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Chamley-Judd Revisited*

Ludwig Straub Ivan Werning
MIT MIT
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According to the Chamley-Judd result, capital should not be taxed in the long run. In
this paper, we overturn this conclusion, showing that it does not follow from the very
models used to derive them. For the model in Judd (1985), we prove that the long
run tax on capital is positive and significant, whenever the intertemporal elasticity of
substitution is below one. For higher elasticities, the tax converges to zero but may
do so at a slow rate, after centuries of high capital taxation. The model in Chamley
(1986) imposes an upper bound on capital taxation and we prove that the tax rate may
end up at this bound indefinitely. When, instead, the bounds do not bind forever, the
long run tax is indeed zero; however, when preferences are recursive but non-additive
across time, the zero-capital-tax limit comes accompanied by zero private wealth (zero
tax base) or by zero labor taxes (first best). Finally, we explain why the equivalence
of a positive capital tax with ever rising consumption taxes does not provide a firm

rationale against capital taxation.

1 Introduction

One of the most startling results in optimal tax theory is the famous finding by Judd
(1985) and Chamley (1986). Although working independently, in somewhat different
settings and, thus, complementing each other, their conclusions were strikingly similar:
capital should go untaxed in any steady state. This implication, dubbed the Chamley-

Judd result, is commonly interpreted as applying in the long run, since convergence to a

*This paper benefited from detailed comments by Fernando Alvarez, Peter Diamond, Mike Golosov and
Stefanie Stantcheva and was very fortunate to count with research assistance from Greg Howard, Lucas
Manuelli and Andrés Sarto. All errors are our own.



steady state is quite naturally taken for granted.! The takeaway is that taxes on capital
should be zero, at least eventually.

Economic reasoning sometimes holds its surprises. The Chamley-Judd result is not
at all obvious and was not anticipated by economists” intuition, despite a large body of
work at the time on the incidence of capital taxation and on optimal tax theory more
generally. It represented a major watershed from a theoretical standpoint. One may even
say that the result is downright puzzling, as witnessed by the fact that economists have
since then taken turns putting forth differing intuitions to interpret it, none definitive nor
universally accepted to date.

Theoretical wonder aside, a crucial issue is the result’s applicability. Many have ques-
tioned the model’s assumptions, especially that of infinitely-lived agents (e.g. Banks and
Diamond, 2010). Still others have set up alternative models, searching for different con-
clusions. These efforts notwithstanding, opponents and proponents alike acknowledge
Chamley-Judd as one of the most important benchmarks in the optimal tax literature.

Here we question the Chamley-Judd results directly, on their own ground and argue
that, even within the logic of these models, a zero long-run tax result does not follow.
For both the models in Judd (1985) and Chamley (1986), we provide results showing
a positive long-run tax when the intertemporal elasticity of substitution is less than or
equal to one. We conclude that these models do not actually provide a coherent argument
against capital taxation, quite the contrary. We briefly discuss what went wrong with the
original results, their interpretations and proofs—which are deceivingly straightforward,
but, unfortunately, are just as deceiving as they are straightforward.

Before summarizing our results in greater detail, it is useful to briefly recall the se-
tups in Judd (1985) and Chamley (1986). Start with the similarities. Both papers studied
infinitely-lived agents. The models take as given an initial stock of capital and restrict
tax instruments to proportional taxes on capital and labor. Lump-sum taxes are limited
or excluded, as are capital levies or other forms of capital expropriation. The tax rate is
constrained by an upper bound.?

Turning to differences, Chamley (1986) focused on a representative agent and assumed

1To quote from a few examples, Judd (2002): “[...] setting 7 equal to zero in the long run [...] vari-
ous results arguing for zero long-run taxation of capital; see Judd (1985, 1999) for formal statements and
analyses.” Atkeson et al. (1999): “By formally describing and extending Chamley’s (1986) result [...] This
approach has produced a substantive lesson for policymakers: In the long run, in a broad class of envi-
ronments, the optimal tax on capital income is zero.” Phelan and Stacchetti (2001): “A celebrated result of
Chamley (1986) and Judd (1985) states that with full commitment, the optimal capital tax rate converges
to zero in the steady state.” Saez (2013): “The influential studies by Chamley (1986) and Judd (1985) show
that, in the long-run, optimal linear capital income tax should be zero.”

2Neither consumption taxes that mimic the effects of an initial wealth expropriation (Coleman II, 2000),
nor dividend taxes with capital expenditure (investment) deductions (Abel, 2007) are allowed.
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perfect financial markets, with unconstrained government debt. Judd (1985) emphasizes
heterogeneity and redistribution in a two-class economy, with workers and capitalists.
In addition, the model features financial market imperfections: workers do not save and
the government balances its budget, i.e. debt is restricted to zero.® As discussed in Judd
(1985), it is most remarkable that a zero long-run tax result obtains despite the restriction
to budget balance.* Although extreme, imperfections of this kind may capture relevant
aspects of reality, such as the limited participation in financial markets, the skewed distri-
butions of wealth and the problems one that may accompany high levels of government
debt or asset levels..”

We begin with the model in Judd (1985). We show that taxes may remain positive
even in the long run. When the intertemporal elasticity of substitution (IES) is below
one, taxes rise and converge towards a positive limit tax, instead of declining towards
zero. This limit tax is significant and drives capital to its lowest feasible level. Indeed,
as government spending falls, the lowest feasible capital stock approaches zero, and, the
limit tax rate goes to infinity. The long run tax is not zero, far from it: it is large and
potentially unbounded.

When the IES is above one, we verify numerically that the solution converges to the
zero-tax steady state. However, we show that this convergence may be very slow, some-
times taking centuries for wealth taxes to drop below 1%. Indeed, in the neighborhood of
a unitary IES, the speed of convergence is not bounded away from zero. Thus, even when
the long-run tax on capital is zero, this property provides a misleading summary of the
model’s full implications.

We then turn to the representative agent Ramsey model studied by Chamley (1986).
Asis well appreciated, in this setting, upper bounds on the taxation of capital are imposed
in order to avoid the trivial solution involving expropriatory levels of initial taxation of
capital. We provide two sets of results. First, we show that if the bounds on capital
taxation are not binding in the long run, then the tax is indeed zero. However, we show
that for recursive nonadditive utility, this zero tax limit is necessarily accompanied by
either zero private wealth converging to zero—in which case the tax base is zero—or the

labor tax converging to zero—in which case the first best is achieved. This suggests that

3Chamley (1986) offered a few extensions to heterogeneous agents and Judd (1985) also considered an-
other model where workers, just as capitalists, can also save in capital.

“4Because of the presence of financial restrictions and imperfections, Judd (1985) model does not fit the
standard Arrow-Debreu framework, nor the optimal tax theory developed around it such as Diamond and
Mirrlees (1971).

SWithout constraints on debt, capitalists may become highly indebted or not own the capital they man-
age. This idea that investment requires “skin in the game” is popular in the finance literature and macroeco-
nomic models with financial frictions (see Brunnermeier et al., 2012; Gertler and Kiyotaki, 2010, for surveys).



zero taxes are only attained after high taxation that either obliterates private wealth or
allows the government to proceed without any distortionary taxation. Needless to say,
these are not the scenarios envisioned by proponents of zero capital taxation.

Second, we show that the upper bounds imposed on the tax rate may bind forever,
when the intertemporal elasticity of substitution is below one, implying a positive long-
run tax on capital. We prove that this is guaranteed whenever debt is high enough. Im-
portantly, the debt level required is below the peak of the Laffer curve, so this result is not
driven by budgetary necessity. Intuitively, elevated levels of debt ensure high labor taxes,
making capital taxation relatively attractive, helping to ease a high tax burden.

In a setting very close to that of Chamley (1986), Judd (1999) presents an argument
against positive capital taxation without requiring convergence to a steady state. How-
ever, we show that these arguments fail, because they involve assumptions on endoge-
nous multipliers that are actually violated at the optimum. We also explain why the
observation discussed in that paper that capital taxation amounts to ever increasing con-
sumption taxes, does not provide a rationale against indefinite capital taxation.

To conclude, we present a hybrid model that combines heterogeneity and redistribu-
tion, as in Judd (1985), but allowing for government debt, as in Chamley (1986). Capital
taxation is especially potent in this setting. When upper bounds are imposed, the opti-
mum indefinite taxation at the bound. This suggests that positive long run taxation may
be expected in a wide range of models that are descendants of Chamley (1986) and Judd
(1985).

2 Capitalists and Workers: Judd (1985) Revisited

We start with the two-class economy laid out in Judd (1985) without government debt.
There are two types of agents, workers and capitalists. Capitalists save and derive all their
income from the returns to capital. Workers supply one unit of labor inelastically and live
hand to mouth, consuming their entire wage income plus transfers. The government

taxes the return to capital to pay for transfers targeted at workers.

Preferences. Capitalists have utility

iﬁfU(Ct) with  U(C) =
t=0



forc > 0and o # 1, and U(C) = logC for ¢ = 1. Here 1/0 denotes the (constant)
intertemporal elasticity of substitution. Workers consumption paths are valued according
to the utility

Y plu(cy)
t=0

for some concave, continuously differentiable function u. Both agents discount the future
with a common discount factor B < 1. Workers have a constant labor endowment n =
1; capitalists do not work. Consumption by workers will be denoted by lowercase c,

consumption by capitalists by uppercase C.

Technology. Output is obtained from capital and labor using a neoclassical constant
returns production function F(k;, n;) satisfying standard conditions.® Capital depreciates
atrate § > 0. In equilibrium n; = 1, so define f(k) = F(k,1). The government consumes a
constant flow of goods ¢ > 0. We normalize both populations to unity and abstract from
technological progress and population growth. The resource constraint in period ¢ is then

ct+Cr+g+kir < fke) + (1 —0)ks.

Markets and Taxes. Markets are perfectly competitive, with labor paid wage Fy (k;, n¢)
and the before-tax return on capital

R} = f'(ke) +1 6.
The after-tax return equals R; and can be parameterized as
Ry =(1-1)(f (k) =) +1,

where 7; denotes a tax rate on net returns. This parameterization for R; is somewhat
arbitrary and we often take R; as a direct policy variable and say that capital is taxed
whenever R; < R} and subsidized if R; > Rj.

6Increasing in both arguments, strictly concave, continuously differentiable, with the INADA conditions
Fi(k,L) — coask — 0and F(k,L) — 0as k — oo.



Agent Behavior. Capitalists solve

o0

max fu(cy),
{Ctrat+1}t_20‘6 (©)

s.t. Ct + ari1 = R,}at,

aty1 > 0.

for some given initial wealth ay. The associated Euler equation and transversality condi-
tions,

U'(Cy) = BRij U’ (Cry1),
,Btu’(Cf)atH — 0,

are necessary and sufficient for optimality.

Workers live hand to mouth, their consumption equals their disposable income

ct = f(ke) — f'(ke)ke + Ty,

which uses the fact that F,, = F — Fyk. Here T; represent government transfers to workers.

Government Budget Constraint. As in Judd (1985), the government cannot issue
bonds and runs a balanced budget. This implies that total wealth equals the capital stock
a; = k; and that the government budget constraint is

g—|—Tt = (R;k —Rt) kt.

Planning Problem. Using the Euler equation to substitute out R;, the planning problem

can be written as’

max Y B'(u(cr) +yU(Cr)), (1a)
{et,Cokira} 1=

7Tudd (1985) includes upper bounds on the taxation of capital, which we have omitted because they
do not play any important role. As we shall see, positive long run taxation is possible even without these
constraints; adding them would only reinforce this conclusion. Upper bounds on taxation play a more
crucial role in Chamley (1986). Also, note that Judd (1985) formulates the model in continuous time while
we prefer discrete time to facilitate numerical computations. The continuous time model can be understood
as a simple limit of our discrete time model.



subject to

et +Cr4+g+kir = fke) +(1—0)ks, (1b)
BU'(Ct)(Ct + kyy1) = U'(Cro1)ke, (1c)
BU' (Cy)kpy1 — 0. (1d)

The government maximizes a weighted sum of utilities with weight 7 on capitalists. By
varying <y one can trace out points on the constrained Pareto frontier and isolate con-
strained efficient policies. We sometimes focus on the case with no weight on capitalists
v = 0, which ensures that desired redistribution runs from capitalists towards workers.
Constraint (1b) is simply the resource constraint, or market clearing condition. Constraint
(1c) combines the capitalists’ first-order condition and budget constraint, (1d) then im-
poses the transversality condition; together both conditions ensure the optimality of the
capitalists” saving decision.

The necessary first-order conditions are

Ho =10, (2a)
A =1'(cr), (2b)
— 1
Pev1 = Jt (ZKtH + 1) + Borr1vr (L—yve), (2¢)
! / 1
uu(/(ztct)l) (f' (k1) +1-96) = B + vr(pe1 — pe), (2d)

where x; = k¢/C;_1, vy = U'(Ct)/u'(c;) and the multipliers on constraints (1b) and (1c)
are \;B! and 8!, respectively.

Previous Steady State Results.  Judd (1985, pg. 72, Theorem 2) provided a zero-tax
result, which we adjust in the following theorem to make explicit the need for the steady
state to be interior and for multipliers to converge.

Theorem 1 (Judd, 1985). Suppose quantities and multipliers converge to an interior steady state,
i.e. ct, C, ki1 converge to positive values, and y; converges. Then the tax on capital is zero in the
limit: R} /Ry — 1.

The proof is immediate: from equation (2d) we obtain R} — 1/, while from the
capitalists” Euler equation we require Ry — 1/p. The simplicity of the argument follows
from strong assumptions placed on endogenous outcomes. This raises obvious concerns.

By adopting assumptions that are close relatives of the conclusions, one may wonder
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if anything of use has been shown, rather than assumed. We postpone this discussion.
Section 3.3 elaborates on this point.

In our rendering of Theorem 1, the requirement that the steady state be interior is im-
portant, otherwise, if c; — 0, one cannot guarantee that u’(cyy1)/u'(c;) — 1 in equation
(2d). Likewise, if the allocation converges but y; does not, then vs(p1+1 — y¢) may not
vanish in equation (2d). Thus, the two situations that prevent the theorem’s application
are: (i) non-convergence to an interior steady state; or (ii) non-convergence of multipliers.
In general, one expects that (i) implies (ii). The literature has provided an example of (ii)

where the allocation does converge to an interior steady state.

Theorem 2. (Lansing, 1999; Reinhorn, 2002 and 2013) Suppose the allocation converges to an
interior steady state, so that c¢, Cy, ki1 converge to positive values. Then, if and only if o = 1,
multipliers do not converge and

Rf 1
— = —(1—-9(1-pB)vY),
R, gAY
where v* = limvy. This implies a positive long-run tax on capital if redistribution towards

workers is desirable, 1 — yv > 0.

The result follows easily by combining (2c) and (2d) for the case with ¢ = 1 and
comparing it to the capitalist’s Euler equation, which requires R; = % at a steady state.
Lansing (1999) first presented the logarithmic case as a counterexample to Judd (1985).
Reinhorn (2002 and 2013) correctly clarified that in the logarithmic case the Lagrange
multipliers explode, explaining the difference in results.®

Lansing (1999) depicts the result for ¢ = 1 as a knife-edged case: “the standard
approach to solving the dynamic optimal tax problem yields the wrong answer in this
(knife-edge) case [...]” (from the Abstract, page 423) and “The counterexample turns out
to be a knife-edge result. Any small change in the capitalists” intertemporal elasticity of
substitution away from one (the log case) will create anticipation effects [...] As capitalists’
intertemporal elasticity of substitution in consumption crosses one, the trajectory of the
optimal capital tax in this model undergoes an abrupt change.” (page 427) This suggests
that for o # 1 the long-run tax on capital is zero. We shall show that this is not the case.

8nstead, Lansing (1999) suggests there may be a technical problem with the argument in Judd (1985)
specific to ¢ = 1. We see no technical difficulty in applying optimal control to the logarithmic case. We
believe the issue is exactly what Reinhorn (2002 and 2013) pointed out.



21 The Logarithmic Case: IES equal to one

Before studying ¢ > 1, it is useful to review the logarithmic case in greater detail. For
convenience, we will assume v = 0. This guarantees that desired redistribution runs
from capitalists to workers.

With logarithmic utility, o = 1, capitalists save at a constant rate

Ct = (1 — S)Rtkt,
kt+1 = SRtkt.

Although s = B with log preferences, it is worth noting that nothing depends on this fact,
and we could start the analysis postulating a constant savings rate s divorced from B.?

