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1 Introduction

Many important outcomes are binary such as program receipt, labor market status, and

educational attainment. These outcomes are frequently misclassified in data sets due to

interviewer or respondent error or other reasons. It is a common misconception that mea-

surement error in a dependent variable does not lead to bias, but this result requires classical

measurement error. Misclassification of a binary variable is necessarily non-classical mea-

surement error, and thus leads to bias. However, there are few general results on the direction

and magnitude of the bias in binary choice models. In this paper, we examine the properties

of binary choice models with measurement error in the dependent variable. We then discuss

the performance of several estimators designed to account for measurement error. We rely

on a combination of analytical results, simulations, and results from an application to the

Food Stamp Program.

Several papers have examined misreporting in surveys and have found high rates of mis-

classification in binary variables such as participation in welfare programs (Marquis and

Moore, 1990; Meyer, Mok and Sullivan, 2009; Meyer, Goerge and Mittag, 2014), Medicaid

enrollment (Call et al., 2008; Davern et al., 2009a,b) and education (Black, Sanders and

Taylor, 2003). Bound, Brown and Mathiowetz (2001) provide an overview of misreporting

in survey data. In the case of program reporting, false negatives, i.e. recipients that fail to

report receiving program benefits, seem to be the main problem with rates of underreporting

sometimes exceeding 50%. As our application to food stamp receipt shows, measurement

error can badly bias substantive studies with binary outcomes such as those examining take-

up of other programs (e.g. Bitler, Currie and Scholz, 2003; Haider, Jacknowitz and Schoeni,

2003), labor market status (e.g. Poterba and Summers, 1995) or educational attainment

(e.g. Eckstein and Wolpin, 1999; Cameron and Heckman, 2001). Since our application deals

with misreporting in survey data, we use the terms misclassification and misreporting in-

terchangeably, but all our results remain valid if misclassification arises for other reasons.

A frequent cause of error besides misreporting is subjective classification of a dependent
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variable, for example whether there is a recession or not (e.g. Estrella and Mishkin, 1998)

or the presence of an armed civil conflict (e.g Collier and Hoeffler, 1998; Fearon and Laitin,

2003). Similarly, a proxy variable is often used instead of the true variable of interest, such

as when arrests or incarcerations are used instead of crimes (e.g. Levitt, 1998; Lochner and

Moretti, 2004). Another reason for misclassification is prediction error. This problem may

arise, for example, if some observations of the dependent variable are missing and imputed

values are substituted. Moreover, there is no ex ante reason to believe that misclassification

is random. This randomness assumption may be more likely to be true if misclassification

stems from coding errors or failure to link some records.

A few papers have analyzed the consequences of misreporting for econometric models. For

example, Bollinger and David (1997, 2001) and Meyer, Goerge and Mittag (2014) examine

how misclassification affects estimates of food stamp participation and Davern et al. (2009b)

analyze the demographics of Medicaid enrollment. These papers show that misclassification

affects the estimates of common econometric models and distorts the conclusions drawn from

them in meaningful ways. From these studies we know that misreporting can seriously alter

estimates from binary choice models, but we know very little about the way misreporting

affects estimates in general. This situation is aggravated by the scarcity of analytic results

on bias in binary choice models. Carroll et al. (2006) and Chen, Hong and Nekipelov (2011)

provide overviews of the literature on measurement error in non-linear models and there is

a small literature on misspecification in binary choice models (e.g. Yatchew and Griliches,

1985; Ruud, 1983, 1986), but general results or formulas for biases are scarce and usually

confined to special cases for specific models. In a key paper, Hausman, Abrevaya and Scott-

Morton (1998) show that the marginal effects in the observed mismeasured data differ from

the true ones in proportion to the sum of the misclassification probabilities when the errors

are unrelated to covariates.

In the more general case, we present a closed form solution for the bias in the linear prob-

ability model and decompose the bias in non-linear binary choice models such as the Probit
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model into four components. We present closed form expressions for three bias components

and an equation that determines the fourth component. These results help to explain the

bias found in the studies above and are informative about the likely size and direction of

bias in cases where the “true” dependent variable is not available. We illustrate these results

using simulations and data on food stamp receipt from Illinois and Maryland matched to

the 2001 American Community Survey (ACS) and the 2002-2005 Current Population Sur-

vey (CPS). We show how these biases affect coefficients in a model of food stamp receipt.

We then use our results to interpret biased coefficients and assess whether substantive con-

clusions obtained from misclassified data are likely to be valid. Some features of the true

parameters are often robust to misclassification and we consider conditions under which one

can use the biased coefficients to learn about features of the true coefficients such as signs,

bounds and relative magnitudes.

While little is known about how misclassification biases estimates, several papers have

attempted to correct estimates for misclassification or proposed estimators that are consistent

in the presence of misclassification. In terms of binary choice models, Bollinger and David

(1997) and Hausman, Abrevaya and Scott-Morton (1998) introduce consistent estimators for

the Probit model. Unless the true parameters are known, it is impossible to test whether

these estimators or other corrections improve parameter estimates. In most cases, a change

indicates a problem with the original model, but by itself this does not imply that the

correction is an improvement.

We use the same data and model of food stamp participation mentioned above to analyze

the performance of several estimators for the Probit model that are consistent under certain

forms of misclassification. We examine their performance and assess how sensitive they

are to violations of their assumptions for consistency and how useful it is to incorporate

additional information on the nature of misclassification. Our results suggest that some

of the corrections work very well, but that making false simplifying assumptions on the

misclassification may lead to results that are even worse than ignoring the problem altogether.
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We find that a good model of misclassification can serve as a substitute for accurate data.

However, a bad model of misclassification can make things worse than the naive Probit

estimates. This result shows that it is important to know whether there is misclassification

in the data and whether it is related to the covariates.

The next section introduces the models and discusses the bias in theory, section 3 ex-

amines them in practice using the matched survey data and simulation studies. Section 4.1

introduces the consistent Probit estimators, section 4.2 evaluates their performance when

misclassification is unrelated to the covariates while section 4.3 analyzes their performance

when misclassification is related to the covariates. Section 5 concludes.

2 Bias due to Misclassification of a Binary Dependent

Variable

2.1 Model Setup and Previous Results

Throughout this paper, we are concerned with a situation in which a binary outcome y is

related to observed characteristics X, but the outcome indicator is subject to misclassifica-

tion. Let yTi be the true indicator for the outcome of individual i and yi be the observed

indicator that is subject to misclassification. The sample size is N and NMC observations

are misclassified, NFP of which are false positives and NFN are false negatives. We define

the probabilities of false positives and false negatives conditional on the true response as

Pr(yi = 1|yTi = 0) = α0i

Pr(yi = 0|yTi = 1) = α1i

We refer to them throughout the paper as the conditional probabilities of misreporting.

Additionally, we define a binary random variable M that equals one for individual i if
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individual i’s outcome is misreported

mi =

{
0 if yTi = yi

1 if yTi ̸= yi

We consider two cases, in one the true model is a linear probability model, in the other it

is a Probit model. In case of the linear probability model, E(y|X) = Xβ, so the researcher

would like to estimate the following OLS regression

yTi = x′
iβ

LPM + εLPM
i

to obtain the K-by-1 vector β̂LPM , an estimate of the marginal effects of X on the true

outcome. Since yTi is not observed this regression is not feasible. Using only the observed

data yields the observed model

yi = x′
iβ̃

LPM + ε̃LPM
i

Section 2.2 derives this bias in the observed model and shows that it is only zero in special

cases.

If the true model is a Probit model, the specification can be motivated by the existence

of a latent variable yT∗
i such that

yTi = 1{yT∗
i = x′

iβ + εi ≥ 0}

where εi is drawn independently from a standard normal distribution and β is the K-by-1

coefficient vector of interest. Extending our results to other binary choice models in which

εi is drawn from a different distribution is straightforward. If there is no misreporting,

a consistent estimate of the coefficient vector β can be obtained by maximum likelihood.

Estimating a Probit model using the observed indicator yi instead of yTi yields ˆ̃β, which
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is potentially biased. Little is known about bias due to measurement error in non-linear

models (see Carroll et al., 2006). Yatchew and Griliches (1984, 1985) derive some results on

misspecification in Probit models. We use their results on the effect of omitted variables and

misspecification of the distribution of the error term in the derivation of the bias in section

2.3. The papers mentioned above that propose estimation strategies that are consistent in

the presence of misreporting show that ignoring the problem leads to inconsistent estimates,

but do not discuss the nature of this inconsistency. Hausman, Abrevaya and Scott-Morton

(1998) provide the relation between marginal effects in the observed data and marginal

effects in the true data if misreporting is not related to the covariates. They assume that

the probabilities of false negatives and false positives conditional on the true response are

constants for all individuals, i.e.

α0i = α0

α1i = α1

∀i (1)

We refer to this kind of misreporting as “conditionally random”, because conditional on the

true value, yTi , misreporting is independent of the covariates X. Hausman, Abrevaya and

Scott-Morton (1998) show that under this assumption the marginal effects in the observed

data are proportional to the true marginal effects

∂ Pr(y = 1|x)
∂x

= (1− α0 − α1)f(x
′β)β (2)

where f() is the derivative of the link function (e.g. the normal cdf in the Probit model and

the identity function in the linear probability model), so that f(x′β)β are the true marginal

effects. The constant of proportionality is the same for all elements of β and is linearly

decreasing in the two conditional probabilities of misreporting. If, as assumed in Hausman,

Abrevaya and Scott-Morton (1998), α0 + α1 < 1, the marginal effects are attenuated: they

are smaller in absolute value in the observed data than the true marginal effects, but retain

the correct signs.
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This result is informative about the differences between the observed and the true stochas-

tic models, but it is a relationship between the true parameters that does not necessarily

extend to estimates of these parameters from a misspecified model. However if one has con-

sistent estimates of the marginal effects in the observed data,
̂∂ Pr(y=1|x)

∂x
, equation (2) implies

that they are all attenuated proportionally, which suggests that inference based on coeffi-

cient ratios may be valid. Coefficient ratios are informative about the relative magnitude

of the coefficients and, if the sign of one coefficient is known, their direction. If one also

has consistent estimates of the probabilities of misreporting, α̂0 and α̂1, one can calculate

(1− α̂0− α̂1)
−1 ̂∂ Pr(y=1|x)

∂x
. Equation (2) implies that this approach consistently estimates the

true marginal effects. However, as discussed further below, if the true model is a Probit,

running a Probit on the observed data only yields a consistent estimate of the marginal ef-

fects in the observed data in special circumstances. Thus, using the Probit marginal effects

from the observed data in (2) usually yields inconsistent estimates of true marginal effects.

However, we argue that the inconsistency can be expected to be small in many applications.

This problem does not arise in the linear probability model, because a linear probability

model on the observed data yields consistent estimates of the marginal effects in the ob-

served data. Additionally, the relation in (2) extends from marginal effects to coefficients,

because they are equal in the linear probability model. Consequently, even though (2) is

about true parameters and not about bias, it may still be useful to infer something from

estimates that use the observed data. Section 3 examines in how far these implications are

useful in practice.

