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We study the drivers of geographic variation in US health care utilization, using an empirical strategy
that exploits migration of Medicare patients to separate the role of demand and supply factors. Our
approach allows us to account for demand differences driven by both observable and unobservable
patient characteristics. We find that 40-50 percent of geographic variation in utilization is attributable
to patient demand, with the remainder due to place-specific supply factors. Demand variation does
not appear to result from differences in past experiences, and is explained to a significant degree by
differences in patient health.

Amy Finkelstein
Department of Economics, E17-228
MIT
77 Massachusetts Avenue
Cambridge, MA 02139
and NBER
afink@mit.edu

Matthew Gentzkow
University of Chicago
Booth School of Business
5807 South Woodlawn Avenue
Chicago, IL 60637
and NBER
gentzkow@chicagobooth.edu

Heidi Williams
Department of Economics, E17-222
MIT
77 Massachusetts Avenue
Cambridge MA 02139
and NBER
heidiw@mit.edu



1 Introduction

Health care utilization varies widely across the United States (Fisher et al. 2003a; 2003b). Adjust-

ing for regional differences in age, sex, and race, health care spending for the average Medicare

enrollee in Miami, FL was $14,423 in 2010, but just $7,819 for the average enrollee in Minneapo-

lis, MN. The average enrollee in McAllen, TX spent $13,648, compared to $8,714 in nearby and

demographically similar El Paso, TX.1 Similar geographic variation is observed in the frequency

of specific treatments (Chandra et al. 2012) and in measures of total health care utilization that

adjust for regional variation in prices (Gottlieb et al. 2010). Higher area-level utilization is not

generally correlated with better patient outcomes.2

Understanding what drives this geographic variation has first-order implications for policy. If

high-spending areas like McAllen and Miami are different mainly because their doctors’ incen-

tives or beliefs lead them to order excessive treatments with low return, policies that change those

incentives or beliefs could result in savings on the order of several percentage points of GDP (Con-

gressional Budget Office 2008; Gawande 2009; Skinner 2011). If, on the other hand, patients in

high-spending areas are simply sicker or prefer more intensive care, such policies could be inef-

fective or counterproductive.

In this paper, we exploit patient migration to separate variation due to patient characteristics

such as health or preferences from variation due to place-specific variables such as doctors’ incen-

tives and beliefs, endowments of physical capital, and hospital market structure. As a shorthand,

we refer to the former as “demand” factors and the latter as “supply” factors.3 To see the intuition

for our approach, imagine a patient who moves from high-spending Miami to low-spending Min-

neapolis. If all of the spending difference between these cities arises from supply-side differences

like doctor incentives, we would expect the migrant’s spending to drop immediately following the

1Authors’ tabulations based on total Medicare Parts A and B reimbursements per enrollee, from Dartmouth Atlas
of Health Care, http://www.dartmouthatlas.org/downloads/tables/pa_reimb_hrr_2010.xls.

2See Skinner (2011) for an extensive discussion. The Congressional Budget Office (2008) concludes that high-
spending areas “tend to score no better and, in some cases, score worse than other areas do on process-based measures
of quality and on some measures of health outcomes,” and that more intensive treatment in high-spending areas “ap-
pear[s] to improve health outcomes for some types of patients, but worsen outcomes for others.”

3This corresponds to the usual definitions of demand and supply in most cases, but the correspondence is not
perfect. For example, peer effects or social learning will generally be captured in our framework as a place-specific
(“supply”) factor, since the composition of peers can change when a patient moves, but it would be more natural to
think of them as shifters of demand rather than supply.
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move, to a level similar to other patients of the low-spending doctors in Minneapolis. If all of the

spending difference reflects the demand-side reality that residents of Miami are sicker, we would

expect the migrant’s spending to remain constant after the move, at a level similar to the typical

person in Miami. Where the observed spending change falls between these two extremes identifies

the relative importance of demand and supply factors.

We implement this strategy using claims data for a 20 percent sample of Medicare beneficia-

ries from 1998 to 2008.4 In our baseline model, the log of a patient’s annual health care utilization

arises from a combination of a patient fixed effect, a location fixed effect, and a vector of time-

varying controls, including indicators for year relative to move for migrants. Our main outcome

measure adjusts health care spending for geographic price differences to create a quantity measure

of utilization, as in Gottlieb et al. (2010). The model allows for the possibility that migrants have

systematically different utilization levels from non-migrants, and that these levels are correlated

with the migrant’s origin and destination region. It also allows for arbitrary differences in uti-

lization trends of migrants relative to non-migrants. The key identifying assumption is that such

differential trends do not vary systematically with the migrant’s origin and destination.

We begin with an event-study analysis of changes in log utilization around moves. We observe

a sharp change in the year of a move, equal to about half of the difference in average log utilization

between the origin and destination. There is little systematic trend pre-move, and no systematic

adjustment post-move. The on-impact effect is similar for moves from low-to-high and high-to-low

utilization regions, and is roughly linear in the absolute value of the origin-destination difference

in log utilization.

Our estimated model exploits this variation to infer that 47 percent of the difference in log

utilization between above- and below-median areas is due to demand-side factors. The share is

similar for differences between the top and bottom quartiles, deciles, or ventiles. The share is also

4Studying Medicare patients is appealing due to the availability of high-quality, rich data on large numbers of
beneficiaries, and the relatively geographically uniform insurance environment. The literature has explored—to the
extent feasible given existing data—whether the geographic variation in health care utilization that has been exten-
sively documented in the Medicare setting exists in other settings as well. Regional variation appears to be the norm;
geographic variation has been documented in the US Veterans Affairs system (Ashton et al. 1999; Congressional Bud-
get Office 2008; Subramanian et al. 2002), in private insurance markets (Baker et al. 2008; Chernew et al. 2010; Dunn
et al. 2013; Philipson et al. 2010; Rettenmaier and Saving 2009), and in other countries including the UK and Canada
(McPherson et al. 1981), although the magnitudes of this variation and the correlation with Medicare variation is the
subject of some debate in these studies.
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similar when we isolate differences between the very highest-spending areas, such as McAllen or

Miami, and the very lowest-spending areas, such as El Paso or Minneapolis.

We replicate this analysis for various components of total utilization. All measures show sharp

changes in the year of a move, with magnitudes implying patient shares ranging from 9 percent

to 71 percent. Although we do not have a formal framework in which to interpret this hetero-

geneity, we find large patient shares for outcomes where we might think patients have significant

discretion—preventive care and emergency room visits, for example—and smaller patient shares

for outcomes where we might think they have less—diagnostic tests, imaging tests, and inpatient

care, for example.

In the final section of the paper, we consider what underlying economic primitives might drive

the differences in patient demand we estimate. We begin by showing that patient demographics

(age, race, and sex) predict relatively little of the variation in demand. We also show that a me-

chanical form of state dependence due to persistence of diagnosis or treatment likewise seems to

play at most a small role.

We then turn to considering the role of habit formation, in the sense of Becker and Murphy

(1988): to what extent do differences in patients’ demand for care today result from differences in

the care they consumed in the past? We present two pieces of evidence that suggest habit formation

is limited, at least over the 10-year horizon of our data. First, we find no evidence that utilization

continues to adjust in the years after a move. Such adjustment is a robust prediction of habit

models, and is the key feature of the data that identifies empirical studies of habit formation such

as Bronnenberg et al. (2012). Second, we find that older patients actually change their utilization

more when they move than younger patients, at odds with many habit models that predict older

patients’ larger stock of past consumption would cause them to adjust their utilization by less.

The finding that habit formation is limited speaks to questions beyond our demand-supply

decomposition. It suggests the demand-side differences we observe in the propensity to consume

care are likely to be stable, and not easily affected by policy. On the other hand, the fact that

utilization adjusts sharply on move suggests that policies which affect supply-side factors such as

doctors’ practice patterns can have immediate impacts.

The last mechanism we consider is patient health: are patients in Miami simply sicker than

patients in Minneapolis? An important challenge is that measured health status may itself be
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endogenous to place (Song et al. 2010): because standard health status measures are derived from

claims data, a given condition may be more likely to be recorded in a high-intensity area. To

address this, we extend our mover-based empirical strategy to separate patient-specific variation in

health from the component of measurement endogenous to place. We then ask how much of the

geographic variation in log utilization can be explained by the patient component of health.

Consistent with Song et al. (2010), we find the effect of endogenous measurement to be sub-

stantial. Once we adjust for this, we find that patient health can explain 22 to 37 percent of the

gap in log utilization between above- and below-median areas—or 47 to 80 percent of our overall

patient share—depending on the health measure used. The remainder of the patient share presum-

ably reflects other factors such as information, preferences, or unmeasured dimensions of patient

health.

Like our findings on habit formation, our results on patient health have broader relevance.

The larger the role played by patient health, the less effective may be policies aimed at other

demand-side drivers such as patient preferences or beliefs. Our results also extend the analysis

of the endogeneity first identified by Song et al. (2010) to develop a method for separating the

endogenous and patient-specific components of these measures; this may have other applications

in the large literature that uses these health measures as inputs for risk adjustment. At the same

time, there are some important limitations to our health results. Although our measure addresses

one form of endogeneity in measured health, it may still pick up the effect of patient characteristics

correlated with health, as well as patient-specific factors that affect the likelihood a given health

condition is measured in claims.

Our work contributes to a large existing literature seeking to separate the role of demand-side

and supply-side factors in driving geographic variation in health care utilization.5 All of these stud-

ies infer the role of demand-side factors from the explanatory power of patient observables. The

majority of recent work concludes that the role of patients is limited, and that most of the variation

likely originates on the supply side. A review by Chandra et al. (2012), for example, concludes: “In

general, the literature points to the importance of supply-side incentives over demand-side factors

in driving treatment choice” (p. 425) and “most of the literature agrees that patient characteristics

5See Skinner (2011) and Chandra et al. (2012) for reviews, and Cutler et al. (2013) and Baker et al. (2014) for
more recent contributions.
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and preferences do not explain much of the differences across areas.” (p. 402) An exception to this

consensus is Sheiner (2014), who argues that patients may explain most or all of the variation.

Our strategy has two important advantages relative to this literature. First, we can capture the

effect of both observed and unobserved patient characteristics, since both will be reflected in per-

sistence of utilization following a move. Second, our approach correctly isolates variation arising

from differences in patient health, even if observable measures of these factors are endogenous to

supply-side measurement differences.

