inheritance taxes are progressive if the Pareto weight on the child

of a high type parent is restricted to be equal to the Pareto weight on the child of a low type parent,

or γ1(θ) = γ1(θ), but can be progressive or regressive if these Pareto weights are not so restricted.

Proposition 5. Let (c∗0(θ), y∗(θ), c∗1(θ)), θ ∈ {θ, θ} be a constrained efficient allocation for the two

period economy t ∈ {0, 1} such that only t = 0 agents can produce, and let its associated implicit

inheritance tax τ(θ) solve u′(c∗0(θ)) = βRu′(c∗1(θ))(1− τ(θ)). Then, if Pareto weights are restricted

such that γ1(θ) = γ1(θ) > 0, τ(θ) < τ(θ) < 0 (or inheritance taxes are negative and progressive). If

instead γ1(θ) ≥ 0 and γ1(θ) ≥ 0 are unrestricted, then inheritance taxes remain (weakly) negative

but can be either progressive or regressive.

Proof. First, note that if one solves for τ(θ) from its definition, one derives

τ(θ) =
βRu′(c1(θ))− u′(c0(θ))

βRu′(c1(θ))
. (38)
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Next, consider the primal problem

max
c0(θ),y(θ),c1(θ)

∑
θ∈{θ,θ}

f(θ)[γ0(θ)(u(c0(θ))− h(
y(θ)

θ
)) + (βγ0(θ) + γ1(θ))u(c1(θ))], (39)

subject to (for θ = θ and θc = θ as well as for θ = θ and θc = θ)

u(c0(θ))− h(
y(θ)

θ
) + βu(c1(θ)) ≥ u(c0(θc))− h(

y(θc)

θ
) + βu(c1(θc)), (40)

and ∑
θ∈{θ,θ}

f(θ)[c0(θ)− y(θ) +
1

R
c1(θ)] ≤ 0, (41)

where f(θ)µ(θ, θc) and λ are the respective Lagrange multipliers.

The necessary first order conditions with respect to c0(θ) and c1(θ) are

f(θ)γ0(θ)u′(c0(θ)) + f(θ)µ(θ, θc)u′(c0(θ))− f(θc)µ(θc, θ)u′(c0(θ))− f(θ)λ = 0 (42)

and

f(θ)(βγ0(θ) + γ1(θ))u′(c1(θ)) +βf(θ)µ(θ, θc)u′(c1(θ))−βf(θc)µ(θc, θ)u′(c1(θ))− 1

R
f(θ)λ = 0 (43)

Solving (42) and (43) for f(θ)λ and equating delivers

βRu′(c1(θ))[f(θ)γ0(θ) + f(θ)µ(θ, θc)− f(θc)µ(θc, θ)] +Rf(θ)γ1(θ)u′(c1(θ))

= u′(c0(θ))[f(θ)γ0(θ) + f(θ)µ(θ, θc)− f(θc)µ(θc, θ)], (44)

or

(βRu′(c1(θ))− u′(c0(θ)))[f(θ)γ0(θ) + f(θ)µ(θ, θc)− f(θc)µ(θc, θ)]

= −Rf(θ)γ1(θ)u′(c1(θ)). (45)

Dividing each side by the expression in square brackets and βRu′(c1(θ)) delivers

τ(θ) ≡ βRu′(c1(θ))− u′(c0(θ))

βRu′(c1(θ))
=

−f(θ)γ1(θ)

β(f(θ)γ0(θ) + f(θ)µ(θ, θc)− f(θc)µ(θc, θ))
, (46)
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or

τ(θ) =
−f(θ)γ1(θ)

β(f(θ)γ0(θ) + f(θ)µ(θ, θc)− f(θc)µ(θc, θ))
. (47)

Note from (42) that

f(θ)γ0(θ) + f(θ)µ(θ, θc)− f(θc)µ(θc, θ)) =
f(θ)λ

u′(c0(θ))
. (48)

Thus,

τ(θ) =
−1

βλ
γ1(θ)u′(c0(θ)). (49)

Next, assume that γ1(θ) = γ1 (a constant) for all θ. This, (42), and (45) then imply that

βR(
1

u′(c0(θ))
− 1

u′(c0(θ))
) =

1

u′(c1(θ))
− 1

u′(c1(θ))
. (50)

Thus, if c0(θ) ≥ c0(θ), then c1(θ) ≥ c1(θ).

