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Abstract

We introduce a tractable model of post-retirement saving behavior in which house-

holds have a precautionary motive arising from uninsured health status risks. The

model distinguishes between annuitized and non-annuitized wealth, emphasizes the

importance of asset composition in determining optimal household behavior, and in-

cludes an extension allowing late-in-life exchange transactions among relatives. We

consider three puzzles in micro data – rising cohort average wealth of retirees, lack of

demand for market annuities, and the relative scarcity of bequests – and show that

our model can provide intuitive explanations for each.

1 Introduction

Recent empirical analyses of consumption and saving have fueled interest in modeling the

behavior of households after retirement.1 This paper develops an analytically tractable, life-

cycle model of post-retirement behavior that incorporates health and mortality uncertainty

and captures real-world restrictions on the set of available financial securities and insurance

instruments. The model pays special attention to household portfolios, specifically to the

distinct properties and roles of annuities versus liquid assets. We use the model to examine

three puzzles in micro data: (i) the steady or rising average wealth of retired cohorts;2 (ii) the

lack of demand for market annuities;3 and, (iii) the relative scarcity of accidental bequests.4

While each puzzle appears to challenge conventional economic theory, this paper offers a

modeling formulation that is consistent with all three facts, and that provides intuitive

explanations for each. The model highlights the imporatnce of portfolio options and choices

for post-retirement behavior.

In our framework, each household begins retirement in a healthy state, though health

tends to decline; a low health state brings an increased mortality rate and may raise the

1See, e.g., Hubbard et al. [1994,1995], Palumbo [1999], Sinclair and Smetters [2004], Dynan et al. [2004],

Scholz et al. [2006], Ameriks et al. [2010], DeNardi et al. [2011], Love et al. [2009], Finkelstein et al. [2011],

and Poterba et al. [2011, 2012].
2E.g., Poterba et al. [2012], De Nardi et al. [2010], and many others. See also Section 6.
3E.g., Friedman and Warshawsky [1990], Mitchell et al. [1999]), and many others.
4E.g., Laitner and Ohlsson [2001] and Laitner and Sonnega [2010, 2012] and others.
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marginal utility of expenditure. The timing of the transition to a low health state, and its

duration, are uncertain. We follow the literature in assuming that health state is not insur-

able. Here it is important to distinguish between medical conditions, which are often insured,

and a “health state” associated with needs for long-term care that are often uninsured. Vir-

tually all elderly Americans have insurance for their medical conditions. However, troubles

with “activities of daily living” (ADLs), which for us define low “health state,” are difficult,

in practice, for third parties to verify.5 Asymmetric information on health state then restricts

the availability of private long-term care insurance and may well make precautionary saving

a second-best choice.

Our analysis proceeds in three steps. First, we consider a baseline version of the model

in which a household obtains an endowment of “primary annuities” – from Social Security

and defined benefit pensions – at retirement. These annuities have low transactions costs

and may be compulsory. With this baseline version of the model, we consider the possibility

of continued accumulation of liquid wealth after retirement.

A first key finding is that wealth accumulation after retirement is possible, but not a

simple consequence of health expenditure uncertainty. In our framework, households in poor

health always spend down their liquid wealth. Because high mortality limits the number

of survivors in poor health, it is the behavior of those in the high health state that is

pivotal in determining the time path of cohort average bequeathable net worth. Our analysis

indicates that either accumulation or decumulation can be optimal for healthy households,

and that those with substantial annuitization may be the most likely to continue saving after

retirement.

This first finding complements existing theories of post-retirement saving that emphasize

the importance of health expenditure risk (e.g., De Nardi et al. [2010], Laibson [2011], and

Amerkis et al. [2014]), and shows the central role of portfolio composition in determining

wealth paths after retirement. On average, good health status lasts much longer than poor

health. If the real interest rate, , is high enough, liquid assets are very attractive. A

household can live on its interest income while good health status lasts, and then begin to

spend its principal when poor health arrives. Accumulation of liquid assets after retirement

while in good health is the rule. If, however,  is lower, a household will desire a mixture of

annuities and liquid wealth. In our calibrations, this is the interesting case. With a moderate

or low , a desired stationary ratio of liquid assets to annuities emerges. A household

starting below the ratio wants to save after retirement to accumulate more liquid wealth;

a household starting above the ratio immediately begins to dissave. We relate the desired

ratio to parameter values and then compare it with micro evidence on portfolio composition.

Calibrations show that rising average cohort liquid wealth after retirement can easily emerge.

In a second step, Section 7 extends the baseline model to allow retiring households to

adjust their initial portfolio through the purchase of secondary annuities. We take secondary

annuities to be individual, market-based annuities. Again, they can condition only on mor-

tality. Due to adverse selection and other transactions costs, they may carry a substantial

“load.” Davidoff et al. [2005], Diamond [2004], Sinclair and Smetters [2004], Reichling and

Smetters [2013], and others examine the demand for annuities given environments where

their inflexibility is constraining.

In all calibrated examples of this extended model, we find that if annuity pricing were ac-

tuarially fair, households would choose full annuitization. In practice, however, annuities pay

5Activities of daily living that are critical to the elderly living alone include bathing, eating, dressing,

walking across a room, and getting out of bed.
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a lower than actuarially fair rate of return (cf. Friedman and Warshawsky [1990], Mitchell et

al. [1999]). When households in the model start with the initial endowment of primary an-

nuities typical of retirement-age households in the data and face annuity returns in the lower

segment of the empirically observed range, they optimally choose not to purchase additional

(secondary) annuities. Their subsequent wealth accumulation behavior then remains the

same as in the basic model. In this way, our framework is consistent with both rising cohort

average wealth and zero demand for secondary annuities. This result obtains even though

our households lack a bequest motive.6

In a third step, we analyze a still more general version of the model that includes an

additional annuity-like instrument: if family members have reliable information about each

other’s health state, they can offer non-market annuities to relatives in poor health (Kot-

likoff and Spivak [1981]). For example, family members may commit to providing lifetime

assistance with ADLs for an elderly relative in poor health in exchange for a lump sum

payment. While opportunities for intergenerational exchange may be changing over time,

evidence from co-residence patterns (CBO [1988]) and family-line time inputs for informal

care (AARP [2011]) indicate that assistance from relatives remains extremely significant in

the US.7

Analysis of the potential implications of these non-market exchanges provides a second

set of key findings. Specifically, the option to purchase a non-market annuity upon reaching

poor health can completely eliminate demand for secondary annuities. In fact, households

may even want to reduce their primary annuities – as by claiming Social Security benefits

relatively early.

In addition to offering a new explanation for the second micro data puzzle, non-market

annuities can, we show, reconcile the thin market for secondary annuities with the relative

scarcity of accidental bequests. If demand for market annuities is low and penalties for

running out of liquid assets in poor health are high, we might expect to see almost 100% of

households leaving (accidental) bequests (see Section 8). Yet only 20-40 percent of households

report an inheritance. Non-market annuities can provide the reason, as follows: a household

that contracts with relatives for care obtains an implicit annuity; therefore, annuitization

can, by the last stage of life, be far more widespread than purchases of market annuity

instruments suggest.

This paper provides a formulation sufficiently detailed to allow meaningful calibrations

but sufficiently simple to yield intuitive, analytic insights into household behavior. Our

analysis reveals the versatility of the framework. Even as, in each step, the model becomes

increasingly general, the qualitative features of optimal behavior continue to be described by

two simple phase diagrams. This versatility is valuable because, by adding generality incre-

mentally, we see the central roles that actuarially unfair pricing and non-market annuities

can play in determining the level and composition of wealth after retirement. Adding still

more features to our model, such as a bequest motive or public assistance, will not under-

mine the central role of portfolio composition for wealth accumulation behavior; rather, it

will introduce subtle interactions between the various types of saving motives.8

The organization of this paper is as follows. Section 2 presents our baseline model and

6Amerkis et al. [2014] examine the annuity puzzle in more detail and present a framework that is aimed

at quantifying the contributions of bequest motive, precautionary motive and actuarially unfair pricing to

retiree demand for annuities. Their focus is on using survey data to identify agents’ preference parameters.
7See also references in Section 8.
8Indeed, we study these interactions in detail in a separate paper, Laitner et al. [2013].
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assumptions. Sections 3-4 analyze the optimal consumption problem in high and low health

states. Section 5 calibrates the model’s parameters. Section 6 analyzes cohort average be-

queathable wealth trajectories after retirement. Sections 7-8 examine optimal annuitization

at retirement and family-line assistance for those in poor health. Section 9 concludes.

2 Model

We study single-person households in their retirement years. At any age , a household’s

health state, , is either “high,” , or “low,” . The household starts retirement with

 = . There is a Poisson process with hazard rate   0 such that at the first Poisson

event the household transitions to the low health state. Once in state  = , the household

begins a second Poisson process, with parameter Λ  0. At the Poisson event for the second

process, the household dies.

