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1 Introduction

A momentum strategy is a bet on past returns predicting the cross-section of future returns,

typically implemented by buying past winners and selling past losers. Momentum is pervasive:

the academic literature documents the efficacy of momentum strategies across multiple time

periods, many markets, and in numerous asset classes.1

However, the strong positive average returns and Sharpe ratios of momentum strategies are

punctuated with occasional “crashes.” Like the returns to the carry trade in currencies (e.g.,

Brunnermeier, Nagel, and Pedersen (2008)), momentum returns are negatively skewed, and

the negative returns can be pronounced and persistent. In our 1927 to 2013 U.S. equity sample,

the two worst months for a momentum strategy that buys the top decile of past 12-month

winners and shorts the bottom decile of losers are consecutive: July and August of 1932. Over

this short period, the past-loser decile portfolio returned 232%, while the past-winner decile

portfolio had a gain of only 32%. In a more recent crash, over the three-month period from

March to May of 2009, the past-loser decile rose by 163%, while the decile portfolio of past

winners gained only 8%.

We investigate the impact and potential predictability of these momentum crashes, which

appear to be a key and robust feature of momentum strategies. We find that crashes tend to

occur in times of market stress, when the market has fallen and ex-ante measures of volatility

are high, coupled with an abrupt rise in contemporaneous market returns.

Our result is consistent with that of Cooper, Gutierrez, and Hameed (2004) and Stivers and

Sun (2010), who find, respectively, that the momentum premium falls when the past three-

year market return has been negative and that the momentum premium is low when market

1Momentum strategies were first documented in U.S. common stock returns from 1965 to 1989 by Jegadeesh
and Titman (1993) and Asness (1994), by sorting firms on the basis of three to 12 month past returns.
Subsequently, Jegadeesh and Titman (2001) show the continuing efficacy of US equity momentum portfolios
in common stock returns in the 1990 to 1998 period. Israel and Moskowitz (2013) show the robustness of
momentum prior to and after these studies from 1927 to 1965 and from 1990 to 2012. There is evidence
of momentum going back to the Victorian age from Chabot, Remy, and Jagannathan (2009) and evidence
from 1801 to 2012 from Geczy and Samonov (2013) in what the authors call “the world’s longest backtest.”
Moskowitz and Grinblatt (1999) find momentum in industry portfolios. Rouwenhorst (1998) and Rouwenhorst
(1999) finds momentum in developed and emerging equity markets, respectively. Asness, Liew, and Stevens
(1997) find momentum in country indices. Okunev and White (2003) find momentum in currencies; Erb and
Harvey (2006) in commodities; Moskowitz, Ooi, and Pedersen (2012) in exchange traded futures contracts;
and Asness, Moskowitz, and Pedersen (2013), who integrate this evidence across markets and asset classes,
find momentum in bonds as well.
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volatility is high. Cooper, Gutierrez, and Hameed (2004) offer a behavioral explanation for

these facts that may also be consistent with momentum performing particularly poorly during

market rebounds if those are also times when assets become more mispriced. However, we

investigate another source for these crashes by examining conditional risk measures.

In particular, the patterns we find are suggestive of the changing beta of the momentum

portfolio partly driving the momentum crashes. The time variation in betas of return sorted

portfolios was first documented by Kothari and Shanken (1992), who argue that, by their

nature, past-return sorted portfolios will have significant time-varying exposure to systematic

factors. Because momentum strategies are long/overweight (short/underweight) past winners

(losers), they will have positive loadings on factors which have had a positive realization over

the formation period of the momentum strategy.

Grundy and Martin (2001) apply Kothari and Shanken’s insights to price momentum strate-

gies. Intuitively, the result is straightforward, if not often appreciated: when the market has

fallen significantly over the momentum formation period – in our case from 12 months ago to

one month ago – there is a good chance that the firms that fell in tandem with the market

were and are high beta firms, and those that performed the best were low beta firms. Thus,

following market declines, the momentum portfolio is likely to be long low-beta stocks (the

past winners), and short high-beta stocks (the past losers). We verify empirically that there is

dramatic time variation in the betas of momentum portfolios. We find that, following major

market declines, betas for the past-loser decile can rise above 3, and fall below 0.5 for past

winners. Hence, when the market rebounds quickly, momentum strategies will crash because

they have a conditionally large negative beta.

Grundy and Martin (2001) argue that performance of momentum strategies is dramatically

improved, particularly in the pre-WWII era, by dynamically hedging market and size risk.

However, their hedged portfolio is constructed based on forward-looking betas, and is therefore

not an implementable strategy. We show that this results in a strong bias in estimated

returns, and that a hedging strategy based on ex-ante betas does not exhibit the performance

improvement noted in Grundy and Martin (2001).

The source of the bias is a striking correlation of the loser-portfolio beta with the return on

the market. Using a Henriksson and Merton (1981) specification, we calculate up- and down-

betas for the momentum portfolios and show that, in a bear market, a momentum portfolio’s
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up-market beta is more than double its down-market beta (−1.51 versus −0.70 with a t-stat

of the difference = 4.5). Outside of bear markets, there is no statistically reliable difference

in betas.

More detailed analysis reveals that most of the up- versus down-beta asymmetry in bear

markets is driven by the past losers. This pattern in dynamic betas of the loser portfolio

implies that momentum strategies in bear markets behave like written call options on the

market – when the market falls, they gain a little, but when the market rises they lose a lot.

Consistent with the written call option-like behavior of the momentum strategy in bear mar-

kets, we show that time variation in the momentum premium is related to time-varying ex-

posure to volatility risk. Using VIX-imputed variance-swap returns, we find that the payoffs

to momentum strategies have a strong negative exposure to innovations in market variance

in bear markets, but not in “normal” markets. However, we also show that hedging out this

time varying exposure to market variance (by buying S&P variance swaps in bear markets,

for instance) does not restore the profitability of momentum in bear markets. Hence, time

varying exposure to volatility risk is only a partial explanation.

Using the insights from the relationship between momentum payoffs and volatility, and the fact

that the momentum strategy volatility is itself predictable and distinct from the predictability

in its mean return, we design an optimal dynamic momentum strategy which is levered up or

down over time so as to maximize the unconditional Sharpe ratio of the portfolio. We first show

theoretically that, to maximize the unconditional Sharpe ratio, a dynamic strategy should

scale the weights, at each point in time, so that the dynamic strategy’s conditional volatility

is proportional to the conditional Sharpe ratio of the strategy. Then, using the insights from

our analysis on the forecastability of both the momentum premium and momentum volatility,

we estimate these conditional moments to generate the dynamic weights.

We find that the optimal dynamic strategy significantly outperforms the standard static mo-

mentum strategy, more than doubling its Sharpe ratio and delivering significant positive alpha

relative to the market, Fama and French factors, the static momentum portfolio and condi-

tional versions of all of these models that allow betas to vary in the crash states. In addition,

the dynamic momentum strategy also significantly outperforms constant volatility momen-

tum strategies suggested in the literature (e.g., Barroso and Santa-Clara (2012)), producing

positive alpha relative to the constant volatility strategy and capturing the constant volatil-

3



ity strategy’s returns in spanning tests. The dynamic strategy not only helps smooth the

volatility of momentum portfolios, as does the constant volatility approach, but in addition

also exploits the strong forecastability of the momentum premium, which we uncover in our

analysis of the option-like payoffs of losers in bear markets.

Given the paucity of momentum crashes and the pernicious effects of data mining from an

ever-expanding search across studies (and in practice) for strategies that improve performance,

we challenge the robustness of our findings by replicating the results in different sample peri-

ods, four different equity markets, and five distinct asset classes. Across different time periods,

markets, and asset classes, we find remarkably consistent results. First, the results are robust

in every quarter-century subsample in US equities. Second, we show that momentum strate-

gies in all markets and asset classes suffer from crashes, which are consistently driven by the

conditional beta and option-like feature of losers. The same option-like behavior of losers in

bear markets is present in Europe, Japan, the UK, globally, and is a feature of index futures-,

commodity-, fixed income-, and currency-momentum strategies. Third, the same dynamic

momentum strategy applied in these alternative markets and asset classes is ubiquitously

successful in generating superior performance over the static and constant volatility momen-

tum strategies in each market and asset class. The additional improvement from dynamic

weighting is large enough to produce significant momentum profits even in markets where the

static momentum strategy has famously failed to yield positive profits – e.g., Japan. Taken

together, and applied across all markets and asset classes, a dynamic momentum strategy

delivers an annualized Sharpe ratio of 1.18, which is four times larger than that of the static

momentum strategy applied to US equities over the same period, and thus posing an even

greater challenge for rational asset pricing models (Hansen and Jagannathan 1991).

Finally, we consider several possible explanations for the option-like behavior of momentum

payoffs, particularly for losers. For equity momentum strategies, one possibility is that the

optionality arises because a share of common stock is a call option on the underlying firm’s

assets when there is debt in the capital structure (Merton 1974). Particularly in distressed

periods where this option-like behavior is manifested, the underlying firm values among past

losers have generally suffered severely, and are therefore potentially much closer to a level

where the option convexity is strong. The past winners, in contrast, would not have suffered

the same losses, and may still be “in-the-money.” While this explanation seems to have merit

for equity momentum portfolios, this hypothesis does not seem applicable for index future,

commodity, fixed income, and currency momentum, which also exhibit strong option-like
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behavior. In the conclusion, we briefly discuss a behaviorally motivated explanation for these

option-like features that could apply to all asset classes, but a fuller understanding of these

convex payoffs is an open area for future research.

The layout of the paper is as follows: Section 2 describes the data and portfolio construction

and dissects momentum crashes in US equities. Section 3 measures the conditional betas and

option-like payoffs of losers and assesses to what extent these crashes are predictable based

on these insights. Section 4 examines the performance of an optimal dynamic strategy based

on our findings, and whether its performance can be explained by dynamic loadings on other

known factors or other momentum strategies proposed in the literature. Section 5 examines

the robustness of our findings in different time periods, international equity markets, and

other asset classes. Section 6 concludes by speculating about the sources of the premia we

observe and discusses areas for future research.

2 US Equity Momentum

In this section, we present the results of our analysis of momentum in US common stocks over

the 1927 to 2013 time period. We begin with the data description and portfolio construction.

2.1 US Equity Data and Momentum Portfolio Construction

Our principal data source is the Center for Research in Security Prices (CRSP). We construct

monthly and daily momentum decile portfolios, where both sets of portfolios are rebalanced

at the end of each month. The universe starts with all firms listed on NYSE, AMEX or

NASDAQ as of the formation date, using only the returns of common shares (with CRSP

sharecode of 10 or 11). We require that a firm have a valid share price and number of shares

as of the formation date, and that there be a minimum of eight monthly returns over the

past 11 months, skipping the most recent month, which is our formation period. Following

convention and CRSP availability, all prices are closing prices, and all returns are from close

to close.

To form the momentum portfolios, we first rank stocks based on their cumulative returns

from 12 months before to one month before the formation date (e.g., t − 12 to t − 2), where,
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Figure 1: Winners and Losers, 1927-2013

Plotted are the cumulative returns for four assets: (1) the risk-free asset; (2) the CRSP value-weighted index;
(3) the bottom decile “past loser” portfolio; and (4) the top decile “past winner” portfolio over the full sample
period 1927:01 to 2013:03. On the right side of the plot the final dollar values for each of the four portfolios,
given a $1 investment in January 1927, are reported.

consistent with the literature (Jegadeesh and Titman (1993), Asness (1994), Fama and French

(1996)), we use a one month gap between the end of the ranking period and the start of the

holding period to avoid the short-term one-month reversals documented by Jegadeesh (1990)

and Lehmann (1990). All firms meeting the data requirements are then placed into one of ten

decile portfolios based on this ranking, where portfolio 10 represents the “Winners” (those

with the highest past returns) and portfolio 1 the “Losers,” and the value-weighted holding

period returns of the decile portfolios are computed, where portfolio membership does not

change within a month, except in the case of delisting.

The market return is the value weighted index of all listed firms in CRSP and the risk free

rate series is the one-month Treasury bill rate, both obtained from Ken French’s data library.

We convert the monthly risk-free rate series to a daily series by converting the risk-free rate

at the beginning of each month to a daily rate, and assuming that that daily rate is valid

throughout the month.
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Table 1: Momentum Portfolio Characteristics, 1927:01-2013:03

This table presents characteristics of the monthly momentum decile portfolio excess returns over the 87 year full
sample period from 1927:01-2013:03. Decile 1 represents the biggest losers and decile 10 the biggest winners,
with WML representing the zero-cost winners minus losers portfolio. The mean excess return, standard
deviation, and alpha are in percent, and annualized. The Sharpe ratio is annualized. The α, t(α), and β
are estimated from a full-period regression of each decile portfolio’s excess return on the excess CRSP-value
weighted index. For all portfolios except WML, sk(m) denotes the full-period realized skewness of the monthly
log returns (not excess) to the portfolios and sk(d) denotes the full-period realized skewness of the daily log
returns. For WML, sk is the realized skewness of log(1+rWML+rf ).