Like past decompositions, ours is not sufficient to draw strong conclusions about the efficiency

of observed geographic variation. Though it may be tempting to see supply-driven heterogeneity

as evidence of waste, such variation could reflect different allocations of physical or human capi-

tal, and so be consistent with efficiency (Chandra and Staiger 2007). Conversely, demand-driven

heterogeneity could reflect patient misinformation, and so contribute to inefficiency. We view our

findings as both a first step toward a more welfare-relevant understanding and a clarification of an

influential body of existing evidence.

Our empirical strategy relates to past work using changes in residence or employment to sep-

arate effects of individual characteristics from geographic or institutional factors. Most closely

related are Song et al. (2010), who looks at how health measures change around patient moves, and

Molitor (2014), who looks at physician migration, estimating how cardiologist behavior changes

around their moves. Outside of the health care sector, a number of papers beginning with Abowd

et al. (1999) use matched worker-firm data to separately identify worker and firm fixed effects. In

this vein, we draw especially on Card et al.’s (2013) study of German workers and firms. Other

work uses migration to study neighborhood effects on children (Aaronson 1998), cultural assimi-

lation of immigrants (Fernandez and Fogli 2006), brand preferences (Bronnenberg et al. 2012), tax

reporting (Chetty et al. 2013), teacher value added (Chetty et al. 2014a), and retirement savings

decisions (Chetty et al. 2014b).

Section 2 introduces our model and estimation strategy. Section 3 describes our data and

presents summary statistics. Section 4 presents our main analysis of the role of demand and supply

factors in explaining geographic variation in health care utilization. Section 5 explores potential

mechanisms for the role of patients. Section 6 concludes.
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2 Empirical Model and Identification

2.1 Model

We index patients by i, geographic areas by j, and years by t. Some patients are “non-movers”

who live in one area throughout the sample, while others are “movers” whose area changes exactly

once. (In the empirical analysis, we exclude multiple movers.) For a mover i who moves during

year t∗i , we define the year relative to move to be r (i, t) = t−t∗i . The outcome of interest is y, which

in our main specifications will be the log of total health care utilization. We discuss the precise

definition of these variables in the context of our data in Section 3 below.

We assume outcome y for patient i who lives in area j throughout year t is given by:

yi jt = αi + γ j + τt +ρr(i,t) + xitβ + εi jt . (1)

Here αi, γ j, and τt are fixed effects for patient, area, and year respectively, and xit is a vector

of time-varying patient characteristics, which in our baseline specification is simply a series of

indicator variables for five-year age bins. The term ρr(i,t) is a fixed effect for movers in relative

year r (i, t), which we normalize to zero for non-movers. We do not model outcomes for movers

in year t∗i , when (as we show below) they spend part of the year in their origin area and part of the

year in their destination; when we estimate equation (1), we omit these observations. We let

cit = αi +ρr(i,t) + xitβ

denote the combined effect of patient characteristics. We assume that the error term εi jt satisfies

E
(
εi jt |αi,ρr(i,t),xit ,γ j,τt

)
= 0.

Our main goal is to decompose variation in average log utilization across regions into a demand-

side component attributable to patients and a supply-side component attributable to place. To define

this decomposition formally, let y jt denote the expectation of yit across patients living in area j in

year t, and let y j denote the average of y jt across t. Let c jt and c j denote the analogous expectations

of cit . Then the difference in average log utilization between any two areas j and j′ is the sum of

the differences of place and patient components: y j− y j′ =
(
γ j− γ j′

)
+
(
c j− c j′

)
. When we talk
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about larger groups R that consist of multiple areas j, we abuse notation by letting yR, cR, and γR

denote the simple averages of y j, c j, and γ j across areas in R.

We define the share of the difference between areas j and j′ attributable to place to be

Splace
(

j, j′
)

=
γ j− γ j′

y j− y j′
(2)

and we define the share attributable to patients to be

Spat
(

j, j′
)

=
c j− c j′

y j− y j′
.

Note that although Spat ( j, j′) and Splace ( j, j′) sum to 1, neither need be between 0 and 1, since it is

possible that
(
γ j− γ j′

)
and

(
c j− c j′

)
have opposite signs. We define Spat (R,R′) and Splace (R,R′)

to be the analogous shares for groups R and R′.

We let ŷ j denote the sample analogue of y j. Given estimates γ̂ j of the γ j, we form a consistent

estimate ĉ j = ŷ j− γ̂ j of c j.

2.2 Identification

The model in equation (1) is only identified if the data include movers. If all patients were non-

movers, there would be no way to separate differences in the area fixed effects γ j from differences

in the average patient characteristics c j. The key to separate identification of these two components

is the observed changes in utilization when patients move.6

To build more precise intuition, consider a simplified version of our model in which the τt , xit ,

and ρr(i,t) are all set to zero, and so utilization depends only on patient and place fixed effects plus

the error term. Suppose we observe a large number of patients who move from area j′ to area j.

Then the difference ∆
j
j′ between their average yit in the years after the move and the years before

the move is a consistent estimator of
(
γ j− γ j′

)
. If we observe similar samples of patients moving

between the other areas in the sample, along with the overall mean of log utilization y, we can form

consistent estimates γ̂ j of each γ j. The c j would then be consistently estimated by ŷ j− γ̂ j.

Identification in the full model is similar. Identifying the τt and β is standard and does not

6A sufficient condition for identification is that the number of movers between any pair of areas j and j′ grows
large as the total sample size approaches infinity. Abowd et al. (2002) discuss weaker conditions for identification.
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rely on movers. Adding the ρr(i,t) has a more substantial effect. It allows for arbitrary changes in

log utilization for movers pre- and post-move, with the restriction that these changes are the same

regardless of the origin and destination. In the full model, therefore, observing only movers from j′

to j is not enough to identify
(
γ j− γ j′

)
, because ∆

j
j′ would also depend on the difference between

the post-move and pre-move ρr(i,t). Identification in this case comes from the differences in the

changes across movers with different origins and destinations. If we have movers from j′ to j and

also movers from j to j′, for example, we can estimate
(
γ j− γ j′

)
consistently as

(
∆

j
j′−∆

j′
j

)
/2.

Importantly, our model permits movers to differ arbitrarily from non-movers in both levels of

log utilization (via the αi) and trends in log utilization around their moves (via the ρr(i,t)). The

latter would allow, for example, for moves to be associated with either positive or negative health

shocks. We can in principle allow substantially more flexibility, including area- or individual-

specific trends, different fixed effects by sub-periods, and interactions between γ j and patient ob-

servables. We can also add flexibility by using data for movers only in the years just before or

after their move, in the spirit of a regression discontinuity. We explore robustness to specifications

along these lines below.

Our model is nevertheless restrictive in several important ways. First, we cannot allow for

shocks to utilization that coincide exactly with the timing of the move and that are correlated with

utilization in the origin and destination. In the example above, suppose that for movers from j′ to

j the conditional expectation of εi jt in years just after the move is strictly greater than for movers

from j to j′. This would inflate ∆
j
j′ relative to ∆

j′
j , and lead

(
∆

j
j′−∆

j′
j

)
/2 to be an overestimate

of
(
γ j− γ j′

)
. As a concrete example, this could occur if a subset of movers move in order to seek

intensive treatment in their destination, and they are differentially likely to move to relatively high-

or low-spending areas. The pattern of pre-move trends documented in the event study analysis

in Section 4.1 argues against this specific story, but we cannot in general rule out such correlated

shocks.

Second, our model assumes that αi and γ j are additively separable in the equation for log

utilization. We see this as an attractive assumption economically. It has the intuitive implication

that patient and place characteristics affect the level of utilization multiplicatively, and thus that

the utilization of patients who are sick or prefer intensive care (i.e., have high αi) will vary more
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across places than that of patients who are healthy or rarely seek care (i.e., have low αi).7 We also

see the log model as appealing on econometric grounds, given utilization’s skewed cross-sectional

distribution and large secular trend.

That said, the log specification nevertheless imposes some important restrictions. It rules out,

for example, variation across places that causes an equal level shift for all patients regardless of

their αi. This could occur, for example, if some places mandate flu shots or other preventive treat-

ments with similar cost for all patients. More subtly, our decompositions of geographic variation in

log utilization give relatively more weight to differences in the bottom part of the distribution than

a decomposition in levels would. In Section 4, we present a variety of specification and robustness

checks that bear on these issues.

Finally, our model does not allow for the possibility that αi in a given period is a function of

past values of yit . If, for example, patients in high-utilization areas become accustomed to visiting

the doctor frequently and receiving a large number of tests when they do, they might continue to

demand these services post-move. In this case, variation across areas in current αi could partly be

caused by the influence of γ j in the past. We discuss the possibility of such habit formation and

evidence that bears on it at length in Section 5.3 below.

2.3 Event Study Representation

To visualize the way utilization changes when patients move, we define an alternative “event study”

representation of equation (1).

To build intuition, it again helps to start with the simple case where τt , xit , and ρr(i,t) are all set

to zero and where our panel of movers is balanced in the sense that each mover is observed for the

same number of years pre- and post-move. If all movers had the same origin j′ and destination j,

we could construct an event study by simply plotting the average of y for movers by relative year

r (i, t). When origins and destinations vary, however, this plot would not be very informative. If

the flow from any j′ to j were equal to the flow from j to j′, for example, we would expect the

graph to show no change around the move, even if the absolute values of the underlying changes

7To take a concrete example, suppose that patients have either one or two chronic conditions, and that places
spend either five or ten thousand dollars per chronic condition. This would imply a model additive in logs, with
exp(αi) ∈ {1,2}, exp(γ j) ∈ {5,10}, and the log of utilization yi j equal to αi + γ j.
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on move were large.

To produce a more informative plot, we would like to scale y so that the direction and magnitude

of the jump on move are informative regardless of the origin and destination. For a mover i whose

origin and destination areas are o(i) and d (i) respectively, we denote by δi the difference in average

log utilization between the mover’s destination and origin:

δi = yd(i)− yo(i), (3)

and we let Si
place = Splace (d (i) ,o(i)) and Si

pat = Spat (d (i) ,o(i)). Following Bronnenberg et al.

(2012), we define for mover i:

yscaled
it =

yit− yo(i)

δi
.

Note that yscaled
it will be 0 if the mover’s utilization is equal to the average in his origin, 1 if it is

equal to the average in his destination, and between 0 and 1 if the mover’s utilization falls between

the two. If the model is correct, the expectation of yscaled
it should be flat both before and after

move and the jump on move will be equal to the average value of Si
place across movers. Plotting

the averages of yscaled
it by relative year would thus produce an event study figure with a direct

interpretation in terms of the model quantities of interest. The larger the jump in yscaled
it on move,

the greater the share of geographic variation we would attribute to place, and the smaller the share

we would attribute to patients.

