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1 Introduction

There is a relatively large literature on monetary and fiscal policy subject
to the zero interest rate bound (see for example Eggertsson and Woodford
(2003), Adam and Billi (2006), Eggertsson (2011), Christiano, Eichenbaum
and Rebelo (2011) and Werning (2011)). Generally, these papers take the
shock that leads the economy to the zero bound — shocks to the "natural
rate of interest" —as given. Hence the duration of the trap under some basic
policy specifications is purely exogenous and the duration of the exogenous
forces that perturb the economy —usually given by preference shocks —does
not have much meaningful interaction with the policy chosen.
More recently a literature has started to emerge that tries to model in

greater detail how the economy finds itself up against the zero bound, the very
origin of the current global economic crisis. One powerful narrative is that the
source is a deleveraging cycle (for recent theoretical contributions inspired by
the crisis see e.g. Eggertsson and Krugman (2012), Hall (2012) and Guerreri
and Lorenzoni (2012), while Mian and Sufi(2011) provide empirical evidence
for this mechanism).1

The deleveraging story can be summarized as follows: We first have a
period of too much optimism about debt, in which debtors borrow and spend
aggressively via a process of leveraging (piling up debt). Since one person’s
debt is another’s asset, creditors have to be induced to spend less via high real
interest rates. Then there is a "Minsky moment" (Eggertsson and Krugman,
2012) in which people realize things have gone too far —that all the newly
issued debt may in fact not be sustainable —and we move from a process of
leveraging to deleveraging, i.e. the overextended agents need to pay down
their debt. But the problem is that this process is not symmetric, because
the central bank may not be able to cut the interest rate enough to induce
suffi cient spending by those that are not too deep into debt because of the
zero bound. Hence, one way to explain a drop in the natural rate of interest
is to say that debtors —as a group —are trying to deleverage very fast, so that
the real interest rate needs to fall to negative levels to get the savers to spend
enough to sustain full employment. A negative real interest rate can make
the zero bound binding. This in turns creates problems for macroeconomic

1See also Geanakoplos (2010), and references therein, altough he, and the literature
cited, does not emphasize the connection of the levereage cycle to the interest rate channel
as we do here and as the literature above does. Thus he does not focus as much on the
interaction of the leverage cycle and the zero bound which is the central focus here.
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policy.
In earlier work on deleveraging, such as Eggertsson and Krugman (2012),

the deleveraging shock corresponds to a sudden drop in borrowing capacity
that the borrower must satisfy. Left off the table, however, is the precise
dynamic path and time horizon of the deleveraging. Instead the deleveraging
all takes place in one period termed the "short-run". In this paper we relax
this assumption so that the process of deleveraging takes place over several
periods —determined endogenously —as a result of the optimal deleveraging
decisions of the optimizing households. To do so we model in more detail the
form of the borrowing capacity of the households, which we assume is not
an exogenous constant as in Eggertsson and Krugman (2012).2 Instead it is
a convex function of each agent’s level of debt. Under this specification the
debtor is not at a corner (i.e. at the very edge of his debt limit) but instead
chooses his optimal level of debt, taking into account that higher level of
debt will trigger an ever higher "risky" interest rate for him to face.
Within this framework we generalize the standard New Keynesian (NK)

prototype model (such as for example illustrated in Woodford (2003) and
Galì (2008)) as one that involves exactly the same pair of equations, familiar
to many readers, namely the IS and the AS equations which are typically
summarized as follows (denoting output in log deviation from steady state
with, Ŷt, inflation with πt, the nominal interest rate with it)

Ŷt = EtŶt+1 − σ(it − Etπt+1 − rnt )

πt = κŶt + βπt+1

where β, σ, κ > 0 are coeffi cients. The only difference between our current
model and the standard system is that rnt (which has the interpretation
of being the natural rate of interest) is now an endogenous variable that
depends on the level of outstanding private debt. In the paper we will show
how this variable is now determined in equilibrium by a system of equations
that depends on the households’level of indebtedness, among other things.
Our deleveraging shock corresponds to a "shock" to the "safe level" of debt,
giving the household an incentive to pay down their debt to a new lower level
that is determined in equilibrium. In this transition period we show that the
natural rate of interest can be temporarily negative.

2Our formulation is closer to one of their suggested extensions building on Curdia and
Woodford (2010), with some important differences outlined in the text.
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The first main conclusion of the paper is that the duration of a negative
natural rate of interest is now endogenous —rather than depending only on
exogenous preference shocks or an implicitly specified "short-run" —and is
dependent on the stance of policy. Under a monetary policy regime that
targets high enough inflation (or employ an aggressive enough fiscal policy)
to avoid the zero bound, for example, the economy will experience a shorter
duration of a negative natural rate of interest than if the policy regime is
insuffi ciently stimulating. The intuition for this is straightforward: In a
recession there is a drop in overall income, hurting borrowers’ability to pay
down their debt, which means that the process of deleveraging will be slower
than if the recession is avoided via aggressive enough monetary and fiscal
policy. Since it is the deleveraging process that drives the reduction in the
natural rate of interest, this affects how long the natural rate of interest stays
below its steady state.
The second key result of the paper is to some extent a corollary of the

first. Endogenous deleveraging will in general amplify the effect of policy at
the zero bound. Why? Policy will now not only dampen the crisis today,
as the previous literature has emphasized, but also shorten its duration by
directly affecting the natural rate of interest. Consider the nominal interest
rate path under a policy that tries to stabilize inflation, and the output gap
assuming either dynamic deleveraging or exogenous preference shocks. We
find that optimal monetary policy under dynamic deleveraging prescribes a
shorter duration at the zero bound than if the crisis was driven by exogenous
preference shocks, precisely because it will have a direct effect on the nat-
ural rate of interest: Optimal policy is powerful enough to "jump start" the
economy and thus lead to a more rapid normalization of the nominal interest
rate than would otherwise have occurred.
Our third result is that we are able to explicitly derive a social welfare

function inside our heterogenous agent model. While the standard New Key-
nesian model involves only output and inflation, the social welfare function in
our model involves an additional term because of the imperfect risk-sharing
of the agents in our model. Relative to the standard objective, we find that
this additional term gives the government even further reason to engage in
countercyclical policy and dampen the effect of the recession on output and
prices.
A fourth result that emerges is that we find that optimal monetary policy

in a liquidity trap under dynamic deleveraging will prescribe excess inflation,
and possibly output above potential, well above the inflation target, even
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during the period in which the zero bound is binding and the natural rate
of interest is negative. This is mostly explained by the added stabilization
objective that our model prescribes for the policymaker, but also to some
(albeit lesser) extent due to the fact that an endogenous natural rate of
interest prescribes even more aggressive policy action than in the standard
model.
Finally, we study the effects of fiscal policy under dynamic deleveraging.

There we find that it can be even more effective than has been found in the
previous literature, since a fiscal expansion speeds up the deleveraging cycle.
Crucially, the effectiveness of policy depends on how it is financed.
This work is organized as follows. Section 2 first describes dynamic

deleveraging in a simple endowment economy to clarify some key assump-
tions. It then presents the general model. Section 3 discusses the log-linear
version of the general model. Section 4 studies debt deleveraging without
taking into account the zero lower bound under a simple inflation-targeting
policy replicating the flexible-price allocation. Section 5 adds to the previous
case the zero lower bound. Section 6 compares inflation-targeting policies
between the standard NK model, where movements of the natural rate of
interest are exogenous, and the deleveraging model of this paper, where the
natural rate of interest is endogenous. Section 7 studies optimal monetary
policy under commitment and compares the result with the standard NK
model. Section 8 investigates fiscal-policy multipliers and finally Section 9
concludes.