The planning problem becomes

max i Blu(cy),

{etkiv} =

subject to

1
ct + gkt+1 + 8= flkir1) + (1 = 0)ky,

with kg given. This is equivalent to an optimal growth problem with the price of capital
set to % > 1, instead of its true unitary cost. The difference is due to capitalists keeping
a fraction 1 — s for consumption. The government and workers can only save indirectly
through capitalists, by giving them more resources today and extracting more tomorrow.
From their point of view, technology is less productive because capitalists must be “fed”
a fraction of the investment. Note that higher savings rates s imply higher efficiency.'"

The Euler equation is
u'(cr) = spu’(crs1) Riys-

Since the problem is equivalent to a standard optimal growth problem there is a unique
interior steady state and it is globally stable. At this steady state the Euler equation be-

comes
R* L

= 5

9This could capture different discount factors between capitalists and workers or an ad hoc behavioral
assumption of constant savings, as in the standard Solow growth model.
19This kind of wedge in rates of return is similar to that found in countless models where there are
financial frictions between “experts” able to produce capital investments and “savers”. Often, these models
are set up with a moral hazard problem, whereby some fraction of the investment returns must be kept by
experts, as “skin in the game” to ensure good behavior.




A steady state also requires k = sRk, or R = 1/s, implying

R* 1 o1

R B '
Proposition 1. Suppose logarithmic utility for capitalists, U(c) = logc. The solution to the
planning problem converges monotonically to a unique steady state with a positive tax on capital,

1-RX=1-8.

This proposition echoes the result in Lansing (1999) specialized to ¢y = 0, which we
summarized in Theorem 2, with the added conclusion regarding the global stability of
the steady state. Capitalists face a positive tax at the steady state. Interestingly, the tax
rate depends only on B, not on s or other parameters. In terms of magnitudes, the tax rate
on wealth equals 1 — 3, since R = BR*.

We shall argue that positive long run taxes are not special to logarithmic utility, that
these results are not knife edged. One way to proceed would be to exploit continuity
of the planning problem with respect to ¢ to establish that for any fixed time ¢ the solu-
tion is continuous in o, so that 7;(¢c) converges as ¢ — 1 to the positive tax rate in the
logarithmic case. While arguing by continuity in this way may be enough to dispel the
notion that the logarithmic utility case is irrelevant for o # 1, it has its limitations. As
we shall see, the convergence is not uniform and one cannot invert the order of limits:
lim; s lim, 1 T¢(0) will not equal lim,,_,q lim; . T¢(0). Therefore, this approach cannot
address how the limit tax rate lim;_,« 7¢(0") behaves as a function of o. We shall proceed
more globally by tackling the problem with ¢ # 1 directly, which allows us to study the

limit tax rate lim;_,o 7:(0).

2.2 Positive Long-Run Taxation: IES below one

We now consider the case with ¢ > 1 so that the intertemporal elasticity of substitution
(17 is below unity. We continue to focus on the situation where no weight is placed on
capitalists, v = 0, ensuring that redistribution runs from capitalists to workers.

Suppose the allocation converges to an interior steady state ky — k, C; — C, ¢ — ¢
with k, C,c¢ > 0. This implies that x; and v; also converge to positive values, x and v. In
the limit, the first-order conditions imply

c—1 1

f’(k)+1—(5:%+U(Vt—ﬂt—1):%+yt ox U Box

10



Since o > 1, this implies that y; must converge to

1

SR CEE T v

and so the long-run tax on capital is zero, f'(k) +1—6 = %

Now consider whether y; — u < 0 is possible. From the first-order condition (2a)
we have yy = 0. Also, from equation (2c) it follow that whenever y; > 0 then y; 11 > 0.
Thus, yy > O forall t = 0,1,... implying that y; — p < 0 is impossible. This shows that
the solution cannot converge to the zero-tax steady state. Indeed, it actually proves the
solution cannot converge to any interior steady state, since, we argued, the only possible

interior steady state is the zero tax steady state. We have shown the following.

Proposition 2. If o > 1 and v = 0 then for any initial kg the solution to the planning problem
does not converge to the zero-tax steady state, or any interior steady state.

It follows that if the optimum converges, then either ky — 0, C; — 0 or ¢; — 0. With
positive spending ¢ > 0, then k; — 0 is not feasible; this then rules out C; — 0, since
capitalists cannot be starved while owning positive wealth.

We have shown that, provided the solution converges, c; — 0. This in turn implies that
either ky — kg or k; — k8 where kg < kS are the two solutions to %k +9=f(k)+(1—-0)k,
which uses the fact that C = %k at any steady state. We next show that the solution does
indeed converge towards k¢ and that the long-run tax on capital is strictly positive. The
proof uses the fact that y; — co as argued above, but requires many other steps detailed
in the appendix.

Proposition 3. If o > 1 and v = 0 then for any initial ko the solution to the planning problem
converges to ¢y — 0, kt — kg, Ct — %kg, with a positive limit tax on wealth: 1 — ﬁ—: — Tg >

0. The limit tax 7, is decreasing in spending g, with Ty — 1as ¢ — 0.

The tax on wealth does not fall towards zero, indeed, the opposite is true. As we
illustrate below the tax can be quite sizable and rise over time. The solution does not
converge to an interior allocation and multipliers do not converge, invalidating the appli-
cation Judd (1985), as we summarized here in Theorem 1.

Perhaps counterintuitively, the long-run tax on capital is inversely related to the level
of government spending. The reason for this is that the solution drives capital to its lowest
teasible value kg, which is increasing in spending ¢. Thus, a lower level of spending
allows the planner to take long run capital to a lower level. This emphasizes that positive
long-run taxation of wealth is not being driven by a budgetary necessity.

11



A Bellman Equation. The two constraints in the planning problem feature the variables
Ct—1,kt, Ct, ki11 and ¢;. This suggests a recursive formulation with (k¢, C;_1) as the state
and c; as a control. The associated Bellman equation is then

V()= max  (u(e) +9U(C) + BV(K,C) @)

c+C+k+g=fk)+(1—-0)k
BU'(C)(C+K)=U'(C-)k
c,C, k' > 0.

for all (k,C_) € A, where A is the largest set of points (kop,C_1) such that there ex-
ists a sequence {k;,1,C;} satisfying all the constraints in (1) including the transversal-
ity condition. Associated with this Bellman equation are policy functions ¢ = h¢(k,C_),
k' = W*(k,C_)and C = h®(k,C_).

At t = 0 capital kg is given, but there is no need to impose BU'(Cy)(Co + k1) =
U'(C_1)ko. Thus, the planner maximizes V(ko, C_1) with respect to C_; and the first
order condition is

Vc(k(), Cfl) =0.

Since p; = Ve (kt, Cr—1)U" (Cy—1)k; this is akin to the condition pp = 0 in equation (2a).11

This recursive approach is useful for a number of reasons. First, it allows us to solve
the model numerically. Second, the policy functions allow us to consider the dynamics in
the space (kt, C;_1), which we discuss towards the end of this subsection.

Solution near ¢ = 1. Figure 1 displays the time path for the capital stock and the tax
rate on wealth, 1 — R;/Rj, for a range of ¢ near 1 that straddle the logarithmic case. We
set B = 095,06 = 0.1, f(k) = k* with « = 0.3 and u(c) = U(c). Spending g is chosen so
that ]%k) = 20% at the zero-tax steady state. The initial value of capital, ko, is set at the

1 Alternatively, we may can impose that R is taken as given, with Ry = R} for example, to exclude an
initial capital tax. In that case we solve

max {u(co) +yU(Co) + BV (k1,Co) }

ky,c0,,.Co
subject to
Co + k1 = Rokg
co + CO + kl = f(ko) -+ (1 — 5)](0
co, Co, k1 > 0.

This alternative gives rise to similar results.

12
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Figure 1: Optimal time paths over 300 years for capital stock (left panel) and wealth taxes
(right panel) for various value of 0. Note: tax rates apply to gross returns not net returns,
i.e. they represent an annual wealth tax.

zero-tax steady state. Our numerical method is based on the Bellman equation (4) and is
described in the appendix.

To clarify the magnitudes of the tax on wealth, consider an example: if R* = 1.04 s so
that the before-tax net return is 4%, then a tax on wealth of 1% represents a 25% tax on
the net return, a tax of 4% represents a tax rate of 100% on net returns, etcetera.

A few things stand out in Figure 1. First, the results confirm what we showed theoret-
ically in Proposition 3, that for ¢ > 1 capital converges to kg = 0.0126. In the figure this
convergence is monotone!? and relatively steady, taking around 200 years for ¢ = 1.25.
The asymptotic tax rate is very high, approximately 1 — R/R* = 85%, and outside the
figure’s range. Of course, this implies that the before-tax return R* = f'(ky) +1— ¢ at kg
is exorbitant, because the after-tax return is still R = 1/p.

Second, for o < 1, the path for capital is not monotonic'® and eventually converges to
the zero-tax steady state and the tax rate converges to zero. However, the convergence is
relatively slow, especially for values of o near 1. This makes sense, since, by continuity,
for any period t, the solution should converge to that of the logarithmic utility case as
o — 1.1 By implication, for ¢ < 1 the rate of convergence to the zero-tax steady state
must be zero as ¢ 1 1. To further punctuate this point, Figure 2 shows the number of
years it takes for the tax on wealth to drop below 1% as a function of ¢ € (%, 1). As o rises
it takes longer and longer and as ¢ 1 1 it takes an eternity.

The logarithmic case leaves other imprints on the solutions for ¢ # 1. Returning to

12This depends on the level of initial capital. For lower levels of capital the path first rises then falls.

BThis is possible because the state variable has two dimensions, (k¢, C;_1). At the optimum, for the same
capital k, consumption C is initially higher on the way down than it is on the way up.

14Recall that, by Proposition 1, the logarithmic solution converges to positive taxation as t — co.
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Figure 2: Time elapsed (in years) until tax on wealth falls below 1% for ¢ & (%, 1). The
solid line uses the solution of the nonlinear model, the dashed line uses an approximation
from the linearized model below.

Figure 1, for both ¢ < 1 and ¢ > 1 we see that over the first 20-30 years, the path ap-
proaches the steady state of the logarithmic utility case, associated with a tax rate around
1-— % = 1— B = 5%. The speed at which this takes place is relatively quick, which is
explained by the fact that for ¢ = 1 it is driven by the standard rate of convergence in the
neoclassical growth model. The solution path then transitions much more slowly either
upwards or downwards, depending on whether ¢ < 1 or o > 1.

An Intuition based on the Intertemporal Manipulation of Saving Incentives. Why
does the tax rise for ¢ > 1 and fall for ¢ < 1? Why are these dynamics relatively slow for
o near 1?

To address these questions about normative results, it helps to back up and review
differences in the following positive exercise. Start from a constant tax on wealth and
imagine an unexpected announcement for higher future taxation. How do capitalists re-
act today? There are substitution and income effects pulling in opposite directions. When
o > 1 the substitution effect is weaker and capitalists increase present savings, to partially
offset the drop in future consumption.!> When ¢ < 1 the substitution effect is stronger
and capitalists decrease present savings, substituting towards current consumption. In
the logarithmic case, o = 1, the two effects cancel out, so that present consumption and
savings are unaffected.

Returning to the normative questions, increasing savings is desirable when capital is

currently being taxed, so as to augment the tax base. When ¢ < 1, this can be accom-

15This does not imply that the supply for savings “bends backward”. For instance, if the interest rate
were lowered permanently then wealth would rises over time, even with ¢ > 1. Higher values of ¢ are
simply associated with a less elastic savings response. Although there is no consensus, the case with o > 1
is usually considered the empirically plausible one.
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plished by promising lower tax rates in the future; the optimum leans in this direction
explaining the declining path for taxes. In contrast, when ¢ > 1, the same is accom-
plished by promising higher future tax rates; this leads to an increasing path for taxes.
These incentives are absent in the logarithmic, ¢ = 1, case, explaining why the tax rate
converges to a constant.

When o < 1, the rate of convergence to the zero-tax steady state is driven by these
considerations to manipulate savings intertemporally. With ¢ near 1, the potency and

benefit of these manipulations is small, explaining why the rate of convergence is low.

Positive weight on capitalists v > 0. At least with ¢ = 0, a desire for redistribution is
crucial to make the question of wealth taxing nontrivial. Proposition 3 assumes no weight
on capitalists, v = 0, ensuring that redistribution is desired from capitalists to workers.

When the desire for redistribution is present but weak, so that <y is positive but low,
it is natural to expect the same qualitatively results as Proposition 3. When 7 is very
high, however, desired redistribution may flip and run from workers to capitalists. It is
then natural to expect subsidies on wealth, rather than taxes. Figure 3 verifies all of these
points, fixing o = 1.25 and varying the weight +.'°

Nonlinear and Linearized Dynamics. The policy functions associated with the Bellman
equation (4) map (k¢, C;—1) into (ks+1, C¢). It is useful to consider the resulting dynamics.

Numerically, when ¢ < 1 we find that the zero-tax steady state is globally stable:
(kt, Ct—1) converges from any initial condition, even those not satisfying the initial con-
dition Vo = 0. When o > 1 there are three relevant steady states: two corners, at k; and
k€, and the zero-tax interior steady state. We find that the latter is saddle path stable. We
find that the state (k;, C;_1) converges to the corners k, or k8 except on a measure zero
of initial conditions given by the stable saddle arms of the zero-tax steady state. The loci
Vc(k,C-) = 0 and the stable saddle arm intersect at a single value of k. This point is com-
parable to the tipping point value of y in Figure 3, separating solutions with convergence
towards k¢ from those with convergence towards k€.

Theoretically, we can verify the local version of these properties. The constraints in
(1) and first-order conditions in (2) define a dynamical system for (k¢, C;_1, i, At). We
linearize this system around the zero-tax steady state (k*, C*, ur, A%). Transversality con-

160Once again, initial capital is set to its zero-tax level. In the legend, rather than displaying 7, we perform
a transformation that makes it more easily interpretable: we report the proportional change in consump-
tion for capitalists that would be desired at the steady state, e.g. —0.4 represents that the planner’s ideal
allocation of the zero-tax output would feature a 40% reduction in the consumption of capitalists, relative

to the steady state value C = %k.
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Figure 3: Optimal time paths over 300 years for capital stock (left panel) and wealth taxes
(right panel) for various redistribution preferences (zero represents no desire for redistri-
bution; see footnote 16).

ditions then pin down p; and A; uniquely as a function of (k;, C;_1). This implies a lin-

earized dynamical system for (k¢, C;_1) of the form

b\ (ke N k-E
Ct Ci1 Cig—C*

for some J. We take the continuous-time limit to make our results comparable to those in

Kemp et al. (1993) and study
k k — k*
.= 5

for some J. The details are found in the appendix. The following properties can be shown.
Proposition 4. Consider the linearized system (5),

(a) If ¢ > 1, the zero-tax steady state is saddle-path stable.

(b) If o < 1and v < v, the zero-tax steady state is stable.

(c) Ifc < land <y > <%, the zero-tax steady state may be stable or unstable and the dynamics
may feature cycles.

Here, v* = u'(c*)/U'(C*) is the weight on capitalists which makes the planner indifferent
between redistributing towards workers or capitalists at the zero-tax steady state.

The first two points confirm our theoretical and numerical observations for the nonlinear

dynamical system. For o < 1 the zero tax steady state is locally stable, while for o > 1itis
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locally saddle-path stable, which explains why the solution does not generally converge
to this steady state, as discussed above.!”

The third point shows that for high 7 the system may become unstable or feature
cyclical dynamics. This is consistent with Kemp et al. (1993), which studied the linear
dynamics around the zero-tax steady state and reported the potential for instability and
cycles. Our proposition clarifies that a necessary condition for their results is an assumed
desire to redistribute away from workers towards capitalists, v > 7*. Instead, when
desired redistribution runs from capitalists to workers, so that y < * (or when ¢ > 1 for
any 7y) the linearized dynamics cannot feature cycles. Our paper focuses on low values of
7, to ensure redistribution from capitalists to workers. Thus, our results are completely

unrelated to those in Kemp et al. (1993).

2.3 Ad Hoc Saving Rules for Capitalists

Up to this point, in keeping with Judd (1985), capitalists have been modeled as infinitely-
lived optimizing savers. In addition, we specialized to additively separable utility func-
tions. We now relax both assumptions in one fell swoop.