2.2 Bias In The Linear Probability Model

Measurement error in binary variables is a form of non-classical measurement error (Aigner,

1973; Bollinger, 1996) and the bias in OLS models when the dependent variable is subject to

non-classical measurement error is the coefficient in the (usually infeasible) regression of the

measurement error on the covariates (Bound, Brown and Mathiowetz, 2001). In our case,
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the dependent variable is binary, so the measurement error takes on the following simple

form:

ui = yi − yTi =


−1 if i is a false negative

0 if i reported correctly

1 if i is a false positive

Consequently, the coefficient in an OLS regression of the measurement error on the covariates

X (if it were feasible) would be:

δ̂ = (X ′X)−1X ′u (3)

δ̂ can only be zero if the measurement error is not correlated with X, which is unlikely: If a

variable is a relevant regressor, Pr(y = 1) is a function of X. Since u = −1 can only occur if

y = 1, this creates a dependence between u and X1. Equation (3) implies that the coefficient

in an OLS regression of the misreported indicator on X, ˆ̃βLPM , is

ˆ̃βLPM = β̂LPM + δ̂

Consequently, the bias is

E( ˆ̃βLPM)− βLPM = E(δ̂) (4)

This implies that a consistent estimate of the expectation of δ̂ is sufficient to consistently

estimate the coefficients in the linear probability model with misreporting. Such an estimate

could be available from a validation study, but it requires the assumption that misreporting

is the same in the sample that is used to obtain the estimate of the expectation of δ̂ and the

sample used to estimate β and that the same covariates are used. However, the measurement

error only takes on three values, so the formula for δ̂ simplifies to

δ̂ = (X ′X)−1X ′u = (X ′X)−1

N∑
i=1

xiui

1Note, however, that if misclassification probabilities conditional on yT depend on X in a peculiar way,
X ′u can still be 0.
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= (X ′X)−1

 ∑
i s.t. yi=1
&yTi =0

xi · 1 +
∑

i s.t. yi=yTi

xi · 0 +
∑

i s.t. yi=0
&yTi =1

xi · (−1)


= (X ′X)−1(NFP x̄FP −NFN x̄FN)

= N(X ′X)−1

(
NFP

N
x̄FP − NFN

N
x̄FN

)

where x̄FP and x̄FN are the means of X among the false positives and false negatives.

Consequently in expectation2

E(δ̂) = N(X ′X)−1[ Pr(y = 1, yT = 0)E(X|y = 1, yT = 0)

− Pr(y = 0, yT = 1)E(X|y = 0, yT = 1)] (5)

That is, the bias in ˆ̃βLPM depends on the difference between the conditional means of X

among false positives and false negatives where these conditional means are weighted by the

probability of observing a false negative or positive. The bias is this vector of differences

pre-multiplied by the inverse of the covariance matrix of the data.

Consequently, misclassifying the dependent variable from 1 to 0 at higher values of a

particular variable, while holding everything else fixed, decreases the estimated coefficient

on that particular variable while misclassifying it from 0 to 1 increases it. The opposite

effect occurs at lower values of the variable. Note that this result can be overturned if

misclassification also affects the other components of the vector in brackets. Misclassifying

more observations (i.e. increasing one of the probabilities of misreporting) amplifies this

effect. This discussion also illustrates that the bias will only be zero in knife-edge cases

in which the expression in brackets is 0. Neither equal probabilities of misreporting nor

(conditional) independence of X and misreporting are sufficient for the bias to be zero.

Equation (5) only depends on the probabilities of misreporting and the conditional means

of the covariates, so one only needs these quantities to correct the bias. Even if one does not

2This assumes that X is non-stochastic. The extension to the stochastic case is straightforward.
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know them, one may have an idea about their magnitude from previous studies or theory.

In such cases equation (5) can be used to assess the likely direction and size of the bias. It

makes sense that the bias depends only on conditional means, because the linear probability

model is estimated by OLS, so the parameters are estimated from the (conditional) means

only.

If the conditional probabilities of misreporting are constants as in Hausman, Abrevaya

and Scott-Morton (1998), the results above simplify to

E( ˆ̃βLPM
k ) = (1− α0 − α1)β

LPM
k ∀k ̸= 0 (6)

for the slope coefficients3. This confirms that if the true model is a linear probability model

and misreporting is not correlated with X, one can use OLS on the observed data to obtain

unbiased estimates of the marginal effects on the observed indicator, ∂ Pr(y=1|x)
∂x

. Conse-

quently, in such cases, one can use equation (2) to correct both coefficients and marginal

effects for misreporting if one knows the conditional probabilities of misreporting.

2.3 Bias In the Probit Model

While deriving the bias for the linear probability model only required the modification of

existing results to a special case, such general results do not exist for non-linear models.

We first show that misreporting of the dependent variable is equivalent to a specific form of

omitted variable bias and then use results on the effect of omitting variables to decompose

the bias due to misreporting. The results presented below are for the Probit model, but the

extension to other binary choice models such as the Logit is straightforward.

3For the intercept: E( ˆ̃βLPM
0 ) = α0 + (1− α0 − α1)β

LPM
0 . See appendix A for a proof.
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2.3.1 Transformation Into An Omitted Variable Problem

The true data generating process without misreporting is assumed to be

yTi = 1{x′
iβ + εi ≥ 0}

so that, with mi the indicator of misreporting, the data generating process for the misre-

ported data is

yi =

{
1{x′

iβ + εi ≥ 0} if mi = 0

1{x′
iβ + εi ≤ 0} if mi = 1

⇔

yi =

{
1{x′

iβ + εi ≥ 0} if mi = 0

1{−x′
iβ − εi ≥ 0} if mi = 1

(7)

Thus, the true data generating process has the following latent variable representation:

yi∗ =

{
x′
iβ + εi if mi = 0

−x′
iβ − εi if mi = 1

⇔

yi∗ = (1−mi)(x
′
iβ + εi) +mi(−x′

iβ − εi) ⇔

yi∗ = x′
iβ + εi︸ ︷︷ ︸

Well-Specified Probit Model

−2mix
′
iβ − 2miεi︸ ︷︷ ︸

Omitted Variable

(8)

The first two terms form a well specified Probit, because εi is not affected by misreporting, so

it still is a standard normal variable. This transformation into an omitted variable problem

is helpful for the results below because Yatchew and Griliches (1984, 1985) discuss omitted

variable bias in Probit models. Much of the analysis below follows their arguments applied

to the special case of misreporting.

We can decompose each of the omitted variable terms into its linear projection on X and

deviations from it:

−2mix
′
iβ = x′

iλ+ νi

−2miεi = x′
iγ + ηi

(9)
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Substituting this back into the equation (8) gives:

yi∗ = x′
i (β + λ+ γ)︸ ︷︷ ︸
biased coefficient

+ εi + νi + ηi︸ ︷︷ ︸
misspecified error term

⇔

yi∗ = x′
iβ̃ + ε̃i

(10)

An immediate implication of (10) is that the observed data do not conform to the assump-

tions of a Probit model unless ε̃i is drawn independently from a normal distribution that is

identical for all i. While ε̃ is uncorrelated withX and has a mean of zero by construction, it is

unlikely that it would have constant variance and cannot come from a normal distribution.4

Consequently, running a Probit on the observed data does not yield consistent estimates of

the marginal effects in the observed data, so that using equation (2) to obtain estimates of

the true marginal effects is inconsistent.

In summary, equation (10) highlights three violations of the assumptions of the original

Probit model, leading to three effects of misreporting. First, due to the omitted variables,

the linear projection of the latent variable is Xβ̃ instead of Xβ. Second, the variance of the

misspecified error term ε̃ is different from the variance of the true error term ε. Finally, the

error term ε̃ is not drawn from a normal distribution that is identical for all observations.

The next sections discuss the implications of the violation of these assumptions for maximum

likelihood estimates of β. We start by deriving an expression for the estimate of β̃ that one

would obtain if ε̃ were a regular iid normal error term. There are two reasons for doing

this despite the fact that ε̃ is not iid normal: First, we argue below that this may often

provide a useful and tractable approximation to the biased coefficients. Second, equation (10)

describes a Probit model with parameter β̃ and misspecified functional form of the error term,

so a standard Probit does not consistently estimate β̃ because of additional bias from the

functional form misspecification. However, obtaining formulas for β̃ as an intermediate step

allows us to apply results from the literature on functional form misspecification in binary

4That they cannot be normal can be seen from the fact that the omitted variables have point mass at 0.
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choice models (Ruud, 1983, 1986; Yatchew and Griliches, 1985) to derive how parameter

estimates of a Probit model will differ from β̃ in a second step. Such bias may arise from

the difference in the variances of ε and ε̃, heteroskedasticity or the higher order moments

of the distribution of the misspecified error term being different from those of the normal

distribution.

2.3.2 Bias In the Linear Projection

The first component of the bias is the result of the coefficients on X incorporating the linear

projection of the omitted terms. Two terms are omitted, so the linear projection has two

parts that are analogous to the two bias terms Bound et al. (1994) derive for linear models.

The first term arises from a relation between misreporting and the covariates X. The second

part stems from a relation of misreporting and the error term ε. Equations (9) are linear

projections, so they can be analyzed like regression equations except for the fact that they

are only conditional expectations in special cases. The familiar linear projection formula

gives

λ̂ = −2(X ′X)−1X ′SXβ (11)

where S is an N -by-N matrix with indicators for misreporting on the diagonal. Equation

(11) shows that λ̂ can be interpreted as minus twice the coefficient on X when regressing

a variable that equals the linear index Xβ for misreported observations and 0 for correctly

reported observations on X. Under the usual Probit assumptions, N−1X ′X converges to the

uncentered variance-covariance matrix of X. Let plim
N→∞

N−1X ′X = Q, which is positive defi-

nite. Additionally, we define the probability limit of the uncentered covariance matrix of X

among the misreported observations as plim
N→∞

N−1
MC(X

′X|M = 1) = QMC . A typical element

(r, c) of X ′SX is
∑N

i=1 xrimixci, whereas a typical element (r, c) of X ′X is
∑N

i=1 xrixci. From

the sums in X ′X, S selects only the xi that belong to misreported observations, so that

plim
N→∞

1

N
X ′SX = plim

N→∞

NMC

N
plim
N→∞

N−1
MC (X ′X|M = 1)
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= Pr(M = 1)QMC

i.e. the term converges to the uncentered covariance matrix of X among those that misreport

multiplied by the probability of misreporting. Thus, the probability limit of λ̂ is

plim
N→∞

λ̂ = −2Pr(M = 1)Q−1QMCβ (12)

Equation (12) shows that the bias from this source cannot be zero for all coefficients if there

is any misreporting, i.e. if Pr(M = 1) ̸= 0 unless all misclassified observations have identical

values of all covariates. Otherwise, both right hand side matrices are positive definite, so

lambda has positive rank, i.e. it contains non-zero elements. Thus, while some elements

of λ can be 0 in special cases, misclassification necessarily induces bias in some coefficients

since not all of them can be 0. Multiplication by −2Pr(M = 1) creates a tendency for the

bias to be in the direction opposite from the sign of the coefficient, which reduces to the

rescaling effect if misreporting is not related to X. This effect can be amplified or reduced

by Q−1QMC , which introduces an additional (but matrix valued) rescaling factor due to the

relation of misreporting to X. Both matrices are positive definite, so the diagonal elements

are positive, which creates a tendency for λ and β to have different signs, causing the bias to

be in the opposite direction from the sign of the coefficient. However, unless the off-diagonal

elements are zero, bias from other coefficients “spreads” and may reverse this tendency.

In summary, the magnitude of the bias depends on three things: all else equal, it is large

if the probability of misclassification is large, misclassification comes from a wider range of

X or is more frequent among extreme values of X. The second point follows from the fact

that in such cases the conditional covariance matrix is large relative to the full covariance

matrix. The third effect is due to the covariance matrices being uncentered, so if the mean

of X among the misclassified observations differs a lot from that in the general sample, the

bias will be larger. This is an intuitive leverage result: Observations that are further from
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the center of the data have a larger influence on the linear projection.