2 Model

2.1 Dynamic deleveraging in an endowment economy

We start out by showing a simple example of dynamic deleveraging in an
endowment economy. This is helpful to clarify the role of some key assump-
tions in the general environment we propose in the next subsection. Imagine
a closed-economy endowment model with two agents, a borrower and a saver.
They have the following utility functions

Et

∞∑
T=t

(βj)T−t logCj
t where j = b or s
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in which Cj
t is consumption of agent j and 0 < βj < 1 is the discount factor,

with βs ≥ βb. They make their consumption choices subject to a standard
budget constraint

bjt

1 + rjt
= bjt−1 + Cj

t −
1

2
Y + T jt

where bjt is one-period risk-free real debt of agent j and r
j
t is the associated

interest rate and Y is the endowment that remains constant. We adopt the
notation that bjt−1 is the amount repaid in period t in terms of the con-
sumption good of the debt contracted in period t − 1 (inclusive of interest
payments). Hence the real value in terms of the consumption good of the
debt contracted in period t is bjt/(1 + rjt ). We also adopt the notation that a
positive number for bjt denotes debt, while a negative one an asset. T

j
t is a

lump-sum transfer out of the control of the agent.
Let us define the risk-free real interest rate by 1 + rt. We now consider

the following function for the interest rate faced by each agent j

1 + rjt = 1 + rt if bjt ≤ b̄t (1)

1 + rjt = (1 + rt){1 + φ(bjt − b̄t)} if bjt > b̄t (2)

This relationship says that as long as the debt the agent has contracted
is below some threshold b̄t he can borrow at the risk-free interest rate. If
debt is higher than the threshold, however, the agent faces an interest rate
that is different from the risk-free rate and given by the linear relationship
in equation (2) where φ is a positive parameter. This relationship, shown
in Figure 1, says that if the borrower’s debt level is below b̄t then he faces
the risk-free rate 1 + rt. If he borrows above b̄t, however, he needs to pay
a premium above the risk-free rate given by 1 + φ(bbt − b̄t). Hence as the
borrowing increases, so does the rate the borrower needs to pay. This can
be thought of as a generalization of the strict borrowing-limit in Eggertsson
and Krugman (2012) where bt ≤ b̄t. That constraint is obtained in the limit
as φ → ∞ since in that case the borrower will never exceed the borrowing
limit; while in our case the borrower may choose to do so but at the expenses
of paying some premium over the risk-free rate.
Given the simple structure outlined above an equilibrium in the model is a

collection of stochastic processes {Cb
t , C

s
t , r

b
t , r

s
t , b

b
t} that satisfies the following
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five equations
1

Cs
t

= βs(1 + rst )Et
1

Cs
t+1

(3)

1

Cb
t

= βs(1 + rbt )Et
1

Cb
t+1

(4)

1 + rbt = (1 + rst )(1 + φ(bbt − b̄t)) if bbt ≥ b̄t (5)

1 + rbt = (1 + rst ) if bbt < b̄t

Cs
t + Cb

t = Y (6)

bbt = (1 + rbt )[b
b
t−1 + Cb

t −
1

2
Y ] (7)

where the first two equations are the consumption Euler equations of the
saver and the borrower respectively. The third equation determines the
spread between the rate faced by the borrower and the lender; it follows
directly from (1) and (2). The fourth equation is the resource constraint
and finally the last equation is the budget constraint of the borrower. Some
details on how we arrive at these equations are in the footnote.3

It should be apparent from the equations above that the steady state
of the model is relatively straightforward to derive. In particular we see
from the first two equations that the real interest rate faced by each of the
agents is given by their respective discount factors, i.e., 1 + rs = (βs)−1

and 1 + rb = (βb)−1. This, then, is enough to pin down the steady-state
equilibrium debt given by equation (5) so that

bb = b̄+ φ−1

(
βs

βb
− 1

)
which is shown with bbss in Figure 1. The steady state debt just derived
suggests that the borrower will borrow above the threshold b̄ to an extent
so that the borrowing rate rb equals the borrower’s discount rate. Notice

3The first order conditions are derived via writing up a Lagrangian. Here we make the
simplifying assumption that the borrower takes bbt in the interest-rate premium function
as exogenous (corresponding to aggregate debt in the economy). In the general model we
allow the spread function to depend upon both individual and aggregate debt. We also
make the assumption that the spread between the two interest rates is rebated lump sum
to the saver which is why no lump sum transfer appears in (6). In the general model we
put a little more structure on this by creating notation for banks, and assuming that the
banks are owned by the savers.
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Figure 1: Plot of the function characterizing the cost of borrowing: equations
(1) and (2) when b̄ = b̄high and when b̄ = b̄low with b̄high > b̄low. The initial
steady state is A when b̄ = b̄high. As b̄ moves to b̄low, the equilibrium moves
to B and then to the final steady state C along the shifted line.

the contrast to Eggertsson and Krugman (2012), which can be obtained as
a special case when φ→∞ and the debt limit is binding so that bb = b̄ and
the borrower is at a corner solution.
The key thought experiment we want to consider is the case when the

debt limit b̄ goes from some "high" level to a "low" one, i.e. b̄high → b̄low, an
experiment sometimes referred to as a Minsky moment. This thought experi-
ment is shown in Figure 1. In the previous literature, such as Eggertsson and
Krugman (2012), then by assumption the household pays down their debt
immediately. Here, however, the borrower is no longer at a corner, instead,
he is satisfying the consumption Euler equation (4). In the absence of any
deleveraging, the borrower is faced with a higher borrowing cost than before,
as shown in point B in Figure 1. The higher borrowing cost, however, gives
the borrower the incentive to pay down his debt over time, to deleverage. The
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optimal dynamic path of deleveraging —which is in sharp contrast to the im-
mediate deleveraging in Eggertsson and Krugman (2012) —can be explicitly
derived by solving the dynamic equations (3)-(7), the solution of which we
turn to next. The dynamic deleveraging is what moves the borrower from
point B down to point C in Figure 1 where once again he faces an interest
rate that is equal to the inverse of his discount factor, (βb)−1.
Figure 2 shows the path of each of the endogenous variables for illustra-

tive values of the parameters which will generally take the same form for
a finite φ.4 The deleveraging is accomplished over a period of time, which
is determined optimally by the borrower as seen in the third panel on the
first column, where private debt to output falls from 120% to around 98%.5

The borrower does so by cutting consumption and gradually paying down
his debt. What induces the borrower to deleverage is the rise in the interest
rate he faces given by rbt as shown in the second panel on the first column of
Figure 2. Meanwhile, to make up for this drop in spending the saver needs
to correspondingly increase his own spending (since all output is consumed).
For this to happen we observe that while the borrower’s interest rate rises,
the saver’s interest rate drops in order to induce the saver to make up for the
decline in spending by the borrower. The interest rate faced by the saver may
even reach negative levels for a large enough shock to b̄. Since the saver’s rate
is the risk-free short-term interest rate, which will correspond to the nominal
interest rate set by the central bank in a more general setting, this will have
major implications for monetary policy as we will soon see.
A few comments are now appropriate. First, observe that since the speed

of the deleveraging —as determined by how long the agent takes to reach their
new level of steady-state debt —is optimally determined in this economy, it
is perhaps not hard to imagine for the reader at this point that this speed
may be affected by macroeconomic policy, an insight we will soon confirm
once we introduce endogenous production and endogenous macroeconomic
policy. Crucially this implies that the duration of negative real interest rate
for a riskless asset will be endogenous, and this will be critical to many of our
results. Second, note that there is nothing in our experiment that depends
on the gap between βb and βs to be large, which is vividly shown in Figure

4Illustrative parameters assumed: φ = 0.4, Y = 1/4, βb = 0.9033, βs = .09756,
b̄high = 1, b̄low = 0.78. The model is log-linearized around the steady state to generate
the figures.

5It should be noted that the shock b̄ with respect to output, b̄gdp, moves from 100% to
78%.
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Figure 2: Responses following a deleveraging shock, b̄moves from b̄high to b̄low,
in the endowment-economy model. Variables are: consumption of borrowers
(Cb), consumption of savers (Cs), real interest rate on borrowing (rb), real
interest rate on saving (rs), debt of borrowers with respect to output (bgdp),
the risk-free borrowing threshold with respect to output (b̄gdp). Cb, Cs, are
in percentage deviation with respect to the initial steady state; rb, rs, bgdp

and b̄gdp are in percent and at annual rates.
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1. Even if this gap is small, as long as b̄high → b̄low, then a spread will open
to exactly the same extent and the borrower will deleverage. In other words,
the dynamics of the deleveraging are independent of the difference between
βb and βs, only the steady state depends on this difference. In fact, even
if βb → βs exactly the same thought experiment can be done as we have
shown above. The reason this observation is important is that it is very
convenient to assume that βb → βs for some (thought not all) aspects of
our analysis. In particular, this assumption means that we can derive social
welfare in a more tractable way as we will soon see. Accordingly, this will
be the approach we will take in the next section. Note that in the case in
which βb → βs borrowing and lending is no longer motivated by differences
in discount factors. What defines borrowers and lenders in this case is the
initial asset distribution, whereby some agents are born with debt, and others
with assets.6

We will now extend this simple example, and again do a deleveraging
experiment, into a more general setting. The main new elements of this en-
vironment relative to the simple example (apart from more general utility
functions, monopolistic competition, general function for spreads and some
banking microfoundations, etc) are that we will introduce endogenous pro-
duction and explicitly model monetary and fiscal policy. Policy will have
important effects because we assume that prices are set in advance in a stag-
gered way.
Importantly we will see that the deleveraging shock of the type we have

already seen will lead to major complications because of the zero bound on
the short-term nominal interest rate. With a series of simplifying assump-
tions we will show that a model, such as the one shown in the example above,
will naturally embed the standard prototype New Keynesian model. A key
difference will be that the natural rate of interest —which is the very source
of the zero bound problem —will now be endogenous and a function of the
deleveraging process. It will thus be affected by policy. An important aspect
of the model is that we are able to explicitly derive social welfare —which
allows us to do optimal policy —a feature of the framework facilitated by the
assumption that βs → βb as described above.

