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ABSTRACT

We investigate the predictive power of survey-elicited time preferences using a representative sample
of US residents.  In regressions controlling for demographics and risk preferences, we show that the
discount factor elicited from choice experiments using multiple price lists and real payments predicts
various health, energy, and financial outcomes, including overall self-reported health, smoking, drinking,
car fuel efficiency, and credit card balance.  We allow for time-inconsistent preferences and find
that the long-run and present bias discount factors (�ŭ and ɓ�) are each significantly associated in the
expected direction with several of these outcomes.  Finally, we explore alternate measures of time
preference.  Elicited discount factors are correlated with several such measures, including self-reported
willpower.  A multiple proxies approach using these alternate measures shows that our estimated
associations between the time-consistent discount factor and health, energy, and financial outcomes
may be conservative.
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I. Introduction 

Time preferences are generally considered to be a primitive of economic decision-making 

and so predicted to affect behavior across many dimensions.  Economic theories assume that 

less-patient individuals are less likely to spend money, time, or resources now to yield benefits in 

the future. However, the specific manner in which patience (or future-orientation) affects 

intertemporal resource allocation is the subject of ongoing debate.  The standard economic model 

assumes that agents make consistent intertemporal decisions – which implies a constant rate of 

discounting.  Contrarily, growing evidence from behavioral economics and psychology suggests 

that many individuals exhibit present bias, whereby the weight placed on consumption now 

relative to tomorrow is greater than that placed on consumption one year from now relative to 

one year and a day from now.   

Whether individuals have time-consistent preferences is not merely an academic 

question.  Time inconsistency may induce inefficient decisions.  Present bias, if real, provides a 

potential justification for government intervention, since individuals may make decisions in the 

present that they will regret in the future – a situation that government fiat may avoid 

(O'Donoghue and Rabin 2006).  For instance, time-inconsistent consumers may be less willing to 

invest in energy-efficient technologies (e.g. hybrid cars, home energy improvements) if they do 

not account for future savings as much as the standard model assumes; this is a potential 

explanation of the energy efficiency gap and rationale for government intervention (Allcott and 

Greenstone 2012).  Policies related to health behaviors are affected since time-inconsistent 

consumers may underinvest in health, e.g. by eating too much, exercising too little, or failing to 

buy insurance.  Policies designed to encourage retirement savings may also need to 

accommodate the potential for time inconsistency (Carroll et al., 2009).   
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This paper investigates how elicited time preferences (defined across both time-consistent 

and time-inconsistent frames) predict consumer behavior across multiple domains.  We 

contribute to the literature by considering a much broader range of outcomes than those studied 

previously.  In so doing, we explore the degree to which consumer choices comport to the 

standard economic model or to the new behavioral economic models, and so illuminate how 

effective people can be at making decisions that maximize utility in the long run while also 

minimizing regret.  The results provide direct evidence of the link between both time-consistent 

and time-inconsistent preferences and numerous outcomes related to health, energy, and 

financial behavior.   

Since no secondary data exist that contain the wide range of information necessary for 

this analysis, we field our own survey and measure time preferences with an incentive-

compatible choice experiment about intertemporal tradeoffs, paying out for one of the choices 

for randomly-selected respondents to mitigate any hypothetical bias.  We use multiple price list 

(MPL) questions to compute the standard discount factor, both the present bias and long-run 

components of a quasi-hyperbolic (𝛽𝛿) specification, and the coefficient of relative risk aversion 

(CRRA).  This allows for an empirical test for associations of both time-consistent impatience 

and time inconsistency with outcomes related to self-reported health, health behaviors, health 

insurance, use of energy-efficient technologies, and financial decisions, while holding risk 

preferences constant to avoid erroneously conflating time and risk preferences.  

There is debate in the literature about how well discounting measures elicited from small-

stakes financial tradeoffs actually reflect the rates of time preference used in real-world 

decisions.  One concern is that the stakes are not high enough for individuals to respond 

accurately.  Additionally, time preferences may vary across different domains (Chapman and 
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Elstein, 1995).  For instance, questions about intertemporal health choices may predict health 

behavior better than time preferences about monetary payoffs.  To address these challenges, we 

also consider alternative measures of time preferences, including self-reported preferences and 

questions specifically tailored to health decisions.  These alternate proxies allow us to investigate 

whether certain measures predict behavior better overall or in specific domains, and they enable 

us to assess how measurement error impacts our estimates from regressions using elicited time 

preferences.   