Assume capitalists save according to an “ad-hoc” savings rule,

kt+1 = S(Rtkt,' Rt+1/ Rt+2,. .. ),

where S(I; Ry, Ry, ... ) is some given savings function, taking as arguments current wealth
I = Ryk; and all future interest rates {Ry11, Ri12,...}. This encompasses the case where
capitalists maximize an additively separable utility function, but is more general. For ex-
ample, the savings function may be derived from the maximization of a recursive utility
function, or even represent behavior that cannot be captured by optimization, such as hy-
perbolic discounting or self-control and temptation. This generality will help us discern
the key economic mechanism involved in our non-convergence result.
The planning problem is

max - E(u(e,) + ~U(C ,
{Cffctrktﬂ}‘t;)ﬁ( (t) U( f))

70One can employ the linear system to compute the number of years before the tax rate falls below 1%,
a calculation comparable to that performed earlier for the nonlinear model. The dotted line in Figure 2
displays the result, which comes out very close to the nonlinear model. By this measure, for ¢ < 1, the
dynamics appear to be well approximated by the linearized system.
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subject to

ct + Riky + g = f(ke) + (1 — 6)ky,
Ct + St = Riky,
ki1 = S(R¢kt; Rey1, Ry, - - .),

with kg given.

Non Convergence. Our next result provides a generalization of the negative conclusion

in Proposition 2 to our current ad hoc savings setting.

Proposition 5. Suppose v = 0 and assume the savings function is increasing in income, so that
Si(I,Ry,Ry,...) > 0, and decreasing in future rates, so that Sg_(I,R1,Rp,...) < 0 for all
T =1,2,... Then the optimum does not converge to the zero-tax steady state.

The requirement that savings increase with wealth, S; > 0, amounts to a standard
normality condition. When in addition higher future interest rates lower current sav-
ings, Sg, < 0, the economy cannot converge to the zero-tax steady state. The case with
separable isoelastic utility with ¢ > 1 is a special case satisfying these properties.

As before, the intuition is that the anticipatory effects create the potential to manip-
ulate savings. The planner makes use of these incentives, creating a destabilizing force

away from zero taxation.

Elasticities and Taxation. Propositions 2 and 5 show that an interior steady state is not
something one can take for granted. Casting these important warnings aside, let us now
proceed assuming we do reach an interior steady state for quantities and multipliers.

Ata steady state the interest rate R satisfiesk = S(kR; R, R, ...)andletv = U'(C)/u'(c).
Combining the first-order conditions for the above planning problem one can show that

R* 1 1—v ( 1 )
B 1= (2_Rs _ F (= —1)0, 6
R (ﬁ ’) RS Ty, press T\BR )7 ©

where €5 = %%(Roko; R1,Ry,...) evaluated at a steady state (kR; R, R, ...). Note that
with additively separable utility the last term in equation (6) is zero, since BR = 1 at

any steady state. This equation is nearly identical to a condition derived by Piketty and
Saez (2013, see their Section 3.3, equation 16), although they worked a slightly different

model with unlimited government debt, closer to Chamley (1986) in that sense, and also
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assumed additively separable utility functions.'® Our derivation shows that these partic-
ulars are not essential and allows for an ad hoc savings function.

For simplicity, assume that either y = 0 or that preferences are additively separable, so
that we can ignore the last term in equation (6). The key implication is then that, assuming
% — RS; # 0, an infinite total elasticity ) 7> ; B~ "€s ¢ is required for zero taxation.

As our derivation emphasizes, one virtue of equation (6) is that it does not require
optimizing behavior on the part of capitalists. However, when capitalists maximize a
recursive utility function—including the special case with additive utility—we can show

directly that the total elasticity in the denominator of equation (6) diverges.

Proposition 6. Suppose capitalists have recursive preferences represented by (7) (see Section 3.1
below) then at any zero tax steady state

diverges to +o00 or —coas T — oo,

With additive separable utility, the long run elasticity of savings is often characterized
as being infinite, in the sense that at any steady state R = % and p is a fixed parameter.
Away from the additive case, with recursive utility, the elasticity of long-run savings may
be finite, in that various values for steady state R are possible. It may then seem natural
to expect ) 7 ; B~ Teg 1 to also be finite, yet our proposition shows that this is not possible.

Thus, with recursive utility, if the allocation converges to the interior steady state this
proposition combined with equation (6), anticipates a zero tax. Both Judd (1985) and
Chamley (1986) made efforts to state results with recursive non-additive utility, so as to
avoid assuming an infinite elasticity for long-run savings. However, Proposition 6 verifies
that the relevant long-run elasticity is infinite even when preferences are not additively
separable. In this sense, despite their efforts, Judd (1985) and Chamley (1986) did not
completely avoid an infinite elasticity.

It is absolutely crucial to understand that any reliance on equation (6) and the total
elasticity Y 22 ; B~ "eg r to discuss long run taxation must be qualified: an infinite elasticity
is only necessary, not sufficient for zero long run taxation. For example, in the additively
separable iso-elastic utility case, when ¢ < 1 one can show that Y37 ; B~ Tegr = o0; we
also found numerically that the solution converges to the zero-tax steady state. This is

18For example, because of additive separability, in their condition RS; = 1. There are other minor dif-
ference, for example, they express the formula in terms of changes in the path for capital, whereas (6) is
expressed in terms of the derivatives of our ad-hoc savings function.
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consistent with equation (6). In contrast, when o > 1 one has } 32 ; B~ "e€s,r = —o0, and
if one were to consult equation (6) it would still indicates a zero tax. However, we have
shown that the solution does not converge to an interior steady state and that taxation is
nonzero. More generally, Proposition 5 shows that even if } 7" ; B~ "es - does not diverge,
whenever €5 » < 0, we cannot converge to an interior steady state. It follows that equation
(6) is not helpful and, indeed, often misleading. The pitfall is that an interior steady state,

for quantities and multipliers, required for its derivation, cannot be assumed.”

3 Representative Agent Ramsey Model: Chamley (1986)
and Judd (1999) Revisited

Up to this point we worked within the two-class model introduced by Judd (1985), with-
out government debt. Chamley (1986) worked with a representative agent Ramsey model
with unconstrained government debt. Judd (1999) adopts the same assumptions. This
section presents results using a representative agent model, directly comparable to these
two papers.

We first discuss the solution when the bounds on capital taxation do not bind in the

long run. We then discuss the possibility of bounds binding indefinitely.

3.1 First Best or Zero Taxation of Zero Wealth?

Just as Judd (1985), Chamley (1986) considered non-additively separable utility to avoid
an “infinite long-run elasticity of savings”, as the additively separable utility case is com-
monly characterized.’ Unlike additively separable utility, recursive preferences allows
the rate of impatience to vary with consumption levels. We will show that, if the optimum
converges to a steady state where bounds on taxation are not binding, then the tax on cap-
ital is indeed zero. However, the model yields other, hitherto unnoticed, implications as
long as the rate of impatience is not constant.

To distinguish this subsection from the next, we focus here on situations where the
bounds on capital taxation are not binding in the long run. The next subsection addresses
the important possibility of indefinitely binding bounds.

YThe derivation also assumes there are no bounds on capital taxation. As we shall see, this is crucial in
the context of the Chamley (1986) model.

20 At any steady state with additive utility one must have R = 1/ for a fixed parameter g € (0,1). This
is true regardless of the wealth or consumption level. In this sense, the supply of savings is infinitely elastic
at this rate of interest.
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Preferences. Ultility satisfies a Koopmans (1960) recursion
Vt = W(Ut, ‘/t+1) where Ut = U(Ct, Tlt). (7)

Here U(c, n) is the period utility function and W(U, V') is an aggregator function; both
functions are taken to be twice continuously differentiable. We assume consumption and

leisure are normal goods,

uC n u?l?’l

u u
UC;_ u’: <0 and TR <0,
with at least one strict inequality.

Regarding the aggregator function, the additively separable utility case amounts to
the particular linear choice W(U, V') = U + BV’ with g € (0,1). Nonlinear aggregators
allow local discounting to vary with U and V’, as in Koopmans (1960), Uzawa (1968)
and Lucas and Stokey (1984). Of particular interest is how the discount factor varies
across potential steady states. Define U(V) as the solution to V.= W(U(V),V) and let
B(V) =Wy (U(V), V) denote the steady state discount factor.

Planning problem. The implementability condition for this economy is?!

Y BeWur(Uerer + Unny) = WioUcoRoao, 8)
=0

where B; = Hé;(l) Wys. The derivation is standard. In the additive separable utility case
BtW; 1 = B! and expression (8) reduces to the standard implementability condition pop-
ularized by Lucas and Stokey (1983) and Chari et al. (1994). Given Ry, any allocation
satisfying the implementability condition and the resource constraint

Cf+kt+1 +gt:F(kt1nt)+(1_5)kt tzolll (9)

can be sustained as a competitive equilibrium for some sequence of prices and taxes.??

2IWe use the shorthand notation Wy; to represent Wy (U;, Vi, 1), etc.
22The argument is identical to that in Lucas and Stokey (1983) and Chari et al. (1994).
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To enforce upper bounds on the taxation of capital in period t = 1,2, ... we impose

Wuilet = R aWyriWur1Uet a1, (10a)
Riy1=(1—-1) (Fes1 —6) +1, (10b)
T <T. (10c¢)

The planning problem maximizes Vj subject to (7), (8), (9) and (10). The bounds ©; < T
may or may not bind forever. In this subsection we are interested in situations where the
bounds do not bind asymptotically, i.e. they are slack after some date T' < co. In the next
subsection we discuss the possibility of the bounds binding forever.

Chamley (1986) provided the following result, slightly adjusted here to make explicit
the need for the steady state to be interior, for multipliers to converge and for the bounds
on taxation to be asymptotically slack.

Theorem 3 (Chamley, 1986). Let Ay = BtWuyUct Ay denote the multiplier on the resource

constraint in period t. Suppose the optimum converges to an interior steady state where the

constraints on capital taxation are asymptotically slack. Suppose further that the multiplier A\;
R

converges to an interior point Ay — A > 0. Then the tax on capital converges to zero R~ 1.

Chamley (1986) actually worked with the particular bound T = 1, implying a con-
straint r; > 0, but stated “the net rate of return [...] is constrained, and assumed to be
greater than some arbitrary value, M. Without loss of generality, M can be chosen to be
equal to zero”.?

The main result of this subsection is stated in the next proposition. Relative to Theo-
rem 3, we make no assumptions on multipliers. More importantly, we derive new steady

state conclusions.

Proposition 7. Suppose the planning problem converges to an interior steady state and assume
that asymptotically the constraints on capital taxation are slack. Then the tax on capital is zero.
In addition, if the discount factor is locally sensitive, so that B' (V') # 0, then either

(a) private wealth converges to zero: a; — 0, or

(b) the allocation converges to the first-best, with zero taxation of labor.

BFor T = 1 it is enough to assume that the multiplier converges to state this result and there is no
need to qualify that the bounds on capital taxation are not binding. Thus, this is the form that Theorem 1
in Chamley (1986) takes. Although, the assumption of converging multipliers is not stated, but imposed
within the proof.
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At any interior steady state, if the bounds on capital taxation are not binding, the tax
on capital is zero; this much echoes Chamley (1986), or our rendering of the result in
Theorem 3. However, as long as the rate of impatience is not locally constant, g’ (V) # 0,
the proposition shows that a zero tax on capital must be accompanied by a zero tax on
labor or with zero private wealth. In other words, if taxation of capital is sufficiently
unconstrained so that the solution approaches a steady state where the bounds do not
bind, there are two possibilities. In the first, the tax base for capital taxation must have
been driven to zero, perhaps due to its heavy taxation in the transition to the steady
state. The second possibility is that the government accumulate enough wealth against
the private sector, perhaps aided by heavy taxation of capital, to finance itself without the
distortionary taxation, achieving the first best.

Both scenarios require the government to accumulate a significant positive assets po-
sition, i.e. negative debt. In the first case, since a; = k; + by — 0, the government must
own the entire capital stock. In the second, the government must accumulate enough as-
sets to finance government spending, forgoing labor and capital taxation. Quantitatively,
the second scenario is likely to require greater asset accumulation than the first.

Both these scenarios are markedly different from the usual interpretation of the zero
long-run tax result, which implies that we should forego obtaining revenue from capital
taxation but not from labor taxation—relatively unfriendly to capital taxation. Instead,
here both labor and capital are either treated symmetrically or nothing remains to be
taxed in the case of capital—a scenario that is downright friendly to capital taxation, more
symmetrical with labor.

To be sure, in the special, but commonly assumed, case with additive separable utility,
positive private wealth, a zero tax on wealth and a positive tax on labor coexist at a steady
state. However, this is not possible whenever the rate of impatience is locally not constant.
In this sense, the usual interpretation—where labor bears the entire burden of taxation

and private wealth is spared—is a knife edge case.

3.2 Long Run Capital Taxes with Constraints

As is well understood, without constraints on capital taxation the problem of capital tax-
ation becomes trivial: the solution involves extraordinarily high initial capital taxation,
typically complete expropriation, unless the first best is achieved first. Taxing the given
initial capital stock mimics the missing lump-sum tax, which has no distortionary effects.

This motivated Chamley (1986) and the subsequent literature to impose upper bounds
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on taxation, 7 < T.2* We now show that these bounds on capital taxes may bind forever,
contradicting a claim by Chamley (1986). This claim has been echoed throughout the
literature, e.g. Judd (1999), Atkeson et al. (1999) and others.

For our present purposes, and following Chamley (1986), as well as Judd (1999), it is
convenient to work with a continuous-time version of the model and restrict attention to

additively separable preferences,?

/ e Pu(cy, ny)dt. (11a)
0

cl-o nl+d
— 1_ 0_/ U(n) = m/

where o, > 0. Following Chamley (1986), we adopt an iso-elastic utility function over

u(c,n) =U(c) —v(n) with U(c) (11b)

consumption; this is important because it ensures the bang-bang nature of the solution.
For convenience, we also assume iso-elastic disutility from labor; this assumption is not

crucial. The resource constraint is
ct + i(f + g = f(kt, nt) — 5kt. (12)

where f is concave, homogeneous of degree one and differentiable. The implementability

condition is -
/ e Pt (uc(ce, ne)er 4+ uy(cr, ne)ng) = uc(co, no)ao, (13)
0

where ayp = ko + by denotes initial private wealth, consisting of capital kg and bonds by.
To enforce bounds on capital taxation we further impose

0r = uc(ct, ny), (14a)
0y = 0:(0 — 1), (14b)
re = (1—1)rf, (14¢)
ri = fr(ke, ny) =6, (144d)
7 <T, (14e)

24A typical story for the bounds is tax compliance constraints—capital owners would hide capital or
mask its returns if taxation were too onerous. Another motivation, although outside the present scope of
the representative agent Chamley (1986) model, are political economy constraints on redistribution from
capital owners, a point made by Saez (2013). Finally, another possibility is that bounds on capital taxation
reflect self-imposed institutional constraints introduced to mitigate the time inconsistency problem.

ZContinuous time allowed Chamley (1986) to exploit the bang-bang nature of the optimal solution. Since
we focus on cases where this is not the case it is less crucial for our results. However, we prefer to keep the
analyses comparable.
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for some bound T > 0. The planning problem maximizes (11a) subject to (12), (13)
and (14).
Chamley (1986, Theorem 2, pg. 615) formulated the following claim regarding the

dynamic path of capital taxation.?

Claim. Suppose T = 1 and that preferences are given by (11). Then there exists a time T with the

following three properties:
(a) fort < T, the constraint 7, < T is binding;
(b) fort > T capital income is untaxed: ry = r{ and 7, = 0;
(c) T < oo.

At a crucial juncture in the proof of this claim, Chamley (1986) states in support of part
(c) that “The constraint r; > 0 cannot be binding forever (the marginal utility of private
consumption [...] would grow to infinity [...] which is absurd).”?” Our next proposition
establishes that there is nothing absurd about this within the logic of the model and that,
quite to the contrary, part (c) of the above claim is incorrect: indefinite taxation, T = oo,

may be optimal.

Proposition 8. Suppose T = 1 and that preferences are given by (11) with o > 1. Fix any initial
capital stock ko. There exists b < b such that for by € [b, b] the optimum has t; = T forall t > 0,

i.e. the bound on capital taxation binds forever, and there is no equilibrium with b > b.

Here b represents the peak of a “Laffer curve”, above which there is no equilibrium.
The proposition states that for intermediate debt levels it is optimal to tax capital indefi-
nitely. Since these points are below the peak of the Laffer curve, indefinite taxation is not
driven by budgetary need—there are feasible plans with T < oo, however, the plan with
T = oo is simply better. This is illustrated in figure 4 with a qualitative plot of the set of
states (ko, by) for which indefinite capital taxation is optimal. Although this proposition
only considers T = 1, as in Chamley (1986), it is natural to conjecture that lower values of
T make the optimality of T = co more likely.

Our next result assumes ¢ = 0 and constructs the solution for a set of initial conditions

that allow us to guess and verify its form.

26Similar claims are made in Atkeson et al. (1999), Judd (1999) and many other papers.

It is worth pointing out, however that although Chamley (1986) claims T < oo it never states that T is
small. Indeed, it cautions to the possibility that it is quite large saying “the length of the period with capital
income taxation at the 100 per cent rate can be significant.”
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Figure 4: Graphical representation of Proposition 8.