We focus on the general “health state” of an individual (rather than his/her medical

status). Think of “health state” as referring to chronic conditions. Consider, for example,

troubles with ADLs, as listed above. Individuals with such difficulties may need to hire

assistance or move to a nursing home. The expense can be substantial. It may, in practice,

be the largest part of average out-of-pocket (OOP) medical expenses (see, for instance,

Marshall et al. [2010]).

We assume that health state affects behavior through state-dependent utility. In our

framework, there are no direct budgetary consequences from changes in . We treat all

OOP medical expenses as part of consumption. A household with  =  and consumption

 has utility flow

() =
[]




Following most empirical evidence, let

  0 

We assume that health state  =  leads to lower utility but higher marginal utility. Specif-

ically, there is a household production technology for transforming expenditure, , to a

consumption service flow, :

 =

½
 if  = 

 if  = 


We assume that low health state is an impediment to generating consumption services from

; thus,

 ∈ (0 1)
Utility from consumption expenditure  while in health state  =  is

() ≡ ( · ) ≡ Ω · () (1)

Ω ≡ []  1  (2)

We assume that state verification problems for  are much greater than for medical status.

An agent knows when he/she enters state  = , but the transition from  =  is not
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legally verifiable. That prevents agents from obtaining health-state insurance.9 Marshall et

al. write,

Indeed, the ultimate luxury good appears to be the ability to retain indepen-

dence and remain in one’s home ... through the use of (paid) helpers .... These

types of expenses are generally not amenable to insurance coverage .... [p.26]

Annuities dependent upon health state are similarly unavailable. In contrast, all of our

model’s households have (Medicare) medical insurance. In reality, households also have

access to means-tested public nursing home care provided through Medicaid. Medicaid

nursing-home care is omitted here and receives detailed treatment in Laitner et al. [2013]

(the discussion at the end of Section 4 provides a justification for analyzing the model with

Medicaid separately).

Sections 3-6 assume that a household’s annuity income is exogenously given. In practice,

the most important annuities are Social Security and private pensions, both of which tend

to determine annuity income by formula. Section 7 considers a household’s optimal choice

of initial annuitization. Section 8 also considers assistance from relatives – what is often

labeled “informal care” – which we treat as an additional type of annuity. Our households

cannot borrow against their annuity income.

Households can accumulate and decumulate liquid wealth. Bequeathable net worth, ,

pays real interest rate   0. Let  ≥ 0 be the subjective discount rate. We assume  ≥ .

If we think of the analysis as beginning at age 65, the average interval of  =  might be

about 12 years, and the average duration of  =  about 3 years.10 With a Poisson process,

average duration is the reciprocal of the hazard; hence, we assume Λ     − .

State-Dependent Utility Our specification of household preferences assumes the sim-

plest form of state-dependence: utility  () in high health state and Ω () in low health

state, where  is a single consumption category that includes OOP medical expenditure.11

This assumption is not as restrictive as one might think. In fact, a richer model where

medical expenditure is a separate consumption category that is subject to choice would lead

to an indirect utility function of the form (1). To see this, assume that a household has two

remaining periods of life and that  =  in the first period and  =  in the last period. Set

 = 0 and  = 1; disregard annuities, informal caregiving, and uncertain mortality. Then a

newly retired household solves

max

{() + (− )} (3)

To endogenize the choice of medical expenditure, , replace (− ) in (3) with

(− ) ≡  ·max

{ · (− −) + (1− ) · ()} (4)

9On the use of long-term care insurance, which is analogous to health-state insurance in our model, see

Miller et al. [2010], Brown and Finkelstein [2007, 2008], Brown et al. [2012], CBO [2004], and Pauly [1990].

Private insurance covers less than 5% of long-term care expenditures in the US (Brown and Finkelstein

[2007]). For a discussion of information problems and the long-term care insurance market, see, for example,

Norton [2000].
10E.g., Sinclair and Smetters [2004].
11Hubbard et al. [1995] and DeNardi et al. [2010] use similar specification of preferences but assume that

OOP medical expenditure does not produce utility.
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where   0 and  ∈ (0 1) are preference parameters.12 Maximization with respect to  in

(4) yields exactly the reduced form utility function (1):

(− ) = Ω · (− ) 

Ω ≡  ·
³
[]

1
1− + [1− ]

1
1−
´


Summary Recapping our baseline assumptions:

a1:“Health state” is not verifiable; hence, there is no health-state insurance. Annuities are

exogenously set at retirement.

a2:If  is bequeathable net worth when  =  and  is the same for  = , we have  ≥ 0
and  ≥ 0 all  ≥ 0.
a3:  0,  ∈ (0 1), and Ω  1.

a4: A household transitions from  =  to  =  with Poisson hazard , and from health

state  =  to death with Poisson hazard Λ. No other transitions have positive probability.

We assume Λ  .

a5: The real interest rate is , with 0 ≤  ≤   + .

The model has two post-retirement timing uncertainties: How long does good health

state last? How long does life last once low health state begins? Assumption a1 captures the

second-best environment where individuals cannot perfectly insure these risks. In the first-

best environment with perfect insurance and annuity markets, the solution to the model is

simpler, and it is well known (e.g. Yaari [1965]). The first-best solution involves a purchase of

long-term care insurance and full annuitization: (i) At retirement, the agent buys an annuity

paying a fixed benefit stream for the duration of high health state. (ii) At retirement, an

agent also buys an insurance policy paying a lump-sum benefit when the agent’s high health

state ends. We refer to this as “long-term care insurance” – since it pays off exactly when

the agent begins to have extra consumption needs. (iii) Agent uses his/her insurance payout

to buy an annuity on his/her life. The payout stream from the latter annuity begins as

low health state commences. All financial transactions can be completed at the moment of

retirement, and retirees choose not to hold any liquid wealth.

Information asymmetries and state verification difficulties prevent the first-best outcome

in practice. Agents may have private information about their  and Λ. This might include

knowledge of “pre-existing conditions,” etc. Agents waiting until years after retirement to

purchase long-term care insurance will tend to attract special scrutiny in this regard: insurers

may suspect that such an agent realizes he/she faces an imminent health change. For their

part, agents may worry about a long-term care insurers’ willingness to pay claims, and to pay

promptly, when low health state arrives. Often a long-term care policy will have a payout

taking the form of a secondary annuity providing an income flow for the duration of low

health state. In that case, an insurer has incentive to delay a long-term care policy’s payoff,

and state verification difficulties may provide an excuse.

3 Low Health Phase

We solve our model backward, beginning with the last phase of life when the household is in

the low health state  = . In its last phase, a household faces mortality hazard Λ. Without

12Finkelstein et al. [2012] use preference specification similar to (4).
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loss of generality, scale the age at which the  =  state begins to  = 0. At  = 0, let

bequeathable net worth be  ≥ 0. Annuity income is  ≥ 0,  is consumption expenditure

at age , and () the corresponding utility flow. The expected utility of the household isZ ∞

0

Λ−Λ·
Z 

0

−() =

Z ∞

0

−Λ−()

The household maximization problem is

 () ≡ max


Z ∞

0

−(Λ+)() (5)

subject to ̇ =  · + − 

 ≥ 0 all  ≥ 0 
0 =  and  given 

Disregarding the state-variable constraint  ≥ 0 for the moment, the present-value

Hamiltonian for (5) is

H ≡ −(Λ+)() + ( + −) 

with costate . We have the first-order condition

H


= 0⇐⇒ −(Λ+) 0() = (6)

and costate equation

̇ = − H


⇐⇒ ̇ = − · (7)

Substituting (6) into (7),

− (Λ+ ) −(Λ+) 0 () + −(Λ+) 00 () ̇ =

̇ = − · = −−(Λ+) 0 ()⇔

( − 1) ̇



= − ( − (Λ+ ))⇔

̇



= , where  =
 − (Λ+ )

1− 
 (8)

By assumption (a5),   0.

Consider Figure 1. Each dotted curve is a trajectory satisfying the budget constraint and

(8). Eq. (8) shows that along each,   0 all . Hence, lim→∞  =∞.
Our first-order conditions would be sufficient for optimality if the transversality condition

lim
→∞

 · = 0 (9)

held. It is easy to see that it cannot: moving along any trajectory in Figure 1, upon reaching

 = , say, at  =  , set  =  all subsequent ; then the modified trajectory is feasible,

and it supplies higher consumption at times past  than the figure’s trajectories.

Nevertheless, Figure 1 hints at the form of the actual solution. We have
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Figure 1: Trajectories satisfying the budget constraint and (8).