Next, from u′(c0(θ))θ ≥ h′(y(θ)
θ ) and u′(c0(θ))θ ≤ h′(y(θ)

θ
), if c0(θ) ≥ c0(θ) then y(θ)

θ < y(θ)

θ
.

Thus, if c0(θ) ≥ c0(θ), then c1(θ) ≥ c1(θ) and y(θ)
θ < y(θ)

θ
, which violates incentive compatibility.

Thus, c0(θ) < c0(θ), which (49) then implies τ(θ) < τ(θ), or inheritance taxes are progressive when

γ1(θ) = γ1(θ) > 0.

Finally, if γ1(θ) = 0 and γ1(θ) > 0, then (49) implies τ(θ) = 0 and τ(θ) < 0, and thus

τ(θ) > τ(θ) or inheritance taxes are regressive.

B. The Inverse Euler Condition

In this section we establish that the inverse Euler condition of Golosov, Kochkerlakota and

Tsvynski (2003) must hold as an inequality in any constrained efficient allocation.

Proposition 6. For the T+1-period economy with t ∈ {0, . . . , T}, an incentive compatible, resource

feasible allocation {c∗t (θt), y∗t (θt)}Tt=0 is constrained Pareto efficient only if for all t < T and θt,

1

u′(ct(θt))
≤ 1

βR

∑
θt+1

π(θt+1|θt)
1

u′(ct+1(θt+1))
. (51)
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Proof. Since the resource constraint must hold with equality in any constrained efficient allocation,

{c∗t (θt), y∗t (θt), }Tt=0 is constraint efficient only if {u∗t (θt), h
∗
t (θ

t)}Tt=0 ≡ {u(c∗t (θ
t)), h(

y∗t (θt)
θt

)}∞t=0 solves

min
ut(θt),ht(θt)

T∑
t=0

∑
θt

1

Rt
f(θ0)π(θ1|θ0) . . . π(θt|θt−1)(u−1(ut(θ

t))− θth−1(ht(θ
t))) (52)

subject to for all t, θt, and θ̂ 6= θt

ut(θ
t)− ht(θt) +

T∑
s=t+1

βs−t
∑
θt+1,s

π(θt+1|θt) . . . π(θs|θs−1)[us(θ
s)− hs(θs)]

≥ ut(θ
t−1, θ̂)− (

θ̂

θt
)ψht(θ

t−1, θ̂) +
T∑

s=t+1

βs−t
∑
θt+1,s

π(θt+1|θt) . . . π(θs|θs−1) (53)

[us(θ
t−1, θ̂, θt+1,s)− hs(θt−1, θ̂, θt+1,s)],

and for all t and θt

ut(θ
t)− ht(θt) +

T∑
s=t+1

βs−t
∑
θt+1,s

π(θt+1|θt) . . . π(θs|θs−1)[us(θ
s)− hs(θs)]

≥ u∗t (θ
t)− h∗t (θt) +

T∑
s=t+1

βs−t
∑
θt+1,s

π(θt+1|θt) . . . π(θs|θs−1)[u∗s(θ
s)− h∗s(θs)]. (54)

Next note that if, for a particular t < T and θt, one perturbs {u∗t (θt), h
∗
t (θ

t)}Tt=0 by decreasing

ut(θ
t) by ∆ ≥ 0 and increasing ut+1(θt+1) by ∆/β for all θt+1, and otherwise leaving the allocation

unchanged, the perturbed policy remains in the constraint set. Further, it affects the objective

function only in the terms for dates t and t + 1 following history θt. Thus, if {c∗t (θt), y∗t (θt)}Tt=0 is

constrained Pareto efficient, a choice of ∆ = 0 must solve

min
∆

u−1(u∗t (θ
t)−∆) +

1

R

∑
θt+1

π(θt+1|θt)u−1(u∗t+1(θt+1) + ∆/β) (55)

subject to ∆ ≥ 0. The necessary first order condition of this problem with respect to ∆ (where µ is

the multiplier on the constraint) is

− 1

u′(ct(θt))
+

1

βR

∑
θt+1

π(θt+1|θt)
1

u′(ct+1(θt+1))
= µ. (56)

That µ ≥ 0 then proves the result.
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C. Private Information Property Rights Implementation

In this section, we mimic the results established under full information. In particular, we

establish conditions under which no taxes of any kind are necessary to achieve Pareto efficiency.