Our data show that time preferences elicited using MPL questions over monetary payouts 

are significantly correlated in the expected direction with many outcomes related to health, 

energy use, and finances.  In regressions controlling for demographic and risk preference 

variables, the time-consistent discount factor is significantly correlated with self-reported overall 

and mental health, activity limitations, refusal to report weight or height, snacking, smoking, 

binge drinking, seat belt use, having health insurance, installing energy-efficient lighting, the 

temperature setting on one's thermostat, retirement savings, and credit card balance.  The present 

bias discount factor 𝛽 is statistically associated in the predicted direction with self-reported 

overall and mental health, activity limitations, refusal to report weight or height, smoking, binge 

drinking, driving a fuel-efficient car, reporting a well-insulated home, the temperature setting on 

one's thermostat, and having non-retirement savings.  Our elicited time preferences are also 

associated with some but not all of our alternative time preferences proxies.  Interestingly, time 

preferences elicited from hypothetical questions related to health are generally less significant 

predictors of actual health outcomes than are time preferences for monetary outcomes elicited 

from MPL questions.  Finally, we implement Lubotsky and Wittenberg’s (2006) method of using 
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multiple proxies to correct for measurement error and provide evidence that our prior estimated 

effects of elicited time preferences on consumer behaviors may be conservative.  

The results therefore suggest that both time-consistent and present-biased discounting 

influence many aspects of health, health behaviors, energy use, and financial decisions, with the 

relative extent to which each matters varying across different outcomes.  The importance of 

present bias suggests additional potential implications for policy design, as mentioned above.     

II. Background 

Time preferences have been conceptualized in a variety of ways.  Among the earliest 

modern theoretical frames is from Samuelson (1947).  Samuelson assumed that individuals 

maximize the present value of a stream of current and future utility.  Present value is calculated 

by discounting future payoffs by a constant amount in each time period.  Future utilities are 

weighted less heavily compared to the current level of utility, but in a manner that does not 

produce preference reversals (if a person is willing to accept $1 to wait until tomorrow to 

consume something, then that person will be willing to accept $1 to delay that same consumption 

by a day in any future period).  Thus individuals were assumed to select consumption levels in 

each time period, xt, to maximize 

𝑈(𝑥0, … , 𝑥𝑇) = ∑ 𝛿(𝑡)𝑢(𝑥𝑡)

𝑇

𝑡=0

                                                    (1) 

subject to an income/wealth constraint.  In Samuelson’s model, which is still the canonical 

approach today, the exponential weighting function 𝛿(𝑡) = 𝛿𝑡 implies constant discounting per 

time period; this is the basis for the most common understanding of a “discount rate” (from 

which the weighting factor 𝛿(𝑡) is derived) in economics.  In this paper we will label this time-

consistent discount factor as 𝛿𝑎𝑣𝑔. 
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In the early 1990s, however, some researchers built an alternative framework based upon 

Strotz (1955) that suggested individuals may exhibit systematic biases in their decision-making.  

In particular, Ainslie (1991) and Laibson (1997) assume that individuals maximize a discounted 

utility stream that places disproportionately higher weight on the present payoffs relative to all 

future ones.  This “quasi-hyperbolic” discounted utility function takes the form 

𝑈(𝑥0, … , 𝑥𝑡) = 𝑢0 + 𝛽 ∑ 𝛿𝑡𝑢(𝑥𝑡)

𝑇

𝑡=1

,                                             (2) 

where the parameter 𝛽 corresponds to a time-inconsistent preference for the current payoff 

(present bias when 𝛽 < 1) and 𝛿 is the time-consistent (long-run) component of temporal 

preferences.  In what follows, we label this pair of preference parameters as 𝛽𝑞ℎ and 𝛿𝑞ℎ. 