The second component of the bias in the linear projection stems from the fact that

misclassification may create a relation between X and the error term. Using the standard

formula for linear projections, equation (9) and the definition of S from above, it is:

γ̂ = −2(X ′X)−1X ′Sε (13)

γ̂ can also be interpreted as minus twice the regression coefficient on X when regressing a

vector that contains εi for misreporters and zeros for all other observations on X. Using

exactly the same arguments as above yields

plim
N→∞

γ̂ = −2Pr(M = 1)Q−1plim
N→∞

N−1(X ′ε|M = 1) (14)

While plim
N→∞

N−1X ′ε = 0 by assumption, this restriction does not determine the conditional

covariance between X and the error term, plim
N→∞

N−1(X ′ε|M = 1). The conditional covariance

and thus plim
N→∞

γ̂ will be 0 if besides the assumed independence between X and ε it is also

true that ε and M are independent as well. If X is independent of ε and M and the model

includes an intercept, the slope coefficients will be unbiased. However, if the probability of

misreporting depends on the true value yT , because the determinants of false positives and

false negatives differ, the bias is unlikely to be 0. In this case, M can only be independent

of X or ε and is likely to depend on both.

2.3.3 Rescaling Bias

The second effect of misclassification is a rescaling effect that always occurs when misspeci-

fication affects the variance of the error term in Probit models. The coefficients of the latent

variable model are only identified up to scale, so one normalizes the variance of the error

term to one, which normalizes the coefficients to β/σε. Consequently, misspecification that

affects the variance of the error term leads to coefficients with the wrong scale. In the ab-
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sence of the additional bias discussed below (i.e. if ε̃ were iid normal), estimating (10) by a

Probit model gives

plim
N→∞

ˆ̃β =
β̃

SD(ε̃)
=

β + λ+ γ

SD(ε+ ν + η)
≡ β̄ (15)

One may expect the error components due to misreporting to increase the variance of the

error term, i.e. SD(ε̃) > SD(ε), so the rescaling will tend to result in a bias towards zero.

However, cases in which the variance decreases are possible if misreporting depends on ε. The

rescaling factor is the same for all coefficients, so it does not affect their relative magnitudes.

2.3.4 Bias Due To Misspecification of the Error Distribution

If ε̃ were iid normal, estimating equation (10) by a Probit model would yield a consistent

estimate of β̄ as given by (15). However, as was discussed above, ε̃ will not have the

normality and homoskedasticity of ε, so that (10) additionally suffers from misspecification

of the error term. This causes bias in addition to the one given by (15), i.e. one cannot

obtain a consistent estimate of β̄ by running a Probit on the observed data. Ruud (1983,

1986) characterizes this bias and discusses special cases in which the bias is proportional

for all coefficients, but closed form solutions for the bias due to misspecification of the error

distribution do not exist. Adapting a result from Yatchew and Griliches (1985) to our case

provides an implied formula for the exact bias. Taking the probability limit of N−1 times

the first order conditions of the log-likelihood function, the parameter estimate converges to

the vector b that solves

∫
fX(xj)

x′
jϕ(x

′
jb)

Φ(x′
jb)(1− Φ(x′

jb))

[
Fε̃|X=xj

(−x′
jβ̄)− Φ(−x′

jb)
]
dxj = 0 (16)

where Fε̃|X=xj
is the conditional cumulative distribution function of ε̃/V ar(ε̃), i.e. the mis-

specified error term normalized to have (unconditional) variance 1, evaluated at X = xj.

Consequently, Fε̃|X=xj
(−x′

jβ̄) provides the probability that ε̃i/V ar(ε̃) is smaller than −x′
jβ̄

in the sub-population with a specific value of the covariates (X = xj). Thus, it provides the
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probability of observing y = 1 when drawing from the sub-populations with covariates equal

to xj. Note that the left hand side of (16) is the first derivative of a concave function, so the

equation has a unique solution.

If Fε̃|X is a normal cdf with the same variance for all values of X, b = β̄ solves (16) so

that (15) gives the exact bias. Unfortunately, (16) has no closed form solution and can only

be solved numerically for specific cases of Fε̃|X which is usually unknown. Note, however,

that the unconditional distributions, Fε̃ and Φ have the same first and second moments by

construction. Consequently, (asymptotic) deviations of the parameter estimates from β̄ only

occur due to a dependence of the first two moments of Fε̃ on X (e.g. heteroskedasticity)

and differences in higher order moments of the two distributions (so we refer to this bias

component as the “higher order bias”).

We find the bias due to misspecification of the error term to be small in the Monte

Carlo simulations in the next section, but these biases can become large if misclassification

depends heavily on ε or the true value of y. Both are likely to induce asymetries (such as

skewness) in Fε̃, which creates differences between Fε̃|X and Φ that are unlikely to even out

over the sample. If functional form misspecification can be largely ignored, the expressions

for the bias are easier to analyze. In this case, one would also be justified using the result

from Hausman, Abrevaya and Scott-Morton (1998) to obtain an approximation to the true

marginal effects by estimating the observed marginal effects using a Probit model and scaling

them up according to equation (2). The observed marginal effects will not be consistent,

but if misreporting is conditionally random and the higher order bias is small, this may

still provide a good approximation. Appendix B discusses how to further assess the likely

direction and severity of this component of the bias and conditions under which one can

expect (15) to provide a good approximation to the bias.
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3 The Bias in Practice

This section uses administrative data matched to two major surveys to illustrate the appli-

cability of the analytic results from the previous section. Misreporting is correlated with

the covariates in the matched data, but we also examine misreporting that is conditionally

random by conducting a Monte Carlo study in which we induce misreporting in the data

using the probabilities of misreporting we observe in our matched sample. This exercise

leaves the remainder of the data unchanged, so it allows us to focus on misreporting that

is uncorrelated with the explanatory variables. Finally, we perform a Monte Carlo exercise

using simulated data in order to assess the size of the components of the bias in the Probit

model with correlation in more detail, particularly conditions under which the higher order

bias tends to be small.

We use the data employed in Meyer, Goerge and Mittag (2014): the 2001 American

Community Survey (ACS) and the 2002-2005 Current Population Survey Annual Social

and Economic Supplement (CPS ASEC) matched to food stamp administrative data from

Illinois and Maryland. See Meyer, Goerge and Mittag (2014) for details on the data and the

matching process as well as an analysis of the determinants of misreporting. We estimate

simple Probit and linear probability models of food stamp take-up at the household level with

three covariates: a continuous poverty index (income/poverty line) as well as dummies for

whether the head of the household is 50 or older and whether the household is in Maryland.

We restrict the sample to matched households with income less than 200% of the federal

poverty line and adjust the survey weights for the non-random match probability as in Meyer,

Goerge and Mittag (2014). Throughout this paper, we treat the administrative food stamp

indicator as truth, even though it may contain errors such as those due to an imperfect

match to the survey data. Given that there should be few mistakes in the administrative

records and the match rate is high, this assumption seems plausible. Additionally, most of

the analysis below does not require this assumption - the survey data can be considered as

a misreported version of the administrative data even if neither of them represent “truth”.
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Table 1: Bias in the Linear Probability Model, ACS

(1) (2) (3) (4) (5)
Bias MC Bias Bias

Matched Survey Study Survey due to
Data Data (random MR) Data correlation

Poverty index -0.0018 -0.0019 -27.94% 5.56% 33.50%
(0.0001) (0.0001)

Age≥50 -0.1166 -0.1046 -28.93% -10.29% 18.64%
(0.0145) (0.0133)

Maryland -0.0034 -0.0217 -10.03% 538.24% 548.26%
(0.0157) (0.0141)

Note: Sample size: 5945 matched households from IL and MD with income less than 200%
of the federal poverty line. All analyses include a constant term (not reported) and are
conducted using household weights adjusted for match probability. All biases are in % of the
coefficient from matched data. In the MC design, the dependent variable is administrative
FS receipt with misreporting induced with the misreporting probabilities observed in the
actual sample (Pr(FP)=0.02374 and Pr(FN)=0.2596). 500 replications are performed and
we report the average bias in %.

Table 2: Bias in the Linear Probability Model, CPS

(1) (2) (3) (4) (5)
Bias MC Bias Bias

Matched Survey Study Survey due to
Data Data (random MR) Data correlation

Poverty index -0.0023 -0.0021 -42.18% -8.70% 33.48%
(0.0002) (0.0001)

Age≥50 -0.1264 -0.0985 -41.79% -22.07% 19.72%
(0.0174) (0.0151)

Maryland -0.0937 -0.0706 -42.60% -24.65% 17.95%
(0.0184) (0.0156)

Note: Sample size: 2791 matched households from IL and MD with income less than 200%
of the federal poverty line. All analyses include a constant term (not reported) and are
conducted using household weights adjusted for match probability. All biases are in % of the
coefficient from matched data. In the MC design, the dependent variable is administrative
FS receipt with misreporting induced with the misreporting probabilities observed in the
actual sample (Pr(FP)=0.03271 and Pr(FN)=0.3907). 500 replications are performed and
we report the average bias in %.

For the linear probability model we have obtained closed form solutions for the bias that

are straightforward to analyze in both the conditionally random and the correlated case.

The results for both cases are presented in table 1 for the ACS and table 2 for the CPS and

conform to the expectations from section 2.2. The results from the Monte Carlo study in
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column (3) confirm that if misreporting is conditionally random, all slopes are attenuated by

the same factor. In both surveys, this factor is close to its expectation given by equation (2):

1− α0 − α1. The obvious exception is the coefficient on the Maryland dummy in the ACS,

for which the rescaling factor is clearly different. This is due to the fact that this coefficient

is very imprecisely estimated and basically indistinguishable from 0. As is evident from

column (4), this proportionality does not hold in the actual survey data, where misreporting

is related to the covariates. The bias in the correlated case is smaller for all coefficients

except for the imprecise Maryland dummy in the ACS, indicating that the biases partly

cancel. Since the only difference in the data used for column (3) and (4) of table 1 and 2

is the correlation between the misreporting and the covariates, the difference in the biases

is an estimate of the bias induced by correlation. This difference is presented in column (5)

and in our case biases all coefficients away from 0. In both the random and the correlated

case, the bias is always equal to δ̂ as defined by equation (3) (results not presented).

Table 3 examines in how far the implications of equation (2) allow us to learn something

from the biased coefficients as suggested in section 2.1. The first three columns present

coefficient ratios, since equation (2) suggests that if misclassification is conditionally random

the constant of proportionality may cancel. The table contains estimates of the “true”

coefficient ratios from the matched data (Column 1), the bias in the ratios from the survey

data (Column 3, in percent of the true ratio) as well as the average bias in percent of the true

ratio from simulating conditionally random misreporting as described above (Column 2). If

the conditional probabilities of misreporting are known, one can multiply the coefficients by

the constant of proportionality, (1− α0 − α1)
−1 to obtain estimates of the true coefficients.

The last two columns examine whether this improves the estimates in simulations where

misreporting is conditionally random (Column 4) and in the estimates from the survey data,

where misreporting is related to the covariates. Considering the bias found in table 1 and

2, the results are not surprising: Columns (2) and (5) show that if misreporting is indeed

not related to the covariates, their ratios and scaled up versions indicate the right relative
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magnitudes and signs of the coefficients. However, a small bias remains for all coefficients,

which becomes sizable for the imprecisely estimated coefficients. As one would expect, the

results in columns (3) and (5) show that the bias becomes much worse if the assumption

that misreporting is conditionally random fails. As we have seen above, the correlation of

misclassification with the covariates partly cancels the attenuation effect in our application,

so that the rescaling factor under the assumption of no correlation induces an upward bias.