Proposition 1: For any  ≥ 0, () = (0 ) is a stationary solution for

max


Z ∞



−(Λ+)()

subject to : ̇ =  + − 

 ≥ 0 
  0 and  = 0 given 

The maximized criterion is

 (  ) ≡ −(Λ+)
()

Λ+ 


Proof: See Appendix.

We can form a solution to (5) using Proposition 1.

Proposition 2: The trajectory in Figure 1 that reaches ( ) = (0 ) from above and

then remains at (0 ) forever solves problem (5).

Proof: See Appendix.

Knowing the form of the solution, we provide constructive steps to compute it by re-

formulating (5) to a free endpoint problem (e.g., Kamien and Schwartz [1991]):

Proposition 3: We have

 () ≡ max


µZ 

0

−(Λ+)() + (  )

¶
(10)

subject to: ̇ =  + −
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Figure 2: Optimal consumption and wealth trajectories in low health state. Panel (a)   0,

Panel (b),  = 0.

 and 0 =  given 

A solution to (10) exists with  ≥ 0 all  ≥ 0,  ∞,  = 0, and

 = 0
 all  ∈ [0  ]  (11)

The initial consumption 0() is continuous, strictly increasing, and strictly concave in

 with

0( 0) =  (12)

0()


=

1R  ()
0

−(−)
 (13)

lim
→∞

0()


=  − 

Proof: See Appendix.

Because  =  ()  ∞, all households with sufficient longevity eventually subsist
exclusively on their annuity income. That is to say, they become “liquidity constrained.”

The optimal length of liquidity-unconstrained period,  , rises with the initial wealth .

Figure 2 illustrates the optimal solution trajectory for the last phase of life.

Summary Our analysis shows that in their last phase of life, households systematically

decumulate their bequeathable net worth and exhaust it within finite time. Thereafter they

are “liquidity constrained,” living exclusively on their annuity income.
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4 High Health State Phase

Turn next to households in the healthy phase of their retirement, where  = . For con-

venience, rescale household ages to  = 0 at the start of this phase. A household’s annuity

income is   0 – which, as in the preceding section, we assume is exogenously given –

and its initial bequeathable net worth is  ≥ 0.
The household’s expected utility for its remaining life span is

( ) = max


µZ ∞

0

−
∙Z 

0

−()+ − ( )

¸


¶
 (14)

The function  (· ·) comes from Section 3.

Changing the order of integration in the criterion of (14), we have our household healthy

phase maximization problem:

( ) = max


µZ ∞

0

−(+)[() +  ( )]

¶
 (15)

subject to: ̇ =  ·  + −  

 ≥ 0 all  ≥ 0 
 and 0 =  given

Section 3 shows that  (· ·) is concave in ; hence, the criterion integrand of (15) is concave
in ( ).

Disregarding the state-variable constraint  ≥ 0 for the moment, the present-value

Hamiltonian is

H ≡ −(+)[() +  ( )] + [ + − ] (16)

with  as the costate variable. The first-order condition for  is

H


= 0⇐⇒ −(+)0() =  (17)

The costate equation is

̇ = −H


= −−(+) ( )


−  (18)

The budget equation is

̇ =  + −   (19)

We now construct a phase diagram for ( ). Let 0( ) be the initial consumption for

the household entering the low health state at date  with wealth  and annuity income .

The envelope theorem shows

 ( )


=  0(0( )) = Ω0(0( )) (20)

Eqs (16)-(20) imply

00 () ̇ = − ( − (+ ))0 ()− Ω0(0( ))⇔

10
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Figure 3: Phase diagram for the optimal solution to (15): baseline variant.

̇ = − ( − (+ ))
0 ()
00 ()

− Ω
0(0( ))

00 ()
(21)

Eqs (19) and (21) determine the phase diagram.

The equations for the isoclines of the phase diagram are

̇ = 0:  = Γ1() ≡  +  (22)

̇ = 0:  = Γ2() ≡ 0( ) (23)

where

 ≡
µ
− ( − )

 · Ω
¶ 1

1−
∈ (0 1) (24)

Proposition 3 shows that Γ2(0) =  ·0( 0) =  ·   and that Γ2() is strictly concave.

We can also show that the isoclines cross at most once. Hence, the phase diagram must be

as in Figure 3 or 4. We have

Proposition 4: The dotted trajectories of Figures 3-4 are the solutions for (15).

Proof: See Appendix.

The effect of the interest rate on the solution In most of our numerical

examples below, Figure 3 is the outcome. The phase diagram of Figure 3 obtains when  is

below a threshold. To see this, recall that Proposition 3 shows the asymptotic slope of Γ2()

is  · (−). The slope of Γ1() is . When  = 0, Γ2() is asymptotically steeper than Γ1(),
so we have Figure 3. When  =  + , the asymptotic slope of Γ2() is zero, giving rise to

Figure 4. It can also be shown that the difference in asymptotic slopes,  · ( − )− , falls

monotonically in . Hence, a high (low) interest rate tends to lead to Figure 4 (Figure 3).

Intuitively, given   0, a household has a strong desire to smooth its consumption

service flow . Accordingly, a household wants to increase its consumption expenditure

when its health state changes from high to low. Bequeathable assets provide flexibility to do

11
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Figure 4: Phase diagram for the optimal solution to (15): possible variant.

so. A household can spend the principal of its bequeathable wealth after its health declines,

for instance – recall Section 3.

While it may be beneficial for a healthy household to hold liquid wealth in anticipation

of the low health state, the costs of maintaining this wealth depend on the interest rate .

If  is high, liquid wealth is an attractive investment. At first, the household may desire

more liquid wealth in preparation for poor health. As it adds to , its interest income rises

significantly. Even if the household raises its current consumption, it saves a portion of

the new income to increase its low-health-state consumption in step. With Figure 4, saving

continues as long as high health status lasts.

If, on the other hand,  is more modest, we have Figure 3. A healthy household needs to

sacrifice more current consumption to maintain or increase its stock of wealth. The incentive

to accumulate wealth is therefore weakened, and the household is willing to accumulate more

only if its current wealth level is below ∗.
The precise trade-off between current and future consumption is captured by the opti-

mality condition (21). Evaluating the signs of the RHS and LHS of (21) yields


n
̇
o
=  {̇} =  { 0 (0 ( ))− (+  − )0 ()}  (25)

Condition (25) shows that wealth accumulation/decumulation depends on the weighted dif-

ference between marginal utilities in the low and high health states. Notice that a lower

interest rate increases the weight on the current marginal utility, 0 (), which dampens the
incentive to accumulate.

Dynamics Section 6 studies the set of initial conditions that lead to wealth accumulation
during the healthy phase. It will be convenient to make a transformation of state variables

that makes the model’s dynamics dependent on a univariate ratio of initial conditions alone.

The next proposition shows that our model is homothetic, making the optimal consumption

expenditure linearly homogeneous in ( ).

Proposition 5: Let  () be the optimal solution to problem (10) from initial condition

12



() and let  ( ) be the optimal solution to problem (15) from initial condition ( ).

Then for any   0,  ≥ 0 and  ≥ 0

 () = 

µ
1




¶
,  () = 

µ
1




¶


 ( ) = 

µ
1





¶
,  ( ) = 

µ
1





¶


Proof: See Appendix.

We can therefore summarize the wealth dynamics with the behavior of the transformed

variable

 =




which equals to the ratio of bequeathable wealth to the annuitized wealth (capitalized at

the actuarially fair rate ).
13 Put differently, the saving rate (out of total wealth) in our

model depends only on portfolio composition and not on the household’s amount of total

resources. The following corollary states that wealth accumulation in healthy state obtains

if and only if , the initial ratio of bequeathable wealth to the annuitized wealth, is below a

threshold.

Corollary to Proposition 5 Suppose that the exogenous parameters correspond to phase

diagram Figure 3. Then the long-run ratio of bequeathable to annuitized wealth

∗ =
∗



does not depend on . Optimal solution to (15) entails wealth accumulation if and only if

  ∗.
Portfolio composition and wealth accumulation. The above Corollary illus-

trates the key role that portfolio composition plays in wealth accumulation behavior. Our

baseline model assumes annuity income is exogenously set at retirement. We are thinking

of “primary annuities,” such as Social Security and DB pensions. For middle class fami-

lies, compulsory participation may lead to a significant share of annuitized wealth in their

portfolio. Households that are heavily annuitized at retirement have low initial , and they

are the ones that will continue saving after retirement. Moreover, the maximum amount of

wealth that a household is willing to accumulate is proportionate to , making annuitized

and bequeathable wealth function as complements. To see if the model would predict wealth

accumulation/decumulation, one just needs to compare the initial  ratio (to be taken from

the data) with the target ratio ∗ implied by the model. The next section calibrates the
model and numerically evaluates ∗.
The effect of means tested public assistance Before turning to calibrations,

we digress briefly to consider the possible consequences of Medicaid provided nursing home

care (see Laitner et al. [2013] for details). One can model public assistance as providing a

13The actuarially fair rate is based on population average mortality profile and is equal to

 =
(+ ) (Λ+ )

Λ+ + 


See the Appendix for the derivation.
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low health household with a utility floor  for the duration of its remaining life. The means

test requires households to forfeit all wealth (including annuities) before obtaining utility

flow  . Accordingly, household flow utility in problem (5) becomes max { ()}.
Households with annuity income affording utility flow  () ≥  will disregard Medicaid

completely and behave as in the basic model of this paper. It is likely that this group will

be large in practice, because  may be low, a phenomenon labeled “public care aversion”.14

On the other hand, households with  ()   and low total wealth will preemptively

decumulate wealth in order to qualify for benefits. The behavior of this low-resource group

can differ substantially from the basic model’s predictions. Households in the midrange of

lifetime resources may use Medicaid as a backup, but will still want to accumulate wealth

to try to avoid Medicaid, or at least postpone it. For the midrange group, annuities would

tend to be especially unattractive because of their treatment in the Medicaid means test.