6In our example we can assume that the debtors have the debt bb = b̄high. Observe
that while there are initial conditions for debt consistent with lower values of the debt, it
can be no higher than this value in steady state. Taking this initial value as given, then,
and assuming a debt deleveraging shock, the new steady state will be uniquely defined as
bb = b̄low, precisely as in our exercise above.
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2.2 General Environment

Imagine now a closed economy lived in by a continuum of agents on a unitary
interval. People are grouped into "savers", denoted by the subscript s, and
"borrowers", denoted by the subscript b. There is a mass of measure χ of
borrowers and 1− χ of savers. Utility of a generic agent is given by

Et

∞∑
T=t

(βj)T−t
[
U(Cj

T )− V (LjT )
]
where j = s or b (8)

in which Et denotes the standard expectation operator; β
j is the intertempo-

ral discount factor in preferences, with 0 < βj < 1, and C is a consumption
bundle

C ≡
[∫ 1

0

C(i)
θ−1
θ di

] θ
θ−1

where C(i) is the consumption of a generic good i produced in the economy.
There is a continuum of goods produced on the interval [0, 1]; θ is the in-
tratemporal elasticity of substitution between goods with θ > 1; Lj is hours
worked.
Agents are subject to the following budget constraint

Bj
t

1 + ijt
= Bj

t−1 + PtC
j
t −W j

t L
j
t −Ψj

t − Γjt + T jt (9)

where Bj, if positive, is nominal debt and conversely asset if negative. Pt
is the price index associated with the consumption bundle C, W j denotes
wage specific to labor of quality j; Ψj are profits from operating firms which
produce goods while Γjt are profits from financial intermediation; T jt are
lump-sum taxes.
The nominal interest rate ijt is specific to the agent and we now specify a

more general function for their interest-rate cost than in our simple example.
Savers, which in equilibrium hold assets, will once again get the risk-free
rate which we now specify in nominal term it. Instead borrowers, which in
equilibrium are going to have debt, face a borrowing cost7

1 + ijt = (1 + it)φ̃

(
bjt
b̄t

;
bt
b̄t

)
(10)

7This specification is a bit more general than the existing literature in that we allow
the spread to depend both on individual debt and aggregate debt. This is important for
the interpretation of the shocks in the model.
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which is proportional to the saving rate through a premium captured by
the function φ̃(·, ·). The borrowing premium depends on agent j’s real debt,
defined as bjt ≡ Bj

t /Pt, in reference to a level b̄t which represents the maximum
amount of real debt that can be considered risk-free at a certain point in time.
The premium is also a function of the aggregate debt (per borrowers) given

by bt =
(∫

χ
bjtdj

)
/χ again in reference with the same level b̄t. When the

individual and aggregate debt levels are equal to b̄t, borrowing and saving
rates coincide, this is similar to the inflection point in Figure 1. It is required
that φ̃(1, 1) = 1. Furthermore, we assume that it is always the case that
φ̃(·, ·) ≥ 1. The borrowing premium is also non-decreasing with the increasing
borrowing of agent j, i.e. we assume that the derivative of the function with
respect to the first argument is non-negative, φ̃bj(·, ·) ≥ 0. Moreover, at the
risk-free level b̄t, the marginal cost of increasing the individual borrowing
capacity is zero, i.e. φ̃bj(1, ·) = 0, which is a sort of optimality condition at
the individual level when borrowing is at the risk—free threshold. Finally,
the borrowing premium is also non-decreasing with the increasing aggregate
borrowing, meaning that the derivative of the function with respect to the
second argument is non-negative φ̃b(·, ·) ≥ 0. 8

Because borrowers pay a higher interest rate than savers receive on their
debt, there is profit from borrowing and lending. As in the simple example we
assume this profit is rebated lump-sum to the savers. Let us put a little more
structure on this by introducing some notation for financial intermediation.
A positive spread implies each period that aggregate profits of intermediation
are given by

Γt =

∫
χ

(
1

1 + it
− 1

1 + ijt

)
bjt ≥ 0.

The activity of intermediaries, or bank, is very simple in this model. They
raise liquidity from the savers at the risk-free nominal interest rate it to lend
to borrowers at the higher interest rate ijt . The cost function (10) is then
a technological constraint on the financial intermediation of the banks. We
assume that the profits of banks are rebated only to the savers who own
them.9

8We further assume that φ̃b(1, 1) > 0 and φ̃bi,b(1, 1) + φ̃bi,bi(1, 1) > 0 where φ̃bi,b(·, ·)
and φ̃bi,bi(·, ·) are cross derivatives.

9The quantitative, but not qualitative, results can change with alternative assumptions
as explained later. It should be noted that Γjt in (9) are per-capita profits while Γt are
aggregate profits at time t.
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Households choose consumption and working hours to maximize utility
(8) under the flow budget constraint (9) and an appropriate borrowing-limit
condition. As outlined in Section 2.1 we now make the simplifying assump-
tion that βs → βb = β, in which case borrowing and lending are still well
defined but determined by initial conditions.
The Euler’s equation of savers implies

Uc(C
s
t ) = β(1 + it)Et

{
Uc(C

s
t+1)

Pt
Pt+1

}
. (11)

Borrowers are not price takers with respect to the borrowing cost since they
understand that it will be affected by their individual debt decision. For each
individual j belonging to the class of borrowers the following Euler equation
can be derived:

Uc(C
j
t ) = β

(1 + ijt)

1− ε̃
(
bjt
b̄t

; bt
b̄t

)Et{Uc(Cj
t+1)

Pt
Pt+1

}
, (12)

where the function ε̃ (·; ·) captures the elasticity of the premium with respect
to individual real debt and is defined by

ε̃

(
bjt
b̄t

;
bt
b̄t

)
≡ bjt
b̄t

φ̃bj
(
bjt
b̄t

; bt
b̄t

)
φ̃
(
bjt
b̄t

; bt
b̄t

) .

In equilibrium, borrowers are identical and choose the same level of debt
bjt = bt. The Euler equation (12) can be simplified to

Uc(C
b
t ) = β

(1 + ibt)

1− ε
(
bt
b̄t

)Et{Uc(Cb
t+1)

Pt
Pt+1

}
, (13)

where ε
(
bt/b̄t

)
≡ ε̃

(
bt/b̄t; bt/b̄t

)
. In the same way, the relationship between

borrowing and saving rates can be written as

(1 + ibt) = (1 + it) · φ
(
bt
b̄t

)
where (1 + ijt) = (1 + ibt) for each j belonging to the mass of borrowers and
where we have further defined φ(bt/b̄t) ≡ φ̃(bt/b̄t, bt/b̄t).
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The optimal supply of labor implies that the marginal rate of substitution
between labor and consumption is equated to the real wage

Vl(L
j
t)

Uc(C
j
t )

=
W j
t

Pt
. (14)

for each agent j.
On the production side, we assume that there is a continuum of firms

of measure one, each producing one of the goods in the economy. The pro-
duction function is linear in labor, Y (i) = L(i). Here we make another key
simplifying assumption.10 We assume that production is a Cobb-Douglas
indexes of the two types of labor as L(i) = (Ls(i))1−χ(Lb(i))χ. Given this
technology, this implies that labor compensation for each type of worker is
equal to total compensation WjLj = WL where the aggregate wage index
is appropriately defined by W = (W s)1−χ(W b)χ. This structure will greatly
facilitate the aggregation of the model.
Given preferences, each firm faces a demand of the form Y (i) = (P (i)/P )−θY

where aggregate output is

Yt = (1− χ)Cs
t + χCb

t . (15)

Firms are subject to price rigidities as in the Calvo model. A fraction of
measure (1 − α) of firms with 0 < α < 1 is allowed to change its price
which is going to apply at a generic future period T with a probability αT−t.
Furthermore this price is going to be indexed to the inflation target over
the period given by ΠT−t. Adjusting firms choose prices to maximize the
presented discounted value of the profits under the circumstances that the
prices chosen, appropriately indexed to the inflation target, will remain in
place

Et

∞∑
T=t

(αβ)T−tλT

[
(1 + τ)ΠT−tPt(i)

PT
YT (i)− WT

PT
YT (i)

]
where λt is a linear combination of the marginal utilities of real income of
the two agents, λt = [(1 − χ)Uc(C

s
t ) + χUc(C

b
t )], which is used to evaluate

profits, since these are risk-shared across agents. Moreover τ is a constant

10This assumption makes our model a bit simpler than, for example, Curdia and Wood-
ford (2011) and Eggertsson and Krugman (2012). In the latter work there is a labor supply
effect of deleveraging which this assumption allows us to abstract from.
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subsidy on firms’revenues. The first-order condition of the optimal pricing
problem implies