Proposition 9. Suppose that T = 1, that preferences are given by (11) with ¢ > 1, and that
¢ = 0. There exists k < k and by(ko) such that: for any kg € (k, k| and initial debt by(kg) the
optimum satisfies 1 = T for all t > 0 and cy, ky, ny — 0 exponentially with constant n; / ks and

Ct/kt.

This proposition shows that for well chosen initial conditions and no government
spending, the solution path converges to zero in an homogenous, constant growth rate
fashion. This feature is certainly special, yet helpful in constructing the appropriate guess
explicitly.

This explicit example illustrates that convergence takes place, but not to an interior
steady state. Indeed, with additive separable utility no interior steady state exists when
T = co. With T = 1 the after tax interest rate is zero when the bound is binding, but
the agent discounts the future positively, preventing a steady state. Instead, with T < 1
the interest rate may be positive and the after tax interest could equal the discount rate p.
With additive separable utility, this ensures constant consumption, but does not ensure
constant labor. If the tax on labor is not constant then labor is generally not constant.
Indeed, this appears to be a feature of the optimum, with the planner neutralizing the
intertemporal substitution of labor, induced by the capital tax, with an ever increasing
labor tax. We conjecture that a steady state with T = co may be possible if the tax on\
labor is also constrained by an upper bound.

3.3 Revisiting Judd (1999)

Up to this point we have focused on the Chamley-Judd zero-tax results. A followup
literature has offered both extensions and interpretations. One notable case doing both
is Judd (1999). This paper follows Chamley (1986) closely, setting up a representative
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agent economy with perfect financial markets and unrestricted government bonds. More
specifically, the paper does two things. First, it provides a variant of the result in Chamley
(1986) which does not require the allocation nor multipliers to converge to a steady state.
Instead, the paper postulates that an endogenous multiplier lies within an interval and
shows that this implies that capital taxation must be zero on average. Second, the paper
offers a connection between capital taxation and rising consumption taxes to provides

intuition for these results. Let us consider each point in turn.

Bounded Multipliers and Zero Average Capital Taxes. Using our setup from Section
3.2 the main result can be restated as follows. Assuming T = 1, then the planning problem
maximizes (11a) subject to (12), (13), (14a), (14b), and r; > 0. Let Ay = e~ P, A; denote the
co-state for capital, i.e. the multiplier on equation (12), satisfying Ay = pA; —rf Ay Using

that —2* =—p+ g—i + —I[ti and g—i = p — r¢ this is equivalent to
t
Ay .
— =1 —r
A

By the very construction of Ay, if one were to assume that A; converges, it would imme-
diately follow that ; = r} in the long run. This is one way to restate the Chamley (1986)

t,28

steady state result,” which, due to the power of the assumption on A;, even makes any

assumptions on the long-run behavior of the allocation unnecessary. Judd (1999, pg. 13,
Theorem 6) goes down this route but instead of assuming convergence of A;, he hypoth-

esizes that the endogenous multiplier A; never leaves a certain interval.

Theorem 4 (Judd, 1999). Let e *'0;A; denote the capital co-state on equation (12) and assume
At S [AI /_\]/

for 0 < A < A < oo. Then the cumulative distortion up to t is bounded,

t
log (%) < /0 (rs —r2)ds < log (%) ,

and the average distortion converges to zero,

1 t
—/ (rs —ri)ds — 0.
t Jo

28Gee our Theorem 3.
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In particular, under the conditions of this theorem, the optimum cannot converge to
a steady state with a positive tax on capital. More generally, the condition requires de-
partures of r; from r; to average zero. As stated, the result is somewhat sensitive to the
assumption that T = 1; when T # 1 and technology is nonlinear, the co-state equation
acquires other terms, associated with the bounds on capital taxation.

It is important to note that the proof above proceeded without using any other op-
timality condition other than that for capital k;.>’ In particular, it does not invoke the
first-order condition for the interest rate r; or tax rate 7;. A result on optimal capital taxa-
tion is derived without the optimality condition for the tax rate on capital. Naturally, this
poses two questions. How is this possible unless the bounds on A; essentially assume the
result? And are these bounds on A; consistent with an optimum?

Regarding the first question, the multiplier A; represents the social marginal value to

At

7 At,

marginal rate of intertemporal substitution (MRS). When A is constant, social and private

MRSs coincide: % = % — p. Without a conflict between social and private MRS, there
t

is no need to introduce an intertemporal wedge. Therefore, imposing bounds on A; is

the planner of resources at time ¢; thus, its growth rate should represents the social

tantamount to assuming the result.
We already have an answer to the second question, in the form of Proposition 8, show-

ing that indefinite taxation may be optimal.

Corollary. At the optimum described in Proposition 8 we have that Ay — 0 as t — co. Thus, the
hypothesis in Judd (1999) is violated.

In other words, at the optimum there is no guarantee that the endogenous object A;
remains bounded away from zero, as postulated by Judd (1999). Theorem 4 is inapplica-
ble.

Exploding Consumption Taxes. Judd (1999) also offers an intuitive interpretation for
the Chamley-Judd result pointing out that a tax on capital is equivalent to an increasing
tax on consumption. This casts indefinite taxation of capital as a villain, since increasing
and unbounded taxes on consumption do not seem intuitively reasonable and seemingly
contradict standard commodity tax principles, as enunciated by Diamond and Mirrlees
(1971), Atkinson and Stiglitz (1972) and others.

We believe the equivalence between capital taxation and a rising path for consump-

tion taxes is accurate and useful. It does explain why prolonging capital taxation comes

2In this continuous time optimal control formulation, the costate equation for capital is the counterpart
to the first-order condition with respect to capital in a discrete time formulation. Indeed, the same result
can be easily formulated in a discrete time setting.
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at an efficiency cost by distorting the consumption path. If the marginal cost from this
distortion were increasing in T and approached infinity at T = oo this would indeed im-
ply insurmountable costs and provide a strong argument against indefinite taxation of
capital. An instinctive aversion to consumption taxes that rise without bound is perhaps
based on an intuition for this possibility.

We next formalize the efficiency costs of capital taxation generated by the intertempo-
ral distortions to the consumption path. However, despite the connection with ever in-
creasing consumption taxes, we show that the marginal cost of these distortions remains
bounded, even as T — oo, so that there are no insurmountable costs. These bounded
marginal costs must be traded off against the marginal benefits, explaining why the cor-
ner solution T = oo is potentially optimal. The intuitive argument against capital taxation
based on a connection with ever increasing consumption taxes does not deliver.

We proceed with a constructive argument and assume, for simplicity, that technology
is linear, so that f (k,n) — 6k = r*k + w*n for fixed parameters r* and n*.

Proposition 10. Suppose utility is given by (11), with ¢ > 1. Suppose technology is linear. Then
the solution to the planning problem can be obtained by solving to the following static problem:

max u(c) —o(n), (15)
st. (14+¢(T))c+G =ko+wn,
v'(n)

() n=(1—1(T))ay,
where c and n are measures of lifetime consumption and labor supply, respectively, G is the present
value of government consumption and wn is the present value of labor income, for some fixed
w > 0. The functions P and T are increasing with P(0) = 7(0) = 0 and

dy _ ()
dt  T(T)

is bounded away from infinity.

Given ¢, n and T we can compute the paths for consumption ¢; and labor 7;. Behind
the scenes, the static problem solves the dynamic problem. In particular, it optimizes over
the path for labor taxes. In this static representation, 1+ 1 (T) is akin to a production cost
of consumption and 7(T) to a non-distortionary capital levy. On the one hand, higher T
increases the efficiency cost from the consumption path. On the other hand, it increases
revenue in proportion to the level of initial capital. Prolonging capital taxation requires

trading off these costs and benefits.
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Importantly, despite the connection between capital taxation and an ever increasing,
unbounded tax on consumption, the proposition shows that the tradeoff between costs
and benefits is bounded, Z—If < oo, even as T — oo. In other words, indefinite taxation
does not come at an infinite marginal cost and helps explain why this may be optimal.

Should we be surprised that these results contradict commodity tax principles, as
enunciated by Diamond and Mirrlees (1971), Atkinson and Stiglitz (1972) and others? No,
not at all. As general as these frameworks may be they do not consider upper bounds on
taxation, the crucial ingredient in Chamley (1986) and Judd (1999). Thus, their guiding
principles are ill adapted to these settings. In particular, formulas based on local elas-
ticities do not apply, without further modification. When bounds are introduced, this
constrains taxation to be lower in the short run, but spreads it over a longer, possibly

infinite, horizon.

4 A Hybrid: Redistribution and Debt

Throughout this paper we have strived to stay on target and remain faithful to the original
models supporting the Chamley-Judd result. This is important so that our own results are
easily comparable to those in Judd (1985) and Chamley (1986). However, many contribu-
tions since then offer modifications and extensions of the original Chamley-Judd models
and results. In this section we depart briefly from our main focus to show that our results
transcend their original boundaries and are relevant to this broader literature.

To make this point with a relevant example, we consider a hybrid model, with redistri-
bution between capitalists and workers as in Judd (1985), but sharing the essential feature
in Chamley (1986) of unrestricted government debt. It is very simple to modify the model
in Section 2 in this way. We add bonds to the wealth of capitalists a; = k; + by, modifying
equation (1c) to

BU'(Ct)(Cr + kps1 + bry1) = U'(Co) (ke + by)

and the transversality condition to ffU’(C;) (ks+1 + bry1) — 0. Equivalently, we have the

present value implementability condition,

i B'U'(C)Cy = U'(Co)Ro (ko + bo),
=0
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With U(C) = C'79/(1 — o) this is
(1—0) ) BU(C) = U'(Co)Ro(ko + bo). (16)
t=0

Anticipated Confiscatory Taxation. For ¢ > 1 the left hand side in equation (16) is
decreasing in C; and the right hand side is decreasing in Cy. It follows that one can take a
limit with the property that C; — O forallt = 0,1,..., which is optimal for y = 0. Along
this limit R; — 0, so the tax on capital is exploding to infinity. This same logic applies if
the tax is temporarily restricted for periods t < T — 1 for some given T, but is unrestricted
in period T.

Proposition 11. Consider the two-class model from Section 2 but with unrestricted government
bonds. Suppose o > 1 and v = 0. If capital taxation is unrestricted in at least one period, then
the optimum features an infinite tax in some period and C; — 0 forallt = 0,1, ...

This result exemplifies how extreme the tax on capital may be without bounds. In
addition to this result and even when ¢ < 1, if no constraints are imposed on taxation,
except at t = 0, then in the continuous time limit as the length of time periods shrinks
to zero, taxation tends to infinity. This point was also raised in Chamley (1986) for the
representative agent Ramsey model, and served as a motivation for imposing stationary
upper bounds, ©; < T.

Long Run Taxation with Constraints. We now impose upper bounds on capital taxation
and show that these constraints may bind forever, just as in Section 3.2. As we did there,

it is convenient to switch to a continuous-time version of the model.

Proposition 12. Consider the two-class model from Section 2 but with unrestricted government
bonds. Suppose o > 1 and v = 0. If capital taxation is restricted by T < T for some T > 0, then
at the optimum T, = T, i.e. capital should be taxed indefinitely.

These results hold for any value of T > 0, not just T = 1. Intuitively, c > 1 is enough
to ensure indefinite taxation of capital because y = 0 makes it optimal to tax capitalists
as much as possible. Similar results hold for positive but low enough levels of -, so that
redistribution from capitalists to workers is desired.

This proposition assumes that transfers are perfectly targeted to workers. However,
indefinite taxation, T = oo, remains optimal when this assumption is relaxed, so that

transfers are also received by capitalists.
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We have also maintained the assumption from Judd (1985) that workers do not save.
In a political economy context, Bassetto and Benhabib (2006) study a situation where all
agents save (in our context, both workers and capitalists) and are taxed linearly at the
same rate. Indeed, they report the possibility that indefinite taxation is optimal for the
median voter.

Overall, these results suggest that indefinite taxation is optimal in a range of models
that are descendants of Chamley-Judd, with a wide range of assumptions regarding the

environment, heterogeneity, social objectives and policy instruments.

5 Conclusions

This study revisited two closely related models and results, Judd (1985) and Chamley
(1986). Our own results contradict the standard results and their interpretation, revealing
that the long run tax on capital is not necessarily zero in these models.

Why were the proper conclusions missed by Judd (1985), Chamley (1986) and others?
These papers assume that endogenous multipliers associated with the planning problem
converge. We have shown that this is not necessarily the case. In fact, as we argued,
postulating convergence for endogenous multipliers is equivalent to postulating that the
planner’s marginal rate of substitution equals the planner’s, so that no intertemporal dis-
tortion is required. In this sense, assuming this convergence amounts to little more than
assuming zero long-run taxes. The original proofs are magically so simple that they al-
most feel too good to be true. And indeed, they are.

In quantitative evaluations it may well be the case that one finds a zero long-run tax
on capital, e.g. for the model in Judd (1985) one may set ¢ < 1, and in Chamley (1986) the
bounds may not bind forever, depending on parameters.’’ In this paper we stay away
from making any such claim, one way or another. We confined attention to the original
theoretical results, widely perceived as delivering zero long-run taxation as an ironclad
conclusion, independent of parameter values. Based on our analysis, we find little basis

for such an interpretation.
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Appendix

A Proof of Proposition 3

The proof of Proposition 3 consists of three parts. In the first part, we provide a few
definitions that are necessary for the proof. In particular, we define the feasible set of
states. In the second part, we characterize the feasible set of states geometrically. The
proofs for the results are somewhat cumbersome and lengthy, so they are relegated to the
end of this section to ensure greater readability. Finally, in the third part, we use these
results to prove Proposition 3. Readers interested only in the main steps of the proof are
advised to jump straight to the third part.
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A.1 Definitions

For the proof of Proposition 3 we make a number of definitions, designed to simplify the
exposition. A state (k, C_) as in the recursive statement (4) of problem (1a) will sometimes
be abbreviated by z, and a set of states by Z. The total state space is denoted by Z,;. It
will prove useful at times to express the set of constraints in (4) as

1/c
K'=x—C_ (%) (17a)
1/0
C=cC_ (%) (17b)
1/(c—-1)
/(o) (%) <x < f)+(1-0k—g, (170)

where x = k' + C replaces ¢ as control. In the last equation, the first inequality ensures
non-negativity of k" while the second inequality is merely the resource constraint. Substi-

tuting out x, we can also write the law of motion for capital as k' = %CLUC‘T — C, which we

will be using below.

The whole set of future states z’ which can follow a given state z = (k, C_) is denoted
by I'(z), which can be the empty set. We will call a path {z;} feasible if (a) z;11 € T'(z¢),
which precludes I'(z;) from being empty; and (b) if the transversality condition holds
along the path, C, “k;;1 — 0. Similarly, a state z will be called feasible, if there exists a
feasible (infinite) path {z;} starting at zy = z. In this case, z is generated by {z;}. Because
z1 € T'(z), we also say z is generated by zy. A steady state z = (k,C_) € Z is defined to be a
state with C_ = (1 — B)/pk. Not all steady states turn out to be feasible, hence a feasible
steady state z is a steady state that is self-generating, z € I'(z). Denote by Z* the set of all
feasible states. An integral part of the proof will be to characterize Z*.

It will be important to specify between which capital stocks the economy is moving.
For this purpose, define kg and k8 > k, to be the two roots to the equation

k= f)+(1 —(5)k—g—%k. (18)
Ejk)

Demanding that k& > k, is tantamount to specifying F'(k8) < 1/B < F'(ky). Equation
(18) was derived from the resource constraint, demanding that capitalists’ consumption is
at the steady state level of C = %k and workers’ consumption is equal to zero. Equation
(18) need not have two solutions, not even a single one, in which case government con-
sumption is unsustainably high for any capital stock. Such values for g are uninteresting
and therefore ruled out. Corresponding to k; and k¢, we define C; = (1 — )/B kg and
C8 = (1 — B)/Bk® as the respective steady state consumption of capitalists. The steady
states (kg, Cg) and (k$, C8) represent the lowest and highest feasible steady states, respec-

tively. The reason for this is that the steady state resource constraint (18) is violated for
any k & [kg, k8].
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Figure 5: The state space Z,);, including the feasible set Z* (between the two red curves),
and all sets Z; (separated by the blue curves). The point (k*,C*) is the zero-tax steady
state. Showing that this is the qualitative shape of the feasible set Z* is an integral part of
the proof.

