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1 Introduction

We assess the role of supply, driven by the demographic changes of the workforce, in accounting

for some of the prominent and widely studied US labor market trends. In particular, we find

that the large movement of the rate of return to experience over the 1968-2007 period can be

nearly perfectly explained by demographic changes alone, with no role attributable to demand

shifts. Moreover, these demographic changes account for the differential dynamics of the age

premium across schooling groups emphasized by Katz and Murphy (1992), for the differential

movements of the college premium across age groups emphasized by Card and Lemieux (2001),

and for the changes in cohort-based life-cycle earnings profiles documented in Kambourov and

Manovskii (2005). Thus, our analysis attributes a key role to demographic change in shaping

several empirical regularities that are a focus of active research in macro and labor economics.

Our modeling approach is based on the seminal analysis of the role of supply and demand

factors in driving the experience differentials in Katz and Murphy (1992). These authors assumed

that workers supply two distinct productive inputs to the aggregate production. In particular,

they assume that young workers (within 5 years from completing schooling) supply exclusively

one of these inputs, which we will refer to as “pure labor,” or just “labor.” Old workers (25-35

years after schooling completion) are assumed to supply exclusively the other input, which we will

refer to as the “pure experience,” or simply “experience.” Other workers are assumed to supply

a bundle of these two inputs. The amount of labor and experience supplied by the workers from

a particular demographic cell is determined by projecting their wages on wages of workers from

the two age groups exclusively supplying “pure” inputs. The correlation between the relative

wages of the age groups exclusively supplying “pure” inputs and the relative aggregate supplies

of experience and labor then identifies the aggregate elasticity of substitution between these two

factors.

We retain the key modeling elements but change the measurement strategy. In particular, we

do not assume that old workers completely stop supplying one input and supply exclusively the

other. Instead, we allow older workers to provide both inputs and determine the quantities they
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supply using the variation in actual number of years worked among individuals of a given age.1

We implement this strategy by measuring the effective amount of labor and experience supplied

by each worker through decomposing individual wages using a version of the classic Mincerian

wage equation. This provides a natural way to control for exogenous changes to the returns

of other productive attributes (schooling, gender, race etc.) when measuring the aggregate

relative quantity and price of experience.2 The individual wage equations are consistent with

the aggregate production function and aggregate to determine the total supplies of effective labor

and experience.

The specification of the wage equation is designed to obtain a good fit to individual wages.

It places no restriction on whether the dynamics of the relative price of experience is driven by

the relative supply or the relative demand for experience. Nevertheless, our empirical approach

reveals a correlation between the aggregate relative price of experience and aggregate relative

supply of experience of −0.95 over our forty year sample period. We find no role for the demand

shifts in accounting for the dynamics of the relative price of experience.

Our use of the panel data drawn from the Panel Study of Income Dynamics (PSID) allows

us to identify how the effective supplies of labor and experience vary with age. This allows us

to study the role of the changing relative price of experience in shaping the dynamics of the

age premium (the relative wage of young and old workers). For any demographic subgroup, the

wage response to a change in the aggregate price of experience is determined by the share of

wages sourced from experience. Thus, as the remuneration for experience accounts for a larger

share of wages of older workers, the age premium responds positively to the price of experience.

However, the strength of this response can vary across demographic groups depending on how

1Appendix A1 presents a simple example illustrating the differences between the two approaches.
2 This presents a challenge to the demographic cell-based correction for composition that represents the

current state-of-the-art in this literature. For example, Katz and Murphy (1992) construct wages for a potential

experience group by adding up the wages of all demographic subgroups belonging to it using the fixed weights

given by the average employment shares of the subgroups. This procedure controls for changes in composition

of other attributes, e.g., education and gender, however, it cannot filter out the effects of changing returns to

other attributes. For instance, changes in the college premium will differentially affect the wages of pure young

and pure old workers, and this will bias the estimates of the relative price of experience. Similarly, the labor and

experience supplies are aggregated using fixed efficiency weights, whereas changes in the college premium etc.

should be reflected in the measurement of effective supplies.
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much their effective stock of experience relative to labor changes with age. We show that this

insight quantitatively reconciles an economy-wide movement in the price of experience with the

differential movements in the age premium across schooling groups.

This is relevant for assessing the role of supply and demand factors because the age premium

rose much more in the 1970s and 80s for non-college than for college educated workers. The

approach in Katz and Murphy (1992) cannot rationalize the differential movement in age pre-

miums across demographic groups in response to the change in the aggregate relative supply of

experience, because their empirical strategy does not differentiate between experience and age

(the old and the young are assumed to exclusively supply experience and labor, respectively).

This led them and the subsequent literature to interpret this evidence as representing a shift in

demand against young high school educated men. In contrast, we find no role for such demand

effects.

There is an important corollary to this finding. In an influential article, Card and Lemieux

(2001) show that the college premium rose sharply after 1973 for young workers while it remained

more or less constant for old workers. Thus, the relative college premium fell for old workers.

Since the ratio of the age premiums between college and non-college workers is mathematically

equivalent to the ratio of the college premiums between old and young workers, this finding is

a dual of the finding in Katz and Murphy (1992) that the relative age premium fell for college

workers. Thus, the fact that we match the evolution of the age premium across schooling groups

implies that we also account for the differential movement of the college premium across age

groups.3 Thus, we identify the changing supply of experience, induced largely by the labor force

entry of the baby boom cohorts and women, as the common source of changes in the aggregate

relative price of experience, in the age premium across demographic groups, and the cohort

effects in the college premium which have previously been studied separately from each other.

While much of the literature focuses on cross-sectional changes in life-cycle earnings profiles, a

life-cycle profile of a cohort of workers, say, entering the labor market at the same time is perhaps

more relevant for the decision making of members of that cohort. In a stationary environment

3As in Card and Lemieux (2001), we do not attempt to explain the changes in the economy-wide college

premium which are treated as exogenous, and are the subject of debate.
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cross-sectional and cohort-based profiles coincide. When the relative price of experience changes,

however, cross-sections are no longer useful guides to life-cycle earnings. In fact, Kambourov

and Manovskii (2005) have noted that a substantial steepening of the cross-sectional profiles in

the 1970s and 1980s was accompanied by flattening of life-cycle earnings profiles for successive

cohorts of male workers entering the labor market in the 1970s and 1980s. This has potentially

large macroeconomic consequences. For example, Elsby and Shapiro (2012) use the flattening

of cohort-based life-cycle profiles to account for changing labor market participation rates, while

Song and Yang (2012) use it to understand changes in the savings rates. However, the cross-

sectional and cohort-based profiles are intimately related. Consequently, we show that the flip

side of our model’s ability to account for the dynamics of cross-sectional earnings is its ability

to account for the changes in cohort-based profiles. Thus, we find the demographic change that

governs the evolution of the relative price of experience is also responsible for the changes in

cohort-based earnings profiles.

The remainder of the paper is organized as follows. In Section 2, we provide an overview of

our measurement approach. In Section 3, we provide descriptive analysis that, without imposing

the model structure, illustrates the very strong relationship between the relative price and the

relative supply of experience. In Section 4, we structurally estimate the model and evaluate

the role of supply and demand factors in accounting for the evolution of the relative price

of experience over time. In Section 5, we use the estimated model to study the role of the

dynamics of the supply of experience in driving (1) age premium across education groups, (2)

college premium across age cohorts, (3) the rates of return to years of prior work in the aggregate

and across demographic groups, (4) changing cohort-based life-cycle earnings profiles, and (5)

the decline in the entry wages in the 1970s and 1980s and their subsequent increase as well as

the measured total factor productivity. Section 6 concludes.
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2 From Individual Earnings to Aggregate Quantities:

Overview of the Measurement Approach

2.1 Individual Earnings

Consider an individual i who at date t supplies l̂it units of effective labor input and êit units

of effective experience input to the labor market. The individual works for hit hours and has

idiosyncratic productivity zit. If market prices of labor and experience inputs are given by RLt

and REt, individual earnings can be written as

yit =
[
RLtl̂it +REtêit

]
zithit ≡ RLt

[
l̂it + ΠEtêit

]
zithit, (1)

where ΠEt ≡ REt
RLt

denotes the relative price of experience to labor. This implies the log-wage

equation

lnwit = lnRLt + ln
[
l̂it + ΠEtêit

]
+ ln zit, (2)

that, as we show below, can be extended to be suitable for empirical work and estimated to

recover the individual stocks of effective labor and experience and the aggregate time series of

the relative price of experience.

2.2 Aggregate Technology

We consider an aggregate production function that maps the aggregate stock of labor Lt and

the aggregate stock of experience Et into aggregate labor earnings Yt,

Yt = AtG (Lt, Et) , (3)

where G is a constant-returns-to-scale function and At represents the aggregate productivity of

the composite input of experience and labor.4 We assume G is continuous and differentiable

in its arguments, and the Euler theorem implies Yt = At (GLtLt +GEtEt), where GLt = ∂G
∂Lt

4 More precisely, let Ã denote the Hicks-neutral productivity affecting the constant-returns-to-scale aggregate

production function for output Ỹ = ÃF (K,G), that takes the capital stock K and the the composite input of

labor and experience G(L,E) as inputs. Then the aggregate labor earnings are given by Y = Ỹ − ÃFK

(
K
G

)
K =

ÃFG

(
K
G

)
G ≡ AG, Thus, the tfp term affecting aggregate labor earnings is given by A ≡ ÃFG

(
K
G

)
.
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and GEt = ∂G
∂Et

will be referred to as marginal products of labor and experience (net of the

productivity At), respectively.

Competitive firms can bundle workers to maintain the desired experience to labor ratio as

in Heckman and Scheinkman (1987). This implies that prices of the two services provided by

workers are competitively determined:5

RLt = AtGLt , (4)

REt = AtGEt . (5)

Then, the relative price of experience ΠEt =
GEt
GLt

, is falling in the ratio of aggregate experience

to labor Et
Lt

, as long as GEtLt > 0: that is, as long as experience and labor are complements.

2.3 Consistent Aggregation

Summing the individual earnings equation in (1) over individuals i at a given date t, we have

∑
i

yit = RLt

∑
i

l̂itzithit +REt

∑
i

êitzithit

= AtGLtLt + AtGEtEt

= Yt

where the aggregate inputs Lt, Et are measured as

Lt =
∑
i

l̂itzithit, (6)

Et =
∑
i

êitzithit, (7)

and prices RLt , REt are determined by Equations (4) and (5), respectively.

Thus, the individual earnings in equation (1) consistently aggregate to the aggregate earnings

as is implied by the aggregate production function in (3). This consistent aggregation holds

for any homogeneous of degree one function G as long as the aggregate inputs Lt and Et are

consistently measured as in equations (6) and (7).

5The aggregate production function approach (with the competitive pricing of the bundled inputs) has been

recently used in the literature to study earnings dynamics, e.g., Heckman, Lochner, and Taber (1998) and Guvenen

and Kuruscu (2009, 2010).
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2.4 Two Approaches to Estimating the Aggregate Production Func-

tion Parameters

To conduct quantitative analysis one must choose a specific functional form for G. We follow

Katz and Murphy (1992) and restrict our attention to the commonly used class of constant

elasticity of substitution (CES) production technologies. Specifically,

Yt = At (Lµt + δEµ
t )

1
µ , (8)

where the elasticity of substitution between Lt and Et is measured by 1
1−µ (where µ ≤ 1), and

the parameter δ > 0 adjusts the relative scale between Lt and Et. The degree of substitutability

between experience and labor is governed by the value µ. If µ = 1, experience and labor are

perfect substitutes. In this case, the demographic change affecting the ratio of labor to experience

does not affect their relative price. However, if µ < 1 so that labor and experience are not perfect

substitutes, changes in the demographic composition of the workforce will affect the relative price

of experience. This aggregate production function implies that the relative price of experience

is given by

ΠEt = δ

(
Et
Lt

)µ−1

. (9)

To estimate the parameters δ and µ we will follow two approaches.

1. The estimation of the log wage equation in (2) delivers the time-series for the relative

price of experience ΠEt and the measure of effective labor and experience at the individual

level, which can be added up as in equations (6) and (7) to obtain the aggregate inputs Lt

and Et. Taking logs on both sides of equation (9), one immediately verifies that a simple

regression of the time-series of log relative price of experience on a constant and the time-

series of the log of relative supplies allows one to estimate the parameters δ and µ. This

procedure does not impose the restrictions implied by the functional form of the production

function on the individual earnings equations. Thus, the measurement of the aggregate

prices and quantities is independent of the particular form of the aggregate production

function. Consequently, this procedure is in no way hardwired to obtain an estimate of

µ that is statistically different from 1. If changes in relative prices are independent from
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changes in relative supplies, the regression will reveal this. We pursue this approach in

Section 3.