Our first result is that if θ0 is public information, but θt for all t ≥ 1 is private, then the private

information laissez-faire allocation is Pareto efficient.

Define the laissez-faire allocation exactly as with full information except that at each step

of deriving V `(θt), a date t, type θt agent faces a further constraint that his descendants must be

willing to truthfully reveal their types (assuming all of their descendants truthfully reveal), or for

all s ≥ t+ 1, θt+1,s, and θ̂,

u(cs(θ
t+1,s))− h(

ys(θ
t+1,s)

θs
) +

T∑
n=s+1

βn−s
∑
θs+1,n

π(θs+1|θs) . . . π(θT |θT−1)

[u(cn(θt+1,n))− h(
yn(θt+1,n)

θn
)] ≥

u(cs(θ
t+1,s−1, θ̂))− h(

ys(θ
t+1,s−1, θ̂)

θs
) +

T∑
s=t+1

βs−t
∑
θt+1,s

π(θt+1|θt) . . . π(θs|θs−1) (57)

[u(cn(θt+1,s−1, θ̂, θt+1+s,n)− h(
yn(θt+1,s−1, θ̂, θt+1+s,n)

θn
)].

With private information, V `
t (θt) is the value to a date t < T born agent of type θt of receiving

a zero inheritance subject to the same conditions as with full information but with one additional

condition: Again, the date t type θt agent has a property right to his own production and the ability

to control the production and consumption of his descendants. Again, the expected discounted

consumption of himself and his descendants must not exceed their production (which implies the

ability to make actuarially fair conditional transfers to descendants) and these descendants do no

worse than what they could achieve on their own with a zero inheritance and these same rights.

But added is a constraint that the date t agent must choose a consumption-output plan for his

descendants that induces them to truthfully reveal their types. Once V `
t (θt) is thus calculated for

all t ≥ 1, the laissez-faire allocation with private information then corresponds to the solution to the
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t = 0 problem for all θ0. Note that nowhere in this definition of the private information laissez-faire

allocation is a condition that a date t = 0, θ0 type agent be willing to truthfully reveal his type.

Proposition 7. If θ0 is publicly observable but θt, t ≥ 1 is private, the private information laissez-

faire allocation is constrained Pareto efficient.

Proof. The proof is essentially identical to the full information case. It is straightforward to show

that the laissez-faire allocation with private information has (22) hold as an equality for each θ0

type. (Otherwise, each θ0 type could simply consume the extra resources himself without upsetting

incentive compatibility.) So as with full information, under the private information laissez-faire allo-

cation, the expected discounted dynastic consumption of each θ0 type equals its expected discounted

dynastic output.

Next suppose there exists a feasible incentive-compatible allocation that Pareto dominates

the private information laissez-faire allocation. Again, that β > 0 and π(θ|θ−) > 0 for all (θ, θ−)

implies that at least one first generation θ0 type agent is strictly better off in this Pareto-improving

allocation. Further, since the allocation is a Pareto improvement, it satisfies (23) for all s ≥ 1

and (θ1,s). Finally, since the allocation is incentive compatible, it satisfies (58) for all s ≥ 1 and

(θ1,s). Thus, it must be the case that for this first generation θ0 type, (22) is violated, otherwise the

first generation θ0 type would have chosen it. That is, under the Pareto-improving allocation, the

expected discounted dynastic consumption of at least one θ0 type exceeds its expected discounted

dynastic output. The society-wide resource constraint then implies that for at least one θ0 type, say

θ̂0, its expected discounted dynastic output exceeds its expected discounted dynastic consumption.

Further, since the new plan is an incentive-compatible Pareto improvement, conditions (23) and

(58) are satisfied for the θ̂0 type’s problem. Thus, the θ̂0 type could have chosen his part of the

Pareto-improving allocation with (22) holding as a strict inequality, which is a contradiction.
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Of course, a more natural assumption is that θt is private for all dates t, including t = 0.

It is not immediate, however, that a type θ0 would prefer his own private information laissez-faire

allocation over the private information laissez-faire allocation associated with type θ̂0 6= θ0. However,

if a type θ0 prefers the allocation chosen by a type θ̂0, this implies that the allocation chosen by the

θ̂0 type is not in his constraint set. (Otherwise, the θ0 type would have chosen it.) But a date t = 0

agent’s type shows up in the constraint set of the laissez-faire allocation problem only in (22) — the

condition that expected discounted consumption of an agent and his descendants not exceed the

expected discounted production of the agent and his descendants. And in this condition, the date

t = 0 agent’s type shows up only in term π(θ1|θ0). Thus, the following proposition is immediate.