As in the Neoclassical Growth Model, the set of feasible states of this model is easily
seen to allow for arbitrarily large capital stocks. This is why we cap the state space for
high values of capital, and we take the total state space to be Z,; = [0, k] x R for states
(k,C_), where k = max{kmax, ko } and k = kmax solves k = f(k) + (1 — )k — g. This way,
the set of capital stocks that are resource feasible given an initial capital stock of kg must
necessarily lie in the interval [0, k], so the restriction for k is without loss of generality for
any given initial capital stock k. Note that with this state space, the set of feasible states
Z* is also capped at k in its k-component.

The regularity conditions we impose for this proof are Inada conditions on f and u,%!
f'(0) = o0, f'(c0) = 0and u'(0) = oo, u'(c0) = 0.

The outline of this proof is as follows. In section A.2 we characterize the geometry of
the set of feasible states Z*. The results derived there are essential for the actual proof of
Proposition 3 in section A.3.

A.2 Geometry of Z*

For better guidance through this section, we refer the reader to figure 5, which shows the
typical shape of Z*. The main results in this section are characterizations of the bottom
and top boundaries of Z*. We proceed by splitting up the state space, Z,; = [0,k] x R,
into four pieces and characterizing the feasible states in each of the four pieces.

Define
Sk for 0 < k < kg

we(k) = 1/ -
s ()" forkg <k <k

31In addition we make standard assumptions throughout, such as f(0) = 0, and f, u strictly increasing
and concave.
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ok for 0 <k < k8

wd (k) = 1/ i,
" {cg(kﬁg> " forks <k <F

and split up the state space as follows (see figure 5)

1—
Zan = {k < kg, C_> —'Bk} U {C, < wg(k)}

B
Z “
U{k >k we(k) < C_ <wf(k)}U{k>ke, Co > wS(k)}.

Z3 Z4
Lemma 1 characterizes the feasible states in sets Z; and Z,.

Lemmal. Z*NZ; = Z* N Zp = @. All states with k < kg or C_ < wg(k) are infeasible.
Proof. See subsection A.4.1. O

In particular, Lemma 1 showed that all states with C_ < w(k) are infeasible. Lemma
2 below complements this result stating that all states with w¢(k) < C_ < wé(k) (and
k > k¢) in fact are feasible, that is, lie in Z*. This means, {C_ = wg(k), k > k,} constitutes
the lower boundary of the feasible set Z*.

Lemma 2. Z3 C Z*, or equivalently, all states with we(k) < C_ < ws(k) and k > kq are
feasible. Moreover, states on the boundary {C_ = wgq(k), k > k¢} can only be generated by a
single feasible state, (kq, Cq). Thus, there is only a single “feasible” control for those states, ¢ > 0.

Proof. See subsection A.4.2. O

Lemma 2 finishes the characterization of all feasible states with C_ < w8 (k). What
remains is a characterization of feasible states with C_ > w38 (k), or in terms of the k —
C_ diagram of figure 5, the characterization of the red top boundary. This boundary is
inherently more difficult than the bottom boundary because it involves states that are not
merely one step away from a steady state. Rather, paths might not reach a steady state at
all in finite time. The goal of the next set of lemmas is an iterative construction to show
that the boundary takes the form of an increasing function @w(k) such that states with
C_ > w8(k) are feasible if and only if C_ < (k).

For this purpose, we need to make a number of new definitions: Let ¢(k,C_) = (k +
C_)/CY. Applying the i function to the successor (k’,C) of a state (k, C_) and using the
IC constraint (1c) gives ¢(k/,C) = B~'k/C%, a number that is independent of the control
x. Hence, for every state (k,C_) there exists an iso-{ curve containing all its potential
successor states.

In some situations it will be convenient to abbreviate the laws of motion for capitalists’
consumption and capital, equations (17a) and (17b), as k’(x, k, C_) and C(x,k,C_).

Finally, define an operator T on the space of continuous, increasing functions v :
kg, k] = Ry, as,

To(k) = sup{C_ | 3x € (0, F(K)] : (K (x,k,C_)) > C(x,k,C_)}. (19)
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The operator is designed to extend a candidate top boundary of the set of feasible states
by one iteration. To make this formal, let Z() be the set of states with C_ > w8 (k) which
are i steps away from reaching C_ = w8 (k). For example, Z(") = {C_ = w8(k)}. Lemma
3 proves some basic properties of the operator T.

Lemma 3. T maps the space of continuous, strictly increasing functions v : [kg, k| — R with
Y(k,v(k)) strictly decreasing in k and v(ky) = Cq, v(k8) = C8, into itself.

Proof. See subsection A.4.3. O
Lemma 4 uses the operator T to describe the sets Z(/.

Lemma 4. Z() = {w8(k) < C_ < T'ws(k)}. In particular T'wS (k) > Tiws (k) > w8 (k) for
P>
Proof. See subsection A.4.4. O

The next lemma characterizes the limit function @ (k) whose graph will describe the
top boundary of the set of feasible states.

Lemma 5. There exists a continuous limit function @ (k) = lim;_, T'w8 (k), with @(kg) = Cq
and w(k8) = C8. All states with C_ = w(k) are feasible, but only with policy ¢ = 0.

Proof. See subsection A.4.5. O
Lemma 6. No state with C_ > w(k) (and kg < k < k) is feasible.
Proof. See subsection A .4.6. O

Finally, Lemma 7 shows an auxiliary result which is both used in the proof of Lemma
6 and in Lemma 9 below.

Lemma 7. Let (ky11,Ct) be a path starting at (ko, C_1) with controls c; = 0. Let kg < ko < k.
Then:

(a) If C_q = w(ko), (kiy1,Ct) — (KS,C8).
(b) If C_1 > w(ko), (k+1,Ct) # (K8, C8).
Proof. See subsection A.4.7. O

A.3 Proof of Proposition 3

Armed with the results from section A.2 we now prove Proposition 3 in a series of inter-
mediate results. For all statements in this section, we consider an economy with an initial
capital stock of kg € [kg, k]. We call a path (k;.1, C¢) globally optimal path, if initial C_q was
optimized over given the initial capital stock ky. Analogously, we call a path (k;1,Ct)
locally optimal path, if initial C_; was not optimized over but rather taken as given at a
certain level, respecting the constraint that (ko, C_1) be feasible.

The first lemma proves that the multiplier on capitalists” IC constraint explodes along
an optimal path, and at the same time, workers’ consumption drops to zero.
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Lemma 8. Along an optimal path, uy > 0, uy — oo and c¢; — 0, where yy, cy are as in problem

(1a).

Proof. Consider the law of motion for p¢,

(T )t
et = it OKt41 ,5(7Kt+1Ut'

From section A.2 we know that «;11 = k;+1/C; is bounded away from co. Since yp = 0
and o > 1, it follows that y; > 0 and p; — oo.

Suppose ¢; /4 0. In this case, there exists ¢ > 0 and an infinite sequence of indices
(ts) such that c; 11 > cand c; 11 > ¢y, for all s. Along these indices, the FOC for capital
implies

uz,fs—l—l (ft,s+1 +(1-9)) = lu;s + utls (e — mt),
—— -~

,B ~—~— ~—
<u'(c) bounded =>const-p;—>00

and so k; 11 — 0 for s — oo, which is impossible within a s-g set because it violates
k > k. O
=8

Lemma 8 is mainly important because it shows that workers” consumption drops to
zero. Together with the following lemma, this gives us a crucial geometric restriction of
where an optimal path goes in the long run.

Lemma 9. In the interior of Z*, the optimal control policy is always ¢ > 0. It follows that a
globally optimal path approaches either (kq, Cq) or (k8,CS).

Proof. Note that any point in the interior of Z* is element of some Z(), i < o0, and can
thus reach the set {C_ < w8 (k)} \ {(kg, Cq), (k$,C8)} in finite time. From there, at most
two steps are necessary to reach a interior steady state (kss, Css) with kg < kss < k& and
hence positive consumption css > 0. By continuity, such an interior steady state can be
reached without leaving the interior of the feasible set.

Now take an interior state (k, C_) and suppose the optimal control was ¢ = 0. Then,
by the Euler equation®?, it would have to stay at zero for the whole (locally) optimal path,
and so the value of this path would be u(0) /(1 — B). Clearly, this is less than the value of
a path converging to an interior steady state with positive workers” consumption along
the whole path.

We conclude that the set {¢ = 0} lies in the boundary of Z*. By Lemmas 2 and 5 this
means that {¢ = 0} is exactly equal to the top boundary {C_ = @(k)}. A globally optimal
path which approaches {¢ = 0} must then share the same limiting behavior as states in
the set {c = 0}. By virtue of Lemma 7, it must either converge to (k¢, C¢) or (k8,C8). [

Lemma 9 gives a sharp prediction for the behavior of an optimal path: It converges
to one of two ¢ = 0 steady states: One with little capital or one with abundant capital.
Which one that is, will be clear from the next lemma.

32Note that the ¢ > 0 restriction need not be imposed due to Inada conditions for u.
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Lemma 10. If a locally optimal path (k;1, Ct) converges to (k8,CS), then the value function V
is locally decreasing in C at point (kyy1,Cy) forall t > T with T large enough.

Proof. Let x; = F(k¢) — ¢ and consider the following variation: Suppose that at a point
T, (kr41,Cr) is not at the lower boundary (in which case it cannot converge to (k8,C3)
anyway) and that ¢; < F(k;) — F’ (kt)kt for all t > T.3% For simplicity, call this T = —1. Do
the perturbation C_1=C_1—¢€ ko= ko, but keep the controls c; at their optimal level for
(ko,C_1), that is ¢; = c;. Denote the perturbed capital stock and capitalists” consumption
by I%Hl = ki1 +dkiyq and C; = C; + dC;. Then the control x changes by dx; = F/dk;
to first order. We want to show that dk;.1 > 0 and dC; < 0 for all t > 0, knowing that
dC_1 = —eand dky = 0.
From the constraints we find,

— / —
dk 1 :P’(kt)dkt—ﬁdq LGk (ki) = F' (ke ke “ik, > 0
N— ._/ Ct 1 U'Xt kt P
>0
B =0 >0
_ / _
aci = Ctge, LG Ek) PRk —e
\Q— N ki _
<0 <0

Using matrix notation, this local law of motion can be written as

dkt+1 . ar + bt —dt dkf
()= (" @) et )

with a; = F'(kt), dy = C¢/Cy_1, by = %%F(kt)_%k”kt_ct. Close to (k8,C¢), this matrix has
d =~ 1. Suppose for one moment that a was zero; the fact that 4 > 0 only works in favor
of the following argument. With a = 0, the matrix has a single nontrivial eigenvalue of
b + d, which exceeds 1 strictly in the limit, and the associated eigenspace is spanned by
(1,—1). The trivial eigenvalue’s eigenspace is spanned by (d,b). Notice that the latter
eigenvector is not collinear with the initial perturbation (0, —1), implying that dke, > 0
and dCs < 0. Hence, koo > koo = k8 and Coo < Coo = C8.

But notice that to the bottom right of (k€,C¢), the new point is interior, which implies
a continuation value of u(0)/(1 — B). More formally, this means there must exist a time
T' > 0 for which the continuation value of (k1 1, Cy) is strictly dominated by the one
for (kpryq,Cpr), thatis, V(kpriq, Cp) < V(kpry1, Cp). Because all controls were equal up
until time T’, this implies that V (k7.41,Cr) < V(kr41,Cr — €) for € small (Recall that we
had set T = —1 during the proof). Thus, the value function must increase if C is lowered,
for a path starting at (k7.1,Cr), for large enough T. This proves that the value function
is locally decreasing in C at that point. O

And finally, Lemma 11 proves Proposition 3.

3Such a finite T > 0 exists for two reasons: (a) because ¢; — 0; and (b) because F(k) — F’(k)k which is
positive in a neighborhood around k = k¢ since k8 was defined by F(k8) = k8 /B and F'(k8) < 1/B.
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Lemma 11. A (globally) optimal path converges to (kg, Cg).

Proof. By Lemma 9 it is sufficient to prove that a globally optimal path does not converge
to (k8,C8). Suppose the contrary held and there was a globally optimal path converging
to (k8,C8). By Lemma 10, this means that the value function is locally decreasing around
the optimal path (k;41,C;) for t > T, with T > 0 sufficiently large. Consider the following

feasible variation for t = —1,0,...,T, C; = Ce(1— det),fctﬂ = ki1, %t = x4 — Cdey where
1\ !

dep=|1——— dep_q. 20

a=(1-75) des 20)

Observe that (20) is precisely the relation which ensures that the variation satisfies all
the constraints of the system (in particular (17b) of which (20) is the linearized version).
Workers” consumption increases with this variation bydc; = Cide; > 0. Therefore, the
value of this path changes by

7/

T
dv = Z Bt (cr)der +B (V(kiy1, Cr — Cider) — Vikiy1,Cr)) > 0,
=0

~——— >0,byL€mma 10
>0
which is contradicting the optimality of (k;;1,C¢). Ergo, a globally optimal path con-
verges to (kg, Cq). O

A4 Proofs of Auxiliary Lemmas
A.41 Proof of Lemmal

Proof. Focus on Z; first and consider a state (k,C_) with k < kg and C_ > %k. Then,
x=kK+C< flk)+(1—-0)k—g = %k(l — e(k)), where e(ky) = 0 and e(k) > 0 for all
k < kg, by definition of k¢ and Inada conditions for f. Also, by ¢ > 0 there is a capital
stock k € (0,kq) where e(k) = 1 (namely when f (k) + (1 — 6)k — g = 0). The highest K’
which can generate a state (k, C_) € Z; is then bounded by

X /e - 1/0
K—x—C_ <5—) < %k(l _e(k) — %k (1— ()7 < k(1 — e(k)),
Shan

where in the first inequality we used the fact that k’ is increasing in x in the relevant range
for x, as specified in (17c). This implies that k always strictly falls in that range, and after
a finite number of periods crosses k. For k < k, the constraint set is empty because then

f(k)+ (1 —6)k — g < 0. Therefore, no state in {k <kg,C_ > %k} can be generated by

an infinite path and so Z* N Z; = @.
Now consider a state (k, C_) with C_ < wg(k), thus, in particular (C_/C,)” < k/kg.3*

34This inequality even holds if k < k, because there, Cq(k/k¢)'/7 > (1 — B)/Bk. To see this recall that
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Define h(k,C_) = k/C?. Suppose next period’s state satisfies C < %k’ , or else C >

%k’ which we already know leads to an empty constraint set in finite time.* Then,

h(klc)_k_/_k—/_ik—/>h(kc) (21)
"/ Co T C7Bx/k - CTB(K +C) T
1
>

This implies that, along any feasible path, / is strictly increasing. Suppose h #4 co. Then,
by the monotone sequence convergence theorem, there exists an H > 0 such thath — H
along the path. Using (21) this implies that k;1/ (B(ki+1 + C¢)) — 1, or equivalently that
kiv1/Ce — B/(1—B). If kir1 # 0 (in the case ki1 — 0 we are done because for any
k < k the constraint set is empty, as before), then this means the state (k;, C;_1) converges
to a feasible steady state.’® However, the lowest feasible steady state is (kg, Cy) and since
(C_/Cq)” < k/kg,
h> hke, Co) = sup h(k, (1 - B)/Bk),

kg <k<k8

which follows because k/((1 — B)/pk)? is decreasing in k. This is a contradiction to
(kt, Ct—1) converging to a feasible steady state. Therefore, h — oo, and thus C; — 0
because k is bounded from above by the resource constraint. Again, if k;; 1 eventually
drops below k, the constraint set is empty. Assume k;; > k for some k > 0. Then,
U'(Ct)kt11 — oo, contradicting the transversality condition. We conclude that no state
(k,C_) with (C_/Cq)? < k/kg can be generated by an infinite path satisfying the neces-
sary constraints. Hence, Z; = @. O

A.4.2 Proof of Lemma 2

Proof. Consider a state (k,C_) with we(k) < C- < w8(k) and k > k,. In particular,
C_ < (1—PB)/Bk, (C_/Cq)” > k/kq and (C—/C8)” < k/k837 The idea of the proof
is to show that in fact such a state can be generated by a steady state (ks5, Css) (with
Css = (1 —B)/Bkss and kg < kss < k3). By definition of k; and kS, such a steady state is
always self-generating.

Guess that the right steady state has ks = (BC_ /(1 — 8))”/ "V k~1/(e=1 and Cys =
(1 — B)/PBkss. 1t is straightforward to check that this steady state can be attained with
control x = (Css/C—_)%k/B. This steady state is self-generating because ke < kss < k8,
which follows from (C_/Cq)” > k/kg and (C_/C8)7 < k/k$. Finally, the control x is

Cg = (1—B)/Pkg and so Cg(k/k¢)V/7/((1— B)/Bk) = (k/k¢)}/"~1 > 1, where we used o > 1.

