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ABSTRACT

Cognitive performance is critical to productivity in many occupations and potentially linked to pollution
exposure. We evaluate this potentially important relationship by estimating the effect of pollution
exposure on standardized test scores among Israeli high school high-stakes tests (2000-2002). Since
students take multiple exams on multiple days in the same location after each grade, we can adopt
a fixed effects strategy estimating models with city, school, and student fixed effects. We focus on
fine particulate matter (PM2.5) and carbon monoxide (CO), which are considered to be two of the most
dangerous forms of air pollution. We find that while PM2.5 and CO levels are only weakly correlated
with each other, both exhibit a robust negative relationship with test scores. We also find that PM2.5,
which is thought to be particularly damaging for asthmatics, has a larger negative impact on groups
with higher rates of asthma. For CO, which affects neurological functioning, the effect is more homogenous
across demographic groups. Furthermore, we find that exposure to either pollutant is associated with
a significant decline in the probability of not receiving a Bagrut certificate, which is required for college
entrance in Israel. The results suggest that the gain from improving air quality may be underestimated
by a narrow focus on health impacts. Insofar as air pollution may lead to reduced cognitive performance,
the consequences of pollution may be relevant for a variety of everyday activities that require mental
acuity. Moreover, by temporarily lowering the productivity of human capital, high pollution levels
lead to allocative inefficiency as students with lower human capital are assigned a higher rank than
their more qualified peers. This may lead to inefficient allocation of workers across occupations, and
possibly a less productive workforce.
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I. Introduction 

Ambient air pollution has significant consequences for human health and life expectancy (Pope et 

al. 2009, Chay and Greenstone 2003). Researchers have documented that short-term acute exposure to 

particulate matter decreases circulatory performance and leads to increased illness and hospitalization rates 

(Pope et al. 1995). Exposure to fine particulate matter is particularly dangerous since these small particles 

penetrate deep in to the lungs and may also affect other aspects of human life, such as cognitive 

performance, due to their impact on blood flow and circulation (Pope and Dockery 2006). Recent work has 

also demonstrated a link between carbon monoxide and higher incidents of respiratory and heart related 

emergency room visits (Schlenker and Walker 2011). Medical research has also identified symptoms that 

point to a diagnosis of carbon monoxide poisoning, including headaches, dizziness, and confusion 

(Piantadosi 2002). A potential link between cognition and harmful forms of ambient air pollution would 

suggest that the benefit of pollution reduction could be underestimated by focusing only on health outcomes 

(Chay and Greenstone 2005). However, evidence documenting a link between cognition and ambient air 

pollution is extremely limited. A potential link between cognitive performance and pollution exposure 

would imply high costs of pollution in terms of lost labor productivity, as mental acuity is critical to 

productivity for many occupations. 

There are several challenges posed in trying to estimate the relationship between cognitive 

performance and air pollution. First, ambient pollution is often correlated with other factors correlated with 

wellbeing, such as wealth, generating a potential source of omitted variables bias that is similar to the 

challenges faced in measuring the health impact of air pollution. However, measuring air pollution’s impact 

on cognition poses unique challenges as well. First, unlike with health problems, poor cognitive outcomes 

are generally not measured precisely. Whereas short-term dysfunction can result in a hospital admission, 

short-term cognitive decline is unlikely to be recorded. Even if short-term cognitive dysfunction results in 

injury, such as from a car accident, it is unlikely that this will be recorded in a systematic manner. In our 

study, since we observe students engaged in a difficult mental task with precise measurement of 

performance, it is more likely we can observe an effect (if there is one). A second issue is that cognitive 

tests (e.g. IQ) are only administered to self-selected groups, such as military recruits, making samples less 

representative than in samples of individuals exposed to air pollution with observed health outcomes. As 

we will describe, since the Israeli examination we analyze in our study is taken by nearly all high school 

students, and our dataset includes the entire universe of test takers, our results presumably have more 

external validity than results generated from a self-selected group. 

In this paper, we examine a unique data set of merged high school high-stakes exit exams (Bagrut 

tests) and pollution data for the universe of Israeli test takers during 2000-2002 where we observe pollution 

and outcomes for over 400,000 subject examinations. Since we observe the same student at multiple test 
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administrations following each year of high school, we can control for both time invariant features of both 

a school and of a particular student. The rigorous nature of the Bagrut tests and the precise scoring of the 

exams provide a context to analyze a potential link between cognition and air pollution, even if there are 

only modest declines in cognitive performance due to pollution. Furthermore, Israel’s small size and well-

developed monitoring system implies that most of its testing locations are near a station where we observe 

precise levels of pollution concentration. Lastly, Israel’s ethnic heterogeneity provides a context to examine 

the responsiveness of different groups to pollution, and potentially distinguish between different 

mechanisms by which pollution may affect cognitive performance.  

In this study, we examine the impact of fine particulate matter and carbon monoxide exposure on 

exam outcomes. These two pollutants are particularly harmful to human health, and are available in the data 

provided by the Israeli monitoring system. We find that a 10 unit increase in the ambient concentration of 

fine particulate matter (PM2.5) as measured by the Air Quality Index (AQI) reduces Bagrut test scores by 

.46 points, or roughly 1.9% of a standard deviation of the Bagrut (sd=23.7). Alternatively, relative to a day 

with average air quality, a 1 standard deviation increase in the PM2.5 AQI value (sd=22.81) is associated 

with a .65 point decrease in score, or 2.8% of a standard deviation. We also find that a 10 unit increase in 

the ambient concentration of carbon monoxide (CO), as measured by the Air Quality Index (AQI), reduces 

Bagrut test scores by .85 points, or roughly 3.5% of a standard deviation. This implies that relative to a day 

with average air quality, a 1 standard deviation increase in the CO AQI value is associated with a .54 point 

decrease in score, or 2.4% of a standard deviation. We also examine whether pollution has a non-linear 

impact on test takers using specifications where we include dummy variables for clean, moderately 

polluted, or very polluted days. We find that our results are largely driven by poor performance of test 

takers on very polluted days, with an AQI reading above 101 for PM2.5 associated with a decline in test 

score of 1.95 points, or 8.2% of a standard deviation. For CO, test administrations in the top 5% of most 

polluted days are 10.16 points lower, a decline of 42.8% of a standard deviation. These results suggest that 

modest pollution levels have only a marginal impact, but very polluted days can have much larger impacts, 

suggesting a non-linearity in pollution’s relationship with cognitive performance. In several placebo 

exercises, we find that the correlation between Bagrut test scores and pollution readings other than the test 

pollution level is insignificant in most specifications, further supporting our claim of a causal interpretation 

to our results. Our results also indicate that test outcomes for afternoon examinations are more affected by 

carbon monoxide than morning examinations. This is consistent with a prior that carbon monoxide, which 

is generated primarily by automobile emissions, will worsen over the course of the day. Our results for fine 

particulate matter, which are primarily the byproduct of sandstorms and coal-burning power plants, are 

more similar for morning and afternoon examinations. 
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 We examine mechanisms for our findings by estimating treatment effects for different groups in 

Israel, in combination with a prior on how each pollutant should affect test takers. In particular, we find 

that demographic groups with higher rates of asthma have larger treatment effects of PM2.5, suggesting that 

exacerbation of respiratory health problems could be a mechanism for pollution to affect test outcomes. 

Our results for PM2.5 seem to be consistent with the patterns of relative risk for asthma found by Laor et al. 

(1993) from military records in Israel, which reflect much higher incidence among boys and Ashkenazi 

Jews, and among lower socio-economic groups in other countries (Basagana et al. 2004, Eriksson et al. 

2006). Carbon monoxide exposure, which is thought to decrease neurological functioning, has a more 

homogenous impact on Israel’s demographic groups. This may be due to a more similar responsiveness to 

carbon monoxide poisoning, which may affect all individuals, even those without prior respiratory 

conditions. 

We also find that exposure to PM2.5 or CO on examination days has a significant impact on a 

particular student’s long-term academic outcome, and potentially has implications for the welfare 

consequences of using the Bagrut for ranking students. We find that a one standard deviation increase in 

the fraction of exam days that are heavily polluted is associated with a 2.19 and 2.70 percentage point 

decline in the probability of receiving a Bagrut matriculation certificate for PM2.5 and CO respectively. Note 

that this certificate is a prerequisite for college entrance, preventing some students from accessing higher 

education. In addition, since access to college majors is also determined by Bagrut performance, air 

pollution may have long-term consequences for students who pass the Bagrut but are forced to choose a 

less desirable college major. An implication of this finding is that by temporarily lowering the productivity 

of human capital, high pollution levels lead to allocative inefficiency as students with lower human capital 

are assigned a higher rank than their more qualified peers. This may lead to inefficient allocation of workers 

across occupations, and possibly a less productive workforce. The results highlight the danger in assigning 

too much weight to a student’s performance on a high-stakes exam, rather than their overall academic 

record.   

Our results provide novel and compelling evidence that cognition is affected by air pollution 

exposure. Epidemiologists have examined the relationship between air pollution and cognition, but the 

evidence is generally cross-sectional in nature, with little attention paid to a potential correlation between 

omitted variables and pollution. For example, Suglia et al. (2008) found that in a sample of 202 children, 

those living near higher levels of black carbon (which is a solid fraction of PM2.5) performed worse on 

cognitive function assessments. Wang et al. (2009) found that children in higher-traffic areas (with higher 

levels of carbon monoxide) performed worse on neurobehavioral examinations. Both of these studies, 

however, were cross-sectional in nature and did not account for a potential correlation between 

unobservable determinants of test outcomes and the measures pollutants. Our examination of Israeli Bagrut 
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exams is, to our knowledge, the first attempt to measure fine particulate matter and carbon monoxide’s 

impact on cognitive performance using rich data and a panel approach.1 Our results underscore the need for 

tighter pollution regulations relative to policy made taking only human health effects into account. The 

results may also highlight a mechanism by which individuals in highly polluted areas, such as those living 

in cheaper industrial areas of cities, could have economic disadvantage exacerbated by pollution (Brown 

1995). 