We are, of course, not the first to be interested in empirical issues related to time 

preferences.  A prior literature examines whether consumers’ preferences are time-consistent (as 

opposed to our focus on whether the level of time inconsistency is associated with particular 

outcomes), with laboratory investigations going back to Thaler (1981).  Other research examines 

whether specific aspects of consumer behavior suggest present bias.  Individuals' choices about 

exercising (Dellavigna and Malmendier 2006), completing homework (Ariely and Wertenbroch 

2002), participating in welfare programs (Fang and Silverman 2009), and eating (Ruhm 2012) all 

indicate time inconsistency and present bias.  Buyers of cars seem to underweight future gasoline 

costs (Allcott and Wozny forthcoming).  Gillingham and Palmer (2013) describe how several 

types of behavioral anomalies, including time-inconsistent preferences, could explain the 

“energy efficiency gap,” in which there appears to be underinvestment in energy-saving 

technologies.  
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 Still other investigations estimate the associations between elicited time preferences and 

various outcomes, but without distinguishing time-consistent from present-biased behavior.  For 

instance, connections have been found between time preference and: BMI (Chabris et al. 2008, 

Weller et al. 2008, Sutter et al. 2013), exercise (Chabris et al. 2008; Bradford, 2010), smoking 

(Bradford, 2010; Sutter et al. 2013), drinking (Sutter et al. 2013), preventive health care 

utilization (Bradford, 2010; Bradford et al. 2010), healthy behaviors among hypertensive patients 

(Axon et al. 2009), and overall self-assessed health (Van der Pol 2011).  Finally, there is research 

indicating that present bias is related to a limited set of outcomes such as: smoking (Burks, et al. 

2012), credit card borrowing (Meier and Sprenger 2010), BMI (Ikeda et al. 2010; Courtemanche 

et al. forthcoming), and “underwater” mortgages (Toubia et al. 2013).  

 Our study's contribution is threefold.  First, we examine how survey-elicited time 

preferences are related to a large and heterogeneous set of real-world outcomes, including those 

across the domains of health, energy, and financial decisions.  To our knowledge, we are the first 

to estimate the link between elicited time preferences and many of our outcomes: self-assessed 

physical and mental health, health-related limitations, snacking, binge drinking, sunscreen and 

seatbelt use, variables related to home and automobile energy use, among others.  Second, our 

study allows for quasi-hyperbolic discounting and disentangles whether the diverse group of 

observed relationships are driven by time-consistent preferences (𝛿), present bias (𝛽) or both.  

We are unaware of prior research on the relationship between elicited time inconsistency and any 

of our outcomes, with the exception of smoking, BMI, and credit card debt as noted above.  

Third, in our judgment we provide the most thorough attempt to assess how the predictive power 

of time preferences elicited over monetary outcomes compares to that of other time preference 
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measures across different domains, and whether this implies meaningful attenuation bias in 

estimates based on elicited monetary measures.  

III. Data and Model 

An online survey of 1,325 respondents was conducted using Qualtrics software 

(www.qualtrics.com).  Respondents were chosen to be representative of the US adult population 

(18 and over), using quota sampling based on age, education, and gender.  The survey was 

conducted in July and August 2013.   

Elicited Time Preferences    

We measured impatience and present bias using three "blocks" of multiple price list 

(MPL) questions.  Each block contains several choices asking the respondent whether he/she 

would prefer a smaller, earlier payment or a larger, later payment.  We observe respondents’ 

choices between receiving money now versus in one month ("red block"); now versus in six 

months ("black block"); and in six months versus in seven months ("blue block").  In all cases, 

the larger payment (at the later date) was $30, while the smaller payment ranged from $8 to $29.  

Each respondent was asked 22 such questions; the values are listed in Table 1.1  Typically 

respondents choose the smaller earlier option for a portion of the choices and switch to the larger 

later option for the remainder.  Shifting between the smaller earlier and larger later options 

implies that the subject was indifferent at some point along the interval between the two rows, 

which defines a range of values for a time preference parameter. 

Table 1 also lists the implied monthly discount factor for a consumer who is just 

indifferent between the larger and smaller payments, along with the percentage of respondents 

                                                 
1 The time periods were the same as those used in Meier and Sprenger (2010).  We adjusted the dollar values of the 

payments downward to reflect our budget (and rounded each to the nearest dollar integer). 
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choosing the larger amount.  For instance, in the first row of the red block, a consumer who is 

just indifferent between $29 today and $30 in one month has a one-month discount factor of 

0.9667 (29 = 30 * 0.9667), and 24.22% of respondents chose $30 in one month over $29 today.  