Table 3: What Can Be Learned From Survey Coefficients, LPM

(1) (2) (3) (4) (5)
Coefficient Ratios Bias Rescaled

(relative to age coefficient) Marginal Effects

Matched Bias MC Bias in
Data Study Survey MC Study Survey

ACS
Poverty index 0.0154 1.41% 17.67% 0.37% 36.84%
Age≥50 - - - -0.85% 39.48%
Maryland 0.0292 12.82% 611.46% 25.95% 39.63%

CPS
Poverty index 0.0182 3.51% 17.17% -0.29% 71.43%
Age≥50 - - - 0.97% 73.50%
Maryland 0.7413 5.56% -3.31% -0.44% 73.51%

Note: See note Table 1 and 2

The results for the Probit models are presented in table 4 for the ACS and in table 5 for the

CPS. Column (3) shows that, as in the linear probability model, coefficients are attenuated

by the same factor if misreporting is conditionally random and the coefficient is reasonably

precisely estimated. The rescaling factor is different from 1 − α0 − α1, because coefficients

and marginal effects are not equal in the Probit model. As was discussed above, due to the

higher order bias in the Probit model, (2) does not hold between Probit estimates, but only

between true parameters. So contrary to the linear probability model, this proportionality

is not necessarily the case and may not generalize to other applications.

Column (4) underlines that both the proportionality and the attenuation only apply if

misreporting is conditionally random: The biases are different and some of them are positive,
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Table 4: Bias in the Probit Model, ACS

(1) (2) (3) (4) (5)
Bias MC Bias Bias

Matched Survey Study Survey due to
Data Data (random MR) Data correlation

Poverty index -0.0060 -0.0071 -20.51% 18.33% 38.84%
(0.0004) (0.0005)

Age≥50 -0.4062 -0.4167 -22.15% 2.58% 24.74%
(0.0512) (0.0543)

Maryland -0.0187 -0.0978 -9.08% 422.99% 432.07%
(0.0548) (0.0582)

Note: See note Table 1

Table 5: Bias in the Probit Model, CPS

(1) (2) (3) (4) (5)
Bias MC Bias Bias

Matched Survey Study Survey due to
Data Data (random MR) Data correlation

Poverty index -0.0074 -0.0083 -32.47% 12.16% 44.63%
(0.0005) (0.0006)

Age≥50 -0.4297 -0.3992 -32.17% -7.10% 25.07%
(0.0614) (0.0682)

Maryland -0.3338 -0.3189 -33.15% -4.46% 28.69%
(0.0736) (0.0808)

Note: See note Table 2

indicating a bias away from zero. The bias in the survey data is again smaller in absolute

value than the bias without correlation. Column (5) confirms that the bias induced by

correlation is in the opposite direction of the bias in the conditionally random case, so the

two biases partly cancel. This explains why Meyer, Goerge and Mittag (2014) find that the

bias in a model of program take-up with the same data but many controls is relatively small

given the extent of misreporting in the data. As should be evident from equations (12) and

(14), whether correlation between misclassification and the covariates reduces or exacerbates

the bias depends on the sign and magnitude of the correlations and the true coefficients.

Table 6 examines the implications of equation (2) for Probit models. Columns (1)-(3)

and (6)-(7) are the equivalent of table 3, i.e. they present coefficient ratios and rescaled
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marginal effects. Columns (4) and (5) contain Probit estimates of the observed marginal

effects in the matched data and the survey data, since contrary to the LPM, coefficients and

marginal effects differ. Contrary to the LPM, using a Probit on the survey data does not

yield consistent estimates of the observed marginal effects in the presence of misclassification

due to the rescaling and higher order bias. Nonetheless, the results in table 6 are qualitatively

similar to the results for the LPM in table 3: only a small bias remains in the conditionally

random cases in columns (2) and (6), which supports our conjecture that the bias from

functional form misspecification are small here. However, both ratios and rescaled coefficients

are substantively biased if misclassification is related to X. Taken together, the results in

tables 3 and 6 show that scaling-up may be a promising strategy if there is no correlation,

but that it fails if there is correlation.

Table 6: What Can Be Learned From Survey Coefficients, Probit

(1) (2) (3) (4) (5) (6) (7)
Coefficient Ratios Observed Bias Rescaled

(relative to age coefficient) Marginal Effects Marginal Effects

Matched Bias MC Bias in Matched Survey MC Survey
Data Study Survey Data Data Study Data

ACS
Poverty index 0.0148 2.19% 15.35% -0.0018 -0.0017 1.39% 38.89%
Age≥50 - - - -0.1033 -0.1164 -0.58% 39.50%
Maryland 0.0460 9.40% 409.82% -0.0242 -0.0053 3.66% 39.67%

CPS
Poverty index 0.0172 4.84% 20.73% -0.0019 -0.0021 1.98% 73.68%
Age≥50 - - - -0.0902 -0.1214 2.76% 73.50%
Maryland 0.7768 6.32% 2.84% -0.0721 -0.0943 0.95% 73.37%

Note: See note Table 1 and 2

It is difficult to interpret the bias in the correlated case, because the formulas derived

above for the Probit model offer few general insights on the relative magnitude of the com-

ponents of the bias. For example, it seems likely that attenuation is more pronounced in

the CPS survey coefficients because the rate of misreporting is higher than in the ACS, but

this result could be altered by differences in the other bias components. The numbers in
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column (5) of tables 4 and 5 suggest that these components are similar, but not the same

in the two surveys. In order to obtain more evidence on the determinants and relative sizes

of these components, we perform a simulation study that allows us to control for the factors

that cause the bias components.

We chose parameters that generate data with a similar structure as the observed data. In

particular, we generate two continuous covariates (x1 and x2). x1 is drawn from a standard

normal distribution, x2 is generate from a normal distribution with mean 0.1x1 and variance

1, so it is mildly correlated with x1. The dependent variable is generated according to the

Probit model yT = 1{a + 0.5x1 + 0.5x2 + e ≥ 0} where e is drawn from a standard normal

distribution. The intercept a is chosen such that the mean of yT is always 0.25. We generate

misclassification according to m = 1{c + bx1 + eMC ≥ 0} where eMC is another standard

normal variable.5 Consequently, the misreporting model is the same for false negatives and

false positives in order to keep the results simple and tractable by isolating certain sources

of bias. We also ran simulations in which misreporting depends on yT , but they make m

depend on e and induce an additional source of dependence between m and X. This makes

the results hard to interpret, since they confound multiple sources of bias. We briefly discuss

how the results from these and other more complex models differ from the simpler models

presented here at the end of this section, the complete results are available upon request.

We use this MC design to examine three cases. In the first and second case, we increase

the level of misreporting from 0% to 50% (α0 = α1 = .5) holding everything else constant.

In the first case, b equals 0 so misreporting is not related to x1, while in the second case

b is constant at 0.25 creating a modest correlation. In the third case, we hold the level of

misreporting fixed at 30% and increase b from -1 to 1, so that the correlation between x1

and m increases from roughly -0.5 to 0.5. In all cases we take 100 equally spaced grid points

over the parameter space. At each point, we draw 100 samples of 10,000 observations and

5The results are similar when generating x1 and x2 from uniform or χ2 distributions or making one
of them a dummy variable. They are extremely close when drawing eMC from other distributions such as
the uniform, t- or χ2

1- distribution. Note that misclassification is related to x2 only through the correlation
between x1 and x2.
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run a Probit on yT to obtain β̂ and on the misreported data (yielding β̂MC).6 We record the

bias as the difference between the two estimated coefficient vectors (β̂− β̂MC) as well as the

bias due to λ̂ as given by equation (11), γ̂ as given by (13) and the rescaling bias implied by

(15): (β̂MC + λ̂+ γ̂)/SD(ε̂+ ν̂ + η̂)− (β̂MC + λ̂+ γ̂). We are particularly interested in the

higher order bias, in order to assess when it may be small enough to be ignored. Calculating

this bias analytically requires solving (16) numerically, so we calculate it as the “residual”

bias, i.e. (β̂MC − λ̂− γ̂) · SD(ε̂+ ν̂ + η̂)− β̂.

Figures 1-3 show the bias of the two coefficients in the left panel and the decomposition of

the bias in the coefficient on x1 into the four components in the right panel. The results are

as expected based on the analytic results in the previous section. Our misreporting model

generates misreporting that is independent of ε, so γ̂ is zero as expected. The results confirm

that coefficients are attenuated with the correct sign for reasonable levels of misreporting

and correlation, but that this does not have to hold in general. We find that the higher order

bias is small in all cases, but discuss circumstances under which this will not be the case

below.

Figure 1: MC Design 1 - Uncorrelated Misreporting (b=0)
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The left panel of figure 1 shows that in the uncorrelated case, the bias is the same for

both coefficients (in relative terms) and always between 0% and -100%, i.e. both coefficients

6Throughout, we compute the bias as deviations from β̂ rather than β to reduce the effect of sampling
variation in X and m.
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are always attenuated. As one would expect, it increases continuously until both coefficients

are exactly 0 when 50% of all observations are misreported, implying that the dependent

variable has no information content. It also shows that the bias is not increasing linearly in

the sum of the conditional probabilities of misreporting, α0 and α1, which underlines that

equation (2) is a relation between true values and not between Probit estimates. The bias

decomposition in the right panel shows why this is the case: The bias is mainly due to λ̂,

which is linear and has a slope of -2 as predicted by (12). Additionally, there is a rescaling

bias that is non-linear in the level of misreporting. As misreporting increases, the variance

of ε̃ increases, but the absolute value of ˆ̄β decreases. As can be seen from (15), the former

makes the rescaling bias larger, the latter decreases it again. Overall, the rescaling bias is

small relative to the whole bias and the higher order bias remains negligible for all levels

of misreporting, which suggests that corrections based on equation (2) would not be far off

here.

Figure 2: MC Design 2 - Correlated Misreporting (b=-0.005)
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The only difference in the simulations behind figure 2 is that the coefficient on x1 in

the misreporting model is held fixed at 0.25, i.e. misreporting is modestly related to x1.

It is impossible to hold both the coefficient and the correlation constant as the level of

misreporting increases. We chose to hold the coefficient fixed, which causes the correlation

to decrease from 0 to -0.2 as misreporting increases from 0% to 50%. The main difference

from the uncorrelated case shown in figure 1 is that the coefficient on x1 is less severely
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biased. As in the food stamp data, the bias due to correlation reduces the bias from λ̂, but

is not strong enough to override it. Consequently, the coefficient is attenuated over the whole

range, but does not go to zero even when misreporting reaches 50%. This finding does not

generalize. If one chooses b such that the (negative) correlation is stronger, the coeffcient

can be biased away from zero and if b is positive, the bias is more severe than in figure 1

so that the coeffcient can change its sign. The coefficient on x2 is almost unaffected. The

bias decreases by 0-1.5 percentage points, which we would expect given that the correlation

is positive and low. The bias decomposition is similar to the previous case: the effect is

mainly driven by λ̂ and the higher order bias is small. Contrary to the previous case, λ̂

is not linear, but concave. This pattern is due to the fact that the correlation between x1

and m is increasing at a decreasing rate, so its tendency to reduce the bias increases at a

decreasing rate. The bias due to rescaling looks different, but this difference is mainly due to

its denominator (which is less attenuated and thus bigger in absolute value). The variance

of ε̃ is very similar in the two cases.