The rest of the paper is laid out as follows. In the second section, we present background on the 

Israeli context, and summarize in greater detail the relevant existing work on acute air pollution and human 

welfare. Section III presents our data and Section IV presents our empirical strategy. In Section V, we 

present our empirical results and in Section VI we conclude. 

 

II. Background and Data 

a. Air pollution and Cognitive Performance 

We consider two air pollution measures. Our first air pollution measure is particulate matter 

(PM2.5), which is a complex mixture of solid and liquid microscopic droplets found in the air that consists 

of various components including acids, metals, dust particles, organic chemicals and allergens. In Israel, 

the main sources of particulate matter are sand storms, coal-burning power plants, and certain industrial 

processes. Our second air pollution measure is carbon monoxide, which is generated by automobile 

emissions, fossil-fuel furnaces, and fires (Piantadosi 2002). Human intake of particulate matter or carbon 

monoxide inhibits proper blood flow, leading to elevated risk of heart disease, stroke, and lung cancer 

(Dockery and Pope 1996; Schlenker and Walker 2011). It is less clear whether either of these air pollutants 

affect cognition. Since the brain consumes a large fraction of the oxygen needs of the body, any 

deterioration in oxygen quality can in theory affect cognition (Clark and Sokoloff, 1999). Long-term 

exposure to ambient pollution can lead to the growth of white-matter lesions, potentially inhibiting 

cognition (Calderón-Garcidueñasetal et al. 2008). Air pollution can also impact the nervous system, leading 

to symptoms such as memory disturbance, fatigue and blurred vision (Kampa and Castanas, 2007), and 

may also impact labor productivity (Graff Zivin and Neidell 2011). Fine particle matter can also travel 

                                                 
1 These results contribute to a limited but growing literature in economics documenting that a narrow focus on 
hospitalization rates or excess mortality rates may understate the impact of air pollution on human wellbeing, though 
these studies focus primarily on consequences of illness rather than a direct impact on cognition. Currie et al. (2009) 
find that carbon monoxide exposure increases absenteeism among elementary and middle school children students. 
Oliva and Hanna (2011) present evidence that labor supply is reduced in Mexico City on days with high pollution 
levels. Ham et al. (2011) examine the relationship between pollution and test scores using data from California 
elementary schools. They find significant but modest effects for ozone, fine particulate matter, and coarse particulate 
matter. However, they are unable to observe the same student over multiple examinations, and are therefore forced to 
rely on grade-school fixed effects. 
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through small passageways, suggesting that high levels of pollution may affect test takers even indoors 

(Branis et al. 2005). These papers provide compelling evidence that cognition may be affected by pollution. 

They also suggest that while particulate matter may affect the respiratory system, carbon monoxide will 

primarily affect the release of oxygen to human tissues, including the brain. This implies that particulate 

matter may have a larger impact on sensitive or unhealthy groups – such as asthmatic groups – while carbon 

monoxide will affect healthy and unhealthy groups more similarly. However, as stated by Suglia et al. 

(2008), “the possible neurodegenerative effect of air pollution remains largely unexplored.” The Israeli 

Bagrut examination provides a unique context to assess the relationship empirically, which is discussed in 

the next section.  

 

b. The Israeli High-School Matriculation Exam System 

Israeli post-primary education consists of middle school (grades 7–9) and high school (grades 10–

12). High-school students are enrolled either in an academic track leading to a matriculation certificate 

(Bagrut in Hebrew2) or in a vocational track leading to a high-school diploma. The matriculation certificate 

is a prerequisite for university admission and is one of the most economically important education 

milestones. Students complete the matriculation process by passing a series of national exams in core and 

elective subjects following tenth grade and eleventh grade, and then a larger set following twelfth grade. 

Students choose to be tested at various levels of proficiency, with each test awarding the student between 

one and five credit units per subject, varying by the difficulty of the exam. The exam focuses on seven 

mandatory subjects and one elective subject, allowing us to observe students completing exams with 

separate grades for each subject.3 The most basic level of study is three credits and a minimum of twenty 

credits is required to qualify for a matriculation certificate. About 52 percent of high-school graduates in 

2002 and 46 percent of the overall cohort received matriculation certificates.4  

The examinations are given bi-annually during the two exam “seasons”, a winter examination given 

in January and a summer examination in May/June, and are graded by two independent and anonymous 

examiners. The Bagrut final score in each subject is a simple average of the Bagrut exam score and a school 

score, or Magen score, on this subject. The Magen score is based on a school exam (the Matchonet 

                                                 
2  Many countries and some American states have similar high-school matriculation exams, e.g., the French 
Baccalaureate, the German Certificate of Maturity (Reifezeugnis), the Italian Diploma di Maturità, the New York State 
Regents examinations, and the recently instituted Massachusetts Comprehensive Assessment System.  
3 The seven core subjects are Math, English, Hebrew, History, Literature, Religious Studies and Civics. It is possible 
to be awarded a Bagrut certificate despite a failing mark on one of the exams if one of following conditions is satisfied: 
(1) the mark is not below 45 (2) the mark is below 45 but the candidate has two more exams with 3 credit units or 
more that their scores combined sums to at least 150 (3) the failing mark is not in the Hebrew subject exam. 
4 See the Israel Ministry of Education web site (www.education.gov.il) and Lavy (2002). 
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examination)5 that precedes the Bagrut exam by week to three weeks and has the same format as the 

nationally-administered Bagrut exam, except that it is graded by the student’s secondary school subject 

teacher and on the student’s overall performance in this subject during the academic year. We only observe 

the overall Magen score and not its two components. The weights of these two factors can vary and the 

overall Magen score is therefore a natural measure for ranking the students in terms of quality which we 

use in our analysis to stratify the sample. 

Students are admitted to post-secondary programs on the basis of their average matriculation scores 

and based on an SAT-style examination from a psychometric examination administered by the National 

Testing Center. Each higher education institution ranks applicants according to the same formula, thus 

producing an index based on a weighted average of the student’s average score on all her matriculation 

exams and the SAT-style examination. Therefore, pollution levels can affect students’ post-secondary 

schooling by affecting their probability of passing Bagrut exams, and also by affecting the average score 

in these exams. The first channel will affect the eligibility for post-secondary admission while the second 

will affect which programs (or majors) will be available to the student.  

 

III. Data 

Our data set is generated by combining Israeli test score data with air pollution and meteorological 

data for 2000-2002. The Bagrut exam information and demographic information for each test taker were 

provided by the Israeli Ministry of Education. These files also contain each student’s Israeli identification 

number, allowing us to observe rich demographic information on the student and the student’s family, such 

as parental education level, country of origin, and ethnicity. For each exam, we also know the exact date of 

the test and the precise location of the testing site, allowing us to assign pollution measures to each test 

administration. Our pollution data are taken from files published by the Israeli Ministry of Environmental 

Protection, which reports daily mean readings of particular matter less than 2.5 microns in width, or PM2.5 

(µg/m3) and carbon monoxide (CO) at 139 monitoring stations throughout Israel for the sample period (see 

Figure 1).6 Readings are taken at 5 minute intervals and averaged over the course of the day. 

Each school is assigned the average pollution reading for all monitoring stations within the city 

limits in which it is located, or within 2.5 kilometers of the city limits. Since Israeli cities are not very large, 

we generally are taking readings from stations very close to the schools. While we ideally would have a 

                                                 
5 This exam is called matkonet, derived from the word matkon, recipe, meaning that the school exam follows the 
“recipe” of the state exam. The school exam follows the exact format of the Bagrut exam and it also draws its questions 
from the same bank of questions used for the Bagrut exam. 
6 The Israeli monitoring system also records readings for a set of other pollutants. In this paper we focus on PM2.5 and 
CO since these are considered among the most harmful, and are monitored most extensively by the monitoring system. 
We also examined the relationship between PM10 and SO2 and test score data, finding zero effects for PM10 and modest 
effects of very high levels of SO2. The results are available from the authors upon request. 
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measure of pollution inside the classroom, the air quality inside a school is presumed to be highly correlated 

with the ambient reading outdoors (Branis et al. 2005).  Schools that had no monitoring station within the 

city limits or 2.5 kilometers of the city limits were dropped from the sample.7 These stations also record 

temperature and relative humidity, which are used as control variables. We assign pollution and weather to 

each test by averaging all non-missing values among stations within 2.5 kilometres of the test site. Our 

analysis is executed using the Air Quality Index (AQI) measurement associated with our PM2.5 and CO 

readings. The AQI measure converts the pollutant measures in micrograms (µg/m3) into an index score that 

ranges from 0-500 using a formula specified by the US EPA.8 The US defines values above 101 as 

“unhealthy for sensitive groups” and values above 150 as “unhealthy”. In our empirical analysis, we classify 

air quality on a particular day as being beyond the threshold if the PM2.5 (AQI) reading is greater or equal 

to 101 (AQI). Since Israel’s CO measures are relatively lower, and have few days where the AQI score 

exceeds 101, we chose a lower threshold where we generate a dummy for a test occurring on a day in the 

top 5 percent of the most polluted days. 

It is also worth noting that the correlation between our two measures of pollution is very close to 

zero (R=.0028).9 The two pollutants are associated with different causes: particulate matter is generated by 

sand and dust storms and coal-powered electric plants, whereas carbon monoxide is associated with high 

traffic density or other combustion processes. As such, this provides an opportunity to exploit two different 

and largely independent measures of pollution to assess the link between air pollution and cognitive 

performance. 