P ∗t
Pt

= µ

Et

{∑∞
T=t(αβ)T−tλT

(
PT
Pt

1
ΠT−t

)θ
WT

PT
YT

}
Et

{∑∞
T=t(αβ)T−tλT

(
PT
Pt

1
ΠT−t

)θ−1

YT

} (16)

where µ ≡ θ/[(θ − 1)(1 + τ)] and in equilibrium Pt(i) = P ∗t since all firms
adjusting their prices fix it at the same price. The remaining fraction α of
firms, not chosen to adjust their prices, indexes their previously adjusted
prices to the inflation target Π̄. Calvo’s model further implies the following
law of motion for the general price index

P 1−θ
t = (1− α)P ∗1−θt + αP 1−θ

t−1 Π1−θ. (17)

We assume that utility from consumption is exponential u(Cj) = 1−exp(−zCj)
for some positive parameter z while disutility of working is isoelastic v(Lj) =
(Lj)1+η/(1 + η). These are convenient assumptions for aggregation and
tractability purposes. We can see this by taking a weighted average of (14),
for j = s, b, with weights 1− χ and χ, to obtain

Lηt
z exp(−zYt)

=
Wt

Pt
, (18)

where aggregate output and labor are related through Yt∆t = Lt and ∆t is
an index of price dispersion defined as

∆t ≡
1∫

0

(
Pt(i)

Pt

)−θ
di,

which follows the law of motion

∆t = α

(
Πt

Π

)θ
∆t−1 + (1− α)

(
1− α

(
Πt
Π

)θ−1

1− α

) θ
θ−1

. (19)

To complete the characterization of the model we specify fiscal policy and
assume that

T jt = τPtYt (20)

for each agent j implying the government budget constraint

(1− χ)T st + χT bt = τPtYt. (21)

The model is closed with the specification of monetary policy.
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2.3 Equilibrium conditions: A summary

Here, we describe the equilibrium conditions of our model in a more synthetic
way. On the demand side, Euler equations of savers and borrowers are

Uc(C
s
t ) = β(1 + it)Et

{
Uc(C

s
t+1)

1

Πt+1

}
, (22)

Uc(C
b
t ) = β

(1 + ibt)

1− ε
(
bt
b̄t

)Et{Uc(Cb
t+1)

1

Πt+1

}
, (23)

where Πt ≡ Pt/Pt−1.
Borrowing and saving rates are related through

(1 + ibt) = (1 + it) · φ
(
bt
b̄t

)
. (24)

The dynamic of borrowing is described by the flow budget constraint of
the borrowers

bt
1 + ibt

=
bt−1

Πt

+ Cb
t − Yt (25)

which follows from (9) where we have substituted in (20) and firms’profits,
given by Ψj

t = (1 + τ)PtYt −WtLt noting that WtLt = W j
t L

j
t . Moreover, we

have set Γjt = 0 since intermediaries are held only by savers.11

Goods market equilibrium connects borrowers’and savers’consumption
to real output

Yt = (1− χ)Cs
t + χCb

t . (26)

The supply side of the model is characterized by the standard New-Keynesian
aggregate-supply equation, written in a recursive form, obtained by combin-
ing equations (16), (17), (18) together with Yt = ∆tLt(

1− α
(

Πt
Π

)θ−1

1− α

) 1
θ−1

=
Ft
Kt

, (27)

Ft = λtYt + αβEt

{
Ft+1

(
Πt+1

Π

)θ−1
}
, (28)

11It should be noted that if profits of intermediation were also rebated to the borrowers,
the relevant interest rate in (25) would be an appropriately weighted average of borrowing
and saving rates.
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Kt = µ
λt∆

η
tY

1+η
t

z exp(−zYt)
+ αβEt

{
Kt+1

(
Πt+1

Π

)θ}
, (29)

where
λt = z[(1− χ) exp(−zCs

t ) + χ exp(−zCb
t )], (30)

and

∆t = α

(
Πt

Π

)θ
∆t−1 + (1− α)

(
1− α

(
Πt
Π

)θ−1

1− α

) θ
θ−1

. (31)

The above set of 10 equations (22) to (31) determines the equilibrium
allocation for the following stochastic processes of 11 endogenous variables{
Cb
t , C

s
t , it, i

b
t , bt, Yt,Πt, Ft, Kt, λt,∆t}∞t=t0 given initial condition on bt0−1 and

∆t0−1 together with a policy rule and for given exogenous sequence
{
b̄t
}∞
t=t0

considering the zero lower bound on the nominal interest rate it ≥ 0.

2.4 Steady State

Of particular importance is the steady state implied by the above equilib-
rium conditions, since we are approximating our model through log-linear
approximations. We consider an initial steady state in which b̄t = b̄high and
monetary policy sets inflation rate to the target Πt = Π. It clearly follows
from (31) that ∆t = 1. In this steady state, the Euler equations of the savers,
(22), and borrowers, (23), imply, respectively, that

(1 + i) = β−1Π, (32)

and

(1 + ib) = β−1Π

(
1− ε

(
b

b̄high

))
(33)

while the borrowing premium is given by

(1 + ib)

(1 + i)
= φ

(
b

b̄high

)
, (34)

following equation (24).
Combining (32) to (34) we get

φ
(

b
b̄high

)
1− ε

(
b

b̄high

) = 1
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which implicitly defines the level of debt b, for each borrower, with respect
to the risk-free threshold b̄high. In particular, under minor restrictions on the
functions φ(·) and ε(·), b should be equal to b̄high implying that φ(·) = 1 so
that borrowing and saving rates are equal in the steady state, ib = i, while
ε(·) = 0. In terms of the original function describing the borrowing premium,
as shown in (10), these results are consistent with the assumptions already
made that φ̃(1, 1) = 1 and φ̃bj(1, 1) = 0, where the latter captures the fact
that for each single borrower a change in their debt position with respect to
the risk-free threshold has zero marginal effect on the premium.
Having determined the steady-state level of debt, we obtain the consump-

tion of each borrower from (25)

Cb = Y − (1− β)

Π
b̄high,

while from the aggregate resource constraint (26), we obtain consumption of
savers

Cs = Y +
(1− β)

Π

χ

1− χb̄
high.

Given the policy rule Πt = Π, the aggregate-supply block of the model,
characterized by equations (27)—(29), implies that steady-state output is de-
termined by

Y η

z exp(−zY )
= 1,

where we have also assumed a subsidy on firms’revenues equal to τ = 1/(θ−
1) such that µ = 1.
An important implication of our preference specification is that the steady-

state level of output is independent of the distribution of wealth, and there-
fore of the debt deleveraging process. This is also the case for inflation and
interest rates. In particular, we are interested in studying the effects of a
permanent reduction in b̄ from b̄high to b̄low. Following this shock, output, in-
flation and interest rates will converge back to the initial steady state. Instead
debt is going to reach the lower level b̄low, while accordingly consumption of
savers and borrowers converge to new levels defined by

C̄b = Y − (1− β)

Π
b̄low,

C̄s = Y +
(1− β)

Π

χ

1− χb̄
low.
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3 A simple New-Keynesian model with het-
erogenous agents

Once we take a log-linear approximation of the equilibrium conditions around
the above-defined steady state, our model takes a simple form and can rep-
resent a stylized version of New-Keynesian models with heterogenous agents
and financial frictions.12

The Euler equations of savers (22) can be written as

EtĈ
s
t+1 − Ĉs

t = σ[̂ıt − Et(πt+1 − π)] (35)

where we have defined ı̂t ≡ ln(1 + it)/(1 + i), πt ≡ ln Πt, π ≡ ln Π and
σ ≡ 1/(zY ). In particular, we are defining Ĉj

t ≡ (Cj
t − Cj)/Y for each

j = s, b.
A first-order approximation of the Euler equation of the borrowers (23)

implies
EtĈ

b
t+1 − Ĉb

t = σ
[
ı̂bt + λ

(
b̂t − d̂t

)
− Et(πt+1 − π)

]
(36)

where we have further defined ı̂bt ≡ ln(1 + ibt)/(1 + i), b̂t ≡ (bt − b̄high)/b̄high,
d̂t ≡ (b̄t − b̄high)/b̄high while λ ≡ εb (1) > 0.13

The spread (24) between borrowing and saving rates can be approximated
as

ı̂bt = ı̂t + ϕ(b̂t − d̂t) (37)

where ϕ ≡ φb (1) > 0 is the steady-state elasticity of the premium φ with
respect to real debt.14

A first-order approximation of the budget constraint of the borrowers (25)
delivers

Ĉb
t =

b̃

(1 + i)
(b̂t − ı̂bt)−

b̃

β(1 + i)
(b̂t−1 − (πt − π)) + Ŷt, (38)

where Ŷt ≡ (Yt − Y )/Y and b̃ ≡ b̄high/Y .