%SNote thatif C > (1 — B)/Bk/, thenk’ < kg. The reason is as follows: The constraints (17a) and (17b) can
be rewritten as k’ = (C/C_) k/B — C. Because (C_ /Cq)7 < k/kg, this implies that k' > (C/Cg)g ke/B—C.
Note that the right hand side of this inequality is increasing in C as long as it is positive (which is the
only interesting case here). Substituting in C > (1 — )/ K/, this gives k' > (k'/kg)  kg/p— (1 — B)/BK'.
Rearranging, k' / ke > (k’ / kg)g, a condition which can only be satisfied if k' / ke < 1 (recall that ¢ > 1).

%Notice that, if k;41/C{ — H > 0and k;;1/Ct — B/(1 — B) then convergence of k; ;1 and C; 1 them-
selves immediately follow.

% These inequalities hold for all k > k,. The proofs are analogous to the proofs in footnotes 34 and 38.
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resource-feasible because C_ < (1 — B)/pk and thus,

i 1 <%C_>g 1/(c—1)

=5 |7 % < f0)+(1- 6k —g,

where the latter inequality follows from the fact that k; < k < k8 and the definition of kg
and k8. This concludes the proof that all states with wg (k) < C— < w3(k) and k > kg are
feasible.

Now regard a state on the boundary {C_ = wq(k),k > k¢}, so we also have that
C_ < (1—B)/Bk® For such a state, kys = ke and Css = Cg, and so such a state is
generated by (k¢, Cq). Moreover, the unique control which moves (k,C_) to (k¢, Cg) is
x <k/B< f(k)+(1—6)k—g, orintermsofc,c > 0.

To show that (kg, Cg) is in fact the only feasible state generating (k,C_), let (k/,C)
be a state generating (k,C_). If K’ < kg, then (k/,C) is not feasible by Lemma 1, and
k' = kg is exactly the case where (k¢,C,y) generates (k,C_). Suppose k' > ky. Then,
C < (1 - B)/Bk > and so we can recycle equation (21) to see h(k’,C) > h(k,C_). Because
h(k,C_) = h(kg, Cq) however, this implies that h(k’,C) > h(k,, C,), or put differently,
C < wq(k'). Again by Lemma 1 such a (k’, C) is not feasible. Therefore, the only state that
can generate a state on the boundary {C_ = wg(k),k > k¢} is (kg, C¢), and the associated
unique control involves positive c. O

A.4.3 Proof of Lemma 3

Proof. First note that T can be rewritten as
To(k) = max{C_ | v(k'(F(k),k,C-)) = C(F(k),k,C-)}. (22)
There are two ways in which (22) differs from (19):

e Suppose that the supremum in (19) is attained with xog < F(k). Because (k, v(k)) is
strictly decreasing in k and 9 (k’(...), C(...)) is constant in x, there can at most be a
single crossing between the graph of v and {(k/,C) | x € (0,F(k)]}. Further, notice
that the function

D:x— (k' (xkC),C(x, k,C_))/—fp (K'(x,k,C-), v(K'(x,k, C_)))/ (23)

constantin x decreasing in x

is strictly increasing in x with ®(xp) > 0. Therefore, ®(F(k)) > 0, or, in other
words, v(k'(F(k),k,C_)) > C(F(k),k,C_). Since v is continuous, this means that

38This holds because C_ = wg (k) = Cq(k/kg)/7 and thus C_/((1 — B)/Bk) = (k/k¢)*/ 771 < 1.

¥This holds because by the IC constraint (22), (k' + C)/C” = ky/Cg or equivalently (k' 4 C)/C =
1/(1=B)(C/Cq)". Thus, letting k = k'/C, (k +1)x" = (1= B)~L- (B/(1— B))” - (K'/kg)". Since the right
hand side is increasing in «, the fact that k" > k, tells us that x > B/(1 — ), which is what we set out to
show.
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C_ can be increased without violating v(k’) > C — a contradiction to C_ attaining
the supremum.

e Suppose that the supremum in (19) is attained with x = F(k) but v(k'(F(k),k,C-)) >
C(F(k),k,C_). Again, this means increasing C_ does not violate the condition that
v(K'(x,k,C_)) > C(x,k,C_).

These two arguments prove that (22) is a valid way to write Tv(k). Now pick a con-
tinuous, increasing function v : [k¢, k] — Ry with ¢ (k, v(k)) strictly decreasing in k and
v(kg) = Cg, v(k8) = C8 and check the claimed properties in turn:

o To(ky) = Cq because k'(F(kq), k¢, Cq) = kg and C(F(kg), kg, Cq) = Cq. However,
k'(F(kg), kg, C_) is strictly decreasing in C_ and so k’(F(kg), ke, C—) < kg for C_ >
C, (for k < kg, v(k) is not even defined).

e Note that v(k’(F(k),k,C_)) = C(F(k),k,C_) has exactly one solution C* (k) for C_
since v(k’) is increasing in k’ but k' is strictly decreasing in C_ and C strictly increas-
ing in C_. Also, it is easy to see that for C_ < Cq(k/(BF(k)))}?, C(F(k),k,C-) <
Cq and so v(K'(F(k),k,C-)) > C(F(k),k,C-). Similarly, for C_ sufficiently high,
k' = kg but C > Co. 0

e To show that Tov(k) is increasing note that ¢(k’(...),C(...)) = B~ 'k/CY is strictly
increasing in k and strictly decreasing in C_. Further, recall that

1/o
et e = (1-c (b))

is strictly increasing in k and strictly decreasing in C_, and that v was such that
P(k,v(k)) is strictly decreasing in k. Then, the function

¥ (k,—C-) = y (K'(F(k),k,C_),C(F(k),k,C-))

/‘inkar\la(fC,)
— 9 (K (F(k),k,C_),0(K'(F(k),k,C)))

-

\inkar\;:l(—C,)

is strictly increasing in k and —C_. Because the {¥ = 0} locus is exactly the graph
of Tv(k), it follows that Tv(k) is strictly increasing.

e Then, it also easily follows that Tv(k) is continuous because ¥ is strictly increasing
and continuous, and has exactly one zero for each value of k € [k, k].*!

#0C > Cymusthold if k' = kg, and k > kg because: From k > kg it follows that k' (F (k), k, (1 — B) / k) > kg
and C(F(k),k, (1 —p)/Bk) > Cg. Since k'(...) is decreasing in C_, it follows that C_ > (1 — B)/Bk is
necessary to achieve k' = k. Because C(...) is increasing in C_, it follows that C > Cq.

41This is a fact that holds more generally: If f(x,y) is a strictly increasing two-dimensional function and
for each x there exists a unique y*(x) s.t. f(x,y*(x)) = 0, then y*(x) must be continuous in x.
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e For ¢(k, Tv(k)) decreasing in k, pick k1 < ky. Suppose ¢(k1, Tv(k1)) < P(kp, To(ky)).
Since Tv(k) is strictly increasing, it follows that

kl k2 kl k2

— 1—-0 e 1—0 <
To(k1)”  To(ky)” < To(kp) + To(kq) To(ky)" To(ks) <0,
ik Tolk)) (k2. To(k))
and so . .
! — g1 1 -1 2 ,
pla,C) =p To(ky)° <p To(ky)? (ky, C2). (24)

This, however, implies that Tv(k;) cannot have been optimal: Pick an alternative
consumption level Cy _ as C; — = Tu(k;)(ka/k1)'/?, which exceeds To(ky) by (24).
Moreover, denoting by x; the policy to take state (k1, Tv(k)) to state (k, C1), pick xq
as alternative policy for (kp, C, ). Note that x7 is feasible in state (kp, C; — ) because
x; < F(ky) < F(ka). Since k1/To(k1)” = kz2/C§ _ by construction, it follows that
the state succeeding (ka, C,—) is (K'(x1,ko, Co,—), C(x1,k2,Co,—)) = (k},C1), which
lies on the graph of v. Hence Tv(k;) cannot have been optimal and so ¢(k, Tv(k)) is
decreasing in k.

e Finally, Tv(k8) = C8. The reason for this is that one the one hand, k' (F(k$), k8, C8) =
k8 and C(F(k8),k8,C8) = C8. On the other hand, because k(. ..) is decreasing and
C(...)isincreasing in C_, it follows that k' (F (k&) k8,C_) < k8 but C(F(k¢),k8,C_) >
C8 for C_ > C8. Such a state can never lie on the graph of v given v(k8) = C$ and
its monotonicity.

O

A.4.4 Proof of Lemma4

Proof. Note that any state (k, C_) reaches the space {C_ < v(k)} in one step if and only
if C_ < Tov(k) (provided that v satisfies the regularity properties in Lemma 3). Thus, by
iteration, Z() = {w8(k) < C_ < T'w8(k)}. Because Z() D ZU) for i > j, it holds that
Tiw (k) > Tiws(k).*? O

A.4.5 Proof of Lemma5

Proof. The existence of the limit lim;_,«, Tiw8 (k) is straightforward for every k (monotone
sequence, bounded above because for large values of C_, K'(F(k),k,C_) < kg for any
k). By Lemma 2, @ must be weakly increasing, @(k;) = Cg, @(k8) = C8, and ¢ (k, @ (k))
must be weakly decreasing. Suppose that @ was not continuous. Then, there need to
be two arbitrarily close values of k, k1 < k, with a gap between @ (k1) and @(ky). Be-
cause k'(F(kq1),k1,C-) is decreasing in C_ and C(F(kq),k1,C_) is increasing in C_, the

£ A subtlety here is that Z()) O Z(/) only holds because states in the set {C_ = w3 (k)} is “self-generating”,
that is, if a path hits the set {C_ = w8 (k)} after j steps, it can stay in that set forever. In particular, it can hit
the set after i > j steps as well. This explains why Z() D z0),
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tixed point property T@w = @ can only hold if @ were locally decreasing around state
(k'(F(kq),k1,C*(k1)), C(F(kq),k1,C* (k1)), a contradiction. Therefore, @ is continuous.
Note that by the fixed point property, T@w (k) = @(k), from which it follows that ¢ = 0,
or in other words x = F(k), is the only feasible policy for states with C_ = @w(k) (consider
the representation of T in equation (22) — this implies that v(k’) < C for any ¢ > 0, by a
similar logic as in (23)). [

A.4.6 Proof of Lemma 6

Proof. Define h as before, h(k/,C) = k'/C’. Fix a state (k,C_) with C_ > @(k). First,
consider the case C_ > (1 — B)/Bk. Note that such a path must have C; > (1 — B)/Bk;+1
along the whole path unless k;,1 < kq. This follows directly from C; > @(k;41) (which
must hold by construction of @) for k;11 < k8. If k;11 > k€ it must be the case that
ksi1 > k8 for all s < t as well.*> But then, using x; < F(k;) < k;/B,

kivi  x: ki/B B
AR R Ry .
G G Ci1 1-p

We established that C; > (1 — )/ k41 along the whole path.
Thus,

ki1 ki ki1
h(kiiq,Cr) = = < h(ks, Ci_q).
(kt41,Cr) cr = T Bl +Cn (kt, Ci-1)
—_—

<1

If h(ks11, Ct) converges to zero, then either k; 1 — 0 or C; — oo (in which case k;11 — 0
by the law of motion for capital and the fact that k; < k). Such a path is not feasible
because k;, 1 drops below k in finite time (see proof of Lemma 1 for k). Hence, suppose
h(kiy1,Ct) — h > 0. Then, kiy1/(B(kty1 + Ct)) — 1, so the path must approximate the
steady state line described by C_ = (1 — B)/pk. Because C; > @(k;11) along the path,
(kt41, Ct) must be converging to (k8,CS).

Next we show that along this convergence, c; can be zero. Suppose there were times
with ¢; > 0. Then, define a new path (lActH, C’t), starting at the same initial state (k, C_)

43The reason for this is that for any state (k, C_) with k < k¢ and C_ > w(k) we have that k' < k$:

o if p(k',C) > ¢(k8,C8), then the curve {(k'(x,k,C_),C(x,k,C_)), x > 0} (without resource con-
straint restriction) and the graph of @ intersect at a state with capital less than k8. In particular,
this implies that the intersection of {(k’(x,k,C_),C(x,k,C_)), x > 0} and the steady state line
{C = (1 — B)/Bk} lies in the interior of {C < @w(k)}. Therefore, if C were smaller than (1 — B)/BK/,
this would mean that C < w(k") — a contradiction to C_ > @(k) given the construction of .

/
o if p(K,C) = k/C” < p(kS,C8) = k8/(C8)’, then k' < F(k) — C_ (%(k))l T < F(k8) -
1/
cs (%) s
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but with controls ¢; = 0. Observe that

h(kipr, C) = ki1, C) — G = B h(ke, Cio1) — ke, Ciq) TV (BE (k) ~ 0 1)/@

~ 1/0
bt = E(k) — <—h£f (Cf‘:)l)) ,

where the first equation is increasing in h(k;, C;,_1) for the relevant parameters for which
h(lActH, ét) > 0, and similarly the second equation is increasing in F (IAct) if I’%t+1 > 0. By
induction over ¢, if h(l%t, Ct_l) > h(k, C;—1) and ki > k; (induction hypothesis), then,
because F(IAq) > x4,

hkep1, Cr) > B h(ks, Ci_q) — h(ky, thl)(0_1)/‘7(,33515)_(0_1)/0 = h(ky1,Ct)

1/0
ki1 > F(ke) = (h(/lif—(ck:_)ﬂ) I

confirming that k; > k; and h(k;, C;_1) > h(k;, C;_1) for all t. Given that h(ki,1,C;) —
h > 0, either <i€t+1, Ct) — (k8,C8) as well or (IAcfH, Ct> converges to some steady state

between k, and k$. The latter cannot be because of C; > @(k;11) along the path. But the
former is precluded by Lemma 7 below.

Now, consider the case k > k8 and C_ < (1 — B)/pk. If the succeeding state is above
the steady state line, C > (1 — B)/pk/, the case above applies. Hence, suppose the path
stayed below the steady state line forever, i.e. C; < (1 — B)/Pk;11 for all t. In that case,

ki1 ki ki1
h(kisq,Ct) = = > h(ky, Ci_q).
( t+1 t) C? C?_l ﬁ(kt—f—l—{_ct) ( t t 1)
—_—

>1

Note that k(k¢41, Ct) is bounded from above, for example by k(ke, Cq) (because all states
below the steady state line with & equal to h(kg, Cq) are below the graph of w$ and thus
below @ as well). So, h(kiy1,Ct) converges and kii1/(B(ki+1 + Ct)) — 1. The state
approximates the steady state line. Because the only feasible steady state with below the
steady state line but above the graph of @ is (k$, C¢) it follows that (k;;1,Ct) — (k8,CS8).
Following the same steps as before, it can be shown that without loss of generality,
controls ¢; can be taken to be zero along the path. By Lemma 7 below this is a contradic-
tion. [

A.4.7 Proof of Lemma 7
Proof. We prove each of the results in turn.

(a) Notice that ¢ = 0 takes any state on the graph of @ to another state on the graph
of @ (because Tw = w). Suppose kg < k3 (the case kg > k¢ is analogous). Then,
no future capital stock k;;; can exceed k€. Because if it did, there would have to
be a capital stock k € (kg k®) with k'(F(k),k,C* (k)) = k3, by continuity of k —
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(b)

k'(F(k),k,C* (k)). But this is impossible by definition of k8.** Thus, along the path,
Ct > (1 — B)/Pki1 and so h(ky1,Ct) is decreasing. As h(ky, Cq) > h(k,@(k)) for
all k > kg, this means (k;y1,Ct) — (k$,C8).

For simplicity, focus on the case kg < k3. Again, the case kg > k& is completely
analogous. Suppose (k;11, Ct) was converging to (k8, C8). Note that at k8, F(k) /k is
decreasing®®. Thus, there exists a time T > 0 for which the capital stock kr is suffi-
ciently close to k8 that F (k) /k is decreasing for all k in a neighborhood of k8 which in-

cludes {k;};>t. Let (i%t+1, éf) denote the path with ¢; = 0, starting from (kr, @w(kr)).

