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Abstract

We must infer what the future situation would be without our inter-

ference, and what changes will be wrought by our actions. Fortunately, or

unfortunately, none of these processes is infallible, or indeed ever accurate

and complete. Knight (1921)

1 Introduction

Asset pricing theory has long recognized that financial markets compensate investors who

are exposed to some components of uncertainty. This is where macroeconomics comes into

play. The economy-wide shocks, the primary concern of macroeconomists, by their nature

are not diversifiable. Exposures to these shocks cannot be averaged out with exposures

to other shocks. Thus returns on assets that depend on these macroeconomic shocks

reflect “risk” premia and are a linchpin connecting macroeconomic uncertainty to financial

markets. A risk premium reflects both the price of risk and the degree of exposure to risk.

I will be particularly interested in how the exposures to macroeconomic impulses are priced

by decentralized security markets.

How do we model the dynamic evolution of the macroeconomy? Following the tra-

dition initiated by Slutsky (1927, 1937) and Frisch (1933), I believe it is best captured
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Samuelson, Enrique Sentana, José Scheinkman, Martin Schneider, Stephen Stigler, Harald Uhlig, Amir
Yaron, an anonymous referees and especially Jaroslav Borovička, James Heckman, Thomas Sargent and
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by stochastic processes with restrictions; exogenous shocks repeatedly perturb a dynamic

equilibrium through the model’s endogenous transmission mechanisms. Bachelier (1900),

one of the developers of Brownian motion, recognized the value of modeling financial prices

as responses to shocks.1 It took economists fifty years to discover and appreciate his in-

sights. (It was Savage who alerted Samuelson to this important line of research in the early

1950’s.) Prior to that, scholars such as Yule (1927), Slutsky (1927, 1937) and Frisch (1933)

had explored how linear models with shocks and propagation mechanisms provide attrac-

tive ways of explaining approximate cyclical behavior in macro time series. Similarities

in the mathematical underpinnings of these two perspectives open the door to connecting

macroeconomics and finance.

Using random processes in our models allows economists to capture the variability of

time series data, but it also poses challenges to model builders. As model builders, we

must understand the uncertainty from two different perspectives. Consider first that of

the econometrician, standing outside an economic model, who must assess its congruence

with reality, inclusive of its random perturbations. An econometrician’s role is to choose

among different parameters that together describe a family of possible models to best mimic

measured real world time series and to test the implications of these models. I refer to this

as outside uncertainty. Second, agents inside our model, be it consumers, entrepreneurs,

or policy makers, must also confront uncertainty as they make decisions. I refer to this as

inside uncertainty, as it pertains to the decision-makers within the model. What do these

agents know? From what information can they learn? With how much confidence do they

forecast the future? The modeler’s choice regarding insiders’ perspectives on an uncertain

future can have significant consequences for each model’s equilibrium outcomes.

Stochastic equilibrium models predict risk prices, the market compensations that in-

vestors receive for being exposed to macroeconomic shocks. A challenge for econometric

analyses is to ascertain if their predictions are consistent with data. These models reveal

asset pricing implications via stochastic discount factors. The discount factors are stochas-

tic to allow for exposures to alternative macroeconomic random outcomes to be discounted

differently. Moreover, the compounding of stochastic discount factors shows how market

compensations change with the investment horizon. Stochastic discount factors thus pro-

vide a convenient vehicle for depicting the empirical implications of the alternative models.

1See Davis and Etheridge (2006) for a translation and commentary and Dimson and Mussavian (2000)
for a historical discussion of the link between Bachelier’s contribution and subsequent research on efficient
markets.
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I will initially describe the methods and outcomes from an econometrician outside the

model.

Stochastic discount factors are defined with respect to a probability distribution rele-

vant to investors inside the model. Lucas and others imposed rational expectations as an

equilibrium concept, making the probability distribution relevant to investors inside the

model coincide with the probability distribution implied by the solution to the model. It

is an elegant response for how to model agents inside the model, but its application to

the study of asset pricing models has resulted in empirical puzzles as revealed by formal

econometric methods that I will describe. These and other asset pricing anomalies have

motivated scholars to speculate about investor beliefs and how they respond to or cope with

uncertainty. In particular, the anomalies lead me and others to explore specific alternatives

to the rational expectations hypothesis.

In this essay I will consider alternatives motivated in part by a decision theory that

allows for distinctions between three alternative sources of uncertainty: i) risk conditioned

on a model, ii) ambiguity about which is the correct model among a family of alternatives,

and iii) potential misspecification of a model or a family of possible models. These issues are

pertinent to outside econometricians, but they also may be relevant to inside investors. I

will elaborate on how the distinctions between uncertainty components open the door to the

investigation of market compensations with components other than more narrowly defined

risk prices. Motivated by empirical evidence, I am particularly interested in uncertainty

pricing components that fluctuate over time.

Why is it fruitful to consider model misspecification? In economics and as in other

disciplines, models are intended to be revealing simplifications, and thus deliberately are not

exact characterizations of reality; it is therefore specious to criticize economic models merely

for being wrong. The important criticisms are whether our models are wrong in having

missed something essential to the questions under consideration. Part of a meaningful

quantitative analysis is to look at models and try to figure out their deficiencies and the

ways in which they can be improved. A more subtle challenge for statistical methods is to

explore systematically potential modeling errors in order to assess the quality of the model

predictions. This kind of uncertainty about the adequacy of a model or model family is not

only relevant for econometricians outside the model but potentially also for agents inside

the models.

This essay proceeds as follows. In Section 2, I review the development of time series

econometric modeling including the initiation of rational expectations econometrics. In
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Section 3, I review my contributions to the econometric study of partially specified models,

adapting to the study of asset pricing and macroeconomic uncertainty. I describe methods

and approaches to the study of fully specified models based on asset pricing considerations

in Section 4. In Section 5, I explore the consequences for asset pricing models when investor

beliefs are not in full accord with an underlying model, which can result in investor behavior

that resembles extreme risk aversion. In Section 6, I review perspectives on model ambiguity

which draw on work by decision theorists and statisticians to revisit the framework that I

sketch in Section 5. I draw some conclusions in Section 7.
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2 Rational Expectations Econometrics

Rational expectations econometrics explores structural stochastic models of macroeconomic

time series with the ambition to be a usable tool for policy analysis. It emerged in response

to a rich history of modeling and statistical advances. Yule (1927) and Slutsky (1927, 1937)

provided early characterizations of how time series models can generate interesting cyclical

behavior by propagating shocks. Yule (1927) showed that a second-order autoregression

could reproduce intriguing patterns in the time series. He fit this model to sunspot data,

known to be approximately but not exactly periodic. The model was built using indepen-

dent and identically distributed (iid) shocks as building blocks. The model produced a

damped periodic response to random impulses. Similarly, Slutsky (1927, 1937) constructed

models that were moving-averages of iid shocks and showed how such processes could be

arbitrarily close to exact periodic sequences.2 He also demonstrated how moving-average

type models could account for British business cycle data.

Frisch (1933) (who shared the first Nobel Prize in economics with Tinbergen) pushed

this agenda further by exploring how to capture dynamic economic phenomenon through

probability models with explicit economic underpinnings. Frisch discussed propagation

from initial conditions and described an important role for random impulses building in

part on the work of Yule (1927) and Slutsky (1927, 1937). In effect, Frisch (1933) introduced

impulse response functions to economics as a device to understand the intertemporal impact

of shocks on economic variables. Haavelmo (1944) took an additional step by providing

foundations for the use of statistical methods to assess formally the stochastic models. This

literature set the foundation for a modern time series econometrics that uses economics to

interpret evidence in a mathematically formal way. It featured important interactions

among economics, mathematics and statistics and placed a premium on formal model

building.3 Haavelmo (1944) confronts uncertainty as an econometrician outside the model

that is to be estimated and tested.

Investment and other decisions are in part based on people’s views of the future. Once

2I cite two versions of Slutsky’s paper. The first one was published in Russian. The second one was
published in English a decade later with a more comprehensive set of results. English translations of the
first paper were circulated well in advance of 1937.

3Frisch, in particular, nurtured this ambitious research agenda by his central role in the foundational
years of the Econometric Society. His ambition is reflected in the 1933 mission statement he wrote for the
journal Econometrica: “... Experience has shown that each of these three viewpoints, that of statistics,
economic theory, and mathematics, is a necessary, but not by itself a sufficient, condition for a real un-
derstanding of the quantitative relations in modern economic life. It is the unification of all three that is
powerful. And it is this unification that constitutes econometrics.”
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economic decision-makers are included into formal dynamic economic models, their expec-

tations come into play and become an important ingredient to the model. This challenge

was well appreciated by economists such as Pigou, Keynes and Hicks, and their suggestions

have had durable impact on model building. Thus the time series econometrics research

agenda had to take a stand on how people inside the model made forecasts. Alternative

approaches were suggested including static expectations, adaptive expectations or appeals

to data on beliefs; but these approaches left open how to proceed when using dynamic

economic models to assess hypothetical policy interventions.

A productive approach to this modeling challenge has been to add the hypothesis of

rational expectations. This hypothesis appeals to long histories of data to motivate the

modeling of expectations. The Law of Large Numbers gives an approximation whereby

parameters that are invariant over time are revealed by data, and this revelation gives a

model builder a way to formalize the expectations of economic investors inside our models.4

This approach to completing the specification of a stochastic equilibrium model was initi-

ated within macroeconomics by Muth (1961) and Lucas (1972). Following Lucas (1972) in

particular, rational expectations became an integral part of an equilibrium for a stochastic

economic model.

The aim of structural econometrics is to provide a framework for policy analysis and

the study of counterfactuals. This vision is described in Marschak (1953) and articulated

formally in the work of Hurwicz (1962). While there are a multitude of interesting implica-

tions of the rational expectations hypothesis, perhaps the most important one is its role in

policy analysis. It gives a way to explore policy experiments or hypothetical changes that

are not predicated on systematically fooling people. See Sargent and Wallace (1975) and

Lucas (1976) for a discussion.5

From an econometric standpoint, rational expectations introduced important cross-

equation restrictions. These recognize that parameters governing the dynamic evolution of

exogenous impulses to the model must also be present in decision rules and equilibrium rela-

tions. These restrictions reflect how decision-makers within the model are forward-looking.