12Curdia and Woodford (2010, 2011) are examples of similar models through alternative
modelling assumptions.
13Note that the assumption already made that φ̃bi,b(1, 1) + φ̃bi,bi(1, 1) > 0 implies that

λ > 0.
14Note that φb (1) = φ̃bj (1, 1) + φ̃b (1, 1) . Since φ̃bj (1, 1) = 0, the assumption already

made that φ̃b (1, 1) > 0 is needed to obtain ϕ > 0.
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Goods market equilibrium (26) implies

Ŷt = χĈb
t + (1− χ)Ĉs

t . (39)

Equations (35), (36) together with (37), (38) and (39) constitute the aggre-
gate demand block of the model.
In a log-linear approximation, the supply block can be derived by ap-

proximating (27)—(29), noting that ∆t is a second-order term, to obtain the
standard New-Keynesian Phillips curve

πt − π = κŶt + βEt(πt+1 − π) (40)

where we have defined κ ≡ (1− α)(1− αβ)(η + σ−1)/α.15

Equations (35), (36) together with (37), (38), (39) and (40) determine the

equilibrium allocation for
{
πt, Ĉ

b
t , Ĉ

s
t , Ŷt, ı̂

b
t , ı̂t, b̂t

}∞
t=t0

given the specification

of monetary policy and given exogenous process d̂t and initial condition b̂t0−1.

3.1 A parallel with the textbook New-Keynesian model

Before going further it is useful to now explore the interpretation of the results
we have already obtained in the linearized model. In particular we can now
show that the model we have just sketched out generalizes the standard New
Keynesian model common in economic textbooks. To see this, let us combine
equations (35), (36), (37) and (39) to yield

Ŷt = EtŶt+1 − σ(̂ıt − Et(πt+1 − π)− rnt ) (41)

where rnt is now given by

rnt ≡ −χ(λ+ ϕ)
(
b̂t − d̂t

)
. (42)

Meanwhile the AS equation is exactly the same as in the standard model,
as we see in (40). In the standard model then rnt is exogenous so that given a
policy rule for the nominal interest rate one can characterize an equilibrium in
the model. Here we see, however, that rnt is endogenously determined. Hence,

15Given the preferences’specification assumed, the way wealth is distributed across the
two types of agents does not enter directly into the log-linear version of the AS equation,
as instead in Curdia and Woodford (2010).
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even if demand is still determined by the real interest rate and expected future
income, the level of private indebtedness will now shift this standard demand
relationship. In particular if the real value of private debt, b̂t, is above the
"target" value d̂t then private debt is too high, triggering a negative shock to
the natural rate of interest, i.e., a negative shock to demand. Equivalently
if b̂t is below d̂t then there is extra room for the indebted agents to spend,
which acts as a positive demand shock.
Observe, however, that although d̂t is exogenous in the model, b̂t is en-

dogenously determined. To solve for this variable, however, we need to solve
the entire model using the set of equations summarized in the last section.

4 Dynamic deleveraging when there are no
other frictions

We now consider the effect of a deleveraging shock in the model. Before
moving onto analyzing the full model that incorporates the zero bound it is
worth considering how the model behaves in its absence when the central
bank can successfully target inflation. Here we assume that the central bank
will set its interest rate at all time so as to achieve a 2 percent inflation target
π around which our model was linearized (and the firms index their prices
according to).
We parameterize the model as shown in Table 1

Table 1: Calibration

β = 0.9938 σ = 0.5 ϕ = 0.144 λ = 0.1728 χ = 0.4

η = 1 κ = 0.02 b̄high = 6.2431 b̄low = 5.0985 b̃ = 12

In particular, we set initial aggregate debt over GDP (at annual rates),
defined as bgdp, to 120%, i.e. bgdp =(χb̄high)/(4y) = 1.2 which implies setting
b̃ = b̄high/y = (4× 1.2)/χ = 12.
The following process for d̂t is assumed:

d̂t+1 = d̂t + εt+1
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We are analyzing the transition between two steady states where at time 1 b̄
moves from b̄high to b̄low permanently in an unexpected way. The idea is that
this shock corresponds to a deleveraging cycle, in the sense that borrowing at
the level b̄high turns out (ex post and unanticipatedly) not to be supported
by fundamentals. Thus there is a Minsky moment in which b̄high → b̄low

triggering the dynamics we will now see. In the context of the process above,
this simply corresponds to one time shock ε1 < 0.16 In particular, given the
above parametrization, private debt to output moves from 120% to 98% after
deleveraging in line with what has been experienced by the private sector of
the U.S. economy in the aftermath of the recent financial crisis.
Figure 3 shows the dynamics in the case the central bank successfully tar-

gets two percent inflation, and the zero bound is not imposed. Equivalently
we can interpret this as the equilibrium allocation if all prices were flexible.
This experiment is helpful to clarify the main forces in the model in response
to a deleveraging shocks if other frictions play no role.
In response to a deleveraging shock we see that first there is an increase in

the spread between the borrowing and the saving rate, ibt and it respectively,
that is triggered by the exogenous shock b̄t. In response to this the borrowers
find it optimal to start paying down their debt — deleverage — so we see
a decline in their outstanding debt bt in Figure 4. How do the borrowers
deleverage? In equilibrium they do so by doing two things: By cutting
down their consumption, Cb

t , and by increasing their hours worked, L
b
t . Note,

however, that this is perfectly offset by a drop in hours by the savers and
an increase in their consumption. It is clear why the borrowers decide to
deleverage —they are facing higher borrowing costs. But why do the savers
increase their consumption and cut back their hours? The reason is that the
risk-free interest rate, ist , declines, which means that consumption today is
now relatively less expensive than it was before. This price change is a key
to understand the problem we shall see once we add more frictions to the
model, because if there is a bound on how much this interest rate can decline
(due to the zero bound) that can create serious problems for macroeconomic
management. We can also see that the saver finds it in his interest to cut
back hours. The reason is that the higher consumption of the saver reduces
his marginal utility of consumption, in turn reducing his incentive to supply
work.17

16Recall the definition d̂t ≡ (b̄t − b̄high)/b̄high.
17Real wages of savers increase following the shock, and offset in part the wealth effect
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Figure 3: Responses following a deleveraging shock when the central bank
can target constant inflation (or prices are flexible) without taking in con-
sideration the zero-lower bound (line “IT without zlb”). Variables are: con-
sumption of borrowers (Cb), consumption of savers (Cs), hours worked of
borrowers (Lb), hours worked of savers (Ls), nominal interest rate on borrow-
ing (ib), nominal interest rate on saving (i). Cb, Cs, Lb, Ls are in percentage
deviation with respect to the steady state; ib and i are in percent and at
annual rates.
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Figure 4: Responses following a deleveraging shock when the central bank
can target constant inflation (or prices are flexible) without taking in consid-
eration the zero-lower bound (line “IT without zlb”). Variables are: output
(Y ), inflation rate (π), natural rate of interest defined as in (42) (rn), aggre-
gate debt to GDP (bgdp). Y is in percentage deviation with respect to the
steady state; π, rn and bgdp are in percent and at annual rates.
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Under perfectly flexible prices (or a central bank that can target a con-
stant inflation target regardless of the zero bound) the deleveraging shock
has no effect on either output or inflation as we see in Figure 4. As we al-
ready noted, this is because the real rate adjusts so as to make the savers
increase their spending to make up for the drop in spending by the borrowers,
while marginal utility of consumption adjusts to make the savers cut back
on their labor hours to offset the increase in labor hours by the borrowers.
In equilibrium, output is unchanged. Figure 4 shows by how much the real
interest rate needs to drop for this to happen, we see that it drops by about
6 percentage points.
The real interest rates that are consistent with this equilibrium, however,

are negative. For a central bank that targets inflation at 2 percent (as we
assume here) this means that if the natural rate of interest is below -2% then
the zero bound becomes binding and the equilibrium adjustment we have
just explored is not feasible. This is the case we now turn to analyze.