Proposition 8. If π(θ|θ−) is i.i.d., the private information laissez-faire allocation is constrained

Pareto efficient.

Next, we consider alternative assumptions that ensure that the private information laissez-

faire allocation is constrained Pareto efficient. In particular, in the next proposition we assume only

two θ types (high and low) and that although high θ types can claim to be low θ types, the reverse

is not true. In essence, for this proposition, we assume the existence of a skills test that high skill

types can purposely fail if they wish to pretend to be the low skill type, but low skill types cannot

pass.

Proposition 9. Suppose Θ = {θ, θ} and βR ≤ 1. Then the private information laissez-faire

allocation of the high θ0 is preferred by him to the private information laissez-faire allocation of the

low θ0 type. Thus, if a low skill type cannot pretend to be high skill type, the private information

laissez-faire allocation is constrained Pareto efficient.

Proof. First, define the autarkic allocation (ca(θ), ya(θ)) such that ca(θ) = ya(θ) and u′(ya(θ))θ =

h′(ya/θ). The autarkic allocation is in the constraint set of θ0 types. Next, let T = 1 (so t ∈ {0, 1})
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and let θ0 = θ. Here, one can show that the laissez-faire allocation has the θ0 = θ type choosing

the autarkic allocation. (Under the autarkic allocation, u′(c0(θ)) ≤ βRu′(c1(θ, θ)) since c0(θ)) =

c1(θ, θ) = ca(θ) and βR ≤ 1. Likewise, u′(c0(θ)) < βRu′(c1(θ, θ)) since c0(θ)) = ca(θ) < c1(θ, θ) =

ca(θ) and βR ≤ 1. Thus, the θ0 = θ type would, at the margin, weakly prefer to make negative

conditional transfers to both son types, which is ruled out by (23). Thus, autarky (or no conditional

transfers) satisfies his optimization problem.) But next note that the autarkic allocation is in the

constraint set of the high θ0 = θ type as well, ensuring that the private information laissez-faire

allocation chosen by the θ0 = θ type is weakly preferred by him to autarky, proving the result for

T = 2.

Next, let T = 3. Here again, one can show that the private information laissez-faire allocation

has the θ0 = θ type choosing zero transfers to both son types. Here, the θ0 = θ type chooses the

continuation allocation for his θ son to be the autarkic allocation and chooses the continuation

allocation for his θ son to correspond to the T = 2 private information laissez-faire allocation. (This

is in the constraint set of the θ0 = θ type and has u′(c0(θ)) ≤ βRu′(c1(θ, θ1)) for both θ1 types; thus

again, the θ0 = θ type weakly prefers to make negative conditional transfers.) The argument then

iterates backward. By noting that if the θ0 = θ type chooses zero conditional transfers to both son

types, then the private information laissez-faire allocation for θ0 = θ is in the constraint set of the

θ0 = θ, and the proof is complete.

6. Extensions

In the previous sections, agents were assumed to live for one period and care about their

descendants. In reality, however, individuals do not live one day but many, and in each of these

days some relevant information about their type is realized or revealed. Thus, an individual after

one additional day of his life has a different history from the one he had until yesterday. Should

this individual be considered, from the point of view of the efficiency of the allocations, a different
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individual from the self he was yesterday? To formally analyze this question, we introduce a simple

extension of the model in which an individual lives for two periods and cares about his descendants.

(Later, it will become clear how to extend this to N periods.) Further, we assume that the physical

attributes of the environment are unchanged and that preferences over allocations (equation (5))

are also unchanged. To link this current extended model to the previous one, in this section we

consider the effects of assuming that for an agent born at t = 0, date t = 1 refers not to the lifetime

of his son but rather to the second half of his own life. Likewise, date t = 2 refers to the first half

of his son’s life, date t = 3 refers to the second half of his son’s life, and so on.

In this construction, it follows immediately that if the preference ordering of an agent’s

future self is considered for the purposes of Pareto rankings exactly as his sons were in the previous

sections, nothing changes. The set of Pareto efficient allocations is the same as when agents live

for one period, and the implications for inheritance taxes and the efficiency of laissez-faire are also

unchanged, with or without private information.