4More than three hundred years ago, Jacob Bernoulli proved a result that implied a Law of Large
Numbers. He was motivated in part by social problems for which probabilities had to be estimated
empirically, in contrast to typical gambling problems. Bernoulli’s result initiated an enduring discussion of
both the relevance of his simple model specification and of the approximation he established. See Stigler
(2014) for an interesting retrospective on Bernoulli’s contribution.

5To be clear, rational expectations gives a way to compare distinct stochastic equilibria but not the
transitions from one to another. For an interesting extension that allows for clustering of observations near
alternative self-confirming equilibria in conjunction with escapes from such clusters see Sargent (1999).
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For instance, an investment choice today depends on the beliefs about how profitable such

investments will be in the future. Investors forecast the future, and the rational expecta-

tions hypothesis predicts how they do this. The resulting cross-equation restrictions add a

new dimension to econometric analysis; but these restrictions are built on the premise that

investors have figured much out about how the future will evolve. (See Sargent (1973), Wal-

lis (1980) and my first published paper, Hansen and Sargent (1980), for characterizations of

these restrictions.6) To implement this approach to rational expectations econometrics, a

researcher is compelled to specify correctly the information sets of economic actors.7 When

building actual stochastic models, however, it is often not clear what information should be

presumed on the part of economic agents, how they should use it, and how much confidence

they have in that use.

The introduction of random shocks as impulses to a dynamic economic model in con-

junction with the assumption of rational expectations is an example of uncertainty inside

a model. Under a rational expectations equilibrium, an investor inside the model knows

the model-implied stochastic evolution for the state variables relevant for decision making

and hence the likely consequences of the impulses. An econometrician also confronts un-

certainty outside a model because of his or her lack of knowledge of parameters or maybe

even a lack of confidence with the full model specification. There is an asymmetry between

the inside and the outside perspectives found in rational expectations econometrics that

I will turn to later. But first, I will discuss an alternative approach to imposing rational

expectations in econometric analyses.

6While this was my first publication of a full length paper, this was not my first publication. My first
was a note published in Economic Letters.

7See Sims (2012) for a discussion of the successes and limitations of implementing the Haavelmo (1944)
agenda to the study of monetary policy under rational expectations.
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3 Robust Econometrics under Rational Expectations

My econometrics paper, Hansen (1982b), builds on a long tradition in econometrics of

“doing something without having to do everything.” This entails the study of partially

specified models, that is models in which only a subset of economic relations are formally

delineated. I added to this literature by analyzing such estimation problems in greater

generality, giving researchers more flexibility in modeling the underlying time series while

incorporating some explicit economic structure. I studied formally a family of Generalized

Method of Moments (GMM) estimators, and I adapted these methods to applications that

study linkages between financial markets and the macroeconomy.8 By allowing for partial

specification, these methods gain a form of robustness. They are immune to mistakes in

how one might fill out the complete specification of the underlying economic model.

The approach is best thought of as providing initial steps in building a time series

econometric model without specifying the full econometric model. Consider a research

program that studies the linkages between the macroeconomy and financial markets. One

possibility is to construct a fully specified model of the macroeconomy including the linkages

with financial markets that are presumed to exist. This is a lot to ask in early stages of

model development. Of course, an eventual aim is to produce a full model of stochastic

equilibrium.

The econometric tools that I developed are well suited to study a rich family of as-

set pricing models, among other things. Previously, Ross (1978) and Harrison and Kreps

(1979) produced mathematical characterizations of asset pricing in frictionless asset pric-

ing markets implied by the absence of arbitrage. Their work provides a general way to

capture how financial markets value risky payoffs. My own research and that with collab-

orators built on this conceptual approach, but with an important reframing. Our explicit

consideration of stochastic discounting, left implicit in the Ross (1978) and Harrison and

Kreps (1979) framework, opened the door to new ways to conduct empirical studies of

8My exposure to using GMM estimators as a vehicle to represent a broad family of estimators origi-
nally came from Christopher Sims’ lectures. As a graduate student I became interested in central limit
approximations that allow for econometric error terms to possess general types of temporal dependence by
using central limit approximations of the type demonstrated by Gordin (1969). I subsequently established
formally large sample properties for GMM estimators in such circumstances. Interestingly, Econometrica
chose not to publish many of the formal proofs for results in my paper. Instead they were published thirty
years later by the Journal of Econometrics, see Hansen (2012). Included in my original submission and
in the published proofs is a Uniform Law of Large Numbers for stationary ergodic processes. See Hansen
(2001) and Ghysels and Hall (2002) for further elaborations and discussion about the connection between
GMM and related statistics literatures. See Arellano (2003) for a discussion of applications to panel data.
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asset pricing models using GMM and related econometric methods. I now describe these

methods.

3.1 A GMM Approach to Emprical Asset Pricing

A productive starting point in empirical asset pricing is

E

[(
St+`
St

)
Yt+` | Ft

]
= Qt (1)

where S > 0 is a stochastic discount factor (SDF) process. In formula (1), Yt+` is a vector

of payoffs on assets at time t + `, and Qt is a vector of corresponding asset prices. The

event collection (sigma algebra), Ft, captures information available to an investor at date

t. The discount factor process is stochastic in order to adjust market values for risk. Each

realized state is discounted differently and this differential discounting reflects investor

compensation for risk exposure. Rational expectations is imposed by presuming that the

conditional expectation operator is consistent with the probability law that governs the

actual data generation. With this approach a researcher does not specify formally that

probability and instead “lets the data speak”.

Relations of type (1) are premised on investment decisions made in optimal ways and

are fundamental ingredients in stochastic economic models. The specification of a SDF

process encapsulates some economics. It is constructed from the intertemporal marginal

rates of substitution of marginal investors. Investors consider the choice of consuming

today or investing to support opportunities to consume in the future. There are a variety

of investment opportunities with differential exposure to risk. Investors’ risk aversion enters

the SDF and influences the nature of the investment that is undertaken. While I have used

the language of financial markets, this same formulation applies to investments in physical

and human capital. In a model of a stochastic equilibrium, this type of relation holds

when evaluated at equilibrium outcomes. Relation (1) by itself is typically not sufficient

to determine fully a stochastic equilibrium, so focusing on this relation alone leads us to

a partially specified model. Additional modeling ingredients are required to complete the

specification. The presumption is that whatever those details might be, the observed time

series come from a stochastic equilibrium that is consistent with an equation of the form

(1).

Implications of relation (1) including the role of SDFs and the impact of conditioning
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information used by investors was explored systematically in Hansen and Richard (1987).

But the origins of this empirically tractable formulation traces back to Rubinstein (1976),

Lucas (1978) and Grossman and Shiller (1981) and the conceptual underpinnings to Ross

(1978) and Harrison and Kreps (1979).9 To implement formula (1) as it stands, we need to

specify the information set of economic agents correctly. The Law of Iterated Expectations

allows us to understate the information available to economic agents.10 For instance let

F̂t ⊂ Ft denote a smaller information set used by an external analyst. By averaging over

the finer information set Ft conditioned on the coarser information set F̂t, I obtain

E

[(
St+`
St

)
(Yt+`)

′ − (Qt)
′ | F̂t

]
= 0. (2)

I now slip in conditioning information through the “back door” by constructing a con-

formable matrix Zt with entries in the reduced information set (that are F̂t measurable).

Then

E

[(
St+`
St

)
(Yt+`)

′Zt − (Qt)
′Zt | F̂t

]
= 0.

Under an asset pricing interpretation, (Yt+`)
′Zt is a synthetic payoff vector with a corre-

sponding price vector (Qt)
′Zt. Finally, we form the unconditional expectation by averaging

over the coarser conditioning information set F̂t:

E

[(
St+`
St

)
(Yt+`)

′Zt − (Qt)
′Zt

]
= 0. (3)

This becomes an estimation problem once we parameterize the SDF in terms of observables

and unknown parameters to be estimated.

Hansen and Singleton (1982) is an initial example of this approach.11 In that work

9The concept of a SDF was first introduced in Hansen and Richard (1987). Stochastic discount factors
are closely connected to the “risk-neutral” probabilities used in valuing derivative claims. This connection
is evident by dividing the one-period SDF by its conditional mean and using the resulting random variable
to define a new one-period conditional probability distribution, the risk neutral distribution.

10In his study of interest rates, Shiller (1972) in his PhD dissertation suggested omitted information as a
source of an “error term” for an econometrician. In Hansen and Sargent (1980), we built on this insight by
contrasting implications for a “Shiller error-term” as a disturbance term to processes that are unobserved
to an econometrician and enter structural relations. In Hansen and Sargent (1991) we show how to allow
for omitted information in linear or log-linear time series models using quasi-likelihood methods.

11An earlier application of GMM inference is found in my work Hansen and Hodrick (1980). In that paper
we studied the empirical relationship between the logarithm of a future spot exchange and the logarithm of
the current forward rate and other possible predictors. We applied ordinary least squares in our work, but
with corrected standard errors. Others were tempted to (and in fact did) apply generalized least squares
(GLS) to “correct for” serial correlation, but applied in this setting GLS is statistically inconsistent. The
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we consider the case in which the SDF process can be constructed from observables along

with some unknown parameters. Economics comes into play in justifying the construction

of the SDF process and sometimes in the construction of returns to investment. From

an econometric perspective, time series versions of Laws of Large Numbers and Central

Limit Theorems give us approximate ways to estimate parameters and test restrictions as

in Hansen (1982b).