2. An alternative approach that imposes full model structure on individual earnings equations

and is therefore more efficient is to substitute the explicit expression for the relative price of

experience given by equation (9) into the individual log wage equation (2) and estimate its

parameters directly from the micro data (of course, maintaining the consistent aggregation

by imposing equations (6) and (7)). This procedure is computationally considerably more

demanding but it also places no ex-ante restrictions making it likely to find evidence of

complementarity between the two inputs. We pursue this approach in Section 4.

Finally, to assess the role of changes in aggregate demand driving the relative price of expe-

rience in either of the two approaches, δ can be assumed to be a particular function of time as

in Katz and Murphy (1992), and the parameters of this function can be estimated together with

µ.

3 Descriptive Analysis

In this section, we (1) extend the specification of the individual earnings equations to make

them suitable for the empirical work, (2) estimate the time-series of the aggregate relative price

of experience and of the aggregate supplies of labor and experience using the PSID data, and (3)

obtain preliminary estimates of the aggregate production function parameters. The estimation

in this section does not impose the specification of the aggregate production function on the

individual earnings equations. Thus, the resulting estimate of the aggregate relative price of

experience is not restricted by the theory, and we will be able to assess the performance of the

theory by its ability to match this time series.

3.1 Measuring the Aggregate Prices and Quantities of Labor and

Experience using Micro Data

Our objective in modeling individual earnings is to develop a specification such that the mapping

from the individual characteristics to wages picks up the first order features of wage differentials
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as documented by the vast existing literature. The basis of our empirical specification is the

traditional Mincer equation that is a cornerstone of the empirical work in labor economics.6 This

specification has been remarkably successful at empirically describing individual earnings with

only a few shortcomings highlighted in recent work (e.g., Heckman, Lochner, and Todd (2006),

Lemieux (2006)). A slight but economically interesting “fine-tuning” of the equation allows us

to overcome these shortcomings.7

Recall that our basic log-wage equation is given by

lnwit = lnRLt + ln
[
l̂it + ΠEtêit

]
+ ln zit.

We follow the traditional Mincerian specification and model the individual productivity vari-

able ln zit as determined by the vector χit of the observable characteristics affecting log earnings

in an additive manner:

ln zit = αtχit, (10)

where the vector χit includes the observable characteristics, such as years of schooling, sex, race

and geographic region, and αt is the vector of associated coefficients.

The only difference between our specification and the Mincerian one is that the standard

Mincerian specification assumes that there is only one productive input supplied by workers.

In contrast, following Katz and Murphy (1992), we seek to assess the possibility that workers

supply two distinct factors to aggregate production and whose aggregate relative supplies affect

their relative prices. If individual earnings consist of a sum of payments to two distinct factors

of production, the logarithm of earnings is not equal to the sum of logarithms of constituent

factors. This explains the presence of the ln
[
l̂it + ΠEtêit

]
term. Our specification, however nests

the traditional one.

In modeling the life-cycle curvature we follow the approach pioneered by Katz and Murphy

(1992). They divided workers into demographic cells based on age, gender, etc. Ignoring, for

6Wasmer (2001a) also considers a Mincerian wage equation approach to link the return to years worked to

the aggregate relative supply of experience.
7There is considerable debate in the literature regarding the interpretation of the Mincerian coefficient on

education. While Mincer (1958, 1974) provided two sets of assumptions that allow for a particular structural

interpretation of this coefficient, these assumptions are often questioned in the literature (e.g., Heckman, Lochner,

and Todd (2006)). We do not insist on such an interpretation.
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the ease of exposition, the partition other than age, consider N groups of workers j1, j2, ..., jN .

Katz and Murphy assumed that young workers in group j1 exclusively supply the labor input

while old workers in group jN exclusively supply the experience input. But how much labor and

experience do all other age groups supply? They answer this question by assuming the existence

of time invariant schedules λL(j), λE(j) that measure the quantity of the two inputs supplied by

workers of age j. They measured these supplies by regressing wages of age j workers on wages

of workers in groups j1 and jN (without intercept term). The coefficients from these regressions

are taken as the measure of the two inputs entering the aggregate production function supplied

by workers of age j.

Our framework relies on the same schedules λL and λE,8 although our measurement approach

is different because we do not impose the assumption that old workers exclusively supply the

experience input. Instead, these schedules are identified from the variation in the number of years

actually worked or “years worked,” eit, among workers of a given age as discussed in Appendix

A1.9

Specifically, the life-cycle profile depends on age through time invariant age efficiency sched-

ules for labor and experience λL(jit, sit, xit) and λE(jit, sit, xit), where j denotes age measured in

years, sit ∈ {HS,C} denotes either a “high school” education group HS with years of schooling

less than or equal to 12, or a “college” education group C with years of schooling beyond 12,

and xit ∈ {M,F}, denotes gender with M being male and F being female.10 This implies that,

aside from individual productivity zit, the effective supply of labor of individual i at date t, l̂it,

8In particular, we maintain the assumption that these schedules are exogenously given. Our objective in this

paper is to explore the effects of changing only the measurement approach while retaining the structure of the

key papers in the literature, such as Katz and Murphy (1992), Krusell, Ohanian, Ŕıos-Rull, and Violante (2000),

Card and Lemieux (2001), etc. Thus, we leave an explicit optimizing behavioral modeling of these profiles for

important future work.
9In Appendix A3 we show that our model is non-parametrically identified if individuals of the same age differed

by only one year of prior work. We also document there that the amount of variation available in the data vastly

exceed this sufficient condition, even among male workers (as was also documented by Light and Ureta (1995),

among others).
10A number of articles, e.g., Heckman, Lochner, and Todd (2006), have found that the standard Mincerian

specification that implies that earnings profiles (based on years since completing schooling) are parallel across

demographic groups is at odds with the data. Allowing the relationship between wages and age and experience

to differ across schooling and gender groups addresses this shortcoming.
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depends on age, gender, and education, and is given by λL(jit, sit, xit). Similarly, the effective

supply of experience, êit, depends on years worked, age, gender, and education, and is given

by λE(jit, sit, xit)g(eit).
11 Note that we allow the technology for accumulating experience input

to exhibit curvature. In other words, the mapping from years of actual prior work eit to ac-

cumulated effective units of experience is given by some function g(eit), not necessarily linear.

We show in Appendix A6 that all these sources of curvature are essential for fitting the wage

distribution. It is convenient to define the relative age efficiency schedule of experience as the

ratio of the age efficiency schedule of experience to that of labor λE/L(jit, sit, xit) ≡ λE(jit,sit,xit)
λL(jit,sit,xit)

.

With these definitions, the log wage equation can be written as

lnwit = lnRLt + lnλL (jit, sit, xit) + ln
[
1 + ΠEtλE/L (jit, sit, xit) g (eit)

]
+ ln zit. (11)

For the empirical implementation we adopt the following parsimonious but flexible specifi-

cations which approximate the age efficiency schedules λL(jit, sit, xit) and λE(jit, sit, xit) by an

exponential function of a second-degree polynomial with coefficients that are allowed to vary

with gender and education

λL(jit, sit, xit) = exp(λL,0 (sit, xit) + λL,1 (sit, xit) jit + λL,2 (sit, xit) j
2
it), (12)

λE(jit, sit, xit) = exp(λE,0 (sit, xit) + λE,1 (sit, xit) jit + λE,2 (sit, xit) j
2
it). (13)

This implies that the relative age efficiency schedule of experience is given by

λE/L(jit, sit, xit) = exp(λE/L,0 (sit, xit) + λE/L,1 (sit, xit) jit + λE/L,2 (sit, xit) j
2
it), (14)

where λE/L,k (s, x) = λE,k (s, x) − λL,k (s, x) for k ∈ {0, 1, 2}. Without loss of generality, we

normalize λL,0 (s, x) = λE,0 (s, x) = 0 for the low education (s = HS) group.

For the technology mapping years worked to experience input, we assume a flexible quartic

specification

g (eit) = eit + θ1e
2
it + θ2e

3
it + θ3e

4
it. (15)

11To facilitate the transparency of some derivations below we do not allow for the differences in parameters

of this mapping across schooling and gender groups. We have verified that allowing for such heterogeneity has

no substantive impact on any of the results in the paper. Introducing the direct dependence of g on age is also

inconsequential.
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Substituting expressions (10), (12), (14), and (15) into equation (11), and substituting lnRLt

by a time dummy Dt we obtain the log wage equation to be estimated

lnwit = Dt + (λL,0 (sit, xit) + λL,1 (sit, xit) jit + λL,2 (sit, xit) j
2
it) (16)

+ ln

1 + ΠEt exp

 λE/L,0 (sit, xit)

+λE/L,1 (sit, xit) jit + λE/L,2 (sit, xit) j
2
it

  eit + θ1e
2
it

+θ2e
3
it + θ3e

4
it


+αtχit + εit,

where εit represents a classical measurement error.

Estimating equation (16), we obtain the estimates of parameters of the efficiency schedules

λ̂L(j, s, x), λ̂E(j, s, x) = λ̂E/L(j, s, x)λ̂L(j, s, x) and ĝ (e), as well as the estimates of the time-

varying coefficients (α̂t, D̂t, and Π̂Et). These estimates allow us to construct the estimated

aggregate labor and experience inputs L̂t and Êt at each date t as

L̂t =
∑
i

λ̂L(jit, sit, xit)ẑithit, (17)

Êt =
∑
i

λ̂E(jit, sit, xit)ĝ (eit) ẑithit. (18)

To investigate the role of supply in determining the evolution of prices, we seek to document

a relationship between the estimated relative price Π̂Et and the estimated relative supply of

experience Êt
L̂t

constructed using these equations. We should emphasize that we did not impose

any of the model structure on these earnings equations (except for perfect competition and

constant returns to scale in aggregate production). Thus, there is no hardwired relationship

between Π̂Et and Êt
L̂t

. To the extent that we find a relationship between them, it will be suggestive

of the nature of the aggregate production function.

3.2 Results

We obtain estimates of the parameters applying a nonlinear least-squares method to the log-

wage equation (16). The estimates of these coefficients and their standard errors are reported in

Appendix Tables A-1 and A-2. In what follows, we first discuss the implied aggregate quantities

of interest, followed by the discussion of the individual wage determination.
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Figure 1: The Estimated Relative Price of Experience Π̂Et and the Experience to Labor Ratio
Êt
L̂t

.

3.2.1 The Relative Supply of Experience and its Relative Price

The estimated series of the relative price of experience Π̂Et and the implied aggregate experience-

labor ratio Êt
L̂t

are plotted in Figure 1. We refer to these estimates as “unrestricted” as they are

independent of the aggregate production function we are ultimately interested in estimating.

There is a substantial movement of the relative price of experience, which increases with an

average growth rate of 5.1% per year between 1968-1988 and falls thereafter back to its level

in 1979 by 2007. The estimated experience-labor ratio over the same period displays a clear

negative co-movement with the relative price of experience. The correlation coefficient between

the log relative price of experience and log of the experience-labor ratio is remarkably high

at −0.95. Thus, the unrestricted data imply a very strong co-movement between the relative

supply of experience and its relative price.12 This suggests that the aggregate technology features

complementarity between aggregate experience and labor. Next, we obtain preliminary estimates

of this technology.

12The analysis based on Katz and Murphy’s sample and methodology delivers a correlation between the relative

wage and relative supplies of 0.6 to 0.8.
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Table 1: Estimates of Technology Parameters based on Unrestricted Estimates of the Relative

Price of Experience Π̂Et and the Experience to Labor Ratio Êt
L̂t

.

parameter Benchmark With Demand Shifts

(1) (2)

µ -3.21 -3.35

(0.07) (0.24)

δ 16.82 20.16

(1.28) (5.91)

δ1 — -0.03

(0.04)

R2 0.92 0.99

Note - Entries for µ, δ and the goodness-of-fit represent the results of regressing the unrestricted

relative price of experience on a constant and the relative supply of experience. For sample

restrictions and variable construction procedures, see Appendix A2.

3.2.2 Preliminary Estimation of the Aggregate Production Function Parameters

Taking logs on both sides of equation (9) which determines the relative price of experience given

the CES aggregator of labor and experience, we obtain:

ln ΠEt = ln δ + (µ− 1) ln

(
Et
Lt

)
. (19)

Treating this equation as a regression of the unrestricted relative price of experience on a constant

and the unrestricted relative supply of experience to labor, one can obtain estimates of the

parameters δ and µ. These estimates are summarized in Column (1) of Table 1. The results of this

experiment suggest that the simple aggregate production function that features complementarity

between the aggregate supplies of labor and experience can rationalize the movements in the

relative price of experience remarkably well through the changing relative supply of experience.