5 Calibration and Numerical Examples

Our model has a limited number of parameters. Set  = 00833 and Λ = 03333, corre-

sponding to time intervals of 12 and 3 years, respectively, as in Sinclair and Smetters [2004].

The literature has a variety of estimates of  ≤ 0 (see, for example, Laitner and Silver-

man [2012]) and generally uses  ∈ [0 004]. We consider  ∈ [−05−50],  ∈ [002 004]
and set  = 002.

A key parameter in our model is , giving the degree to which the marginal utility of

consumption expenditure rises with low health state. The interpretation of  depends, in

fact, upon . Marginal utility in good health is 0() when consumption expenditure is .
In low health state, it is

 0() =
()


= 0() = 0

³
[]


−1

´
 (26)

It is []


−1 that determines the degree to which low health state affects a household’s

marginal utility from consumption expenditure. We can relate []


−1 to the observable

variables as follows. The change in optimal expenditure upon entering the low health state

is directly related to the magnitude of []


−1 . To see this, assume that low health state

occurs at time  when liquid wealth is at its long-run optimal level  = ∗. Then (23) shows
that at time  the optimal expenditure jumps by a factor

0 ( ∗)
 ( ∗)

=
1


 1

For simplicity, set  = . Then using (2) in expression (24) for  and noting that consumption

of healthy households equals income when  = ∗ shows that

0 ( ∗)
 ( ∗)

=
0 ( ∗)
+ ∗

=
∗
∗
= []


1−  (27)

Comparing the cost of care in low health state to income of single retirees provides a way of

calibrating . Our model’s low health state corresponds to a need for nursing-home levels of

14Ameriks et al. [2011] attempt to calibrate the perceived level of  from survey questions and find it

to be commensurate with a consumption flow of just $ 2,200 per year in 2005 dollars. In practice, only a

minority of households utilize Medicaid assistance — see DeNardi et al. [2011].
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care.15 Prudential [2010] shows 2010 annual average expenditures for nursing-home care of

$78,475 for a semi-private room, and $90,155 for a private room.16 Accordingly, we calibrate

∗ = 80 000. In terms of the denominator of (27), Bannerjee [2012, Table 7] reports the

average income of about $22,000 for single-person households over the age of 65. Hence, we

set ∗ = 22 000, and, using (27), we calibrate

[]


1− =
∗
∗
=
80 000

22 000
= 364

For comparison purposes, our analysis examines cases with []


1− =30 and 40 as well.

Calibration of initial conditions Apart from the exogenous parameter values,

wealth accumulation behavior depends on the initial condition . To evaluate the model

numerically, we need to find the counterpart of  in the data. Table 1 reports components

of wealth for single-person households from Poterba et al. [2011] and calculates the corre-

sponding  ratio.17 The definition of consumption in our model includes medical expenditure,

so the logic of the model dictates including capitalized Medicare flows as part of annuitized

wealth. Our preferred range of initial conditions for  is, therefore, the last column of Table 1.

Numerical examples Table 2 presents stationary values ∗ corresponding to various
 and real interest rates . When Figure 4 phase diagram applies, ∗ is infinite. Our favored
calibration is []


1− =364. In almost all cases, the range of initial conditions  from Table

1 (last column) is well below ∗. The model predicts, in other words, that most households
in the data have sufficient pre-annuitization to warrant subsequent accumulation of wealth.

When []


1− =30, similar results hold for   −10. Values of ∗ are even higher for
[]


1− =40 – with Figure 4 phase diagram , where rising bequeathable wealth in good

health is inevitable, appearing more often as well.

6 Cohort wealth Trajectories

Although the standard life-cycle model (Modigliani [1986]) implies that households should

systematically dissave after retirement, survey data often reveals stationary or rising cohort

mean bequeathable wealth. After briefly reviewing the literature below, we present our

model’s analysis.

Evidence Mirer [1979, p.442] was surprised to find that his data showed household

accumulation of bequeathable wealth after retirement rather than dissaving. He concluded,

“ ... the simple form of the life cycle theory of saving, in which wealth is accumulated during

working years in order to finance consumption during retirement, is too simple.” In the same

vein, Kotlikoff and Summers [1988, p.54] write, “Decumulation of wealth after retirement is

an essential aspect of the life cycle theory. Yet simple tabulations of wealth holdings by age

... or savings rates by age ... do not support the central prediction that the aged dissave.”

More recently, Ameriks et al. [2011, p.519] observe, “In reality, ... assets of the old decrease

slowly if at all ....”

Although one might suspect that mortality selection would bias estimated post-retirement

average wealth trajectories upward with age, evidence from panel data sets confirms the

15Recall that the calibration of Λ is based on Sinclair and Smetters [2004, Table 3] survival probabilities

for individuals in long-term care.
16http://www.prudential.com/media/managed/LTCCostStudy.pdf
17Moments reported in Table 1 are for individual wealth components. The value of  is the ratio of the

corresponding moments.
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earlier findings. See, in particular, Poterba et al. [2011, Fig. 1.8-1.9]. Poterba et al. study

single households and couples separately. They link average bequeathable wealth holdings in

adjoining survey waves, including only households with data in both waves. Their procedure

should be immune to birth-cohort effects and to correlations of survival probabilities with

portfolio size. For either means or medians, their figures show stationary or rising-with-age

trajectories of bequeathable wealth for both singles and couples.18

Post-retirement Wealth Holdings In analyzing post-retirement cohort-average

trajectories of bequeathable wealth, we divide a cohort’s survivors into two groups, high and

low health state households. We first show that the relative size of the groups converges to

a limit. Secondly, we draw on Section 3 to explain behavior within each group. Finally, we

show that the preceding factors together make stationary or rising cohort-average trajectories

possible – and, indeed, likely given our parameter choices.

Relative Group Size. Although every household eventually falls to the low health state, the

ratio of the sizes of the high and low-health-state groups converges to a positive constant.

This outcome is less paradoxical that it might at first seem: as the healthy group continuously

loses members to low health state, the low health group simultaneously loses members to

mortality. The fraction of our model’s households remaining alive and in good health  years

after retirement is

() = −

The fraction alive at  but in low health state is

() ≡
Z 

0

 · −· · −Λ(−)  

Combining expressions, the fraction of survivors in high health state is

() ≡ ()

() + ()
=

1

1 + 
Λ− · (1− −(Λ−)·)



We can see that (0) = 10 and that () monotonically falls to (∞) = (Λ − )Λ. The

latter equals 0.75 for our values of  and Λ.

The convergence of () is important. Section 3 shows that low health state households

always decumulate their bequeathable wealth. If the low health group became an ever

larger fraction of its cohort, then the cohort’s overall average bequeathable wealth would

presumably eventually begin a permanent decline.

Cohort average wealth. Consider a cohort of one-person households beginning retirement

in the high health state. There are  households in the cohort at retirement, and there is a

distribution of annuity flows  among the households that has mean ̄. For simplicity, assume

that all households start with the same initial ratio of bequeathable to annuity wealth, .