In Hansen (1982b) I also studied statistical efficiency for a class of GMM estimators

given a particular choice of Z in a manner that extends an approach due to Sargan (1958,

1959).12 When (3) has more equations than unknown parameters, multiple GMM estima-

tors are the outcome of using (at least implicitly) alternative linear combinations of these

equations equal to the number of parameters. Since there are many possible ways to em-

bark on this construction, there is a family of GMM estimators. This family of estimators

has an attainable efficiency bound derived and reported in Hansen (1982b).13 When the

number of equations exceeds the number of free parameters, there is also a direct way to

test equations not used formally in estimation. While nesting estimators into a general

GMM framework has great pedagogical value, I was particularly interested in applying a

GMM approach to problems requiring new estimators as in many of the applications to

financial economics and elsewhere.14

Notice that the model, as written down in equation (3), is only partially specified.

Typically we cannot invert this relation, or even its conditional counterpart, to deduce a

full time series evolution for economic aggregates and financial variables.15 Other relations

would have to be included in order to obtain a full solution to the problem.

counterpart to the moment conditions studied here are the least squares orthogonality conditions. The
contract interval played the role of ` in this least squares analysis and was typically larger than one. In
subsequent work, Hansen and Hodrick (1983), we used a SDF formulation to motivate further empirical
characterizations, which led us to confront over-identification. See also Bilson (1981) and Fama (1984) who
featured a cross-currency analysis.

12See Arellano (2002) for a nice discussion relating GMM estimation to the earlier work of Sargan.
13See Hansen (2007b) for a pedagogical discussion of GMM estimation including discussions of large

sample statistical efficiency and tests.
14Other econometricians have subsequently found value in unifying the treatment of GMM estimators

into a broader type of extremum estimators. This, however, misses some of the special features of statis-
tical efficiency within a GMM framework and does not address the issue of how to construct meaningful
estimators from economic models.

15For those reluctant to work with partially specified models, Lucas (1978) showed how to close a special
case of this model by considering an endowment economy. But from an empirical standpoint, it is often not
necessary to take the endowment nature of the economy literally. The consumption from the endowment
economy may be conceived of as the equilibrium outcome of a model with production and preserves the
same pricing relations.
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3.2 Further Econometric Challenges

I now digress temporarily and discuss some econometric extensions that I and others con-

tributed to.

3.2.1 Semiparametric Efficiency

Since the model is only partially specified, the estimation challenge leads directly to what

is formally called a semi-parametric problem. Implicitly the remainder of the model can be

posed in a nonparametric manner. This gives rise to a problem with a finite-dimensional

parameter vector of interest and an infinite-dimensional “nuisance” parameter vector rep-

resenting the remainder of the model. This opens the door to the study of semi-parametric

efficiency of a large class of estimators as will be evident from the discussion that fol-

lows. In typical GMM problems, the actual introduction of the nuisance parameters can

be sidestepped.

Relation (2) conditions on the information set of economic agents. We have great flex-

ibility in choosing the matrix process Z. The entries of Zt should be in the F̂t information

set, but this still leaves many options when building a Z process. This flexibility gives

rise to an infinite class of estimators. In Hansen (1982b), I studied statistical efficiency

given a particular choice of Z. This approach, however, understates the class of possible

GMM estimators in a potentially important way. Hansen (1985) shows how to construct

an efficiency bound for the much larger (infinite dimensional) class of GMM estimators.

This efficiency bound is a greatest lower bound on the asymptotic efficiency of the implied

GMM estimators. Not surprisingly, it is more challenging to attain this bound in practice.

For some related but special (linear) time series problems Hansen and Singleton (1996) and

West et al. (2009) discuss implementation strategies.

There is a more extensive literature exploring these and closely related questions in an

iid (independent and identically distributed) data setting, including Chamberlain (1987),

who looks at an even larger set of estimators. By connecting to an extensive statistics

literature on semiparametric efficiency, he shows that this larger set does not improve the

statistical efficiency relative to the GMM efficiency bound. Robinson (1987), Newey (1990),

and Newey (1993) suggest ways to construct estimators that attain this efficiency bound for

some important special cases.16 Finally, given the rich array of moment restrictions, there

16Relatedly, Zhang and Gijbels (2003), Kitamura et al. (2004) and Antoine et al. (2007) studied meth-
ods based on restricting nonparametric estimates of conditional density functions to attain Chamberlain
(1987)’s efficiency bound in an estimation environment with independent and identically distributed data
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are opportunities for more flexible parameterizations of, say, a SDF process. Suppose the

conditional moment restrictions contain a finite-dimensional parameter vector of interest

along with an infinite-dimensional (nonparametric) component. Chamberlain (1992) con-

structs a corresponding efficiency bound and Ai and Chen (2003) extend this analysis and

justify parameter estimation for such problems. While these richer efficiency results have

not been shown in the time series environment I consider, I suspect that they can indeed

be extended.

3.2.2 Model Misspecification

The approaches to GMM estimation that I have described so far presume a given parame-

terization of a SDF process. For instance, the analysis of GMM efficiency in Hansen (1982b)

and Hansen (1985) and related literature presumes that the model is correctly specified for

one value of the unknown (to the econometrician) parameter. Alternatively, we may seek

to find the best choice of a parameter value even if the pricing restrictions are only approx-

imately correct. In our paper, Hansen and Jagannathan (1997), we suggest a modification

of GMM estimation in which appropriately scaled pricing errors are minimized. We pro-

pose this as a way to make model comparisons in economically meaningful ways. Recently,

Gosh et al. (2012) adopt an alternative formulation of model misspecification extending

the approach of Stutzer (1995) described later. This remains an interesting and important

line of investigation that parallels the discussion of model misspecification in other areas

of statistics and econometrics. I will return to this topic later in this essay.

3.2.3 Nonparametric Characterization

A complementary approach to building and testing new parametric models is to treat the

SDF process as unobserved by the econometrician. It is still possible to deduce empirical

characterizations of such processes implied by asset market data. This analysis provides

insights into modeling challenges by showing what properties a valid SDF process must

possess.

It turns out that there are potentially many valid stochastic discount factors over a

payoff horizon `:

s ≡ St+`
St

generation.
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that will satisfy either (2) or the unconditional counterpart (3). For simplicity, focus on

(3).17 With this in mind, let

y′ = (Yt+`)
′ Zt

q′ = (Qt)
′ Zt

where for notational simplicity, I omit the time subscripts on the left-hand side of this

equation. In what follows I will assume some form of a Law of Large Numbers so that we

can estimate such entities. See Hansen and Richard (1987) for a discussion of such issues.

Rewriting (3) with this simpler notation:

E [sy′ − q′] = 0. (4)

This equation typically implies many solutions for an s > 0. In our previous discussion of

parametric models, we excluded many solutions by adopting a parametric representation

in terms of observables and an unknown parameter vector. In practice this often led to a

finding that there were no solutions, that is no values of s solving (4), within the paramet-

ric family assumed for s. Using Hansen (1982b), this finding was formalized as a test of

the pricing restrictions. The finding alone left open the question: rejecting the paramet-

ric restrictions for what alternative? Thus a complementary approach is to characterize

propertied of the family of s’s that do satisfy (4). These solutions might well violate the

parametric restriction.

The interesting challenge is how to characterize the family of SDFs that solve (4) in

useful ways. Here I follow a general approach that is essentially the same as that in Almeida

and Garcia (2013). I choose this approach both because of its flexibility and because it

includes many interesting special cases used in empirical analysis. Consider a family of

convex functions φ defined on the positive real numbers:18

φ(r) =
1

θ(1 + θ)

[
(r)1+θ − 1

]
(5)

for alternative choices of the parameter θ. The specification θ = 1 is commonly used in

17For conditional counterparts to some of the results I summarize see Gallant et al. (1990) and Cochrane
and Hansen (1992).

18This functional form is familiar from economists’ use of power utility (in which case we use −φ to obtain
a concave function), from statisticians’ use of F-divergence measures between two probability densities, the
Box-Cox transformation, and the applications in the work of Cressie and Read (1984).

14



empirical practice, in which case φ is quadratic. We shall look for lower bounds on the

E
[
φ
( s

Es

)]
by solving the convex optimization problem:19

λ = inf
s>0

E
[
φ
( s

Es

)]
subject to E [sy′ − q′] = 0. (6)

By design we know that

E
[
φ
( s

Es

)]
≥ λ.

Notice that E
[
φ
(
s
Es

)]
and hence λ are nonnegative by Jensen’s Inequality because φ is

convex and φ(1) = 0. When θ = 1, √
2E
[
φ
( s

Es

)]
is the ratio of the standard deviation of s to its mean and

√
2λ is the greatest lower bound

on this ratio.

From the work of Ross (1978) and Harrison and Kreps (1979), arbitrage considerations

imply the economically interesting restriction s > 0 with probability one. To guarantee a

solution to optimization problem (6), however, it is sometimes convenient to include s’s that

are zero with positive probability. Since the aim is to produce bounds, this augmentation

can be justified for mathematical and computational convenience. Although this problem

optimizes over an infinite-dimensional family of random variables s, the dual problem that

optimizes over the Lagrange multipliers associated with the pricing constraint (4) is often

quite tractable. See Hansen et al. (1995) for further discussion.

Inputs into this calculation are contained in the pair (y, q) and a hypothetical mean Es.

If we have time series data on the price of a unit payoff at date t+ `, Es can be inferred by

averaging the date t prices over time. If not, by changing Es we can trace out a frontier

of solutions. An initial example of this is found in Hansen and Jagannathan (1991) where

19Notice that the expectation is also an affine transformation of the moment generating function for
log s.
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we constructed mean-standard deviation tradeoffs for SDFs by setting θ = 1.20 21

While a quadratic specification of φ (θ = 1) has been the most common one used

in empirical practice, other approaches have been suggested. For instance, Snow (1991)

considers larger moments by setting θ to integer values greater than one. Alternatively,

setting θ = 0 yields

E
[
φ
( s

Es

)]
=
E [s (log s− logEs)]

Es
,

which Stutzer (1995) featured this in his analysis. When θ = −1,

E
[
φ
( s

Es

)]
= −E log s+ logEs

and use of this specification of φ gives rise to a bound that has been studied in several

papers including Bansal and Lehmann (1997), Alvarez and Jermann (2005), Backus et al.