To implement this in the full model, we must deal with three additional complications. First, we

need to allow for the controls τt , xit , and ρr(i,t). Second, our panel is not balanced and so changes

in the composition of movers could introduce pre- or post-trends into the event study figure. To

avoid this, we need to control for the individual fixed effects αi explicitly. Third, the difference δi

can be very small in some cases, which would make the simple average of yscaled
it poorly behaved.

This leads us to prefer a regression implementation that avoids dividing by δi.

Observe that we can rewrite equation (1) for movers as:

yit = αi + γo(i) + Ir(i,t)>0Si
placeδi + τt +ρr(i,t) + xitβ + εit , (4)

where Ir(i,t)>0 is an indicator variable for relative year greater than 0. Combining αi + γo(i) into
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a single patient fixed effect α̃i, replacing δi with its sample analogue δ̂i (calculated based on both

movers and non-movers in the destination and the origin), and parameterizing the interaction with

δ̂i as a flexible function of relative year yields

yit = α̃i +θr(i,t)δ̂i + τt +ρr(i,t) + xitβ + εit . (5)

This is the event study equation we take to the data. The relative-year specific coefficients θr(i,t)

are the parameters of interest: they measure changes in yit in years around the move scaled relative

to δi. If the sampling error in δ̂i is ignorable, and heterogeneity in Si
place is orthogonal to the other

variables in the model, the plot of the θr(i,t) will have a precise interpretation similar to that of the

average yscaled
it in the simple case: the plot should be flat before and after move, and jump on move

by a weighted average of Si
place.

3 Data and Summary Statistics

3.1 Data and Variable Definitions

Our primary data source is a 20 percent random sample of Medicare beneficiaries (“patients”)

from 1998 through 2008.8 These data contain approximately 13 million patients. For each patient,

we observe information on all Medicare claims for inpatient care, outpatient care, and physician

services. For each claim, the data include information on the diagnosis, the type and quantity

of care provided, and the dollar value reimbursed by Medicare. We also observe demographic

information for each patient, including age, gender, race, and zip code of residence, defined as

the address on file for Social Security payments as of March 31st of each year. To match the

timing with which we observe patients’ residence, we define all outcome variables for year t to be

aggregates of claims from April 1 of year t through March 31 of year t +1.9

Our primary outcome variable is based on an index of overall health care utilization by individ-

8The sample is a panel defined by taking all Medicare beneficiaries in each year whose social security number
ends in either “0” or “5.” The sample thus varies from year to year, but a given patient remains in the sample as long
as they are enrolled in Medicare.

9We include data from the first few months of 2009 to compute outcomes for our final sample year (t = 2008)
which runs from April 2008 to March 2009.
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ual by year, constructed by adjusting an individual’s total annual expenditure for regional variation

in prices, following Gottlieb et al. (2010). We refer to this throughout as simply “utilization.”

Online Appendix Section 1 describes the construction of the measure in detail. In our main speci-

fications, we define the outcome yit to be the log of utilization plus 1, which we refer to simply as

“log utilization.” As we discussed in Section 2.2, we prefer a log specification both economically

and econometrically. We explore other functional forms in the robustness section below. We also

examine a number of other outcome measures, including subcategories of utilization and indicators

for particular treatments, which are defined in more detail below.

Our geographic unit of analysis is a Hospital Referral Region (HRR), as defined by the 1998

Dartmouth Atlas of Health Care.10 The 306 HRRs are collections of zip codes designed to approx-

imate markets for tertiary hospital care. Consistent with the existing literature, we define average

log utilization and other outcomes for an HRR j to include all claims by residents of j, regardless

of the location of the claims themselves. On average, about 16 percent of claims occur outside a

patient’s HRR of residence.

We define patients to be “non-movers” if their HRR of residence is the same throughout our

sample period. We define patients to be “movers” if their HRR of residence changes exactly once.

We exclude patients whose HRR of residence changes more than once.

In some of our analysis below, we compare movers to a matched subsample of non-mover

patient years chosen to match as closely as possible the characteristics of our mover sample. For

each mover in our data in each calendar year we randomly draw a non-mover in the same year in

the mover’s origin HRR who shares the mover’s gender, race, and five-year age bin. The union

of the selected non-mover patient-years forms the “matched sample of non-movers” we refer to

below.

10See www.dartmouthatlas.org/downloads/geography/ziphsahrr98.xls and
http://www.dartmouthatlas.org/downloads/methods/geogappdx.pdf. Each HRR consists of a collection of zip codes

that contain at least one hospital that performs major cardiovascular procedures and neurosurgeries. Zip codes are
grouped into an HRR based on where the highest proportion of cardiovascular procedures are referred. Each HRR
must have a population of at least 120,000. We drop roughly 2 percent of patient-years whose zip codes do not match
the 1998 HRR definitions.
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3.2 Sample Restrictions and Summary Statistics

From our original sample of 13 million patients, we retain a 25 percent random sample of non-

movers along with all movers. We then restrict the sample to patient-years where patients are

between 65 and 99 years old, exclude the 20 percent of patient-years for patients enrolled in Medi-

care Advantage (for whom we do not observe claims), and exclude the remaining 7 percent of

patient-years for patients who do not have Medicare Part A or B coverage in all months (includ-

ing, for example, patients who enroll mid-year in the year they turn 65). Finally, among patients

whose HRR of residence changes at least once, we exclude the 18 percent whose HRR of resi-

dence changes more than once, as well as the 35 percent of the remaining “movers” whose share

of claims in their destination HRR, among claims in either their origin or destination HRR, is not

higher by at least 0.75 in the post-move years relative to the pre-move years.11

When we compute HRR averages, such as the sample analogue ŷ j of y j, we omit movers in

their move year and we weight non-movers by 4 to account for our sampling procedure. All HRR

averages are computed by first averaging across individuals in the HRR each year, and then taking

a simple average across years.

Our final sample includes 2.5 million patients, of whom approximately 0.5 million are movers.

Table 1 reports summary statistics separately for movers and non-movers. The characteristics of

the two groups are broadly similar, although there are some differences. Relative to non-movers,

movers are slightly more likely to be female, white, and older, and more likely to live initially

in the South or West, rather than the Midwest or Northeast. Average annual utilization in both

groups is roughly $7,500 per year, with a standard deviation of about $10,000, and 6 percent of

observations equal to zero. Health care utilization is notoriously right-skewed: the median across

both groups is about $4,300 and the 90th percentile is almost $18,000.

There are a variety of reasons that individuals may enter or exit the sample, including death, en-

tering or exiting Medicare Advantage, and entering or exiting our 65-99 age window. The average

11The claims data suggest several explanations for why some movers do not satisfy this last criterion. In a large
share of cases, the geographic distribution of claims remains roughly the same before and after the recorded move,
suggesting that the patient changed the address on file with Social Security without changing their residence. This
could occur if they decided to have their Social Security checks sent to a child who was handling their finances, for
example. In other cases, patients appear to have multiple residences both before and after the move, with the share
of claims in the destination increasing post-move by an amount less than our 0.75 threshold. We show in Online
Appendix Section 2.3 that our results are robust to alternative ways of defining movers.
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non-mover in our sample is observed for 6.3 years (out of a possible 11), and the average mover

for 7.5 years. The difference is at least partly mechanical, due to the fact that we must observe

a patient for at least two years to classify them as a mover. About a third of patients die during

our sample period, and about 20 percent enter or exit at some point due to enrollment in Medicare

Advantage. In Section 4.4 below, we discuss possible biases due to selective attrition and show

that our results are robust to some alternative ways of handling this attrition.

Figure 1 shows the distribution of average annual utilization across HRRs. The mean HRR has

average utilization of $6,629 per person per year, with a standard deviation of $779. The ranking of

HRRs by utilization is reasonably stable over time: the correlation between an HRR’s rank in the

first half of our sample (1998-2003) and the second half of our sample (2004-2008) is 0.9. We show

in Online Appendix Figure 7 that if we divide HRRs into quintiles by utilization, the evolution

of utilization for the different quintiles is roughly parallel. These facts are consistent with prior

literature showing patterns of geographic variation in health care utilization have been relatively

stable since the early 1990s (Chandra et al. 2009; Rettenmaier and Saving 2009; Weinstein et al.

2004).

Online Appendix Section 2.1 presents additional summary statistics for movers. The average

distance moved is 588 miles, with a median of 357 miles and a standard deviation of 616 miles.

Roughly 68 percent of moves cross state boundaries, and 50 percent cross census division bound-

aries. Moves to Florida account for 12 percent of all moves, and moves to Arizona or California

account for an additional 12 percent; we show in Online Appendix Table 8 that our results are

robust to excluding moves to Florida, Arizona, and California. We also show the distribution of

movers across different destination HRRs. The median HRR receives 1,133 movers; the range of

movers into an HRR is from 135 to 12,797.12

Finally, we examine the time-varying correlates of moving. Online Appendix Figure 3 shows

that moving is correlated with an increase in utilization, including a spike up in utilization in the

year of move. We also report evidence from the Health and Retirement Study (HRS) on the reasons

why older Americans move. The study is a nationally representative (approximately biannual)

longitudinal survey of Americans over the age of 50. We limit the HRS sample to individuals aged

12Not surprisingly given these sample sizes, we show in Online Appendix Section 2.4 that our event study results
are not affected by adjusting our estimates of δ̂i for noise.
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65 and over, and define movers as individuals who move across HRRs. The most common self-

reported reasons for moving are to be “Near/with children” (31%), “Health problems or services”

(13%), and to be “Near/with relatives or friends” (10%). Analysis of the HRS panel data shows

that significant predictors of moving include being widowed and retiring. Declines in self-reported

health status do not predict moving in the panel.

4 Main Results: Patient vs. Place

4.1 Event Study

We begin with two figures that illustrate the variation driving our event study. Figure 2 shows a

mover’s claims in her destination HRR, as a share of those in either her origin or her destination, by

relative year. The figure shows a sharp change in the year of the move, with only a small share of

claims in the destination pre-move or in the origin post-move.13 The claim share in the year of the

move (relative year zero) is close to 0.5, consistent with moves being roughly uniform throughout

the year. Figure 3 shows the distribution of δ̂i, the average log utilization in a mover’s destination

minus the average log utilization in her origin. The mean value of δ̂i is close to zero, implying that

moves from low to high utilization HRRs are as common as moves from high to low. The standard

deviation is 0.25, and there are a significant number of moves for which the absolute value of the

difference is greater than 0.5.