Figure 3: MC Design 3 - 30% misreporting, increasing correlation with x1
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In the third case misreporting stays constant at 30%, but we strengthen the correlation

between x1 and m by raising b from -1 to 1, which makes the correlation increase from -0.54

to 0.54. The key insight from the results in figure 3 is that most of the regularities we have

stressed can be overturned for extreme cases: With extreme negative correlation, the bias

exceeds -100% so that the coefficient changes sign and hence the rescaling bias is away from
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zero. For high positive values of the correlation the bias from λ̂ is away from zero. If the

off-diagonal elements in (12) are negative and large relative to the diagonal elements, some

components of λ̂ can become positive and cause a bias away from 0. If we further increase

this correlation, e.g. by allowing the models for false positives and false negatives to differ,

this effect can become strong enough to override the attenuation bias, so that the estimate

is biased away from zero. This simulation shows that while not always true, coefficients

tend to retain their sign but are attenuated for a range of reasonable correlations even at a

relatively high level of misreporting (30%). As in the two previous cases, the higher order

bias is small and the changes in the rescaling bias are mainly driven by the changes in its

numerator, as the variance of ε̃ only decreases from 1.46 to 1.25.

The results from the last simulation raise the question in how far the patterns in these

simulations are artifacts of the simplified simulation setups. In order to assess this question,

we conducted several additional simulation designs in which we made m depend on ε, X

and ε, and varied the predictive power of the outcome model as well as Pr(y = 1). We

repeated all simulations with false positives or false negatives only (as an extreme case of

models of misclassification that depends on yT ) and generated the covariates from other

distribution and with non-linear relationships between x1 and x2. Results are available upon

request. While one can never generalize from such exercises, they underline some features

of the results above that are simplifications to ease exposition and that do not hold more

generally. It should be clear from the setup that γ̂ is zero in the simulations above by

design. If misclassification depends on both X and ε, for example by generating only false

positives or false negatives, γ̂ becomes non-zero and behaves as one would expect based on

equation (13). Similarly, the higher order bias is not small in all cases. Noticeable higher

order bias usually arises when misclassification depends on ε, for example when the models

for false positives and false negatives differ. If becomes sizable in our simulations when

misclassification has an asymmetric effect on the distribution of ε, i.e. if the probability of

misclassification for large values of the error term in the outcome equation is higher or lower
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than for small values. This is in line with the symmetric weighting function in equation (16),

which suggests that symmetric deviations of Fε|X and Φ may average out over the sample.

Under similar circumstances, we find several cases in which the rescaling bias is not toward

zero. While it is unclear in how far the results regarding the higher order bias generalize, the

rescaling bias increases the coefficient in absolute value whenever misclassification decreases

the variance of ε. This is likely to happen when misclassification is monotonically related to

ε, since this shifts weight from one tail of the distribution of the error to the other, which

usually decreases the variance of symmetric distributions.

While we find that the general patterns of the simulations are robust to changes in

the data generating process, the usual caveat of simulations as special and simplified cases

applies. However, one of the most robust findings is that slope coefficients only change sign

if misreporting is strongly related to the covariates or ε in particular ways: none of the

coefficients in any of our applications changes sign, and it only happens for some extreme

cases in the Monte Carlo studies. While one of the components of the bias sometimes biases

the coefficients away from zero, an overall bias away from zero only seems to arise in cases

where M is highly correlated with X or ε. In addition, the coefficient estimates tend to

be attenuated, i.e. lie between 0 and the true coefficient. This is always the case when

misclassification is conditionally random, but can be overturned if it is strongly related to

X. If one can rule out such cases, the estimates can be interpreted as lower bounds for the

true coefficients and one may be able to infer the sign of the coefficients, which is often of

key interest.

In this section, we have illustrated how the bias components derived above affect coef-

ficients in real data both if misreporting is conditionally random and if it is related to the

covariates. In our application to food stamp take up, the correlation with covariates reduces

the bias, which explains why Meyer, Goerge and Mittag (2014) find relatively small bias and

shows that correlation with the covariates is not necessarily bad. We have found that the

linear probability model and the Probit model bias can be assessed by the analytic formulas,
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even though this requires some insight into the likely magnitude of the different components

if misreporting is related to the covariates. We have lined out conditions when the higher

order bias in the Probit model tends to be small, which would allow one to focus on the more

tractable parts of the bias, although one should be cautious in generalizing from MC studies.

Overall, the results underscore the conjectures that the signs of coefficients are robust to a

wide range of misreporting mechanisms and that there is a tendency for the coefficients to

be attenuated even though the results in section 2.3 shows that none of these results should

be expected to hold in all cases.

4 Consistent Estimators

This section introduces estimators for the Probit model that are consistent under different

assumptions and tests their performance. We focus on the Probit model, because it is the

most common parametric model and other maximum likelihood estimators can be corrected

in similar ways. Some semiparametric estimators that relax the normality assumptions have

been proposed (e.g Hausman, Abrevaya and Scott-Morton, 1998), but misspecification and

misclassification are different problems and we focus on the latter here, so we do not examine

the performance of semiparametric estimators. Section 3 showed that corrections for the

linear probability model work well if an estimate of δ̂ is available and to our knowledge no

other consistent estimators have been proposed, so we do not examine corrections for the

linear probability model.

We use six different estimators for the Probit model: three estimators are only consistent

under conditionally random misreporting, and three are still consistent if misreporting is

related to X. Section 4.1 describes the estimators, which are all variants of estimators that

have been proposed elsewhere, section 4.2 evaluates their performance under conditionally

random misreporting, section 4.3 allows misreporting to be related to X.

30



4.1 Theory

All estimators can be derived from equation (7), which implies that the probability that the

observed outcome yi is one is Pr(yi = 1) = α0i(1 − Φ(x′
iβ)) + (1 − α1i)Φ(x

′
iβ). Thus, the

probability distribution of the observed outcome yi can be written as:

Pr(yi) = [α0i + (1− α0i − α1i)Φ(x
′
iβ)]

yi + [1− α0i − (1− α0i − α1i)Φ(x
′
iβ)]

1−yi

This immediately implies the log-likelihood function of the observed data:

ℓ(α, β) =
N∑
i=1

yiln (α0i + (1− α0i − α1i)Φ(x
′
iβ))+

(1− yi)ln (1− α0i − (1− α0i − α1i)Φ(x
′
iβ)) (17)

The parameters of this likelihood are not identified, as there are 2N +K parameters (two αs

for each observation plus theK-by-1 vector β). Hausman, Abrevaya and Scott-Morton (1998)

assume that the conditional probabilities of misclassification (α0i and α1i) are constants as

in (1), which reduces the log-likelihood function in (17) to

ℓ(α0, α1, β) =
N∑
i=1

yiln (α0 + (1− α0 − α1)Φ(x
′
iβ))+

(1− yi)ln (1− α0 − (1− α0 − α1)Φ(x
′
iβ)) (18)

This likelihood function only includes K+2 parameters: α0, α1 and β. They show that these

parameters are identified due to the non-linearity of the normal cdf as long as α0 + α1 <

1. The parameters can be consistently estimated by maximum likelihood or non-linear

least squares. We refer to this estimator as the HAS-Probit. Their assumption that the

probabilities of misreporting are constants implies that α0 is the population probability of a

false positive and α1 is the population probability of a false negative. These probabilities or

estimates of them may be known from validation data or other out of sample information.
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Let α̃0 and α̃1 denote such estimates. As in Imbens and Lancaster (1994) this information

can be incorporated in the estimation procedure. In our application below, the probabilities

can be considered known, because they are either calculated within sample or known from

data on the whole population. Thus, this approach simplifies to plugging α̃0 and α̃1 into

(18), yielding the likelihood of our second estimator:

ℓ(β) =
N∑
i=1

yiln (α̃0 + (1− α̃0 − α̃1)Φ(x
′
iβ))+

(1− yi)ln (1− α̃0 − (1− α̃0 − α̃1)Φ(x
′
iβ)) (19)

Poterba and Summers (1995) take a similar approach to a model of labor market transitions.

If it is unreasonable to assume that α0 and α1 are known, one should use one of the pro-

cedures Imbens and Lancaster (1994) suggest to obtain standard errors, because the usual

standard errors are inconsistent as Hausman, Abrevaya and Scott-Morton (1998) point out.

Meyer, Mok and Sullivan (2009) provide an alternative estimate of α1 that we denote as

α̃′
1. They assume that α̃0 is small and can be ignored and calculate α̃′

1 as the ratio of the

population weighted number of people who report receipt of a program to the number of

people who receive it according to administrative totals. While assuming α̃0 = 0 is a likely

misspecification, estimates of the needed ratio are often available when separate estimates of

α0 and α1 are not. Thus, we also examine the performance of the estimator that maximizes

(18) with α0 constrained to 0 and α1 constrained to α̃′
1:

ℓ(β) =
N∑
i=1

yiln ((1− α̃′
1)Φ(x

′
iβ)) + (1− yi)ln (1− (1− α̃′

1)Φ(x
′
iβ)) (20)

All three estimators assume that conditional on truth, misreporting is independent of

the covariates. The unconstrained HAS-Probit teases out α̂0 and α̂1 from the observed

binary responses, while the other two estimators constrain these parameters based on outside

information. The main benefit of using outside information is the reduction in computational
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complexity and increased robustness in the presence of functional form misspecification,

because separating the probabilities of participation and misreporting no longer heavily

depends on the functional form assumptions. These approaches may or may not increase

the efficiency of the estimators (Imbens and Lancaster, 1994).

In many cases, the assumption that misreporting is conditionally random does not hold.

One can allow the misreporting probabilities to depend on X if one can predict α0i and α1i

based on outside information. Such predictions could be obtained by using the parameters

from models of misreporting that use validation data (e.g. Meyer, Goerge and Mittag, 2014;

Marquis and Moore, 1990) to predict α̂0i and α̂1i in the misreported data. As Bollinger and

David (1997) show, these predicted probabilities can be used in the pseudo-likelihood

ℓ(β) =
N∑
i=1

yiln (α̂0i + (1− α̂0i − α̂1i)Φ(x
′
iβ))+

(1− yi)ln (1− α̂0i − (1− α̂0i − α̂1i)Φ(x
′
iβ)) (21)

They show that maximization of this likelihood yields consistent estimates of β. We refer

to this estimator as the predicted probabilities estimator. Bollinger and David (1997) also

correct the standard errors for the estimation error in the parameters used to predict the

probabilities of misreporting. This correction requires the samples used to estimate the

misreporting parameters and β to be independent, which is not the case in our application,

so we choose to bootstrap the standard errors. Our results confirm their finding that the

correction has a very small effect on the SEs.

The predicted probabilities estimator does not require the researcher to have access to the

validation data used to estimate the probabilities of misreporting, but if both the validation

data and the data used to estimate the outcome model are available, one could estimate

the misreporting model and the outcome model jointly. Assuming that misreporting can be
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described by single index models, the two models imply a system of 3 equations:

Pr(yi|yTi = 0, xFP
i ) =

[
F FP (xFP ′

i γFP )
]yi

+
[
1− F FP (xFP ′

i γFP )
]1−yi

Pr(yi|yTi = 1, xFN
i ) =

[
F FN(xFN ′

i γFN)
]yi

+
[
1− F FN(xFN ′

i γFN)
]1−yi

(22)

Pr(yTi |xi) = Φ(x′
iβ)

yTi + [1− Φ(x′
iβ)]

1−yTi

The first equation gives the model for false positives, which depend on covariates XFP

through the parameters γFP and the link function F FP . Similarly, the second equation

gives the model for false negatives and the third equation the model for the true outcome

of interest, which depends on the parameters of interest, β. In the application below, we

assume that the misreporting models are Probit models, i.e. F FP and F FN are standard

normal cumulative distribution functions. This assumption yields a fully specified parametric

system of equations that can be estimated by maximum likelihood. The likelihood function

is given in appendix C and depends on three components. Which components an observation

contributes to depends on whether it contains
[
yi, y

T
i , x

FP
i , xFN

i

]
,
[
yi, xi, x

FP
i , xFN

i

]
or both.