If Figure 3 phase diagram applies and all households begin retirement with the initial

condition   ∗, the aggregate wealth of healthy households should rise or be stationary.
Let  ( ) be the optimal wealth trajectory in the high health state, where  is the time

since retirement. Proposition 5 shows that

 ( ) = 

µ
1





¶
18See also Love et al. [2009], Poterba et al. [2011b], and Smith et al. [2009].
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Then the total wealth of healthy households  periods after retirement is19

 () =  · ̄ · − · 
µ
1





¶


The total wealth of survivors in low health state depends on the age when their health

changed. If the household enters the low health state  ≤  periods after retirement, its

initial wealth upon entering the low health state is  =  ( ), and it follows the low-

health-state optimal wealth trajectory − (  ( )) for −  periods. Using Proposition

5 again,

− (  ( )) = −

µ
1
 ( )



¶
= −

µ
1 

µ
1





¶¶


The fraction of households entering low health state at age  and surviving until age  is

−−Λ(−). Accordingly, the total wealth of survivors in the low health state  periods
after retirement is

 () =  · ̄ ·
Z 

0

−−Λ(−)−

µ
1 

µ
1





¶¶


The cohort average wealth level is the total wealth of survivors divided by the current cohort

size:

̄ () =
 () +  ()

() + ()


Figure 5 plots cohort average wealth relative to its initial level, ̄()̄(0), for various values

of initial condition  consistent with Table 1. Normalizing by ̄(0) eliminates any role for ̄

or  . For the chosen exogenous parameters, ∗ = 093.
As the theoretical analysis shows, the model’s cohort average bequeathable wealth can

rise or fall with age depending on time-varying cohort composition and the behavior of the

healthy. When  = 07 in Figure 5, cohort average bequeathable wealth falls slightly at first

as the size of the healthy group shrinks rapidly. However, it subsequently gently rises as

group sizes stabilize and the wealth accumulation within the healthy group dominates other

effects.20 Thus, the accumulation behavior of healthy households eventually drives cohort

average bequeathable wealth upward. On the other hand, wealth trajectories on Figures 5

demonstrate that our model makes rising average wealth after retirement a possibility, but

not an inevitability.

Discussion Due to homotheticity (Proposition 5), the model does not predict any dif-
ference in saving rates by total wealth level. A richer setup featuring means-tested public

assistance and bequest motives would likely generate different saving rates at different total

wealth levels (e.g., Dynan et al. [2004], DeNardi et al. [2010]). Nevertheless, our analysis

shows that cohort wealth trajectories that rise with age are possible even without additional

modeling elements.

19Since the hazard rates  and Λ are not correlated with , the distribution of  conditional on health

state is the same as the unconditional distribution of .
20Surviving healthy households asymptotically reach ∗ and the graphs eventually become horizontal.

With the parameters of Figure 5, however, the half-life of convergence to ∗ is more than 25 years.
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Figure 5: Cohort average wealth trajectories for different values of initial condition . Other

parameters:  = 112, Λ = 13,  =  = 002,  = −1,  
1− = 364.

7 Demand for Annuities

The baseline model of Section 2 treats annuity income  as exogenous, where  reflects

what we might call “primary annuities” – compulsory or default annuities such as Social

Security, Medicare, and DB pension benefits. Due to wide participation, we think of primary

annuities as offering actuarially fair rates of return. This section investigates circumstances

under which our framework can be consistent with the observation that households rarely

purchasing what we refer to as “secondary annuities.” We take the latter to be market

securities sold to individuals and often paying lower rates of return than primary annuities

(because of adverse selection and transactions costs).

To perform this section’s analysis, we extend our model to allow households to re-balance

their portfolios at retirement. All households begin retirement in the healthy state, with

value function ( ). Let  denote the market rate of return on secondary annuities. It

is convenient to express  as a fraction of the actuarially fair rate of return  (recall

Section 4):

 = (1− ) = (1− )
(+ ) (Λ+ )

Λ+ + 
, (28)

where  is interpreted as annuity load. Let the choice variable  denote the capitalized

value of secondary annuities providing income flow . The household portfolio selection

problem is

max
∈[0]

 (+ −)  (29)

Let

0 = +

0 = −
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denote the corresponding optimal portfolio choice. After the portfolio selection, the house-

hold solves problem (15) from the resulting initial condition (0 0).
The following proposition characterizes the solution to (29).

Proposition 6: The optimal solution to (29) is

 = max
n
0 0− (1− 0)





o


where

0 = arg max
∈[01]



µ

1− 



¶


The new initial condition for the household is

0 =
0

0
= min { 0} where 0 = 1− 0

0

1

1− 


Proof: See Appendix.

In Proposition 6, 0 corresponds to the unconstrained optimal fraction of annuitized wealth

in the portfolio, given rate of return . We assume households cannot reduce their stock of

primary annuities. If the initial fraction of pre-annuitized wealth exceeds 0, the household

does not purchase secondary annuities and sets  = 0. Otherwise, however, the household

selects the portfolio with the fraction of annuitized total net worth exactly equaling 0.

Subsequent household behavior depends upon 0. The next proposition provides a suffi-
cient condition for both continuing wealth accumulation post retirement and zero demand

for secondary annuities at retirement:

Proposition 7: If the initial ratio of bequeathable wealth to annuitized wealth is below a

threshold,

  ̄ = min {0 ∗} 
then the optimal solution to (29), (15) has

 = 0 and ̇  0, all 

Proof: See Appendix.

We evaluate the threshold value of ̄ numerically and compare it to the range of  values

from Table 1 to see if the model would predict both zero demand for secondary annuities

and wealth accumulation after retirement. If  = 0, households choose to fully annuitize all

of their wealth (meaning 0 = 1 and 0 = 0 = 0), and this contradicts the observations on

household balance sheets in Table 1. We ask if the model can produce both  = 0 and ̇  0

for annuity loads in the empirically observed range.

Calibration of annuity load. We calibrate the empirical load  on secondary

annuities from measures of the internal rate of return on commercially available products.

Our riskless real interest rate is . Suppose the internal rate of return on a secondary annuity

is  +∆. If ∆  0, then   0. Expression (28) implies

(1− ) =  =
(+  +∆) (Λ+  +∆)

Λ+ +  +∆
 (30)

Using 1968-83 data, Friedman and Warshawsky [1990, Tab III] derive an internal rate of

return on marketed annuities for 65-year-old men. They use two alternative definitions of :
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 =  , where  is the yield to maturity on 20-year US government bonds, and  = , where

 is the return on corporate debt directly placed with insurance companies.
21 They report

∆ = −00421 and ∆ = −00613. They report ∆ = −00421 and ∆ = −00613.
We can perform analogous calculations using 1995 data, averaged over men and women,

reported in Mitchell et al. [1999, Table 4], including their  and  values (see their p.1311).

Corresponding internal rate of return differentials are appreciably narrower, ∆ = −00221
and∆ = −00369. (Mitchell et al. [1999, p.1312] speculate that cyclic variability of interest
rates may be at least part of the explanation.)22

Table 3 derives values of  from (30) consistent with the preceding range of internal rates

of return  +∆. If  is interpreted as the real rate of return on Treasuries, we might set

 = 002. Table 3 entries then suggest  ∈ [022 042]. If  is interpreted as the real rate of
return on corporate bonds, then we favor  = 004 and  ∈ [031  051]. Table 4 presents
numerical results.

Numerical results Table 4 reports threshold values ̄ from Proposition 7. These

should be compared with initial conditions  ∈ [024 067] derived from Table 1. According

to Proposition 7,   ̄ guarantees that a household chooses  = 0 and ̇  0. Table 4 shows

that our model produces ̄   for various  and  = 04 – but that it is less successful for

lower loads. Section 8 re-examines demand for secondary annuities in an environment where

family members can enter into annuity-like contracts.

8 Non-market Annuities and Bequests

In practice, an elderly household– in particular, a household with high expenses due to poor

health status – may derive assistance from its grown children or other relatives. See, for ex-

ample, Kotlikoff and Spivak [1981], who suggest that relatives may be able to surmount state-

verification difficulties to offer what we might call “non-market annuities;” Laitner [1988],

who studies formulations with two-sided altruism in which grown children may provide in-

tergenerational transfers to their parents; and, Cox [1987], who considers a model in which

parents may purchase services from their grown children on attractive terms. This section

adopts the Kotlikoff-Spivak formulation.23 Specifically, we assume that family-line members

know an elderly household’s health state and are willing to offer a non-market annuity to

the household when it reaches the last stage of life.

For simplicity, assume that relatives offer elderly households in poor health an annuity

paying the actuarially fair, conditional on status  = , rate of return  + Λ. There need

not be any transfer of utility; a mutually advantageous contract is possible (Kotlikoff and

Spivak [1981]). In the past, shared living arrangements were common at the end of life – and

remain so to a more limited extent recently (CBO [1988]). The “informal caregiving” that

21Although Friedman and Warshawsky [1990] use nominal rates of return, subtracting the rate of inflation

from each leaves ∆ unaffected.
22A more detailed look at annuity yields by age and population group in Mitchell et al. [1999, Table 4]

reveals notable regularities. In all cases, annuity yields are much higher for annuity purchasers compared

to general population, consistent with adverse selection on mortality in the secondary annuity market.

Importantly, annuity yield falls with annuitant’s age, creating an incentive to purchase secondary annuities

without delay. The last observation may justify our assumption that secondary annuity purchases only

happen at retirement.
23Kotlikoff-Spivak [1981] can be interpreted as falling within the general category of “exchange models”

– see, for example, Bernheim et al. [1985], Horioka [2000], Wang [2010] and others.
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AARP [2011] values at $450 billion per year for the US in 2009 might also reflect family-line

contracts in this vein.