Momentum Decile Portfolios
1 2 3 4 5 6 7 8 9 10 wml Mkt

r − rf -2.5 2.9 2.9 6.4 7.1 7.1 9.2 10.4 11.3 15.3 17.9 7.7
σ 36.5 30.5 25.9 23.2 21.3 20.2 19.5 19.0 20.3 23.7 30.0 18.8
α -14.7 -7.8 -6.4 -2.1 -0.9 -0.6 1.8 3.2 3.8 7.5 22.2 0
t(α) (-6.7) (-4.7) (-5.3) (-2.1) (-1.1) (-1.0) (2.8) (4.5) (4.3) (5.1) (7.3) (0)
β 1.61 1.41 1.23 1.13 1.05 1.02 0.98 0.95 0.99 1.03 -0.58 1
SR -0.07 0.09 0.11 0.28 0.33 0.35 0.47 0.54 0.56 0.65 0.60 0.41
sk(m) 0.09 -0.05 -0.19 0.21 -0.13 -0.30 -0.55 -0.54 -0.76 -0.82 -4.70 -0.57
sk(d) 0.12 0.29 0.22 0.27 0.10 -0.10 -0.44 -0.66 -0.67 -0.61 -1.18 -0.44

2.2 Momentum Portfolio Performance

Figure 1 presents the cumulative monthly returns from 1927:01-2013:03 for investments in:

(1) the risk-free asset; (2) the market portfolio; (3) the bottom decile “past loser” portfolio;

and (4) the top decile “past winner” portfolio. On the right side of the plot, we present the

final dollar values for each of the four portfolios, given a $1 investment in January, 1927 (and,

of course, assuming no transaction costs).

Consistent with the existing literature, there is a strong momentum premium over the last

century. The winners significantly outperform the losers and by much more than equities

have outperformed Treasuries. Table 1 presents return moments for the momentum decile

portfolios over this period. The winner decile excess return averages 15.3% per year, and the

loser portfolio averages −2.5% per year. In contrast the average excess market return is 7.6%.

The Sharpe ratio of the WML portfolio is 0.71, and that of the market is 0.40. Over this

period, the beta of the WML portfolio is negative, −0.58, giving it an unconditional CAPM

alpha of 22.3% per year (t-stat = 8.5). Given the high alpha, an ex-post optimal combination

of the market and WML portfolio has a Sharpe ratio more than double that of the market.
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2.3 Momentum Crashes

Despite the fact that the momentum strategy generates substantial profits over time, since

1927 there have been a number of long periods over which momentum under-performed dra-

matically. Figure 1 highlights two momentum “crashes” in particular: June 1932 to December

1939 and more recently March 2009 to March 2013. These two periods represent the two largest

and sustained drawdown periods for the momentum strategy and are selected purposely to

illustrate the crashes we study more generally in this paper. The starting dates for these two

periods are not selected randomly: March 2009 and June 1932 are, respectively, the “market

bottoms” following the stock market decline associated with the recent financial crisis, and

with the market decline preceding the great depression.

Zeroing in on these crash periods, Figure 2 shows the cumulative daily returns to the same

set of portfolios from Figure 1 – risk-free, market, past losers, past winners – over these

subsamples. Over both of these periods, the loser portfolio strongly outperforms the winner

portfolio. From March 8, 2009 to March 28, 2013, the losers produce more than twice the

profits of the winners, which also underperform the market over this period. From June 1,

1932 to December 30, 1939 the losers outperform the winners by 50 percent.

Table 1 also shows that the winner portfolios are considerably more negatively skewed (monthly

and daily) than the loser portfolios. While the winners still outperform the losers over time,

the Sharpe ratio and alpha understate the significance of these crashes. Looking at the skew-

ness of the portfolios, winners become more negatively skewed moving to more extreme deciles.

For the top winner decile portfolio, the monthly (daily) skewness is -0.82 (-0.61), while for the

most extreme bottom decile of losers the skewness is 0.09 (0.12). The WML portfolio over

this full sample period has a monthly (daily) skewness of -4.70 (-1.18).

Table 2 presents the worst monthly returns to the WML strategy, as well as the lagged two-

year returns on the market, and the contemporaneous monthly market return. Several key

points emerge from Table 2 as well as from Figures 1 and 2:

1. While past winners have generally outperformed past losers, there are relatively long
periods over which momentum experiences severe losses or “crashes.”

2. Fourteen of the 15 worst momentum returns occur when the lagged two-year market
return is negative. All occur in months where the market rose contemporaneously, often
in a dramatic fashion.
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Figure 2: Momentum Crashes, Following the Great Depression and the 2008-09

Financial Crisis
Plotted are the cumulative daily returns to four portfolios: (1) the risk-free asset; (2) the CRSP value-weighted
index; (3) the bottom decile “past loser” portfolio; and (4) the top decile “past winner” portfolio over the
period from March 8, 2009 through March, 28 2013 (top graph) and from June 1, 1932 through December 30,
1939 (bottom graph).
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3. The clustering evident in this table, and the daily cumulative returns in Figure 2, make
clear that the crashes have relatively long duration. They do not occur over the span of
minutes or days – a crash is not a Poisson jump. They take place slowly, over the span
of multiple months.

4. Similarly, the extreme losses are clustered: The two worst months for momentum are
back-to-back, in July and August of 1932, following a market decline of roughly 90%
from the 1929 peak. March and April of 2009 are the 7th and 4th worst momentum
months, respectively, and April and May of 1933 are the 6th and 12th worst. Three of
the ten worst momentum monthly returns are from 2009 – a three-month period in which
the market rose dramatically and volatility fell. While it might not seem surprising that
the most extreme returns occur in periods of high volatility, the effect is asymmetric for
losses versus gains: the extreme momentum gains are not nearly as large in magnitude,
or as concentrated in time.

5. Closer examination reveals that the crash performance is mostly attributable to the short
side or the performance of losers. For example, in July and August of 1932, the market
actually rose by 82%. Over these two months, the winner decile rose by 32%, but the
loser decile was up by 232%. Similarly, over the three month period from March to May
of 2009, the market was up by 26%, but the loser decile was up by 163%. Thus, to the
extent that the strong momentum reversals we observe in the data can be characterized
as a crash, they are a crash where the short side of the portfolio – the losers – are
“crashing up” rather than down.

Table 2 also suggests that large changes in market beta may help to explain some of the

large negative returns earned by momentum strategies. For example, as of the beginning of

March 2009, the firms in the loser decile portfolio were, on average, down from their peak

by 84%. These firms included those hit hardest by the financial crisis: Citigroup, Bank of

America, Ford, GM, and International Paper (which was highly levered). In contrast, the

past-winner portfolio was composed of defensive or counter-cyclical firms like Autozone. The

loser firms, in particular, were often extremely levered, and at risk of bankruptcy. In the sense

of the Merton (1974) model, their common stock was effectively an out-of-the-money option

on the underlying firm value. This suggests that there were potentially large differences in

the market betas of the winner and loser portfolios that generate convex, option-like payoffs

– a conjecture we now investigate more formally in the next section.
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Figure 3: Market Betas of Winner and Loser Decile Portfolios
These three plots present the estimated market betas over three independent subsamples spanning our full
sample: 1927:06 to 1939:12, 1940:01 to 1999:12, and 2000:01 to 2013:03. The betas are estimated by running
a set of 126-day rolling regressions of the momentum portfolio excess returns on the contemporaneous excess
market return and 10 (daily) lags of the market return, and summing the betas.
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Table 2: Worst Monthly Momentum Returns

This table lists the 15 worst monthly returns to the WML momentum portfolio over the 1927:01-2013:03 time
period. Also tabulated are Mkt-2y, the 2-year market returns leading up to the portfolio formation date, and
Mktt, the contemporaneous market return. The dates between July 1932 and September 1939 are marked
with ∗, those between April and August of 2009 with †; those from January 2001 and November 2002 with ‡.
All numbers in the table are in percent.

Rank Month WMLt MKT-2y Mktt

1 1932-08∗ -74.36 -67.77 36.49
2 1932-07∗ -60.98 -74.91 33.63
3 2001-01‡ -49.19 10.74 3.66
4 2009-04† -45.52 -40.62 10.20
5 1939-09∗ -43.83 -21.46 16.97
6 1933-04∗ -43.14 -59.00 38.14
7 2009-03† -42.28 -44.90 8.97
8 2002-11‡ -37.04 -36.23 6.08
9 1938-06∗ -33.36 -27.83 23.72
10 2009-08† -30.54 -27.33 3.33
11 1931-06∗ -29.72 -47.59 13.87
12 1933-05∗ -28.90 -37.18 21.42
13 2001-11‡ -25.31 -19.77 7.71
14 2001-10‡ -24.98 -16.77 2.68
15 1974-01 -24.04 -5.67 0.46

3 Time-Varying Beta and Option-Like Payoffs

To investigate the time-varying betas of winners and losers, Figure 3 plots the market betas for

the winner and loser momentum deciles, estimated using 126 day (≈ 6 month) rolling market

model regressions with daily data.2 Figure 3 plots the betas over three non-overlapping

subsamples that span the full sample period: July 1927 to December 1939, January 1940 to

December 1999, and January 2000 to March 2013.

The betas move around substantially, especially for the losers portfolio, whose beta tends

2We use 10 daily lags of the market return in estimating the market betas. Specifically, we estimate a daily
regression specification of the form:

r̃e
i,t = β0r̃

e
m,t + β1r̃

e
m,t−1 + · · ·+ β10r̃

e
m,t−10 + ε̃i,t

and then report the sum of the estimated coefficients β̂0 + β̂1 + · · · + β̂10. Particularly for the past loser
portfolios, and especially in the pre-WWII period, the lagged coefficients are strongly significant, suggesting
that market wide information is incorporated into the prices of many of the firms in these portfolios over the
span of multiple days. See Lo and MacKinlay (1990) and Jegadeesh and Titman (1995).
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to increase dramatically during volatile periods. The first and third plots highlight the betas

several years before, during, and after the momentum crashes. The beta of the winner portfolio

is sometimes above 2 following large market rises, but for the loser portfolio, the beta reaches

far higher levels (as high as 4 or 5). The widening beta differences between winners and losers,

coupled with the facts from Table 2 that these crash periods are characterized by sudden and

dramatic market upswings, means that the WML strategy will experience huge losses during

these times. We examine these patterns more formally by investigating how the mean return

of the momentum portfolio is linked to time variation in market beta.

3.1 Hedging Market Risk in the Momentum Portfolio

Grundy and Martin (2001) explore this same question, arguing that the poor performance of

the momentum portfolio in the pre-WWII period first documented by Jegadeesh and Titman

(1993) is a result of time varying market and size exposure. Specifically, they argue that a

hedged momentum portfolio – for which conditional market and size exposure is zero – has

a high average return and a high Sharpe-ratio in the pre-WWII period when the unhedged

momentum portfolio suffers.

At the time that Grundy and Martin (2001) undertook their study, daily stock return data

was not available through CRSP in the pre-1962 period. Given the dynamic nature of mo-

mentum’s risk-exposures, estimating the future hedge coefficients ex-ante with monthly data

is problematic. As a result, Grundy and Martin (2001) use an ex-post estimate of the portfo-

lio’s market and size betas using monthly returns over the current month and the future five

months.

However, to the extent that the future momentum-portfolio beta is correlated with the future

return of the market, this procedure will result in a biased estimate of the returns of the

hedged portfolio. We show there is in fact a strong correlation of this type, which results in

a large upward bias in the estimated performance of the hedged portfolio.3

3The result that the betas of winner-minus-loser portfolios are non-linearly related to contemporaneous
market returns has also been documented in Rouwenhorst (1998) who documents this feature for non-US
equity momentum strategies (Table V, p. 279). Chan (1988) and DeBondt and Thaler (1987) document this
non-linearity for longer-term winner/loser portfolios. However, Boguth, Carlson, Fisher, and Simutin (2010),
building on the results of Jagannathan and Korajczyk (1986), note that the interpretation of the measures of
abnormal performance (i.e., the alphas) in Chan (1988), Grundy and Martin (2001), and Rouwenhorst (1998)
are problematic and provide a critique of Grundy and Martin (2001) and other studies which “overcondition”
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Table 3: Market Timing Regression Results
This table presents the results of estimating four specifications of a monthly time-series regressions run over
the period 1927:01 to 2013:03. In all cases the dependent variable is the return on the WML portfolio. The
independent variables are a constant, an indicator for bear markets, IB,t−1, which equals one if the cumulative
past two-year return on the market is negative, the excess market return, Re

m,t, and a contemporaneous up-
market indicator, IU,t, which equals one if Re

m,t > 0. The coefficients α̂0 and α̂B are ×100 (i.e., are in percent
per month).