(2011) and Backus et al. (2014). These varying convex functions give alternative ways to

characterize properties of SDFs that work through bounding their stochastic behavior.22

He and Modest (1995) and Luttmer (1996) further extended this work by allowing for the

pricing equalities to be replaced by pricing inequalities. These inequalities emerge when

transaction costs render purchasing and selling prices distinct.23

3.3 The Changing Price of Uncertainty

Empirical puzzles are only well defined within the context of a model. Hansen and Singleton

(1982, 1983) and others documented empirical shortcomings of macroeconomic models with

power utility versions of investor preferences. The one-period SDF of such a representative

20This literature was initiated by a discussion in Shiller (1982) and my comment on that discussion in
Hansen (1982a). Shiller argued why a volatility bound on the SDF is of interest, and he constructed an
initial bound. In my comment, I showed how to sharpen the volatility bound, but without exploiting
that s > 0. Neither Shiller nor I explored mean-standard deviation tradeoffs that are central in Hansen
and Jagannathan (1991). In effect, I constructed one point on the frontier characterized in Hansen and
Jagannathan (1991).

21When θ is one, the function φ continues to be well defined and convex for negative real numbers.
As noted in Hansen and Jagannathan (1991), if the negative choices of s are allowed in the optimization
problem (which weakens the bound), there are quasi-analytical formulas for the minimization problems
with simple links to Sharpe ratios commonly used in empirical finance.

22The continuous-time limit for the conditional counterpart results in one-half times the local variance
for all choices of φ for Brownian information structures.

23There has been some work on formal inferential methods associated with these methods. For instance,
see Burnside (1994), Hansen et al. (1995), Peñaranda and Sentana (2011) and Chernozhukov et al. (2013).
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consumer is:
St+1

St
= exp(−δ)

(
Ct+1

Ct

)−ρ
(7)

where Ct is consumption, δ is the subjective rate of discount and 1
ρ

is the intertempo-

ral elasticity of substitution. Hansen and Singleton and others were the bearers of bad

news: the model didn’t match the data even after taking account of statistical inferential

challenges.24

This empirical work nurtured a rich literature exploring alternative preferences and

markets with frictions. Microeconomic evidence was brought to bear that targeted financial

market participants when constructing the SDF’s. These considerations and the resulting

modeling extensions led naturally to alternative specifications on SDF’s and suggestions

for how they might be measured.

The nonparametric methods leading to bounds also added clarity to the empirical ev-

idence. SDF’s encode compensations for exposure to uncertainty because they discount

alternative stochastic cash flows according to their sensitivity to underlying macroeco-

nomic shocks. Thus empirical evidence about SDF’s sheds light on the risk prices that

investors need as compensations for being exposed to aggregate risk. Using these nonpara-

metric methods, the empirical literature has found that the risk price channel is a fertile

source for explaining observed variations in securities prices and asset returns. SDF’s are

highly variable (Hansen and Jagannathan (1991)). The unconditional variability in SDF’s

could come from two sources: on-average conditional variability or variation in conditional

means. As argued by Cochrane and Hansen (1992), it is really the former. Conditional

variability in SDF’s implies that market-based compensations for exposure to uncertainty

are varying over time in important ways. Sometimes this observation about time variation

gets bundled into the observation about time-varying risk premia. Risk premia, however,

depend both on the compensation for being exposed to risk (the price of risk) and on how

big that exposure is to risk (the quantity of risk). Price variability, exposure variability our

a combination of the two could be the source of fluctuations in risk premia. Deducing the

probabilistic structure of SDF’s from market data thus enables us to isolate the price effect.

In summary, this empirical and theoretical literature gave compelling reasons to explore

24Many scholars make reference to the “equity premium puzzle.” Singleton and I showed how to provide
statistically rigorous characterizations of this and other empirical anomalies. The puzzling implications
coming from this literature are broader than the expected return differential between an aggregate stock
portfolio and bonds and extend to differential returns across a wide variety of securities. See, for instance,
Fama and French (1992) for empirical evidence on expected return differences, and see Cochrane (2008)
and the discussion by Hansen (2008) for an exchange about the equity premium and related puzzles.
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sources of risk price variation not previously captured, and provided empirical direction to

efforts to improve investor preferences and market structures within these models.

Campbell and Cochrane (1999) provided an influential specification of investor pref-

erences motivated in part by this empirical evidence. Consistent with the view that time

variation in uncertainty prices is vital for understanding financial market returns, they con-

structed a model in which SDF’s are larger in magnitude in bad economic times than good.

This paper is prominent in the asset pricing literature precisely because it links the time

series behavior of risk prices to the behavior of the macroeconomy (specifically aggregate

consumption), and it suggests one preference-based mechanism for achieving this varia-

tion. Under the structural interpretation provided by the model, the implied risk aversion

is very large in bad economic times and modest in good times as measured by the history

of consumption growth. This work successfully avoided the need for large risk aversion in

all states of the world, but it did not avoid the need for large risk aversion in some states.

The statistician in me is intrigued by the possibility that observed incidents of large risk

aversion might be proxying for investor doubts regarding the correctness of models. I will

have more to say about that later.
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4 Economic Shocks and Pricing Implications

While the empirical methods in asset pricing that I described do not require that an econo-

metrician identify the fundamental macroeconomic shocks pertinent to investors, this short-

cut limits the range of questions that can be addressed. Without accounting for shocks,

we can make only an incomplete assessment of the consequences for valuation of macroeco-

nomic uncertainty. To understand fully the pricing channel, we need to know how the SDF

process itself depends on fundamental shocks. This dependence determines the equilibrium

compensations to investors that are exposed to shocks. We may think of this as valuation

accounting at the juncture between the Frisch (1933) vision of using shock and impulses in

stochastic equilibrium models and the Bachelier (1900) vision of asset values that respond

to the normal increments of a Brownian motion process. Why? Because the asset holders

exposed to the random impulses affecting the macroeconomy require compensation, and

the equilibrating forces affecting borrowers and lenders interacting in financial markets

determine those compensatory premia.

In what follows, I illustrate two advantages to a more complete specification of the

information available to investors that are reflected in my work.

4.1 Pricing Shock Exposure over Alternative Horizons

First, I explore more fully how a SDF encodes risk compensation over alternative investment

horizons. I suggest a way to answer this question by describing valuation counterparts to the

impulse characterizations advocated by Frisch (1933) and used extensively in quantitative

macroeconomics since Sims (1980) proposed a multivariate and empirical counterpart for

these characterizations. Recall that an impulse response function shows how alternative

shocks tomorrow influence future values of macroeconomic variables. These shocks also

represent alternative exposures to macroeconomic risk. The market-based compensations

for these exposures may differ depending on the horizon over which a cash flow is realized.

Many fully specified macroeconomic models proliferate shocks, including random changes

in volatility, as a device for matching time series. While the additional shocks play a

central role in fitting time series, eventually we must seek better answers to what lies

within the black box of candidate impulses. Understanding their role within the models

is central to opening this black box in search of the answers. Empirical macroeconomists’

challenges for identifying shocks for the macroeconomy also have important consequences

for financial markets and the role they play in the transmission of these shocks. Not all
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types of candidate shocks are important for valuation.

I now discuss how we may distinguish which shock exposures command the largest

market compensation and the impact of these exposures over alternative payoff horizons.

I decompose the risk premia into risk prices and risk exposures using sensitivity analyses

on underlying asset returns. To be specific, let X be an underlying Markov process and W

a vector of shocks that are random impulses to the economic model. The state vector Xt

depends on current and past shocks. I take as given a solved stochastic equilibrium model

and reveal its implications for valuation. Suppose that there is an implied stochastic factor

process S that evolves as:

logSt+1 − logSt = ψs (Xt,Wt+1) . (8)

Typically economic models imply that this process will tend to decay over time because

of the role that S plays as a discount factor. For instance, for the yield on a long-term

discount bond to be positive,

lim
t→∞

1

t
logE

[
St
S0

| X0 = x

]
< 0.

Specific models provide more structure to the function ψs relating the stochastic decay

rate of S to the current state and next period shock. In this sense, (8) is a reduced-form

relation. Similarly, consider a one-period, positive cash-flow G that satisfies:

logGt+1 − logGt = ψg (Xt,Wt+1) . (9)

The process G could be aggregate consumption, or it could be a measure of aggregate

corporate earnings or some other process. The logarithm of the expected one-period return

of a security with this payoff is:

νt = logE

[
Gt+1

Gt

| Ft
]
− logE

[
St+1Gt+1

StGt

| Ft
]
. (10)

So-called risk return tradeoffs emerge as we change the exposure of the cash flow to different

components of the shock vector Wt+1.

Since cash flow growth Gt+1

Gt
depends on the components of Wt+1 as a source of risk,

exposure is altered by changing how the cash flow depends on the underlying shocks. When

I refer to risk prices, formally I mean the sensitivity of the logarithm of the expected return
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given on the left-hand side of (10) to changes in cash-flow risk. I compute risk prices from

measuring how νt changes as we alter the cash flow, and compute risk exposures from

examining the corresponding changes in the logarithm of the expected cash flow growth:

logE
[
Gt+1

Gt
| Ft
]

(the first-term on the right-hand side of (10)).

These calculations are made operational by formally introducing changes in the cash-

flows and computing their consequences for expected returns. When the changes are scaled

appropriately, the outcomes of both the price and exposure calculations are elasticities

familiar from price theory. To operationalize the term changes, I must impose some ad-

ditional structure that allows a researcher to compute a derivative of some type. Thus

I must be formal about changes in Gt+1

Gt
as a function of Wt+1. One way to achieve this

formality is to take a continuous-time limit when the underlying information structure is

that implied by an underlying Brownian motion as in the models of financial markets as

originally envisioned by Bachelier (1900). This reproduces a common notion of a risk price

used in financial economics. Another possibility is to introduce a perturbation parameter

that alters locally the shock exposure, but maintains the discrete-time formulation.