The summary statistics for our sample are presented in Table 1. Our sample includes 489,419 

examinations taken by 71,383 students at 712 schools throughout Israel. Our key variables are the measures 

of PM2.5 (µg/m3 or AQI), CO, and our standardized test outcomes in Bagrut exams. We also use the Magen 

score as a proxy for student quality that can be used to stratify the sample. This score is determined primarily 

by a test which is a similar to the Bagrut test a few weeks prior to the Bagrut, and by the student's course 

grade.  In columns (2)-(4), we stratify the sample by sex and Magen score. The table indicates that girls 

perform somewhat better than boys on the exam. Also, as anticipated, the students who have higher Magen 

                                                 
7 Since Israel’s population is densely concentrated in several metropolitan areas, this led to the dropping of less than 
5% of schools. 
8 We used the EPA’s breakpoints table (see Table A1) and the following formula to generate the PM2.5 (AQI) 
measurement: PM2.5 (AQI)={(IHI-ILO) / (BPHI-BPLO)} (CP-BPLO) + ILO. Where CP is the rounded concentration of the 
pollutant, BPHI is the breakpoint that is greater than or equal to CP, BPLO is the breakpoint that is less than or equal to 
CP, IHI is the AQI value corresponding to BPHI and ILO is the AQI value corresponding to BPLO. A similar formula is 
used for CO. 
9 In a robustness check, we estimate whether there is a conditional correlation between the two pollutant measures by 
estimating models with the two pollutants simultaneously, shown in Table A2. Our results indicate that the results are 
largely unchanged by including both measures in the same model for our dichotomous measure of pollution, but the 
result for our continuous measure of PM2.5 is significantly reduced for models with student fixed effects. This is 
discussed in the empirical results section. 
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scores, and are placed in our top quality group, have on average higher Bagrut scores and come from more 

educated families. The parents of the higher Magen group have, on average, some postsecondary schooling, 

whereas parents of the lower Magen group have, on average, less than a high school diploma. The lower 

Magen group also come from larger families (more siblings) and are more likely to be of African/Asian 

ethnic origin (Sephardi). These means are not shown in the table but are available from the authors, and 

provide additional indication that the students in the low Magen group are from more disadvantaged socio-

economic backgrounds. This characterisation of the low Magen group will feature in our later discussion 

of potential mechanisms for our results, since the incidence of asthma is much higher among disadvantaged 

populations.  Also note that Table 1 indicates that air pollution, temperature, and humidity do not vary by 

gender or Magen score. For example, the mean PM2.5 AQI index for boys and girls is similar: 59.5 and 59.9, 

less than a tenth of a standard deviation. Similarly, the average PM2.5 AQI index value for high and low 

Magen students are 60.1 and 59.5 respectively, and the mean temperature of the days of exams for both 

groups is 23.8. The balancing of our data on observables when stratified by these groupings by gender and 

by our measure of student quality is important in light of our findings that the effect of pollution is very 

different for these sub-populations. We discuss this further in the empirical section, but the similarity on 

observables is suggestive evidence that selection on unobservables is unlikely to be driving our results.  

 

IV. Empirical Strategy 

Our estimation strategy is relatively straightforward. We estimate OLS models where we examine 

the partial correlation between our air pollution measures and test scores outcomes. For identification, we 

crucially rely on the panel structure of the data and the repeated nature of the Bagrut exam. Since we observe 

the exact location of the test, we can include city or school fixed effects. Since we observe the students 

taking exams following each grade, we can include student fixed effects. Formally, the models we estimate 

are of the following form: 

istiltstststitist ILMRHTempPOLXR   3210)1(  

where istR  is the test score of student i at school s at time t;  itX  is a vector of individual characteristics 

possibly related to test outcomes, such as parental education10; stPOL is our measure of air pollution (PM2.5 

or CO) at school s at time t; stTemp is the mean temperature11 at school s at time t;  stRH  is the relative 

humidity measure at school s at time t;  tM  and lL  are month and exam proficiency level fixed effects 

                                                 
10 Our results with individual fixed effects exclude individual controls. 
11 In the empirical analysis, we include linear and quadratic terms in both temperature and humidity, and linear and 
quadratic interaction terms of the two variables. 
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respectively; iI  is our fixed effect for the individual; and  is an idiosyncratic error term. Note that in 

different specifications we will use city or school fixed effects in place of our individual fixed effects. 

The key identifying assumption for inferring a causal relationship between pollution and test scores 

estimated by equation (1) is that unobserved determinants of student’s test scores are uncorrelated with 

ambient pollution. Without any fixed effects to absorb unobserved variation in schools or individuals, this 

assumption is likely violated since it is likely that pollution is correlated with time invariant features of a 

testing location or a particular student. For example, if poorer schools are located in more polluted parts of 

cities, OLS will likely overstate the causal link between pollution and test scores. Conversely, if schools in 

denser (and wealthier) cities have more pollution exposure, OLS might understate the true cost of pollution, 

as it is mitigated by other compensating factors (e.g. tutoring). More generally, endogenous sorting across 

schools, heterogeneity in avoidance behavior, or measurement error in assigning pollution exposure to 

individuals will all bias results that do not properly account for unobserved factors correlated with both our 

outcome of interest and ambient pollution (Moretti and Neidell 2011). In our setup, since we account for 

time invariant features of schools and students with fixed effects, the challenge relevant to our estimation 

is to account for omitted variables that are varying over time but are potentially correlated with pollution 

and Bagrut outcomes. For example, if weather or traffic the day of the exam is correlated with pollution, 

our fixed effects models will fail to identify the true effect. In our empirical analysis, we include controls 

for time-varying factors that could be contemporaneous with pollution, such as daily temperature and 

relative humidity, but of course it is untestable whether there are factors that are unobserved that are both 

correlated with pollution and Bagrut exam scores. As such, we conduct a rich set of robustness checks and 

placebo tests. These are discussed further in the next section. 

 

V. Empirical Results 

a. Main Results 

In Table 2, we report our baseline results of the relationship between the Air Quality Indicator 

values for PM2.5, CO, and Bagrut test scores. In columns (1) and (2) of Panel A, we report the correlation 

between Bagrut scores and a continuous measure of PM2.5 (AQI) using OLS without city, school or student 

fixed effects. In column (1), we estimate that a 1 unit increase of PM2.5 is associated with a 0.055 points 

decrease in a student’s test score, significant at the 1% level. The results also indicate that a relatively small 

part of the variation in test scores (R-squared = 0.003) is explained by air pollution. This result indicates, 

as one would expect, that variables other than air pollution are responsible for the vast majority of the 

variation in test scores. In column (2) we report the results with the addition of controls for parental 

education, sex, temperature, relative humidity and dummies for the month of the exam and difficulty of the 

ist
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exam. The results are similar and slightly larger in magnitude, with our coefficient estimate indicating that 

a 1 unit increase in pollution is associated with a 0.065 decrease in a student’s score. Note that the sample 

with controls is roughly 20% smaller, as we have incomplete demographic information for these 

individuals. The similarity of the results with and without controls, and with the smaller sample size, is 

suggestive that there is no strong correlation between observables and pollution. We also used the smaller 

sample to estimate the OLS regression without any controls and obtained estimates almost identical to those 

reported in column 1, which suggest the sample of students with some missing characteristics is not on 

average selectively different from the rest of the sample.  

In columns (3)-(5) of Table 2, we take advantage of the panel structure of our data and include city, 

school, and student fixed effects, respectively. These account for variation in time-invariant unobserved 

heterogeneity that could be correlated with ambient pollution. The estimates from a regression with city or 

school fixed effects in columns (3) and (4), are somewhat larger, with estimated coefficients of -0.082 and 

-0.069 respectively. Adding student fixed effects weakens the results slightly, with our preferred estimate 

indicating that a 1 unit increase in PM2.5 is associated with a 0.046 (sd=0.007) decline in the Bagrut score. 

This estimate implies that a test score in an exam on a day with average pollution (AQI=59.74) will be 

lowered relative to an exam taken on a day with the minimum pollution level (AQI=10.1) by 0.10 

(.046*(59.7-10.1)/22.8) standard deviations. Our results for CO in columns (6-10) largely mirror our results 

in columns (1-5). Our results in column 10 indicate that a 1 unit increase in CO is associated with a 0.085 

(sd=0.017) decline in the Bagrut score, significant at the 1 % level. Note however that since the Israeli 

monitoring system failed to collect CO readings at all stations during our sample period, our PM2.5 analysis 

is based on a much larger sample.12 

In Panel B, we perform a similar analysis but replace our continuous measure of pollution with a 

dichotomous indicator for whether the test occurred in a day classified as having “poor” air quality. The 

results are qualitatively similar to the results using the continuous measure for PM2.5 but much larger for 

CO. Specifically, in our specification in column 5 where we include student fixed effects, the data indicate 

that having “poor” PM2.5 air quality the day of the exam is associated with a 1.95 point decline in the 

student’s Bagrut score, equivalent to 8.2% of a standard deviation.  Our specification in column 10 indicates 

that having “poor” CO air quality the day of the exam is associated with a 10.16 point decline in the 

student’s Bagrut score, equivalent to 42.8% of a standard deviation. 13 

                                                 
12 We investigated whether there was something systematic about which stations did not collect CO measures. We 
found no noticeable pattern in our data, though coverage for CO was much poorer in northern Israel and in the areas 
surrounding Haifa.  
13 It is also worth noting that the CO results for our threshold measure of pollution may be affected by several 
extremely polluted exam administrations. In the highest CO reading, students were subjected to AQI=270, roughly 
twenty times the average reading. 
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The effect of PM2.5 on Bagrut scores for the 99th percentile of exposure in our sample (AQI=137) 

is very large and implies a decline of roughly a sixth (.149) of a standard deviation relative to an average 

day. This effect is similar to the estimated effect of reducing class size from 31 to 25 students (Angrist and 

Lavy, 1999) and larger than the test scores gains associated with paying teachers large financial bonuses 

based on their students’ test scores (Lavy, 2009). Unfortunately, days with elevated levels of particulate 

matter are not unusual in Israel and in neighboring countries in the Middle East, as they are often the result 

of sandstorms that originate in the Sahara desert and are relatively common in the spring and summer 

months, with serious health effects (Bell et al. 2008). For CO, our results similarly suggest a large response 

of students to very poor days. The 99th percentile of CO, AQI=56, would imply a similar decline of .158 

standard deviations relative to a day with average levels of CO. Since Israel’s CO level is actually quite 

similar to the levels found in other large cities, such as Los Angeles, CA,14 and may indicate that these 

results may affect student performance in polluted areas of these cities as well. 