As a first look at the way utilization changes around moves, Figure 4 plots the change in log

utilization (the average two to five years post-move minus the average two to five years pre-move)

against the destination-origin difference in log utilization δ̂i. If all geographic variation were due to

place effects, we would expect this plot to have a slope of one. If all variation were due to patient

effects, we would expect this plot to have a slope of zero. One minus the actual slope is an estimate

of a weighted average of the patient share Si
pat .

Figure 4 shows that the slope is in fact 0.63, suggesting an average patient share of roughly

0.37. The relationship is symmetric above and below zero, and strikingly linear. This provides

strong support for our additively separable model, which implies that the absolute change in log

13In Online Appendix Section 2.3, we show that our results are robust to adjusting for the small amount of apparent
measurement error in the timing of moves and to a range of alternative definitions of movers.
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utilization when patients move from j to j′ should be the same as when patients move from j′ to

j. These patterns are also consistent with the relative importance of patients being similar across

origin-destination pairs.

We also plot with an “×” in the same figure the average change in log utilization over the same

period for our matched sample of non-movers, to whom we assign δ̂i = 0.14 That this point and

all points for movers have y values greater than zero reflects the positive time and age trends in

utilization. That the point for non-movers lies below the ones for movers with δ̂i ≈ 0 shows that

moving is associated with an increase in utilization on average. This main effect of moving will be

absorbed by our relative year indicators ρr(i,t). We present additional descriptive evidence on the

main effects of moving in Online Appendix Section 2.1.

Figure 5 shows how pre-move utilization of movers compares to utilization of non-movers in

their origin HRR’s. The plot is identical to Figure 4 except that the variable on the y axis is now

the average difference between log utilization of movers two to five years pre-move and that of

their matched non-movers in the same years. The plot has a small upward slope, suggesting that

patients who will move to a high-utilization HRR have relatively higher pre-move utilization than

those who will move to a low-utilization HRR. This slope is an order of magnitude smaller than

the slope in Figure 4. Any systematic differences of this kind in the average utilization of movers

will be absorbed by our patient fixed effects αi.

Our main event study results are shown in Figure 6, which plots estimated coefficients θ̂r(i,t)

from equation (5).15 Since these coefficients are only identified up to a constant term, we normalize

the value for r (i, t) = −1 to 0. The figure shows a sharp, discontinuous jump at the time of the

move, from 0 to approximately 0.5. As discussed above, one minus the size of this jump can also

be interpreted as an estimate of a weighted average of Si
pat . This figure thus implies a patient share

of roughly a half.

Under the assumptions of our model, the plot should be flat in the years before and after the

move. In reality, it shows no post trend but a small but statistically significant pre-trend. This

trend could reflect systematic changes in utilization of movers relative to non-movers. Because our

model restricts both HRR and patient effects to be time constant, it could also pick up HRR-specific

14See notes to Figure 4 for details on this matching.
15For computational ease, all of the event studies we report are estimated on the sample of movers only. We show

in Online Appendix Figure 12 that including non-movers does not affect the analysis.
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trends that are the same for movers and non-movers but happen to be correlated with movers’ δ̂i.

In Section 4.4 below, we explore extensions that allow our fixed effects to change over time. We

also allow arbitrary pre- and post-move trends for movers by using data only from the years just

before or after the move, in the spirit of a regression discontinuity.

Figure 7 presents three alternative event study plots using balanced panels. Panel (a) restricts

the sample to early movers for whom we have data for relative years -1 through 7, using only these

years in estimation. Panels (b) and (c) are analogous, restricting the sample to movers with data

for relative years -4 through 4 and -7 through 1 respectively. The balanced panel figures suggest

if anything a slightly larger patient share, and confirm the finding of a small pre-trend and no

post-trend.

4.2 Model Estimates

We exploit the variation captured in Figure 6 to estimate equation (1). We use the estimates to

quantify the roles of patients and of places in explaining geographic variation in log utilization.

We present three main types of decompositions.

Table 2, which we consider the central set of results in the paper, presents an additive decom-

position of the difference between high- and low-utilization areas. For different sets of high- and

low-utilization HRRs R and R′, we report the sample analogue of the patient share Spat (R,R′) =

(ĉR− ĉR′)/(ŷR− ŷR′), as well as the components (ŷR− ŷR′), (γ̂R− γ̂R′), and (ĉR− ĉR′).

Column (1) decomposes the difference between above-median and below-median HRRs. We

find that 47 percent of the difference in average log utilization is due to patients. This estimate is

fairly precise; we can reject a role for patients of more than about 52 percent or less than about 41

percent.

Other partitions of HRRs result in a similar patient share. Patients account for 41 percent

of the difference between the top and bottom quartiles (column 2), 39 percent of the difference

between the top and bottom deciles (column 3), and 44 percent of the difference between the

top and bottom 5 percent (column 4). The final two columns look at two cases discussed in the

introduction: McAllen relative to El Paso, and Miami relative to Minneapolis. Here, we find that

patients account for 36 percent and 30 percent of the differences respectively, though precision
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naturally falls with these smaller samples.

The magnitudes are consistent with the event study analysis, which suggested a patient share of

50 percent based on the jump in log utilization from relative year -1 to 1, as well as with the slope

of Figure 4. That the estimates are not identical reflects the fact that the additive decomposition

is a slightly different experiment—analyzing differences between two groups of HRRs rather than

averaging Si
pat across all movers i—that the model uses all pre- and post-move years rather than

the on-impact effect of the move, and that the model is estimated on both movers and non-movers.

The stability of the patient share across different partitions is consistent with the linear relationship

shown in Figure 4, which implies that Spat( j, j′) is not strongly correlated with y j− y j′ .

We present a second, alternative decomposition in Table 3. Here, we ask what share of the

cross-HRR variance in log utilization would be eliminated in a counterfactual where average pa-

tient characteristics c j were equalized across HRRs. This is

Svar
pat = 1−

Var
(
γ j
)

Var
(
y j
) . (6)

Similarly, the change if area fixed effects were equalized is

Svar
place = 1−

Var
(
c j
)

Var
(
y j
) .

Note that unlike Spat and Splace, this is not an additive decomposition; the sum of Svar
pat and Svar

place

will not be one so long as Cov
(
c j,γ j

)
is nonzero.

We find that 55 percent of variance would be eliminated if patient effects were equalized. We

find that 72 percent of variance would be eliminated if place effects were equalized. We also find

that there is a positive correlation between c j and γ j, with patients with a high demand for health

care tending to sort to slightly higher-spending areas. Because this correlation is positive, Svar
pat and

Svar
place sum to more than one.

The results thus far decompose geographic variation in log utilization. As discussed in Section

2.2 above, we believe modeling utilization in logs is appealing both economically and economet-

rically. However, even if our model is correctly specified, quantifying the drivers of geographic

variation in logs is a different exercise than quantifying the drivers of variation in levels, as the
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implicit weights on low and high-utilization observations will be different. If the relative impor-

tance of demand and supply factors varied substantially across the distribution of utilization—for

example, because patient preferences were either more or less important in big ticket end of life

expenditures compared to low-cost routine care—log and level decompositions could give very

different answers.

To assess the importance of this issue, we present a third decomposition. Here, we ask what our

estimated (log) model implies about the drivers of geographic variation measured in levels—how

differences in level utilization would change if either c j or γ j were equalized across places. The

details of this exercise and a complete set of results are presented in Online Appendix Section 2.2.

A limitation to this exercise is that our “additive decomposition” into Spat (R,R′)and Splace (R,R′) is

no longer additive: the difference between the high and low utilization areas in levels is the product

rather than the sum of the patient and place components, and so the percentage changes when we

equalize one or the other need no longer sum to one. The results suggest that equalizing patient

characteristics across areas would reduce geographic differences by 27 percent, while equalizing

place characteristics would reduce them by 72 percent. As a separate exercise, we show in Online

Appendix Table 7 that simply estimating the model in levels also yields a somewhat lower patient

share (23 percent). Comparing these results directly to our main estimates is difficult, but they

suggest that the relative importance of patients may be somewhat smaller when we focus on levels.

4.3 Other Outcomes

In Table 4, we replicate our main decomposition results for the following alternative components

of annual utilization: dummies for whether a patient has (i) seen a primary care physician, (ii)

seen a specialist, (iii) been hospitalized, or (iv) visited the emergency room; the log of one plus

(i) the number of diagnostic tests the patient received, (ii) the number of imaging tests the patient

received, (iii) the number of preventive care measures the patient received, (iv) the number of

different doctors the patient saw, (v) inpatient utilization, (vi) outpatient utilization, (vii) emergency

room utilization, and (viii) other utilization. Detailed definitions of these measures are provided in

Online Appendix Section 1.2. For each row, we reestimate equation (1) with yi jt defined to be the

measure in question. We then report the sample mean of the outcome measure, the difference in
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the mean of the outcome measure between above- and below-median HRRs, and the share of this

difference due to patients, where the partitions into above- and below-median are defined based on

the outcome measure in question and so vary across rows.

The results suggest that the patient share varies from a low of 0.09 for diagnostic tests to a

high of 0.71 for emergency room visits. Although we do not have a formal framework in which to

interpret this heterogeneity, the outcomes for which we find a large patient share—preventive care

and emergency room visits, for example—tend to be ones where we might think patients have a

significant amount of discretion, while the outcomes for which we find a smaller patient share—

diagnostic tests, imaging tests, and inpatient care, for example—tend to be ones where we might

think more discretion lies with physicians.16

In addition to looking at components of utilization, we can also consider alternative functional

forms for our measure of overall utilization. In Online Appendix Table 7, we present results for

models in which yi jt is defined to be the level of utilization and a patient’s percentile rank in

the national distribution of utilization respectively; the corresponding event studies are shown in

Online Appendix Figure 10. These specifications yield patient shares of 23% and 30%. The same

table also presents specifications where yi jt is a dummy variable for the patient being in the top X

percent of the national distribution of utilization for different definitions of X . These shares range

from 17% to 51%, with some trend toward lower patient shares at the top of the distribution.

4.4 Robustness

Table 5 explores the sensitivity of our main results to relaxing a variety of identifying assumptions.

For each specification, the table reports the patient share of the difference between above- and

below-median HRRs, analogous to column (1) of Table 2. Event study figures for some of these

specifications are shown in Online Appendix Figure 9.