The set of observations with the first variables identifies the misreporting models, while

the set of observations with the second group of variables identifies the outcome equation

in the predicted probabilities estimator. The intersection of the two sets of observations

identifies both the misreporting model and the outcome model, so in principle it could be

used to estimate the outcome model directly. One may still want to estimate the full model,

either because one is interested in the misreporting model or because one considers the

observations in the intersection to be insufficient to estimate the parameters of interest (e.g.

for reasons of efficiency or sample selection). Such cases often arise if a small subset of the

observations has been validated, so that the union of the two sets is much larger than the

intersection. In this case the validated observations allow estimation of the true outcome

model and the misreporting model while those that were not validated only identify the

observed outcome model. We examine an estimator for this setting that we refer to as the
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joint estimator with common observations. In other cases, like those discussed by Bollinger

and David (1997, 2001), observations that identify the true outcome model by themselves

are not available, so we also consider an estimator in which the intersection of the two sets

of observations is empty: Some observations identify the misreporting model and others the

observed outcome model, but none identify both. Consequently, this estimator has to rely

on less information than the previous estimator. We refer to it as the joint estimator without

common observations.

4.2 Performance of Estimators when Misreporting is Condition-

ally Independent

This section and the following one discus the performance of the estimators that we intro-

duced above. What is unique about our analysis is that we use the actual data for a common

use of binary choice models, and, more importantly, we know the true value of the depen-

dent variable from administrative data. We apply the estimators to the matched survey data

used in part 3 and we begin by examining their performance if misreporting is conditionally

random by conducting Monte Carlo simulations. In these simulations, we induce false posi-

tives and false negatives at the rate actually observed in the real data, but misreporting is

unrelated to X conditional on yTi . We run 500 replications of this MC exercise and record

the average bias and MSE. For the Predicted Probabilities estimator, we obtain estimates of

the probabilities of misreporting (the first stage) from the same sample that we use for the

outcome model (the second stage). The joint estimators allow estimation with two different

samples with different information, so we split the sample in half randomly and use the two

halves for the two samples required for the joint estimators. This choice implies that com-

paring the joint estimators to other estimators in terms of efficiency is not straightforward

because the samples used are different. With the exception of the estimator that fixes α0 at

0, all estimators are consistent in this setting if the Probit assumption holds in the matched

data.
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The results in table 7 show that the HAS-Probit greatly improves upon the uncorrected

Probit estimator (in columns 2 and 6) if one has estimates of α0 and α1 from other sources

that one can employ. Columns 4 and 8 use the “true” probabilities of misreporting which

results in estimates that have little bias (with the exception of the imprecise Maryland

coefficient in the ACS). However, such estimates may not be available, so it is useful to know

whether using biased estimates of the probabilities of misreporting still improves the results.

Inaccurate estimates may be available from other data sources or time periods. For reports

of program receipt, a particularly interesting case is to use the net underreporting rate for

α1 and constrain α0 to 0, which means that the estimates of α0 and α1 are biased, but not

too far off. The results in columns 3 and 7 show that biased estimates of the probabilities

of misreporting affect the slope coefficients. Choosing α0 and α1 to be lower than the true

probabilities leads to a partial correction: the corrected estimates are between the estimates

from the survey and the matched data. In our case, the corrected estimates still substantially

improve the estimates from survey data, but it is unclear in how far this still holds when the

estimates of α0 and α1 are further off.

Table 7: Comparing Estimators - Conditional Random Misreporting

(1) (2) (3) (4) (5) (6) (7) (8)
ACS CPS

Coef. Percent Bias Coef. Percent Bias
Matched Standard α̃0 = 0 α̃0 = .024 Matched Standard α̃0 = 0 α̃0 = .033
Data Probit α̃1 = .19 α̃1 = .26 Data Probit α̃1 = .29 α̃1 = .39

Poverty index -0.0060 -20.51% -11.12% 1.34% -0.0074 -32.47% -18.43% 3.30%
Age≥50 -0.4062 -22.15% -14.45% -2.30% -0.4297 -32.17% -20.20% 0.00%
Maryland -0.0187 -9.08% 15.22% 13.20% -0.3338 -33.15% -24.90% 5.84%
Constant 0.0987 -321.02% -87.58% 10.63% 0.4108 -147.65% -47.69% 7.22%

Note: Sample sizes: 5945 (ACS), 2791 (CPS) matched households, based on 500 replications. See
notes Table 1 and 2 for further details on the samples and MC design. The conditional probabilities of
misreporting in column 4 and 8 are based on the actual probabilities, column 3 and 7 use the (expected)
net under count as the probability of false negatives.

While the results in table 7 underline that the HAS-Probit can yield substantial im-

provements if misclassification is conditionally random and one constrains the probabilities
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of misclassification based on outside information, we find that the HAS-Probit performs

poorly when these probabilities are left unconstrained. In the MC study using the linked

data, we faced problems of convergence7 in many replications and in about 1 percent of

the cases convergence seemed to be achieved, but the results were very far from the true

parameters (by several hundred percent of the true coefficient).8 However, even excluding

replications where convergence may be an issue does not improve over the naive estimators

and leads to large bias in α0 and α1. Sufficiently “trimming” the replications by the abso-

lute value of the coefficients can lead to smaller bias than an uncorrected Probit, but MSE

remains higher and such a procedure is only feasible in MC studies, but not in practice. The

identification of α̂0 and α̂1 in the HAS-Probit comes from the functional form assumptions

on the underlying binary choice model, so the problems are likely due to a violation of these

assumptions.

Due to these problems, we do not report the results from the linked data, but we examined

the problem further using simulated data and the ACS public use files.9 In summary, we find

evidence that misspecification of the functional form of ε (skewness and heavy/light tails)

leads to bias, but does not replicate the pattern we find in the real data. While the bias

is larger than the bias when estimating a Probit on the data without misclassification, the

bias is negligible compared to the uncorrected Probit when there is misclassification even for

substantial departures from normality. This indicates that the HAS-Probit is not sensitive to

7The likelihood is only globally concave in the parameters under certain conditions that may not hold
in practice. See Hausman and Scott-Morton (1994) for the exact conditions.

8While such problems may be due to our implementation of the estimator, we have extensively examined
the issue using simulated data and the ACS public use files. The results, which are available upon request,
indicate that the problems are not due to our implementation. We find similar problems when we use
simulated data where we can start the algorithm at the true values and when using a variety of optimization
routines. Our simulations also indicate that the difficulties with convergence stem from the inclusion of
dummy variables, but the difficulties of convergence are only a computational problem and not associated
with failures to converge. The algorithm reliably indicates convergence failures and rarely fails to converge
in simulated data. We do not find the rare cases of extreme bias in the simulated data, but they persist in
MC studies using the public use data when convergence is carefully monitored. A potential explanation for
this is that they arise from replications in which the likelihood function is not concave, but they may also
be rare cases of unnoticed convergence failures. In practice, they should be easy to recognize and avoid.

9All results are available upon request. We used the ACS public use files instead of the linked data
because they are sufficiently similar and we no longer have access to the confidential linked data.
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misspecification of the functional form of the error term, which suggests that it is unlikely that

semiparametric extensions would solve our problem. However, we find that if one leaves the

probabilities of misclassification unconstrained, the estimator is sensitive to violations of the

assumption that ε is independent of the covariates. In simulations with an omitted variable

that is correlated with the covariates, the HAS-Probit suffers from large bias10 and a similar

pattern as we observe in the real data emerges: the estimates of α0 and α1 are substantially

biased, but relatively stable across replications while the estimates of the coefficients are both

biased and variable. As in the real data, both bias and MSE are small when fixing α0 and α1

at their expected values. These results reinforce our belief that the main problem with the

HAS-Probit is its dependence on the functional form assumption to identify α̂0 and α̂1. If

the probabilities of misreporting are poorly estimated, the estimates of the slope coefficients

can be severely biased, due to the fact that misreporting is not completely corrected (or

has been overcompensated). Knowing these probabilities from outside information fixes this

fragility, and greatly improves the performance of the estimator even if the estimates of α0

and α1 are biased as in the MC study using the linked data.

Results from the estimators that remain consistent under correlated misreporting in the

same MC setup are as expected, so we do not present them. The Predicted Probabilities

estimator has a high MSE, which suggests that one should avoid variables that mainly

introduce noise in the first stage. The two joint estimators do well, particularly the joint

estimator with common observations, but a small bias remains which may be due to the

violation of the functional form assumptions.

In conclusion, these results suggest that if misreporting is conditionally random, estima-

tors that are able to account for misreporting can greatly improve the estimates. However,

unless one has great faith that the underlying binary choice model is correctly specified, it is

useful to have external estimates of the probabilities of misreporting. Otherwise, since the

error rates are hard to estimate, their bias and imprecision can lead to bias in the coefficients

10Note that “bias” in this case indicates deviations from the misspecified Probit without misclassification.
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and convergence problems.

4.3 Performance of Estimators when Misreporting is Not Condi-

tionally Independent

That it is feasible to estimate the parameters of the true model if misreporting is conditionally

random makes it attractive to assume that this is the case. This assumption clearly fails

in our data, so one should be concerned with the performance of the estimators when this

assumption is violated. Our matched data contains both the “true” dependent variable

yT as well as the misreported indicator y. This enables us to compare estimates of the

true coefficients from using the administrative dependent variable to estimates of the biased

coefficients from using the survey reports that suffer from misclassification.

Table 8: Comparing Estimators - Correlated Misreporting

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
ACS CPS

MatchedStandard HAS α̃0 = 0 α̃0 = .024MatchedStandard HAS α̃0 = 0 α̃0 = .033
Data Probit Probit α̃1 = .19 α̃1 = .26 Data Probit Probit α̃1 = .29 α̃1 = .39

Poverty index -0.0060 -0.0071 -0.0188 -0.0082 -0.0094 -0.0074 -0.0083 -0.0082 -0.0107 -0.0146
(0.0004) (0.0005) (0.0019) (0.0006) (0.0007) (0.0005) (0.0006) (0.0006) (0.0008) (0.0015)

Age≥50 -0.4062 -0.4167 -0.8267 -0.4622 -0.5287 -0.4297 -0.3992 -0.3879 -0.4739 -0.6270
(0.0512) (0.0543) (0.1097) (0.0599) (0.0713) (0.0614) (0.0682) (0.0679) (0.0812) (0.1170)

Maryland -0.0187 -0.0978 -0.3187 -0.1140 -0.1238 -0.3338 -0.3189 -0.3058 -0.3604 -0.5760
(0.0548) (0.0582) (0.1137) (0.0640) (0.0757) (0.0736) (0.0808) (0.0805) (0.0977) (0.1655)

α̂0 0.0000 0.0011
(0.0000) (0.0000)

α̂1 0.6114 0.0000
(0.0233) (0.0000)

Note: Sample sizes: 5945 (ACS), 2791 (CPS), SEs in parentheses. All analyses conducted using household weights
adjusted for PIK probability. The conditional probabilities of misreporting in column 5 and 10 are based on the actual
probabilities, column 4 and 9 use the (expected) net undercount as the false negative probability.

We find that all estimators that are consistent only under conditionally random mis-

reporting fare poorly if misreporting is related to the covariates. Table 8 shows that in

both surveys, all estimators suffer from larger bias than the naive estimators. One may

have expected this given the finding that the biases partly cancel for the survey estimates.

Therefore, one should be cautious with the assumption that misclassification is conditionally
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independent of the covariates.