Beyond relatives’ access to information on each others health status, reasons that non-

market annuities may be feasible within family lines include the following. (i) For non-market

annuities, benefit obligations can often take the form of in-kind services rather than monetary

outlays. Relatives may be more confident in promising time than money. (ii) The expected

duration of poor health is relatively short. And, (iii) the pleasures an elderly household

and relatives derive from time together may provide a joint product complementary with a

non-market annuity’s in-kind service flow.

More generally, an arrangement under which, for instance, an assisted-living facility offers

an elderly individual lifetime care in return for a substantial up-front payment could fit

the same framework. Long-term care insurance contracted at retirement leaves the issuer

vulnerable to the client’s private information on the likely duration of his/her good health

– whereas a contract signed at the onset of poor health does not. Conversely, long-term

care insurance leaves a customer potentially vulnerable to procrastination on the part of

the issuer in state-verification processing after poor health begins – whereas purchase of a

service contract at the onset of poor health may avoid delays.

Extended Model If we allow a household to purchase a non-market annuity with

return  + Λ as soon as its health state reaches  = , the household will, at that point,

want to annuitize all of its bequeathable wealth. As in Yaari [1965], the household’s optimal

consumption expenditure will thereafter be level. Formally, we have

Proposition 8: A household reaching the low health state at time  and offered an annu-

ity with return  + Λ at that point will want to annuitize all of its remaining bequeathable

wealth. Thereafter its optimal consumption expenditure is stationary. If  () is as in (5),

remaining lifetime utility at the onset of low health status is now

 (+ · ( + Λ) 0) =
 (+ · ( + Λ))

Λ+ 
 (31)

Proof: See Appendix.

Given the proposition, we replace the  ( ) in (15) with  (+ · ( + Λ) 0). Instead

of (15), a healthy household solves

̄( ) = max


µZ ∞

0

−(+)[() +  (+  · ( + Λ)  0)]

¶
 (32)

subject to: ̇ =  ·  + −  

 ≥ 0 all  ≥ 0 
 and 0 =  given

Demand for Secondary Annuities Given the availability of non-market annuities,

initial portfolio choice problem (29) has an objective function ̄(· ·) from (32) in place of

(· ·). Table 5 presents numerical results.
In all of our examples, the possibility of purchasing a non-market annuity entirely elimi-

nates the demand for secondary annuities regardless of their load (i.e., for any  ≥ 0). Table
5 presents the threshold values ̄ corresponding to value function ̄(· ·), setting  = 0. With
no-load secondary annuities, the solution to portfolio choice problem (29) for every entry

in Table 5 has 0 ≥ ∗, so that ̄ = ∗ ≤ 0. Hence, throughout Table 5, households with
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 ≤ ∗ exhibit no demand for secondary annuities at retirement – or thereafter.24 Table 1

suggests starting values  ∈ [024 067]. Given  in that range, for all Table 5 columns other
than perhaps []


1− = 300 and  = 002, Proposition 7 implies both  = 0 and subsequent

liquid asset accumulation while good health persists.

We can go further. For starting values  ∈ [024 067], every column of Table 5 except
the one singled out above implies that households will be dissatisfied even with their primary

annuities – just-retired households would prefer non-marginal reallocations of their initial

net worth from primary annuities to liquid assets. A practical manifestation of the latter

may be household reluctance to delay claiming their Social Security retirement benefits to

secure greater annuitization (Sass [2012], GAO [2014]).25 In other words, our model provides

a possible rationale for early claiming.

One way of thinking about why our non-market annuities tend to severely limit the

demand for other annuities is as follows. A market annuity purchased during good health

suffers a capital loss at the onset of poor health, just when a household’s marginal utility of

expenditure rises. An actuarially fair annuity purchased once low health status has begun

pays return  + Λ until the purchaser’s death, and its value remains constant. In contrast,

an annuity purchased while in good health for $1 is worth $1 until the onset of poor health,

at which point its value abruptly drops to $1 · 

+Λ
. With our parameter values, the capital

loss is about 75%.

Post-retirement saving in the extended model. The presence of non-market
annuities affects the overall wealth accumulation of healthy households. To gauge the effect,

compare ̄ = ∗ from Table 5 with the corresponding entries of Table 2. We find that

the availability of non-market annuities can either encourage or discourage post-retirement

wealth accumulation relative to the basic model, depending on the risk aversion parameter

1−. Households with a high intertemporal elasticity of substitution (low risk aversion) have
a higher ∗ when non-market annuities are available. Such households anticipate a favorable
investment opportunity (i.e. a family-line annuity with return  + Λ) upon reaching the

low health state, and this encourages wealth accumulation while healthy. Households with a

high degree of risk aversion, on the other hand, have a lower ∗ when non-market annuities
are available. Evidently, very risk-averse individuals find protection against outliving their

resources so reassuring that they are comfortable saving less in total. For the same reason,

the Figure 4 phase diagram becomes less likely — never, in fact, arising in Table 5.

Bequests Given households’ reluctance to fully annuitize their portfolios, one would

expect that virtually all would leave an accidental bequest. Yet, in practice, bequests are

relatively rare. Laitner and Ohlsson [2001], for example, find a middle-class frequency of

inheritance of 30-40% in PSID data; Laitner and Sonnega [2010, 2012] find a frequency of

20-40% in HRS data. The relative scarcity of bequests in the presence of end-of-life wealth

holding and thin annuitization is puzzling. Adding a bequest motive to the model would

only exacerbate the puzzle. The extended model with non-market annuities offers a possible

explanation.

To illustrate the extent of the bequest puzzle, Table 6 reports the frequency of positive

bequests from our baseline model (Sections 2-6), and the frequency of bequests exceeding

24Chances to purchase extra annuities may diminish with age after retirement because of issuer worries

about adverse selection – recall Section 7, footnote 22. Nevertheless, in Table 5, non-market annuities

eliminate demand for more secondary (or primary) annuities at all post-retirement ages.
25Notice that in our model, delaying Social Security claiming leads, in effect, to full reinvestment in primary

annuities of benefits deferred during the period of delay.
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a year’s annuity income .26 In all cases, accidental bequest frequencies are too high to be

consistent with US data.

A model with family line annuities may provide a way to reconcile the predicted frequency

of accidental bequests with the much lower inheritance frequency found in the data. If a

household purchases a family-line annuity, it makes an inter-vivos transfer to the caregiver

relative and leaves no bequest (Proposition 8). One testable implication of the model is

that inter-vivos transfers, but not bequests, should be positively correlated with the amount

of help that the elderly receive from their children. A recent study by Wang [2010] using

HRS data provides supportive evidence. Wang [2010] writes: “Results from national data

show that adult children’s time transfers to their aging parents were positively associated

with their expectation of inter-vivos financial transfers, but not with their expectation of

receiving bequests”.

We might then interpret inheritance data as follows: (i) measured bequests may reflect

intentional behavior, beyond the scope of this paper’s analysis; (ii) perhaps not all elderly

households can, or desire to ask their relatives for non-market annuities; and/or, (iii) survey

respondents may incorrectly classify some payments for services from relatives as bequests.

If, for example, one-half to one-third of elderly households do not use family-line annuities,

the bequest puzzle could be resolved. Or, perhaps family-line assistance is very widespread

– but some households choose to leave intentional bequests.

Summary In an environment with complete markets, households would purchase an

assortment of annuities and long-term-care insurance at retirement, but would choose to hold

no bequeathable assets. In the basic model of Sections 2-6, options are limited to annuities at

retirement and bequeathable wealth. We find that households in the basic model often want

to carry a mixture of the two assets. Section 7 gives households the option of purchasing

additional (secondary) market annuities at retirement. These may carry high transaction

costs. Outcomes are mixed: we find that loads at the higher end of the range reported in

the literature deter households from purchasing secondary annuities; lower loads may not —

leaving a puzzle of why demand for secondary annuities is low in practice. In the present

section, households have access to bequeathable assets, secondary annuities purchased at

retirement (or, more generally, while in good health), and non-market annuities purchased

at the arrival of poor health. We find that the presence of non-market annuities completely

eliminates the demand for secondary annuities. Even primary annuities tend to lose at least

part of their appeal.

Evidence on bequests suggests a second reason that the framework with non-market an-

nuities may be attractive. Less than one-half of middle class families seem to leave bequests.

Given thin annuitization, this seems difficult to explain. To the extent that non-market,

implicit contracts within family lines are prevalent, annuitization may, in fact, not be nearly

as thin as it would otherwise seem.

As stated, our model does not include intentional bequests. Nevertheless, in arguing that

accidental bequests alone do not have to account for all the inheritances than we see in data,

our analysis leaves room for intentional bequests as well. Our framewrok may then help

to facilitate more detailed studies of private intergenerational transfers of all types in the

future.