5 Dynamic deleveraging at the zero bound

The key to the adjustment mechanism in response to a deleveraging shock,
outlined in the last section, was that, in response to cutbacks in spending
by the borrower, the risk-free interest rate declines, which induced the savers
to make up for this drop in spending. As revealed in Figure 4, however,
this adjustment implies a negative interest rate faced by the saver, which we
assume is the rate controlled by the central bank. At two percent inflation
target, the real saving rate can be at -2 percent, even if the nominal rate
is zero. It can’t go any further than that, however, which is needed in our
example, as shown in Figure 4. Hence the zero bound is violated.
Figure 5 shows the corresponding output drop and deflation that is trig-

gered by the fact that the central bank cannot accommodate the shock. As
we can see the dynamic deleveraging story gives a relatively natural way to
thinking about this scenario, although the green line is quite similar to what
has been observed in comparative examples in the New Keynesian model
with exogenous preference shock.
There is a new element of dynamic deleveraging, however, which is most

clear in Figure 5. Because the zero bound is now binding, this reduces output

on their labor supply. Without the increase in real wages, labor supply would fall twice
as low.
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Figure 5: Responses following a deleveraging shock if the central bank can
target constant inflation by taking in consideration (line “IT”) and without
taking in consideration (line “IT without zlb”) the zero-lower bound. Vari-
ables are: output (Y ), inflation rate (π), nominal interest rate on savings (i),
natural rate of interest defined as in (42) (rn). Y is in percentage deviation
with respect to the steady state; π, rn, i and are in percent and at annual
rates.
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and thus the income of the borrowers. This, in turn, implies a slowdown in
the pace of deleveraging. A simple way of seeing this is to compute the
statistic (42) that maps into the natural rate of interest of the standard New
Keynesian model. The key point is that this process is now endogenous
and, as we can see in Figure 5, the crisis means that it recovers more slowly
(green line) than if policy had been able to accommodate it fully. What
this means is that endogenous deleveraging increases the persistence of the
crisis by creating a feedback between falling in income with a slowdown in
deleveraging.
Another way to see this is to conduce a slightly different thought experi-

ment in comparing the standard New-Keynesian model to the current model,
an experiment we now turn to.

6 Zero inflation target with and without en-
dogenous deleveraging

Consider the following thought experiment: Let us extract the real interest
rate —or the natural rate of interest —from the model of Section 4. This is
the natural rate of interest in our model in the case that monetary policy is
able to target inflation at 2 percent when we ignore the zero bound. Putting
it differently, we can directly back this variable out of equation (42) and this
variable is what is shown in Figure 4.
If we treat this sequence of numbers as an exogenous variable into the

standard NK model described in Section 3.1 and ignore the zero bound we
obtain exactly the same solution as before, namely no output gap and infla-
tion at target. But we can now also impose the zero bound in that model too,
and compare with our previous solution of Section 5, and ask what happens.
In the standard NK model, we are keeping the natural rate of interest as
purely exogenous and it follows the path shown in Figure 4. By comparing
the two outcomes we are then seeing what making the natural rate of inter-
est endogenous does to our solution. That is, we can infer to what extent
it matters that in our new model the drop in output leads to an endoge-
nous propagation by making it harder for the borrowers to deleverage, thus
delaying the recovery of the natural rate of interest to its steady state and
prolonging the crisis.
Figure 6 shows the evolution of output, inflation, the natural interest rate
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Figure 6: Comparison between the responses to a deleveraging shock in the
deleveraging model, under inflation targeting and considering the zero-lower
bound (line “IT”), with those of the benchmark New-Keynesian model of
Section 3.1, under inflation targeting and considering the zero-lower bound
(line “IT in NK”). (The responses of the two models coincide under inflation
targeting without considering the zero-lower bound). Variables are: output
(Y ), inflation rate (π), nominal interest rate on savings (i), natural rate of
interest defined as in (42) (rn). Y is in percentage deviation with respect to
the steady state; π, i and rn are in percent and at annual rates.
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and the nominal interest rate in the standard NK model (orange dashed line)
and compares it to the dynamic deleveraging model (green line) where we
have constructed the shocks as described above. We parameterize the NK
model exactly like our current one, using the mapping shown in Section 3.1.
We see that with endogenous deleveraging both the effects on output and
inflation are bigger than in the standard case (and note that in the absence
of the zero bound each of the variables would have behaved exactly the same).
The reason is that under dynamic deleveraging then the output slacks lower
the natural rate of interest further, and makes it more persistent, leading to
the zero bound being even more binding. Since aggregate demand depends
on the current and expected future nominal interest rate, expected inflation
and expected output, this feeds into lower demand today, thus lower output
and inflation and so on. We see that quantitatively this effect is quite large.
Hence we conclude that adding dynamic deleveraging can have large im-

pacts on the actual dynamics at the zero bound, both in terms of the per-
sistence of the crisis (for a given shock as measured by the natural rate of
interest) and its impact. But what is the implication of this for optimal
monetary policy? That is the issue we now analyze.

7 Optimal policy under dynamic deleverag-
ing

To consider optimal monetary policy, we first need to study how social welfare
looks in our model. We consider a benevolent policymaker maximizing the
utility of the households in the economy

Wt = Et

{ ∞∑
t=t0

βT−t
[
χ̃ (U(Cs

t )− V (Lst)) + (1− χ̃)
(
U(Cb

t )− V (Lbt)
)]}

(43)

for a generic weight χ̃ ∈ (0, 1). In particular, we choose this weight in a
way that the final steady state is effi cient. This means that our deleveraging
experiment brings the economy from an ineffi cient distribution of wealth to
an effi cient one. We consider a second-order approximation of the above
welfare function around this effi cient steady state. Recall that the effi cient
steady-state level of output does not depend on the weight χ̃, while the
steady-state levels of consumption for each agent are instead a function of
the distribution of wealth and therefore depend on χ̃. The effi cient steady
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state is implicitly defined by the first-order conditions of the optimization
problem implied by the maximization of (43) under the resource constraint

Yt = (Lst)
χ(Lbt)

1−χ = χCs
t + (1− χ)Cb

t . (44)

In the Appendix, we show that the second-order approximation of (43) is
equivalent to the following quadratic loss function

Lt0 =
1

2
Et

{ ∞∑
t=t0

βt−t0
[
Ŷ 2
t + χ(1− χ)λc(C̃

b
t − C̃s

t )
2 + λπ(πt − π)2

]}
. (45)

The benevolent policymaker is concerned about the deviations of output
and inflation from their respective steady states as it is standard in the
literature. However, there is an additional and new term in the loss function
capturing the deviations of consumption of the borrowers and savers from
their respective effi cient steady state. We have defined C̃j

t ≡ (Cj
t − C̄j)/Y

for each j where C̄j is indeed the effi cient steady-state level.
We can also write these latter terms with respect to the initial steady

state obtaining equivalently

Lt0 =
1

2
Et

{ ∞∑
t=t0

βt−t0
[
Ŷ 2
t + χ(1− χ)λc(Ĉ

b
t − Ĉs

t − cR)2 + λπ(πt − π)2
]}
(46)

where cR captures the relative difference between the initial and final steady-
state consumption of borrowers and savers defined as cR ≡ [(Cb−C̄b)−(Cs−
C̄s)]/Y .
In our model, the AS equation (40) shows that there is no trade-off be-

tween stabilizing output and inflation since there are no cost-push shocks
or other features which would otherwise create this trade-off. However, the
above loss function presents an additional term which captures the costs of
imperfect risk-sharing. These costs are zero when the consumption of each
agent is at its effi cient steady state. However, the initial debt distribution is
not effi cient and therefore risk-sharing is imperfect in the initial steady state.
The deleveraging shock, which we are considering, brings the economy from
an ineffi cient debt distribution to an effi cient one.
In what follows, we are going to analyze which monetary policy allows

to achieve a better adjustment according to the loss function (45). Clearly,
the policymaker would like to keep inflation and output on target and at
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Figure 7: Responses following a deleveraging shock under optimal monetary
policy with commitment (line “Optimal Policy”) in comparison to inflation-
targeting policy (line “IT”) taking in consideration the zero-lower bound.
Variables are: consumption of borrowers (Cb), consumption of savers (Cs),
hours worked of borrowers (Lb), hours worked of savers (Ls), nominal interest
rate on borrowing (ib), nominal interest rate on saving (i). Cb, Cs, Lb, Ls

are in percentage deviation with respect to the steady state; ib and i are in
percent and at annual rates.
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Figure 8: Responses following a deleveraging shock under optimal monetary
policy with commitment (line “Optimal Policy”) in comparison to inflation-
targeting policy (line “IT”) taking in consideration the zero-lower bound.
Variables are: output (Y ), inflation rate (π), natural rate of interest defined
as in (42) (rn), aggregate debt to GDP (bgdp). Y is in percentage deviation
with respect to the steady state; π, rn and bgdp are in percent and at annual
rates.
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the same time achieve immediately the effi cient levels of consumption for
the two agents. However, the three objectives can only be simultaneously
reached in the long run. As shown in Section 4 and in particular in Figure 3,
a deleveraging shock under an inflation-targeting policy produces short-run
divergences between the consumption of borrowers and savers which are in
contrast with the objective in (45), even without taking into account the
zero-lower bound. And adding the zero-lower bound makes things worse
since output also drops as shown in Section 5 and Figure 5.
Optimal policy under commitment minimizes the loss function (45) by