Table 9: Comparing Estimators - Correlated Misreporting, ACS

JE 1: no JE 2:
Survey Matched Pred. common common
Data Data Prob. observations observations

Poverty index -0.0071 -0.0060 -0.0059 -0.0076 -0.0063
(0.0005) (0.0004) (0.0006) (0.0013) (0.0005)

Age≥50 -0.4167 -0.4062 -0.3950 -0.5086 -0.3660
(0.0543) (0.0512) (0.0530) (0.1229) (0.0615)

Maryland -0.0978 -0.0187 0.0050 0.1322 -0.0366
(0.0582) (0.0548) (0.0574) (0.1387) (0.0662)

Constant 0.0686 0.0987 0.1199 0.3088 0.1568
(0.0605) (0.0583) (0.0721) (0.1489) (0.0701)

Weighted Distance 15.672 0 0.694 0.779
Precision 230.824 272.011 220.563 66.650 209.915

Note: Sample size 5945 matched households. The first stage model for (3)-(5) includes age≥50,
a MD dummy, the poverty index and its square. The model for false negatives also includes
a cubic term in poverty. SEs for (3) are bootstrapped to account for the estimated first stage
parameters. All analyses conducted using household weights adjusted for match probability.
A mistake prevented the distance statistic for column (4) from being disclosed.

Tables 9 and 10 present the results from the estimators that are consistent if misreporting

is related to the covariates: The predicted probabilities estimator from Bollinger and David

(1997) and the two joint estimators. The last two rows contain two measures to evaluate

their overall performance compared to the estimates from the survey only and matched

data. The row labeled “Weighted Distance” gives the average distance to the coefficients

from the matched data weighted by the inverse of the variance matrix of the estimates from

the matched data. We only use the variance matrix from the matched data in order to use

a metric of the difference in point estimates that does not depend on the differences in the

efficiency of the estimators. The number in the last row is the F-Statistic of the coefficients

from the matched data using the variance matrix of the estimator in that column. This

can be interpreted as a measure of efficiency with higher values being better. We use the

coefficient from the matched data rather than the estimates in each column in order to avoid
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confounding efficiency with estimates that are larger in absolute value.11 The values from

the joint estimators are not directly comparable to the other estimators, since the sample

definitions differ.

Table 10: Comparing Estimators - Correlated Misreporting, CPS

(1) (2) (3) (4) (5)
JE 1: no JE 2:

Survey Matched Pred. common common
Data Data Prob. observations observations

Poverty index -0.0083 -0.0074 -0.0070 -0.0044 -0.0070
(0.0006) (0.0005) (0.0007) (0.0028) (0.0008)

Age≥50 -0.3992 -0.4297 -0.4109 -0.3368 -0.3693
(0.0682) (0.0614) (0.0616) (0.1775) (0.0777)

Maryland -0.3189 -0.3338 -0.3733 -0.4076 -0.3347
(0.0808) (0.0736) (0.0819) (0.1958) (0.0931)

Constant 0.1892 0.4108 0.3688 0.1741 0.3454
(0.0735) (0.0723) (0.0836) (0.2462) (0.0998)

Weighted Distance 27.197 0 0.318 0.481
Precision 148.198 189.154 153.357 37.682 131.888

Note: Sample size 2791 matched households. The first stage model for (3)-(5) includes age≥50,
a MD dummy and the poverty index. SEs for (3) are bootstrapped to account for the estimated
first stage parameters. All analyses conducted using household weights adjusted for match
probability. A mistake prevented the distance statistic for column (4) from being disclosed.

The results show that all three estimators work well. The joint estimator without common

observations is less efficient than the joint estimator with common observations, but we

cannot reject the hypothesis that it is unbiased. Its lack of precision suggests that it is only

an attractive option in large datasets if the joint estimator with common observations is not

feasible. Both the predicted probabilities estimator and the joint estimator with common

observations work extremely well. The predicted probabilities estimator works a little better

in our applications, but at least in terms of efficiency, we have stacked the deck in its favor

given that we had to split the sample for the joint estimator. One would expect the joint

estimator to be more efficient when the same data are used, as it is the maximum likelihood

11As any summary measure, these two statistics measure a particular aspect of the performance and may
not capture other aspects well. For example, the first statistic is not a test of equality, but is the χ2

4 statistic
of a test that the coefficients from the matched data are equal to the values in a given column. The test
statistic from a test of equality may rank the estimators differently.
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estimator.12 The main drawback of the joint estimator with common observations is that it

requires observations that identify the entire outcome model. Such observations are rarely

available and when they are available a good case can often be made for using only those

observations in a regular Probit model. On the other hand, the predicted probabilities

estimator only requires a consistent estimate of the parameters of the misreporting model,

which can often be obtained from other studies, as in Bollinger and David (1997) and does

not require the linked data to be available.

An important concern for these estimators besides bias and efficiency is their robustness

to misspecification. One will usually not be able to assess whether one has actually reduced

bias by using a correction for misreporting since, unlike in this study, validation data are

not generally available. The results from applying estimators that are only consistent if mis-

reporting is conditionally random indicate that when this assumption fails increased bias is

certainly possible. Informal evidence from using subsamples (such as one of the two states)

to identify the misreporting model suggest that neither of the estimators is particularly sen-

sitive to minor misspecification, but the joint estimator with common observations is more

robust than the predicted probabilities estimator. In the MC study where misreporting is

conditionally random, both joint estimators produced estimates that were less biased than

the uncorrected Probit estimates in both surveys for all coefficients except for the insignif-

icant and imprecisely estimated Maryland dummy in the ACS. The predicted probabilities

estimator, on the other hand, produced estimates that were more biased than the survey esti-

mates in this setting and fared worse in terms of mean squared error than the joint estimator

with common observations for all coefficients. This suggests that the predicted probabilities

estimator is sensitive to the inclusion of irrelevant variables in the first stage. One can often

avoid such misspecification by doing rigorous specification tests on the misreporting model,

which consequently is more important when using the predicted probabilities estimator.

12The results for the joint estimator with common observations support this as the SEs are only slightly
larger than those of the predicted probabilities estimator despite the fact that the joint estimator only uses
half of the sample to estimate the outcome model. The SEs from the joint estimator without common
observations are surprisingly large compared to the predicted probabilities estimator.
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The importance of sensitivity to misspecification of the misreporting model becomes very

concrete when considering validation studies: The results above show that the information

obtained from validation studies can improve survey based estimates a lot, but validation

studies are costly. This raises the question how much one loses from correcting estimates

based on validation data from previous years, a subset of the population or even a different

survey. Nothing is lost if the misreporting models are the same in the two datasets, but

if they are slightly different the loss depends on the robustness to misspecification of the

misreporting model. We examine this issue by estimating the misreporting model on the IL

sample of the ACS and using it to see how well it corrects food stamp take up in MD. The

misreporting models are statistically different in the two states, but qualitatively similar, so

one may be tempted to use them to correct estimates if validation data are only available

for some states, even though estimates will not be consistent. The results are in line with

our previous findings: The joint estimator with common observations performs best both in

terms of bias and efficiency. The joint estimator without common observations still suffers

from a lack of precision. The predicted probabilities estimator does well in terms of bias

(as measured by the distance metric defined above) compared to an uncorrected Probit,

but contrary to the previous case it does worse than the joint estimator with common

observations. The advantage of the joint estimator with common observations seems to

increase with the degree of misspecification in the misreporting model. All estimators do

better than the naive survey estimates in terms of the distance metric used above, so if

similar data have been validated or parameter estimates from similar data are available,

using them to correct the survey coefficients may be worth trying.13

13We also correct estimates of food stamp take-up in the ACS using the misreporting model we observe
in the CPS and vice versa to see how extrapolating from a different survey works. The results, which are
available upon request, underline that the joint estimator with common observations is more efficient than
the other two estimators, but do not provide conclusive evidence on the performance. They seem to improve
over the naive estimator, particularly for the coefficients on the continuous variable.
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5 Conclusion

We analyze the properties of common binary choice estimators when the dependent variable

is subject to misclassification and then evaluate the performance of several estimators de-

signed to take such misclassification into account. In the first part of the paper, we derive

analytic results for the bias due to misclassification in the linear probability and the Probit

model for the general case where misclassification is allowed to depend on the covariates in

arbitrary ways. These results are informative about the likely size and direction of biases in

practice. They also help to explain the results of previous studies, for example why Meyer,

Goerge and Mittag (2014) find the signs of coefficient estimates to be remarkably robust

to misclassification. We provide conditions under which certain features of the true param-

eters, such as their signs and relative magnitudes, are robust to misclassification. Under

these conditions, some inference can still be based on the biased coefficients. We illustrate

these results using simulations and models of food stamp take-up using two unique data sets

that include “true” food stamp receipt from administrative data besides the survey reports.

These applications show that the asymptotic results are useful to interpret the biases found

in practice. They underline that the bias due to misclassification of the dependent variable

can be substantial, but also confirm that there is a tendency for coefficients to retain their

sign. However, the asymptotic results and simulations show that this tendency does not

have to hold in general.

Our evaluation of the estimators that take misclassification into account shows that the

true parameters can be estimated from noisy data if the misclassification model is well-

specified. Which estimator performs best depends on the nature of the misclassification,

in particular whether it is related to covariates or not. We find that if misclassification is

conditionally random, the HAS Probit works well if one fixes the conditional probabilities of

misclassification using estimates from outside information. In our case of program participa-

tion, where the probability of false positives is low, even using only the net underreporting

rate (which is often easy to obtain) yields improvements over the naive estimator. However,
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one should be cautious to assume that misclassification is conditionally random. While the

estimators are not very sensitive to small misspecifications, we find that they can easily

perform worse than the naive model if key assumptions such as conditional independence of

the covariates are erroneously made.

Additional information on the nature of the misclassification process not only helps to

avoid invalid assumptions, but can also help to increase the robustness of the estimators by

placing additional restrictions on the model. We show that even if misclassification is not

conditionally random, it is still possible to obtain consistent estimates. This requires addi-

tional information on the misclassification model, such as parameter estimates from which

one can predict the probabilities of misclassification. Among the estimators we evaluate that

do not require misclassification to be conditionally random, one should use the joint estima-

tor with common observations if it is feasible. If it is not feasible the predicted probabilities

estimator is an attractive alternative. As the main downside of the predicted probabilities

estimator is its greater sensitivity to the misclassification model, its specification should be

tested. In general, our results show the value of validation data to understand the nature of

misclassification and its effects.
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Appendix A: Proof of Equation 6

Equation (6) gives the expectation of the coefficients in the linear probability model when

the conditional probabilities of misreporting are constants as in Hausman, Abrevaya and

Scott-Morton (1998), i.e. when

Pr(yi = 1|yTi = 0) = α0i = α0

Pr(yi = 0|yTi = 1) = α1i = α1

∀i

By the assumptions of the linear probability model Pr(yTi = 1|X) = x′
iβ

LPM and Pr(yTi =

0|X) = 1 − x′
iβ

LPM , so that the probability mass function of the measurement error, U ,

conditional on X is

Pr(U = ui|X = xi) =


Pr(yi = 1|yTi = 0) · Pr(yTi = 0|X) = α0(1− x′

iβ
LPM) if ui = 1

1− α0 + (α0 − α1)x
′
iβ

LPM if ui = 0

Pr(yi = 0|yTi = 1) · Pr(yTi = 1|X) = α1x
′
iβ

LPM if ui = −1

where the probability for ui = 0 follows immediately from the fact that the probabilities

have to sum to 1. Consequently, the conditional expectation of the measurement error is

E(ui|X = xi) = 1 · [α0(1− x′
iβ

LPM)] + 0 · [1− α0 + (α0 − α1)x
′
iβ

LPM ]− 1 · [α1x
′
iβ

LPM ]