For each block, the percentage choosing a delayed payout increases as the earlier payment 

decreases, as expected.  Comparing the red block to the black block reveals the anticipated 

finding that respondents are less willing to wait for a given (larger) payoff that is farther in the 

future.  Additionally, these responses provide evidence of present bias.  Specifically, time-

consistent consumers should answer each corresponding question in these two blocks the same 

way, since in each case there is the same rate of return from an additional one month delay in the 

payout.  However, for the first three rows we see that substantially more people are willing to 

wait a month for the larger payout when both payout options are in the future.  When the earlier 

payments are $24 or less (in the third through sixth rows), the majority of respondents choose to 

wait but there is no difference in the percentage doing so between the red and blue blocks.  

We calculate two sets of discount factor parameters based on the MPL questions.  Within 

each block of time preference choices, we assume that respondents were indifferent between the 

smaller earlier option and the larger later option at the mid-point between the values at which the 

respondent switched from earlier to later choices.2  First, we impose time-consistent discounting 

using a single monthly discount factor and use non-linear least squares to determine the 

parameter 𝛿𝑎𝑣𝑔 that best-fits a respondent’s indifference points for the three blocks of time 

                                                 
2 If a respondent never switched between earlier or later options, but for example always chose the larger later 

option, then we assume he/she was indifferent at the most extreme delayed row.  If a respondent switched between 

smaller earlier and larger later options multiple times (violating preference monotonicity), we utilized the mid-point 

between the first switching row as our measure of indifference.  90% of respondents exhibited zero or one switch for 

the black block of questions, and 91% of respondents exhibited zero or one switch for the red and blue blocks.  Our 

results are robust to either utilizing the last observed switch between smaller sooner and larger later choices, or to 

excluding subjects who exhibited multiple switches.  
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preference questions.  Next, we best-fit a respondent’s choices assuming a quasi-hyperbolic 

discounting specification with two parameters 𝛿𝑞ℎ and 𝛽𝑞ℎ.3    

To combat any hypothetical bias, we paid a random subset of between 5% and 20% of 

respondents (depending on the phase of the survey) based on their responses to the MPL 

questions.  For each chosen respondent, one question was randomly selected as the payout 

question.4  Payments were Amazon.com gift cards.  To ensure trustworthiness of these payments, 

we emailed each winner immediately after the survey completion with one of the professors’ 

contact information. 

Table 2 presents summary statistics for our calculated time preference measures.  The 

time-consistent monthly discount factor 𝛿𝑎𝑣𝑔 averages around 0.85, which is low for a monthly 

discount factor but consistent with previous literature finding low discount factors when using 

MPLs (Meier and Sprenger 2010, Frederick, Loewenstein and O'Donoghue 2002).  𝛿𝑎𝑣𝑔 exhibits 

significant variation; the 25th and 75th percentiles are 0.81 and 0.95 respectively.5  The mean 

value of 𝛽𝑞ℎ is 0.94, indicating that the average respondent is present biased.  Once again there is 

considerable heterogeneity, with 10 percent of respondents having values below 0.68, 25 percent 

lower than 0.85, and 26% above 1.0 indicating future-bias.  For a small number of respondents, 

                                                 
3 An alternative and somewhat simpler way to calculate discount factors is employed by Meier and Sprenger (2010). 

They calculate a monthly discount factor for each of the three payout time pairs; call these 𝛿0,1, 𝛿0,6, and 𝛿6,7.  (That 

is, 𝛿0,1 is the discount factor calculated using the respondent's answer to the MPL questions about payoffs now vs. 

one month from now.)  The arithmetic mean of all three of these discount factors is 𝛿𝑎𝑣𝑔; this assumes time-

consistent discounting.  They allow for time-inconsistent discounting by noting that a respondent can have a 

different value for 𝛿0,1 and 𝛿6,7.  If 𝛿0,1 < 𝛿6,7, then consumers are present-biased.  The present bias discount factor 

𝛽𝑞ℎ =
𝛿0,1

𝛿6,7
 and the long-run discount factor 𝛿𝑞ℎ = 𝛿6,7.  A caveat of using this method is that it drops observations 

for respondents failing to respond to one or more questions, as well as those with inconsistency in their responses.  