However, if for the purposes of Pareto rankings we consider only an agent’s preference ordering

at birth, then the set of Pareto efficient allocations is a strict subset of the set of Pareto efficient

allocations when agents live for only one period. Nevertheless, our main results, modified versions

of Propositions (1) through (9), go through.

Specifically, recall that under full information and agents living for one period, in Proposition

(1) we show that a symmetric allocation is Pareto efficient if and only if the resource constraint (4)

holds with equality, that labor is not distorted (condition (12) for all t and θt), and for all t and

θt+1,

u′(ct(θ
t)) ≥ βRu′(ct+1(θt, θt+1)). (58)

When agents live for two periods and only their beginning of life preferences are considered for

Pareto rankings, this result is unchanged except that (58) holds only for odd dates t. In words, this
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requires that no father, in his second period of life, has an unsatisfied desire to give a positive gift to

any particular type son at an actuarially fair rate of return. For even dates t, the inequality in (58)

is replaced with an equality. This condition requires that no father, in his first period of life, has

an unsatisfied desire to make either positive or negative conditional transfers to his second period

of life, again at an actuarially fair rate of return.

Thus modified, Proposition (1 ) now implies, under full information that an agent’s consump-

tion in the second period of life does not depend on his second period θ realization; he insures against

this. Further, the implicit savings tax (the implicit inheritance tax in the previous sections but for

even dates t) must be zero in any Pareto efficient allocation, whereas the implicit inheritance taxes

(or “wedges” for odd dates t) are again non-positive and can be progressive or regressive. That is,

Proposition (2) continues to hold, but only at odd dates t. Proposition (3), that the full information

laissez-faire allocation is efficient, holds as well, but in modified form. The modification here is that

in the definition of the t date laissez-faire allocation, condition (23) (that agents cannot give de-

scendants born in date s allocations that to them are worse than the date s laissez-faire allocation)

now must hold only for even dates s. Finally, with similar modifications, Propositions (6) through

(9), which characterize the constrained efficiency of the private information laissez-faire allocation,

hold as well.

In this extension, we altered the lifetime of an agent from one period to two. The extension

to N is straightforward. But we have not changed the length of a time period (although our results

hold for all β, π, and R). A second extension is to set up our model so that the length of a time

period can brought to zero. We then consider the extreme assumption that an individual lives

for only an instant, and at every instant a new person is born with rights in determining Pareto

rankings. Even with this extreme assumption, we show that the set of Pareto efficient allocations

is non-trivial.
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To this end, let ∆ be the length of a time period and assume that agents discount the future

by the continuous time parameter b so that β(∆) = exp(−b∆). Likewise, if r is the continuous time

analogue to R, let R(∆) = exp(r∆). Finally, assume that θ ∈ {θ, θ}, let λ represent the constant

Poisson probability of transiting from state θ to state θ, and let λ represent the constant Poisson

probability of transiting from state θ to state θ. Then π(θ|θ)(∆) = 1 − λ∆, π(θ|θ)(∆) = λ∆,

π(θ|θ)(∆) = 1−λ∆, and π(θ|θ)(∆) = 1−λ∆. With β, R, and π thus defined as functions of ∆, we

can consider sequences of economies with ∆ converging to zero.

At each point in such a sequence, each of our propositions hold. For instance, the full

information efficiency characterization Proposition (1) has that for any Pareto efficient allocation,

resources must be exhausted (condition (4) holds as an equality) and the intratemporal labor-

consumption efficiency condition (12) must hold; thus these must hold in the limiting economy as

well. Regarding intertemporal consumption paths, we have (analogous to (58)) for all t and θt+∆

u′(ct(θ
t)) ≥ exp((r − b)∆)u′(ct+∆(θt+∆)). (59)

Heuristically, as ∆→ 0 (assuming ċt is well defined), then

ċt ≥ (r − b)/(−u
′′(ct)

u′(ct)
). (60)

In words, when every instant a new person is realized for the purposes of Pareto ranking allocations,

a necessary condition for the stochastic process ct to be Pareto efficient in the full information

economy is that the growth rate of consumption, realization by realization, is bounded below by the

difference between technological and preference rates of discount, divided by the absolute level of

risk aversion at that consumption level. If r = b (or βR = 1 for all ∆), this condition implies that

all consumption paths must be non-decreasing over time.
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7. Conclusion

In this paper, we have introduced a natural method of considering Pareto efficiency in dy-

namic economies with altruism toward children and uncertainty regarding their skill. We argued

that efficiency requires taking into account the desire of individuals to insure against uncertainty,

but only against the real uncertainty they face — for example, that of fathers regarding the skill

endowment of their children. The same concept does not require individuals to insure against events

that have already happened, and this characteristic in fact defines who they are. For example, there

is no uncertainty on the child’s part regarding the realization of his skill. If we look at the character-

ization of efficiency in terms of the weights on individuals used by the social planner, our definition

is equivalent to the one in which the weights over an individual may depend on the history of type

realizations of his dynasty until his birth date.