Observe that both (k;1,C;) and (ki;1,C;) have controls ¢; = 0 here, unlike in the
proof of Lemma 6. Denote the zero-control laws of motion for capital and capital-
ists’ consumption by L(k,C_) = k'(F(k),k,C_) and Lc(k,C-) = C(F(k),k,C_).
Since F(k)/k is locally decreasing, it follows that dL;/dk > 0, dLy/dC_ < 0 and
dLc/dk < 0,dLc/dC— > 0. This implies that because Cy_1 > @(kr) (which must
hold or else C_ < @(k) by construction of @), C; > C; and k; 1 > kiiq forallt > T.
Moreover, borrowing from equation (21), we know that

1 1 1/0 1
h(kiy1,Ce) = h(kt, Ci1) <B - (h(kt, Ql)) (‘BF(kt))l—l/(T) ’

which implies that by induction h(k;y1,Cs) < h(lActH, Ct), that is,

log h(kt+T/ Ct—l—T 1

= logh(kr,Cr_1) + Z log (

‘mh—‘

1/0
kT+5,CT—|—s 1)) (ﬁF kT+S 1 1/U>

| —

1/c0
<logh(kt,C + ) lo
ghlkr Cra) Z g( kT+s/CT+s 1)) (BE( kT+s ) 1/‘7>

logh t+T, CH—T 1) —|—10gh(kT, Cr_ 1) logh
As t — oo, this equation yields

log h(k8,C8) < logh(k8,C8) 4 logh(kr,Cr_1) — log h(kr, Cr_1),

v

-~

=—kr(C;7,—C;%,)<0

which is a contradiction. Therefore, (k;11,C;) /4 (k8,CS).

4By definition of k8, F(k8) = k8 + C8$, and so, F(k) < k8 + C$ for k < kS.
“Note that @ (k) > wy (k) and h(k, wg(k)) = const, see Lemmas 1 and 2 above.
46This holds because F’(k8) < 1/B and F(k8) = 1/pkS.

48



B Numerical Method

To solve the Bellman equation we must first compute the set A. Asis standard, in practice,
especially when ¢ > 1, we must restrict the range of capital to a closed interval [k, k] with
k > 0 to avoid k = 0. This leads us to seek a subset AK C A. We compute this set
numerically as follows.

Start with the set Ay defined by C_ = %k and k € [k k|. This set is self generating

and thus Ay C AK. We define an operator that finds all points (k, C_) for which one can
find ¢, K’, C satisfying the constraints of the Bellman equation and (k’, C) € A,. This gives
a set A1 with Ay C A;. Iterating on this procedure we obtain Ag, Aj, A, ... and we stop
when the sets do not grow much.

We then solve the Bellman equation by value function iteration. We start with a guess
for Vj that uses a feasible policy to evaluate utility. This ensures that our guess is be-
low the true value function. Iterating on the Bellman equation then leads to a monotone
sequence Vp, Vi,... and we stop when iteration n yields a V,, that is sufficiently close to
Vy;—1. Our procedure uses a grid that is defined on a transformation of (k, C_) that maps
A into a rectangle. We linearly interpolate between grid points.

The code was programmed in Matlab and executed with parallel ‘parfor” commands,
to improve speed and allow denser grids, on a cluster of 64-128 workers. Grid density
was adjusted until no noticeable difference in the optimal paths were observed.

C Proof of Proposition 4

The problem in continuous time is

max /000 e P (u(cy) + yU(Cy)) dt

s.t.cy +Cr + g+ i(t = f(kt) — Ok

'_9 f(kt)_ G
Ct_(T(kt ) kt p .

Let p; and g; denote the costates corresponding respectively to the states k; and C;. The
FOCs are,

, 1¢
Uy = pict +qt;k—t

= op = il (k) = 0) + et — ae (k) = 9)

s . / . 1 f(kf)_ _ﬂ_
gt = pqe — yU'(C) ‘71‘0_( R P)
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In addition to the FOCs, we require the two transversality conditions to hold,
lime f'q;C; =0 and lime *'pik; = 0. (25)
t—o0 t—roo

Denote the 4-dimensional state of this dynamic system by x; and its unique positive
steady state (the zero-tax steady state) by x* = (k*,C*,p*,q*). The linearized system
is,

% = J(x — x%), (26)

where the 4 X 4 matrix | can be written as

A B
]:(C PI—A’)’

p+z —1—-2z/p

pz/o —z/0 !

B _1/u// _p/(o_u//) B ,
B = ( —p/(au”) —p2/(02u”) ) =B

c— Zzu”+Pq*(1_1/U)f//—'Yu/f// —Zq/(U’k*) _C/
- —Zq/(O'k*) z2u”/p2 =L,

with 2 x 2 matrices

A

where z = pg*/(ck*u’"). Despite |'s somewhat cumbersome form, its determinant sim-
plifies to

"y o2

det] = (1—0) fu,, L (27)
>0

its characteristic polynomial is, det(] — AI) = A* — ;A3 + A% — c3A + ¢4, with ¢ =

trace(]) = 20, c2 = P>+ pz(1 —0) /o — f"u'/u", ¢z = p(ca — p?) = p*z(1 -0 /0 —

of"u'/u"”, ¢y = det], and that its eigenvalues can be written as,

Ay = gi [(g)z—gi% (52—4det])1/2r/2, (28)

with 6 = ¢ — p? = pz(1 — ) /o — f"u’ /u". Substituting in the formulas of z and g*, 6 can
also be written as,

5 0 u — ')’u/ f//bl/

o ukr u

In the remainder, let eigenvalues be numbered as follows: A; has 4+, A has +—, A3 has
—+, and A4 has ——. For convenience, define y* by v* = ' /U’.

Note that in general, a solution x; to the linearized FOCs (26) can load on all four
eigenvalues. However, taking the two transversality conditions into account, restricts the
system to only load on eigenvalues with Re(A;) < p/2. In Lemma 12 below, we show
that this means the solution loads on eigenvalues A3 and A4. Let Q be an invertible matrix

(29)
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such that QJQ~! = diag(Ay, ..., A4). Write

_( Qu Qn
Q= ( Qn Q2 )

Thus, the initial values for the two multipliers, pp and o, need to satisfy

Qll(é%)—i-Qu(Zg):O.

This completely specifies the trajectory of state x; in the linearized system.
The following lemma proves properties about |’s eigenvalues {A;}, in particular about
A3 and A4, which are the relevant eigenvalues for the local dynamics of the state.

Lemma 12. The eigenvalues in (28) can be shown to satisfy the following properties.

(a) It is always the case that

ReAy > Redy > p/2 > ReAy > ReAs.

(b) If o > 1, then det ] < 0, implying that
ReAdy = A1 > p > Redy > p/2 > ReAdy > 0 > A3 = ReAs. (30)
In particular, there is a exactly one negative eigenvalue. The system is saddle-path stable.
(c) Ifo <landy <" thendet] > 0and § <0, implying that
ReA1,ReAy > p > 0 > ReAy, ReAs. (31)

In particular, there exist exactly two eigenvalues with negative real part. The system is
locally stable.

(d) If c < 1and vy > o, the system may either be locally stable, or locally unstable (all
eigenvalues having positive real parts).

Proof. We follow the convention that the square root of a complex number 7 is defined as
the unique number b that satisfies b?> = a and has nonnegative real part (if Re(b) = 0 we also
require Im(b) > 0). Hence, the set of all square roots of a is given by {+b}. We prove the
results in turn.

(a) First, observe the following fact: Given a real number x and a complex number
b with nonnegative real part, it holds that Re (\/x + b) > Re (x/x — b> 47 From

47To prove this, let b denote the complex conjugate of b and note that Re (\/x + b) is monotonic in the

real number x. Then, Re (\/m) = Re (\/m) = Re ( x—b+ (b+ b)) > Re (m> where

b+ b = 2Re(b) > 0 and monotonicity are used.
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there, it is straightforward to see that ReA; > ReA; and ReAy > ReAj. Finally
ReA; > p/2 > ReAy holds according to our convention of square roots having
nonnegative real parts.

(b) The negativity of det ] follows immediately from (27). This implies

—g+% <(52—4det]>1/2 >0 > —g — % (52 —4det1)1/2,

and so (30) holds, using monotonicity of Rey/x for real numbers x.

(c) The signs of det ] and J follow immediately from (27) and (29). In this case, —6/2 &
1/2Re (52 — 4det])"/* > 0 proving (31).

(d) This is a simple consequence of the fact that if det ] > 0, then either

—5/241/2Re (82 — 4det])"/* > 0, or —5/2 & 1/2Re (6% — 4det])"/* < 0, where
under the latter condition the system is locally unstable. O
D Proof of Proposition 5
First, we define the following object,
dWx =T,/ ! P
wWwr = dk = Z ﬁ u (CT/)(F (kT/) — RT/) H S]/SRS ,
+1 T>74+1 s=T1+1

which corresponds to the welfare response, measured in units of period 7 utility, of a
change in savings by an infinitesimal unit between periods T and 7 + 1. Now consider
the effect of a one-time change in the capital tax, effectively changing R; to R; 4+ dR in
period t. This has three types of effects on total welfare: It changes savings behavior in
all periods T < t through the effect of R; on S;. It changes capitalists” income in period
t through the effect of Ry on R:k;. And finally it changes workers’ income in period ¢
directly through the effect of Ry on F(k;) — R¢ky. Summing up these three effects, one
obtains a total effect of

t—1
dW = Z IBT_th ST,thR
=0 ) R .
change in savings in period T<t
+ Wt S[/tkth —M/(Ct) kth
~—— S~
change in savings in period change in workers’ income in period ¢

The total effect needs to net out to zero along the optimal path, that is,

1 t—1 B
wiSpe —u'(cr) = T Y B weSe g, (32)
=0
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Note that by optimization over the initial interest rate Ry, we find the condition
CUOSI’O - u/(Co)ko =0. (33)

Due to the recursive nature of (32), if wr > 0 for T < ¢, then

1 t—1
wWiSr—u'(c}) = —— ™t we S.r > 0.
¢St (ct) K T;)ﬁ g TR =
>0 <0

In particular, using the initial condition (33), this proves by induction that
wiSpp—u'(ct) >0 forallt > 0. (34)

Now suppose the economy were converging to the zero tax steady state, that is, A; =
F'(k{) =Ry — 0, ¢t — ¢ > 0, and S;¢Ry — S;R > 0. In that case, for large 7, we can
approximate w; by

e =pu'(c) Y Av(pSIR)THY.

7>1+1

Note that we did not approximate A to zero, but only quantities with a nonzero limit.
Lemma 13 below proves that because @, exists for all T, and A, — 0 it must be that
@r — 0 and so wr — 0. Observe, however, that wy > u'(c) for sufficiently large T’ by
(34) and the assumed convergence to the zero tax steady state. This is a contradiction.
Thus the economy cannot converge to the zero tax steady state.

Lemma 13. Let Ay — 0 be a real-valued sequence. Define xp = Y7 AT for b > 0 and
assume xt exists for all T. Then, x — 0as T — oo.

Proof. We distinguish three cases.

e Case1: b < 1. In that case, for any € > 0 we can find T > 0 such that |A¢| < e(1 — )
for all t > T. But this implies that |x/| < € for all T' > T, establishing the result.

e Case 2: b > 1. By the recursive nature of xt we can express it as

—k 4
XT1k = be — AT+k—€b .

k
=0

Here, x7b= % — 0 as k — oo, so the first term vanishes. Write the absolute value of
the second term as,

|k/2] , k .
| Y Arak—eb™ 4+ Y, A
=0 0=1k/2)+1

(.

s

<b/(b-1) maXs>T4k—|k/2] |As| <(maxe>t \As\\),b*[k/zJ /(b—1)

which therefore converges to zero as well.
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e Case 3: b = 1. This case follows because ) ; A; is a convergent series, so it must
necessarily be the case that the sequence of truncated series } ;-1 A; converges to
Zero. [

E Proof of Proposition 6
The conditions for optimality are
Vi = W (Reay — api1, Viga)
We (Rear — a1, Viy1) = ReyaWo (Rear — a1, Vipr) We (Readr41 — aes2, Viga) -

The first equation is the recursion for utility V; and the second equation is the Euler equa-
tion. Linearizing these equations, around the steady state (denoted without time sub-
scripts)

Wy dViy1 = —WRda; + W.da; 1 + dVy — WeadRy (35)

and

(RWCWUC — RWe¢e — ch) dﬂt—H + Wee dﬂt+2 - (vac + cha) th-i—l
+ (ch - RWCWZ)U) th+1 - ch th—i—Z
= (R®W,Wye — WeeR) day + (RW Wyt — Weea) dR;. (36)
Where we have used that RW, = 1 at a steady state. All derivatives are evaluated at

the steady state ((R—1)4a, V). We solve (35) and (36) by the method of undetermined
coefficients, guessing

dagr = Aday+ ) 05 ARy (37a)
s=0
AV, = WeRday + (Wea) Y - W3 dR; . (37b)
s=0

The form of equation (37a) is what is required by the Envelope condition. We are left to
find A and the sequence {6;}.

Replacing the guesses (37a) and (37b) into (36) we obtain an expression featuring
day, dayyq, dagyo and dRyys for s = 0,1,... Setting the coefficient on da; to zero gives a
quadratic

2. (2RWCWUC — Wee (14 R) — RPW2W,,

A+R=0 38
ch - WUCWCR > ( )

for A. Note that in the additive separable case (when W(c, V) linear) A = 1 is a solution.
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Setting the coefficient on dR; to zero gives

(RWWye — Wee) a
2RWWye — Wee (14 R) 4 (Wee — RWW,) A — RZW2 W,
A (RWWye — Wee) a a
T —R(Wee —WoeWeR) ~ "R

0o =

Similarly for dR;; (after various simplifications)

Wg + <WWCCC —I'_ R*ch'py - WC'U) an

0, = WyAB + AW,
’ ’ WZ)C - %WCC

for dRss (after many simplifications)

ch + 1— W va
Woe — 72 Wee

7

95 - WUXGS—l +X (WU)S (]. - Wv)

fors =2,3,...
The result follows immediately from this expression. If Wy, + 1= W Wyy = 0thenA =1
and 6; = W,0;_1. Otherwise, the second term is nonzero and is geometric in W;,.

F Derivation of Implementability Condition
The agent is subject to the budget constraint

¢t +app1 < wny + Reay

and the No Ponzi condition 1”{*}_ % — 0. The intratemporal optimality condition is
1482 t
Uy (ct,nt) = wile(ce, ny)
and the intertemporal Euler equation is

Wu(Uy, Vig1)Uc(ct, ne) = Repa Wy (U, Vi) Wi (Upyr, Vi) Uc(6ha1, e 41).-

Substituting these into the budget constraint and using that ¢ t“ — 0 we obtain the
implementability condition.
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G Proof of Proposition 7

.. I(BW,
Defining A; = aVaT Yoo BeWru (U cer + Urunt) and By = 312 M(ut,cct + Uy uny),
and using the current value multipliers v; and Ay, the first order condltlons are

1+1v9=0

Ay
—Vt+Vt+1+]/lﬁ ; =0
_l’_

_VtWt,Uut,c + ,th,U (ut,c + ut,ccct + ut,ncnt) + ,MEut,c = A

B
,u_tut,n = Aifut
Bt

—At + A Wy frpe1 = 0.

VW uUp e — pWe g (Upn + Upenct + Upunhiy) —

If the allocation converges to a steady state, then A;/Bs+1 — A and B;/pB+ — B so

—Vt +Vt+1 —|—}4A =0

U Uy B 1
- 1 B
V¢ +‘H ( + uc + uC Tl) +,'1/qu twuut,c
ucht Unnn B fl/l
- 1 =
Vt”( Tu, un)“‘wu Wurlls,

—At A+ AaBfie = 0,
where B = Wy. Note that

A
Bfi—1=-—"—1= —W”u‘fyA. (39)
At At

We now argue that this implies that ff; = 1 at any steady state. If A = 0 or y = 0 the
result is immediate from the last equation. If instead A # 0 and u # 0 then —v; + v441 +
#A = 0 implies that v; and hence A; diverges to 4-co or —co. The result then follows since
Bfk —1 = — WUUC —=<yA — 0. The case with y = 0 implies that the entire solution is first
best, which is umnterestmg The cases with A = 0 and A # 0 are discussed below.

Combining

fn L Uecc Upe Uenc Upnn
A = _

t Wu un + n ’

uc uC B un ui’l

where 7! is the steady state tax on labor. By normality of consumption and labor UULEC +

Uy Ucnc Unnl’l 0.
u " u, <
Now d1st1ngu1sh three cases according to the asymptotic behavior of v;:

e Case A: 1v; — 400, then, A} — —oo and thus % = 0. This requires A < 0.

e Case B: vy = v € IR, then: A; — A. This requires A < 0. There are two subcases to
consider. If A # 0 then = # 0 is possible. If instead A = 0, then & = 0. However,
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the first order conditions also imply that y = 0. Thus, the economy was first best to
start with.

e Case C: vy — —oo. Then, A; — o0 and we converge to a first best with L = 0. This
case requires A > 0.