choosing the sequences
{
πt, Ĉ

b
t , Ĉ

s
t , Ŷt, ı̂

b
t , ı̂t, b̂t

}∞
t=t0
under the constraints (35),

(36),(37), (38), (39) and (40) given exogenous process d̂t and initial condition
b̂t0−1, taking into account the zero-lower bound constraint on the nominal in-
terest rate. Details on the first-order conditions of the optimal policy problem
are left to the Appendix.
Figures 7 and 8 show the responses of some variables of interest to a

permanent shock on b̄t, and therefore on d̂t, under optimal policy and inflation
targeting considering the zero bound on nominal interest rates. We can see
that optimal policy can have a larger effect in the model than the case in
which it targets constant inflation. The way optimal policy works is to a
large extent similar to that in the standard NK model (see e.g. Eggertsson
and Woodford (2003)). In particular, as shown in Figure 8, optimal policy
involves committing to keep the nominal interest rate low for a substantial
period of time longer than if the central bank is an inflation targeter. The
result of this commitment is a modest output boom and inflation during
and after the trap. A key difference, however, is that this commitment is
to some extent even stronger than in the standard model, as it implies an
accommodation that is forceful enough that inflation overshoots the 2 percent
target throughout the duration of the zero bound, and slightly undershoots
it after. This feature of optimal policy is new and different relatively to
the standard model, which we will now elaborate on, and is mostly because
of the new terms in the social welfare function brought about by dynamic
deleveraging.
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Figure 9: Comparison between the responses to a deleveraging shock. ”Op-
timal Policy”: optimal policy under commitment in the deleveraging model.
”Optimal Policy λc = 0”: optimal policy under commitment in the delever-
aging model when λc = 0 in (46). ”IT”: inflation-targeting policy considering
the zero-lower bound in the deleveraging model. “Optimal Policy in NK”:
optimal policy in the standard NK model. “IT in NK”: inflation-targeting
policy in the standard NK model. (The responses of “IT”and ”IT in NK”
coincide by construction). Variables are: output (Y ), inflation rate (π),
nominal interest rate on savings (i), natural rate of interest defined as in
(42) (rn).Y is in percentage deviation with respect to the steady state; π, , i
and rn are in percent and at annual rates.
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7.1 Comparison to optimal policy in the standard NK
model

We compare the basic NK model to our baseline model. To do this we
compute the natural rate of interest from equation (42) assuming that the
central bank follows a strict inflation target and hits the zero bound. This is
the basic exercise we carried out in Figure 5. If we feed this process into the
standard NK model and assume that there it is exogenous, it is easy to see
that the solution of the NK model, under inflation targeting and considering
the zero-lower bound, is exactly the same as we already have in our model
as shown in Figure 5. To see this, notice that both models satisfy exactly
the same equations (40) and (41) and that the process rnt across the two
simulations is by construction exactly the same. This baseline case —which
is the same across the two models —is reported in Figure 9 via a green line
(the purple line denoted “IT in NK”is not visible because it is exactly the
same as the green line). It is interesting now to ask: How does the optimal
monetary policy look across the two models? And should we expect it to be
different? To make the comparison more clean we first assume that policy
is set using the same objective: our more general model has an objective
that coincides with the standard one when λc = 0 in (46) (in which case the
government does not care about redistribution across the two agents). The
answer is shown in Figure 9. As we can see, optimal policy under dynamic
deleveraging (but with the same objective as the standard NK model, the
line ”Optimal Policy λc = 0”) yields very similar dynamics to the standard
NK model (the line ”Optimal Policy NK”) with three important wrinkles.
First, both inflation and output overshoot their long term value a little bit
earlier than in the standard case (and before the zero bound stops being
binding). Second, we see that the optimal policy has the effect of increasing
the natural rate of interest above the level we feed exogenously into the NK
model (in the latter it corresponds to the green-dotted line in the panel on
the natural rate). Third, and this is related to the second point, we see that
the optimal policy now prescribes a shorter duration of the zero interest rate
than in the NK model. The reason for this last point is not that the policy is
less aggressive. Instead —it is because it is successful in endogenously raising
the natural rate of interest and generating an output boom and inflation
that the liftoff of rates is now earlier than it was in the absence of the policy
easing.
This particular feature of optimal policy under dynamic deleveraging is
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amplified even further using the true social objective that also puts value on
consumption insurance across the different types of agents in the model. We
also see this in the figure (line "Optimal Policy"), which suggests that the
fully optimal policy is aggressive enough to bring about immediate increase
of output and inflation in the liquidity trap to an extent that it is about
4.5 percent on impact, thus overshooting the implicit inflation target of the
central bank by a substantial amount.

8 Government Spending

Monetary policy works through a commitment to actions in the future that
may be dynamically inconsistent. Accordingly, many are skeptical about the
extent to which it has an impact which, in any event, is highly dependent
on the credibility of the central bank. A policy that is not subject to this
problem to the same extent is fiscal policy, because it involves taking direct
actions today. For this reason we here consider a simple experiment in which
monetary policy is constrained by targeting the inflation target of 2 percent,
while we model fiscal policy as being able to react directly to the shock. We
define G the public expenditure which now enters aggregate demand

Yt = (1− χ)Cs
t + χCb

t +Gt.

We assume that public expenditure is financed with lump-sum taxes. In
particular we set the following distribution of taxes between borrowers and
savers

T bt =
ω

χ
Gt + τPtYt

T st =
1− ω
1− χGt + τPtYt

implying the government budget constraint

(1− χ)T st + χT bt = Gt + τPtYt.

In particular, the parameter ω, with 0 < ω < 1 determines who is paying
for public spending. When ω = 0, they are the savers. When ω = 1, the
borrowers while when ω = χ all in equal shares. There are few changes to
account for in our model, given the above specification, which are detailed
in the Appendix.
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Figure 10: Comparison between the responses to a deleveraging shock with
and without public spending. Line “IT”: inflation-targeting policy in the
model of this paper withouth public spending. Line “IT plus G, ω = χ”:
inflation-targeting policy in the model of this paper with public spending
and equal financing across agents (ω = χ). Line “IT in NK”: Inflation-
targeting policy in the NK model without public spending. Line “IT plus
G in NK”: inflation-targeting policy in the NK model with public spending.
(The responses of “IT”and “IT in NK”coincide by construction). Variables
are: output (Y ), inflation rate (π), nominal interest rate on savings (i),
natural rate of interest defined as in (42) (rn). Y is in percentage deviation
with respect to the steady state; π, i and rn are in percent and at annual
rates.
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Figure 11: Comparison between the responses to a deleveraging shock with
and without public spending. Line “IT”: inflation-targeting policy in the
model of this paper withouth public spending. Line “IT plus G, (ω = 0)”:
inflation-targeting policy in the model of this paper with public spending
and financing all on savers (ω = 0). Line “IT plus G, (ω = χ)”: inflation-
targeting policy in the model of this paper with public spending and equal
financing across savers and borrowers savers (ω = χ). Line “IT plus G,
(ω = 1)”: inflation-targeting policy in the model of this paper with public
spending and financing all on borrowers (ω = 1).Variables are: output (Y ),
inflation rate (π), nominal interest rate on savings (i), natural rate of interest
defined as in (42) (rn). Y is in percentage deviation with respect to the steady
state; π, i and rn are in percent and at annual rates.
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We repeat the experiment of Section 6 where our model and the standard
NK model are aligned in implying the same responses under inflation target-
ing assuming also the zero-lower bound. In this environment, we study the
effects of an increase of government expenditure in both models. In particu-
lar we set Gt = ψYt and calibrate ψ, eventually with different values in the
two models, in a way that the response of public spending in the first period
is 3% in both models. Given this endogenous and same impulse of fiscal pol-
icy, Figure 10 shows the responses of output, inflation, nominal interest rate
and the natural rate with and without public spending in the two models.
In Figure 10, for the deleveraging model, we assume that public spending is
financed equally across savers and borrowers, i.e. ω = χ. In Figure 11, we
repeat the experiment for only the deleveraging model when ω = 0, χ or 1.18

Looking at the first-period response of output, we see that in both mod-
els, by construction, output drops by 6.08%. With a 3% increase in public
spending in the first period, output drops by 2.24% in our model, when as-
suming that financing of public spending is equally shared across borrowers
and savers (ω = χ). This implies a first-period multiplier equal to 1.28. In
the standard New-Keynesian model, the drop in output with a 3% increase
in public spending is 2.89% implying a multiplier of 1.06. A model in which
the dynamic of the natural rate of interest is endogenous to policy implies a
different multiplier, and here even a larger multiplier. However, if considering
a different redistribution of taxes in our model, we obtain a drop in output
of only 1.18% if savers finance it all, with a larger multiplier of 1.63. Instead,
if taxes are levied on borrowers, output drops by more, 6.06%, implying even
a close-to-zero multiplier!