These one-period or local measures have multi-period counterparts obtained by mod-

eling the impact of small changes in the components of Wt+1 on cash flows in future time

periods, say Gt+τ
Gt

, for τ ≥ 1. Proceeding in this way, we obtain a valuation counterpart

to impulse response functions featured by Frisch (1933) and by much of the quantitative

macroeconomics literature. They inform us which exposures require the largest compensa-

tions and how these compensations change with the investment horizon. I have elaborated

on this topic in my Fisher-Schultz Lecture paper (Hansen (2011)), and I will defer to that

and related papers for more specificity and justification.25 My economic interpretation of

these calculations presumes a full specification of investor information as is commonly the

case when analyzing impulse response functions.

4.2 A Recursive Utility Model of Investor Preferences

Next I consider investor preferences that are particularly sensitive to the assumed available

information. These preferences are constructed recursively using continuation values for

prospective consumption processes, and they are featured prominently in the macro-asset

pricing literature. With these preferences, the investor cares about intertemporal compo-

sition of risk as in Kreps and Porteus (1978). As a consequence, general versions of the

25See Hansen et al. (2008), Hansen and Scheinkman (2009), Borovička et al. (2011), Hansen and
Scheinkman (2012), Borovička and Hansen (2014), and Borovička et al. (2014b).
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recursive utility model make investor preferences potentially sensitive to the details of the

information available in the future. As I will explain, this feature of investor preferences

makes it harder to implement a “do something without doing everything” approach to

econometric estimation and testing.

The more general recursive utility specification nests the power utility model commonly

used in macroeconomics as a special case. Interest in a more general specification was mo-

tivated in part by some of the statistical evidence that I described previously. Stochastic

equilibrium models appealing to recursive utility featured in the asset pricing literature

were initially advocated by Epstein and Zin (1989) and Weil (1990). They provide re-

searchers with a parameter to alter risk preferences in addition to the usual power utility

parameter known to determine the intertemporal elasticity of substitution. The one-period

SDF measured using the intertemporal marginal rate of substitution is:

St+1

St
= exp(−δ)

(
Ct+1

Ct

)−ρ [
Vt+1

Rt(Vt+1)

]ρ−γ
(11)

where Ct is equilibrium consumption, δ is the subjective rate of discount, 1
ρ

is the elasticity

of intertemporal substitution familiar from power utility models, Vt is the forward-looking

continuation value of the prospective consumption process, andRt(Vt+1) is the risk adjusted

continuation value:

Rt(Vt+1) =
(
E
[
(Vt+1)

1−γ | Ft
]) 1

1−γ .

The parameter γ governs the magnitude of the risk adjustment. The presence of the

the forward-looking continuation values in the stochastic discount factor process adds to

the empirical challenge in using these preferences in an economic model. When ρ = γ,

the forward-looking component drops out from the SDFs and the preferences become the

commonly-used power utility model as is evident by comparing (7) and (11). Multi-period

SDFs are the corresponding products of single period discount factors.

The empirical literature has focused on what seems to be large values for the parameter

γ that adjusts for the continuation value risk. Since continuation values reflect all current

and prospective future consumption, increasing γ enhances the aversion of the decision

maker to consumption risk. Applied researchers have only been too happy to explore this

channel. A fully solved out stochastic equilibrium model represents C and V as part the

model solution. For instance logC might have an evolution with the same form as logG

as specified in (9) along a balanced stochastic growth trajectory. Representing S as in (8)
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presumes a solution for Vt or more conveniently Vt
Ct

as a function of Xt along with a risk

adjusted counterpart to Vt and these require a full specification of investor information.

For early macro-finance applications highlighting the computation of continuation values

in equilibrium models, see Hansen et al. (1999) and Tallarini (2000). The subsequent work

of Bansal and Yaron (2004) showed how these preferences in conjunction with forward

looking beliefs about stochastic growth and volatility have a potentially important impact

on even one-period (in discrete time) or instantaneous (in continuous time) risk prices

through the forward-looking channel. Hansen (2011) and Borovička et al. (2011) show that

the prices of growth rate shocks are large for all payoff horizons with recursive utility and

when γ is much larger than ρ. By contrast, for power utility models with large values of

ρ = γ, the growth rate shock prices start off small and only eventually become large as the

payoff horizon increases. The analyses in Hansen et al. (2008) and Restoy and Weil (2011)

also presume that one solves for the continuation values of consumption plans or their

equivalent. This general approach to the use of recursive utility for investor preferences

makes explicit use of the information available to investors and hence does not allow for

the robustness that I discussed in section 3.26

Sometimes there is a way around this sensitivity to the information structure when

conducting an econometric analysis. The empirical approach of Epstein and Zin (1991)

assumes that an aggregate equity return measures the return on an aggregate wealth port-

folio. In this case the continuation value relative to a risk-adjusted counterpart that appears

in formula (11) is revealed by the return on the wealth portfolio for alternative choices of

the preference parameters. Thus there is no need for an econometrician to compute con-

tinuation values provided that data are available on the wealth portfolio return. Epstein

and Zin (1991) applied GMM methods to estimate preference parameters and test model

restrictions by altering appropriately the approach in Hansen and Singleton (1982). Given

that the one-period SDF can be constructed from consumption and return data, the full

investor information set does not have to be used in the econometric implementation.27

Campbell (1993) and Campbell and Vuolteenaho (2004) explored a related approach using

a log-linear approximation, but this research allowed for market segmentation. Full par-

26Similarly, many models with heterogenous consumers/investors and incomplete markets imply pricing
relation (1) for marginal agents defined as those who participate in the market over the relevant invest-
ment period. Such models require either microeconomic data and/or equilibria solutions computed using
numerical methods.

27In contrast to recursive utility models with ρ 6= γ, often GMM-type methods can be applied to habit
persistence models of the type analyzed by Sundaresan (1989), Constantinides (1990) and Heaton (1995)
without having to specify the full set of information available to investors.
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ticipation in financial markets is not required because the econometric specification that

is used to study the risk-return relation avoids having to use aggregate consumption. Like

Epstein and Zin (1991), this approach features the return on the wealth portfolio as mea-

sured by an aggregate equity return, but now prospective beliefs about that return also

contribute to the (approximate) SDF.

4.3 A Continuing Role for GMM-based Testing

Even when fully specified stochastic equilibria are formulated and used as the basis for

estimation, the important task of assessing the performance of pricing implications remains.

SDFs constructed from fully specified and estimated stochastic equilibrium models can be

constructed ex post and used in testing the pricing implications for a variety of security

returns. These tests can be implemented formally using direct extensions of the methods

that I described in Section 3. Thus the SDF specification remains an interesting way

to explore empirical implications, and GMM-style statistical tests of pricing restrictions

remain an attractive and viable way to analyze models.

In the remainder of this essay I will speculate on the merits of one productive approach

to addressing empirical challenges based in part on promising recent research.
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5 Misspecified Beliefs

So far I have focused primarily on uncertainty outside the model by exploring econometric

challenges, while letting risk averse agents inside the model have rational expectations.

Recall that rational expectations uses the model to construct beliefs about the future.28 I

now consider the consequences of altering beliefs inside the model for two reasons. First,

investor beliefs may differ from those implied by the model even if other components of

the model are correctly specified. For instance, when historical evidence is weak, there is

scope for beliefs that are different from those revealed by infinite histories of data. Second,

if some of the model ingredients are not correct but only approximations, then the use of

model-based beliefs based on an appeal to rational expectations is less compelling. Instead

there is a rationale for the actors inside the model to adjust their beliefs in face of potential

misspecification.

For reasons of tractability and pedagogical simplicity, throughout this and the next

section I use a baseline probability model to represent conditional expectations, but not

necessarily the beliefs of the people inside the model. Presuming that economic actors

use the baseline model with full confidence would give rise to a rational expectations

formulation, but I will explore departures from this approach. I present a tractable way to

analyze how varying beliefs will alter this baseline probability model. Also, I will continue

my focus on the channel by which SDFs affect asset values. A SDF and the associated risk

prices, however, are only well-defined relative to a baseline model. Alterations in beliefs

affect SDFs in ways that can imitate risk aversion. They also can provide an additional

source of fluctuations in asset values.

My aim in this section is to study whether statistically small changes in beliefs can

imitate what appears to be a large amount of risk aversion. While I feature the role of

statistical discipline, explicit considerations of both learning and market discipline also

come into play when there are heterogenous consumers. For many environments there may

28A subtle distinction exists between two efforts to implement rational expectations in econometric
models. When the rational expectations hypothesis is imposed in a fully specified stochastic equilibrium
model, this imposition is part of an internally consistent specification of the model. A model builder may
impose these restrictions prior to looking at the data. The expectations become “rational” once the model
is fit to data, assuming that the model is correctly specified. I used GMM and related methods to examine
only a portion of the implications of a fully specified, fully solved model. In such applications, an empirical
economist is not able to use a model solution to deduce the beliefs of economic actors. Instead these
methods presume that the beliefs of the economic actors are consistent with historical data as revealed by
the Law of Large Numbers. This approach presumes that part of the model is correctly specified, and uses
the data as part of the implementation of the rational expectations restrictions.
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well be an intriguing interplay between these model ingredients, but I find it revealing to

narrow my focus. As is evident from recent work by Blume and Easley (2006), Kogan

et al. (2011) and Borovička (2013), distorted beliefs can sometimes survive in the long run.

Presumably when statistical evidence for discriminating among models is weak, the impact

of market selection, whereby there is a competitive advantage of confidently knowing the

correct model, will at the very least be sluggish. In both this and the next section, I am

revisiting a theme considered by Hansen (2007a).