A central assumption of our baseline model is that there are no differential trends in the log

utilization of movers that vary systematically with their origin or destination. The event study in

16Online Appendix Figure 8 shows event study graphs parallel to Figure 6 for each of these outcomes. As with our
main utilization measure, we observe in each case large discontinuous changes on move and relatively small trends
pre- or post-move. The size and direction of the pre- and post- trends vary somewhat across outcomes, and so as a
robustness check Online Appendix Table 6 shows the results are similar in magnitude when we limit the estimation
sample for movers to one year pre- or post-move.
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Figure 6 suggests that this assumption is almost but not perfectly satisfied: there is no meaningful

post-trend, but there is a small positive pre-trend. Rows (2)-(4) of Table 5 relax the assumption

of no differential trends by using movers’ data only in progressively smaller windows around the

move year. As we would expect given the positive pre-trend, the estimated patient share increases

with smaller windows, rising from 0.47 at baseline to 0.56 when use data only in the year before or

after the move. Identification in this latter case is analogous to a regression discontinuity, requiring

only the assumption that there are no shocks to utilization that vary systematically with the origin

and destination and coincide exactly with the timing of the move.

A second important assumption is that place and patient differences in log utilization are con-

stant over time, up to the variation allowed by the age controls in xit and by the relative year fixed

effects ρr(i,t). The simplest way to relax this assumption is to estimate our model separately for

different sub-periods of the data, effectively allowing all of the place and patient parameters to vary

between them. Rows (5) through (7) of Table 5 report results using the sub-periods 1998-2001,

2002-2005, and 2006-2008 respectively. The estimated share due to patients ranges from 0.49 in

the first period to 0.62 in the latest period.

Another way to allow more flexible changes over time is to estimate equation (1) in first differ-

ences, allowing for patient and place-specific trends in log utilization:

∆yi jt = α
FD
i + γ

FD
j +∆γ j +∆τt +∆ρr(i,t) +∆xitβ +∆εi jt . (7)

Here αFD
i and γFD

j are new parameters added to the model, and the remaining terms are simply

the differenced version of equation (1). The term ∆γ j is zero if the patient is in the same HRR in

periods t− 1 and t, and
(
γ j− γ j′

)
for a patient who moves from j′ to j. Results from this model

are presented in row (8) of Table 5. They imply a patient share of 0.58, somewhat higher than our

baseline estimate.

A third important assumption is that cit and γ j enter the equation for log utilization additively.

Violations of this assumption that lead the γ j to be relatively more important for some patients

and relatively less important for others would mean our estimate of the patient share is local to the

characteristics of our patient movers, and not necessarily generalizable to the full population. As

a first step in relaxing this assumption, row (9) of Table 5 reports results from a model that allows
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different γ j by quartile of patient age. This seems like a reasonable diagnostic for more general

violations where the γ j differ for high- and low-spending patients, since age is one of the largest

observable patient predictors of the level of spending. We find a patient share of 0.44 in the more

flexible model, very close to our baseline estimate. That changes in log utilization for patients

moving from low to high-utilization HRRs are similar to those for patients moving from high to

low (Figure 4 and Section 5.3 below) provides further support for additivity.

Finally, a version of our model with a fully saturated set of HRR-patient fixed effects has an ad-

justed R2 of 0.515, compared to 0.503 for our preferred specification. The relatively small increase

in explanatory power puts some bound on the scope for violations of additivity, as emphasized by

Card et al. (2013).17

A fourth important assumption is that the errors in our model are not correlated with entering

or exiting the sample due to death, HMO status, or failure to enroll for a complete year in Medicare

Part A or B. To get a feel for the importance of this assumption, rows (10)-(12) of Table 5 present

results excluding all observations for patients who die in sample, are ever in an HMO, or enter or

exit the sample for any of the above reasons, respectively. The associated patient shares are all

somewhat higher than our baseline estimate.

A final assumption is that HRRs are an adequate market definition. We need not assume that

all patients receive care within their home HRR, but we do need to assume that the geographic

distribution of care received by movers in a given a HRR is similar to that of non-movers in that

HRR. Otherwise, this could lead the effective γ j for movers to be different, and so violate our

assumption of additivity. To address this, rows (13) and (14) of Table 5 show results for alternative

market definitions. In row (13), we define markets to be US states, which yields a patient share of

0.45. In row (14), we define markets to be Hospital Service Areas (HSAs), geographic units that

are subsets of HRRs. (There are 3,436 HSAs in the US, compared to 306 HRRs.) This yields a

patient share of 0.56, somewhat higher than our main estimate.

As a further robustness check related to market definition, the final two rows of Table 5 show

specifications where we only include movers who cross state lines or who cross census region

boundaries respectively. Among other things, this alleviates the concern that patients might have

17If we estimate the models using only movers, the adjusted R2 values are 0.554 for the fully saturated model and
0.490 for the baseline specification.
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been seeking care in their destination (origin) before (after) their move. The patient shares for both

of these subsamples are very close to our baseline estimate.

Finally, Online Appendix Table 8 presents a number of additional robustness checks. We es-

timate the model using only movers, without the age controls in xit , and without the relative year

controls in ρr(i,t). We use alternative dependent variables: expenditure rather than utilization, and

the log of 10 plus utilization or 0.1 plus utilization rather than 1 plus utilization. We drop moves to

Florida, Arizona, and California. We estimate equation (1) using the balanced panel samples from

Figure 7. In all these cases, the results remain similar in magnitude.

5 Mechanisms

Both the patient and place components of utilization could reflect a range of underlying economic

primitives, and understanding these underlying mechanisms is both interesting in its own right and

important for policy. In this section, we take a first step in this direction, discussing evidence on

possible drivers of the patient component c j.

5.1 Patient Demographics

The simplest explanation for the patient component is that it reflects differences in observable

demographics such as age, sex, or race. As discussed in the introduction, the consensus of the past

literature is that such observables explain only a small share of geographic variation in utilization.

We ask whether this remains true in our analysis.

Building on the standard approach in the literature (see, e.g., Zuckerman et al. 2010), we es-

timate a predictive relationship between our individual-level patient component cit (estimated in

equation 1) and a vector of observable characteristics zit using only within-area and within-year

variation, then use the coefficients from this relationship to predict between-area differences. We

assume that for non-movers

E
[
cit |zit ,γ

obs
j ,τobs

t

]
= γ

obs
j + τ

obs
t + zitφ , (8)

where γobs
j and τobs

t are area and year fixed effects distinct from those in equation (1), and φ is a
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vector of coefficients which we estimate by OLS on the sample of non-movers. We define the com-

ponent of cit explained by zit to be cobs
it = zit φ̂ for both movers and non-movers, and we define the

averages cobs
jt , cobs

j , and cobs
R analogously to c jt , c j, and cR. Finally, we define the patient share ex-

plained by demographics to be Sobs
pat (R,R′) =

(
cobs

R − cobs
R′
)
/(yR− yR′). Like the past literature, we

view the projection on zit to be a predictive rather than causal relationship. Variation explained by

race, for example, could reflect the effect of characteristics such as poverty or education correlated

with race as well as the causal effect of race per se.

The results, presented in Table 6, confirm that relatively little geographic heterogeneity is ex-

plained by patient demographics. The share of the difference between above- and below-median

HRRs explained by differences in age alone is 0.04, or 9 percent of the overall patient share of

0.47. The share explained by age, race, and sex together is 0.05, or 11 percent of the overall pa-

tient share. Of course, more variation might be explained by richer demographics not observed in

the Medicare data.

5.2 Persistent Treatment

Our patient component reflects differences in utilization that persist regardless of where patients

move. A possible explanation for this persistence is that patients who receive diagnoses and ag-

gressive treatments in high-utilization areas will continue their treatment even after they move to

low-utilization areas. This mechanism, or related mechanisms in which pre-move treatments are

continued post-move, would introduce a form of state dependence in utilization, with the “patient

component” partly picking up the stock of existing diagnoses or treatments, which would itself

partly be due to place.

A signature of this mechanism is that utilization should adjust less for patients moving from

high to low-utilization areas than for patients moving from low to high. A patient from Miami who

has been diagnosed with diabetes and is on a treatment regimen may request continuing treatment

after moving to Minneapolis, resulting in a relatively small change in utilization. A patient from

Minneapolis who rarely visits the doctor and whose diabetes is undiagnosed or untreated, on the

other hand, might be likely to receive such a diagnosis and/or new treatment regimen after moving

to Miami, leading to a large change in utilization.
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Such asymmetry does not appear to be a first-order feature of our data. Figure 4 provided some

initial evidence: for any given magnitude
∣∣∣δ̂i

∣∣∣ of the difference between origin and destination log

utilization, changes in log utilization look symmetric for moves up and down. As further evidence,

Figure 8 shows event study plots separately for moves up (δ̂i > 0) and moves down (δ̂i < 0) . The

figure suggests no significant difference in the magnitude of the utilization change at move, nor in

the pattern of post-move adjustment.

This evidence suggests that relatively little of the persistence that drives our measured patient

component is explained by past diagnoses and treatment regimens. Of course, there are some

versions of this mechanism that would not necessarily show up as asymmetry between moves

up and moves down. It could be that certain low-intensity treatments could persist as well. For

example, a prostate cancer patient in a low-utilization area whose doctor recommends “watchful

waiting” might continue with this approach even after moving to a high-utilization area where it is

not usually prescribed. This would amount to a more general form of dependence between current

and past utilization, a possibility we consider next.

5.3 Habit Formation

A third mechanism that could underlie our patient component is habit formation in the sense of

Becker and Murphy (1988): patient preferences today are a function of patients’ past utilization.

Patients who build a habit of getting regular checkups or flu shots may continue to do so wherever

they go. A patient who has had successful low-intensity outpatient treatment for several past

conditions may prefer to do the same for subsequent conditions. The persistent treatment discussed

in the previous subsection can be viewed as a special case of habit formation; the general version,

however, does not necessarily imply asymmetry between moves up and moves down.

A closely related mechanism is learning: past utilization affects current beliefs rather than

current preferences. Learning will typically look similar to habit formation in our setting, so we

consider it a version of habit formation for the purposes of this discussion.

A signature of many forms of habit formation is that utilization should continue to adjust toward

average behavior in the destination in the years following a move. To see the intuition, suppose

that current utilization depends on a weighted average of a patient’s current environment and their
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average utilization in the past. Consider a patient who moves from low-utilization Minneapolis to

high-utilization Miami at the end of year t. Utilization will jump discretely in year t + 1 because

the current environment has changed, but the jump will be muted by the fact that the average of

past utilization remains relatively small. In year t + 2, the current environment is still Miami, but

the stock of past utilization is now greater, since the average includes year t + 1; utilization will

increase further. Utilization will continue to increase in years t + 3, t + 4, and so forth, as the

average of past utilization is weighted more and more toward the patient’s post-move experience.

This intuition is formalized in Bronnenberg et al. (2012), and it is the key pattern in the data they

exploit to identify habit formation in brand preferences.