To assess whether the changing demand for experience played a role in determining its relative

price, we re-estimate Equation (19) by allowing the intercept to be a linear function of time,

i.e., δt = δ + δ1t. This is the standard approach to assessing the role of demand shifts in the

literature. We find that the estimate of δ1 is statistically insignificant. Moreover, allowing for
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the demand trend does not affect the estimate of the complementarity parameter µ. This is in

contrast to the findings based on the empirical approach of Katz and Murphy (1992). Repeating

the same experiment using their data and empirical methodology one finds that the relative

price of experience is entirely driven by the change in demand with the estimate µ̂ statistically

indistinguishable from one.13

While standard in the literature, allowing for only a linear demand trend might appear

restrictive, especially given that the relative price of experience follows an inverted-U pattern.

On the other hand, a sufficiently flexible specification of the exogenous demand shifts can always

mechanically fit the dynamics of the relative wages. Thus, without a deeper theory on the

nature of the demand shifts and their measurement we have no guidance on how they should

be modeled.14 In contrast, a simple model based on the observed dynamics of supply is clearly

successful in accounting for the dynamics of the relative price of experience.

3.2.3 Sources of Curvature in Life-Cycle Wage Profiles

While the key features of the age efficiency schedules are the same for both genders, we focus

the discussion on the efficiency schedules of male workers as these are relevant for the results

reported below. The estimated age efficiency schedules of experience and labor for male workers

from the two schooling groups are presented in Figure 2. The corresponding estimated schedules

for female workers can be found in Appendix Figure A-3. The coefficient estimates and their

standard errors reported in Appendix Table A-1 imply that the efficiency schedules are estimated

very precisely.

Figure 2(a) illustrates that the male age efficiency schedules of labor, λL(jit, sit,M), are

hump-shaped, peaking at age 50 for the college group and age 45 for the high school group. The

increase in the effective units of labor in the early part of the life-cycle is considerably larger for

the college-educated workers than their high-school educated counterparts.

In contrast, the male estimated age efficiency schedules for experience λE(jit, sit,M) are

13Weinberg (2005) also emphasizes the role of demand effects.
14We nevertheless experimented with allowing for a quadratic trend in demand δt = δ + δ1t + δ2t

2 and found

that this specification also yields highly statistically insignificant estimates of δ1 and δ2, and has no impact on

the estimate of the complementarity parameter µ or the fit of the regression.
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(b) Age Efficiency Schedule of Experience.

Figure 2: Estimated Age-Efficiency Schedules for Male Workers by Education.

monotonically decreasing and are below unity over the entire age range as shown in Figure 2(b).

This suggests a substantial benefit from accumulating experience early on in life, and that this

benefit is larger for college-educated workers, since their stock of experience depreciates at a faster

rate. These observations imply that the male relative age efficiency schedule λE/L(jit, sit,M) is

falling in age and is uniformly lower for the college schooling group.

Meanwhile, the mapping from years worked to the stock of experience input via g (eit) is

close to being linear (although mildly concave), implying that the hump shape in life-cycle wage

profile is not driven by the decreasing returns to accumulating experience. Note that the effective

supply of experience is the product of the age efficiency schedule for experience and the stock of

experience, implying that for a typical worker the effective supply of experience increases over

most of the life-cycle.

In Appendix Figure A-2 we plot the age-conditional means and standard deviations of wages

and experience (both years of prior work and the amount of experience input, g(e), accumulated

by an individual) for each gender/education combination. We find that the age-conditional mean

experience grows almost linearly with age, although there are differences in the slope across the

subgroups, while the age-conditional mean wage grows in a concave manner over age. This helps

explain our finding that the rate at which total experience translates into higher wages declines

rapidly with age.15

15We thank an anonymous referee for suggesting this figure.
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By re-estimating the model on various time subsamples or even on particular cross-sections

of the data we found that the shapes and even the magnitudes of the estimated age efficiency

schedules are very robust. This suggests that they are primarily identified by the heterogeneity

of the number of years actually worked at a given age and not by the time variation in the data.

In Appendix A5 we present evidence supporting the restriction that age efficiency schedules are

independent of time.

3.2.4 Estimation on Male Sample

So far we have measured the relative prices and quantities on the same samples. While it is clear

that factor supplies by female workers must be included in aggregate quantities of labor and

experience, one may by concerned with the possibility that strong changes in female participation

patterns over time may induce selection effects that may bias the estimates of the dynamics of

the relative price of experience.

To assess the robustness of our findings to allowing for this possibility we estimate the indi-

vidual earnings equations on the sample of male workers only. The resulting estimates generate

the time series of the relative price of experience Π̂M
Et

which is plotted in Figure 3. As it is

estimated on a substantially smaller sample, this estimated relative price of experience series

is more volatile, but its dynamics are similar to those estimated on the full sample (which are

plotted in Figure 1).

The preliminary estimates of technology are little affected by this change in the measurement

procedure with the estimated elasticity of substitution between labor and experience declining

slightly form 0.24 in the benchmark to 0.15 in this experiment. The dynamics of the relative price

of experience continues to be well explained by the aggregate supply of experience. Allowing

for a time trend in the parameter δ to capture the potential role of demand shifts continues to

yield highly insignificant estimates of the associated parameters. We conclude that the possible

selection biases associated with estimating the returns to experience on a panel of female workers

have at best a minor impact on our findings.
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Figure 3: The Unrestricted Relative Price of Experience Π̂Et Estimated on the Male Sample and

the Predicted Male Relative Price of Experience from the Benchmark Structural Model.

4 Structural Estimation Imposing Full Model Structure

In this section, we conduct a structural estimation of the model by imposing all the properties of

the aggregate production function on the individual earnings equations. This is a more efficient

approach to estimating the aggregate production function parameters. However, imposing the

full model structure may result in changes to the estimates of all the parameters and in the

associated fit of the earnings equations. Indeed, the structural model imposes strong additional

restrictions and has considerably less flexibility in fitting the wage data as compared to the

unrestricted specification studied above. The extent to which a structural model can rationalize

the relationship between variables of interest without sacrificing the fit to the data provides a

measure of the quality of the model.

4.1 Measuring the Aggregate Prices and Quantities of Labor and

Experience using Individual Data

To structurally estimate the model, we modify the specification of the earnings equation esti-

mated in Section 3 by substituting the unrestricted relative price of experience with the expres-

19



sion implied by the aggregate production function.

lnwit = Dt + (λL,0 (sit, xit) + λL,1 (sit, xit) jit + λL,2 (sit, xit) j
2
it) (20)

+ ln

1 + δ

(
Et
Lt

)µ−1

exp


λE/L,0 (sit, xit)

+λE/L,1 (sit, xit) jit

+λE/L,2 (sit, xit) j
2
it


 eit + θ1e

2
it

+θ2e
3
it + θ3e

4
it




+αtχit + εit,

where consistent aggregation requires that the aggregate inputs Lt and Et are measured as in

equations (17) and (18) and hence depend on the parameters of efficiency schedules λL(j, s, x),

λE(j, s, x), g(e) and the coefficient vector αt. That is, for a consistent estimation of the entire

model, the aggregate inputs Lt and Et need to be expressed in terms of these life-cycle effi-

ciency and productivity parameters and estimated at the same time. This creates a complicated

nonlinearity inside the arguments of the already nonlinear log wage equation.

To estimate the model, we use the following iterative guess-and-verify strategy. Guess the

parameters for λL(j, s, x), λE(j, s, x), g (e) and αt and compute the implied aggregate experience

to labor ratio. Using this guessed ratio, estimate all parameters of the log wage equation using a

non-linear least squares method. Then, verify if the estimates for the parameters for λL(j, s, x),

λE(j, s, x), g (e) and αt from this estimation coincide with the initial guess. If not, recalculate

the experience-labor ratio using the obtained estimates of those parameters, and iterate this

procedure until the guessed estimates and the subsequent estimates coincide.

Identification of the aggregate production function parameters is discussed in Appendix A7.

4.2 Results

The estimates of the parameters of Equation (20) and their standard errors are reported in

Appendix Tables A-4 and A-5. All estimates are very similar to those obtained without imposing

the aggregate production function on individual wage equations. In fact, the fit of the model

remains unchanged. As discussed above, this indicates the appropriateness of our modeling

choices.

The structural estimates of the technology parameters are reported in Column (1) of Table 2.

These estimates continue to imply fairly strong complementarity between labor and experience
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Table 2: Structural Estimates of Technology Parameters.

parameter Benchmark With Demand Shifts

(1) (2)

µ -2.95 -3.02

(0.23) (0.28)

δ 13.26 14.57

(3.45) (4.87)

δ1 — -0.02

(0.03)

R2 0.92 0.92

RMSE 0.62 0.62

Note - Entries for µ, δ and the goodness-of-fit represent the results of structural estimation.

For sample restrictions and variable construction procedures, see Appendix A2.

in aggregate production. To assess the role of the changes in the aggregate relative supply

of experience in driving its relative price, we plot in Figure 4 the predicted relative price of

experience based on the structural estimates and the unrestricted relative price of experience

obtained in Section 3. Despite the parsimonious specification (two parameters µ and δ, and a

single state variable E
L

), the model tracks the actual time-path of the relative price of experience

very closely. The correlation coefficient between the unrestricted relative price of experience Π̂Et

and the predicted one based on the structural estimates is 0.97.

The tight prediction of the relative price of experience generated by the experience-labor

ratio in Figure 4 leaves very little room for the demand based explanations. To investigate

the role of demand shifts more formally, we allow for the share parameter δ in the production

function (8) to vary over time as δt = δ + δ1t. The corresponding estimates for the technology

parameters are reported in Column (2) of Table 2. The fit of the model is the same as in the

benchmark specification, and the predicted relative price of experience is indistinguishable across

the specifications. The estimate of δ1 is economically and statistically insignificant. The estimate

of the complementarity parameter µ is virtually the same as in the benchmark specification.
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Figure 4: The Unrestricted Relative Price of Experience Π̂Et and the Predicted Relative Price

of Experience from the Benchmark Structural Model.

5 Using the Model to Understand Additional Dimensions

of Wage Dynamics

In this section, we use the estimated model to study the role of the dynamics of the supply of

experience in driving (1) age premium across education groups, (2) college premium across age

cohorts, (3) the rates of return to years of prior work in the aggregate and across demographic

groups, (4) changing cohort-based life-cycle earnings profiles, and (5) the measured total factor

productivity.

5.1 Age Premium across Schooling Groups

Katz and Murphy (1992) were among the first to find that the ratio of wages of old and young

male workers, or age premium, has increased more among high school educated workers than

among college educated workers in the 1980s. Our PSID data exhibit the same patterns. The

lines labeled “Actual” in Figure 5 represent the ratio of wages of “old” male workers aged 41-60

to wages of “young” male workers, aged 18-40 among the college educated and the high school

educated workers, respectively.16 As discussed in the Introduction, the standard measurement

16We focus on two broad age categories to define the young and old to encompass the entire sample, and to

minimize the small sample issues arising from using the PSID. We note however, that all the results are robust
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Figure 5: Age Premium by Schooling Group.

approach pioneered by Katz and Murphy (1992), assumes that the pure old exclusively supply

experience and the pure young exclusively supply labor regardless of schooling group. This

assumption implies that, in contrast to the data, the wage ratio wsold/w
s
young has an elasticity

with respect to relative price of experience of one regardless of schooling group s ∈ {HS,C}.

This led the literature to emphasize the role of demand shifts against young high school educated

males.

In contrast, our model of individual earnings distinguishes age and experience, and allows

the age premium to exhibit a different trend over time from the relative price of experience.

Specifically, the age premium, rst , among workers with schooling level s is given at date t by17

rst ≡ ln

[
wst (old)

wst (young)

]
= ln

[
λL (old, s)

λL (young, s)

]
(21)

+ ln

 1 + δ
(
Et
Lt

)µ−1

λE/L (old, s) g (est (old))

1 + δ
(
Et
Lt

)µ−1

λE/L (young, s) g (est (young))


+ αt [χst (old)− χst (young)] .

Thus, the level of the age premium is determined by the differences in the stocks of effective

labor and experience supplied by the young and old workers, and by the difference in the vector

to finer partitions of workers into age groups.
17For notational clarity we suppress the dependence of all equations in this and the next section on gender.
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of their demographic characteristics χ. Over time, the age premium changes due to the evolution

of the relative price of experience ΠEt ≡ δ
(
Et
Lt

)µ−1

, as well as the change in the demographic

composition of young and old groups and changes in the “returns” to their characteristics, αt.

Equation (21) implies that, among workers with schooling level s, the elasticity of the age

premium with respect to the aggregate relative price of experience is given by

εrst ,ΠEt =
εwst ,ΠEt (old)− εwst ,ΠEt (young)

rst
, (22)

where

εwst ,ΠEt (j) =
δ
(
Et
Lt

)µ−1

λE/L (j, s) g (est (j))

1 + δ
(
Et
Lt

)µ−1

λE/L (j, s) g (est (j))
(23)

is the elasticity of wages of age j workers with respect to the aggregate relative price of experience.