5.1 Martingale Models of Belief Perturbations

Consider again the asset pricing formula but now under an altered or perturbed belief

relative to a baseline probability model:

Ẽ

[(
S̃t+`

S̃t

)
Yt+` | Ft

]
= Qt (12)

where the Ẽ is used to denote the perturbed expectation operator and S̃ is the SDF

derived under the altered expectations. Mathematically, it is most convenient to represent

beliefs in an intertemporal environment using a strictly positive (with probability one)

stochastic process M with a unit expectation for all t ≥ 0. Specifically, construct the

altered conditional expectations via the formula:

Ẽ [Bτ | Ft] = E

[(
Mτ

Mt

)
Bτ | Ft

]
for any bounded random variable Bτ in the date τ ≥ t information set Fτ . The martingale

restriction imposed on M is necessary for the conditional expectations for different calendar

dates to be consistent.29

29The date zero expectation of random variable Bt that is in the Ft information set may be computed
in multiple ways

Ẽ [Bt | F0] = E

[(
Mτ

M0

)
Bt | F0

]
= E

[(
Mt

M0

)
Bt | F0

]
for any τ ≥ t. For this equality to hold for all bounded random variables Bt in the date t information set,
E (Mτ | Ft) = Mt. This verifies that M is a martingale relative to {Ft : t ≥ 0}.
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Using a positive martingale M to represent perturbed expectations we rewrite (12) as:

E

[(
Mt+`S̃t+`

MtS̃t

)
Yt+` | Ft

]
= Qt

which matches our original pricing formula (1) provided that

S = MS̃. (13)

This factorization emerges because of the two different probability distributions that are

in play. One comes from the baseline model and another is that used by investors. The

martingale M makes the adjustment in the probabilities. Risk prices relative to the mis-

specified ·̃ distribution are distinct from those relative to the baseline model. This difference

is captured by (13).

Investor models of risk aversion are reflected in the specification of S̃. For instance,

example (7) implies an S̃ based on consumption growth.30 The martingale M would then

capture the belief distortions including perhaps some of the preferred labels in the writings

of others such as “animal spirits,” “overconfidence,” “pessimism,” etc. Without allowing

for belief distortions, many empirical investigations resort to what I think of as large values

of risk aversion. We can see, however, from factorization (13) that once we entertain belief

distortions it becomes challenging to disentangle risk considerations from belief distortions.

My preference as a model builder and assessor is to add specific structure to these belief

distortions. I do not find it appealing to letM be freely specified. My discussion that follows

suggests a way to use some tools from statistics to guide such an investigation. They help

us to understand if statistically small belief distortions in conjunction with seemingly more

reasonable (at least to me) specifications of risk aversion can explain empirical evidence

from asset markets.

30When ρ 6= γ in (11), continuation values come into play; and they would have to be computed using

the distorted probability distribution. Thus M would also play a role in the construction of S̃. This
would also be true in models with investor preferences that displayed habit persistence that is internalized
when selecting investment plans. Chabi-Yo et al. (2008) nest some belief distortions inside a larger class of
models with state-dependent preferences and obtain representations in which belief distortions also have
an indirect impact on SDFs.
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5.2 Statistical Discrepancy

I find it insightful to quantify the statistical magnitude of a candidate belief distortion

by following in part the analysis in Anderson et al. (2003). Initially, I consider a specific

alternative probability distribution modeled using a positive martingale M with unit expec-

tation, and I ask if this belief distortion could be detected easily from data. Heuristically

when the martingale M is close to one, the probability distortion is small. From a statis-

tical perspective we may think of M as a relative likelihood process of a perturbed model

vis a vis a baseline probability model. Notice that Mt depends on information in Ft, and

can be viewed as a “data based” date t relative likelihood. The ratio Mt+1

Mt
has conditional

expectation equal to unity, and this term reflects how new data that arrive between dates

t and t+ 1 are incorporated into the relative likelihood.

A variety of statistical criteria measure how close M is to unity. Let me motivate one

such model by bounding probabilities of mistakes. Notice that for a given threshold η,

logMt − η ≥ 0

implies that

[Mt exp(−η)]α ≥ 1 (14)

for positive values of α. Only α’s that satisfy 0 < α < 1 interest me because only these α’s

provide meaningful bounds. From (14) and Markov’s Inequality,

Pr {logMt ≥ η | F0) ≤ exp(−ηα)E [(Mt)
α | F0] . (15)

The left-hand side gives the probability that a log-likelihood formed with a history of length

t exceeds a specified threshold η. Given inequality (15),

1

t
logPr {logMt ≥ η | F0} ≤ −

ηα

t
+

1

t
logE [(Mt)

α | F0] . (16)

The right-hand side of (16) gives a bound for the log-likelihood ratio to exceed a given

threshold η for any 0 < α < 1. The first term on the right-hand side converges to zero as

t gets large but often the second term does not and indeed may have a finite limit that

is negative. Thus the negative of the limit bounds the decay rate in the probabilities as

they converge to zero. When this happens we have an example of what is called a large

deviation approximation. More data generated under the benchmark model makes it easier
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to rule out an alternative model. The decay rate bound underlies a measure of what is

called Chernoff (1952) entropy. Dynamic extensions of Chernoff entropy are given by first

taking limits as t gets arbitrarily large and then optimizing by the choice of α:

κ(M) = − inf
0<α<1

lim sup
t→∞

1

t
logE [(Mt)

α | F0] .

Newman and Stuck (1979) characterize Markov solutions to the limit used in the optimiza-

tion problem. Minimizing over α improves the sharpness of the bound. If the minimized

value is zero, the probability distortion vanishes and investors eventually settle on the

benchmark model as being correct.

A straightforward derivation shows that even when we change the roles of the bench-

mark model and the alternative model, the counterpart to κ(M) remains the same.31 Why

is Chernoff entropy interesting? When this common decay rate is small, even long histories

of data are not very informative about model differences.32 Elsewhere I have explored the

connection between this Chernoff measure and Sharpe ratios commonly used in empirical

finance, see Anderson et al. (2003) and Hansen (2007a).33 The Chernoff calculations are

often straightforward when both models (the benchmark and perturbed models) are Marko-

vian. In general, however, it can be a challenge to use this measure in practice without

imposing considerable a priori structure on the alternative models.

In what follows, I will explore discrepancy measures that are similar to this Chernoff

measure but are arguably more tractable to implement. What I describe builds directly on

my discussion of GMM methods and extensions. Armed with factorization (13), approaches

that I suggested for the study of SDFs can be adapted to the study of belief distortions. I

elaborate in the discussion that follows.

5.3 Ignored Belief Distortions

Let me return to GMM estimation and model misspecification. Recall that the justification

for GMM estimation is typically deduced under the premise that the underlying model is

31With this symmetry and other convenient properties of κ(M), we can interpret the measure as a metric
over (equivalence classes of) martingales.

32Bayesian and max-min decision theory for model selection both equate decay rates in type I and type
II error rates.

33The link is most evident when a one-period (in discrete time) or local (in continuous time) measure
of statistical discrimination is used in conjunction with a conditional normal distribution, instead of the
large t measure described here.
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correctly specified. The possibility of permanent belief distortions, say distortions for which

κ(M) > 0, add structure to the model misspecification. But this is not enough structure

to identify fully the belief distortion unless an econometrician uses sufficient asset payoffs

and prices to reveal the modified SDF. Producing bounds with this extra structure can

still proceed along the lines of those discussed in Section 3.2.3 with some modifications. I

sketch below one such approach.

Suppose the investors in the model are allowed to have distorted beliefs, and part of the

estimation is to deduce the magnitude of the distortions. How big would these distortions

need to be in a statistical sense in order to satisfy the pricing restrictions? What follows

makes some progress in addressing this question. To elaborate, consider again the basic

pricing relation with distorted beliefs written as unconditional expectation:

E

[(
Mt+`S̃t+`

MtS̃t

)
(Yt+`)

′Zt − (Qt)
′Zt

]
= 0.

As with our discussion of the study of SDFs without parametric restrictions, we allow for a

multiplicity of possible martingales and impose bounds on expectations of convex functions

of the ratio Mt+`

Mt
.

To deduce restrictions on M , for notational simplicity I drop the t subscripts and write

the pricing relation as:

E (ms̃y′ − q′) = 0

E (m− 1) = 0. (17)

To bound properties of m solve

inf
m>0

E [φ(m)] (18)

subject to (17) where φ is given by equation (5). This formulation nests many of the

so-called F -divergence measures for probability distributions including the well known

Kullback-Leibler divergence (θ = −1, 0). A Chernoff-type measure can be imputed by

computing the bound for −1 < θ < 0 and optimizing after an appropriate rescaling of the

objective by θ(1 + θ). As in the previous analysis of Section 3.2.3, there may be many solu-

tions to the equations given in (17). While the minimization problem selects one of these,

I am interested in this optimization problem to see how small the objective can be in a

statistical sense. If the infimum of the objective is small, then statistically small changes in

distributions suffice to satisfy the pricing restrictions. Such departures allow for “behavior
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biases” that are close statistically to the benchmark probabilities used in generating the

data.

I have just sketched an unconditional approach to this calculation by allowing condi-

tioning information to be used through the “back door” with the specification of Z but

representing the objective and constraints in terms of unconditional expectations. It is

mathematically straightforward to study a conditional counterpart, but the statistical im-

plementation is more challenging. Application of the Law of Iterated Expectations still

permits an econometrician to condition on less information than investors, so there contin-

ues to be scope for robustness in the implementation. By omitting information, however,

the bounds are weakened. By design, this approach allows for the SDF to be misspecified,

but in a way captured by distorted beliefs. If the SDF S̃ depends on unknown parame-

ters, say subjective discount rates, intertemporal elasticities of substitution or risk aversion

parameters, then the parameter estimation can be included as part of the minimization

problem. Parameter estimation takes on a rather different role in this framework than

in GMM estimation. The large sample limits of the resulting parameter estimators will

depend on the choice of θ unless (as assumed in much of existing econometrics literature)

there are no distortions in beliefs.34 Instead of featuring these methods as a way to get

parameter estimators, they have potential value in helping applied econometricians infer

how large probability distortions in investor beliefs would have to be from the vantage point

of statistical measures of discrepancy. Such calculations would be interesting precursors or

complements to a more structured analysis of asset pricing with distorted beliefs.35 They

could be an initial part of an empirical investigation and not the ending point as in other

work using bounds in econometrics.