Estimated Coefficients
(t-statistics in parentheses)

Coef. Variable (1) (2) (3) (4)
α̂0 1 1.852 1.976 1.976 2.030

(7.3) (7.7) (7.8) (8.4)
α̂B IB,t−1 -2.040 0.583

(-3.4) (0.7)

β̂0 R̃e
m,t -0.576 -0.032 -0.032 -0.034

(-12.5) (-0.5) (-0.6) (-0.6)

β̂B IB,t−1 ·R̃e
m,t -1.131 -0.661 -0.708

(-13.4) (-5.0) (-6.1)

β̂B,U IB,t−1·IU,t ·R̃
e
m,t -0.815 -0.727

(-4.5) (-5.6)
R2

adj 0.130 0.269 0.283 0.283

3.2 Option-like Behavior of the WML portfolio

The source of the bias in estimating ex-post betas of the momentum portfolio is that in down

markets the market beta of the WML portfolio is strongly negatively correlated with the

contemporaneous realized performance of the portfolio. This means that the ex-post hedge

will have a higher market beta when future market returns are high, and a lower beta when

future market returns are low, making its performance appear much better.

We also show that the return of the momentum portfolio, net of market risk, is significantly

lower in bear markets. Both of these results are linked to the fact that, in bear markets, the

momentum strategy behaves as if it is effectively short a call option on the market.

We first illustrate these issues with a set of monthly time-series regressions, the results of

which are presented in Table 3. The variables used in the regressions are:

in a similar way.
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1. R̃WML,t is the WML return in month t.

2. R̃e
m,t is the CRSP value-weighted (VW) index excess return in month t.

3. IB,t−1 is an ex-ante bear-market indicator that equals 1 if the cumulative CRSP VW
index return in the past 24 months is negative, and is zero otherwise.

4. ĨU,t is the contemporaneous – i.e., not ex-ante – up-market indicator variable. It is 1 if
the excess CRSP VW index return is greater than the risk-free rate in month t (e.g.,
Re

m,t > 0), and is zero otherwise.4

Regression (1) in Table 3 fits an unconditional market model to the WML portfolio:

R̃WML,t = α0 + β0R̃m,t + ε̃t. (1)

Consistent with the results in the literature, the estimated market beta is negative, -0.576, and

the intercept, α̂, is both economically large (1.85% per month), and statistically significant

(t-stat = 7.3).

Regression (2) in Table 3 fits a conditional CAPM with the bear market indicator, IB, as an

instrument:

R̃WML,t = (α0 + αBIB,t−1) + (β0 + βBIB,t−1)R̃m,t + ε̃t. (2)

This specification is an attempt to capture both expected return and market-beta differences

in bear markets. First, consistent with Grundy and Martin (2001), we see a striking change

in the market beta of the WML portfolio in bear markets: it is -1.13 lower, with a t-statistic

of −13.4 on the difference. The intercept is also lower: the point estimate for the alpha in

bear markets – equal to α̂0 + α̂B – is now −6.4 basis points per month.

Regression (3) introduces an additional element to the regression which allows us to assess the

extent to which the up- and down-market betas of the WML portfolio differ. The specification

is similar to that used by Henriksson and Merton (1981) to assess market timing ability of

fund managers:

R̃WML,t = [α0 + αB · IB,t−1] + [β0 + IB,t−1(βB + ĨU,tβB,U)]R̃m,t + ε̃t. (3)

If βB,U is different from zero, this suggests that the WML portfolio exhibits option-like be-

havior relative to the market. Specifically, a negative βB,U would mean that, in bear markets,

4Of the 1,035 months in the 1927:01-2013:03 period, there are 183 bear market months by our definition.
Also, there are 618 up-months, and 417 down-months.
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the momentum portfolio is effectively short a call option on the market. In months when the

contemporaneous market return is negative, the point estimate of the WML portfolio beta

is −0.70 (β̂0 + β̂B). But, when the market return is positive, the market beta of WML is

considerably more negative – specifically, the point estimate is β̂0 + β̂B + β̂B,U = −1.796.

The predominant source of this optionality comes from the loser portfolio. Panel A of Table 4

presents the results of the regression specification in equation (3) for each of the ten momentum

portfolios. The final row of the table (the β̂B,U coefficient) shows the strong up-market betas

for the loser portfolios in bear markets. For the loser decile, the down-market beta is 1.560

(= 1.338 + 0.222) and the point estimate of the up-market beta is 2.160 (= 1.560 + 0.600).

Also, note the slightly negative up-market beta increment for the winner decile (= −0.215).

This pattern also holds for less extreme winners and losers, such as decile 2 versus decile 9 or

decile 3 versus 8, with the differences between winners and losers declining monotonically for

less extreme past return sorted portfolios. The net effect is that a momentum portfolio which

is long winners and short losers will have significant negative market exposure following bear

markets precisely when the market swings upward, and that exposure is even more negative

for more extreme past return sorted portfolios.

3.3 Asymmetry in the Optionality

The optionality associated with the loser portfolios is only present in bear markets, however.

Panel B of Table 4 presents the same set of regressions using the bull-market indicator IL,t−1

instead of the bear-market indicator IB,t−1. The key variables here are the estimated coeffi-

cients and t-statistics on βL,U , presented in the last two rows of Panel B. Unlike in Panel A,

there is no significant asymmetry present in the loser portfolio, though the winner portfolio

asymmetry is comparable to Panel A. The net effect is that the WML portfolio shows no

statistically significant optionality in bull markets, unlike what we see in bear markets.

3.4 Ex-Ante versus Ex-Post Hedge of Market Risk for WML

The results of the preceding analysis suggest that calculating hedge ratios based on future

realized betas, as in Grundy and Martin (2001), is likely to produce strongly upward biased

estimates of the performance of the hedged portfolio. This is because the realized market beta
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Table 4: Momentum Portfolio Optionality

This table presents the results of regressions of the excess returns of the momentum decile portfolios and the
Winner-minus-Loser (WML) long-short portfolio on the CRSP value-weighted excess market returns, and a
number of indicator variables. Panel A reports results for optionality in bear markets where for each of the
momentum portfolios, the following regression is estimated:

R̃e
i,t = [α0 + αBIB,t−1] + [β0 + IB,t−1(βB + ĨU,tβB,U )]R̃e

m,t + ε̃t

where Re
m is the CRSP value-weighted excess market return, IB,t−1 is an ex-ante bear-market indicator that

equals 1 if the cumulative CRSP VW index return in the past 24 months is negative, and is zero otherwise, and
IU,t is a contemporaneous up-market indicator that equals 1 if the excess CRSP VW index return is positive
in month t, and is zero otherwise. Panel B reports results for optionality in bull markets where for each of the
momentum portfolios, the following regression is estimated:

R̃e
i,t = [α0 + αLIL,t−1] + [β0 + IL,t−1(βL + ĨU,tβL,U )]R̃m,t + ε̃t

where IL,t−1 is an ex-ante bull-market indicator (defined as 1−IB,t−1). The sample period is 1927:01-2013:03.
The coefficients α̂0, α̂B and α̂L are ×100 (i.e., are in percent per month).

Momentum Decile Portfolios – Monthly Excess Returns
(t-statistics in parentheses)

1 2 3 4 5 6 7 8 9 10 WML

Panel A: Optionality in Bear Markets

α̂0 -1.406 -0.804 -0.509 -0.200 -0.054 -0.050 0.159 0.260 0.294 0.570 1.976
(-7.3) (-5.7) (-4.9) (-2.4) (-0.7) (-0.9) (2.7) (4.1) (3.8) (4.6) (7.8)

α̂B -0.261 0.370 -0.192 -0.583 -0.317 -0.231 -0.001 -0.039 0.420 0.321 0.583
(-0.4) (0.8) (-0.6) (-2.1) (-1.3) (-1.2) (-0.0) (-0.2) (1.7) (0.8) (0.7)

β̂0 1.338 1.152 1.014 0.955 0.922 0.952 0.974 1.018 1.114 1.306 -0.032
(30.4) (35.7) (42.6) (49.5) (55.6) (72.1) (72.3) (69.9) (62.7) (46.1) (-0.6)

β̂B 0.222 0.326 0.354 0.156 0.180 0.081 0.028 -0.126 -0.158 -0.439 -0.661
(2.2) (4.4) (6.5) (3.5) (4.7) (2.7) (0.9) (-3.8) (-3.9) (-6.8) (-5.0)

β̂B,U 0.600 0.349 0.180 0.351 0.163 0.121 -0.013 -0.031 -0.183 -0.215 -0.815
(4.4) (3.5) (2.4) (5.9) (3.2) (3.0) (-0.3) (-0.7) (-3.3) (-2.5) (-4.5)

Panel B: Optionality in Bull Markets

α̂0 0.041 0.392 -0.249 0.222 0.089 0.048 0.097 0.079 0.188 0.388 0.347
(0.1) (1.4) (-1.2) (1.3) (0.6) (0.4) (0.8) (0.6) (1.2) (1.5) (0.7)

α̂L -1.436 -1.135 -0.286 -0.653 -0.303 -0.084 -0.164 0.164 0.239 0.593 2.029
(-2.9) (-3.1) (-1.1) (-2.9) (-1.6) (-0.6) (-1.1) (1.0) (1.2) (1.9) (3.1)

β̂0 1.890 1.664 1.459 1.304 1.188 1.097 0.992 0.877 0.860 0.754 -1.136
(41.3) (49.6) (59.2) (64.5) (69.3) (80.5) (72.2) (58.7) (46.7) (25.9) (-18.7)

β̂L -0.545 -0.498 -0.451 -0.411 -0.308 -0.141 -0.078 0.133 0.285 0.670 1.215
(-6.0) (-7.4) (-9.2) (-10.2) (-9.0) (-5.2) (-2.9) (4.5) (7.8) (11.5) (10.0)

β̂L,U -0.010 -0.025 0.017 0.138 0.094 -0.006 0.136 0.021 -0.077 -0.251 -0.242
(-0.1) (-0.2) (0.2) (2.2) (1.8) (-0.1) (3.2) (0.4) (-1.4) (-2.8) (-1.3)
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Figure 4: Ex-Ante vs. Ex-Post Hedged Portfolio Performance
Plotted are the cumulative returns to the baseline static WML strategy, the WML strategy hedged ex-post
with respect to the market, and the WML strategy hedged ex-ante with respect to the market. The ex post
hedged portfolio conditionally hedges the market exposure using the ex-post hedged procedure of Grundy and
Martin (2001), but using daily data. Specifically, the size of the market hedge is based on the future 42-day
(2 month) realized market beta of the WML portfolio using equation (2). The ex-ante hedged momentum
portfolio estimates market betas using the lagged 42 days of returns on the portfolio and the market from
equation (2). The first graph plots the cumulative log returns of the three portfolios over the 1927:06 to
1939:12 period and the second graph plots their cumulative returns over the full sample period from 1927:06
to 2013:03.
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of the momentum portfolio is more negative when the realized return of the market is positive.

Thus, hedging ex-post – where the hedge is based on the future realized portfolio beta – buys

the market (as a hedge) when the future market return is high, leading to a strong upward

bias in the estimated performance of the hedged portfolio.

To see how big the bias is, Figure 4 plots the cumulative log return to the static unhedged,

ex-post hedged, and an ex-ante hedged WML momentum portfolio.5 The ex-post hedged

portfolio takes the WML portfolio and hedges out market risk using an ex-post estimate of

market beta. Following Grundy and Martin (2001), we construct the ex-post hedged portfolio

based on WML’s future 42-day (2 month) realized market beta, estimated using daily data.

Again, to calculate the beta we use 10 daily lags of the market return. The ex-ante hedged

portfolio estimates market betas using the lagged 42 days of returns of the portfolio on the

market, including 10 daily lags.

The first graph in Figure 4 plots the cumulative log returns to all three momentum portfolios

over the June 1927 to December 1939 period, covering a few years before, during, and after

the biggest momentum crash. The ex-post hedged portfolio exhibits considerably improved

performance over the unhedged momentum portfolio as it is able to avoid the crash. How-

ever, the ex-ante hedged portfolio is not only unable to avoid or mitigate the crash, but also

underperforms the unhedged portfolio over this period. Hence, trying to hedge ex-ante, as an

investor would in reality, would have made an investor worse off. The bias in using ex-post

betas is substantial over this period.

The second graph in Figure 4 plots the cumulative log returns of the three momentum port-

folios over the full sample period from 1927 to 2013. Again, the strong bias in the ex-post

hedge is clear, as the ex ante hedged portfolio performs no better than the unhedged WML

portfolio in the overall period and significantly worse than the ex post hedged portfolio.

3.5 Market Stress and Momentum Returns

A casual interpretation of the results presented in Section 3.2 is that there are option-like

payoffs associated with the past losers in bear markets, and that the value of this option is

not adequately reflected in the prices of past losers. This interpretation further suggests that

5The calculation of cumulative returns for long-short portfolios is described in Appendix A.1.
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Table 5: Momentum Returns and Estimated Market Variance

Each column of this table presents the estimated coefficients and t-statistics for a time-series regression based
on the following regression specification:

R̃WML,t = γ0 + γB · IB,t−1 + γσ2
m

· σ̂2

m,t−1
+ γint · IB,t−1 · σ̂

2

m,t−1
+ ε̃t,

where IB,t−1 is the bear market indicator and σ̂2
m,t−1 is the variance of the daily returns on the market,

measured over the 126-days preceding the start of month t. The regression is estimated using monthly data
over the period 1927:07-2013:03. The coefficients γ̂0 and γ̂B are ×100 (i.e., are in percent per month).