As illustrated in Figures 6 and 7, our data show remarkably little evidence of this kind of post-

move convergence. Log utilization jumps discretely on move but remains almost perfectly flat for

up to nine years thereafter. As shown in Figure 8, this remains true whether we look at moves from

low to high-utilization areas or moves from high to low.

A second prediction of many habit formation models is that persistence should be greater the

larger the stock of past experience a patient has accumulated. In particular, we might expect

utilization to be more persistent for older patients than for younger patients. This prediction is also

formalized and confirmed in the context of brand preferences by Bronnenberg et al. (2012). To

test this prediction in our data, Figure 9 shows event studies separately by quartiles of age. We see

no systematic tendency toward smaller jumps for older patients; if anything, the figures suggest

the reverse. We confirm in Online Appendix Table 9 that our main estimate of the patient share is

actually lower for subsamples of older patients than for subsamples of younger patients.

Together, these facts suggest that a relatively small share of heterogeneity in the patient com-

ponent of utilization results from habit formation. Of course, we are limited by the fact that our

sample is all age 65 or older, and we are only able to observe a maximum of nine years post-move.

It is possible that the patient component is endogenous to early life experience with health care,

but that it is relatively fixed by the time someone is age 65. It is also possible that we would see

more post-move convergence over longer time horizons.

Finding limited evidence of habit formation in health care is of independent interest beyond try-

ing to understand our patient-place decomposition. The lack of post-move adjustment in utilization

suggests that individual differences in propensity to consume health care are likely to be relatively
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stable, and that the scope for policy to change them may be limited, at least in the short run. At the

same time, the fact that the jump in utilization on moving is large and takes place within a two-year

window suggests that policies affecting supply-side factors such as doctors’ practice patterns are

likely to have immediate impacts. These findings may not apply to younger patients, but they seem

robustly true for the elderly, who account for about one third of total annual health care spending

(Moses et al. 2013).

5.4 Patient Health

A final hypothesis which we investigate is that our patient component reflects variation in health.

Patients in Miami may simply be sicker than patients in Minneapolis, due to differences in lifestyle,

environment, or genetics, for example.

Past literature has shown that observable measures of patient health status can explain some

though not all of the geographic variation in spending. Zuckerman et al. (2010), for example,

show that a rich vector of health status indicators explain roughly a third of the spending gap

between top and bottom quintile HRRs. Past literature has also emphasized, however, that such

correlations are difficult to interpret because the measurement of health conditions is itself likely

to be endogenous to place. A given HRR’s estimated rate of hypertension, for example, is based on

the number of patients who have had recent Medicare claims that included a code for hypertension

diagnosis. Such codes are typically only recorded when a patient visits a doctor and receives a

billable treatment related to her hypertension.18 A high-utilization and a low-utilization HRR that

had the same underlying rates of hypertension might therefore have very different recorded rates:

patients in the high-utilization area may visit the doctor more often, and be more likely to receive

billable treatment for their hypertension conditional on visiting. Consistent with this hypothesis,

Song et al. (2010) use an empirical strategy similar to ours to show that patients who move across

quintiles of the HRR spending distribution experience large, discrete changes in health status as

measured by standard proxies, consistent with a higher probability of diagnoses being recorded in

claims in more intensive areas.

In order to create a health status measure purged of this endogeneity, we extend our mover-

based empirical strategy to separate the underlying patient-specific component of measured health
18See chapter 23 of the Medicare Claims Processing Manual (Centers for Medicare and Medicaid Services 2014)
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status from the component endogenous to place. Formally, we assume that measured health hmeas
i jt

is a function of true health hit and a measurement error whose distribution depends on place and

year:

hmeas
i jt = hit +ξi jt , (9)

where

hit = α
h
i +ρ

h
r(i,t) + xitβ

h (10)

ξi jt = γ
h
j + τ

h
t + ε

h
i jt . (11)

The parameters in these equations are distinct from those in equation (1), but we use the same

variable names with “h” superscripts to emphasize the fact that the functional form we assume is

ultimately the same, with the same vector of age controls xit . We use the same strategy based on

patient movers to identify the patient component of health (hit) separately from the place and year-

specific measurement error (ξi jt), and assume that the analogous identifying conditions hold. Note

that we interpret the differential trends for movers captured by ρh
r(i,t) and the variation correlated

with age captured by β h as changes in true health.19 We estimate equation (9) by OLS, and form

estimates ĥit of the patient component of health for each patient-year.

We consider four standard health status measures. All of them take diagnosis codes as in-

puts. They differ in which diagnoses they use (although there is considerable overlap), the weights

assigned to them, and the lookback period. First, we use the log of the patient’s Hierarchical

Condition Categories (HCC) score. The HCC score is defined by the Centers for Medicare and

Medicaid Services (CMS) for use in computing Medicare payments, and is designed to approxi-

mate predicted spending given demographics (including age, gender, and Medicaid eligibility) and

diagnoses coded in the previous year.20 Second, we use the log of one plus the number of 27 pos-

sible chronic conditions. These conditions are defined by CMS and are based on diagnoses coded

19These components may in fact represent a mix of true health and measurement error. For example, older patients
may both have more chronic conditions and be more likely to have a given chronic condition recorded in claims. We
include these terms in hit for simplicity; this should be borne in mind in interpreting the results.

20Our HCC score derivation is based on Pope et al. (2004)
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in the past 1-3 years depending on the condition.21 Third, we use the log of one plus the patient’s

Charlson Comorbidity Index (Charlson et al. 1987), a weighted count of diagnoses coded in that

year that is designed to predict ten-year mortality.22 Fourth, we use the log of one plus the number

of Iezzoni Chronic Conditions (Iezzoni et al. 1994) that the patient has had diagnoses coded for in

that year.23

Figure 10 presents an event study illustrating how one of our health measures—the log of the

number of chronic conditions—changes around moves. The event study specification is derived

from equation (9) analogously to the way equation (5) (and corresponding Figure 6) is derived

from equation (1). We replicate the result of Song et al. (2010) that there are sharp changes in

measured health status when patients move. There is no meaningful pre-trend and a small post-

trend. The size of the jump in these figures is roughly 0.5, implying that the share of variation

in measured health status due to the patient component hit is roughly 0.5. In Online Appendix

Figure 11 we present event study figures for our other health measures; Online Appendix Table

10 presents decompositions of the variation in health status analogous to Table 2 that confirm a

patient share of measured health of about 0.4 to 0.5.

With estimates of equation (9) in hand, we can now ask how much of the geographic variation

in log utilization is explained by differences in true patient health hit , which we measure by the

estimated patient component of health, ĥit from equation 10. For comparison, we also report how

much of the geographic variation in log utilization is explained by differences in measured patient

21See https://www.ccwdata.org/web/guest/condition-categories. The conditions are Acquired Hypothyroidism (ref-
erence time period: 1 year), Acute Myocardial Infarction (1 year), Alzheimer’s Disease and Related Disorders or
Senile Dementia (3 years), Alzheimer’s Disease (3 years), Anemia (1 year), Asthma (1 year), Atrial Fibrillation (1
year), Benign Prostatic Hyperplasia (1 year), Breast Cancer (1 year), Cataract (1 year), Chronic Kidney Disease (2
years), Chronic Obstructive Pulmonary Disease (1 year), Colorectal Cancer (1 year), Depression (1 year), Diabetes (2
years), Endometrial Cancer (1 year), Glaucoma (1 year), Heart Failure (2 years), Hip/Pelvic Fracture (1 year), Hyper-
lipidemia (1 year), Hypertension (1 year), Ischemic Heart Disease (2 years), Lung Cancer (1 year), Osteoporosis (1
year), Prostate Cancer (1 year), Rheumatoid Arthritis / Osteoarthritis (2 years), and Stroke / Transient Ischemic Attack
(1 year).

22The conditions are Acute Myocardial Infarction, AIDS/HIV, Cancer, Cerebrovascular Disease, Chronic Pul-
monary Disease, Congestive Heart Failure, Dementia, Diabetes with chronic complications, Diabetes without com-
plications, Hemiplegia or Paraplegia, Metastatic Carcinoma, Mild Liver Disease, Moderate or Severe Liver Disease,
Peptic Ulcer Disease, Peripheral Vascular Disease, Renal Disease, and Rheumatologic Disease (Connective Tissue
Disease).

23The conditions are Chronic Pulmonary Disease, Congestive Heart Failure, Coronary Artery Disease, Dementia,
Diabetes With End Organ Damage, Malignant Cancer, Leukemia, Peripheral Vascular Disease, Renal Failure, and
Severe Chronic Liver Disease.
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health, hmeas
i jt . We follow the procedure defined in Section 5.1.24 As with demographics, we stress

that the resulting estimates cannot be given a firm causal interpretation. In addition, the patient-

specific health component we isolate could partly pick up patient-specific differences that affect

the likelihood of health conditions being recorded—for example, because some patients prefer to

visit the doctor frequently—in addition to differences in health per se.

Table 7 shows the results. The first four rows present the variation in log utilization explained

by the raw health measures, without adjusting for endogenous measurement. The shares of the

difference in log utilization between above and below median utilization HRRs explained by the

HCC, Charlson, and Iezzoni measures are 0.44, 0.48, and 0.48 respectively, or between 94 and

104 percent of our overall patient share. The share explained by the chronic conditions measure

is significantly higher, at 0.79. This is 171 percent of our overall patient share. If there were no

endogenous measurement, this would suggest unobserved patient characteristics would have to be

negatively correlated with the chronic condition measure across these regions.

In the following four rows, we show that correcting for endogenous measurement has a large

effect, reducing the share of variation explained by health by roughly half. After the correction, we

find that the shares of the above-below median gap explained by the HCC, Charlson, and Iezzoni

measures are 0.22, 0.24, and 0.26 respectively, or 47 to 55 of our overall patient share. The log

chronic conditions measure explains share 0.37 of the gap, or 80 percent of the patient share.

Like our findings on habit formation, these results on patient health speak to issues beyond our

patient-place decomposition. The large role for patient health suggests that demand-side differ-

ences may not be easily affected by policies aimed at changing patients’ information or beliefs.

In addition, the estimates of equation (9) provide a new way to look at the magnitude of the en-

dogeneity of measured health first identified by Song et al. (2010), showing that the endogenous

component accounts for the majority of geographic variation in measured health. The findings of

limited post-move adjustment in measured health, and symmetric adjustment for moves up and

moves down, shed more light on the nature of the measurement process.25 Finally, our method

24Specifically, we define the observable zit of interest to be either the raw health measure hmeas
i jt or the estimated

patient component of health, ĥit , estimate equation (8), and use the results to define the patient share explained by the
resultant cobs

it .
25For example, this pattern may suggest that the endogenous component is mainly related to the recording of

diagnoses in claims rather than to diagnoses per se. If the primary force were endogeneity of diagnoses (that is,
patients in some places learn they have hypertension while the hypertension elsewhere goes undiagnosed), we would
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for separating the endogenous and patient-specific components of health status may have other

applications in the large literature that uses health status measures as inputs into risk adjustments.