26The latter is useful because survey data may omit small inheritances.
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9 Conclusion

This paper introduces a parsimonious dynamic model of retiree behavior featuring uninsured

health expenditure risks and household portfolios consisting of annuities and liquid wealth.

The model incorporates sufficient detail to allow interesting calibrations, yet it remains

tractable and able to provide intuitive explanations for post-retirement household behavior.

The model delivers a coherent framework for interpreting three key facts on retiree financial

decisions: (i) lack of decumulation of liquid assets after retirement, (ii) low demand for

secondary annuities (i.e., the “annuity puzzle”), and (iii) relatively infrequent of bequests.

The model’s explanation for the first fact derives from cohort composition by health status

and substantial pre-annuitized wealth of households entering retirement. In particular, the

distribution of households by health status becomes asymptotically stationary, making the

behavior of healthy households pivotal in determining the cohort average wealth trajectories.

We find that households enjoying high health status may often desire to add to their liquid

assets after retirement. And, surprisingly, their willingness to do so tends to increase with

their holdings of annuitized wealth.

The limited demand for market annuities can be partially explained by their inflexibility

and, for secondary annuities, in particular, high transactions costs. Households choosing

secondary annuities face a trade-off between inflexible income flow and a return that exceeds

the interest rate on bonds. Our numerical analysis shows that when annuity loads exceed

30%, household demand for secondary annuities tends to be very low.

We also put forward a less conventional explanation for the annuity puzzle. We argue

that non-market annuities for the final stage of life may be important in practice (and they

may be an attractive substitute for long-term care insurance). When household portfolio

options include standard annuities at retirement, non-market annuities at the last stage

of life, and liquid assets at all ages, we find that non-market annuities tend to dominate

standard annuities (even if the latter have zero load).

What is more, the presence of non-market annuities can reconcile evidence of apparently

thin annuitization with the relative paucity of bequests observed in inheritance surveys.

Informal arrangements in which elderly households in poor health status exchange liquid

assets, perhaps inter vivos, for in-kind assistance from grown children and other relatives

provide implicit annuity protection that may have substantial value and be widespread in

practice. Future work can examine the empirical relevance of this phenomenon in more

detail.

Appendix

Proof of Proposition 1. Letting be the costate variable and  a Lagrange multiplier

for the state-variable constraint  ≥ 0, the present-value Hamiltonian is (e.g., Kamien and
Schwartz [1981, p. 215])

H ≡ −(Λ+)() + ( + −) +  (33)

The first-order condition for  is

H


= 0⇐⇒ −(Λ+) 0() = (34)

The costate equation is
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̇ = − H


⇐⇒ ̇ = − −  (35)

We also need

 ≥ 0 (36)

 = 0 (37)

as well as the budget and state-variable constraints.

Suppose (  ) = (0  ) all  ≥  . (34) is then satisfied when

 = −(Λ+) 0() (38)

(35), in turn, is satisfied when

− (Λ+ ) −(Λ+) 0() = −−(Λ+) 0()−  ⇔

 = − ( − (Λ+ )) −(Λ+) 0()

By assumption, −[ − (Λ+ )]  0. So, (36) holds. (37) will then hold if and only if

 = 0

Transversality condition (9) will hold any constant , because  → 0 – see (38).

Proof of Proposition 2. Write the Hamiltonian as in (33). Let   ∞ be the time

(   ) arrives at (0 ) in Figure 1. For  ≤  , set , , and  from (6), (8), and the

budget constraint ̇ =  +  −. And, set  = 0. For    , set , ,  and 
from the proof of Proposition 1. Then the first-order condition for , the costate equation,

the budget equation, and the state-variable constraint hold all  ≥ 0.
We have  ≥ 0. The path of  is piecewise continuous. By construction,  = 0. Since

 = 0 all  ≥  , transversality condition (9) holds. The costate variable is nonnegative. It

is continuous by construction all .

Proof of Proposition 3. Existence of a solution,  ≥ 0 all ,  = 0, and (11)-(12)

follow from Propositions 1-2, Figure 1, and (8). We then have

0
 =  (39)

Budgets require Z 

0

−
¡
− − 

¢
] =  (40)

These determine 0 and  =  (). (40) shows  ( 0) = 0,  () is increasing in ,

and  (∞) =∞. Differentiating (40),

−− 


Z 

0

− = 1 (41)

Then using (39),
0


= −− 


 (42)
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Combining (41)-(42), we have (13) – from which we can verify the concavity of 0().

Proof of Proposition 4. The dotted trajectories of Figures 3-4 satisfy necessary condi-

tions. With strict concavity of 0( ) – see Proposition 3 – the isoclines intersect 0, 1,

or 2 times. We first rule out the last. Then we show that transversality condition

lim
→∞

 = 0 (43)

holds.

At an isocline intersection, we have

0( ) =  · +  (44)

as well as (39)-(40). (44) and (39) yield




=
1



¡
− − 1¢  (45)

(39)-(40) yield Z 

0

−
¡
− − 1¢  = 


⇔

−
1− −(−)

 − 
− 1− −


=




(46)

Combining (45)-(46),

−
µ



− 1

 − 

¶
= −

µ
1


− 1

 − 

¶
⇔

(−) =
−

 ( − )− 
(47)

For ( − )  , (47) has one root  ≥ 0; hence, there is one ∗. For ( − )  , there

are no roots  ≥ 0; hence, there is no ∗.
Turning to the transversality condition, (43) holds in Figure 3. Consider Figure 4. We

have  →∞. Then eventually  ≥ 1. So, as →∞,
 = −(+)0() ≤ −(+) · 0(1)

The budget constraint shows

− = 0 +

Z 

0

− (− )  ≤ 0 +

Z 

0

− ≤ 0 +





So, as →∞, we have

 ≤ −(+)0 (1) 
³
0 +





´
= (−(+))0(1)

³
0 +





´
→ 0

from assumption (a5). This establishes (43).

Proof of Proposition 5 Start with the optimization problem (10) in the low health state.

Making a change of variables

̄ =



, ̄ =




(48)
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yields the transformed problem

 () ≡ max
̄

µZ 

0

−(Λ+)(̄) + −(Λ+)
(1)

Λ+ 

¶
(49)

subject to:
̄


= ̄ + 1− ̄

̄0 =



given  (50)

The optimal solution to (49) depends on () only through their ratio 

in the initial

condition (50). Hence

̄ = ̄

¡
̄0
¢
= ̄

µ




¶
 ̄ = ̄

µ




¶
.

By definition of  (· ·) in (10), the expression multiplying  in (49) equals  ¡1 


¢
with the

corresponding optimal solution 

¡
1 



¢
, 

¡
1 



¢
. This establishes the following identities:

 () ≡ 

µ
1




¶
(51)

and

̄

µ




¶
≡ 

µ
1




¶
, ̄

µ




¶
≡ 

µ
1




¶


Combining the last expression with (48) shows that

 () = ̄

µ




¶
≡ 

µ
1




¶
,

 () = ̄

µ




¶
≡ 

µ
1




¶
.

Making analogous steps with problem (15) and using (51) shows

 ( ) = 

µ
1





¶
,  ( ) = 

µ
1





¶
.

Proof of Corollary to Proposition 5 First, show that the ratio ∗

does not depend

on . By definition, ∗ is the intersection point of isoclines (22) and (23) described by the
equation

+ ∗ = 0 ( ∗)

Dividing through by  and using Proposition 5, we get the equation for ∗

:

1 + 
∗

= 0

µ
1
∗


¶
.

The last line shows that ∗

does not depend on . Finally, from Proposition 4 and the

definition of , we have

̇ ≥ 0⇐⇒  ≤ ∗ ⇐⇒  ≤ ∗.
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Proof of Proposition 6 Make the following change of variables in problem (29):

 =
+

+ 
 (52)

Using Proposition 5, the objective function (29) can be written as

 (+ −) =  ( (+ )  −) = (+ )



µ


−

+ 

¶
= (+ )




µ

1− 



¶


For the moment, ignore the constraint  ≥ 0. Since (· ·) is concave in its arguments,

¡
 1−



¢
is concave and finite for all  ∈ [0 1]. Therefore, it has a unique maximum

0 = arg max
∈[01]



µ

1− 



¶


Now, impose the constraint  ≥ 0, which is equivalent to  ≥ 
+

. If 
+

 0, the

constraint  ≥ 0 is not binding and, from (52), the optimal solution is

 = 0− (1− 0)





0 =
−

+
 =

1− 0

0




=
1− 0

0

1

1− 
= 0.

Otherwise, if 
+

≥ 0, the constraint  ≥ 0 is binding and
 = 0 0 = .

Finally, notice that


+ 
 0 ⇐⇒   0.