In light of the fact that PM2.5 and CO are only weakly correlated, these results suggest a robust 

relationship between different air pollution measures and test scores, as two largely independent pollution 

measures are associated with appreciable declines in test scores. To explore the role of each pollutant 

further, in Table A2 we estimate models where both pollutants are included simultaneously. The results 

indicate that our dichotomous measure of each pollutant’s impact is extremely robust to simultaneous 

estimation, and the continuous measure for CO is almost unchanged by the inclusion of PM2.5. However, 

our continuous measure of PM2.5 is weakened by inclusion of CO in models with student fixed effects. This 

may be because our sample for PM2.5 is more than twice as large as our sample for CO, and partly due to a 

weak residual correlation with CO. 

In Table 3, we report results where we examine whether pollution has a non-linear impact on test 

takers using specifications where we include dummy variables for clean, moderately polluted, or very 

polluted days.15 For PM2.5, we define moderately polluted days as days where the AQI score ranges from 

51-100 (which the EPA defines as moderate pollution) and AQI scores above 101 (which the EPA defines 

as unhealthy for sensitive groups) as poor or very polluted days (see Table A1). Since our CO scores are 

consistently lower than our PM2.5 scores (a mean score of 13 versus a mean score of 59 for PM2.5), we 

define moderately polluted days as days above the median pollution level and below the top 5% of the most 

polluted days, and very polluted days as the top 5% of the sample’s CO readings. Column 5 indicates that 

having poor air quality from PM2.5 exposure the day of the exam is associated with a 2.89 point decline in 

the student’s Bagrut score, which is more than double the size of the coefficient for moderately polluted 

                                                 
14 http://www.usa.com/los-angeles-ca-air-quality.htm  
15 It is worth noting that students cannot reschedule their examination, and so avoidance behavior in response to high 
pollution on the day of the Bagrut is unlikely to be common. 
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days. Similarly, Column 10 indicates that having “poor” CO air quality the day of the exam is associated 

with a 10.89 point decline in the student’s Bagrut score, which is more than ten times the size of the 

coefficient for moderately polluted days. These results indicate that our results are largely driven by poor 

performance of test takers on very polluted days, suggesting that pollution’s impact on cognitive 

performance is mostly relevant on days with very poor air quality. 

 

b. Placebo Tests 

In this section, we perform a set of placebo tests where we examine the relationship between air 

pollution on days other than the actual exam and exam scores. In Table 4, we examine whether there is a 

correlation between pollution from the day of the previous Bagrut and the score on the exam. Note that 

since students take the Bagrut exams over a short period of time, this will generally be a pollution reading 

taken from several days prior. As shown in Panel A of Table 4, the correlation between Bagrut outcomes 

is weak relative to the correlation with the actual exam. While some of the specifications are statistically 

significant, our preferred specification with student fixed effects are either statistically insignificant, or with 

the wrong sign. For example, in our estimates using our threshold measure with student fixed effects, the 

impact of PM2.5 during the previous exam is a .78 point increase in the student’s score, and the result is not 

statistically significant. This can be compared to our main result using the PM2.5 reading from the day of 

the Bagrut, where poor air quality reduces scores by 1.9 points (significant at the 1% level). For our 

dichotomous measure of CO, the results are also reassuring: after including school or student fixed effects, 

no significant relationship between the placebo pollution reading and the exam score is observed. 

In Panel B, we perform a similar exercise but using the air pollution on the date exactly one year 

before the exam. For the continuous measure of pollution, column 5 indicates a negative and statistically 

insignificant relationship between PM2.5 and test scores, while column 10 indicates a positive and 

statistically significant relationship between CO and test scores. For our dichotomous measure of pollution, 

we observe a correlation between exams and PM2.5 in the previous year when we include no fixed effects: 

having a day classified as polluted in the previous year is associated with a 2.8 point decline in scores in 

models with controls, even though there should be no relationship. This underscores the importance of 

including fixed effects to absorb a time-invariant correlation between pollution and student quality, and 

suggests that more polluted areas have lower exam scores in general. Once we include student fixed effects 

in our models, the correlation between PM2.5 from the previous year and the Bagrut score declines to 1.15 

points, and it is only marginally significant. For the dichotomous measure of CO, the results for the previous 

year’s reading are counter-intuitive: we find a positive correlation between pollution levels from the 

previous year and exam scores. While this result is surprising, it suggests that our CO results may be less 
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stable than our PM2.5 results due to a smaller sample size and more extreme values for pollution. The results 

for CO, therefore, should be interpreted with greater caution.  

In Figure 2, we examine the impact of PM2.5 and CO from three days prior to the exam, the day of 

the exam, and three days following the exam on test scores. As shown in the figure, the main effects of 

PM2.5 are concentrated on the day of the exam, and no significant relationship between pollution readings 

and the exam score is observed for days before and after the exam. The figure indicates that the coefficient 

on pollution the day of the exam is much larger and more negative than the other days: an additional 100 

units of AQI is associated with a 0.2 point decrease in student scores, and the coefficient estimates are small 

and positive on the days before and after the exam. In contrast, the results for CO are less conclusive, with 

somewhat larger negative coefficients for the day of the exam relative to the days before and after. As such, 

our results for CO should be interpreted with greater caution. 

In Table A3, we exploit the fact that we know the exact time of day that the examination was 

administered, and consider whether our pollutants have different effects at different times of day.16 While 

the majority of our sample is given a 9AM examination time, roughly 40% of examinations are given after 

12PM. We posit that fine particulate matter, which is generated from sandstorms and coal-burning plants, 

will affect students throughout the day in a similar manner at all hours of the day (or night). Carbon 

monoxide is produced primarily by automobile emissions, and is likely to be more relevant for exams later 

in the day. As shown in the table, our coefficient estimates for PM2.5 are relatively similar for both afternoon 

and morning examinations. In our preferred student fixed effect specification, we find that having poor air 

quality from our PM2.5 exposure measure for an afternoon exam is associated with a .045 point and .054 

point decline per unit of AQI respectively. Likewise, our results using the dichotomous measure are similar; 

we observe a 3.16 point decline in the student’s Bagrut score for days with very high AQI in afternoon 

exams, which is about 20% larger than the coefficient for morning exams. For CO, our estimates are much 

larger for afternoon exams using both the continuous and dichotomous measures.17 For example, using the 

dichotomous measure, having poor CO air quality for afternoon exams is associated with a 10.45 point 

decline in the student’s Bagrut score, which is almost ten times the size of the coefficient for morning 

exams. The results are consistent with a prior that carbon monoxide exposure should be more problematic 

later in the day, and the results for particulate matter will be similar at different times. 

 

                                                 
16 As an additional robustness check, we also estimate our main models with fixed effects for the day of the week on 
which the exam is given. The results are largely unchanged, and available upon request. 
17 Note that since we have fewer observed tests for each student, our results using student fixed effects will be less 
stable. 
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c. Heterogeneity and Implied Mechanisms 

In this section, we examine heterogeneity in the treatment effects reported in Table 2. Our interest 

is twofold. First, we wish to identify whether there are sub-populations that may be particularly responsive 

to poor air quality. Second, this may help to identify mechanisms for the observed reduced form relationship 

between air pollution and cognition. In particular, our prior is that PM2.5 which affects the respiratory system 

will have a larger impact on weaker groups who are more sensitive to poor air quality. In contrast, we expect 

that CO, which affects the tissues and neurological system, to have a more similar impact across different 

groups.  

We build on a set of stylized facts regarding who would be most sensitive to poor air quality from 

the medical literature. First, Israeli boys are more likely to be asthmatic than Israeli girls. As shown by Laor 

et al. (1993) the rate of asthma incidence in Israel is 25 percent higher among boys. Second, children of 

lower economic status are known to have higher rates of asthma and respiratory illnesses (Eriksson et al. 

2006, Basagana et al. 2004). Third, Laor et al. (1993) also found that Ashkenazic Jews (ethnic origin from 

America and Europe) have 63% higher incidence of these illnesses than Sephardim (ethnic origin from 

Africa and Asia). This gives a rich set of potential comparisons for gauging whether asthma is a mechanism 

for the observed reduced form relationship between pollution and exam outcomes. 

In Table 5, we examine our results separately by gender. The results highlight that men are 

significantly more likely to have their test outcomes affected by PM2.5 than women. Our results indicate 

that treatment effects among men are between 2 and 4 times larger than among women. For example, in 

models with student fixed effects, we estimate that an additional 10 units of PM2.5 (AQI) is associated with 

a .078 point decline among men and a .021 decline among women. We posit that the difference could be 

generated by the different asthma rates in these cohorts. Another possibility is that male students are more 

likely to be affected by small cognitive decline and distraction, consistent with higher rates of Attention 

Deficit Disorder in males (Biederman et al. 2002).  In contrast, the results for CO are largely similar for 

men and women, with the results for men being moderately larger. For instance, in our model with student 

fixed effects, we estimate that an additional 10 units of CO (AQI) is associated with a .099 point decline 

among men and a .075 decline among women. 