These equations are insightful. First note that the elasticity of wages with respect to the

relative price of experience, εwst ,ΠEt , is equal to the share of wages that represents the remu-

neration to experience. Quite naturally, wages of workers with higher relative effective supply

of experience, λE/L (j, s) g (est (j)), respond more to changes in the price of experience. As our

estimates imply that old workers generally have higher relative effective supply of experience,

their wages rise more in response to an increase in the relative price of experience than wages

of young workers whose earnings mostly represent the remuneration for labor. This implies that

the age premium tends to co-move with the relative price of experience.

However, the strength of the response of age premium to changes in the relative price of

experience across, say, schooling groups depends on how fast the share of wages sourced from

experience rises with age among workers belonging to those groups. Our estimates imply that

this share rises faster with age among high school educated than among college educated workers.

Consequently, the age premium is more responsive to changes in the aggregate relative price of

experience among high school educated workers then among their more educated counterparts.

Quantitatively we find that our model does a very good job at matching the evolution of

the age premium across education groups. The lines labeled “Predicted” in Figure 5 plot the

age premium for the two schooling groups implied by the structurally estimated parameters,

including the technology parameters µ̂, δ̂, and the changing relative supply of experience. The

lines labeled “Counterfactual” eliminate the effect of the evolution of the relative supply of
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experience by setting µ = 1. Thus, these lines isolate the impact on the age premium of changes

in composition of workers within age and schooling groups and changing “returns” to their

characteristics (the αt [χst (old)− χst (young)] term in equation (21)).

We observe that the changing relative supply of experience is the primary determinant of the

dynamics of age premium among high school educated workers through its effect on the relative

price of experience. The age premium is highly responsive to changes in the relative price of

experience among these workers. Changes in composition play an important role in the early

1970s but have virtually no impact on the subsequent evolution of age premium in this group

of workers. In contrast, as the share of wages sourced from experience is similar in our samples

of young and old college educated workers, changes in the relative price of experience have little

impact on age premium in this schooling group. Instead, it is the changing composition of

workers that is responsible for much of the change in the age premium.

Thus, we conclude that our measurement approach that separates the effects of age and

experience on wages can quantitatively rationalize the differential impact of the aggregate relative

price of experience on age premium across schooling groups. It interprets this difference not

as evidence of demand shifts against particular groups of workers, but through the different

importance of the experience input in wages of various schooling groups. This result depends,

of course, on the estimated shape of the age efficiency schedules for labor and experience. We

would like to emphasize that the estimates of these efficiency schedules were not targeted to match

the asymmetric movements of age premium across schooling groups. They are time invariant

parameters, and were estimated to fit the overall wage dispersion over the entire sample period

rather than the age premium dynamics itself.18 Given this, we view the ability to match these

patterns in the data as strong evidence in support of the model.

18Furthermore, as we mentioned above, the estimates of the age efficiency schedules are very robust to esti-

mating them on different time subsamples of our data, or even in various cross-sections. This suggests that the

dynamics of age premium across schooling groups plays a minor role in identifying the parameters of the efficiency

schedules. See also Appendix A5.
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5.1.1 Ratio of Age Premiums

Mathematically, the ratio of the age premiums between college and high school educated workers

is equivalent to the ratio of the college premiums between old and young groups:

wCold/w
C
young

wHSold /w
HS
young

≡ wCold/w
HS
old

wCyoung/w
HS
young

.

Thus, the fact that the model matches the evolution of the age premiums across schooling

groups implies that it can also quantitatively account for the differential movement of the college

premiums across age groups. In the following section, we use this insight to show that the change

in the relative supply of experience that drives the movement of the relative price of experience

over time, can also account for the differential changes in the returns to schooling among young

and old workers.

5.2 College Premium across Age Groups

In an influential paper, Card and Lemieux (2001) have highlighted the fact that changes in

the male college premium have been very different across age groups: the college premium rose

sharply after the early 1970s among young workers while it remained more or less constant

among old workers. The lines labeled “Actual” in Figure 6 show that the same pattern holds in

the PSID data.

In our model, the college premium, rjt , among workers in age group j is given at date t by

rjt ≡ ln

[
wCt (j)

wHSt (j)

]
= ln

[
λL (j, C)

λL (j,HS)

]
(24)

+ ln

 1 + δ
(
Et
Lt

)µ−1

λE/L (j, C) g
(
eCt (j)

)
1 + δ

(
Et
Lt

)µ−1

λE/L (j,HS) g (eHSt (j))


+ αys,t

[
ysCt (j)− ysHSt (j)

]
+ α−ys,t

[
χC−ys,t (j)− χHS−ys,t (j)

]
.

In the bottom row of Equation (24) we split the vector of productive characteristics into

the difference in years of schooling of college and high school workers in a given age group[
ysCt (j)− ysHSt (j)

]
multiplied by the aggregate “returns” to schooling αys,t and the vector of

differences in other productive characteristics
[
χC−ys,t (j)− χHS−ys,t (j)

]
with the associated vector

of coefficients α−ys,t. This emphasizes the fact that the increase in the aggregate “returns’ to
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Figure 6: College Premium by Age Group.

schooling, αys,t, symmetrically increases the college premium in all age groups. However, this

effect is modulated by changes in the relative price of experience ΠEt ≡ δ
(
Et
Lt

)µ−1

. In particular,

the elasticity of the college premium with respect to the aggregate relative price of experience

among age j workers is given by

εrjt ,ΠEt
=
εwjt ,ΠEt

(C)− εwjt ,ΠEt (HS)

rjt
, (25)

where, as in Equation (23),

εwjt ,ΠEt
(s) =

δ
(
Et
Lt

)µ−1

λE/L (j, s) g (est (j))

1 + δ
(
Et
Lt

)µ−1

λE/L (j, s) g (est (j))
(26)

is the elasticity of wages of age j workers in schooling group s with respect to the aggregate

relative price of experience.

As we discussed in Section 5.1, high school educated workers derive a higher share of wages

as payments to their supply of the experience input at almost all ages. Moreover, the share of

wages sourced from experience increases faster over the life-cycle among high school educated

compared to college educated workers. These observations imply that (1) an increase in the

relative price of experience lowers the college premium in every age group, and (2) this effect

is stronger among older workers. In other words, the college premium among old workers falls

relative to young workers when the relative price of experience rises.
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These results explain the success of our model in capturing the dynamics of the college

premium across age groups. The lines labeled “Predicted” in Figure 6 plot the college premium

for the two age groups implied by the structurally estimated parameters. The fit to the raw data

series in solid lines is quite close. Comparing to the “Counterfactual” predictions that eliminate

the effect of the aggregate relative supply of experience on the relative price of experience by

setting µ = 1, we conclude that it was the rise in the relative price of experience that almost

fully counteracted the effect of the rise in the “returns” to college among old workers, yielding

an essentially constant college premium among the old. As there is only a small difference in

the share of wages due to experience among college and high school educated young workers,

the effect of the rise in the relative price of experience played only a minor role in shaping their

college premium, and was not sufficiently strong to counteract the effect of the rising “returns”

to education. These results demonstrate that the changing relative supply of experience can

simultaneously account for the dynamics of the relative price of experience and for the differential

movements of the college premium across age groups. While the literature has treated these

developments as being unrelated, our analysis establishes a very tight link between them.19

5.3 Rate of Return to Years Worked

While our focus in the preceding sections was on understanding the dynamics of the aggregate

relative price of experience, the primary focus of the related applied literature is on understanding

the evolution of the rate of return to a year of prior work, Ω, which is the coefficient on individual’s

number of years worked in the traditional log wage equation. In this section we provide a mapping

between the two concepts. Define the rate of return Ω as the marginal wage increment to the

addition of one more year of prior work:

Ωit ≡
d lnwit
deit

=
δ
(
Et
Lt

)µ−1

λE/L(jit, sit, xit)g
′ (eit)

1 + δ
(
Et
Lt

)µ−1

λE/L(jit, sit, xit)g (eit)
. (27)

The individual rate of return Ωit is rising in the aggregate relative price of experience ΠEt ≡

δ
(
Et
Lt

)µ−1

, and falling in the individual level of eit (given that g (eit) is mildly concave). The

return is also increasing in the relative efficiency schedule λE/L(jit, sit, xit) which, according to

19Carneiro and Lee (2011) discuss age premia in the context of the Card and Lemieux (2001) analysis.
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Figure 7: Actual and Predicted Rates of Return to Years Worked for the Representative Worker

and Counterfactual with Constant Relative Price of Experience.

our estimates, is higher for younger than for older workers and for high school than for college

educated workers. Thus, the rate of return to years of prior work declines with age and education.

5.3.1 Dynamics of Aggregate Ω

To summarize the evolution of the rate of return to years worked in a single time-series, we

consider a “representative worker” whose rate of return Ω is given by
ΠEtΛt

1+ΠEtΞt
where

Λt ≡
∑

i λE(jit, sit, xit)zithitg
′ (eit)∑

i λL(jit, sit, xit)zithit
, Ξt ≡

∑
i λE(jit, sit, xit)zithitg (eit)∑

i λL(jit, sit, xit)zithit
. (28)

Hence, this worker supplies the aggregate effective labor and aggregate effective experience.20

The solid line, labeled “Actual,” in Figure 7, represents the rate of return for the represen-

tative worker constructed using unrestricted estimates of Π̂Et , λ̂L (j, s, x), λ̂E (j, s, x), ĝ (e), and

α̂t obtained in Section 3. The rate of return, measured directly in the data without imposing

the model structure, is sizable and changes substantially over time from 2.1% in 1968 to 4.1%

in 1988, and then back down to 2.3% in 2007. The dotted line, labeled “Predicted,” is the

predicted path of the rate of return implied by the structurally estimated parameters in Section

20By construction, the effective units of experience to labor for this representative worker coincide with the

aggregate experience to labor ratio Ξt = Et

Lt
. We weight the age efficiency schedules of experience and labor by

zithit to obtain the effective units of experience and labor at the aggregate level.
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4, including the technology parameters µ̂, δ̂, and the changing relative supply of experience. The

fit is clearly very good.21

Equation (27) implies that there are two potential sources of change in Ωit for workers with

given numer of year of prior work eit: first, changes in the aggregate relative price of experience

δ
(
Et
Lt

)µ−1

, and second, changes in the demographic composition of workers affecting the mea-

sured Λt and Ξt. To isolate the contribution of the latter effect, we set µ = 1 to eliminate the

complementarity effect, and normalize δ to match the level of the relative price of experience in

1968. With these restrictions, we generate a counterfactual series of the rate of return driven

entirely by the composition effect (labeled “Composition Effect” in Figure 7). Clearly, the com-

position effect alone does not account for much of the observed changes in the aggregate rate

of return to years worked. Instead, it is the changing relative supply of aggregate experience

coupled with the complementarity of labor and experience in aggregate production that drives

the changes in the aggregate rate of return to years of prior work.

5.3.2 Rates of Return to Years Worked for Demographic Subgroups

In this section we study whether our model is consistent with the evidence on the differential

response of the returns to years of prior work of various demographic groups.

To establish an appropriate benchmark we re-estimate the unrestricted specification of Sec-

tion 3 of the paper but now allow the parameter ΠEt to be specific to gender and education

groups and evolve independently across these groups (i.e., we replace ΠEt in equation (16) with

ΠEt (sit, xit)). Thus, we effectively estimate all the parameters and the implied path of the rate

of return to years worked, Ω (sit, xit), independently for each demographic subgroup. The solid

lines, labeled “Actual,” in each panel of Figure 8 plot the resulting series and confirm a well-

known finding that the the rate of return to years worked increase more steeply for college than

high school educate workers, and for women relative to men in the 1970s and 1980s.

Next, we ask whether the estimates in Section 4 of our aggregate model with one state vari-

able - the E/L ratio - can match the dynamics of the rate of return for each of the demographic

21We obtain similar results when considering the average rate of return to years worked across workers instead

of the return to prior work of a “representative worker.”
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Figure 8: Actual and Predicted Rates of Return to Years Worked for the Representative Worker

from Different Demographic Subgroups and Counterfactuals with Constant Relative Price of

Experience.

subgroups. Remarkably, the answer is affirmative, as is illustrated by the lines labeled “Pre-

dicted” in Figure 8. We view this as strong evidence that the heterogeneous dynamics across

demographic groups is indeed driven by the evolution of one aggregate price. As the stocks of

labor and experience differ across demographic subgroups, their earnings respond differently to

the changes in the common aggregate relative price of these inputs. This is further confirmed

by the results of a counterfactual experiment of imposing µ = 1 to eliminate the effects of the

changes in the aggregate supply of experience on the relative price of experience (plotted in the

line labeled “Composition”).