We show that by adopting this natural definition, we substantially extend the set of Pareto

efficient allocations. That the true set of efficient allocations is strictly larger is easy to see in the

case of complete information economies. The set of efficient allocations for these economies can be

completely characterized. An allocation is efficient in this case if and only if every father would not

want to make, at that allocation, direct transfers to any of his child’s type realizations. Although

this is a substantial extension of the efficient set, substantial restrictions are still imposed by the

efficiency requirement, and they are naturally induced by the altruism of the father.

In general we show that, properly understood, Pareto efficiency does not require special

forms of government intervention, such as progressive inheritance taxes, to correct market failures.

In other words, progressive taxation cannot be justified on efficiency grounds alone. Even a total

absence of government intervention may result in efficient allocations.
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8. Appendix: Continuous Time Model

The economy lasts for an interval [0, T ]. Individuals are born at every integer time in the

interval, live for one time unit, and have a single offspring who lives in the next period. At every

time t, the history of the person is the path of types of his forefathers and his own path up to that

moment.

The set of types is a finite set Θ. The set of type paths is the set Ω of functions from [0, T ]

to Θ that are right continuous and piecewise constant. Let

λ = diag(λθ1 , . . . , λθn) (61)

with λθi ≥ 0 be the Poisson rate in the state θi. Let π be a stochastic matrix, with π(·|θi) ∈ ∆(Θ)

the transition probability at θi if a transition occurs. The process on Θ is defined as follows. At

state θi, a change in the state occurs at Poisson rate λθi ; if a change occurs, the state transits to θi

with probability π(θj |θi). The probability P on (Ω,F) is induced by this process.

Note that λ and π define an invariant measure on Θ as the solution µ of

µ(I − λπ) = 0, µ({Θ}) = 1, (62)

where I is the identity matrix. At every time t, the probability that the state is θi is µ(θi).

Definition 1. An allocation a is a pair (c, y) of functions from Ω × [0, T ] to the set C × Y of

consumption and outputs.

Note that an allocation defines consumption and output for the nth member of the dynasty

living in the time interval [n, n+ 1). We call this member a person. An individual in this economy

is identified by the history until the point in time at which the individual appears, namely, the path

ω restricted to [0, t]. Thus, each person has a continuum of individual realizations.

Let r and b be positive numbers. The technology available allows transfer of the accumulated

asset at the rate ers. An allocation is feasible if
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E

∫ T

t=0
e−rs[y(·, s)− c(·, s)]ds ≥ 0 (63)

Utility is discounted at the rate e−bs. We impose

lim
t→+∞

u(ert)e−bt = C <∞. (64)

Consider now a small time interval ∆t. For each such interval, consider the set of allocations

that are constant in the time interval [i∆t, (i+ 1)∆t) for every i. Utility is not constant over such

interval because the type can change, as can the disutility cost of effort. For such a time interval, we

have a discrete economy as defined in the main text. For such an economy, feasibility and efficiency

have been defined.

Definition 2. An allocation is efficient if it is the limit of ∆t-efficient allocations.

Lemma 3. If condition (64) holds the set of efficient allocations is non-empty.

Theorem 1. An allocation a ≡ (c, y) is efficient if and only if:

1. Resource utilization For every t:

E

∫ T

t=0
e−rs[y(·, s)− c(·, s)]ds = 0 (65)

2. No wedge

P − a.e. ω, u
′
(c(ω, t))θ(ω, t) = h

′
(
y(ω, t)

θ(ω, t)

)
(66)

3. No transfer

P − a.e. ω,∀t, lim inf
∆t→0

c(ω, t+ ∆t)− c(ω, t)
∆t

≥ −(r − b)u
′′
(c(ω, t))

u′(c(ω, t))
(67)
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