(1) (2) (3) (4) (5)

γ̂0 1.955 2.428 2.500 1.973 2.129
(6.6) (7.5) (7.7) (7.1) (5.8)

γ̂B -2.626 -1.281 0.023
(-3.8) (-1.6) (0.0)

γ̂σ2
m

-0.330 -0.275 -0.088
(-5.1) (-3.8) (-0.8)

γ̂int -0.397 -0.323
(-5.7) (-2.2)

the value of this option should be a function of the future variance of the market.

To examine this hypothesis, we use daily market return data to construct an ex-ante estimate

of the market volatility over the next month, and use this market variance estimate in com-

bination with the bear-market indicator, IB,t−1, to forecast future WML returns. Specifically,

we run the following regression:

R̃WML,t = γ0 + γB · IB + γσ2
m
· σ̂2

m,t−1 + γint · IB · σ̂2
m,t−1 + ε̃t, (4)

where IB is the bear market indicator and σ̂2
m,t−1 is the variance of the daily returns of the

market over the 126-days prior to time t.

Table 5 reports the regression results, showing that both estimated market variance and

the bear market indicator independently forecast future momentum returns. Columns (1)

and (2) report regression results for each variable separately and column (3) reports results

using both variables simultaneously. The results are consistent with those from the previous

section: in periods of high market stress, as indicated by bear markets and high volatility,

future momentum returns are low. Finally, the last two columns of Table 5 report results for
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Table 6: Regression of WML Returns on Variance Swap Returns

This table presents the results of three daily time-series regressions of the zero-investment WML portfolio
returns on an intercept α, on the normalized ex-ante forecasting variable IB,t−1σ̂

2
m, and on this forecasting

variable interacted with the excess market return and the return on a (zero-investment) variance swap on the
S&P 500. (See Appendix A.2 for details on how these swap returns are calculated.) The sample is January
2, 1990 to March 28, 2013. T-statistics are in parentheses. The intercept (α) and the coefficient for IBσ2 are
converted to annualized, percentage terms by multiplying by 252× 100.

(1) (2) (3)

α 31.48 29.93 30.29
(4.7) (4.8) (4.9)

IBσ2 -58.62 -49.16 -54.83
(-5.2) (-4.7) (-5.3)

r̃e
m,t 0.11 0.10

(4.5) (3.1)
IBσ2 · r̃e

m,t -0.52 -0.63
(-28.4) (-24.7)

r̃vs,t -0.02
(-0.4)

IBσ2 · r̃vs,t -0.10
(-4.7)

the interaction between the bear market indicator and volatility, where momentum returns

are shown to be particularly poor during bear markets with high volatility.

3.6 Exposure to other risk factors

Our results show that time varying exposure to market risk cannot explain the low returns

of the momentum portfolio in “crash” states. However, the option-like behavior of the mo-

mentum portfolio raises the intriguing question of whether the premium associated with mo-

mentum might be related to exposure to variance risk since, in panic states, a long-short

momentum portfolio behaves like a short (written) call option on the market and since short-

ing options (i.e., selling variance) has historically earned a large premium.6

To assess the dynamic exposure of the momentum strategy to variance innovations, we regress

6See Christensen and Prabhala (1998) and Carr and Wu (2009).
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daily WML returns on the inferred daily (excess) returns of a variance swap on the S&P 500,

which we calculate using the VIX and S&P 500 returns. Appendix A.2 provides details of the

return calculations. We run a time-series regression with a conditioning variable designed to

capture the time-variation in factor loadings on the market, and potentially on other variables.

The conditioning variable IBσ2 ≡ (1/v̄B)IB,t−1σ̂
2
m,t−1 is the interaction used earlier but with a

slight twist:

• IB is the bear market indicator defined earlier (IB = 1 if the cumulative past two-year

market return is negative, and is zero otherwise).

• σ̂2
m is the variance of the market excess return over the preceding 126 days.

• (1/v̄B) is the inverse of the full-sample mean of σ̂2
m over all months in which IB,t−1 = 1.

Normalizing the interaction term with the constant 1/v̄B does not affect the statistical signif-

icance of the results, but it gives the coefficients a simple interpretation. Specifically, since

∑

IB,t−1=1

IBσ2 = 1,

the coefficients on IBσ2 and on variables interacted with IBσ2 can be interpreted as the weighted

average change in the corresponding coefficient during a bear market, where the weight on

each observation is proportional to the ex-ante market variance leading up to that month.

Table 6 presents the results of this analysis. In regression (1) the intercept (α) estimates

the mean return of the WML portfolio when IB,t−1 = 0 as 31.48% per year. However, the

coefficient on IBσ2 shows that the weighted-average return in “panic” periods (volatile bear

markets) is almost 59% per year lower.

Regression (2) controls for the market return and conditional market risk. Consistent with

our earlier results, the last coefficient in this column shows that the estimated WML beta

falls by 0.518 (t-stat = −28.4) in panic states. However, both the mean WML return in good

periods and the change in the WML premium in the panic periods (given, respectively, by α

and the coefficient on IBσ2), remain about the same.

In regression (3), we add the return on the variance swap and its interaction with panic

states. The coefficient on r̃vs,t shows that outside of panic states (i.e., when IB,t−1 = 0), the
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WML return does not covary significantly with the variance swap. However, the coefficient

on IBσ2 · r̃vs,t shows that in panic states, WML has a strongly significant negative loading on

the variance swap return. That is, WML is effectively “short volatility” during these periods.

This is consistent with our previous results, where WML behaves like a short call option, but

only in panic periods; outside of these periods, there is no evidence of any optionality.

However, the intercept and estimated IBσ2 coefficient in regression (3) are essentially un-

changed, even after controlling for the variance swap return. The estimated WML premium

in non-panic states remains large, and the change in this premium in panic states is just as

negative as before, indicating that although momentum returns are related to variance risk,

neither the unconditional nor conditional returns to momentum are explained by it.

We also regress the WML momentum portfolio returns on the three Fama and French (1993)

factors consisting of the CRSP VW index return in excess of the risk-free rate, a small minus

big (SMB) stock factor, and a high BE/ME minus low BE/ME (HML) factor, all obtained

from Ken French’s website. In addition, we interact each of the factors with the panic state

variable IBσ2. The results are reported in Appendix B, where the abnormal performance

of momentum continues to be significantly more negative in bear market states, whether we

measure abnormal performance relative to the market model or to the Fama and French (1993)

three-factor model, with little difference in the point estimates.7

4 Dynamic Weighting of the Momentum Portfolio

Using the insights from the previous section, we evaluate the performance of a strategy which

dynamically adjusts the weight on the WML momentum strategy using the forecasted return

and variance of the strategy. We show that the dynamic strategy generates a Sharpe ratio

more than double that of the baseline $1-long/$1-short WML strategy and is not explained

by other factors or other suggested dynamic momentum portfolios such as constant volatility

(e.g., Barroso and Santa-Clara (2012)).

7Although beyond the scope of this paper, we also examine HML and SMB as the dependent variable
in similar regressions. We find that HML has opposite signed market exposure in panic states relative to
WML, which isn’t surprising since value strategies buy long-term losers and sell winners, the opposite of
what a momentum strategy does. The correlation between WML and HML is −0.50. However, an equal
combination of HML and WML does not completely hedge the panic-state optionality as the effects on WML
are quantitatively stronger. The details are provided in Appendix B.
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We begin with the design of a strategy which dynamically weights WML based on its forecasted

return and volatility. We show in Appendix C that, for the objective function of maximizing

the in-sample unconditional Sharpe ratio, the optimal weight on the risky asset (WML) at

time t − 1 is:

w∗
t−1 =

(

1

2λ

)

µt−1

σ2
t−1

(5)

where µt−1 ≡ Et−1[RWML,t] is the conditional expected return on the (zero-investment) WML

portfolio over the coming month, σ2
t−1 ≡ Et−1[(R

2
WML,t − µt−1)

2] is the conditional variance

of the WML portfolio return over the coming month, and λ is a time-invariant scalar that

controls the unconditional risk and return of the dynamic portfolio.

We use the insights from our previous analysis to provide an estimate of µt−1, the conditional

mean return of WML. The results from Table 5 provide us with an instrument for the time

t conditional expected return on the WML portfolio. As a proxy for the expected return,

we use the fitted regression of the WML returns on the interaction between the bear-market

indicator IB,t−1 and the market variance over the preceding 6-months – i.e., the regression

estimated in the last column of Table 5.

To forecast the volatility of the WML series, we first fit a GARCH model as proposed by

Glosten, Jagannathan, and Runkle (1993, GJR) to the WML return series. The process is

defined by:

RWML,t = µ + εt, (6)

where εt ∼ N (0, σ2
t ) and where the evolution of σ2

t is governed by the process:

σ2
t = ω + βσ2

t−1 + (α + γI(εt−1 < 0)) ε2
t−1 (7)

where I(εt−1 < 0) is an indicator variable equal to one if εt−1 < 0, and zero otherwise.8 We

use maximum likelihood to estimate the parameter set (µ, ω, α, γ, β) over the full time series

(estimates of the parameters and standard errors are provided in Appendix D).

We form a linear combination of the forecast of future volatility from the fitted GJR-GARCH

process with the realized standard deviation of the 126 daily returns preceding the current

month. We show in Appendix D that both components contribute to forecasting future daily

8Engle and Ng (1993) investigate the performance of a number of parametric models in explaining daily
market volatility for Japan. They find that the GJR model that we use here best fits the dynamic structure
of volatility for that market.
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realized WML volatility.

Our analysis in this section is also related to work by Barroso and Santa-Clara (2012), who

argue that momentum crashes can be avoided with a momentum portfolio that is scaled by

its trailing volatility. They further show that the unconditional Sharpe ratio of the constant-

volatility momentum strategy is far better than a simple $1-long/$1-short strategy.

Equation (5) shows that our results would be approximately the same as those of Barroso and

Santa-Clara (2012) if the Sharpe ratio of the momentum strategy were time-invariant, i.e.,

if the forecast mean were always proportional to the forecast volatility. Equation (5) shows

that, in this setting, the weight on WML would be inversely proportional to the forecast WML

volatility – that is the optimal dynamic strategy would be a constant volatility strategy like

the one proposed by Barroso and Santa-Clara (2012).

However, this is not the case for momentum. In fact, the return of WML is actually nega-

tively related to the forecast WML return volatility, related in part to our findings of lower

momentum returns following periods of market stress. This means that the Sharpe ratio of

the optimal dynamic portfolio varies over time, and indeed is lowest when WML’s volatility

is forecast to be high (and it’s mean return low). To test this hypothesis, we implement a

dynamic momentum portfolio using these insights in the next subsection, and show that the

dynamic strategy outperforms a constant volatility strategy.

4.1 Dynamic Strategy Performance

Figure 5 plots the cumulative returns to the dynamic strategy from July 1927 to March 2013,

where λ is chosen so that the in-sample annualized volatility of the strategy is 19% – the

same as that of the CRSP value-weighted index over the full sample. For comparison, we also

plot the cumulative log returns of the static WML strategy, and a constant volatility strategy

similar to that of Barroso and Santa-Clara (2012) also scaled to 19% annual volatility. As

Figure 5 shows, the dynamic portfolio outperforms the constant volatility portfolio, which in

turn outperforms the basic WML portfolio. The Sharpe ratio (in parentheses on the figure) of

the dynamic portfolio is nearly twice that of the static WML portfolio and a bit higher than

the constant volatility momentum portfolio. In Section 4.3 we will conduct formal spanning

tests among these portfolios as well as other factors. Consistent with our previous results, part
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Figure 5: Dynamic Momentum Strategy Performance

Plotted are the cumulative returns to the dynamic strategy, “dyn”, from equation (5), where λ is chosen so
that the in-sample annualized volatility of the strategy is 19% – the same as that of the CRSP value-weighted
index over the full sample. For comparison, we also plot the cumulative log returns of the static WML strategy,
and a constant volatility strategy, “cvol”, similar to that of Barroso and Santa-Clara (2012), also targeted
for an annualized volatility of 19%. The first graph plots the cumulative returns over the full sample period
from 1927:07 to 2013:03. The second graph plots the returns over four roughly quarter-century subsamples:
1927-1949, 1950-1974, 1975-1999, and 2000-2013. Annualized Sharpe ratios of each strategy in each period
are reported in parentheses on the graphs.
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of the outperformance of the dynamic strategy comes from its ability to mitigate momentum

crashes. However, the dynamic strategy still outperforms the other momentum strategies even

outside of the 1930s and the financial crisis period, as we discuss next.