This evidence also allows us to assess the role of selection in driving our results. It is

theoretically possible that the increased labor force participation of women (where a non-random

subset of women decide to join the labor force) or a selection of who goes to college affected

the dynamics of Π and E/L, potentially inducing a correlation between them and biasing our

estimate of µ. The results in this section imply that this does not appear to be the case. Indeed,

if the co-movement of the aggregate Π and E/L was induced by such selection, we would not

expect to fit the separate dynamics of Ω (sit, xit) for each of the subgroups.
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5.4 Accounting for the Changing Cohort-Based Life-Cycle Profiles

of Earnings

As we discussed in the Introduction, cross-sectional and cohort-based life-cycle earnings profiles

diverge when the price of experience changes over time. Kambourov and Manovskii (2005, 2009)

have noted that a substantial steepening of the cross-sectional profiles in the 1970s and 1980s

(which was the primary focus of our analysis so far) was accompanied by a flattening of life-cycle

earnings profiles for successive cohorts of male workers entering the labor market in the 1970s and

1980s. This means, for example, that a member of a large cohort of workers entering the labor

market in, say, the 1970s, earned a low wage relative to older workers at that time. However,

this does not imply that the wage growth over the life-cycle of this individual was going to be

high. On the contrary, it was relatively low as well.

The success of our model in matching the dynamics of cross-sectional earnings distributions

translates into its ability to account for the changes in the cohort-based life-cycle profiles.22 Here,

we illustrate its performance by its ability to account for the flattening of cohort based profiles

of male workers documented in Kambourov and Manovskii (2005). We start by replicating the

analysis in that paper which uses the PSID data over the 1968-1997 period on male workers

employed full-time full-year (we use a cutoff of 1800 hours per year). On that sample, the

following regression model is estimated:

yit = β0 + β1zi + β2z
2
i + β3zixit + β4xit + β5x

2
it + β6x

3
it + εit, (29)

where yit is the log average real annual earnings of cohort i in period t, xit is the age of cohort i

in period t, zi is the entry year of cohort i, and εit is a white noise term. The quadratic in the

cohort entry year allows for different profile intercepts for different cohorts. The cubic in age

gives all cohorts a similar shape, while the interaction of the linear age and cohort terms allows

different cohorts to have different slopes of the earnings profiles. For instance, if the coefficient

on the interaction term is negative, then every successive cohort has a flatter earnings profile.

This regression uses information from all the cohorts present in the labor market and provides a

very good fit to the data. The fitted profiles for selected cohorts are plotted in the lines labeled

22In Appendix A9, we derive some results useful for understanding the effect of cohort size on its earnings.
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Figure 9: Actual and Predicted Life-Cycle Earnings Profiles.

“Actual” in Figures 9 and 10. The analysis is performed separately on the sample of high school

educated men, college educated men, and on the combined sample.

Next we apply the same procedure to fitted values implied by the structurally estimated

parameters of our model, including the technology parameters µ̂, δ̂, and the changing relative

supply of experience.23 The resulting predicted cohort-based life-cycle profiles are plotted in the

lines labeled “Predicted” in Figure 9. The fit is very good implying that our model captures

nearly perfectly the changes in cohort based profiles (the associated coefficients β3 on the age-

cohort interaction term governing the change in the profiles are reported in Table 3). If we

restrict labor and experience to be perfect substitutes by setting µ = 1, the model loses its

ability to match the pattern of changes in cohort based profiles as can be seen in the lines

labeled “Counterfactual” in Figure 10 and associated coefficients in Table 3. Thus, we conclude

that the changes in the cohort-based life-cycle profiles of earnings are driven by the dynamics of

the price of experience, which is determined, in turn, by the evolution of the relative supply of

experience.

23The model is estimated on our standard sample in this paper, which is longer in time span, includes men and

women, and does not impose the full-time full-year restriction. Then, we select fitted wages for the subsample

satisfying the restrictions in Kambourov and Manovskii (2005). On this subsample of fitted values the model in

equation (29) is estimated with the resulting predicted life-cycle profiles plotted in Figure 9. The same procedure

is used to construct the “Counterfactual” predicted profiles in Figure 10.
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Figure 10: Actual Life-Cycle Earnings Profiles and Counterfactuals with Constant Relative Price

of Experience.

Table 3: Estimates of the Coefficient β3 on Age-Cohort Interaction.

Specification All Education Levels High School College

(1) (2) (3)

Data -.0003536 -.0005936 -.0001294

(.0001237) (.0001535) (.0002046)

Predicted -.0002742 -.0006262 -.0000722

(.0000878) (.0000917) (.0000814)

Counterfactual .0005318 .0002086 .0006231

(.0001074) (.0001101) (.0000946)

Note - Standard errors in parentheses.

5.5 Aggregate Productivity

Given the estimates of µ̂ and δ̂, we can uncover the marginal product of labor GLt implied by

the specification of the aggregate production function in (8):

ĜLt =

1 + δ̂

(
Êt

L̂t

)µ̂
 1

µ̂
−1

. (30)

Combining ĜLt and the estimates of the time-varying intercept terms D̂t, the log of the aggregate

productivity term (for labor earnings; see Footnote 4) At can be identified by

ln Ât = D̂t − ln ĜLt . (31)

Thus, we can decompose the changes in Dt into a component due to changes in the experience-

labor ratio Et
Lt

, and a component due to changes in aggregate productivity level At. The results
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Figure 11: Aggregate Labor Productivity and Marginal Product of Labor.

of this decomposition are presented in Figure 11.

To facilitate comparisons of the movements among these variables, we normalize values in

1968 to zero (by subtracting a constant). The log of marginal product of labor ln ĜLt has

decreased over the sample period accounting for most of the slowdown in the growth of Dt and

its eventual decline. This translates into a substantial 26% fall in the level of the marginal

product of labor between 1968 and 1996. Thus, the model not only accounts for the dynamics of

the return to prior work, but also endogenously generates a substantial decline in the intercept

of the wage equation. It is not a priori clear that these two features of the data might be related,

but the model provides a tight link between them. When the experience to labor ratio declines,

the marginal product of labor declines as well. This is exactly what the intercept of the wage

equation captures.

6 Conclusion

In this paper we evaluated the role of the changing supply of experience, driven largely by

the progression of the baby boom cohorts through the labor market, and by the increase in

female labor force participation, in accounting for some of the key labor market trends over the

last forty years. The main tool of our investigation is the aggregate production function that
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allows for complementarity between labor and experience - the two productive factors supplied

by the workers to the labor market. We found that the evolution of the supply of experience

accounts nearly perfectly for the large changes in the relative price of experience over the last

forty years. It also accounts well for the changes in age premiums across education groups

and changes in college premium across age groups. Finally, it accounts for the changes in the

slopes and intercepts of cross-sectional and cohort-based life-cycle earnings profiles. While these

developments were studied in separate strands of the literature, we find that the changing supply

of experience provides a powerful unifying explanation.

Methodologically, our approach based on decompositions of individual earnings also allows us

to relax some of the assumptions underlying the existing measurement approaches. In particular,

we do not need to assume that some demographic groups exclusively supply “pure” labor or

experience inputs. Instead, all workers can be supplying a bundle of these inputs, and we can

measure the individual components of such bundles through variation in years actually worked

by individuals of a given age. Consistent aggregation of individual earnings equations ensures

that these quantities correspond to the objects implied by the aggregate production function.

Moreover, our approach provides a way to filter out the effects of changes in, e.g., college or

gender premium, when studying the evolution of the relative price of experience. The additional

flexibility afforded by our approach appears important. In particular, while the existing literature

ascribes a prominent role to changes in relative demand in shaping the empirical patterns we

study, we assign a virtually exclusive role to changes in relative supply in accounting for them.

This is not a forgone conclusion in our approach as it is not designed to favor either demand or

supply based explanations.

At a more micro level, we find that separating the effects of age and experience in individ-

ual earnings provides a simple way to introduce cohort effects into traditional Mincerian wage

equations. See Appendix A5 for a discussion of how our model generates age, time, and cohort

effects. Interestingly, we find that the concavity of the age-wage profile is due to age effects

rather than decreasing returns in experience input production.

The paper also offers new insights to the literature exploring the relationship between the size

of a cohort and the relative earnings of its members. Motivated by the baby boom generation
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experience, Freeman (1979), Welch (1979) and Berger (1985) provided early empirical evidence

that larger cohorts suffer depressed earnings upon entry into the labor market. More recent

evidence is summarized in Wasmer (2001b,a) and Triest, Sapozhnikov, and Sass (2006). Jeong

and Kim (2006) found related evidence in a dual economy model of transition for Thailand, while

Kim and Topel (1995) found that a sharp decline in the share of young workers in South Korea

was associated with an increase in their relative earnings. Despite this suggestive evidence, Topel

(1997) summarizes this literature by saying: “The effects of cohort size on earnings tend to be a

sideline in the inequality literature.” Our theory and quantitative results (see also Appendix A9)

show that demographic change arising from changes in cohort size may be key to understanding

the dynamics of the returns to experience and the associated wage inequality across cohorts. In

our setting, different cohorts do not supply distinct labor inputs, yet cohorts separated more in

time will appear to complement each other because of their compositional difference in terms of

labor and experience.
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APPENDICES

A1 The Role of Age and Years of Prior Work:

A Simple Two-by-Two Example

Consider an economy with 4 types of workers each earning wsj,t in period t, where s ∈ {h, c}, h

for high-school, c for college, and j ∈ {y, o}, y for young and o for old. Earnings of each group

can be decomposed into a linear combination of payments for the two inputs – labor, L, and

experience, E:

wcj,t = ct
[
acjRL,t + bcjRE,t

]
,

whj,t = ahjRL,t + bhjRE,t,

where asj denotes the time invariant quantity of input L supplied by schooling group s of age

j, bsj denotes the corresponding supply of input E, ct is a time varying aggregate shock to the

productivity of college-educated workers, RL,t and RE,t denote the time varying economy wide

prices of inputs Lt and Et. Let Πt = RE,t/RL,t denote the relative price of the two inputs.

As in Katz and Murphy (1992), assume that all young workers exclusively supply one unit

of Lt only (acy = ahy = 1, bcy = bhy = 0). Old workers can potentially supply a combination of

both inputs Lt and Et, with the weights {aco, aho , bho} to be determined after normalizing bco = 1.

Decomposing log wages, we have

lnwcy,t = ln ct + lnRL,t,

lnwco,t = ln ct + lnRL,t + ln [aco + Πt] ,

lnwhy,t = lnRL,t,

lnwho,t = lnRL,t + ln
[
aho + Πtb

h
o

]
.

The first and third equations imply that lnRL,t, ln ct can be readily identified by the variation in

lnwhy,t and lnwcy,t − lnwhy,t. The remaining parameters to be identified are aco, a
h
o , b

h
o , and Πt. It

is the identification strategy for these parameters where our approach differs from that of Katz

and Murphy.
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A1.1 Katz and Murphy’s Identification Strategy

Katz and Murphy assume that old workers completely stop supplying the input that young

workers supply and simply set aco = aho = 0. This resolves the identification problem as the age

premium for college and high school educated workers is respectively given by

wco,t
wcy,t

= Πt and
who,t
why,t

= Πtb
h
o .

One consequence of this identifying assumption, evident from the equation above, is that the

elasticity of the age premium with respect to Πt is forced to be the same across college and high

school educated workers (while these age premiums move differently in the data). As the ratio of

age premiums between college and high school workers is equal to the ratio of college premiums

between old an young workers, this identifying assumption also restricts the potential role of

changes in Πt in explaining the differential movement of college premiums across age groups

that motivated the analysis in Card and Lemieux (2001).

A1.2 Our Identification Strategy

Our identification strategy is based on the idea that the relevant parameters can be identified if

old workers of the same age differ in the number of years they have actually worked (and con-

sequently accumulated different amounts of the experience input). To use an extreme example,

note that we can identify aco and Πt if we observe some old college workers who never worked

and thus accumulated no experience input. They earn w̃co,t = ctRL,ta
c
o in contrast to old college

workers whose years of prior work endowed them with one unit of experience input and who earn

wco,t = ct [RL,ta
c
o +RE,t]. Similarly, we can identify aho and bho

aho
if we observe some old high school

workers who accumulated no experience input and earn w̃ho,t = RL,ta
h
o and compare them with

old high school workers whose years of prior work endowed them with bho units of experience

input so that they earn who,t = RL,ta
h
o + RE,tb

h
o . Using the PSID data we are able to effectively

do this from the imperfect correlation between age and the number of years that individuals

actually worked by that age. While the two-age example here is extreme, we show in Appendix

A3 that a small amount of variation in the number of years worked is sufficient to fully identify

the model in the main text non-parametrically.
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Because we do not impose the assumption that old workers exclusively supply the experience

input, the age premiums across schooling groups are given by

wco,t
wcy,t

= aco + Πt and
who,t
why,t

= aho + Πtb
h
o ,

which implies the elasticity of the age premium with respect to Πt differs across schooling groups

depending on 1
aco

≶ bho
aho

. Our estimates of these parameters in the main text allow us to account

for the different movements of the age premiums across schooling groups and college premiums

across age groups.