Also, the present bias discount factors 𝛿𝑞ℎ and 𝛽𝑞ℎ are calculated using just the red and blue blocks.  In general, our 

results are robust to using this alternate calculation. 
4 The payout questions include the MPL questions described here and the lottery questions asked to elicit risk 

preferences, described below. 
5 Given the structure of the multiple price list questions, it is not possible to have a discount factor 𝛿 above 1, since 

no questions have a payoff in an earlier period that is greater than the payoff in a later one. 
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the results suggest implausibly extreme future bias, probably indicating reporting errors, an issue 

to which we return below.  Because the mean value of 𝛽𝑞ℎ is less than one, 𝛿𝑞ℎ > 𝛿𝑎𝑣𝑔, on 

average.  Table 2 shows that this is also true throughout most of the distribution, although the 

differences are not huge.  

Control Variables 

A caveat to eliciting time preferences using solely MPL questions is that it relies on the 

assumption that utility is linear in income.  Measuring time preferences without controlling for 

risk preferences can lead to misleading results (Andersen, et al. 2008, Andreoni, Kuhn and 

Sprenger 2013), although in our application the payoffs are sufficiently small that the assumption 

of linearity is likely to be innocuous.  Nevertheless, to further reduce the possibility of incorrect 

inference, we adopt the strategy of using double multiple price lists (DMPL).6  We included an 

additional series of questions about preferences over lotteries (see Andersen et al. (2008), p. 

586).  In each case, the respondent was asked to choose between two lotteries: both have the 

same probabilities of winning larger or smaller amounts, but the actual amounts vary.  Table 3 

summarizes the lotteries.7  Moving down the table, the difference in the expected value of lottery 

B improves relative to that of lottery A. Since Lottery B is always riskier, the risk aversion 

coefficient that makes an individual indifferent between the two lotteries increases in the later 

rows.  Specifically, the risk aversion coefficient is calculated based on the constant relative risk 

aversion (CRRA) specification: 

𝑈(𝑀) =
𝑀1−𝑟

1 − 𝑟
                                                                   (3) 

                                                 
6 In addition to DMPL, Andreoni et al. (2013) consider an alternative convex time budgets (CTB) strategy. We use 

DMPL, because the computational burden on the participants of the CTB questions would have been too great given 

the other questions that are asked in our survey.   
7 The probabilities and dollar values are taken from Andersen et al. (2008). 
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where the CRRA coefficient is r and consumption is M.8  Table 3 shows that as the expected 

value of B becomes relatively larger than that of A, the number of respondents choosing B (the 

riskier lottery) increases.  We calculate the CRRA by assuming a respondent was indifferent at 

the mid-point between the values at which he or she switched from certain to risky choices.9  The 

average CRRA value is 0.422, implying that the typical sample member is risk averse.  In our 

sample, we observe a negative correlation between CRRA and elicited time preferences (-0.084).  

However, excluding CRRA from the set of controls (results available upon request) has little 

effect on the regression estimates.   

We also asked respondents a set of questions about demographic characteristics that 

included: age (in years), gender, income (in $1,000), race (non-Hispanic white vs. nonwhite or 

Hispanic), marital status (married vs. unmarried), education (less than high school, high school 

graduate, some college, college graduate, postgraduate) and number of children.  Controlling for 

these variables allows us to account for many obvious potential confounders of the relationships 

between time preferences and consumer behaviors.  Appendix Table 1 lists the control variables 

and provides their summary statistics. 

Dependent Variables 

We explore four categories of dependent variables: 1) health, 2) energy use, 3) finances, 

and 4) other measures of time preferences.  The health questions were predominantly drawn 

from the US Center for Disease Control and Prevention's Behavioral Risk Factor Surveillance 

                                                 
8 For instance, for a consumer who is just indifferent between lottery A and lottery B in the first row of Table 3, risk 

aversion is the 𝑟 that solves the equation: 0.2 (
201−𝑟

1−𝑟
) + 0.8 (

201−𝑟

1−𝑟
) = 0.2 (

38.51−𝑟

1−𝑟
) + 0.8 (

11−𝑟

1−𝑟
) so that 𝑟 = −0.95.  