4.2 Subsample Performance

As a check on the robustness of our results, we perform the same analysis over a set of

approximately quarter-century subsamples: 1927 to 1949, 1950 to 1974, 1975 to 1999, and 2000

to 2013. We use the same mean and variance forecasting equation and the same calibration

in each of the four subsamples. Figure 5 plots the cumulative log returns by subsample and

presents the strategy Sharpe ratios (in parentheses) by subsample. For these plots, returns

for each of the strategies are scaled to an annualized volatility of 19% in each subsample for

ease of comparison.

In each of the subsamples, the ordering of performance remains the same: the dynamic strategy

outperforms the constant volatility strategy, which outperforms the static WML strategy. As

the subsample plots show, part of the improved performance of the constant volatility, and

especially dynamic strategy, over the static WML portfolio is the amelioration of big crashes,

but even over sub-periods devoid of those crashes, there is still improvement.

4.3 Spanning Tests

A more formal test of the dynamic portfolio’s success is to conduct spanning tests with re-

spect to the other momentum strategies and other factors. Using daily returns, we regress

the dynamic portfolio’s returns on a host of factors that include the market and Fama and

French (1993) factors as well as the static WML and constant volatility (cvol) portfolios. The

annualized alphas from these regressions are reported in Table 7.

The first column of Panel A of Table 7 reports results from regressions of our dynamic mo-

mentum portfolio on the market plus the static momentum portfolio, WML. The intercept is

highly significant at 23.74 percent per annum (t-stat = 11.99), indicating that the dynamic

portfolio’s returns are not captured by the market or the static momentum portfolio. Since

this regression only controls for unconditional market exposure, the second column of Panel
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Table 7: Spanning Tests of the Dynamic Momentum Portfolio

This table presents the results of spanning tests of the dynamic (Panel A) and constant volatility (Panel B)
portfolios with respect to the market (Mkt), Fama and French (1993) factors (Mkt, SMB, HML), the static
WML portfolio, and each other by running daily time-series regressions of the dynamic portfolio’s (dyn) and
constant volatility (cvol) portfolio’s returns on these factors. In addition, we interact each of these factors
with the market stress indicator IBσ2 to estimate conditional betas with respect to these factors, which
are labeled “conditional.” For ease of comparison the dyn and cvol portfolios are scaled to have the same
annualized volatility as the static WML portfolio (23%). The reported intercepts or α’s from these regressions
are converted to annualized, percentage terms by multiplying by 252 × 100.

Panel A: Dependent variable = returns to dynamic (dyn) momentum portfolio
(1) (2) (3) (4) (5) (6)

Model: Mkt+WML Mkt+WML FF+WML Mkt+cvol Mkt+cvol FF+cvol
conditional conditional conditional conditional

α 23.74 23.23 22.04 7.27 6.92 6.10
t(α) (11.99) (11.76) (11.60) (6.86) (6.44) (6.08)

Panel B: Dependent variable = returns to constant volatility (cvol) momentum portfolio
(1) (2) (3) (4) (5) (6)

Model: Mkt+WML Mkt+WML FF+WML Mkt+dyn Mkt+dyn FF+dyn
conditional conditional conditional conditional

α 14.27 14.28 13.88 -0.72 -0.15 -0.02
t(α) (11.44) (11.55) (11.28) (-0.66) (-0.13) (-0.02)

A reports regression results that include interactions of our panic state indicators with the

market to capture the conditional variability in beta. The alpha is virtually unchanged and

remains highly positively significant. The third column then adds the Fama and French (1993)

factors SMB and HML and their interactions with the panic state variables to account for

conditional variability in exposure to the market, size, and value factors, where the latter

has been shown, for instance, to greatly improve the performance of a momentum portfolio

(e.g., Asness, Moskowitz, and Pedersen (2013)). This regression accounts for whether our

dynamic portfolio is merely rotating exposure to these factors.9 Again, the alpha with respect

to this conditional model is strong and significant at 22 percent per year, nearly identical

in magnitude to the first two columns. Hence, our dynamic momentum strategy’s abnormal

performance is not being driven by dynamic exposure to these other factors or to the static

momentum portfolio.

Columns (4) through (6) of Panel A of Table 7 repeat the regressions from columns (1) through

9 Since the optimal dynamic portfolio solved in Appendix C is not conditional on other factors, to form this
portfolio in the presence of other factors we first regress the static momentum portfolio on the other factors
using daily returns and then use the residuals to form our dynamic strategy by forecasting the conditional
mean and variance of those residuals to form the dynamic weights.
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(3) by replacing the static WML portfolio with the constant volatility (cvol) momentum

portfolio. The alphas drop in magnitude to about 7 percent per year, but remain highly

statistically significant (t-stats between 6 and 7), suggesting that the dynamic momentum

portfolio is not spanned by the constant volatility portfolio.

Panel B of Table 7 flips the analysis around and examines whether the constant volatility

portfolio is spanned by the static WML portfolio or the dynamic portfolio. The first three

columns of Panel B indicate that the constant volatility portfolio is not spanned by the

static WML portfolio or the Fama and French (1993) factors, generating alphas of about

14 percent per annum with highly significant t-statistics. These results are consistent with

Barroso and Santa-Clara (2012). However, the alphas of the constant volatility portfolio are

slightly smaller in magnitude than those from the dynamic strategy, consistent with the Sharpe

ratio comparisons from Figure 5. (Since we scale both the dynamic and constant volatility

portfolios to have the same variance, these alphas are comparable and give the same rankings

as information ratios would.)

Columns (4) through (6) of Panel B report results from regressing the constant volatility

portfolio’s returns on the dynamic portfolio’s returns. Here, the alphas are all zero, both eco-

nomically and statistically, suggesting that the dynamic portfolio spans the constant volatility

portfolio. According to Appendix C, this should be the case in theory, thus implying that

we obtain decent ex-ante forecasts of the conditional mean and variance of the static WML

portfolio to form a dynamic strategy that reliably captures and improves upon the returns to

a constant volatility and static momentum portfolio.

5 International Equities and Other Asset Classes

Although first documented in individual equities in the US, subsequent research has demon-

strated the existence of strong momentum effects among common stocks in other investment

regions and in other asset classes (see Asness, Moskowitz, and Pedersen (2013) for a summary).

We investigate whether the same momentum crash patterns we observe in US equities are

also present in these other asset markets, and whether our dynamic momentum portfolio

helps ameliorate these crashes and improves momentum performance in other markets.
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5.1 Data

The data come from Asness, Moskowitz, and Pedersen (2013) and for equities cover the U.S.,

U.K., Japan, and Continental Europe. Details on data description and sources can be found

in Asness, Moskowitz, and Pedersen (2013). The US and UK data begin in January 1972

and Europe and Japan in February 1974, extending to May 2013.10 We also examine a global

equity momentum strategy GE, which weights each region’s equity momentum strategy by

the ex-post volatility of the portfolio over the full sample, following Asness, Moskowitz, and

Pedersen (2013).

The non-equity data also come from Asness, Moskowitz, and Pedersen (2013), which contain

equity country index futures across 18 developed equity markets beginning in January 1978, 10

currencies across developed markets starting in January 1979, 10 country government bonds

beginning January 1982, and 27 different commodity futures beginning in January 1972. All

series end in May 2013.

In addition, we examine two composite portfolios: GA is a global momentum strategy across

the non-equity asset classes, which weights each asset class momentum strategy portfolio by

the ex-post volatility of that portfolio. GAll is a global momentum strategy across all of the

equity and non-equity asset classes, which weights the GE and GA portfolios by their ex-post

return volatilities over the full sample.

The definition of the market index is different for each market and asset class: it is the MSCI

local index for the US, UK, Europe, and Japan, the MSCI World index for country index

futures, an equal-weighted average of all country bonds for bond markets, an equal-weighted

average of all currencies for currency markets, and the Goldman Sachs Commodity Index

(GSCI) for commodities.

10These data extend beyond the original sample period used in Asness, Moskowitz, and Pedersen (2013),
since the data are updated monthly following the same procedure for portfolio construction in Asness,
Moskowitz, and Pedersen (2013). The data are available from Toby Moskowitz’s website:
(http://faculty.chicagobooth.edu/tobias.moskowitz/research/data.html).
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5.2 Cross Sectional Equity Momentum Outside the US

The portfolio formation procedure here is similar to that used earlier in the paper, except

instead of taking the top and bottom decile portfolios, we use the Asness, Moskowitz, and

Pedersen (2013) P3−P1 momentum portfolios, which is long the top third and short the

bottom third of securities ranked on returns from month t − 12 to t − 2. Both the long and

the short side of the portfolio are value weighted. As documented in Asness, Moskowitz,

and Pedersen (2013), over this time period there are strong momentum effects in each of the

regions except Japan.

Panels A through D of Table 8 present the results of the regressions run in Section 2, but here

for the other stock market universes. Panel A shows the estimated coefficients and t-statistics

from the regression specification in equation (2). Consistent with the results presented earlier,

the market betas of the momentum strategy are dramatically lower in bear markets across

the other stock markets as well. The strategies implemented using European and Japanese

stocks have market betas that are approximately 0.5 lower during bear markets (with t-stats

of about -7). The UK momentum strategy beta falls by 0.2. The drop in this period for the

US momentum strategy is 0.58 – comparable to what we observe for the WML portfolio over

the longer 1927 to 2013 period. Globally, averaging across the US, UK, Europe, and Japan,

the market betas of the momentum strategy are markedly lower in bear markets.

The abnormal returns of the momentum strategies are significantly positive in bull markets

for all regions except Japan. Consistent with our analysis in Section 2, the return is lower in

bear markets in each region, though using only the bear market indicator as a proxy for panic

periods none of the differences are statistically significant over these shorter sample periods.

Panel B investigates the optionality in the momentum strategy in bear markets using the

regression specification in equation (3). Consistent with the longer period US results, there

is statistically significant optionality in bear markets in the European, UK, and Japan stock

markets, and globally across all markets. Interestingly, for this subsample and methodology,

the optionality is of the right sign, but is not statistically significant for the US market. The

negative beta of long-short momentum strategies is particularly acute when the contempora-

neous market return is positive. That is, momentum strategies in all regions across the world

exhibit conditional betas and payoffs similar to writing call options on the local market index.

31



In Panel C, we add as a conditioning variable the realized daily market return variance,

annualized, over the preceding 126 trading days (6 months):11

R̃P3−P1
t = [α0 + αBIB,t−1 + αV σ̂2

m,t−1] + [β0 + βBIB,t−1 + βV σ̂2
m,t−1]R̃

e
m,t + ε̃t. (8)

Two interesting results emerge. First, higher ex-ante market variance is generally associated

with more negative momentum strategy betas. Second, higher market variance is also asso-

ciated with strongly lower future abnormal returns to momentum, net of the market return.

This last relation is statistically significant in all markets, and again is consistent with our

earlier results for the US market over the longer period.

In Panel D we again use the IBσ2 ≡ (1/v̄B)IB,t−1 · σ̂2
m measure introduced in Section 3.6,

designed to capture “panic” periods when the market has fallen and volatility is high. In

addition, in these regressions we instrument for time variation in market beta using IB,t−1,

σ̂2
m,t−1, and IBσ2. Specifically, we run the regression

R̃P3−P1
t = [α0 + αBIBσ2] + [βBIB,t−1 + βVσ̂2

m,t−1 + βBVIBσ2]R̃e
m,t + ε̃t. (9)

The results in Panel D of Table 8 are consistent with our earlier results for the US over

the longer period. In particular, the coefficient on the interaction term IBσ2 is negative,

economically large, and statistically significant in all markets, and for the global strategy.

In summary, the results in Table 8 suggest that momentum strategies in these different equity

markets are also short volatility, and have significantly lower abnormal returns in panic periods

characterized by poor lagged market returns and high market volatility.

One other point of interest is that, in Panels C and D of Table 8, the α̂ for the Japan

momentum strategy is considerably larger, and in Panel C is in fact significant at a 5% level.

We will explore the implications of this finding further in Section 5.4, where we apply a

dynamic Japanese momentum strategy which takes into account the forecastability of both

the expected return and volatilty.

11This is the same market variance measure used earlier. However, for the EU, JP, and UK regions we have
daily MSCI market return data only for the time period from January 1990 on. Therefore, over the period
from 1972:01-1990:06 in the UK, and 1974:02-1990:06 in EU and JP, we use the realized monthly variance
over the preceding 6 months, again annualized.
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Table 8: Time Series Regressions for International Equity Markets

The table reports the estimated coefficients and t-statistics from regressions of the monthly returns to a zero-
investment equity momentum strategy in each region on the indicated set of independent variables. The
estimated regression intercept (α), and the coefficients on IB and IBσ2 are all multiplied by 12×100 to put
them in annualized, percentage terms. GE is a global equity momentum strategy that is a volatility-weighted
portfolio of the four equity markets.