A2 PSID Data

Sample. We use the Panel Study of Income Dynamics (PSID) data from the U.S. for the

1968-2007 period. The PSID consists of two main subsamples: the SEO (Survey of Economic

Opportunity) sample and the SRC (Survey Research Center) sample. We use both samples

and restrict ourselves to the core members with positive sampling weights (not the newly added

family members through marriage) to maintain the consistent representativeness of the sample

over time.24 The sample is restricted to individuals between 18 and 65 years of age.

Years of Prior Work. The procedure we use to construct measures of actual years worked

since age 18 is as follows. Questions regarding the number of years worked (“How many years

have you worked for money since you were 18?” and “How many of these years did you work

full time for most or all of the year?”) were asked of every household’s head and wife in 1974,

1975, 1976 and 1985.25 These questions are also asked for every person in the year when that

person first becomes a household head or wife.26 Since there are some inconsistencies between

the answers, we first adjust the 1974 report to be consistent with 1975 and 1976 values when

24We use only the nonimmigrant sample. In 1990 the PSID added a new sample of 2000 Latino households,

consisting of families originally from Mexico, Puerto Rico, and Cuba. Because this sample missed immigrants

from other countries, Asians in particular, and because of a lack of funding, this Latino sample was dropped

after 1995. Another sample of 441 immigrant families was added in 1997. Because of the inconsistencies in these

samples, we restrict ourselves to the core SEO and SRC samples throughout the 1968-2007 period.
25By default, the head of household is the (male) husband if he is present or a female if she is single. In very

few cases the head is a female, even when the male husband is present (but is, say, severely disabled).
26The PSID mistakenly did not ask some people in 1985 and fixed this mistake by asking them in 1987.
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possible. Next, we use 1974 as the base year; i.e., we assume that whatever is recorded in 1974

for the existing heads is true. For the entrants into the sample we assume that the number of

years of prior work they report in their first year in the sample is true. If the report implies

that an individual started working before the age of 18, we redefine it to be the number of years

since age 18 for that individual. If the reported number of years worked in 1974 is smaller than

that implied by the reports of hours between the individual entry into the sample (or 1968) and

1974, we replace the 1974 report with that implied by the accumulated reports of hours. We

repeat this procedure for 1985 and for the reports of the new heads and wives. Finally, using

the values in 1974, 1985, and the reports of the new heads and wives, we increment the years

of work variables forward and backward as follows: increment the full-time measure by one if

individual works at least 1500 hours in a given year.27 If we observe an individual in the sample

since age 18, we ignore his or her reports and instead directly use his or her reports of hours in

each year using the cutoff above.28

Other Variables. Our hourly wage measure is equal to the total earnings last year divided

by total hours worked last year. To get the real wage, we adjust the nominal wage using last

year’s CPI (equal to 100 in 1984).29 We define the economically active population as the group

of people who worked at least 700 hours last year.30 Education is measured by years of final

educational attainment.31 Other control variables that we will use are gender (male dummy),

27We experimented with using cutoff values other than 1500 hours of work or using directly the sum of ac-

cumulated hours of work to create other measures of prior work and found that our chosen measure shows the

smoothest pattern of movements. The substantive results are not sensitive to this choice.
28The PSID switched from annual to bi-annual interviewing after 1997. Some data for the non-interview years

is available but appears very noisy with large numbers of missing observations. This led us to use only the data

from years when interviews took place. The only exception is hours worked in years between interviews which are

needed to construct the measures of prior work. We imputed those hours as the maximum between the reported

hours (if available) and the average hours in the two adjacent survey years.
29There is an alternative hourly wage measure in the PSID which reports the current hourly wage at the time

of the interview. Unfortunately, this measure is only available for the household heads throughout the period.

For wives it is available only in 1976 and after 1979 and it is not available at all for the other family members.
30As in the case of earnings, there is also an employment status variable at the time of the interview. We do

not use this variable because (1) the reference period (current year) is different from that of the earnings measure

(last year), and (2) this variable is available for the heads for all years but not for the wives before 1979 except

in 1976 and is not available for the dependents.
31Education is reported in the PSID in 1968, 1975, and 1985 for existing heads of households, and every year
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race (black dummy), and region (Northeast, North Central and West dummies). The broad

region variable is created using the state variable in the PSID.32 South is the base category

region.

A3 Variation in Years Worked Needed for Identification

As is well known, the variation in the number of years worked by a certain age is relatively

small, especially for male workers. This might appear to pose a challenge for our identification

strategy. We now show that the model is nonparametrically identified if we only have one year

of difference in the number of years worked at each age, e.g., it is enough that some workers

enter the labor market at age 18 while some others at age 19 so that at age 20, they have worked

2 and 1 years, respectively, and at age 21, they have worked 3 and 2 years, respectively, etc.

Following this, we show that there is much more variation available in our data.

A3.1 Non-parametric Identification

We now establish non-parametric identification of the relative price of experience Πt and of the

λL(j), λE(j) and g (e) schedules if within each age group j some individuals worked for j years

and some others for j − 1 years, i.e. e ∈ {j, j − 1} for j ≥ 1.

Specify the log wage of a worker with age j and years worked e as

lnw (j, e) = lnRL,t + ln(λL(j) + ΠtλE(j)g (e)).

for the people becoming household heads or wives. It is kept constant between the years in which it is updated.

As a result, there would be a bias toward a lower educational level. For example, if education is 10 years in

1975 and 16 in 1985, it would be reported 10 between 1975 and 1985. If the individual, however, had 16 years

of education already in 1980, then for five years he would be counted as less educated than he actually is. To

minimize this bias, the education variable used in the estimation is fixed to be equal to its mode value among all

the reports available. To make the education variable comparable across time we top code it at 16 years.
32We found that the broad region variable provided by the PSID appears to be error-ridden. For example, for

some but not all Texas residents region is defined as West. Thus, we reconstructed the broad region variable

directly from the state of residence.
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We have the restriction that λL(0) = 1 and g (0) = 0, so that

lnw (0, 0) = lnRL,t,

lnw (1, 0) = lnRL,t + lnλL(1),

which are used to identify lnRL,t for all t and lnλL(1). Now consider

lnw (j, e = j) = lnRL,t + ln(λL(j) + ΠtλE(j)g (e = j))

lnw (j, e = j − 1) = lnRL,t + ln(λL(j) + ΠtλE(j)g (e = j − 1))

for all j ≥ 1 and for every t. Since lnRL,t is known, these equations imply that we can determine

the following after exponentiating

λL(j) + ΠtλE(j)g (e = j) , (A1)

λL(j) + ΠtλE(j)g (e = j − 1) ,

for all j ≥ 1 and for every t. Since lnλL(1) is also known, we can further determine

ΠtλE(1)g (1)

for every t, from which we can determine Πt+1

Πt
for every t.

Using (A1) and the time differences of these values, we can find

(Πt+1 − Πt)λE(j)g (e = j) ,

(Πt+1 − Πt)λE(j + 1)g (e = j) ,

(Πt+1 − Πt)λE(j + 1)g (e = j + 1) .

Using ratios of these, we can determine λE(j+1)
λE(j)

, g(e=j+1)
g(e=j)

beginning from λE(2)
λE(1)

, g(2)
g(1)

.

Next, to determine λL(j) we can use

λL(j) + ΠtλE(j)g (e = j)

ΠtλE(1)g (1)
=

λL(j)

ΠtλE(1)g (1)
+
λE(j)g (e = j)

λE(1)g (1)
,

where the second term on the right hand side is known given the calculated λE(j+1)
λE(j)

, and g(e=j+1)
g(e=j)

,

and ΠtλE(1)g (1) is also known, allowing us to identify λL(j).

Finally, although from Πt=0λE(1)g (1) we cannot separately identify Πt=0 and λE(1) and

g (1), we could normalize two of these, λE(1) and g (1), without loss of generality to identify
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Figure A-1: Within-Age Variation in Years of Prior Work by Gender and Education.

Πt=0.33 As discussed in Appendix A7, the level of Πt=0 does not affect our substantive results

and it only scales the level of the estimated share parameter ln δ in the aggregate technology

(not the estimate of the complementarity parameter). In the specification used in the main text

this normalization is not needed because λE(0) = 1, g (0) = 0 and the restricted functional forms

of λE(j) and g (e).

Note that given the nonparametric identification achieved, the parametric identification in

the main text is guaranteed as a special case.

A3.2 Variation in Years Worked Available in the Data

Figure A-1 uses boxplots to summarize the amount of variation in actual experience by age

available in our data. Each plot shows the percentile statistics of the distribution such as

median, 25th percentile, 75th percentile in a box and the upper and lower adjacent values in

33This is the same normalization we used when setting bco = 1 in Appendix A1.
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marking boundary values.34 The figure illustrates that the range of variation of the number of

years worked for every age group far exceeds the amount of variation needed for identification.

Even among male workers, the effective range of within-age variation in the number of years

worked is wider than 10 years for most age groups.

An alternative way to describe the amount of variation available for identification in the

literature would be to to report the correlations between age and years of prior work. In our

data these are 0.95 for college males, 0.95 for high-school males, 0.73 for college females, and 0.66

for high-school females. The interpretation of such correlations is, however, not straightforward

in the context of establishing identification. This is because the overall correlation is dominated

by the overall co-movement in age and years of prior work and does not immediately reveal the

extent of years of prior work variation conditional on age, which determines the identification.

The following simple example illustrates this.

Suppose that for each age the distribution of the number of years worked is constant around

that age (the sample size N also ensures that this is the case). Let xi denote age and yi the

years of prior work, then

yi = xi + ei

where ei = e is from a given distribution independent of the level of xi such that

∑
i

[ei (xi − x̄)] = 0.

Without loss of generality, re-normalize the measure of years worked such that the average

number of years worked and age are equal, x̄ = ȳ.

34The “upper and lower adjacent values” are the extreme values of ±1.5 times of the inter-quartile range, which

are suggested by Tukey (1977) to capture the “effective range” of the distribution.
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The aggregate correlation between age and years of prior work is given by

r =

∑
i [(xi − x̄) (yi − ȳ)]√∑
i (xi − x̄)2∑

i (yi − ȳ)2

=

∑
i [(xi − x̄) (xi − x̄+ ei)]√∑
i (xi − x̄)2∑

i (xi − x̄+ ei)
2

=

∑
i (xi − x̄)2√∑

i (xi − x̄)2 [∑
i (xi − x̄)2 +

∑
i (ei)

2]
=

√ ∑
i (xi − x̄)2∑

i (xi − x̄)2 +
∑

i (ei)
2 .

Thus, the correlation is falling in the ratio∑
i (ei)

2∑
i (xi − x̄)2 =

Nσ2
e∑N

i (xi − x̄)2
.

Since the numerator is constant, this ratio is essentially falling in the range of ages in the sample,

whereas the variation of age and years of prior work that is relevant for the identification is given

by σ2
e .

To provide a quantitative example, if we partition our sample into 10 equally spaced birth

cohort bins, the average correlation within a bin is 0.9 for college males, 0.9 for high-school males,

0.58 for college females, and 0.57 for high-school females. To avoid arbitrariness of choosing such

a partition, we think Figure A-1 is more informative in summarizing the ample variation available

for identification in our data.
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A4 Descriptive Analysis, Additional Results

A4.1 Descriptive Analysis, Benchmark Coefficient Estimates

Table A-1: Descriptive Analysis, Estimates of Time-Invariant Parameters.

Parameter Estimate Standard error t-statistic

λL,1 (HS,M) .0245 .00323 7.56

λL,2 (HS,M) -.000492 .0000803 -6.13

λL,0 (C,M) -.306 .0350 -8.74

λL,1 (C,M) .0671 .00363 18.47

λL,2 (C,M) -.00116 .0000846 -13.66

λE/L,1 (HS,M) -.0792 .00829 -9.55

λE/L,2 (HS,M) .00107 .000181 5.90

λE/L,0 (C,M) .332 .121 2.74

λE/L,1 (C,M) -0.148 .0132 -11.21

λE/L,2 (C,M) .00214 .000268 8.00

λL,1 (HS,F ) .00109 .00203 .54

λL,2 (HS,F ) .0000709 .0000463 1.53

λL,0 (C,F ) -.0569 .0282 -2.02

λL,1 (C,F ) .0345 .00265 12.98

λL,2 (C,F ) -.000571 .0000612 -9.33

λE/L,1 (HS,F ) -.0434 .00661 -6.57

λE/L,2 (HS,F ) .0000404 .000137 .30

λE/L,0 (C,F ) -.499 .127 -3.93

λE/L,1 (C,F ) -.054 .0129 -4.23

λE/L,2 (C,F ) .000142 .0000286 .50

θ1 -.0234 .00476 -4.92

θ2 .000979 .000184 5.32

θ3 -.0000141 .00000238 -5.93

northeast .19 .004 43.64

north central .046 .004 11.46

west .098 .0045 21.90

R2 0.924

RMSE 0.616

Note - The entries represent the results of the reduced-form estimation of time-invariant

parameters of the benchmark specification in Section 3. For sample restrictions and vari-

able construction procedures, see Appendix A2.
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Table A-2: Descriptive Analysis, Estimates of Time-Varying Parameters.