= α0 − (α0 + α1)x
′
iβ

LPM

Assuming that X is non-stochastic14, this implies that the bias, E(δ̂), is

E(δ̂) = E(X ′X)−1(X ′u)

= (X ′X)−1E(X ′u)

= (X ′X)−1
∑
i

x′
iE(ui|xi)

14The extension to stochastic X follows from the law of iterated expectation.
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= (X ′X)−1
∑
i

x′
i(α0 − (α0 + α1)x

′
iβ

LPM)

= (X ′X)−1
∑
i

x′
iα0 − (α0 + α1)(X

′X)−1
∑
i

xix
′
iβ

LPM

= (X ′X)−1X ′α0 − (α0 + α1)(X
′X)−1(X ′X)βLPM

= (α0, 0, . . . , 0)
′ − (α0 + α1)β

LPM

The first term is the coefficient vector from a regression of a constant, α0, on X, so the

intercept will be equal to α0 and all other coefficients will be zero. The expectation of the

biased coefficient vector is E( ˆ̃βLPM) = βLPM + E(δ̂). Consequently, the expectation of the

(biased) intercept is

E( ˆ̃βLPM
0 ) = α0 + (1− α0 − α1)β

LPM
0

and the expectation of the (biased) slope parameters is

E( ˆ̃βLPM
1...k ) = (1− α0 − α1)β

LPM
1...k
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Appendix B: Further Analysis of the Higher Order Bias

We have shown that the bias in the Probit model depends on four components: two com-

ponents due to the linear projection, a rescaling bias and bias due to misspecification of

the higher order moments of the distribution function. The bias due to misspecification of

the error distribution is harder to assess than the other components. If one has enough

information about Fε̃|X to take random draws from it, one can simulate the exact bias or

even obtain an exact solution of (16). In practice, however, such detailed information will

rarely be available, so we discuss some factors that influence the size and direction of the

bias. They may allow the researcher to informally assess whether this bias is likely to be

small, which justifies considering β̄ − β a good approximation to the full bias.

Given that the left hand side of equation (16) is the derivative of a Probit likelihood,

which is globally concave in b, the left hand side of each equation in (16) crosses 0 only

once and does so from above. In the absence of bias due to functional form misspecification,

it does so at b = β̄. In the univariate case, this implies that if the left hand side of (16)

is positive at this point, the additional bias will be positive, while the additional bias will

be negative if the left hand side is negative at b = β̄. In the multivariate case, this can

in principle be offset for some, but not all coefficients by the fact that the bias “spreads”

between coefficients. For the multivariate case, note that

fX(xi)
ϕ(x′

ib)

Φ(x′
ib)(1− Φ(x′

ib))
> 0 (23)

so (16) can be interpreted as a weighted average of x′
i

[
Fε̃|X=xi

(x′
iβ̄)− Φ(x′

iβ̄)
]
with the

weights given by (23). Consequently, observations for which sign(xi) = sign(Fε̃|X=xi
(x′

iβ̄)−

Φ(x′
iβ̄)) tend to cause a positive bias in the coefficient on x, while observations with opposing

signs tend to cause a negative bias. The weight function has a minimum at 0 and increases

in either direction, so differences at more extreme values of x′b have a larger impact. Larger

values of x also tend to make x′
i

[
Fε̃|X=xi

(x′
iβ̄)− Φ(x′

iβ̄)
]
larger, because x enters it multi-
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plicatively. The expression at each value of x is weighted by its density fX(x), so differences

at frequent values of x have a larger impact.

Consequently, one can get an idea of the direction of the bias if one knows how Fε̃i and

Φ differ. If the former is larger in regions where the sample density of x is high, |x′b| is high

or |x| is large, the bias will tend to be positive if x is positive in this region and negative if

x is negative in this region.
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Appendix C: Likelihood of the Joint Estimators

As discussed in section 4.1, the sample used for estimation can be divided into three disjoint

subsamples. The first subsample, S1 contains observations that are in the validation data, but

not in the data used to identify the outcome model and thus contains (yi, y
T
i , x

FP
i , xFN

i ). This

sample identifies the parameters of the misreporting equations, but not the outcome equation.

The second subsample, S2, contains all observations that have been validated and include

all variables in the outcome model, so that it contains (yi, y
T
i , xi, x

FP
i , xFN

i ). This sample

identifies all parameters. The third subsample, S3, contains the observations used to estimate

the outcome model that have not been validated. Thus, it contains (yi, xi, x
FP
i , xFN

i ), which

by itself identifies none of the parameters. Frequently, one of the first two samples will

be empty. For the joint estimator with common observations, S1 is empty; For the joint

estimator with common observations, S2 is empty as in Bollinger and David (1997).

Since the subsamples are disjoint and independent, the log-likelihood of the entire sample

is the sum of the three log-likelihoods of the subsamples:

ℓ(y, yT , x, xFP , xFN ; β, γFP , γFN) =
∑
iϵS1

ℓS1
i (yi, y

T
i , x

FP
i , xFN

i ; γFP , γFN)+

∑
iϵS2

ℓS2
i (yi, y

T
i , xi, x

FP
i , xFN

i ; β, γFP , γFN)+ (24)

∑
iϵS3

ℓS3
i (yi, xi, x

FP
i , xFN

i ; β, γFP , γFN)

Equation (22) and the assumption that the error terms in all three equations are indepen-

dent draws from standard normal distributions imply the following (conditional) probabilities

Pr(yi|yTi = 0, xFP
i ) =

[
Φ(xFP ′

i γFP )
]yi

+
[
1− Φ(xFP ′

i γFP )
]1−yi

Pr(yi|yTi = 1, xFN
i ) =

[
Φ(xFN ′

i γFN)
]yi

+
[
1− Φ(xFN ′

i γFN)
]1−yi

(25)

Pr(yTi |xi) = Φ(x′
iβ)

yTi + [1− Φ(x′
iβ)]

1−yTi
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The first probability is the likelihood contribution of an observation in S1 with yTi = 0,

while the second probability is the liklihood contribution of an observation in S1 with yTi = 1.

Consequently, the likelihood contribution of an observation from S1 is

ℓS1
i (yi, y

T
i , x

FP
i , xFN

i ; γFP , γFN) =(1− yTi )[yi lnΦ(x
FP ′
i γFP ) + (1− yi) lnΦ(−xFP ′

i γFP )]+

yTi [(1− yi) lnΦ(x
FN ′
i γFN) + yi lnΦ(−xFN ′

i γFN)]

This is the sum of the likelihoods of probit models for false positives and false negatives.

The likelihood contribution of an observation in sample S2 is the probability of the

observed combination of yi and yTi , which is

Pr(yi, y
T
i |xi, x

FP
i , xFN

i ) =

{
Pr(yi|yTi = 0, xFP

i ) Pr(yTi = 0|xi) if yTi = 0

Pr(yi|yTi = 1, xFN
i ) Pr(yTi = 1|xi) if yTi = 1

Using the probabilities from (25) yields the likelihood contribution of an observation from

sample S2:

ℓS2
i (yi, y

T
i , x, x

FP
i , xFN

i ; β, γFP , γFN) =

(1− yTi ) ln
(
[yiΦ(x

FP ′
i γFP ) + (1− yi)Φ(−xFP ′

i γFP )]Φ(−x′
iβ)

)
+

yTi ln
(
[(1− yi)Φ(x

FN ′
i γFN) + yiΦ(−xFN ′

i γFN)]Φ(x′
iβ)

)
Equation (25) defines the probabilities of false positives as α0i = Φ(xFP ′

i γFP ) and of false

negatives as α1i = Φ(xFN ′
i γFN). Using these probabilities of misreporting in equation (17)

yields the contribution of an observation from S3:

ℓS3
i (yi, xi, x

FP
i , xFN

i ; β, γFP , γFN) =

yi ln[Φ(x
FP ′
i γFP ) + (1− Φ(xFP ′

i γFP )− Φ(xFN ′
i γFN))Φ(x′

iβ)]+

(1− yi) ln[1− Φ(xFP ′
i γFP )− (1− Φ(xFP ′

i γFP )− Φ(xFN ′
i γFN))Φ(x′

iβ)]

Using the three likelihood contributions ℓS1
i , ℓS2

i and ℓS3
i in equation (24) and maximizing
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it with respect to (β, γFP , γFN) yields consistent estimates of the three parameter vectors by

the standard arguments for the consistency of maximum likelihood. Standard errors of all

parameters can be obtained as usual. The joint estimator with common observations used

above assumes that S1 is empty, so the log-likelihood reduces to

ℓJE1(y, yT , x, xFP , xFN ; β, γFP , γFN) =∑
iϵS2

[
(1− yTi ) ln

(
[yiΦ(x

FP ′
i γFP ) + (1− yi)Φ(−xFP ′

i γFP )]Φ(−x′
iβ)

)
+

yTi ln
(
[(1− yi)Φ(x

FN ′
i γFN) + yiΦ(−xFN ′

i γFN)]Φ(x′
iβ)

) ]
+∑

iϵS3

[
yi ln[Φ(x

FP ′
i γFP ) + (1− Φ(xFP ′

i γFP )− Φ(xFN ′
i γFN))Φ(x′

iβ)]+

(1− yi) ln[1− Φ(xFP ′
i γFP )− (1− Φ(xFP ′

i γFP )− Φ(xFN ′
i γFN))Φ(x′

iβ)]
]

The second joint estimator we use above, the joint estimator without common observa-

tions, assumes that S2 is empty, so the log-likelihood reduces to

ℓJE2(y, yT , x, xFP , xFN ; β, γFP , γFN) =∑
iϵS1

[
(1− yTi )[yi lnΦ(x

FP ′
i γFP ) + (1− yi) lnΦ(−xFP ′

i γFP )]+

yTi [(1− yi) lnΦ(x
FN ′
i γFN) + yi lnΦ(−xFN ′

i γFN)]
]
+∑

iϵS3

[
yi ln[Φ(x

FP ′
i γFP ) + (1− Φ(xFP ′

i γFP )− Φ(xFN ′
i γFN))Φ(x′

iβ)]+

(1− yi) ln[1− Φ(xFP ′
i γFP )− (1− Φ(xFP ′

i γFP )− Φ(xFN ′
i γFN))Φ(x′

iβ)]
]

Note that the likelihood contribution of S2 can be re-written as the sum of the likeli-

hood contribution if the observation were in sample S1 and the likelihood contribution to a

standard probit likelihood:

ℓS2
i (yi, y

T
i , x, x

FP
i , xFN

i ; β, γFP , γFN) =ℓS1
i (yi, y

T
i , x

FP
i , xFN

i ; γFP , γFN)+

yTi lnΦ(x′
iβ) + (1− yTi ) lnΦ(−x′

iβ)
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This can be used to re-write the log-likelihood function as

ℓ(y, yT , x, xFP , xFN ; β, γFP , γFN) =
∑

iϵS1∪S2

ℓS1
i (yi, y

T
i , x

FP
i , xFN

i ; γFP , γFN)+

∑
iϵS2

ℓPi (y
T
i , xi; β) +

∑
iϵS3

ℓS3
i (yi, xi, x

FP
i , xFN

i ; β, γFP , γFN)

where ℓP is the log-likelihood function of a standard probit model. This shows more clearly

which observations contribute to the identification of the parameters. In particular, it shows

the value of observations in S2, because in addition to the likelihood contribution of an obser-

vation in S1, they add a term that directly identifies the parameters of the outcome model,

β. It also shows that observations in S3 contribute to the identification of the parameters of

false positives and false negatives even though these observations only contain information

on the observed dependent variable.
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