34Extensions of a GMM approach have been suggested based on an empirical likelihood approach fol-
lowing Qin and Lawless (1994) and Owen (2001) (θ = −1), a relative-entropy approach of Kitamura and
Stutzer (1997) (θ = 0), a quadratic discrepancy approach of Antoine et al. (2007) (θ = 1) and other re-
lated methods. Interestingly, the quadratic (θ = 1) version of these methods coincides with a continuously
updating GMM estimator of Hansen et al. (1996). Empirical likelihood methods and their generalizations
estimate a discrete data distribution given the moment conditions such as pricing restrictions. From the
perspective of parametric efficiency, Newey and Smith (2004) show these methods provide second-order
asymptotic refinements to what is often a “second-best” efficiency problem. Recall that the statistical
efficiency problem studied in Hansen (1982b) took the unconditional moment conditions as given and did
not seek to exploit the flexibility in their construction giving rise to a second-best problem. Perhaps more
importantly, these methods sometimes have improvements in finite sample performance but also can be
more costly to implement. The rationales for such methods typically abstract from belief distortions of the
type featured here and typically focus on the case of iid data generation.

35Although Gosh et al. (2012) do not feature belief distortions, with minor modification and reinterpre-
tation their approach fits into this framework with θ = 0.
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Martingales are present in SDF processes, even without resort to belief distortions.

Alvarez and Jermann (2005), Hansen and Scheinkman (2009), Hansen (2011) and Bakshi

and Chabi-Yo (2012) all characterize the role of martingale components to SDF’s and their

impact on asset pricing over long investment horizons. Alvarez and Jermann (2005), Bakshi

and Chabi-Yo (2012) and Borovička et al. (2014a) suggest empirical methods that bound

this martingale component using a very similar approach to that described here. Since

there are multiple sources for martingale components to SDF’s, adding more structure to

what determines other sources of long-term pricing can play an essential role in quantifying

the martingale component attributable to belief distortions.

In summary, factorization (13) gives an abstract characterization of the challenge faced

by an econometrician outside the model trying to disentangle the effects of altered beliefs

from the effects of risk aversion on the part of investors inside the model. There are a

variety of ways in which beliefs could be perturbed. Many papers invoke “animal spirits”

to explain lots of empirical phenomenon in isolation. However, these appeals alone do not

yield the formal modeling inputs needed to build usable and testable stochastic models.

Adding more structure is critical to scientific advancement if we are to develop models that

are rich enough to engage in the type of policy analysis envisioned by Marschak (1953),

Hurwicz (1962) and Lucas (1976). What follows uses decision theory to motivate some

particular constructions of the martingale M .36

Next I explore one strategy for adding structure to the martingale alterations to beliefs

that I introduced in this section.

36An alternative way to relax rational expectations is to presume that agents solve their optimization
problems using the expectations measured from survey data. See Piazzesi and Schneider (2013) for a recent
example of this approach in which they fit expectations to time series data to produce the needed model
inputs.
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6 Uncertainty and Decision Theory

Uncertainty often takes a “back seat” in economic analyses using rational expectations

models with risk averse agents. While researchers have used large and sometimes state

dependent risk aversion to make the consequences of exposure to risk more pronounced,

I find it appealing to explore uncertainty in a conceptually broader context. I will draw

on insights from decision theory to suggest ways to enhance the scope of uncertainty in

dynamic economic modeling. Decision theorists, economists and statisticians have wrestled

with uncertainty for a very long time. For instance, prominent economists such as Keynes

(1921) and Knight (1921) questioned our ability to formulate uncertainty in terms of precise

probabilities. Indeed Knight (1921) posed a direct challenge to time series econometrics:

We live in a world full of contradiction and paradox, a fact of which perhaps the

most fundamental illustration is this: that the existence of a problem of knowl-

edge depends on the future being different than the past, while the possibility

of the solution of the problem depends on the future being like the past.

While Knight’s comment goes to the heart of the problem, I believe the most productive

response is not to abandon models but to exercise caution in how we use them. How might

we make this more formal? I think we should use model misspecification as a source of

uncertainty. One approach that has been used in econometric model-building is to let

approximation errors be a source for random disturbances to econometric relations. It is

typically not apparent, however, where the explicit structure comes from when specifying

such errors; nor is it evident that substantively interesting misspecifications are captured

by this approach. Moreover, this approach is typically adopted for an outside modeler but

not for economic actors inside the model. I suspect that investors or entrepreneurs inside

the models we build also struggle to forecast the future.

My co-authors and I, along with many others, are reconsidering the concept of uncer-

tainty and exploring operational ways to broaden its meaning. Let me begin by laying out

some constructs that I find to be helpful in such a discussion. When confronted with mul-

tiple models, I find it revealing to pose the resulting uncertainty as a two-stage lottery. For

the purposes of my discussion, there is no reason to distinguish unknown models from un-

known parameters of a given model. I will view each parameter configuration as a distinct

model. Thus a model, inclusive of its parameter values, assigns probabilities to all events

or outcomes within the model’s domain. The probabilities are often expressed by shocks
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with known distributions and outcomes are functions of these shocks. This assignment of

probabilities is what I will call risk. By contrast there may be many such potential models.

Consider a two-stage lottery where in stage one we select a model and in stage two we draw

an outcome using the model probabilities. Call stage one model ambiguity and stage two

risk that is internal to a model.

To confront model ambiguity, we may assign subjective probabilities across models (in-

cluding the unknown parameters). This gives us a way of averaging model implications.

This approach takes a two-stage lottery and reduces it to a single lottery through subjective

averaging. The probabilities assigned by each of a family of models are averaged using the

subjective probabilities. In a dynamic setting in which information arrives over time, we

update these probabilities using Bayes’ Rule. de Finetti (1937) and Savage (1954) advocate

this use of subjective probability. It leads to an elegant and often tractable way to proceed.

While both de Finetti (1937) and Savage (1954) gave elegant defenses for the use of sub-

jective probability, in fact they both expressed some skepticism or caution in applications.

For example, de Finetti (as quoted by Dempster (1975) based on personal correspondence)

wrote:37

Subjectivists should feel obligated to recognize that any opinion (so much more

the initial one) is only vaguely acceptable .... So it is important not only to

know the exact answer for an exactly specified initial problem, but what happens

changing in a reasonable neighborhood the assumed initial opinion.

Segal (1990) suggested an alternative approach to decision theory that avoids reducing

a two-stage lottery into a single lottery. Preserving the two-stage structure opens the

door to decision making in which the behavioral responses for risk (stage two) are distinct

from those for what I will call ambiguity (stage one). The interplay between uncertainty

and dynamics adds an additional degree of complexity into this discussion, but let me

abstract from that complexity temporarily. Typically there is a recursive counterpart to

this construction that incorporates dynamics and respects the abstraction that I have just

described. It is the first stage of this lottery that will be the focus of much of the following

discussion.

37Savage (1954) No matter how neat modern operational definitions of personal probability may look, it
is usually possible to determine the personal probabilities of events only very crudely.
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6.1 Robust Prior Analysis and Ambiguity Aversion

One possible source of ambiguity, in contrast to risk, is in how to assign subjective probabil-

ities across the array of models. Modern decision theory gives alternative ways to confront

this ambiguity from the first stage in ways that are tractable. Given my desire to use

formal mathematical models, it is important to have conceptually appealing and tractable

ways to represent preferences in environments with uncertainty. Such tools are provided

by decision theory. Some of the literature features axiomatic development that explores

the question of what is a rational response to uncertainty.

The de Finetti quote suggests the need for a prior sensitivity analysis. When there is a

reference to a decision problem, an analysis with multiple priors can deduce bounds on the

expected utility consequences of alternative decisions, and more generally a mapping from

alternative priors into alternative expected outcomes. Building on discussions in Walley

(1991) and Berger (1994), there are multiple reasons to consider a family of priors.This

family could represent the views of alternative members of an audience, but they could also

capture the ambiguity to a single decision maker struggling with which prior should be used.

Ambiguity aversion as conceived by Gilboa and Schmeidler (1989) and others confronts

this latter situation by minimizing the expected utility for each alternative decision rule.

The procedure by which decision rule with the largest over these minima yields what is

sometimes called max-min utility.38

Max-min utility has an extension whereby the minimization over a set of priors is re-

placed by a minimization over priors subject to penalization. The penalization limits the

scope of the prior sensitivity analysis. The penalty is measured relative to a benchmark

prior used as a point of reference. A discrepancy measure for probability distributions, like

for instance some of the ones I discussed previously, enforce the penalization. See Mac-

cheroni et al. (2006) for a general analysis and Hansen and Sargent (2007) for implications

using the relative entropy measure that I already mentioned. Their approach leads to what

is called variational preferences.

For either form of ambiguity aversion, with some additional regularity conditions, a

version of the Min-Max Theorem rationalizes a worst-case prior. The chosen decision rule

under ambiguity aversion is also the optimal decision rule if this worst-case prior were

instead the single prior of the decision maker. Dynamic counterparts to this approach do

indeed imply a martingale distortion when compared to a benchmark prior that is among

38See Epstein and Schneider (2003) for a dynamic extension that preserves a recursive structure to
decision making.

35



the set of priors that are entertained by a decision maker. Given a benchmark prior and

a dynamic formulation, this worst-case outcome implies a positive martingale distortion of

the type that I featured in Section 5. In equilibrium valuation, this positive martingale

represents the consequences of ambiguity aversion on the part of investors inside the model.

This martingale distortion emerges endogenously as a way to confront multiple priors that

is ambiguity averse or robust. In sufficiently simple environments, the decision maker may

in effect learn the model that generates the data in which case the martingale may converge

to unity.

There is an alternative promising approach to ambiguity aversion. A decision theoretic

model that captures this aversion can be embedded in the analysis of Segal (1990) and

Davis and Pate-Cornell (1994), but the application to ambiguity aversion has been devel-

oped more fully in Klibanoff et al. (2005) and elsewhere. It is known as a smooth ambiguity

model of decision making. Roughly speaking, distinct preference parameters dictate be-

havior responses to two different sources of uncertainty. In addition to aversion to risk

given a model captured by one concave function, there is a distinct utility adjustment for

ambiguity aversion that emerges when weighting alternative models using a Bayesian prior.