In Table 6, we break down our sample of test takers by our ex-ante expectation of their 

performance. This is proxied by their Magen score, which is a reasonable measure of student quality as it 

reflects their achievement in the full-year class and on a test similar to the Bagrut, and is correlated with 

family income and other measures of wellbeing because it is highly correlated with parental schooling, 

family size and ethnic origin. It may be that poorer families are more affected by air pollution as well, due 

to lower ability to engage in compensating behavior (Neidell 2004). Poorer children also have higher 

incidence of asthma (Basagana et al. 2004, Eriksson et al. 2006). When we stratify the students by whether 
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their Magen score is above or below the median, our estimated treatment effects for PM2.5 are more than 

two times larger among those classified as low quality. For a low quality student, we estimate that a 10 unit 

increase in PM2.5 (AQI) is associated with a .061 point decline versus only a .028 point impact among higher 

quality students. However, we see no large difference between the responsiveness of higher and lower 

quality students to CO when using the continuous measure for AQI. This is consistent with our earlier 

results that CO’s effect may be less heterogeneous. However, when using our dichotomous measure of 

pollution, both PM2.5 and CO have larger effects on weaker students.  

The results by student quality are investigated further in Table A4, which reveals that when the 

sample is stratified into quartiles, there is a monotonic relationship between treatment effects and our 

student quality measure for PM2.5. Specifically, using our continuous measure of PM2.5, we find that poor 

air quality lowers scores by 0.08 and 0.04 points in the lowest and the second-lowest quartile respectively. 

For the two quartiles above the median, the treatment effect is -0.03 and -0.02 respectively, neither of which 

is statistically significant. This suggests that student vulnerability is rising sharply with respect to student 

quality and may reflect the correlation between the incidence of asthma and socio-economic status. In 

contrast, the relationship between CO and test scores among the stratified sample is more mixed and the 

monotonic relationship is not evident for the continuous measure. Again, for the dichotomous measure of 

CO, the result is monotonic, leaving the results mixed regarding distinguishing between PM2.5 and CO on 

this dimension. The results do, however, consistently point to large effects of both pollutants on student 

outcomes. 

 In Table A5, we exploit the unique ethnic heterogeneity of Israel to estimate models for sub-

populations. Israel’s population is composed primarily of Jews and Arabs, and the Jewish population is 

composed of immigrants from ethnically distinct source countries. The primary distinction is between 

Sephardic Jews of Middle Eastern and North African origin, and Ashkenazic Jews who are from Eastern 

Europe and Russia. The former group has lower rates of asthma and respiratory conditions (Laor et al. 

1993). We find that the impact of air pollution is larger among Ashkenazic Jews relative to Sephardic Jews 

using both our measures of PM2.5 and CO. For example, Ashkenazic Jews are a third more responsive to 

PM2.5 (.046/.035) and almost twice as responsive using our dichotomous measure of PM2.5 (1.73/1.01). For 

CO, however, the results are similar across groups, with Ashkenazic Jews being slightly less responsive 

than Sephardic Jews for both our continuous (.056/.61) and our dichotomous measure (8.28/10.56).   

 

d. Impact of Particulate Matter on Academic Outcomes with Long-run Implications 

While our analysis focuses on the impact of short-term exposure to particulate matter on cognition, 

in our context this can have a large effect on academic success in the long-run. Success on the Bagrut exam 

facilitates entry in to university, and higher scores allow a student to choose more lucrative college majors, 
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such as medicine or computer science. To assess directly the potential harmful long-term effect of pollution 

on human capital formation in our context, we examine in Tables 7, 8, and 9 the relationship between 

exposure to air pollution and academic outcomes related to Bagrut exams. 

In Table 7 Panel A, we examine the relationship between air pollution exposure and the probability 

of failing a particular Bagrut exam. In Panels B and C, we carry out the analysis at the student level. For 

these results, our new measure of pollution is the average pollution reading across all exams the students 

has taken. Our continuous measure of pollution is the average over all the exam days, and our threshold 

measure is the average over all days of whether the exam was administered on a day with pollution in the 

top 5% of most polluted days. As such, the coefficients will represent the impact of raising pollution on all 

days for the continuous measure, or increasing the fraction of exams taken during very polluted days from 

0% to 100% for the threshold measure. As we will show, the results indicate that having poor PM2.5 or CO 

on the days of the Bagrut exams is associated with a lower Bagrut composite score and lower probability 

of receiving the matriculation certificate. These outcomes can have a permanent impact on an individual’s 

probability of attending college, and the majors that are available upon matriculation.  

As shown in Panel A, in our preferred specification with student fixed effects, having elevated 

levels of PM2.5 or CO using the continuous measure have a statistically insignificant effect. However, for 

the threshold measure, both indicate a large decline in a student’s probability of passing the exam on very 

polluted days: a student is 2.4 and 12.3 percentage points less likely to pass an exam on very polluted days 

relative to a normal day. In Panel B, the estimated effect of PM2.5 is negative and significant, and in our 

preferred specification, which includes school fixed effects, we estimate that an additional 10 units of AQI 

on average for each test would lead to a decline in the student’s average score of 1.66 points, roughly 9.8% 

of a standard deviation. Similarly, increasing the fraction of days with high PM2.5 readings by 10% reduces 

the average score by .96 points. A student’s probability of passing the Bagrut is also sensitive to these 

measures. A 10 point increase in PM2.5 AQI reduces a student’s probability of receiving the Bagrut 

certificate by 3.3 percentage points, and increasing the fraction of days with very pollution readings by 10% 

reduces certificate achievement by 1.5 percentage points. Our estimates for CO are somewhat more modest: 

a 10 unit increase in the AQI average reading during the student’s tests reduces scores by .86 points, and a 

10% increase in the share of days with high pollution readings reduces scores by .75 points. Similarly, a 10 

point increase in CO AQI reduces a student’s probability of receiving the Bagrut certificate by 0.5 

percentage points, and the result is not statistically significant. Finally, increasing the fraction of days with 

very pollution readings by 10% reduces certificate achievement by 1.4 percentage points. This suggests that 

CO only affects long-run outcomes among students who are exposed to extremely elevated levels of CO, 

and that more modest levels may have an extremely small impact.  
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 In Table 8, we examine these results broken down by two sub-populations that may be more 

sensitive to air pollution: boys and students of lower quality. The results indicate that boys are more 

sensitive to PM2.5 than girls, and lower quality students are more likely to be detrimentally affected than 

stronger students. In particular, raising the fraction of days with very polluted air by 10 percentage points 

is associated with a .57 percentage point increase for boys in the chance of failing a particular Bagrut in 

models with student fixed effects. Girls appear largely unaffected, with the increased chance of not passing 

being statistically indistinguishable from zero. The gap is even more striking for student with low Magen 

scores: a 10 percentage point increase in the fraction of days with very polluted air is associated with a .59 

percentage point increase in failure probability. The second outcome we examine is the student’s probability 

of failing the composite Bagrut.  Boys are nearly a third more sensitive to air pollution by this measure, 

where a 10 percentage point increase in polluted days is associated with a 1.74 percentage point increased 

chance of not receiving their matriculation certificate, whereas girls only experience a 1.19 percentage point 

increase. The results are even more striking for low scoring Magen students, who are 1.07 percentage points 

more likely to not receive a Bagrut certificate for a 10 percentage point increase in the share of days with 

poor air quality.  

In Table 9, we present results parallel to those shown in Table 8 but for CO rather than PM2.5. While 

the results for our continuous measure are statistically insignificant, the results for our threshold measure 

are negative and statistically significant. Interestingly, we find very similar results for boys and girls in their 

probability of failing the Bagrut exam or not receiving a matriculation certificate. For instance, a 10 

percentage point increase in days above the CO threshold is associated with a 1.42 percentage point 

increased chance of not receiving their matriculation certificate for boys, and girls experience a similar 1.44 

percentage point increase. The results are also similar for low scoring Magen students, who are 1.02 

percentage points more likely to not receive a matriculation certificate for a 10 percentage point increase in 

the share of days with poor air quality, versus a 1.24 increase for high scoring Magen students. This suggests 

that the long-run effects of CO are similar across different groups.     

 

VI.  Conclusion  

This paper has examined the relationship between cognitive performance and ambient pollution 

exposure. Using a large sample of Israeli high-school Bagrut examinations (2000-2002), we have presented 

evidence that there is a robust negative relationship between outcomes and ambient pollution 

concentrations. We also find that among Israeli sub-populations with higher rates of asthma and respiratory 

illnesses, our estimated treatment effects for PM2.5 are larger, suggesting that physiological impairment is a 

potential mechanism for our findings. In contrast, our results for CO are largely consistent among Israeli 

sub-populations, suggesting that neurological impairment may be a mechanism for our findings. The 
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measured impact of our pollutants may have a permanent effect on a student’s human capital formation, 

because it affects whether the student earns the Bagrut in a timely fashion and can matriculate in college 

following the army, or must complete additional coursework prior to starting college, delaying 

matriculation. In the overall economy, the mis-ranking of students due to variability in pollution exposure 

may result in bad assignment of workers to different occupations, resulting in reduced labor productivity. 