Hence

0 = min { 0} 

Proof of Proposition 7 Suppose that   ̄ = min {0 ∗}. Then it must be that   0,

and Proposition 6 shows that  = 0 and 0 = . Since 0 =   ∗, Proposition 5 shows that
the household starting from the initial condition 0  ∗ has ̇  0.
Proof of Proposition 8: An Euler equation comparison of marginal utility at different

ages verifies the optimality of stationary consumption in this case. Formula (31) follows.

Given (31), the marginal lifetime value of units of  is

 + Λ

Λ+ 
·  0()   0()

where  is initial consumption expenditure in poor health status and the inequality follows

from our assumption that  ≥ . If the household contemplated maintaining some bequeath-

able assets, Section 3 and the envelope theorem show their value would be  0(). Hence,
the inequality above shows positive bequeathable net worth cannot be optimal.

Derivation of the actuarially fair rate of return on annuities Let  be the market

value of an annuity with income . Then

 =  (53)
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If E [] is the expectation over ̃ , we have

 = E

"Z ̃

0

−

#
= 

Z ∞

0

−
Z 

0

−+

+

Z ∞

0

−
Z ∞



Λ−Λ(− )
Z 



− (54)

The first right-hand side term registers annuity income during the healthy phase of retire-

ment, the second term gives income during the last phase of life. Performing the integration

and combining (53)-(54), we have

 =
(+ )(Λ+ )

+ Λ+ 

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Components of annuitized wealth, 𝑎/𝑅𝐴 Bequeathable 
wealth, 𝑏 

𝑧 = 𝑏𝑅𝐴 𝑎⁄  

SSA DB Medicare 𝑧, Medicare 
excluded 

𝑧, Medicare 
included 

Median 230 0 180 100 0.43 0.24 
70th percentile 299 73 180 272 0.73 0.49 

Mean 226 89 180 334 1.06 0.67 
 

Table 1. Components of household net worth (000s of 2008 dollars) and ratios of bequeathable to 
annuitized wealth. Source: Poterba et al. [2011], Table 1, 2 and p. 99.  

 
 

𝛾 𝜔
𝛾

1−𝛾 = 3.64 𝜔
𝛾

1−𝛾 = 3.00 𝜔
𝛾

1−𝛾 = 4.00 
𝑟 = 0.02 𝑟 = 0.03 𝑟 = 0.04 𝑟 = 0.02 𝑟 = 0.03 𝑟 = 0.04 𝑟 = 0.02 𝑟 = 0.03 𝑟 = 0.04 

-0.5 0.64 1.07 2.23 0.40 0.64 1.14 0.8 1.39 3.33 
-1.0 0.93 1.66 4.58 0.57 0.91 1.75 1.19 2.3 10.8 
-1.5 1.30 2.61 29.18 0.76 1.27 2.85 1.69 4.02 ∞ 
-2.0 1.75 4.41 ∞ 0.98 1.77 5.68 2.35 9.03 ∞ 
-2.5 2.34 9.67 ∞ 1.24 2.50 ∞ 3.29 ∞ ∞ 
-3.0 3.14 ∞ ∞ 1.55 3.72 ∞ 4.74 ∞ ∞ 
-5.0 22.85 ∞ ∞ 3.79 ∞ ∞ ∞ ∞ ∞ 

 
Table 2. Long-run ratio of bequeathable wealth to annuitized wealth 𝑧∗.  

Other parameters: 𝛽 = 0.02,𝜆 = 1
12

,Λ = 1
3
. 

 
 

Model real 
interest 

rate, 
 𝑟 

Actuarially 
fair 

annuity 
return, 𝑅𝐴 

Rate of return differentials 
Δ𝑟𝑇 – individual rate of return on annuities less Treasury bond yield 
Δ𝑟𝐶 – individual rate of return on annuities less corporate bond yield 
Friedman and Warshawsky  

[1990, Table III] 
Mitchell et al. 

[1999, Table 4] 
Δ𝑟𝑇 = −0.0421 Δ𝑟𝐶 = −0.0613 Δ𝑟𝑇 = −0.0221 Δ𝑟𝐶 = −0.0369 

0.02 0.0836 0.42 0.61 0.22 0.37 
0.03 0.0922 0.39 0.56 0.21 0.34 
0.04 0.1008 0.36 0.51 0.19 0.31 

 
Table 3. Annuity load factor 𝜋 calculated from the empirical rate of return differentials. 

  



 𝑟 = 0.02 𝑟 = 0.03 𝑟 = 0.04 
𝛾 𝜋 = 0.2 𝜋 = 0.3 𝜋 = 0.4 𝜋 = 0.3 𝜋 = 0.4 𝜋 = 0.3 𝜋 = 0.4 

-0.5 0.31 0.64 0.64 0.77 1.07 0.78 2.23 
-1.0 0.27 0.64 0.93 0.65 1.66 0.61 2.33 
-1.5 0.24 0.56 1.30 0.54 1.53 29.18 29.18 
-2.0 0.25 0.49 1.13 0.54 1.33 na na 
-2.5 0.24 0.48 0.99 0.50 1.18 na na 
-3.0 0.23 0.45 0.92 na na na na 
-5.0 ≤0.20 0.35 0.68 na na na na 

 
Table 4. Threshold ratio of bequeathable wealth to annuitized wealth, 𝑧̅, from Proposition 7. Entries 

where Figure 4 phase diagram applies are labelled with “na”.  

Other parameters: 𝜔
𝛾

1−𝛾 = 3.64,𝛽 = 0.02,𝜆 = 1
12

,Λ = 1
3
. 

 
 

𝛾 𝜔
𝛾

1−𝛾 = 3.64 𝜔
𝛾

1−𝛾 = 3.00 𝜔
𝛾

1−𝛾 = 4.00 
𝑟 = 0.02 𝑟 = 0.03 𝑟 = 0.04 𝑟 = 0.02 𝑟 = 0.03 𝑟 = 0.04 𝑟 = 0.02 𝑟 = 0.03 𝑟 = 0.04 

-0.5 0.79 1.16 1.86 0.57 0.81 1.23 0.92 1.38 2.31 
-1.0 0.79 1.10 1.65 0.57 0.78 1.10 0.92 1.31 2.03 
-1.5 0.79 1.07 1.53 0.57 0.76 1.03 0.92 1.27 1.88 
-2.0 0.79 1.05 1.46 0.57 0.74 0.99 0.92 1.25 1.79 
-2.5 0.79 1.04 1.42 0.57 0.73 0.96 0.92 1.23 1.73 
-3.0 0.79 1.03 1.38 0.57 0.72 0.94 0.92 1.22 1.69 
-5.0 0.79 1.00 1.31 0.57 0.71 0.89 0.92 1.19 1.59 

 
Table 5. Threshold ratio of bequeathable wealth to annuitized wealth, 𝑧̅, from Proposition 7 

corresponding to value function 𝑣̅. 
Other parameters: 𝛽 = 0.02,𝜆 = 1

12
,Λ = 1

3
. 

  



 
 

𝛾 Initial condition 𝑧 = 0.3 Initial condition 𝑧 = 0.4 Initial condition 𝑧 = 0.5 
𝑟 = 0.02 𝑟 = 0.03 𝑟 = 0.04 𝑟 = 0.02 𝑟 = 0.03 𝑟 = 0.04 𝑟 = 0.02 𝑟 = 0.03 𝑟 = 0.04 

-0.5 0.83/0.58 0.84/0.61 0.86/0.63 0.85/0.63 0.86/0.66 0.87/0.68 0.87/0.67 0.88/0.69 0.89/0.71 
-1.0 0.89/0.68 0.90/0.70 0.91/0.72 0.91/0.73 0.91/0.75 0.92/0.76 0.92/0.77 0.93/0.78 0.93/0.79 
-1.5 0.93/0.75 0.93/0.77 0.94/0.78 0.94/0.80 0.94/0.81 0.95/0.82 0.95/0.83 0.95/0.84 0.96/0.85 
-2.0 0.95/0.80 0.95/0.81 na 0.96/0.84 0.96/0.85 na 0.97/0.87 0.97/0.88 na 
-2.5 0.96/0.84 0.97/0.85 na 0.97/0.88 0.97/0.88 na 0.98/0.90 0.98/0.91 na 
-3.0 0.97/0.87 na na 0.98/0.90 na na 0.98/0.92 na na 
-5.0 0.99/0.93 na na 0.99/0.95 na na 1.00/0.97 na na 

 
Table 6. Basic model: fraction of households dying with a bequest > 0/> 𝑎. Entries where Figure 4 

phase diagram applies are labelled with “na”.  

Other parameters: 𝜔
𝛾

1−𝛾 = 3.64,𝛽 = 0.02,𝜆 = 1
12

,Λ = 1
3
. 

 
 
 