While this approach does not in general imply a martingale distortion for valuation, as we

note in Hansen and Sargent (2007), such a distortion will emerge with an exponential am-

biguity adjustment. This exponential adjustment can be motivated in two ways, either as

a penalization over a family of priors as in variational preferences or as a smooth ambiguity

behavioral response to a single prior.

6.2 Unknown Models and Ambiguity Aversion

I now consider an approach with an even more direct link to the analysis in Section 5. An

important initiator of statistical decision theory, Wald (1939), explored methods that did

not presume a priori weights could be assigned across models. Wald (1939)’s initial work

generated rather substantial literatures in statistics, control theory and economics. I am in-

terested in such an approach as a structured way to perform an analysis of robustness. The

alternative models represented as martingales may be viewed as ways in which the bench-

mark probability model can be misspecified. To explore robustness, I start with a family

of probability models represented as martingales against a benchmark model. Discrepancy

measures are most conveniently expressed in terms of convex functions of the martingales

as in Section 5. Formally the ambiguity is over models, or potential misspecifications of a
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benchmark model.

What about learning? Suppose that the family of positive martingales with unit ex-

pectations is a convex set. For any such martingale M in this set and some 0 < ω < 1,

construct the mixture ωM+(1−ω) is a positive martingale with a unit expectation. Notice

that

ωMt+τ + (1− ω)1

ωMt + (1− ω)1
=
ωMt

(
Mt+τ

Mt

)
+ (1− ω)1

ωMt + (1− ω)1
.

The left-hand side is used to represent the conditional expectation operator between dates

t + τ and t. If we interpret ω as the prior assigned to model M and (1 − ω) as the prior

assigned to a benchmark model, then the right-hand side reveals the outcome of Bayes’

rule conditioning on date t information where Mt is a date t likelihood ratio between the

two original models. Since all convex combinations are considered, we thus allow all priors

including point priors. Here I have only considered mixtures of two models, but the basic

logic extends to a setting with more general a priori averages across models.

Expected utility minimization over a family of martingales provides a tractable way

to account for this form of ambiguity aversion, as in max-min utility. Alternatively the

minimization can be subject to penalization as in variational preferences. Provided that

we can apply the Min-Max Theorem, we may again produce a (constrained or penalized)

worst-case martingale distortion. The ambiguity averse decision maker behaves as if he or

she is optimizing using the worst-case martingale as the actual probability specification.

This same martingale shows up in first-order conditions for optimization and hence in

equilibrium pricing relationships. With this as if approach I can construct a distorted

probability starting from a concern about model misspecification. The focus on a worst-

case distortion is the outcome of a concern for robustness to model misspecification.

Of course there is no “free lunch” for such an analysis. We must limit the family of

martingales to obtain interesting outcomes. The idea of conducting a sensitivity analysis

would seem to have broad appeal, but of course the “devil is in the details.” Research from

control theory as reflected in Basar and Bernhard (1995) and Petersen et al. (2000), Hansen

and Sargent (2001) and Hansen et al. (2006) and others has used discrepancies based on

discounted versions of relative entropy measured by E [Mt logMt | F0]. For a given date

t this measure is the expected log-likelihood ratio under the M probability model and

lends itself to tractable formulas for implementation.39 Another insightful formulation is

given by Chen and Epstein (2002), which targets misspecification of transition densities in

39See Strzalecki (2011) for an axiomatic analysis of associated preferences.
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continuous time. Either of these approaches requires additional parameters that restrict the

search over alternative models. The statistical discrepancy measures described in Section

5 provide one way to guide this choice.40

As Hansen and Sargent (2007) emphasize, it is possible to combine this multiple models

approach with a multiple priors approach. This allows simultaneously for multiple bench-

mark models and potential misspecification. In addition there is ambiguity in how to weight

the alternative models.

6.3 What Might We Achieve?

For the purposes of this essay, the important outcome of this discussion is the ability to

use ambiguity aversion or a concern about model misspecification as a way to generate

what looks like distorted beliefs. In an application, Chamberlain (2000) studied individual

portfolio problems from the vantage point of an econometrician (who could be placed inside

a model) using max-min utility and featuring calculations of the endogenously determined

worst-case models under plausible classes of priors. These worst-case models give candidates

for the distorted beliefs mentioned in the previous section. A worst-case martingale belief

distortion is part of the equilibrium calculation in the macroeconomic model of Ilut and

Schneider (2014). These authors study simultaneously production and pricing using a

recursive max-min formulation of the type advocated by Epstein and Schneider (2003) and

introduce ambiguity shocks as an exogenous source of fluctuations.

Ambiguity aversion with unknown models provides an alternative to assuming large

values of risk aversion parameters. This is evident from the control theoretic link between

what is called risk sensitivity and robustness, noted in a variety of contexts including Ja-

cobson (1973), Whittle (1981) and James (1992). Hansen and Sargent (1995) and Hansen

et al. (2006) suggest a recursive formulation of risk sensitivity and link it to recursive

utility as developed in the economics literature. While the control theory literature fea-

tures the equivalent interpretations for decision rules, Hansen et al. (1999), Anderson et al.

(2003), Maenhout (2004) and Hansen (2011) consider its impact on security market prices.

This link formally relies on the use of relative entropy as a measure of discrepancy for

martingales, but more generally I expect that ambiguity aversion often will have similar

empirical implications to (possibly extreme) risk aversion for models of asset pricing. For-

mal axiomatic analyses can isolate behaviorally distinct implications. For this reason I

40See Anderson et al. (2003) for an example of this approach.

38



will not overextend my claims of the observational similarity between risk and ambiguity.

Axiomatic distinctions, however, are not necessarily present in actual empirical evidence.

The discussion so far produces an ambiguity component to prices in asset markets in

addition to the familiar risk prices. There is no endogenous rationale for market compen-

sations fluctuating over time. While exogenously specified stochastic volatility commonly

used in asset pricing models also delivers fluctuations, this is a rather superficial success

that leaves open the question of what the underlying source is for the implied fluctuations.

The calculations in Hansen (2007a) and Hansen and Sargent (2010) suggest an alternative

mechanism. Investors concerned with the misspecification of multiple models view these

models differently in good versus bad times. For instance, persistence in economic growth

is welcome in good times but not in bad times. Given ambiguity about how to weight

models and aversion to that ambiguity, investors’ worst-case models shift over time leading

to changes in ambiguity price components.

Introducing uncertainty about models even with a unique prior will amplify risk prices,

although for local risk prices this impact is sometimes small (see Hansen and Sargent (2010)

for a discussion). Introducing ambiguity aversion or a concern about model misspecifica-

tion will lead to a different perspective on both the source and magnitude of the market

compensations for exposure to uncertainty. Moreover, by entertaining multiple models and

priors over those models there is additional scope for variation in the market compensations

as investors may fear different models depending on the state of the economy.41

A framework for potential model misspecification also gives a structured way to cap-

ture “overconfidence.” Consider an environment with multiple agents. Some express full

commitment to a benchmark model. Others realize the model is flawed and explore the con-

sequences of model misspecification. If indeed the benchmark model is misspecified, then

agents of the first type are over-confident in the model specification. Such an approach

offers a novel way to capture this form of heterogeneity in preferences.

What is missing in my discussion of model misspecification is a prescription for con-

structing benchmark models and/or benchmark priors. Benchmarks are important for two

reasons in this analysis. They are used as a reference point for robustness and as a reference

point for computing ambiguity prices. I like the transparency of simpler models especially

41See Collin-Dufresne et al. (2013) for a Bayesian formulation with parameter learning that generates
interesting variation in risk prices. Given that recursive utility and a preference for robustness to model
misspecification have similar and sometimes identical implications for asset pricing in other settings, it
would be of interest to see if this similarity carries over to the parameter learning environments considered
by these authors.
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when they have basis in empirical work, and I view the ambition to construct the perfect

model to be unattainable.
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7 Conclusion

I take this opportunity to make four concluding observations.

1. The first part of my essay explored formal econometric methods that are applicable

to a researcher outside the model when actors inside the model possess rational expec-

tations. I showed how to connect GMM estimation methods with SDF formulations

of stochastic discount factors to estimate and assess asset pricing models with connec-

tions to the macroeconomy. I also described how to use SDF formulations to assess

the empirical implications of asset pricing models more generally. I then shifted to a

discussion of investor behavior inside the model, perhaps even motivated by my own

experiences as an applied econometrician. More generally these investors may behave

as if they have distorted beliefs. I suggested statistical challenges and concerns about

model misspecification as a rationale for these distorted beliefs.

2. I have identified ways that a researcher might alter beliefs for the actors within a

model, but I make no claim that this is the only interesting way to structure such

distortions. Providing structure, however, is a prerequisite to formal assessment of the

resulting models. I have also suggested statistical measures that extend the rational

expectations appeal to the Law of Large Numbers for guiding the types of belief

distortions that are reasonable to consider. This same statistical assessment should

be a valuable input into other dynamic models within which economic agents have

heterogenous beliefs.

3. How best to design econometric analysis in which econometricians and agents for-

mally acknowledge this misspecificaton is surely a fertile avenue for future research.

Moreover, there remains the challenge of how best to incorporate ambiguity aversion

or concerns about model misspecification into a Marschak (1953), Hurwicz (1962)

and Lucas (1972) style study of counterfactuals and policy interventions.

4. Uncertainty, generally conceived, is not often embraced in public discussions of eco-

nomic policy. When uncertainty includes incomplete knowledge of dynamic responses,

we might well be led away from arguments that “complicated problems require com-

plicated solutions.” When complexity, even formulated probabilistically, is not fully

understood by policy makers, perhaps it is the simpler policies that are more pru-

dent. This could well apply to the design of monetary policy, environmental policy
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and financial market oversight. Enriching our toolkit to address formally such chal-

lenges will improve the guidance that economists give when applying models to policy

analysis.
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Borovička, Jaroslav. 2013. Survival and Long-Run Dynamics with Heterogeneous Beliefs

Under Recursive Preferences. Tech. rep., New York University.
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