Year Price of Exp. Schooling Male Black Intercept

1968 .091(.015) .072(.005) .24(.031) -.16(.048) .46(.09)

1969 .078(.013) .066(.005) .25(.028) -.16(.044) .61(.08)

1970 .089(.013) .063(.005) .24(.027) -.14(.042) .63(.08)

1971 .087(.013) .069(.005) .22(.027) -.10(.042) .58(.08)

1972 .106(.014) .074(.005) .20(.026) -.12(.041) .49(.08)

1973 .104(.013) .072(.004) .25(.026) -.086(.040) .52(.07)

1974 .101(.012) .064(.004) .23(.023) -.099(.036) .65(.07)

1975 .109(.012) .067(.004) .21(.023) -.087(.035) .59(.07)

1976 .126(.013) .069(.004) .16(.023) -.051(.035) .54(.07)

1977 .131(.014) .076(.004) .19(.023) -.037(.035) .42(.07)

1978 .152(.015) .075(.004) .19(.023) -.051(.035) .40(.07)

1979 .141(.014) .070(.004) .20(.022) -.087(.032) .49(.07)

1980 .137(.013) .066(.004) .20(.021) -.045(.031) .53(.07)

1981 .170(.016) .080(.004) .17(.022) -.092(.032) .26(.07)

1982 .155(.015) .071(.004) .17(.022) -.093(.032) .38(.07)

1983 .206(.019) .083(.004) .10(.021) -.075(.032) .12(.07)

1984 .183(.016) .081(.004) .11(.020) -.082(.030) .20(.07)

1985 .217(.018) .092(.004) .15(.020) -.078(.030) -.03(.07)

1986 .207(.018) .092(.004) .12(.020) -.12(.030) .02(.07)

1987 .224(.015) .099(.004) .10(.020) -.15(.029) -.07(.07)

1988 .251(.021) .108(.004) .05(.020) -.14(.029) -.22(.07)

1989 .242(.019) .111(.004) .07(.018) -.15(.026) -.26(.07)

1990 .231(.019) .114(.004) .04(.018) -.11(.026) -.29(.07)

1991 .217(.018) .123(.004) .04(.018) -.07(.027) -.41(.07)

1992 .252(.020) .122(.004) .03(.018) -.13(.026) -.47(.07)

1993 .220(.018) .111(.004) .04(.018) -.094(.026) -.24(.07)

1994 .201(.017) .119(.004) .09(.018) -.16(.026) -.36(.07)

1995 .229(.019) .110(.004) .08(.018) -.11(.026) -.27(.07)

1996 .238(.020) .106(.004) .08(.018) -.14(.026) -.23(.08)

1997 .214(.018) .115(.004) .03(.017) -.15(.025) -.31(.07)

1999 .217(.018) .113(.004) .07(.017) -.15(.025) -.26(.07)

2001 .174(.016) .117(.004) .07(.017) -.088(.024) -.19(.07)

2003 .165(.015) .106(.004) .02(.016) -.11(.024) -.05(.07)

2005 .185(.016) .120(.004) .04(.016) -.15(.024) -.26(.07)

2007 .143(.014) .118(.004) .07(.016) -.17(.023) -.12(.07)

Note - The entries represent the results of the reduced-form estimation of time-varying parameters of

the benchmark specification in Section 3. Standard errors are in parenthesis. For sample restrictions

and variable construction procedures, see Appendix A2.
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Figure A-2: Age-Conditional Means and Standard Deviations of Years Worked, Experience

Input, and Wages by Gender and Education.
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Figure A-3: Estimated Age-Efficiency Schedules for Female Workers by Education.

A5 Time-Invariant Age Efficiency Schedules and Cohort

Effects

While our identification strategy follows Katz and Murphy (1992) and subsequent literature in

assuming that age efficiency schedules λL and λE are independent of time, this is potentially an

important restriction ruling out certain cohort effects. In this Appendix we empirically assess

this assumption through two experiments. First, we check for the presence of cohort effects not

accounted for by the model with time-invariant age efficiency schedules. Second, we estimate

the model separately on different cohorts and check whether the estimates differ significantly.

A5.1 Cohort Effects

To check for the presence of cohort effects that are not accounted for by our specification with

constant age efficiency schedules, we we obtain wage residuals from our model and ask whether

we can detect the presence of residual cohort effects in them. In particular, we regress the

residuals on the full set of cohort dummies. The estimates of coefficients on those dummies are

all statistically insignificant from zero. Moreover, they do not exhibit any particular trends as

is evident from Figure A-4 in which the coefficients of the cohort dummies are plotted for all

cohorts.

How does our model account for cohort effects? The time effect on wages is captured via the

changes in the year dummies of the wage regression (equation (16) in the main text). The pure
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Figure A-4: Residual Cohort Dummy Estimates.

age effect is captured by the age efficiency schedule of labor λL (j). The cohort effect is captured

by the interactive term between the relative price of experience ΠE,t (time effect) and the age

efficiency schedule of labor λE/L (j) (age effect).

Moreover, we also allow the time-varying coefficients for the characteristics of schooling, gen-

der and race. Through the changing age composition of these demographic subgroups, allowing

the time-varying coefficients on these characteristics also captures the cohort effect indirectly.

These are clearly one particular way of capturing cohort effects and the question is whether we

are missing other significant cohort effects than the ones captured. The results of the experiment

in this section suggest that we are not.

A5.2 Estimating the Model on Different Cohorts

We now allow the age efficiency schedules to differ across cohorts and check whether the estimates

differ significantly. In particular, we allow the age efficiency schedules for males to be cohort

specific as follows

λsL(j, Z) = exp(λsL,1j + λsL,2j
2 + IZ

(
Zs
L,1j + Zs

L,2j
2
)
),

λsE(j, Z) = exp(λsE,1j + λsE,2j
2 + IZ

(
Zs
E,1j + Zs

E,2j
2
)
),
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Figure A-5: Estimated λL(j), λE(j) for Cohorts of College-Educated Male Workers Born before

or after 1946.

where IZ is an indicator for cohort Z.

Defining cohorts too finely runs into the problem of cohorts not having observations along

the support of the age profile for the youngest and oldest cohorts, over and above sample size

issues. Thus, we consider two cohort groups, those born before and those born after 1946. We

choose the partition of cohorts at 1946 to generate the most overlap in terms of age between

the two cohorts for comparison. This turns out to also imply similar sample sizes for the two

groups.35

For the high school group, the four coefficients {Zs
L,1, Z

s
L,2, Z

s
E,1, Z

s
E,2} are all insignificant so

there are no statistically relevant differences in λsL and λsE across cohorts. For the college group

each of these four coefficients turned out to be statistically significant, and we investigated further

the implications.

Plotting λsL(j, Z) and λsE(j, Z) over the support of age j for the pre-1946, post-1946 cohorts,

in Figure A-5, we observe that the age efficiency schedules are quite similar in shape and position

between the two cohort groups.

35We also considered an alternative specification where we allowed the cohort to determine the level of efficiency

units such that

λsL(j, Z) = exp(λsL,1j + λsL,2j
2 + IZZ

s
L).

In this simpler specification, we could consider differences in coefficient Zs
L between finely defined cohorts since

we do not run into the issue of not having observations along the support mentioned above. The coefficients for

Zs
L for cohorts differentiated by calender birth year (relative to the base cohort) all turn out to be insignificant.
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Moreover, allowing for cohort-specific λsL(j, Z), λsE(j, Z) does not affect the ability of the

model to match the dynamics of the relative price of experience, the age premiums and college

premiums which are the focus of our analysis. The results are virtually indistinguishable from

the benchmark ones, leading us to prefer the more parsimonious benchmark specification.

We can statistically assess the similarity of predictions of the models with common or cohort-

specific age efficiency schedules by performing the nonparametric Kolmogorov-Smirnov test for

the distributional equality between the two predicted wage distributions. Specifically, let F 0
n (w)

and F 1
n (w) be the empirical distribution functions of the fitted log wage with sample size n

from the specification of common age efficiency schedules and from that of cohort-differentiated

age efficiency schedules, respectively. The Kolmogorov-Smirnov statistic for testing the equality

between the two distributions is

Kn = sup
w

∣∣F 0
n (w)− F 1

n (w)
∣∣ ,

where supw |·| indicates the supremum and the empirical distribution function is defined as

F j
n (w) =

1

n

n∑
i=1

I
(
W j ≤ w

)
.

The statistic
√
nKn converges to Kolmogorov distribution under the null of equality, which does

not depend on the form of the true distribution of the log wage.

The Kolmogorov-Smirnov test statistic for the whole sample is 0.0026 with p-value of 0.639,

hence we cannot reject the null hypothesis of equality between the two distributions for the

whole sample. We also check the equality of the log wage distributions for the two cohorts. The

test statistic for the cohort born before 1946 sample is 0.0048 with p-value of 0.439. The test

statistic for the cohort born after 1946 is 0.0049 with p-value of 0.189. Thus, the equality of

cohort-specific conditional distributions is not rejected either.
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A6 Assessing Alternative Specifications

In this section, we compare the ability of our specification of the wage equation to fit the data

relative to various alternative specifications. Two types of restrictions are of particular interest.

First, our benchmark specification incorporates three potential sources of curvature in the life-

cycle profiles (g(e), λL, and λE). We assess whether all three components are essential for fitting

the data or only a subset of them would be statistically sufficient. Second, our benchmark

specification filters out the time-varying college premium, gender premium, etc. when assessing

the relative price of experience, and incorporates these time varying premiums when calculating

the aggregate effective supplies of experience and labor. The traditional cell-based correction for

composition does not accommodate these features as we discuss in Footnote 2. Consequently, it

is of some interest to assess the consequences of this restriction for fitting the wage distribution.

To do so we consider alternative specifications where the coefficients on these characteristics are

forced to be time-invariant.

We measure the distance between our benchmark specification and each alternative one by the

difference in estimated log likelihoods between them. Vuong (1989) shows that under regularity

conditions, the likelihood ratio test statistic converges to a central chi-square distribution.36

Specifically, suppose there are two competing models to explain the variable Y conditional on Z

that are represented by the conditional distribution functions Fθ ≡
{
FY |Z (·|·; θ) ; θ ∈ Θ ⊂ Rp

}
and Gγ ≡

{
GY |Z (·|·; γ) ; γ ∈ Γ ⊂ Rq

}
, respectively, and their density functions are denoted by

f (y|z; θ) and g (y|z; γ). In our case, y = lnw and z = (1, s, x, j, e, χ). Let θ̂n and γ̂n be the

corresponding maximum likelihood estimators for the sample (yι, zι)
n
ι=1 of size n, i.e., θ̂n =

arg maxθ∈Θ

n∑
ι=1

log f (yι|zι; θ) and γ̂n = arg maxγ∈Γ

n∑
ι=1

log g (yι|zι; γ). Then, under the regularity

conditions, 2LRn

(
θ̂n, γ̂n

)
D−→ χ2

p−q, where

2LRn

(
θ̂n, γ̂n

)
= 2

n∑
ι=1

log

f
(
yι|zι; θ̂n

)
g (yι|zι; γ̂n)

 , (A2)

and p− q is the difference in the total number of parameters between the two models.

36See assumptions A1-A5 and information matrix equivalence condition in equation (3.8) for regularity condi-

tions and Theorem 3.3 and Corollary 3.4 for the characterization of the asymptotic distribution of the likelihood

ratio test statistic in Vuong (1989).
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Table A-3: Likelihood Ratio Test Statistics.

Specification # Description LR χ2
p−q (0.01)

Spec 1 g(e) = e; λL = λE = 1; αt = α 6943.8 181.8

Spec 2 g(e) = e; λL = λE = 1; benchmark αt 5661.5 41.6

Spec 3 benchmark g(e); λL = λE = 1; αt = α 3634.5 178.4

Spec 4 g(e) = e; benchmark λL and λE; αt = α 1110.8 159.0

Spec 5 benchmark g(e); λL = λE = 1; benchmark αt 2371.0 37.6

Spec 6 benchmark g(e); benchmark λL and λE; αt = α 1033.4 155.5

Spec 7 benchmark g(e); λL = 1; benchmark λE; benchmark αt 863.9 23.2

Spec 8 benchmark g(e); benchmark λL; λE = 1; benchmark αt 765.0 23.2

Spec 9 benchmark g(e); symmetric λL = λE; benchmark αt 758.9 23.2

Spec 10 g(e) = e; benchmark λL and λE; benchmark αt 32.4 11.3

The alternative specifications that we consider in this section are nested by the benchmark

specification. Hence the alternative hypothesis to the null hypothesis of the equivalence of the

compared models is that the benchmark model is strictly superior to the other candidate model

in fitting the wage distribution. Thus, the statistic in (A2) allows us to perform a statistical

significance test for the superiority of our benchmark specification over the alternatives.