See Andersen et al. (2008), p. 590. 
9 Similar to the time preference methodology, we assumed indifference at the endpoint if a respondent never 

switched between certain and risky choices.  If the respondent switched between certain and risky choices multiple 

times, we utilized the first observed switch.  75% of respondents exhibited zero or one switch for the lottery series. 
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System (BRFSS) 2011 questionnaire.10  The first subset of these questions relates to self-

assessed health.  Respondents were asked if they would say that their health "in general" is 

excellent, very good, good, fair, or poor.  We use this answer to create two binary outcomes: 

overall health good or better (versus poor or fair) and very good or better (versus poor, fair, or 

good).11  They were also asked the number of days in the past month that their physical and 

mental health were not good (two outcomes), and the number of days that their health problems 

prevented them from doing their usual activities.  We also included two indicators of the 

probability of having any health insurance and of self-purchasing insurance conditional on not 

having employer-provided or public coverage. 

The next subset of health questions pertain to behaviors. Respondents self-reported their 

height and weight, allowing us to compute body mass index (BMI).  Since increases in BMI do 

not monotonically worsen health, we focus on a binary obesity indicator (BMI≥30).  To provide 

a preliminary assessment of behaviors directly affecting health and through which time 

preference may influence weight, we also asked respondents whether they had any non-work-

related exercise in the past 30 days and how many snacks (sweet or salty) they consume on a 

typical day.  In addition, we included current smoking status and number of cigarettes smoked 

per day among smokers, combined into a single variable for cigarettes smoked per day (0 for 

non-smokers).12  Respondents were also asked about alcohol use.  Since alcohol intake does not 

monotonically worsen health, we focus on risky drinking as measured by the number of binge 

drinking occasions in the past month (4 or more drinks at one time for women and 5 or more for 

                                                 
10 That survey is available at: http://www.cdc.gov/brfss/.  
11 We also considered dependent variables measuring for overall health fair or better and excellent health.  The 

results for fair or better were similar to those for good or better; those for excellent were similar to those for very 

good or better. 
12 We considered separate models for smoking status and cigarettes per day among smokers, but the sample size in 

the regression containing only smokers was too small to obtain meaningful precision.  We therefore are unable to 

disentangle whether effects of time preference on smoking occur along the extensive or intensive margins.  

http://www.cdc.gov/brfss/
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men).  Finally, we included information on the use of sunscreen and of seat belts, two behaviors 

that protect health.  Appendix Table A2 reports summary statistics for these health-related 

variables.  

The next set of outcomes relate to energy use, with questions predominantly drawn from 

the US Energy Information Administration's 2009 Residential Energy Consumption Survey.13  

The first dependent variable indicates whether the respondent owns a high-fuel-economy vehicle 

(higher than 25 mpg), with the sample restricted to those owning any motor vehicles.  The home 

energy outcomes include dummies for respondents having: ever installed compact fluorescent 

lights (CFLs) in their homes, a well-insulated home (in their opinion), a programmable 

thermostat, and ever conducted a home energy audit.  Since renters are not fully incentivized to 

invest in energy-saving technologies, we restrict the sample for these variables to persons who 

have owned their current home for at least two years.  The final outcome in this section is a 

continuous measure of the temperature the respondents keep their home in the summer (with the 

sample restricted to those with thermostats).  Summary statistics on these outcomes, as well as 

those discussed next, are provided in Appendix Table A3. 

We also include financial outcomes.  We consider only a small set of financial variables 

because the literature on these and similar outcomes is relatively well-developed compared to 

that on health and energy use (e.g. Meier and Sprenger 2010).  The first is whether the 

respondent has any credit cards.  We view the theoretical prediction for this outcome as 

ambiguous: impatience may increase demand for credit, but also lead to a lower credit rating and 

therefore reduce access to it.  Moreover, sophisticated time-inconsistent individuals may refuse 

to have credit cards to constrain their future behavior (i.e. “cutting up your credit cards”).  Next 

                                                 
13 That survey is available at: http://www.eia.gov/consumption/residential/.  Additional questions were taken from 

the survey designed for Attari et al. (2010). 

http://www.eia.gov/consumption/residential/
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is an estimate of total credit card debt, defined only for those with any credit cards.  The last two 

outcomes are dichotomous and indicate whether the individual has any retirement or non-

retirement savings. 