EU JP UK US GE

start 1974:02 1974:02 1972:01 1972:02 1972:01
end 2013:05 2013:05 2013:05 2013:05 2013:05

Panel A

α 8.935 1.887 7.409 5.181 5.826
(3.5) (0.5) (2.7) (1.9) (3.6)

IB -3.549 -0.837 -6.827 -2.921 -4.920
(-0.7) (-0.1) (-1.1) (-0.5) (-1.2)

Re
m 0.071 0.246 0.015 0.150 0.023

(1.6) (4.8) (0.4) (2.7) (0.7)
IBRe

m -0.508 -0.527 -0.197 -0.584 -0.275
(-7.1) (-7.0) (-3.1) (-6.2) (-4.6)

Panel B
α 8.935 1.887 7.409 5.181 5.826

(3.6) (0.5) (2.7) (1.9) (3.6)
IB 9.418 11.104 4.249 -0.266 5.019

(1.2) (1.3) (0.5) (-0.0) (0.8)
Re

m 0.071 0.246 0.015 0.150 0.023
(1.7) (4.8) (0.4) (2.7) (0.7)

IBRe
m -0.302 -0.318 0.004 -0.540 -0.098

(-2.7) (-2.5) (0.0) (-3.3) (-1.0)
IBIURe

m -0.418 -0.367 -0.306 -0.086 -0.342
(-2.4) (-2.0) (-2.2) (-0.3) (-2.2)

Panel C

α 12.237 12.385 10.856 10.331 8.345
(4.1) (2.5) (3.6) (3.4) (4.8)

IB 1.445 4.554 0.213 6.018 2.254
(0.3) (0.7) (0.0) (0.9) (0.5)

σ̂2
m -0.113 -0.221 -0.078 -0.204 -0.252

(-2.0) (-2.9) (-2.6) (-3.3) (-3.7)
Re

m 0.115 0.280 0.020 0.215 0.041
(2.5) (4.2) (0.5) (3.6) (1.2)

IBRe
m -0.391 -0.512 -0.182 -0.485 -0.206

(-4.8) (-6.5) (-2.5) (-4.8) (-3.2)
σ̂2

mRe
m -1.755 -0.734 -0.040 -2.361 -1.959

(-2.6) (-0.7) (-0.2) (-2.5) (-2.2)

Panel D
α 10.286 5.333 8.627 7.084 6.720

(4.4) (1.6) (3.4) (2.8) (4.5)
IBσ2 -6.509 -9.910 -11.408 -11.055 -8.704

(-2.0) (-2.2) (-3.2) (-2.6) (-3.6)
IBRe

m -0.306 -0.180 -0.176 -0.245 -0.177
(-3.7) (-1.8) (-2.6) (-2.4) (-2.8)

σ̂2
mRe

m -0.295 3.685 -0.600 1.839 -2.798
(-0.2) (3.8) (-0.8) (1.2) (-1.2)

IBσ2Re
m -0.056 -0.307 0.073 -0.261 0.036

(-0.7) (-3.2) (0.8) (-2.4) (0.5)
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5.3 Cross-Sectional Momentum in Other Asset Classes

Evidence of the option-like payoffs of momentum strategies in bear markets outside of US

equities, and indeed in every other equity market we examined, gives credence to this feature

of momentum being a robust phenomenon and not likely due to chance. For further robustness,

we also examine momentum strategies in the non-equity asset classes. In addition to providing

another out of sample test for the option-like payoffs of momentum strategies in bear markets,

finding the same option-like asymmetry in these asset classes would also present a challenge

to the Merton (1974) explanation.

Table 9 presents the results of time series regressions for the non-equity asset-class momentum

strategies similar to those in Table 8 for international equities. First, the set of IB,t−1 ·

R̃e
m coefficients and t-statistics in the last row of Panel A show that, in all asset classes,

the momentum portfolio’s market beta is significantly more negative in bear markets. The

intuition that, following a bear market, the loser side of the momentum portfolio will have a

high market beta is valid for other asset classes as well. The IB,t−1 coefficients in the second

row of Panel A also provide evidence weakly consistent with the earlier finding that market-

adjusted momentum returns are lower following bear markets. The point estimates are all

negative, except for bonds, but only in the currency market is the coefficient significant.

Panel B assesses whether the optionality present in cross-sectional equity momentum strategies

is also present in other asset classes. The IB,t−1ĨU,tR̃
e
m,t coefficient is negative for each of the

four asset classes, and the two composite portfolios, but is statistically significant at a 5%

level only for commodities. This result is intriguing. While a model such as Merton (1974)

argues that equities should exhibit option-like features, it is not clear that such a model would

easily explain the optionality present in commodity futures, and weakly in currency markets.

Panel C of Table 9 estimates equation (8) for the other-asset-class momentum strategies. Here

the signs in the relation between lagged volatility and momentum strategy returns are again

negative in the commodity (CM), currency (FX), and equity (EQ) futures asset classes. Panel

D again uses the interactive variable IBσ2 as an instrument for volatile bear markets. As in

Table 8, we control for variation in market beta associated with IB,t−1, σ̂2
m, and the interaction

term itself. In all asset classes except FI, the coefficient on this interaction term is negative,

consistent with our previous findings in US and international equity markets. However, except

for FX and the GAll portfolio, the coefficient is not significant at a 5% level.
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Table 9: Time Series Regressions for other Asset Classes

The table reports the estimated coefficients and t-statistics from regressions of the monthly returns to zero-
investment momentum strategies in each asset class on the indicated set of independent variables. GA and
GAll are the global strategies across all non-equity asset classes and across all asset classes including equities,
where each asset class and equity market is weighted by the inverse of their full sample volatility. The estimated
intercept, and the coefficients on IB,t−1 and IBσ2 are all multiplied by 12×100 to put them in annualized,
percentage terms.

FI CM FX EQ GA GAll
start 1983:02 1973:02 1980:02 1979:02 1973:02 1973:02
end 2013:05 2013:05 2013:05 2013:05 2013:05 2013:05

Panel A

α 0.006 16.302 4.745 8.575 4.653 4.639
(0.0) (3.7) (2.2) (3.8) (4.6) (5.0)

IB 0.798 -10.470 -8.221 -0.575 -2.426 -3.294
(0.3) (-1.4) (-2.5) (-0.1) (-1.1) (-1.3)

Re
m 0.186 0.308 0.382 0.272 0.162 0.082

(3.1) (4.1) (4.4) (6.0) (2.7) (1.9)
IBRe

m -0.362 -0.730 -1.092 -0.620 -0.485 -0.366
(-2.7) (-4.5) (-8.6) (-8.5) (-3.9) (-4.4)

Panel B
α 0.006 16.302 4.745 8.575 4.653 4.639

(0.0) (3.8) (2.2) (3.8) (4.6) (5.1)
IB 1.994 7.014 -4.096 6.248 1.142 3.746

(0.6) (0.7) (-0.9) (1.1) (0.4) (1.1)
Re

m 0.186 0.308 0.382 0.272 0.162 0.082
(3.1) (4.1) (4.4) (6.0) (2.7) (1.9)

IBRe
m -0.278 -0.205 -0.911 -0.485 -0.222 -0.106

(-1.4) (-0.8) (-5.0) (-4.6) (-1.2) (-0.9)
IBIURe

m -0.197 -1.102 -0.405 -0.312 -0.563 -0.605
(-0.6) (-2.5) (-1.4) (-1.7) (-1.8) (-2.9)

Panel C
α -0.297 20.050 7.527 9.277 5.835 5.963

(-0.2) (3.5) (2.4) (3.8) (4.9) (5.9)
IB 1.057 -9.022 -7.475 0.634 -0.759 0.554

(0.4) (-1.2) (-2.2) (0.2) (-0.3) (0.2)
σ̂2

m 0.136 -0.211 -0.503 -0.047 -0.756 -0.585
(0.2) (-1.1) (-1.2) (-0.7) (-1.8) (-3.0)

Re
m 0.278 0.522 0.429 0.299 0.201 0.104

(2.1) (4.3) (4.0) (6.3) (3.0) (2.3)
IBRe

m -0.385 -0.712 -1.045 -0.549 -0.374 -0.267
(-2.8) (-4.4) (-8.0) (-6.6) (-2.7) (-2.8)

σ̂2
mRe

m -55.971 -8.820 -9.702 -2.001 -23.842 -8.605
(-0.8) (-2.2) (-0.8) (-1.7) (-1.2) (-1.5)

Panel D
α 0.218 13.803 3.419 9.240 4.766 4.853

(0.2) (3.7) (1.8) (4.7) (5.1) (5.6)
IBσ2 0.026 -4.808 -4.655 -2.683 -2.308 -4.056

(0.0) (-1.2) (-2.1) (-1.2) (-1.8) (-2.8)
Re

m 0.263 0.772 0.672 0.384 0.238 0.128
(1.9) (5.0) (3.0) (5.9) (2.0) (2.0)

IBRe
m -0.281 -1.207 -1.293 -0.669 -0.424 -0.303

(-0.8) (-4.8) (-5.0) (-6.4) (-2.3) (-2.7)
σ̂2

mRe
m -46.141 -18.887 -60.175 -8.332 -49.075 -22.030

(-0.6) (-3.4) (-1.4) (-2.4) (-0.7) (-1.0)
IBσ2Re

m -0.105 0.344 0.268 0.222 0.074 0.095
(-0.3) (2.5) (1.3) (1.9) (0.4) (0.6)
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These results are largely consistent with those found for US equities and for all other inter-

national equity markets, too. In addition to providing more robustness, these findings also

make it more difficult to reconcile under a Merton (1974)-style theory, which is better suited

for equity returns.

5.4 Dynamic Strategies in Other Markets and Asset Classes

Given the robustness of the option-like features to momentum in other equity markets and

other asset classes, we examine the efficacy of dynamic momentum strategies that use these

insights in those other markets to see how robust its outperformance is out of sample.

We form the dynamic momentum strategy as before using the ex-ante expected return and

volatility of the WML portfolio in each market using the instruments from the previous anal-

ysis – the interaction of the ex-ante bear market indicator for that asset class, IB,t−1, and the

asset-class market volatility over the preceding 6-months – to forecast the conditional expected

return and volatility. Precise specifications of the forecasting model and the GARCH model

parameters for each asset class are given in Appendix D.

Panel A of Table 10 reports the Sharpe ratio and skewness (in parentheses) of the simple $1

long-$1 short WML momentum strategy in each market and asset class, as well as a constant

volatility momentum strategy and the dynamic momentum strategy as described above. In

addition, we report global combinations of the equity momentum strategies across all markets

(GE), the non-equity asset classes (GA), and a combination of all equity markets and non-

equity asset classes (GAll).

As Panel A of Table 10 shows, there is a marked improvement in Sharpe ratio going from the

static WML momentum strategy to a constant volatility momentum strategy to our dynamic

momentum strategy in every single market and asset class we study. In most cases, our

dynamic strategy doubles the Sharpe ratio over the traditional static momentum portfolio.

Furthermore, our dynamic momentum strategy resurrects positive returns in markets where

the typical momentum portfolio has failed to produce positive profits, such as Japan. In

Japan, the static, classic momentum portfolio delivers a 0.07 Sharpe ratio, but our dynamic

momentum portfolio in Japan produces a 0.42 Sharpe ratio. (Alas, even the dynamic strategy

does not deliver a significant Sharpe ratio for fixed income.)
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Table 10: Dynamic and Constant Volatility Momentum Across Asset Classes

Panel A presents the annualized Sharpe ratios of monthly momentum strategies in each of the different
asset classes and markets we study. For each asset class, WML denotes the baseline $1-long/$1-short static
momentum strategy, “cvol” denotes the strategy which is weighted by the ex-ante forecast volatility of the
strategy, using daily returns over the prior six months to estimate volatility, and “dyn” is the maximum sharpe
ratio strategy described in Appendix C, which dynamically weights the momentum strategy by the conditional
Sharpe ratio using ex-ante forecasts of the conditional mean and variance of the momentum strategy’s returns
using our market stress indicators and past six months volatility estimates. An * indicates a “fully dynamic”
implementation where the weighted combination of the dynamic strategies themselves is also employed to
aggregate up to the global equity (GE), global asset class, (GA), and global all (Gall), strategies that combine
strategies across regions and asset classes. For all other global combinations, each of the component strategies
is scaled to have equal volatility, and then the strategies are equally weighted. Panel B reports the intercepts
or alphas and their t-statistics from spanning regressions of the cvol and optimal dynamic (dyn) portfolios in
each market and asset class on the static WML momentum strategy and on each other, within each market and
asset class. Each spanning regression also includes the market portfolio for that asset class and the interactions
of the market portfolio with the panic state indicator IBσ2 for each asset class to capture conditional variation
in the betas.