While our results are robust to a variety of specification checks, it is worth noting several important 

caveats. First, our result is in a completely reduced form and we cannot trace out the pathways. While we 

posit that asthmatics and other sensitive groups are driving our results for PM2.5, this is difficult to determine 

definitively in the absence of health measures for the test takers. Second, we cannot fully examine whether 

the effect is due to pollution only on the day of the exam, versus through a build-up effect from the days 

prior to the exam. We report the relationship between the exam outcome and ambient pollution, but we are 

unable with our data to fully disentangle the exact timing of the effect. Third, it may be that increased 

pollution is contemporaneous with other factors affecting test outcomes. For example, it is possible that 

traffic on the way to the exam is correlated with pollution and with reduced test performance. In spite of 

these limitations, our results present new evidence of a connection between reduced cognitive performance 

and fine particulate matter or carbon monoxide exposure.  

The results presented here suggest that the gain from improving air quality may be underestimated 

by a narrow focus on health impacts. Insofar as air pollution may lead to reduced cognitive performance, 

the consequences of pollution may be relevant for a variety of everyday activities that require mental acuity. 

Traffic accidents, injuries in the workplace, and reduced worker productivity may all be the byproduct of 

reduced cognitive performance. As such, the results presented here highlight a channel by which the 

consequences of pollution are vastly understated by a narrow focus on the immediate and acute health 

consequences, and suggest that improvements in air quality may yield tremendous benefits in welfare. 
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All Boys Girls Low Scores High Scores
Variable (1) (2) (3) (4) (5)

21.05 20.89 21.18 21.15 20.96
(10.86) (10.57) (11.10) (10.88) (10.87)

59.74 59.47 59.98 60.01 59.51
(22.81) (22.50) (23.08) (22.89) (22.75)

0.05 0.05 0.05 0.05 0.05
(0.21) (0.21) (0.22) (0.22) (0.21)

1.21 1.22 1.21 1.25 1.17
(1.05) (1.08) (1.02) (1.15) (0.92)

13.77 13.81 13.73 14.19 13.29
(11.58) (11.93) (11.27) (12.80) (10.18)

0.04 0.04 0.04 0.04 0.03
(0.20) (0.20) (0.20) (0.21) (0.18)

70.76 68.91 72.33 53.22 77.10
(23.74) (24.86) (22.64) (30.69) (22.18)

75.45 73.27 77.30 64.09 86.93
(21.37) (22.50) (20.19) (23.25) (10.47)

83.03 81.37 84.49 73.18 95.05
(16.84) (17.48) (16.11) (14.59) (10.33)

0.68 0.64 0.71 0.48 0.91
(0.47) (0.48) (0.45) (0.50) (0.28)

0.19 0.21 0.17 0.33 0.04
(0.39) (0.41) (0.37) (0.47) (0.19)

11.44 11.60 11.30 10.79 12.08
(5.04) (5.09) (5.00) (4.87) (5.13)

11.62 11.83 11.44 10.85 12.39
(5.03) (5.02) (5.03) (4.84) (5.10)

23.81 23.81 23.82 23.84 23.83
(2.61) (2.61) (2.62) (2.66) (2.50)

50.90 50.86 50.94 50.98 50.95
(14.71) (14.52) (14.87) (15.08) (14.35)

Observations 415,219 190,410 224,809 206,571 204,527

Failed a Bagrut  Exam 
(1=yes)

PM2.5 

(AQI Index)

PM2.5 

(µg/m3)

Table 1

Descriptive Statistics

By Magen Score 

(Course Grade1)By Sex

Notes : Standard deviations are in parentheses. The measures of pollution are particulate matter smaller than 2.5
microns, or PM2.5, and carbon monoxide, CO. We also report the AQI value for each reading, which is calculated
from a formula that converts micrograms (µg/m3) into a 1-500 index value. We also report dummies for days with
PM2.5 (AQI) >100 or CO readings in the top 5% of days in our sample. Relative humidity is the amount of moisture
in the air as a share of what the air can hold at that temperature. Receiving a Matriculation Certificate is determined
by a combination of the average Bagrut score across exams, and the Magen score, which is composed of the student's

course grade and an exam similar in content to the Bagrut. 1The low and high subsamples were based on being above
or below the median of the Magen score.

PM2.5 

(AQI ≥101)

CO

(µg/m3)

CO
(AQI Index)

CO
(>95th  percentile)

Bagrut  Exam Score 
(1-100 points)

Matriculation 
Certificate (1=yes)

Magen Score 
(1-100 points)

Bagrut  Composite 
Score 

Temperature 
(celsius)

Relative Humidity
(percent saturation)

Mother’s Education 
(years)

Father’s Education 
(years)



No Controls Controls City School Student No Controls Controls City School Student 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Pollutant -0.055 -0.065 -0.082 -0.069 -0.046 -0.047 -0.054 -0.133 -0.083 -0.085
(0.015) (0.011) (0.008) (0.007) (0.007) (0.017) (0.020) (0.018) (0.017) (0.017)

Female (1=yes) 3.22 3.30 2.72 3.82 3.88 3.15
(0.34) (0.34) (0.22) (0.50) (0.50) (0.38)

Mother’s Education 0.165 0.141 0.112 0.182 0.191 0.113
(0.063) (0.062) (0.034) (0.097) (0.093) (0.057)

Father’s Education 0.410 0.396 0.241 0.451 0.463 0.251
(0.061) (0.058) (0.033) (0.095) (0.090) (0.050)

R-squared 0.003 0.042 0.046 0.145 0.493 0.001 0.054 0.060 0.174 0.531

Observations 415,219 380,435 380,435 380,435 380,435 158,647 153,528 153,528 153,528 153,528

-3.00 -2.63 -2.75 -2.68 -1.95 -6.04 -6.68 -9.16 -9.56 -10.16
(1.54) (1.03) (0.84) (0.70) (0.74) (1.15) (1.31) (1.28) (0.96) (1.02)

Female (1=yes) 3.19 3.25 2.68 3.84 3.91 3.19
(0.340) (0.337) (0.219) (0.498) (0.496) (0.377)

Mother’s Education 0.158 0.143 0.111 0.185 0.192 0.117
(0.064) (0.063) (0.035) (0.096) (0.092) (0.055)

Father’s Education 0.409 0.396 0.241 0.452 0.465 0.252
(0.061) (0.058) (0.033) (0.094) (0.090) (0.048)

R-squared 0.001 0.040 0.043 0.143 0.492 0.002 0.056 0.062 0.177 0.534

Observations 415,219 380,435 380,435 380,435 380,435 158,647 153,528 153,528 153,528 153,528
Notes : Standard errors are clustered by school. All regressions include suppressed controls for temperature and humidity on the exam date, which are

included as linear and quadratic terms in each, and linear and quadratic interaction terms of the two variables. 1For carbon monoxide, we generate a dummy
for a test occurring on a day in the top 5% of most polluted days.

Panel A: Air Quality Index (continuous measure)

Panel B: Air Quality Index above Threshold Value

Table 2

Dummy for AQI>1001

Pooled OLS and Fixed Effect Models of Air Pollution's Impact on Bagrut Test Scores

RHS Pollutant Measure: Particulate Matter2.5 RHS Pollutant Measure: Carbon Monoxide

Pooled OLS Fixed Effects Pooled OLS Fixed Effects



No Controls Controls City School Student No Controls Controls City School Student 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

-2.32 -2.29 -3.02 -2.41 -1.43 0.56 -1.92 -1.26 -1.36 -0.72
(0.50) (0.42) (0.31) (0.29) (0.33) (0.71) (0.75) (0.67) (0.60) (0.66)

-4.42 -4.07 -4.92 -4.34 -2.89 -5.76 -8.56 -10.39 -10.88 -10.87
(1.61) (1.10) (0.87) (0.73) (0.78) (1.27) (1.55) (1.42) (1.14) (1.19)

Female (1=yes) 3.20 3.27 2.70 3.86 3.92 3.20
(0.339) (0.335) (0.217) (0.498) (0.497) (0.378)

Mother’s Education 0.166 0.142 0.112 0.180 0.190 0.114
(0.064) (0.063) (0.035) (0.096) (0.092) (0.055)

Father’s Education 0.411 0.395 0.241 0.455 0.466 0.252
(0.061) (0.058) (0.034) (0.095) (0.090) (0.049)

R-squared 0.003 0.041 0.046 0.145 0.493 0.003 0.056 0.063 0.178 0.534

Observations 415,219 380,435 380,435 380,435 380,435 158,647 153,528 153,528 153,528 153,528

Notes : See Table 2. 1For carbon monoxide we generate a dummy for a test occurring on a day above the median pollution level and below the top 5% of
the most polluted days as the intermediate pollution category. 

Table 3

Dummy for AQI >50 & 

< 1011

Dummy for AQI  
≥ 101

Air Pollution's Impact on Bagrut Test Scores on Polluted and Extremely Polluted Days

RHS Pollutant Measure: Particulate Matter2.5 RHS Pollutant Measure: Carbon Monoxide

Pooled OLS Fixed Effects Pooled OLS Fixed Effects



No Controls Controls City School Student No Controls Controls City School Student 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Pollutant (AQI) -0.024 -0.035 -0.049 -0.034 -0.005 -0.128 -0.130 -0.307 -0.080 0.097
(0.013) (0.010) (0.007) (0.006) (0.006) (0.065) (0.074) (0.164) (0.079) (0.055)

Pollutant (Threshold) -1.10 -0.48 -0.66 -0.29 0.78 -3.61 -1.48 -5.68 1.48 -2.53
(1.37) (0.87) (0.78) (0.68) (0.71) (2.29) (2.85) (3.09) (2.82) (3.06)

Observations 358,584 328,974 328,974 328,974 328,974 131,579 127,341 127,341 127,341 127,341

Pollutant (AQI) -0.008 -0.033 -0.027 -0.014 -0.006 -0.032 -0.060 0.061 0.063 0.147
(0.008) (0.008) (0.008) (0.009) (0.010) (0.017) (0.038) (0.029) (0.023) (0.048)

Pollutant (Threshold) -2.78 -2.89 -1.03 -0.75 -1.15 0.98 2.38 3.87 4.90 5.55
(0.81) (0.68) (0.76) (0.73) (0.69) (1.06) (0.76) (0.74) (0.70) (0.81)

Observations 261,091 248,759 248,759 248,759 248,759 291,555 193,764 193,764 193,764 193,764

Panel A: Pollutant Level from Previous Exam

Panel B: Pollutant Level from Previous Year

Notes : See Table 2.