The final category of dependent variables, also used as covariates in some specifications, 

is included to evaluate the relationships between MPL-elicited monetary time preference 

measures and other measures.  They also help address the concern that time preferences may 

differ across domains, in which case discount factors based on monetary tradeoffs may not be 

reflective of discount factors applied in health- or energy-related choices, and their estimated 

effects on these choices may therefore suffer from attenuation bias.14  We consider five alternate 

time preference proxies.  The first three are self-reported patience, willpower, and ability to resist 

junk food (willpower in a specific health-related domain), answered on a scale of 1 to 10.15  Our 

fourth measure is an elicited health-related discount factor, based on a series of hypothetical 

questions about drugs for migraine headache relief (Ganiats et al. 2000).  In each question, the 

respondents are told to suppose that they suffer from debilitating migraines, and that two drugs 

are available to them.  Both drugs are the same price but only one of them can be used.  Drug A 

can be taken now, and Drug B will not be available until the future.  Drug A will be effective for 

12 months, but Drug B (once available) will be effective for 24 months.  We then vary the delay 

for the availability of Drug B for periods ranging from 6 months to 7 years.  We compute each 

respondent’s health-related discount factor from the point at which he/she switches from Drug A 

to Drug B, identically to our methodology for discount factors over monetary outcomes.16  

                                                 
14 For instance, Augenblick et al. (2013) provide experimental evidence that consumers exhibit more present bias in 

choices over work effort tasks than in choices over money. 
15 The exact questions are: "How patient are you in general?", "How strong is your willpower/ability to control your 

impulses?", "How difficult is it for you to avoid eating a snack food you enjoy (e.g. chocolate chip cookies, ice 

cream, potato chips) if it is easily available, even if you are not hungry?" 
16 82% of subjects exhibited zero or one switch for these migraine questions. 
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Additionally, we consider another outcome in this category: a score based on responses to 

a "Cognitive Reflection Test" (CRT) developed by Frederick (2005).  The CRT questions 

measure the ability to "reflect" on a response before committing to an answer provided by 

intuition.17  Each of the three questions has one answer that springs quickly to mind based on 

intuition but is wrong.  The questions are: 

(1) A bat and a ball cost $1.10.  The bat costs $1.00 more than the ball. How 

much does the ball cost? ____ cents 

(2) If it takes 5 machines 5 minutes to make 5 widgets, how long would it take 

100 machines to make 100 widgets? ____ minutes 

(3) In a lake, there is a patch of lily pads.  Every day, the patch doubles in size.  If 

it takes 48 days for the patch to cover the entire lake, how long would it take 

for the patch to cover half of the lake? ____ days  

For instance, the answer that springs to mind for question 1 is 10 cents, although the correct 

answer is 5 cents.18  Frederick (2005) posits that the CRT questions measure how able an 

individual is to use “system 2” to reflect on the answer provided by "system 1" (using the 

terminology coined by Stanovich and West (2000) and popularized by Kahneman (2011)).  Since 

answering the CRT questions correctly requires the patience to resist the immediately obvious 

answer, it is likely related to time preference as well as cognitive ability.  Summary statistics for 

these alternate time preference variables are reported in Appendix Table A4. 

We hypothesize that individuals with higher discount factors (more patience) will exhibit 

better health and healthier behaviors, engage in purchases or actions promoting energy 

                                                 
17 CRT scores are also positively correlated with several standardized test scores, including the SAT and the ACT 

(Frederick 2005, Table 4). 
18 In question 2, the intuitive answer is 100 minutes, but the correct answer is 5 minutes.  In question 3, the intuitive 

answer is 2 days, but the correct answer is 47 days. 
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efficiency, and have more savings.  This will generally be true for both the time-consistent (𝛿𝑞ℎ) 

and quasi-hyperbolic (𝛽𝑞ℎ) components of preferences.  However, we might expect the latter to 

be more important for outcomes that may reflect a failure to follow through with intended 

actions.  For instance, ex ante we might expect impulse decisions such as snacking and binge 

drinking to be more heavily influenced by present bias than major purchases such as health 

insurance coverage.    