EU JP UK US GE GE* FI CM FX EQ GA GA* GAll GAll*
start 06/90 06/90 06/90 07/72 07/72 07/72 06/83 02/73 02/80 02/79 02/73 02/73 02/73 02/73
end 05/13 05/13 05/13 05/13 05/13 05/13 05/13 05/13 05/13 05/13 05/13 05/13 05/13 05/13

Panel A: Annualized Strategy Sharpe Ratio (Skewness)

WML 0.462 0.067 0.465 0.283 0.513 0.004 0.587 0.296 0.705 0.676 0.754
(-0.34) (0.02) (-0.62) (-0.04) (-0.34) (-0.24) (0.01) (-0.54) (-0.18) (-0.48) (-0.33)

cvol 0.886 0.160 0.751 0.519 0.732 0.020 0.686 0.423 0.800 0.791 0.942
(0.55) (-0.13) (-0.02) (-0.09) (0.13) (-0.45) (-0.07) (-0.47) (0.05) (-0.31) (-0.18)

dyn 1.130 0.416 0.891 0.646 0.752 0.956 0.066 0.803 0.653 0.843 0.973 1.028 1.139 1.223
(0.97) (1.41) (0.36) (0.08) (0.33) (1.11) (0.06) (0.39) (-0.20) (0.25) (0.11) (-0.19) (0.20) (0.44)

Panel B: Spanning Tests

Regression of cvol on WML, Re
m and IBσ2Re

m

α 5.44 3.09 6.14 5.09 2.77 0.11 2.01 1.34 1.47 0.58 0.86
t(α) (4.1) (1.8) (3.4) (4.3) (4.7) (0.4) (3.2) (3.4) (2.8) (4.4) (5.2)

Regression of dyn on WML, Re
m and IBσ2Re

m

α 13.75 8.50 14.28 7.26 4.59 6.60 2.51 6.71 3.36 3.31 2.34 3.24 2.83 4.69
t(α) (4.9) (2.7) (3.7) (3.5) (4.8) (6.6) (2.5) (3.3) (2.9) (2.9) (4.5) (5.3) (5.3) (7.6)

Regression of dyn on cvol, Re
m and IBσ2Re

m

α 9.01 7.27 8.99 3.00 1.95 4.48 2.48 3.98 1.84 1.30 1.59 2.68 1.77 3.97
t(α) (3.9) (2.4) (2.9) (1.9) (2.8) (5.3) (2.5) (2.5) (2.0) (1.8) (3.7) (4.7) (4.2) (6.9)

Regression of cvol on dyn, Re
m and IBσ2Re

m

α 0.01 0.38 0.72 1.92 0.48 0.30 -0.21 0.14 -0.11 -0.02 -0.20 0.21 -0.16 -0.06
t(α) (0.0) (0.1) (0.2) (1.2) (0.7) (0.4) (-0.2) (0.1) (-0.1) (-0.0) (-0.5) (0.4) (-0.4) (-0.1)
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The skewness numbers (in parentheses) are also interesting as the predominantly negative

skewness of the static momentum strategies across all markets is apparent, but the dynamic

momentum strategies deliver mostly positive skewness – consistent with amelioration of the

“crashes” we see in plots of the returns to these strategies.

We also report results for a “fully dynamic” portfolio that is a weighted combination of the

individual asset class or market dynamic strategies, where the weighs are based on the ex-ante

conditional volatility of each component strategy. That is, each of the component strategies is

scaled to have equal volatility (ex ante), and then the strategies are equally weighted. In this

way, we are also using cross-sectional information on the strength of the dynamic signal of each

component strategy to build a fully dynamic combination portfolio across all asset classes. We

denote these fully dynamic strategies with a * in Table 10. As the table indicates, there is

additional Sharpe ratio improvement from this additional twist on our dynamic momentum

strategies, providing another robustness test on the use of conditional mean and variance

forecastability in enhancing the returns to momentum strategies.

Panel B of Table 10 reports results from spanning tests of the static WML portfolio, the

constant volatility strategy, and the dynamic strategy within each market and asset class.

These daily return regressions also include interactions of the excess market return and the

excess market return (for that asset class) interacted with the asset-class specific panic state

indicator IBσ2 to capture conditional variation in the betas.12 The first row reports alphas (and

their t-statistics) of the constant volatility strategy on WML in each market and asset class,

as well as globally across equity markets (GE), asset classes (GA), and all markets and asset

classes (Gall). Consistent with the results of Barroso and Santa-Clara (2012) for US equities,

the constant volatility strategy delivers positive alpha relative to the static momentum strategy

in every single market and asset class that is highly significant (except Japan and fixed income,

where momentum does not yield statistically significant positive returns to begin with).

The second row reports alphas of the dynamic momentum strategy with respect to WML.

Here too, the alphas are all positive and statistically significant, and in every single market

and asset class are larger than the constant volatility momentum alphas. Since both the

dynamic and constant volatility strategies are scaled to the same volatility, this suggests that

12As with our spanning tests in Section 4, the dynamic strategy used in Panel B is based on ex-ante forecasts
of the mean and variance of the residual from a regression of the WML strategy on the excess market return
Re

m and the interacted market return IBσ2Re
m, using the panic state indicator and lagged residual variances

as forecasting variables. See footnote 9.
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the dynamic momentum portfolio offers improved mean-variance efficiency over the constant

volatility portfolio.

To test this notion more formally, the last two sets of rows of Panel B of Table 10 report the

alphas from regressions of the dynamic strategy returns on the constant volatility strategy

returns, and vice-versa. The results are consistent with our previous findings: in virtually every

market and asset class the dynamic momentum portfolio delivers positive and statistically

significant alpha relative to the constant volatility strategy, suggesting that the constant

volatility strategy does not span the dynamic strategy in any market or asset class. Conversely,

in every market and asset class the constant volatility strategy fails to produce a significant

alpha with respect to the dynamic strategy, suggesting that the dynamic momentum strategy

spans the constant volatility strategy in every market and asset class. These results, shown out

of sample in eight other markets and asset classes, make a compelling case for the robustness

of the dynamic momentum portfolio based on the optionality insights of momentum strategies

in every market.

Overall, the consistent evidence of the optionality of momentum strategies, conditional betas

and return premia, and the significant improvement from our dynamic weighting scheme across

many different markets and vastly different asset classes, provides a wealth of out of sample

evidence. Momentum crashes and their forecastability by bear market and ex-ante volatility

measures are a reliable and robust feature of momentum strategies that may provide clues as

to the underlying source of this return factor.13

6 Conclusions

In “normal” environments we see consistent price momentum that is both statistically and

economically strong and manifests itself across numerous equity markets and a wide range of

diverse asset classes.

However, in extreme market environments following a long market downturn, the market prices

of past losers embody a very high premium. When poor market conditions ameliorate and

13Although beyond the scope of this paper, it would be interesting to see if other momentum-type strategies,
such as earnings momentum in equities (Chan, Jegadeesh, and Lakonishok (1996)), or time-series momentum
in futures contracts (Moskowitz, Ooi, and Pedersen (2012)), or cross-momentum effects (Cohen and Frazzini
(2008)) exhibit similar features.
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the market starts to rebound, the losers experience strong gains, resulting in a “momentum

crash” as momentum strategies short these assets. We find that, in bear market states, and

in particular when market volatility is high, the down-market betas of the past-losers are low,

but the up-market betas are very large. This optionality does not appear to generally be

reflected in the prices of the past losers. Consequently, the expected returns of the past losers

are very high, and the momentum effect is reversed during these times. This feature does

not apply equally to winners during good times, however, resulting in an asymmetry in the

winner and loser exposure to market returns during extreme times.

These results are shown to be robust across eight different markets and asset classes, as well

as multiple time periods. Moreover, these crash periods are predictable: we use bear market

indicators and ex-ante volatility estimates to forecast the conditional mean and variance of

momentum strategies. Armed with these estimates, we create a simple dynamically-weighted

version of the momentum portfolio that approximately doubles the Sharpe ratio of the static

momentum strategy and is not spanned by constant volatility momentum strategies or other

factors – doing so consistently in every market, asset class, and time period we study.

What can explain these findings? We examine a variety of explanations ranging from compen-

sation for crash risk to volatility risk, to other factor risks such as the Fama and French (1993)

factors, but find that none of these explanations can account fully for our findings. For equity

momentum, a Merton (1974) story for the option-like payoffs of equities may make sense, but

the existence of the same phenomena and option-like features for momentum strategies in fu-

tures, bonds, currencies, and commodities, makes this story more challenging. Alternatively,

these effects may be loosely consistent with several behavioral findings, where in extreme

situations individuals tend to be fearful and appear to focus on losses, largely ignoring prob-

abilities.14 Whether this behavioral phenomenon is fully consistent with the empirical results

documented here is a subject for further research and would indicate that the behavior of

market participants in each of these markets and asset classes is affected similarly, despite

the fact that the average and marginal investor in these various markets are likely to be quite

different along many other dimensions.

14See Sunstein and Zeckhauser (2008), Loewenstein, Weber, Hsee, and Welch (2001), and Loewenstein
(2000).
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Appendices

A Detailed Description of Calculations

A.1 Cumulative Return Calculations

The cumulative return, on an (implementable) strategy is an investment at time 0, which
is fully reinvested at each point – i.e., where no cash is put in or taken out. That is, the
cumulative arithmetic returns between times t and T is denoted R(t, T ).

R(t, T ) =

T
∏

s=t+1

(1 + Rs) − 1,

where Rs denotes the arithmetic return in the period ending at time t, and rs = log(1 + Rs)
denotes the log-return over period s,

r(t, T ) =
T
∑

s=t+1

rs.

For long-short portfolios, the cumulative return is:

R(t, T ) =
T
∏

s=t+1

(1 + RL,s − RS,s + Rf,t) − 1,

where the terms RL,s, RS,s, and Rf,s are, respectively, the return on the long side of the
portfolio, the short side of the portfolio, and the risk-free rate. Thus, the strategy reflects the
cumulative return, with an initial investment of Vt, which is managed in the following way:

1. Using the $V0 as margin, you purchase $V0 of the long side of the portfolio, and short
$V0 worth of the short side of the portfolio. Note that this is consistent with Reg-T
requirements. Over each period s, the margin posted earns interest at rate Rf,s.

2. At then end of each period, the value of the investments on the long and the short side of
the portfolio are adjusted to reflect gains to both the long and short side of the portfolio.
So, for example, at the end of the first period, the investments in both the long and
short side of the portfolio are adjusted to set their value equal to the total value of the
portfolio to Vt+1 = Vt · (1 + RL − RS + Rf).

This methodology assumes that there are no margin calls, etc., except at the end of each
month. These calculated returns do not incorporate transaction costs.
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A.2 Calculation of Variance Swap Returns

We calculate the returns to a daily variance swap on the S&P 500 using daily observations
on the SPX and the VIX, and daily levels of the one-month Treasury bill rate. The historical
daily observations on the SPX and the VIX, beginning on January 2, 1990, are taken from the
CBOE’s VIX website.15 The daily one-month interest rate series is taken from Ken French’s
data library.

The VIX is calculated using a panel of S&P 500 index options with a wide range of strike
prices and with two maturity dates – generally the two closest-to-maturity contracts, weighted
in such a way so as to most closely approximate the swap rate for a variance swap with a
constant maturity of 30 calendar days.16 The calculation method used by the CBOE makes
the VIX equivalent to the swap rate for a variance swap on the S&P 500 over the coming
30 calendar days. However, the methodology used by the CBOE is to: (1) annualize this
variance; (2) take the square-root of the variance (to convert to volatility), multiply by 100
to convert to percentage terms.

Given the VIX construction methodology, we can calculate the daily return on a variance
swap, from day t−1 to day t, as:

Rvs,t = Dt

[

1

21

(

252

[

100·log

(

St

St−1

)]2

−VIX2
t−1

)

+
20

21

(

VIX2
t −VIX2

t−1

)

]

.

Here Dt is the 20-trading day discount factor. This is calculated as Dt = (1 + r1m,t)
20/252,

where r1m,t is the annualized one-month treasury bill yield as of day t, from Ken French’s
website. VIXt is the level of the VIX as quoted at the end of day t and St is the level of the
S&P 500, adjusted for all corporate actions, at the end of day t. Note that the factors of 252
and 100 in the equation are because the VIX is quoted in annualized, percentage terms.

This equation is given a flat forward variance curve. That is, we are implicitly making the
assumption that the swap rate on 20 trading-day and 21 trading-day variance swap rates on
day t are identical (and equal to VIX2

t ). For the market, this approximation should be fairly
accurate.

B Exposure to and of Size and Value Factors

We regress the WML momentum portfolio returns on the three Fama and French (1993)
factors consisting of the CRSP VW index return in excess of the risk-free rate, a small minus
big (SMB) stock factor, and a high BE/ME minus low BE/ME (HML) factor, all obtained

15The daily data for the new VIX are available at http://www.cboe.com/micro/VIX/historical.aspx.
16See Chicago Board Options Exchange (2003) for a full description of the VIX calculation.
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Table 11: Conditional Estimation of WML, HML, and SMB premia

This table presents the results of monthly time-series regressions. The dependent variable is indicated at
the head of each column, and is either: (1) WML; (2) the HML–devil portfolio proposed by Asness and
Frazzini (2011); the SMB portfolio return of Fama and French (1993); or (4) a portfolio which is 50% WML
and 50% HML-devil. The independent variables are: intercept α, the normalized ex-ante forecasting variable
IBσ2 ≡ (1/v̄B)IB,t−1 · σ̂2

m, and this forecasting variable interacted with the excess market return and the Fama
and French (1993) HML and SMB returns. The sample is January 1927 through March, 2013 for the WML
and SMB regressions, and January 1927-December 2012 for the HML-d and WML+HML-d portfolios. The
coefficients for α and IB,t−1σ̂

2
m are converted to annualized, percentage terms by multiplying by 12× 100.