6 Conclusion

We find robust evidence that 40 to 50 percent of geographic variation in the log of health care

utilization is due to fixed characteristics of patients that they carry with them when they move. Our

examination of mechanisms suggests that a large part of this demand-side heterogeneity may be

due to patient health. The remaining 50 to 60 percent of variation is due to place-specific factors,

possibly including doctor practice patterns and characteristics of health care organizations.

These results suggest that demand-side factors play a larger role in geographic variation than

conventional wisdom might suggest. This does not translate immediately into conclusions about

efficiency. The correlation of utilization with demand-side factors (and with patient health in par-

ticular) may reflect differences in the marginal impact of treatment or the marginal utility from a

given impact, and so be consistent with efficiency. But it could also reflect differences in other de-

mand drivers, such as patient information or beliefs. A more careful examination of the efficiency

implications of the geographic variation is an important direction for further work.

Our findings have implications beyond our patient-place decomposition. The fact that habit

formation seems limited implies that demand-side differences in utilization are unlikely to change

quickly in response to policy, at least among the 65 and over population, a population that accounts

for about a third of total annual health care spending (Moses et al. 2013). The fact that a large part

of demand-side geographic variation reflects variation in patient health may also point to limits

to the effectiveness of demand-side policies aimed at changing patient beliefs or preferences. At

the same time, the sharp adjustment we observe around moves suggests policies that affect the

supply-side can have immediate impacts.

While we have taken a first step toward understanding the origins of the patient component

we measure, it remains for future work to better understand the mechanisms behind the place

component. Particularly interesting questions concern the role of physicians’ training and practice

patterns, and the role of health care organizations.

have expected to see more adjustment up than adjustment down, based on the intuition developed in Section 5.2.
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Figure 1: Distribution of Utilization Across HRRs
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Notes: Figure displays the distribution of average utilization by HRR. We first average utilization across individuals
within each HRR-year, upweighting non-movers by four, and then take a simple average within HRR across years.
Map shows the distribution of level utilization in quintiles. Lower and upper limit of each quintile are displayed in the
legend. The sample is all movers and non-movers (N = 16,432,955 patient-years).
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Figure 2: Share of Claims in Destination by Relative Year
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Notes: Figure shows the share of a mover’s claims located in their destination HRR, among those in either their origin
or their destination HRR. The sample is all movers (N = 3,702,189 patient-years).

Figure 3: Distribution of Destination-Origin Difference in Log Utilization
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Notes: Figure shows the distribution across movers of the difference δ̂i in average log utilization between their origin
and destination HRRs. The sample is all movers (N = 3,702,189 patient-years).
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Figure 4: Change in Log Utilization By Size of Move

0
.2

5
.5

.7
5

1
C

ha
ng

e 
in

 L
og

 U
til

iz
at

io
n 

on
 M

ov
e

−.5 0 .5
Destination−Origin Difference in Average Log Utilization

 Movers  Matched Non−Movers 

Slope=.63

Notes: Figure shows the change in log utilization before and after move. For each mover, we calculate the difference
δ̂i in average log utilization between their origin and destination HRRs, then group δ̂i into ventiles. The x-axis displays
the mean of δ̂i for movers in each ventile. The y-axis shows, for each ventile, average log utilization two to five years
post-move minus average log utilization two to five years pre-move. The line of best fit is obtained from simple OLS
regression using the 20 data points corresponding to movers, and its slope is reported on the graph. The sample is all
mover years between two and five years pre-move and between two and five years post-move (N = 1,919,137 patient-
years). For comparison, we also compute the average change in log utilization for a sample of matched non-movers,
which we show with the red cross on the graph. Specifically, for each mover in our data in each calendar year we
randomly draw a non-mover in the same year in the mover’s origin HRR who shares the mover’s gender, race, and
five-year age bin; the union of the selected non-mover patient-years forms the matched sample.
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Figure 5: Pre-move Differences in Log Utilization

−
.5

−
.2

5
0

.2
5

.5
M

ov
er

s−
N

on
−

M
ov

er
s 

D
iff

er
en

ce
 in

 A
ve

ra
ge

 L
og

 U
til

iz
at

io
n 

B
ef

or
e 

M
ov

e

−.5 0 .5
Destination−Origin Difference in Average Log Utilization

Slope=.096

Notes: Figure shows the level of pre-move log utilization for movers relative to non-movers by the size of their
subsequent move δ̂i. For each mover, we calculate the difference δ̂i in average log utilization between their origin and
destination HRRs, then group δ̂i into ventiles. The x-axis displays the mean of δ̂i for movers in each ventile. The y-axis
shows for each ventile the average of difference in log utilization between mover and matched non-mover patient-years
two to five years pre-move. In Figure 4 we describe the construction of the matched sample of non-movers. The line
of best fit is obtained from simple OLS regression using the 20 data points, and its slope is reported on the graph. The
sample is all mover years between two and five years pre-move (N = 1,048,843 patient-years).
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Figure 6: Event-Study
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Notes: Figure shows the coefficients θ̃r(i,t) estimated from equation (5). The coefficient for relative year -1 is normal-
ized to 0. The dependent variable yit is log utilization; xit consists of indicator variables for five-year age bins. The
dashed lines are upper and lower bounds of the 95% confidence interval. We construct this confidence interval using
a two-step procedure. In the first step, for each HRR j, we construct the asymptotic distribution of ȳ j, which is a
normal distribution with mean µ j and standard deviation σ j calculated from the data. In the second step, we bootstrap
equation (5) with 50 repetitions drawn at the patient level, making a random draw from the distribution of ȳ j for each
mover’s origin and destination to construct their δ̂i for each repetition. The sample is all movers (N = 3,702,189).
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Figure 7: Balanced-Panel Event-Study
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(a) Early Moves

−
.2

5
0

.2
5

.5
.7

5
1

Lo
g 

U
til

iz
at

io
n 

(C
oe

ffi
ci

en
t)

−4 −3 −2 −1 0 1 2 3 4
Year Relative to Move

(b) Middle Moves
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(c) Late Moves

Notes: These figures are constructed in the same manner as Figure 6 above, except they are estimated on balanced-
panel subsamples of movers whom we observe in each of a given set of relative years. The dashed lines show the
95% confidence interval, constructed using the same bootstrap approach as in Figure 6. Panel (a) restricts to movers
whom we observe in every relative year in [-1,7] (N = 422,226 patient-years). Panel (b) restricts to movers whom we
observe in every relative year in [-4,4] (N = 474,462 patient-years). Panel (c) restricts to movers whom we observe in
every relative year in [-7,1] (N = 544,221 patient-years).



Figure 8: Event-Study, Moves Up and Moves Down
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(a) Moves from Low to High-Utilization HRRs
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(b) Moves from High to Low-Utilization HRRs

Notes: These figures are constructed in the same manner as Figure 6, except they are estimated on moves up in panel
(a) and on moves down in panel (b). A move up is defined to be a move to a destination HRR with higher mean log
utilization than the mean log utilization of the origin. A move down is defined to be a move to a destination HRR
with lower mean log utilization than the mean log utilization of the origin. The dashed lines show the 95% confidence
interval, constructed using the same bootstrap approach as in Figure 6. The sample in panel (a) is all movers who
move up (N = 1,792,033 patient-years). The sample in panel (b) is all movers who move down (N = 1,910,156
patient-years).



Figure 9: Event-Study, Results By Age Quartile
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(a) Age Quartile 1
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(b) Age Quartile 2
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(c) Age Quartile 3
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(d) Age Quartile 4

Notes: These figures are constructed in the same manner as Figure 6, except that they are estimated on subsamples of
all movers divided by age quartiles. Quartiles of age are determined based on the mean age over the years observed
for each patient. Panel (a) provides estimates for the first quartile of age (mean age 68.5), panel (b) provides estimates
for the second quartile of age (mean age 72.8), panel (c) provides estimates for the third quartile of age (mean age
78.3), and panel (d) provides estimates for the fourth quartile of age (mean age 86.0). The dashed lines show the 95%
confidence interval, constructed using the same bootstrap approach as in Figure 6. The sample in panel (a) includes
movers in the first quartile of age (N = 746,132 patient-years); panel (b) includes movers in the second quartile
(N = 868,531 patient-years); panel (c) includes movers in the third quartile (N = 977,512 patient-years); panel (d)
includes movers in the fourth quartile (N = 1,110,014 patient-years).
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Figure 10: Event-Study Analysis of Log Number of Chronic Conditions
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Notes: Figure is constructed in the same manner as Figure 6, except that it uses the log number of chronic conditions
as the dependent variable. The dashed lines show the 95% confidence interval, constructed using the same bootstrap
approach as in Figure 6. The sample includes all mover-years except 1998, as chronic conditions are not observed in
that year (N = 3,407,590 patient-years).
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Table 1: Summary Statistics
(1) (2)

Non-movers Movers

Female 0.57 0.60

White 0.86 0.88

Age first observed:

65−74 0.67 0.59

75−84 0.24 0.31

≥ 85 0.09 0.09

First observed residence:

Northeast 0.20 0.17

South 0.39 0.41

Midwest 0.26 0.19

West 0.16 0.23

Annual utilization:

Mean $7,796 $7,399

S.D. $12,690 $9,567

Share of patient-years with zero 0.06 0.06

Number of chronic conditions:

Mean 2.98 3.30

S.D. 2.15 2.06

Share of patient-years with zero 0.18 0.15

Average # of years observed 6.26 7.45

Share who die during sample 0.35 0.32

Share of patient-years excluded because

patient is in Medicare Advantage that year 0.18 0.20

# of patients 2,033,096 497,097

# of patient-years 12,730,766 3,702,189

Notes: Rows for female, white, age first observed, and first observed residence report the shares of patients with the
given characteristics. Patient-years in Medicare Advantage are excluded from the baseline sample. The denominator
for the row “Share of patient-years excluded because patient is in Medicare Advantage that year” is the sample of
all movers and 25% of nonmovers, before any other sample restrictions. In all other rows, the sample is the baseline
sample of all movers and 25% of non-movers (N = 16,432,955 patient-years).
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Table 2: Additive Decomposition of Log Utilization