What are the condition for Case B with Tt

definition, we have

> 0? We require A = 0. Starting from the

a o
Z BiWi ir (Ut ccr + Uy uiy)

A =
t a‘/t—}—l +=0

= BWyuv (Ut cer + Upuny) + BtWevy ) ,B;Lllﬁsws,u(ut,cCt + Uy ny)
s=t+1

/
= B:Wiuv (Ugccr + Upung) + BiWryv Wi, utty 1 Rep1ae41-

and so

Ay Wi uv Wi vy
= ———(Upcct + Uppng) + ———Wip1 U1, Rep1041
Bry1 Wiy Wy

— A= %(ut,cct + ut,nnt) + %Wllut,cRa/

where fx = Wyxand X = U, V.
Note that Y o> Bt t+sWirs u(Ugccr + U un) = Wi yUycReay, so at a steady state U.c +
Uyn = (1 — B) Uc.Ra. Hence,

p p
Wu ) U:Ra _, U.Ra
— (g, + — B(V)—
(ot b ) 507 =P V50
This implies that either a = 0 or B/(V) = 0.
H Proof of Proposition 8
The problem under scrutiny in this proof is
V(ko, bo) = max/ e P (u(cr) —v(ny)), (40a)
0
¢z —La, (40b)
ct + gt + ki = f(ki,ny) — ks, (40c)
/ e ' (' (cr)er — 0 (ne)ny) > 1! (co) (ko + bo), (40d)
0
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where we parametrize the isoelastic disutility from labor by v(n) = ngan. The value

function is decreasing in by. Problem (40a) has the following necessary first order condi-
tions

D0 (ny) = Atfulke, ny), (41a)
Nt — P = mg + Ap = @)1 (cy), (41b)
Av=(p— 1), (41c)

no = —pocy " (ko + bo), (41d)

where we defined @)Y = 1+ u(1+¢) and ®}' = 1+ u(1 — o) and denoted by 7} the
before-tax interest rate fy — 6. Here, u is the multiplier on the IC constraint (40d), A; is
the multiplier of the resource constraint (40c), and #; denotes the costate of consumption
cr. If 5y < 0, then constraint (40b) is binding. Further, if at T < co we have ; = 0 for
t € [T, T + ¢) then we must have

nr=0 and A= ®WVu'(cT).
Otherwise, the conditions for optimality of T = co are satistied provided

e <0 forallt, (42)
e Pyics — 0. (43)

We first prove a helpful lemma relating the occurrence of T = oo to the multiplier on the
IC constraint, . This lemma will become important below.

Lemma 14. If y > 1/(0c — 1) then T = oo. Thus, if T < oo, y is bounded from above by
1/(c—1).

Proof. If u > 1/(c — 1) then ®}¥ < 0. Suppose T were finite. Using the laws of motion
for A and 7, (41b) and (41c) it is straightforward to show that this implies that

ar=0 and i =r*®u'(cr) > 0.

In particular # can only reach 0 from above, so T would have to be zero. But from (41d)
we see that 79 < 0. Therefore, 77; cannot be hitting zero at all, and T = co. ]

It is convenient to characterize a restricted problem, where T is required to be infinite.
Effectively, this implies that constraint (40b) holds with equality throughout and the path
of c; is entirely characterized by cy. First define

¥(co, ko) = min/e_Ptv(nt)
s.t. Ct + gt + kt S f(kt, Tlt) — 5kf

—o/0t
¢t = coe P/,
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Notice that 7 is continuous, strictly increasing in c¢p, and @ is convex in cp. As ¢y goes
to zero, @ remains finite and for large values of ¢y, @ tends to infinity. Next, define the
restricted problem

Voo (ko, bp) = max u(co)% —9(co, ko) (44a)
co

- "p (1+)8(co, ko) > ' (co) (Ko + bo).- (44b)

By definition, Voo < V, but whenever T = oo is optimal, Voo = V. We now show the
following result about the restricted problem.

Lemma 15. There exists a level of initial debt b such that a solution to the restricted planner’s
problem exists for all by < b. The restricted value function is differentiable in a neighborhood of b
and becomes infinitely steep at b, V), (b) — —ocoas by 7 b.

Proof. Denote the multiplier on the IC constraint (44b) by ji. Define
b= max COE — (1 +2)cdd(co, ko) — ko. (45)

Using the convexity and the limit properties of ¢ that were derived above, we see that
c§9(co, ko) is flat in ¢y around 0 and rises faster than cg for large co. In particular, this
implies that the max in (45) is attained for some interior cj. Also, for any by < b one can
tind a value for ¢ satisfying the IC constraint (44b). In particular the planner’s problem
(40a) has a solution for all by < b. Note that around ¢}, the objective function is strictly
increasing because for ¢y = ¢,

1N C /
u(CO)E Ty = 1+€ u'(c ) +0cy 15 > 0.

Therefore, for by in a neighborhood of b, the larger of the two solutions for ¢y is picked
and the optimal choice of ¢y, c(b), is continuous, strictly decreasing, and _differentiablg.
Therefore, the value function Vi (D) is differentiable in a neighborhood (b1, b) with b; < b.

Now write the Lagrangian for problem (44a) with by < b, letting ji be the multiplier
on (44b) in problem (44a),

L(co, ) = u(Co)% — B(co, ko) + ficy” (COE — (14 &)cqd(co, ko) — (ko + bo)) :

The necessary first order condition for ¢ is then,
u/(C())Z — Tey + ‘Ile_Ui —co— (1+ C) 9(co, ko) | =0,
0 0 0 dco 0

which, as by — band ¢y — ¢, implies that ji — oo because d%) <pC0 — (14 Q)i (co,ko)) —
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0 but v’ (co)% — ¢, 7> 0.8 When changing variables from ¢y to ug = ¢j 7/(1 — ) in
problem (44a), it is evident that the problem is convex. Therefore, by Berge’s Maximum
Theorem, there is a unique maximizer cp and a unique multiplier ji, for every by < b.
Therefore, the value function is continuously differentiable in by with V{,(b) = —jfic,?. In
particular, as b — b, co(b) — ¢fj > 0, and so

lim V/, (b) = —c. O
b—b
Lemma 15 provides a characterization of the problem conditional on T = co. As a
corollary, for b < b the constraint set of the original problem (40a) is nonempty as well.
To show that there is an interval [b, b] with b < b for which T = co is optimal, or equiv-
alently V = Vq, assume to the contrary that there exists a sequence (b, ) approaching b for
which T < oo is optimal. In particular, V(b) > Vi (b) for all b = b, along the sequence.
Because V and Vi are both continuous functions, the set {V # Vi} = {T < oo} has
nonzero measure in any neighborhood (by,b) of b. For b = b, we prove that the value
functions need to coincide in the following lemma.

Lemma 16. The maximum b = b is only feasible if T = oco. Hence, V (b) = Vo (D).

Proof. Suppose b = b was feasible for T < co. Then, the process for consumption at the
optimum is governed by*’

¢t = —gct fort < T
ée=ci(rf —p)/oc fort>T,

with a particular initial consumption value cyg. Denote by ¢; the path which starts at the
same initial consumption &y = ¢ but keeps falling at rate —p/c forever. Similarly, define
by 7i; the path for labor which keeps k; fixed but satisfies the resource constraint with
consumption equal to &. Clearly, 71y < n; for all t. Because the right hand side of (40d) is
strictly decreasing in ¢; and for t > 0, this strictly relaxes the IC constraint. Hence,

/eptégg - /eptv(ﬁt) > ¢y (ko + b).
Notice, however, that for T = co, we can do even better by optimizing over labor (not
necessarily keeping capital constant), leading to
o

@};O‘E — (14 0)9(c0, ko) > &5 (ko + b).

By definition of b this is a contradiction. Therefore, an initial level of public debt of b
necessarily requires T = oo. O

48This holds because if u’ (co)§ — ey = O at cj then, {7, + (14 C)oey 15 = 0 at ¢}, contradicting the fact
that 7 is positive and strictly increasing.
4Note that r; > 0 by standard Inada conditions for v and (41a).

60



Together with Lemma 15, this implies that V (b) must become infinitely steep as b — b.
We would like to use the Envelope Theorem now to link the local behavior of V to what
we know about the y multiplier from Lemma 14. In order to be able to do so, notice that
the value function V(D) is actually the value of a convex problem. To see this, regard the
problem in terms of u; = u(c;) and vy = v(ny),

V(bg) = max /OO e P (uy —vy), (46)
0

ut, vk

th Z (0’— 1)But,
ag
(1=0)u) ™Dy gk = f (kt; (1+ g)vt)l/(”@) — ok;,

/0"" e P (1= 0)ur — (14 8)or) = (1= )ur)” " (ko + bo).

Therefore, there is a globally unique maximizer and a unique multiplier y on the IC con-
straint. By Berge’s Maximum Theorem, the multiplier y and the optimal choice of ug (and
thus cg) vary continuously in by. In particular, this implies that V' is continuously differ-
entiable in by with derivative V'(b) = —puc, . By optimality of T < co and Lemma 14, the
multiplier y is bounded from above by 1/ (0 — 1) and ¢g can be uniformly bounded from
below by ¢, using the IC constraint, where ¢, > 0 is the smaller of the two solutions to
coo/p — (14 {)c§d(co, ko) = ko.>® Therefore,

—0

HOEEE (47)

forallb € {V # Vi}. Forb € {V = Vo} it is the case that V'(b) = V,(b) while for
b € {V # Vi } close enough to b, V'(b) < V,(b) by (47). Because {V # Vi } has nonzero
measure in any neighborhood of b, the fundamental theorem of calculus implies for b
close to b,

— b ~ ~ — b ~ ~
V(b) = V(B) + /b V! (B)db < V(B) + /b VL (B)db = Vio(b),

contradicting the optimality of T < co. Hence, there exists a neighborhood [b, b] for which
T = oo is optimal.

I Proof of Proposition 9

We proceed by solving the necessary first order conditions to problem (40a). Noting that
the problem is convex, see (46), this implies that we are characterizing the unique solution.

By demanding equal growth rates of ¢, n¢, ki, we demand that c¢;/k; = co/ko and
ny/ky = ng/ko at all times. Define ®} = 1+ u(1 —¢) and ®}' = 1+ (1 + ). Solving

S0Write the IC constraint as g(co, T) = (ko + bp). Notice that in the proof of Lemma 16 we showed that
8(:, T) can only increase as we move to T = oo, where g(co, ) = co5 — (1 + &)cjd(co, ko) is strictly concave
and g(0, c0) = 0. Therefore, the smallest ¢y allowed by the IC constraint occurs if T = co and by = 0.
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the necessary FOCs,

OV (1) = Arfulke, 1) (48)
Ct + i(t = f(kt, Tlt) — 5kt

/ e (C}_” - ”}%) = ¢y 7 (ko + bo),

and defining ¢ = (fi(1,-)) ! we find expressions for cg, 19, by and the constant interest
rate r* = fi(ko, np) — 6 and wage w* = f,,(ko, no),
« 7P
=0 _tp
* L
w' = fu (1.8 (5 +p+9))
g2+
_ L S
o =ko[f (1 (eg+o+0)) o+ (]

v 1 o, 1+¢
v ke
o pt(A+Qple TR

by = ¢

Here, it is straightforward to show that ¢g > 0 by definition of g.
The process for #; can be inferred from its law of motion, 7 — py; = 17t§ + Ay —
®Vu'(cs), and the transversality condition, e !¢y — 0,

p+(1+Q)p/o

(0

This leaves us with three conditions for Ay, 179, 11,

)L() .- W —
= — + —®, ¢’
o U+ p/o om0
Mo = —yaca“l(ko + bp)

*
v 1§ = Aow™,

and the inequality @} < 0 ensuring that ; < 0 for all . Define 1 — 7§ = ngcg/ w*. Then,
u can be determined as

o+
o ((1—1)wng/co—1) — (1 +7)

l,{:

Note that 7§ is a decreasing function of ko, with 7, — 1as kg — 0. In particular u varies
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with kg according to°!

u<0 for ko<k
w>1/(c—1) for ko€ (kK|
u<1/(c—1) for ko> k.

This proves that for kg € (k, k], there exists a debt level by (ko) for which the quantities
ct, 1y, ky all fall to zero at equal rate —p/c and all the necessary optimality conditions of
the problem are satisfied.

J Proof of Proposition 10

First, we show that the planner’s problem is equivalent to (15). Then we show that the
functions ¢ and T are increasing, have 1(0) = 7(0) = 0 and bounded derivatives.

The planner’s problem in this linear economy can be written using a present value
resource constraint, that is,

max/e_pt (u(ct) —o(ny)) (49)
1
s.t.¢ > CE_((l —T)r* —p)
/e_r*t(ct —w'ng) + G =ko

[t =ute) = (1 2o(m)] = o' (co)ao

where G = [;° e~""tg; is the present value of government expenses, kg is the initial capital
stock, ap is the representative agent’s initial asset position, and per-period utility from
consumption and disutility from work are given by u(c;) = ¢} 7/(1 — ) and v(n;) =
n}%/ (14 ¢). Note that we assumed ¢ > 1. The FOCs for labor imply that given n,

np = nge” " PI/C, (50)

Part (a) and (b) in Claim 3.2 imply the existence of T € [0, 00| such thatt; = Tfort < T
and zero thereafter. In particular, the after-tax (net) interest rate willbe ry = (1 — T)r* =7
fort < T and r; = r* for t > T. Then, by the representative agent’s Euler equation, the
path for consumption is determined by

cr = coe*pT_?Hr*v_?(t*Tﬁ. (51)

Sn particular, # has a pole at Tgpole =o(w*ng/co— 1)/ (14 {+ ocw*ng/co). We define k to be the value
of ko corresponding to Tglp ole- Notice that one can show that Tép ole > — (0 + ), implying that the pole is
always to the left of y = 0.
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Substituting equations (50) and (51) into (49), the planner’s problem simplifies to,

Cl—(T 1+§
max 1(T) 2~ gt

T,co,
1
s.t. Yo (T )—CQ+G—k0+lIJ3w o

(52)

1 (T)eg 7 — pang ™ = x"cg"a,

where §y(T) = & (1 =& 4T) 4047, 4o(T) = & (1—e ) e 4T, gy = ¢ (4 72)
1

and)(:%fikg,x = =r" +U,7(:r +p— Notice that ¥ > x* > x.
Now normalize consumption and labor

c= lpl(T)l/ (1-0) c /X n= llj3 1+§ / (X*)(l—ﬂ)/(l-l-g)

and define an efficiency cost ¥(T) = ¢ (T)yy(T)V/ (D — 1, a capital levy ©(T) =1 —

¢/ (1+7)

¥1(T)~9/(@=1), and the present value of wage income wn = w “P3 n. Then, we can

rewrite problem (52) as
max u(c) —o(n)
T,cn
st. 1+ ¢(T))c+G =ko+ wn

o(n)
2 (0) n=(1-1(T))ay,
which is what we set out to show. Notice that ¢1 (0) = ¢»(0) = 1 and so ¥(0) = 7(0) = 0.

Further, given our assumption that ¢ > 1, 1(T) and 7(T) are increasing in T. To show
that ¢/ (T) > 0, notice that, after some algebra,

C_

L) 20 e 5o ) (),

which is true for any T > 0 because § > x. Therefore, ¢'(T) > 0, with strict inequality
for T > 0, implying that {(T) is strictly increasing in T.
Now consider the ratio of derivatives,

‘Pl(T) 1 (1+0)/(0— 1)( ¥y P )
= lp’vbl (0= 1)%%“‘1

Notice that ¥1(T) € [1,x*/x] and y»(T) € [x*/%, 1], so both are bounded away from
infinity and zero. Further, the ratio ¢, /4] is also bounded away from infinity, /4] =

— L= 0T € [-1/(0 —1),0], implying that ¢/ (T) /7'(T) is bounded away from co.
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K Proof of Proposition 12

We proceed as in the first part of the proof of Proposition 8. As in Section 2, labor supply

is inelastic at n; = 1. The problem is then

max/ e Pu(cy),
0
Ci’ 2 _Bctl
0- .
ct + Ct + ke = f(kt) — Okt
/ et/ (C)Cy > 1 (Co) (o + bo).
0

Problem (53a) has the following necessary first order conditions

N —pne = 77t§_ + A —@VU(Cy),
A= (o — f'(ke) +6)As,
Mo = —‘I/lO'CO_U_l(kO + bo),
u'(c) = My

(53a)

(53b)
(53¢)
(53d)

(54a)

(54b)
(54¢)
(54d)

where we defined ®}¥ = u(1+ ) and ®}Y = (1 — ¢). Here, u is the multiplier on the
IC constraint (53d), A; is the multiplier of the resource constraint (53c), and 7; denotes the

costate of capitalists’ consumption C;. If 77; < 0, then constraint (53b) is binding.

Suppose T < oo, in which case we have y1r = 0. Using the laws of motion for A and 7,

(54a) and (54b), it is straightforward to show that
#r=0 and ijr =r*®U'(Cr) > 0.

In particular 77 can only reach 0 from above. A contradiction.
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