Dependent Variable – Return Series
Vars. WML HML-d SMB WML+HML-d

α 24.93 26.95 2.96 3.14 1.91 0.34 13.41 14.08
(8.6) (9.4) (1.8) (2.2) (1.5) (0.3) (10.0) (11.0)

IBσ2 -28.80 -26.94 9.32 6.57 5.33 5.44 -12.01 -11.13
(-5.8) (-5.4) (3.3) (2.7) (2.4) (2.6) (-5.2) (-5.1)

re
m -0.17 -0.15 -0.02 0.21 -0.09

(-3.3) (-2.7) (-0.6) (9.4) (-4.0)
IBσ2 · re

m -0.54 -0.44 0.33 -0.01 -0.11
(-12.9) (-7.8) (16.3) (-0.4) (-5.8)

rSMB -0.16
(-1.9)

IBσ2 · rSMB -0.18
(-2.2)

rHML -0.38
(-4.8)

IBσ2 · rHML 0.05
(0.7)

from Ken French’s website. In addition, we interact each of the factors with the panic state
variable IBσ2. The results are reported in Table 11, where the abnormal performance of
momentum continues to be significantly more negative in bear market states, whether we
measure abnormal performance relative to the market model or to the Fama and French
(1993) three-factor model, with little difference in the point estimates.

The next two columns of the table repeat the market model regressions using HML as the
dependent variable instead of WML. For these regressions, we use the modified HML portfolio
of Asness and Frazzini (2011). Specifically, Asness and Frazzini show that the Fama and French
(1993) HML construction, by using lagged market prices in its BE/ME calculations, inherently
induces some positive covariance with momentum. They advocate using the most recent (last
month’s) price to compute BE/ME ratios in constructing their HML factor, which they term
HML-devil (HML-d), in order to examine the value effect separately from momentum. As
Table 11 shows, the abnormal return of the HML portfolio increases in the panic states,
the opposite of what we find for momentum. This is not surprising for several reasons. First,
momentum strategies buy past winners and sell past losers, while value strategies typically buy
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longer-term past losers and sell winners (see DeBondt and Thaler (1987) and Fama and French
(1996)). Also, the correlation between HML-d and UMD is approximately -0.50. Finally, this
result is consistent with the intuition for why the market-beta of the WML portfolio changes
with past market-returns. Since growth (low book-to-price) stocks have generally had high
past returns and value stocks low past returns, the same intuition suggests that HML’s beta
should be high when IB,t−1 = 1, and it is. Specifically, HML’s market beta is higher by 0.33
when IB,t−1 = 1 (t-stat = 16.3), as indicated by the interaction term. More directly, the
correlation of HML with the excess return on the market during panic states is 0.59, but
during normal times it is −0.10. Conversely, for the WML portfolio, the correlation with the
market is 0.02 during normal times and -0.71 when IB,t−1 = 1.

The next two columns of Table 11 repeat this exercise using SMB as the dependent variable.
The premium on SMB is statistically significantly higher in panic states as well, but its beta
does not change significantly during these states. This makes sense since size is a poor proxy
for recent short-term performance.

Finally, the last two columns run regressions for a 50-50 equal combination of WML and
HML-d following Asness, Moskowitz, and Pedersen (2013), who show that a combination of
value and momentum diversifies away a variety of exposures including aggregate market and
liquidity risks. Given the opposite-signed results for WML and HML-d on the panic state
variables, it is not surprising that a combination of WML and HML-d hedges some of this
risk. However, since the magnitude of the effects on WML are much larger than those of
HML, the net effect is still a reduction in returns and a decrease in beta during panic states
for the momentum-value combination.17

C Maximum Sharpe Ratio Strategy

The setting is discrete time with T periods from 1, . . . , T . We can trade in two assets, a risky
asset and a risk free asset. Our objective is to maximize the Sharpe ratio of a portfolio where,
each period, we can trade in or out of the risky asset with no cost.

Over period t + 1 – which is the span from t to t + 1 – the excess return on a risky asset r̃t+1

is distributed normally, with time-t conditional mean µt and conditional variance σ2
t . That is,

µt = Et [r̃t+1] and σ2
t = Et

[

(r̃t+1 − µt)
2
]

. (10)

Suppose further that at t = 0 the agent knows µt and σt for t ∈ {0, . . . , T − 1}.

The agent’s objective is to maximize the full period Sharpe ratio of a managed portfolio. The
agent manages the portfolio by placing, at the beginning of each period, a fraction wt of the

17One possibility for the dominance of momentum here is that the 50-50 momentum-value weighting is based
on equal dollar allocation to both rather than equal risk allocation. Since momentum is more volatile than
value, this may be tilting the overall exposure of the combination portfolio more toward momentum.
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value of the managed portfolio in the risky asset, and a fraction 1 − wt in the risk-free asset.
The time t expected excess return and variance of the managed portfolio in period t + 1 is
then given by:

r̃p,t+1 = wtr̃t+1 ∼ N
(

wtµt, w
2
t σ

2
t

)

.

The Sharpe ratio over the T periods is:

SR =
E

[

1
T

∑T
t=1 r̃p,t

]

√

E

[

1
T

∑T
t=1(r̃p,t − r̄p)2

]

where the r̄p in the denominator is the sample average per period excess return ( 1
T

∑T
t=1 r̃p,t).

Given the information structure of this optimization problem, maximizing the Sharpe ratio is
equivalent to solving the constrained maximization problem:

max
w0,...,wT−1

E

[

1

T

T
∑

t=1

r̃p,t

]

subject to E

[

1

T

T
∑

t=1

(r̃p,t − r̄)2

]

= σ2
p.

If the period length is sufficiently short, then E[(r̃p,t− r̄)2] ≈ σ2
t = Et

[

(r̃t+1 − µt)
2
]

. With this
approximation, substituting in the conditional expectations for the managed portfolio from
equation (10) gives the Lagrangian:

max
w0,...,wT−1

L ≡ max
wt

(

1

T

T−1
∑

t=0

wtµt

)

− λ

(

1

T

T−1
∑

t=0

w2
t σ

2
t = σ2

p

)

.

The T first order conditions for optimality are:

∂L

∂wt

∣

∣

∣

∣

wt=w∗

t

=
1

T

(

µt − 2λw∗
t σ

2
t

)

= 0 ∀t ∈ {0, . . . , T−1}

giving an optimal weight on the risky asset at time t of:

w∗
t =

(

1

2λ

)

µt

σ2
t

.

That is, the weight placed on the risky asset at time t should be proportional to the expected
excess return over the next period, and inversely proportional to the conditional variance.

D GJR-GARCH Forecasts of Momentum Volatility

The construction of the dynamic portfolio strategy we explore in Sections 4 and 5.4 requires
estimates of the conditional mean return and the conditional volatility of the momentum
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strategies. To forecast the volatility we first fit a GARCH process to the daily momentum
returns of each asset class. Specifically, we fit the GARCH model proposed by Glosten,
Jagannathan, and Runkle (1993), and summarized by equations (6) and (7). The maximum
likelihood estimates and t-statistics are:

parameter: µ̂ ω̂ α̂ γ̂ β̂
ML-est 0.86×10−3 1.17×10−6 0.111 -0.016 0.896

t-stat (14.7) (4.2) (14.4) (-1.6) (85.1)

We then regress the future realized 22-day WML return volatility σ̂22,t+1 on the GJR-GARCH
estimate (σ̂GARCH,t) and the lagged 126-day WML return volatility (σ̂126,t), and a constant.
The OLS coefficient estimates and t-statistics are:

coefficient: α̂ σ̂GARCH,t σ̂126,t

coef. est. 0.0010 0.6114 0.2640
t-stat (3.0) (16.7) (7.2)

with a regression R2
adj = 0.617.18 The fitted estimate of σ̂22,t+1 is then used as an input to the

dynamic WML portfolio weight, as discussed in Sections 4 and 5.4.

The same estimation procedure is used to generate a forecast of the future 22-day WML return
volatility in each of the alternative asset classes. The maximum-likelihood GJR-GARCH
parameter estimates and t-statistics, and regression estimates and t-statistics are presented in
Table 12.

The parameters above and in Table 12 tell an interesting story: first, in the regressions, the
coefficient on the GJR-GARCH estimate of volatility is always significant, and the coefficient
on the lagged 126-day volatility is always smaller, but not always statistically significant.
There appears to be a longer-lived component of volatility that σ̂126,t is capturing.

Also interesting is the leverage parameter γ. In each of the asset classes, the maximum-
likelihood estimate of γ is negative: this means that a strong negative return on the WML
portfolio is generally associated with a decrease in the WML return variance. As noted
elsewhere in the literature, this coefficient is positive at high levels of statistical significance
for the market return (see, e.g., Glosten, Jagannathan, and Runkle (1993) and Engle and Ng
(1993).)

18The lag one residual autocorrelation is 0.013 (t-stat = 0.44), justifying the use of OLS standard errors.
Also, the t-statistics on the lag 2-5 autocorrelations never exceed 1.14. It is interesting that the autocorrelation
of the dependent variable of the regression (σ̂22,t) is large and statistically significant (ρ̂1 = 0.55, t-stat = 24.5).
This suggests that the autocorrelation in σ̂22,t results from its forecastable component. The residual from its
projection on the forecast variables is uncorrelated at any conventional statistically significant level.
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Table 12: Maximum Likelihood Estimates of GJR-GARCH Model for Momentum Portfolios

The upper panel of this table presents the maximum likelihood estimates of the coefficients of the GJR-GARCH model – given by equations (6) and
(7) – fitted to each of the momentum portfolios we examine in Section 5.4. Start and end dates for each of the 11 daily return series are also given
in yyyy-mm-dd format. Note that the estimates of the µ and ω coefficients are multiplied by 103 and 106, respectively. Maximum Likelihood based
t-statistics are given in parentheses. For β, this t-statistic tests whether β = 1; for all other parameters it tests whether the parameter is zero. The
lower panel presents the results of the monthly regressions in which we regress the future one month daily volatility of the WML portfolio on an
intercept (α), on the lagged 126 day WML return volatility (σ126), and on the lagged GJM-GARCH volatility (σGARCH).

GARCH estimates by Asset Class
EU JP UK US GLB FI CM FX EQ GA GAll

start 1990-01-02 1990-01-02 1990-01-02 1972-02-01 1972-02-01 1983-01-03 1972-02-01 1979-01-01 1978-01-02 1972-02-01 1972-02-01
end 2013-05-31 2013-05-31 2013-05-31 2013-05-31 2013-05-31 2013-06-03 2013-06-03 2013-06-03 2013-06-03 2013-06-03 2013-05-31

µ(×103) 0.387 0.187 0.316 0.314 0.124 0.024 0.516 0.238 0.322 0.154 0.159
(5.3) (3.0) (3.4) (6.2) (6.7) (0.6) (5.0) (4.2) (5.3) (5.8) (5.6)

ω(×106) 0.569 0.616 0.364 0.298 0.024 0.027 1.525 0.455 0.619 0.034 0.035
(2.4) (4.3) (3.3) (4.1) (3.3) (1.4) (4.1) (4.3) (3.9) (1.6) (1.6)

α 0.089 0.160 0.094 0.104 0.107 0.060 0.055 0.092 0.074 0.037 0.046
(6.4) (9.8) (7.7) (12.4) (12.1) (4.1) (9.0) (9.0) (6.9) (3.7) (4.2)

γ -0.020 -0.007 -0.022 -0.026 -0.024 -0.002 -0.008 -0.020 -0.002 -0.011 -0.007
(-1.6) (-1.6) (-2.0) (-2.8) (-2.0) (-1.6) (-2.3) (-1.8) (-1.6) (-1.6) (-0.8)

β 0.912 0.848 0.918 0.907 0.909 0.945 0.940 0.909 0.916 0.966 0.955
(-5.9) (-11.4) (-8.9) (-11.1) (-11.4) (-4.2) (-8.1) (-9.6) (-7.1) (-2.9) (-3.2)

Regression estimates by Asset Class
α(×102) 0.053 0.083 0.067 0.036 0.016 0.082 0.177 0.144 0.096 0.065 0.034

(1.3) (1.8) (1.4) (1.5) (1.5) (4.7) (3.0) (4.4) (2.8) (4.0) (2.8)
σ̂126 0.334 0.126 0.159 0.227 0.280 0.475 0.161 0.125 0.233 0.113 0.180

(4.7) (1.8) (2.1) (4.3) (5.1) (5.7) (2.2) (1.8) (3.5) (1.1) (2.2)
σ̂GARCH 0.561 0.754 0.758 0.682 0.632 0.220 0.665 0.581 0.594 0.637 0.655

(8.0) (11.4) (9.9) (13.1) (11.6) (2.9) (9.1) (9.3) (9.2) (6.1) (7.9)
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