Pooled OLS Fixed Effects

RHS Pollutant Measure: Particulate Matter2.5 RHS Pollutant Measure: Carbon Monoxide

Pooled OLS Fixed Effects

Table 4

Placebo Tests Measuring the Relationship between the Bagrut and Pollutants on Irrelevant Days



No Controls Controls City School Student No Controls Controls City School Student 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Pollutant (AQI) -0.087 -0.100 -0.118 -0.104 -0.078 -0.035 -0.055 -0.142 -0.080 -0.099
(0.018) (0.013) (0.009) (0.009) (0.009) (0.021) (0.026) (0.024) (0.020) (0.019)

Pollutant (Threshold) -4.83 -5.62 -5.59 -5.33 -4.10 -6.12 -7.49 -10.73 -10.28 -11.28
(1.95) (1.26) (0.96) (0.82) (0.87) (1.41) (1.65) (1.53) (1.22) (1.23)

Observations 190,410 174,250 174,250 174,250 174,250 73,054 70,311 70,311 70,311 70,311

Pollutant (AQI) -0.031 -0.036 -0.054 -0.041 -0.021 -0.058 -0.052 -0.125 -0.091 -0.075
(0.014) (0.012) (0.009) (0.007) (0.008) (0.017) (0.017) (0.021) (0.018) (0.023)

Pollutant (Threshold) -1.67 -0.30 -0.55 -0.66 -0.38 -6.07 -5.79 -7.62 -8.79 -9.29
(1.35) (1.03) (0.90) (0.80) (0.83) (1.13) (1.26) (1.34) (1.10) (1.16)

Observations 224,809 206,185 206,185 206,185 206,185 85,593 83,217 83,217 83,217 83,217

Table 5

Notes : See Table 2.

Pooled OLS Fixed Effects

Air Pollution's Impact on Bagrut Test Scores, Separately for Boys and Girls

RHS Pollutant Measure: Particulate Matter2.5 RHS Pollutant Measure: Carbon Monoxide

Pooled OLS Fixed Effects

Panel A: Boys Only

Panel B: Girls Only



No Controls Controls City School Student No Controls Controls City School Student 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Pollutant (AQI) -0.074 -0.078 -0.081 -0.075 -0.061 -0.073 -0.097 -0.064 -0.065 -0.048
(0.015) (0.013) (0.011) (0.010) (0.011) (0.032) (0.031) (0.021) (0.020) (0.029)

Pollutant (Threshold) -4.64 -4.79 -3.77 -3.86 -3.49 -6.22 -9.66 -11.79 -11.56 -12.14
(1.58) (1.24) (1.12) (1.04) (1.10) (1.31) (1.49) (1.64) (1.28) (1.45)

Observations 206,571 185,030 185,030 185,030 185,030 134,126 128,078 128,078 128,078 128,078

Pollutant (AQI) -0.027 -0.024 -0.037 -0.030 -0.028 -0.023 -0.027 -0.068 -0.052 -0.055
(0.006) (0.006) (0.006) (0.006) (0.006) (0.015) (0.015) (0.016) (0.016) (0.015)

Pollutant (Threshold) -0.94 -0.93 -1.30 -0.93 -0.76 -2.97 -4.09 -4.61 -4.88 -4.57
(0.42) (0.71) (0.66) (0.57) (0.68) (0.59) (0.69) (0.78) (0.81) (0.85)

Observations 204,527 191,790 191,790 191,790 191,790 128,758 126,284 126,284 126,284 126,284

Notes : See Table 2. The sample is stratified by whether the student did below (Panel A) or above (Panel B) the median on the Magen score. The Magen 
score is based on the student's class performance and on an exam similar to the Bagrut. 

RHS Pollutant Measure: Particulate Matter2.5

Pooled OLS Fixed Effects

Panel A: Low Magen Scores

Panel B: High Magen Scores

Table 6

Air Pollution's Impact on Test Scores, Separately for Students with Low and High Magen  Scores

RHS Pollutant Measure: Carbon Monoxide

Pooled OLS Fixed Effects



Controls City School Student Controls City School Student 
(1) (2) (3) (4) (5) (6) (7) (8)

0.025 0.035 0.018 -0.017 0.048 0.071 0.026 0.019
(0.015) (0.010) (0.009) (0.010) (0.024) (0.034) (0.036) (0.049)

Pollutant (Threshold) 0.036 0.039 0.036 0.024 0.082 0.103 0.111 0.123
(0.016) (0.012) (0.010) (0.010) (0.018) (0.021) (0.017) (0.019)

Observations 380,435 380,435 380,435 380,435 153,528 153,528 153,528 153,528

-6.77 -26.79 -16.60 -2.88 -22.72 -8.56
(4.29) (3.40) (1.87) (3.68) (4.53) (3.23)

Pollutant (Threshold) -3.77 -10.93 -9.55 -10.98 -8.43 -7.54
(4.96) (3.66) (2.70) (2.24) (1.55) (1.15)

Observations 50,899 50,899 50,899 25,730 25,730 25,730

-0.236 -0.537 -0.328 -0.063 -0.301 -0.054
(0.099) (0.082) (0.048) (0.075) (0.102) (0.100)

Pollutant (Threshold) -0.184 -0.255 -0.146 -0.214 -0.188 -0.142
(0.125) (0.093) (0.050) (0.051) (0.035) (0.027)

Observations 50,899 50,899 50,899 25,730 25,730 25,730

Table 7

Air Pollution's Impact on Long-term Academic Outcomes Related to the Bagrut  Examination

Fixed EffectsPooled OLS

Notes : See Table 2. In Panel A, each observation is an examination. In Panel B and Panel C, each observation is a student. For the models estimated
in Panel B and Panel C, pollution is averaged over all of the Bagrut tests taken following grades 10-12 for each student. 

RHS Pollutant Measure: Carbon MonoxideRHS Pollutant Measure: Particulate Matter2.5

Pooled OLS Fixed Effects

Panel A: Failing a Particular Bagrut  Exam (1=yes)

Panel B: Bagrut Exam Composite Score

Panel C: Received a Bagrut  Matriculation Certificate (1=yes)

Pollutant (AQI, 100 
units)

Pollutant (AQI, 100 
units)

Pollutant (AQI, 100 
units)



Pooled OLS Pooled OLS

Controls City School Student Controls City School
(1) (2) (3) (4) (5) (6) (7)

Panel A: Boys Only

PM2.5 (AQI, 100 units) 0.070 0.082 0.064 0.021 -0.243 -0.621 -0.345

(0.020) (0.014) (0.013) (0.014) (0.109) (0.089) (0.057)

PM2.5 (Threshold) 0.085 0.086 0.077 0.057 -0.283 -0.403 -0.174

(0.022) (0.017) (0.015) (0.015) (0.133) (0.094) (0.065)

Observations 174,250 174,250 174,250 174,250 23,830 23,830 23,830

Panel B: Girls Only

PM2.5 (AQI, 100 units) -0.012 -0.002 -0.017 -0.046 -0.231 -0.468 -0.328

(0.015) (0.011) (0.010) (0.011) (0.107) (0.097) (0.056)

PM2.5 (Threshold) 0.000 0.003 0.004 -0.001 -0.061 -0.073 -0.119

(0.014) (0.012) (0.010) (0.010) (0.142) (0.116) (0.062)

Observations 206,185 206,185 206,185 206,185 27,069 27,069 27,069

PM2.5 (AQI, 100 units) 0.038 0.038 0.026 0.001 -0.086 -0.299 -0.204

(0.020) (0.017) (0.015) (0.017) (0.096) (0.079) (0.049)

PM2.5 (Threshold) 0.077 0.071 0.066 0.059 -0.124 -0.178 -0.107

(0.020) (0.017) (0.016) (0.016) (0.103) (0.082) (0.049)

Observations 185,030 185,030 185,030 185,030 24,892 24,892 24,892

PM2.5 (AQI, 100 units) -0.026 -0.031 -0.035 -0.041 -0.219 -0.197 -0.118

(0.006) (0.006) (0.005) (0.007) (0.074) (0.077) (0.050)

PM2.5 (Threshold) 0.004 0.006 0.000 -0.002 -0.284 -0.252 -0.042

(0.007) (0.006) (0.006) (0.007) (0.146) (0.131) (0.044)

Observations 191,790 191,790 191,790 191,790 26,007 26,007 26,007

Table 8
Particulate Matter's Impact on Failing a Bagrut  Exam and 

Receiving a Matriculation Certificate by Sex and Magen  Score

Panel C: Low Magen Scores

Panel D: High Magen  Scores

Notes : See Table 2. Each cell in the table represents a separate regression. Each observation in columns (1)-(4) is an
examination, and in columns (5)-(7) each observation is a student. 