(1) (2) (3) (4) (5) (6)
Above /
below

median

Top &
bottom

25%

Top &
bottom

10%

Top &
bottom

5%

McAllen &
El Paso

Miami &
Minneapolis

Difference in average log
utilization

Overall 0.283 0.456 0.664 0.817 0.587 0.667
Due to place 0.151 0.271 0.406 0.461 0.374 0.466
Due to patients 0.132 0.185 0.258 0.356 0.213 0.200

Share of difference due to
Patients 0.465 0.405 0.388 0.435 0.363 0.300

(0.027) (0.029) (0.026) (0.025) (0.161) (0.088)

Place 0.535 0.595 0.612 0.565 0.638 0.700

Notes: Table based on estimation of equation (1), where the dependent variable yi jt is log utilization and the controls

xit are indicators for age in five-year bins. The adjusted R-squared from estimating equation (1) is 0.503. Each column

defines a set of areas R and R′. In columns (1)-(4) these are based on percentiles of average utilization y j. The first

row reports the difference in average utilization overall between the two areas (ŷR− ŷR′); the second row reports the

difference due to place (γ̂R− γ̂R′); the third row reports the difference due to patients (ĉR− ĉR′). The fourth row reports

the share of the difference in average utilization between the two areas due to patient
(
Ŝpat (R,R′)

)
which is the ratio of

the third row to the first row. The last row reports the share of the difference in average utilization between the two areas

due to place
(
Ŝplace (R,R′)

)
which is the ratio of the second row to the first row. Standard errors (in parentheses) are

calculated using a bootstrap with 50 repetitions at the patient level. The sample is movers and non-movers, excluding

relative year zero (N = 16,031,875 patient-years).
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Table 3: Variance Decomposition of Log Utilization

(1)
Cross-HRR variance of average:

Log utilization 0.035
HRR effects 0.015
Patient effects 0.010

Correlation of average
HRR and patient effects 0.353

(0.052)

Share variance would be reduced if:
HRR effects were made equal 0.717

(0.014)
Patient effects were made equal 0.549

(0.013)

Notes: Results based on estimates of equation (1). The first row reports variance of ŷ j, which is estimated using the

same specification as in Table 2. The second, third, and fourth rows report the variance of γ̂ j, variance of ĉ j, and the

correlation between γ̂ j and ĉ j, respectively, using a split sample approach to correct for the (correlated) measurement

error in γ̂ j and ĉ j. Specifically, we randomly assign movers within each origin-destination pair and non-movers within

each HRR to two approximately equal-sized subsamples and estimate equation (1) separately on each subsample. We

compute the variance of γ̂ j (or ĉ j) as the covariance between γ̂ j’s (or ĉ j’s) estimated from the two subsamples. The

correlation between γ̂ j and ĉ j is computed from the variances of γ̂ j and ĉ j, and the covariance between γ̂ j and ĉ j,

which we estimate as the average of the covariances between γ̂ j from one subsample and ĉ j from the other subsample.

The last two rows of the table report the share of the variance in cross-HRR utilization that would be reduced if HRR

effects were made equal across areas (Ŝvar
place) and if patient effects were made equal across areas (Ŝvar

pat ). Standard errors

(in parentheses) are calculated using a bootstrap with 50 repetitions at the patient level. The sample size is the same

as in Table 2.
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Table 4: Various Components of Utilization
(1) (2) (3)

Utilization measure Mean of
utilization
measure

Above / below
median difference in
utilization measure

Share due
to patients

(1) Baseline: Log(utilization) 7.193 0.283 0.465

(2) Seen a primary care physician 0.884 0.042 0.452
(3) Seen a specialist 0.815 0.051 0.322
(4) Any hospitalization 0.226 0.037 0.410
(5) Any emergency room visit 0.346 0.045 0.714

(6) Log (# of diagnostic tests) 1.449 0.550 0.092
(7) Log(# of imaging tests) 0.842 0.220 0.142
(8) Log(# of preventive care measures)a 1.376 0.098 0.611
(9) Log(# of different doctors seen) 1.525 0.113 0.392

(10) Log(inpatient utilization)b 2.004 0.340 0.242
(11) Log(outpatient utilization)b 6.890 0.193 0.358
(12) Log(emergency room utilization)b 2.296 0.352 0.639
(13) Log(other utilization)b 3.430 0.957 0.124

Notes: Table reports the share of the difference in utilization between above and below median HRRs due to patients,
analogous to column (1) of Table 2, with the dependent variable yi jt defined to be various components of utilization.
The partition of HRRs into above and below median groups is based on the utilization of individuals in the baseline
sample and differs in each row according to the definition of utilization used. Column (1) reports the mean of the
utilization measure for the given sample. Column (2) reports the difference in the average utilization measure between
above and below median HRRs (ŷR− ŷR′ ). Column (3) reports the share of the difference in column (2) that is due to
patients (Ŝpat (R,R′)). All log outcome measures are the log of the outcome plus 1. Online Appendix Table 11 shows
the percent with zero for each of these outcomes. The sample size is the same as in Table 2.
a“# of preventive care measures” is a count of the number of the following preventive treatments the patient received
in the past year: Ambulatory Care, Eye Screening, Hemoglobin Test, Lipid Screen, Cardio Screen, Diabetes Manage-
ment, Pelvic Screen, Bone Mass Test, Colorectal Cancer Screening, Flu Shot, or in the past two years: Mammogram,
Pap Test, Prostate Cancer Screening.
bThese four measures are mutually exclusive and exhaustive.
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Table 5: Robustness
(1) (2) (3) (4)

Specification N Mean of
log

utilization

Above / below
median utilization

difference

Share
due to

patients
(1) Baseline 16,031,875 7.193 0.283 0.465

(2) Relative years -5 to 5 15,430,835 7.193 0.283 0.469
(3) Relative years -3 to 3 14,689,929 7.193 0.283 0.499
(4) Relative years -1 to 1 13,511,698 7.192 0.284 0.557

(5) First third of sample only (1998-2001) 4,857,799 6.936 0.284 0.490
(6) Second third of sample only (2002-2005) 5,238,278 7.252 0.290 0.519
(7) Third third of sample only (2006-2008) 3,599,208 7.452 0.303 0.621

(8) First differences with fixed effects 16,432,955 7.197 0.281 0.583

(9) HRR fixed effects interacted with age quartiles 16,031,875 7.193 0.283 0.441

(10) Patients who never die 10,999,832 6.904 0.292 0.527
(11) Patients never in an HMO 13,432,817 7.224 0.284 0.468
(12) Patients never missing outcomes 8,135,140 6.921 0.287 0.509

(13) Using states as geographic unit 16,029,246 7.146 0.282 0.446
(14) Using HSAs as geographic unit 16,031,875 7.201 0.391 0.561

(15) Cross state movers only 14,974,181 7.192 0.283 0.451
(16) Cross census region movers only 13,967,660 7.190 0.284 0.451

Notes: Table reports the share of the difference in utilization between above and below median HRRs due to patients,
analogous to column (1) of Table 2, for alternative samples and specifications. Columns report the sample size, mean
of log utilization, difference in average utilization between above and below median utilization HRRs (ŷR− ŷR′ ) and
patient share (Ŝpat (R,R′)). Rows (2) to (4) narrow the sample of years for movers to relative years -5 to 5, relative
years -3 to 3, and relative years -1 to 1, respectively. Rows (5)-(7) limit the sample to patient years in 1998-2001, 2002-
2005, and 2006-2008, respectively, excluding movers whose move year falls outside the time window in question. In
row (8) we estimate the model in first differences, allowing for patient and place-specific trends in log utilization (see
equation 7); here we do not drop the year of the move (relative year 0), but use the adjustment technique described
in Online Appendix Section 2.3 assuming that there is no misreporting in move timing other than a 50% chance of a
patient being in their origin in relative year 0 and a 50% chance of a patient being in their destination in relative year
0. In row (9), we add interaction terms between HRR dummies and dummies for age quartiles. Rows (10), (11), and
(12) restrict the sample to patients who do not die in sample, who are never in an HMO, and who never have a missing
value of utilization for any reason, respectively. Rows (13) and (14) change the geographic of unit of analysis to states
and Hospital Service Areas (HSAs), respectively. We do not change our sample selection criteria for movers when
we vary the definition of the geographic unit j in the model. In Row (13), the sample size falls slightly because there
is a small number of patients for whom we do not have a valid state code. Rows (15) and (16) restrict the sample of
movers to those who cross state or census region boundaries, respectively.



Table 6: Variation in Log Utilization Explained by Patient Demographics

(1) (2)
Share of above / below median

utilization difference due to
patient demographic(s)

Fraction of
patient share

(1) Age 0.040 0.086
(2) Race 0.002 0.005
(3) Sex 0.012 0.027
(4) Age, race, sex 0.051 0.110

Notes: Column (1) reports the share of the difference in average log utilization between above-median and below-

median utilization HRRs due to patient observables (Ŝobs
pat (R,R′)). Results based on the estimation of equation (8),

letting zit be the patient observables indicated in the first column. The age, race, and sex dummies are fully interacted

in row (4). The sample size is the same as in Table 2.
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Table 7: Variation in Log Utilization Explained by Patient Health

(1) (2)
Share of above / below median

utilization difference due to
patient health

Fraction of
patient share

Raw health measure
(1) Log(HCC score) 0.435 0.935
(2) Log(Charlson Comorbidity Index) 0.483 1.037
(3) Log(# of Iezzoni chronic conditions) 0.483 1.037
(4) Log(# of chronic conditions) 0.794 1.707

Patient component of health measure
(5) Log(HCC score) 0.220 0.473
(6) Log(Charlson Comorbidity Index) 0.242 0.520
(7) Log(# of Iezzoni chronic conditions) 0.256 0.550
(8) Log(# of chronic conditions) 0.371 0.797

Notes: Table reports shares of the difference in average log utilization between above-median and below-median

utilization HRRs explained by patient health. Results based on the estimation of equation (8), letting zit be the measure

of health indicated in the first column. Rows (5)-(8) use the patient component (hit ) of health measures estimated from

equation (9). Column (1) reports the share of the difference in average log utilization between these areas due to

observable patient health (Ŝobs
pat (R,R′)). Column (2) shows this as a fraction of the overall patient share estimated in

column (1) of Table 2. All log outcome measures are the log of the outcome plus 1, except the HCC score which is

simply the log of the outcome (there are no zeros). Online Appendix Table 11 shows the percent with zero for each

of these outcomes. The sample size is the same as in Table 2 in rows (1)-(7). In row (8), the sample also excludes the

year 1998, as chronic conditions are not observed in that year (N = 14,598,443 patient-years).
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