9 Conclusions

In this paper we have extended the standard New Keynesian model to take
into account dynamic deleveraging. In doing so we provide a relatively gen-
eral framework which we hope will be useful for further applications. We kept
the analysis as simple as possible to provide a workhorse post-crisis model.
However, there are some obvious limitations to the analysis, essentially

the price paid for the simplifications needed to keep the model tractable. The
main one is the stylized assumption on the borrowing premium, which is in
line with similar modelling devices used in the literature, like Curdia and

18It should be noted that the value of ψ depends on the different assumptions on ω.
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Woodford (2010, 2011). One contribution of our work is to generalize the
fixed constraint of Eggertsson and Krugman (2012) to study dynamic and
endogenous deleveraging. Along the direction of providing deeper microfoun-
dations of financial frictions in New Keynesian models, De Fiore and Tristani
(2012) analyze an agency cost model between banks and entrepreneurs. How-
ever, in their case, the financial friction acts on the aggregate-supply side as
a cost-push shock and does not directly affect the natural rate of interest,
unlike our framework.
We have also limited our focus to deleveraging shocks, but the analysis can

be extended to study other sources of disturbances, like the more standard
productivity and cost-push shocks, as well as pure financial disturbances not
necessarily connected with deleveraging, such as credit and liquidity shocks.
Since we have emphasized the redistributive effects of policy between

savers and borrowers, it would be natural to analyze other forms of debt,
like long-term securities. Preliminary results in this direction show that the
maturity structure of debt is irrelevant for the analysis of optimal monetary
policy in our framework.
One main extension, as we see it, is to take the framework we develop and

extend it into a medium scale DSGE model that can be estimated. We have
chosen not to do so here, in order to obtain a tractable model that allows
sharp analytic predictions about optimal policy and clearly generalizes the
existing literature on the zero bound. We hope future research takes this
analysis one step further into a fully estimated model along the lines recently
pursued by Justiniano et al. (2014).
Finally, there could be many applications of the approach developed here

to open economies or currency areas, to study the endogeneity of a country’s
deleveraging embedded in an international transmission mechanism. Benigno
and Romei (2014) and Bhattarai et al. (2013) are examples in this direction.
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A First-order conditions of optimal policy un-
der commitment

In this section, we characterize the optimal policy problem in details.
Optimal monetary policy under commitment minimizes the loss function

Lt0 =
1

2
Et

{ ∞∑
t=t0

βt−t0
[
Ŷ 2
t + χ(1− χ)λc(Ĉ

b
t − Ĉs

t − cR)2 + λπ(πt − π)2
]}
(A.1)

where cR captures the relative difference between the initial and final steady-
state consumptions of borrowers and savers defined as cR ≡ [(Cb − C̄b) −
(Cs−C̄s)]/Y. The minimization constrained by the following set of structural
equations of the model:

Ŷt = χĈb
t + (1− χ)Ĉs

t (λ1) (A.2)

EtĈ
b
t+1 − Ĉb

t = σ[̂ıbt − Et(πt+1 − π) + λ(b̂t − d̂t)] (λ2) (A.3)

EtĈ
s
t+1 − Ĉs

t = σ[̂ıst − Et(πt+1 − π)] (λ3) (A.4)

Ĉb
t =

b̄

(1 + i)
(b̂t − (̂ıbt))−

b̄

β(1 + i)
(b̂t−1 − (πt − π)) + Ŷt (λ4) (A.5)

ı̂bt = ı̂st + ϕ
(
b̂t − d̂t

)
(λ5) (A.6)

πt − π = κŶt + βEt(πt+1 − π) (λ6) (A.7)

−ı̂st + ı̂ss,t ≤ 0. (λ7) (A.8)

Note that in each of the above equations we have written on the right the
respective Lagrange multiplier.
First-order conditions of the optimal policy problem are:

Ŷt : Ŷt + λ1,t − λ4,t − kλ6,t = 0 (A.9)

Ĉs
t : − (χ(1− χ)λc)

(
Ĉb
t − Ĉs

t − ĈR
t

)
−(1−χ)λ1,t−λ3,t+

λ3,t−1

β
(A.10)
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Ĉb
t : (χ(1− χ)λc)

(
Ĉb
t − Ĉs

t − ĈR
t

)
− (χ)λ1,t − λ2,t +

λ2,t−1

β
+ λ4,t = 0

(A.11)

π̂t : λπ(πt−π)+σ
λ2,t−1

β
+σ

λ3,t−1

β
− b̄

(1 + i)β
λ4,t+λ6,t−λ6,t−1 = 0 (A.12)

ı̂st : −λ3,tσ − λ5,t − λ7,t = 0 (A.13)

ı̂bt : −λ2,tσ +
b̄

(1 + i)
λ4,t + λ5,t = 0 (A.14)

b̂t : − b̄

(1 + i)
λ4,t +

b̄

(1 + i)
Etλ4,t+1 − φλ5,t − σλλ2,t = 0. (A.15)

λ7,t(−ı̂st + ı̂ss,t) = 0. (A.16)

The set of first-order conditions together with the equilibrium constraints
is solved using a solution method which takes into account the zero lower
bound (see also Eggertsson and Woodford, 2003).

B Model with public expenditure

In this section, we discuss in details the extension of Section 8, in which we
add public expenditure.
The steady state of consumption for borrowers and savers and output is

now defined by the following equations

Cs = Y +
(1− β)

Π

χ

1− χb̄
high − T s

Cb = Y − (1− β)

Π
b̄high − T b

Y η

z exp(−z(Y −G))
= 1,

which can be written as

Cs = Y +
(1− β)

Π

χ

1− χb̃Y −
1− ω
1− χsgY

Cb = Y − (1− β)

Π
b̃Y − ω

χ
sgY.
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Y η

z exp(−z(Y − sgY ))
= 1.

where sg = G/Y , b̃ = b̄high/Y.
We calibrate the share of public spending over GDP at sg = 0.3. Given

the other parameters of Table 1, we can compute the steady-state of the
model.
In a log-linear approximation around the steady state, the model can be

written through the following set of equations

EtĈ
b
t+1 = Ĉb

t + σ
[
ı̂bt − Et(πt − π) + λ

(
b̂t − d̂t

)]
(B.17)

EtĈ
s
t+1 = Ĉs

t + σ(̂ıt − Etπ̂t+1) (B.18)

ı̂bt = ı̂t + φ(b̂t − d̂t) (B.19)

Ŷt = χĈb
t + (1− χ)Ĉs

t + gt (B.20)

Ĉb
t =

b̄

1 + i
(b̂t − ı̂bt)−

b̄

β(1 + i)
(b̂t−1 − (πt − π)) + Ŷt − t̂bt (B.21)

πt − π = κ

(
Ŷt −

σ−1

σ−1 + η
gt

)
+ βEt(πt+1 − π) (B.22)

where
gt = t̂t (B.23)

t̂bt =
ω

χ
t̂t (B.24)

t̂st =
1− ω
1− χt̂t (B.25)

and we have further defined the following variables

gt =
(Gt −G)

Y
t̂t =

Tt − T
Y

.

Note that the parameter ω is between 0 and 1. When ω = 0, the burden
of public-spending financing is on the savers. When ω = 1 all the financing
is on borrowers while when ω = χ is uniform across agents.
In Figures (10) and (11), first we compute the natural rate of interest in

the deleveraging model under inflation targeting and assuming that gt = 0.
This is given by

rnt = −χ(ϕ+ λ)
(
b̂t − d̂t

)
. (B.26)

45



We then input the same rnt in the following NK model with public spending

(πt+1 − π) = κ

(
Ŷt −

σ−1

σ−1 + η
gt

)
+ βEt(πt+1 − π) (B.27)

Ŷt+1 − gt+1 = Ŷt − gt + σ [̂ıt − Etπt+1 − rnt ] (B.28)

Given gt = 0, the inflation-targeting policy of our model under zero-lower
bound is equivalent to the inflation-targeting in the NK model under zero-
lower bound, for the path of inflation, output and nominal interest rate. This
is shown in Figure (10) with the lines IT and IT in NK.
We then assume the following process for gt

gt = −ψŶt.

and consider a deleveraging shock of the same magnitude as before, again in
the case in which the central bank targets inflation and hits the zero bound.
Considering the same deleveraging shock and same rnt computed above, we set
the parameter ψ in both models in such a way that the initial response of gt is
3% in the first period in both models. This means eventually that ψ is chosen
in a different way in both models. In particular we repeat this experiment
for the three different cases, i.e. when ω = 0, χ, 1, in the deleveraging model,
implying therefore different choices of ψ.
Finally, it should be noted that when gt 6= 0 the natural rate of interest

is computed as

r̃nt = −χ(ϕ+ λ)
(
b̂t − d̂t

)
− σ−1(Etgt+1 − gt)

in the deleveraging model while is given by

r′nt = rnt − σ−1(Etgt+1 − gt)

in the NK model.
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