Table A-3 provides the likelihood ratio test statistic (denoted by LR) comparing our bench-

mark specification with various alternatives, along with the corresponding critical values of the

chi-square distributions for the 1% significance level (denoted by χ2
p−q (0.01)).

The likelihood ratio test statistics are far larger than the 1% significance critical values for

all of the alternative specifications. In fact, the test statistics also exceed the 0.1% significance

critical values. Our benchmark specification fits the wage distribution strictly better than the

other candidate specifications at any conventional significance level. Thus, the full incorporation

of age efficiency schedules for both experience and labor, the curvature of experience input, and

allowing for the time-varying coefficients for control variables provides critical improvements in

fitting the wage distribution.

Furthermore, the likelihood ratio test statistic can be considered as the distance of each

alternative specification from the benchmark. By comparing the magnitudes of the likelihood
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ratio statistics across specifications, we can infer the relative importance of each ingredient of the

model specification. For example, the likelihood ratio falls from 6943.8 (Spec 1) to 5661.5 (Spec

2) by allowing for time-varying coefficients on the control variables, but falls to 3634.5 (Spec

3) after relaxing the linearity of g(e) function. Thus, allowing for curvature in the experience

accumulation technology seems more important than allowing for the time-varying coefficients

for the control variables. The most substantial improvements come from introducing the age

efficiency schedules. The likelihood ratio falls from 6943.8 (Spec 1) to 1110.8 (Spec 4), after

incorporating the age efficiency schedules into the model. With curvature in the experience

accumulation technology and time-varying coefficients on the control variables, the likelihood

ratio increases to 2371.0 (Spec 5) from 1110.8 (Spec 4) when the efficiency of labor and experience

is not allowed to depend on age.

Further evidence of the importance of the full consideration of the age efficiency schedules

comes from the comparison of likelihood ratios among specifications 7, 8, 9, and 10. After

allowing for the age efficiency schedules and time-varying coefficients for the control variables,

the likelihood ratio falls to 32.4 (Spec 10), even when restricting the experience accumulation

technology to be linear. However, even with full curvature of experience accumulation technology

and time-varying coefficients on the control variables, an incomplete inclusion of the age efficiency

schedules makes the model fit much worse: the likelihood ratio becomes 863.9 (Spec 7 for λL = 1),

765.0 (Spec 8 for λE = 1), and 758.9 (Spec 9 for λL = λE).

Spec 6 shows the likelihood ratio is high (1033.4) when we do not allow for time varying

premiums to college, gender etc. αt = α. Comparing Spec 1 with Spec 2, Spec 3 with Spec 5 and

Spec 4 with Spec 10, we further confirm that setting these premiums as constant under other

specifications for efficiency schedules substantially raises the likelihood ratio.

This evidence implies that all three potential sources of curvature of life-cycle profiles as well

as the time variation in the coefficients on the control variables are essential for fitting the wage

data. We emphasize once again, however, that while this evidence guides us in specifying the

model of individual earnings, it is independent of the relationship between the aggregate relative

supply of experience and its relative price.
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A7 Identification of the Aggregate Production Function

Parameters in the Structural Model

The log wage equation in (20) includes all parameters of the model. In particular, given the

measurement of aggregate inputs Et and Lt, the variation of the relative price of experience ΠEt

in relation to the variation of the experience-labor ratio Et
Lt

is the source of identification of the

technology parameters µ and δ. The time-series correlation between the relative price ΠEt and

the relative factor endowment Et
Lt

identifies µ (which is scale free). The average magnitude of

ΠEt relative to the magnitude of the Et
Lt

identifies the scale parameter δ.

Note that the magnitudes of ΠEt and Et
Lt

depend on the normalization of some parameter

of the age efficiency schedules, i.e., λE(0, HS, x) = λL(0, HS, x) = 1 for x ∈ {M,F}. Thus,

the identification of δ is subject to this normalization. More precisely, it is the normalization

of the relative efficiency of experience of the youngest workers that affects the identification

of δ. That is, re-normalizing λE(0, s, x) = λL(0, s, x) = l for any arbitrary constant l such

that λE/L(0, s, x) = 1 leaves the estimate of δ unchanged. However, if we normalize the age

efficiency schedules asymmetrically between experience and labor so that λL(0, s, x) = a and

λE(0, s, x) = b, hence λE/L(0, s, x) = c = b/a 6= 1, the coefficient function in front of experience

in the log wage becomes δ
(
cEt
Lt

)µ−1

cλE/L(j, s, x) = δ̃
(
Et
Lt

)µ−1

λE/L(j, s, x), where δ̃ = δcµ.

Thus, the estimated value of δ may change. The normalization of the age efficiency schedule of

labor affects the scale of the aggregate productivity term. Specifically, with λL (0, s, x) = a, the

aggregate productivity term turns to ln aAt. Note, however, that estimates of µ as well as the

age efficiency schedules, our key parameters, are not affected by this normalization.

60



A8 Structural Estimation, Additional Results

A8.1 Structural Estimation, Benchmark Coefficient Estimates

Table A-4: Structural Estimation, Estimates of Time-Invariant Parameters.

Parameter Estimate Standard error t-statistic

λL,1 (HS,M) .0239 0.00335 7.13

λL,2 (HS,M) -.000502 0.0000846 -5.93

λL,0 (C,M) -.308 0.0353 -8.73

λL,1 (C,M) .0679 0.00366 18.52

λL,2 (C,M) -.00118 0.0000857 -13.82

λE/L,1 (HS,M) -.0773 0.00832 -9.29

λE/L,2 (HS,M) .00107 0.000183 5.88

λE/L,0 (C,M) .321 0.122 2.62

λE/L,1 (C,M) -0.148 0.0132 -11.19

λE/L,2 (C,M) 0.00219 0.000266 8.25

λL,1 (HS,F ) .000879 .00205 0.43

λL,2 (HS,F ) .0000755 .0000467 1.62

λL,0 (C,F ) -.0544 .0284 -1.92

λL,1 (C,F ) .0344 .00269 12.81

λL,2 (C,F ) -.000574 .0000622 -9.23

λE/L,1 (HS,F ) -.0426 .00661 -6.45

λE/L,2 (HS,F ) .0000302 .000137 .22

λE/L,0 (C,F ) -.510 .127 -3.99

λE/L,1 (C,F ) -.054 .0129 -4.17

λE/L,2 (C,F ) .000158 .0000287 .55

θ1 -0.0244 0.00462 -5.30

θ2 .00101 0.000179 5.66

θ3 -.0000145 0.00000231 -6.29

northeast 0.19 0.004 43.66

north central 0.046 0.004 11.49

west 0.098 0.0045 21.94

R2 0.924

RMSE 0.616

Note - The entries represent the results of the structural estimation of time-invariant pa-

rameters of the benchmark specification. For sample restrictions and variable construction

procedures, see Appendix A2. See Section 4 for details of the estimation procedure.
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Table A-5: Structural Estimation, Estimates of Time-Varying Parameters.

Year Schooling Male Black Intercept

1968 .071(.005) .25(.033) -.16(.048) .49(.066)

1969 .067(.004) .24(.031) -.16(.044) .58(.061)

1970 .062(.004) .24(.030) -.14(.042) .65(.060)

1971 .069(.004) .22(.029) -.10(.042) .52(.059)

1972 .072(.004) .21(.029) -.12(.041) .54(.059)

1973 .071(.004) .25(.028) -.087(.040) .54(.057)

1974 .065(.004) .23(.026) -.100(.036) .63(.054)

1975 .068(.004) .21(.026) -.086(.035) .56(.054)

1976 .069(.004) .16(.026) -.051(.035) .53(.055)

1977 .077(.004) .19(.026) -.037(.035) .41(.055)

1978 .073(.004) .19(.026) -.052(.035) .44(.055)

1979 .071(.004) .20(.025) -.086(.032) .47(.053)

1980 .068(.004) .19(.024) -.044(.031) .47(.054)

1981 .079(.004) .17(.024) -.092(.032) .28(.054)

1982 .073(.004) .16(.024) -.093(.032) .34(.055)

1983 .079(.004) .12(.025) -.075(.032) .21(.057)

1984 .082(.004) .11(.024) -.082(.030) .19(.055)

1985 .090(.004) .16(.024) -.078(.030) .01(.055)

1986 .091(.004) .13(.024) -.12(.030) .03(.057)

1987 .097(.004) .11(.024) -.15(.029) -.03(.057)

1988 .105(.004) .06(.024) -.14(.029) -.14(.059)

1989 .110(.004) .07(.023) -.15(.026) -.23(.057)

1990 .114(.004) .05(.023) -.11(.026) -.29(.058)

1991 .126(.004) .04(.023) -.071(.027) -.47(.059)

1992 .120(.004) .04(.023) -.13(.026) -.41(.059)

1993 .113(.004) .04(.023) -.094(.026) -.30(.059)

1994 .125(.004) .08(.023) -.16(.026) -.49(.059)

1995 .109(.004) .08(.023) -.12(.026) -.24(.059)

1996 .102(.004) .09(.023) -.14(.026) -.15(.059)

1997 .116(.004) .03(.022) -.15(.025) -.34(.052)

1999 .110(.004) .08(.022) -.15(.025) -.19(.052)

2001 .119(.004) .07(.022) -.087(.024) -.24(.053)

2003 .109(.004) .02(.022) -.11(.024) -.10(.052)

2005 .118(.004) .05(.022) -.15(.024) -.20(.052)

2007 .120(.004) .06(.022) -.17(.023) -.18(.052)

Note - The entries represent the results of the structural estimation of time-varying parameters of

the benchmark specification. Standard errors are in parenthesis. For sample restrictions and variable

construction procedures, see Appendix A2. See Section 4 for details of the estimation procedure.
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A9 The Effect of Cohort Size on Earnings

Given the aggregate technology (3), note that from the Euler theorem

GEE = −Lt
Et
GEL,

GLL = −Et
Lt
GEL.

The aggregate stocks of labor and experience in period t can be constructed as the sum of

effective supplies across cohorts indexed by age j

Lt =
∑
j

λL(j)Nj,t,

Et =
∑
j

λE(j)gt(j)Nj,t,

where Nj,t denotes the cohort size and λL(j), λE(j), g(j) denote the efficiency schedules for

a representative worker in cohort j. We suppress notation for sex and schooling and omitted

productive characteristics zjt and hours hjt for clarity. The complementarity between two cohorts

j and k is given by the condition d2Yt
dNj,tdNk,t

> 0. This cross derivative is given by

d2Yt
dNj,tdNk,t

= At

 GEEλE(j)gt(j)λE(k)gt(k) +GELλE(j)gt(j)λL(k)

+GLEλL(j)λE(k)gt(k) +GLLλL(j)λL(k)


= AtGEL

Lt
Et

 −λE(j)gt(j)λE(k)gt(k) + λE(j)gt(j)λL(k)Et
Lt

+λL(j)λE(k)gt(k)Et
Lt
−
(
Et
Lt

)2

λL(j)λL(k)


= AtGEL

Lt
Et
λL(j)λL(k)

 −λE(j)gt(j)λE(k)gt(k)
λL(j)λL(k)

+ λE(j)gt(j)
λL(j)

Et
Lt

+λE(k)gt(k)
λL(k)

Et
Lt
−
(
Et
Lt

)2


= AtGEL

Lt
Et
λL(j)λL(k)

[
Et
Lt
− λE(j)gt(j)

λL(j)

] [
λE(k)gt(k)

λL(k)
− Et
Lt

]
,

using the implications of the Euler theorem above.

Since aggregate experience-labor complementarity implies GEL > 0, cohorts are complements

when the cohort specific experience-labor ratios λE(j)gt(j)
λL(j)

and λE(k)gt(k)
λL(k)

, are respectively lower and

higher than the aggregate experience-labor ratio Et
Lt

. This is because cohorts complement each

other through the effect on the aggregate experience-labor ratio. When both cohort specific

experience-labor ratios are either lower or higher than the aggregate ratio, they are substitutes

since d2Yt
dNj,tdNk,t

< 0.
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Complementarity or substitutability is stronger the larger is λE(j)gt(j)
λL(j)

− Et
Lt
, i.e. the more

distant the cohort specific experience-labor ratios are from the aggregate ratio. For a cohort

where the experience-labor ratio coincides with the aggregate ratio, i.e. λE(j)gt(j)
λL(j)

= Et
Lt

, the

marginal product is not affected by changes in the population of other cohorts (at the margin).

For the same reason, the effect of own cohort size d2Yt
d2Nj,t

on reducing the marginal product is

rising in the absolute distance of the cohort specific experience-labor ratio from the aggregate

ratio, i.e. λE(j)gt(j)
λL(j)

− Et
Lt
.
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