LHS: Received Matriculation 
Certificate (1=yes)

 LHS: Failed Bagrut Exam
(1=yes)

Fixed EffectsFixed Effects



Pooled OLS Pooled OLS

Controls City School Student Controls City School
(1) (2) (3) (4) (5) (6) (7)

Panel A: Boys Only

CO (AQI, 100 units) 0.049 0.089 0.027 0.037 -0.022 -0.240 0.009
(0.033) (0.030) (0.029) (0.036) (0.079) (0.164) (0.128)

CO (Threshold) 0.090 0.123 0.118 0.132 -0.236 -0.196 -0.142
(0.023) (0.025) (0.020) (0.023) (0.061) (0.049) (0.040)

Observations 70,311 70,311 70,311 70,311 11,990 11,990 11,990

Panel B: Girls Only

CO (AQI, 100 units) 0.045 0.057 0.031 0.007 -0.101 -0.389 -0.243
(0.024) (0.048) (0.050) (0.067) (0.083) (0.111) (0.125)

CO (Threshold) 0.071 0.084 0.103 0.115 -0.191 -0.176 -0.144
(0.018) (0.022) (0.018) (0.020) (0.049) (0.036) (0.028)

Observations 83,217 83,217 83,217 83,217 13,740 13,740 13,740

CO (AQI, 100 units) 0.031 0.073 0.029 0.053 -0.107 -0.180 0.033
(0.034) (0.060) (0.061) (0.073) (0.076) (0.138) (0.108)

CO (Threshold) 0.136 0.197 0.192 0.220 -0.183 -0.163 -0.102
(0.025) (0.027) (0.023) (0.029) (0.053) (0.045) (0.035)

Observations 71,192 71,192 71,192 71,192 11,962 11,962 11,962

CO (AQI, 100 units) 0.028 -0.01 -0.014 -0.015 -0.053 -0.143 -0.052
(0.010) (0.016) (0.017) (0.025) (0.043) (0.093) (0.087)

CO (Threshold) 0.026 0.019 0.023 0.026 -0.097 -0.11 -0.124
(0.009) (0.010) (0.010) (0.012) (0.035) (0.035) (0.024)

Observations 80,728 80,728 80,728 80,728 13,768 13,768 13,768

Panel C: Low Magen Scores

Panel D: High Magen  Scores

Notes : See Table 2. Each cell in the table represents a separate regression. Each observation in columns (1)-(4) is an
examination, and in columns (5)-(7) each observation is a student. 

Table 9
Carbon Monoxide's Impact on Failing a Bagrut  Exam and 

Receiving a Matriculation Certificate by Sex and Magen  Score

 LHS: Failed Bagrut Exam
(1=yes)

LHS: Received Matriculation 
Certificate (1=yes)

Fixed Effects Fixed Effects



Figure 1
Locations of Air Quality Monitoring Stations in Israel



Particulate Matter2.5

Figure 2

Impact of PM2.5 and CO on Test Scores in the Days 
Pre and Post Examination

Notes : The figure plots the coefficients from a regression of Bagrut  test scores on PM2.5 and CO AQI readings in the days prior to, the day of (Day=0), and the days 

following the examination. Standard errors are clustered by school.
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NOT FOR PUBLICATION - ONLINE APPENDIX 
MATERIALS



PM2.5 (μg/m3) AQI  Index Value Category

0.0 - 15.4 0 - 50 Good 

15.5 -40.4 51 - 100 Moderate 

40.5 - 65.4 101 - 150 Unhealthy for Sensitive Groups 

65.5 - 150.4 151 - 200 Unhealthy 

150.5 - 250.4 201 - 300 Very unhealthy 

250.5 - 350.4 301 - 400 Hazardous 

350.5 - 500.4 401 - 500 Hazardous  

Source : United States Environmental Protection Agency

Breakpoints for PM2.5 (μg/m3) and AQI Index Categories

Table A1



No controls Controls City School Student No controls Controls City School Student 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

-0.049 -0.030 -0.043 -0.033 -0.009 -0.046 -0.052 -0.126 -0.078 -0.083
(0.018) (0.018) (0.016) (0.014) (0.019) (0.017) (0.020) (0.018) (0.017) (0.017)

Pollutant (Threshold) -3.77 -1.93 -2.09 -2.60 -1.73 -6.19 -6.89 -9.33 -9.77 -10.26
(1.03) (1.01) (0.94) (0.74) (0.82) (1.15) (1.30) (1.28) (0.96) (1.01)

Observations 158,647 153,528 153,528 153,528 153,528 158,647 153,528 153,528 153,528 153,528

Notes : The table reports the coefficients from estimating the models with both measures of pollution as independent variables. The results in the first row
and columns (1) and (6) are from the same regression, and the results from (2) and (7) are from the same regression, and so on. The results in the second
row and columns (1) and (6) are from the same regression, and the results from (2) and (7) are from the same regression, and so on.

Pollutant  (AQI)

Table A2

Pooled OLS and Fixed Effect Models of Pollutant Matter on Test Scores with Both Measures Included Simultaneously

RHS Pollutant Measure: Particulate Matter2.5 RHS Pollutant Measure: Carbon Monoxide

Pooled OLS Fixed Effects Pooled OLS Fixed Effects



No Controls Controls City School Student No Controls Controls City School Student
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A: Afternoon Examinations

Pollutant (AQI) -0.019 -0.079 -0.116 -0.082 -0.045 -0.099 -0.079 -0.183 -0.152 -0.135
(0.017) (0.015) (0.013) (0.010) (0.013) (0.024) (0.014) (0.022) (0.015) (0.020)

Pollutant (Threshold) -2.94 -3.11 -3.04 -2.56 -3.16 -8.82 -7.77 -9.24 -9.89 -10.45
(2.11) (2.01) (1.95) (1.35) (1.42) (1.23) (1.22) (1.29) (1.10) (1.31)

Observations 162,912 148,026 148,026 148,026 148,026 68,161 65,984 65,984 65,984 65,984

Panel B: Morning Examinations

Pollutant (AQI) -0.074 -0.067 -0.074 -0.066 -0.054 0.017 0.007 0.086 0.130 0.239
(0.016) (0.013) (0.009) (0.008) (0.010) (0.026) (0.046) (0.069) (0.034) (0.083)

Pollutant (Threshold) -2.93 -3.13 -2.97 -3.13 -2.46 -1.50 -2.45 -7.50 -0.08 -1.12
(1.38) (1.11) (0.87) (0.73) (0.97) (2.79) (3.35) (8.30) (3.24) (4.38)

Observations 252,307 232,409 232,409 232,409 232,409 90,486 87,544 87,544 87,544 87,544

Notes : See Table 2. The examinations that are given at 12PM and later are classified as afternoon exams.

Table A3

Pooled OLS and Fixed Effect Models of Pollutant Matter on Afternoon and Morning Test Scores

RHS Pollutant Measure: Particulate Matter2.5 RHS Pollutant Measure: Carbon Monoxide

Fixed EffectsPooled OLSPooled OLS Fixed Effects



(0-0.25) (0.25-0.50) (0.50-0.75) (0.75-1.00) (0-0.25) (0.25-0.50) (0.50-0.75) (0.75-1.00)

Pollutant (AQI) -0.080 -0.044 -0.033 -0.022 -0.134 -0.064 -0.082 -0.088
(0.017) (0.010) (0.008) (0.006) (0.042) (0.020) (0.015) (0.028)

Pollutant (Threshold) -4.99 -2.29 -1.24 -0.35 -18.22 -10.93 -7.52 -3.56
(1.38) (1.19) (0.86) (0.63) (1.86) (1.16) (0.87) (1.18)

Observations 90,354 94,676 94,288 97,502 36,901 38,446 38,022 38,551

Table A4

Notes : See Table 2. All models include student fixed effects. The columns include the students within the listed percentile range
on the Magen score, which is based on the student's class performance and on an exam similar to the Bagrut . 

Air Pollution's Impact on Test Scores, Separately by Magen  Score Quartile

Low Magen  Score 
Percentile

High Magen  Score 
Percentile

RHS Pollutant Measure: Particulate Matter2.5 RHS Pollutant Measure: Carbon Monoxide

Low Magen  Score 
Percentile

High Magen  Score 
Percentile



No Controls Controls City School Student No Controls Controls City School Student 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Pollutant (AQI) -0.048 -0.056 -0.081 -0.062 -0.046 -0.038 -0.035 -0.122 -0.077 -0.056
(0.018) (0.014) (0.011) (0.009) (0.012) (0.024) (0.028) (0.035) (0.033) (0.025)

Pollutant (Threshold) -2.91 -2.85 -3.03 -2.19 -1.73 -5.87 -5.98 -7.41 -9.10 -8.28
(1.94) (1.35) (1.08) (1.07) (1.13) (1.30) (1.30) (1.29) (1.19) (1.19)

Observations 88,635 80,156 80,156 80,156 80,156 31,437 30,156 30,156 30,156 30,156

Pollutant (AQI) -0.077 -0.058 -0.068 -0.058 -0.035 -0.037 -0.059 -0.109 -0.073 -0.061
(0.018) (0.014) (0.011) (0.010) (0.009) (0.020) (0.020) (0.019) (0.018) (0.020)

Pollutant (Threshold) -4.11 -1.17 -1.15 -1.32 -1.01 -4.96 -6.85 -9.06 -9.72 -10.56
(1.67) (1.33) (1.20) (0.98) (1.00) (1.29) (1.49) (1.61) (1.50) (1.56)

Observations 61,889 54,822 54,822 54,822 54,822 22,702 22,116 22,116 22,116 22,116

Table A5

Notes : See Table 2.

Pooled OLS Fixed Effects

Pooled OLS and Fixed Effect Models of Pollutant Matter on Test Scores, Separately for Ashkenazi  and Sephardi  Students

RHS Pollutant Measure: Particulate Matter2.5 RHS Pollutant Measure: Carbon Monoxide

Pooled OLS Fixed Effects

Panel A: Ashkenazi  (Europe, America & Australia)

Panel B: Sephardi  (Asia, Middle East & Africa)
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