Model 

The primary empirical objective is to identify statistically significant associations 

between time preferences and the dependent variables.  We start by running two specifications 

for each outcome.  The first models time preferences using the time-consistent discount factor 

𝛿𝑎𝑣𝑔; the second uses the quasi-hyperbolic discount factors 𝛿𝑞ℎ and 𝛽𝑞ℎ.  These regressions take 

the form 

𝑦𝑖 = 𝛾0 + 𝛾1𝛿𝑎𝑣𝑔,𝑖 + 𝜸𝟐𝑿𝒊 + 𝜀𝑖                                                     (4) 

and 

𝑦𝑖 = 𝛼0 + 𝛼1𝛿𝑞ℎ,𝑖 + 𝛼2𝛽𝑞ℎ,𝑖 + 𝜶𝟑𝑿𝒊 + 𝜖𝑖                                           (5) 

where i denotes individuals, 𝑿𝒊 is a set of control variables, 𝛾 and 𝛼 are parameters to be 

estimated, and 𝜀 and 𝜖 are error terms.  The control variables are the CRRA score, age categories 

(18-20, 21-25, 26-30, …, 76-80, >80), gender, race (white non-Hispanic versus other), education 

categories (less than high school, high school graduate, some college, college graduate, and 

postgraduate degree), married, family size (0, 1 or 2 children, and 3 or more children); and 
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indicators for ten income deciles.  Missing demographic variables are imputed based on 

regressions on the non-missing demographic variables.19 

Our outcomes are a mix of continuous, binary, and count variables.  We estimate probit 

models for the binary outcomes and negative binomial models for the count dependent variables.  

All reported estimates are average marginal effects.20  In order to facilitate comparability of the 

estimated magnitudes of the effects of 𝛿𝑞ℎ and 𝛽𝑞ℎ, we use standardized discount factor variables 

(with a mean of zero and a standard deviation of one) in all regressions.  A one-unit increase in 

the discount factors therefore represents an increase of one standard deviation, and the average 

marginal effects can roughly be interpreted as the effects of one-standard-deviation increases.    

Throughout the analyses below, we restrict the sample by dropping the 57 respondents 

whose values of 𝛽𝑞ℎ are above the 95th percentile, which is 1.25 in our sample.  It is conceivable 

that some respondents exhibit future bias rather than present bias, which would indicate a 𝛽𝑞ℎ 

greater than one.  However, we believe that many of the very highest values of 𝛽𝑞ℎ are erroneous 

and represent noise stemming from fitting two time preference parameters from a small number 

of questions.21  After dropping these respondents, 21.7% of our sample is future-biased.  This 

proportion is in the middle of the range from the literature.22  Most of our results are maintained, 

though somewhat weakened, by including all values of 𝛽𝑞ℎ.  Interestingly, not dropping any 

                                                 
19 The results are robust (with occasionally slightly less significance) to simply dropping observations with any 

missing demographic variables or creating missing value dummy variables and including these observations. 
20 The results are generally similar using linear regressions, though the average marginal effects are often more 

precisely estimated by the non-linear models. 
21 For example, 100% of respondents for whom 𝛽𝑞ℎ > 1.5 say they would take $21 in six months versus $30 in 

seven months but 88% of these same individuals state that they would accept $30 in one month versus $21 today. 

Although this is consistent with extremely strong future bias, we think it much more likely that this is due to 

reporting errors.  If we do not drop any respondents, 𝛽𝑞ℎ reaches as high as 5.423, which seems clearly unrealistic. 
22 Using MPLs similar to ours for time preference elicitation, Meier and Sprenger (2010) find 9 percent of their 

sample future-biased; for Ashraf et al. (2006) it is 19.8 percent.  See also Sayman and Öncüler (2009).  However, 

using a different methodology – a non-parametric time consistency check – Takeuchi (2011) finds that more 

respondents exhibit future bias than present bias.   
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outliers also eliminates any significant associations between 𝛽𝑞ℎ and the alternate time 

preference proxies, which increases our confidence that these extremely high values of 𝛽𝑞ℎ 

reflect noise rather than genuine future bias.  

IV. Time Preferences and Outcomes 

Tables 4-7 present average marginal effects for our main regressions examining the 

associations between time preferences and self-reported health, health behaviors, energy use, and 

financial outcomes.  Here, and throughout the empirical analysis, relatively small sample sizes 

reduce the statistical power to reject false null hypotheses. Therefore, while we focus on 

statistically significant effects, we will also point out where the relationships are substantial and 

in the hypothesized direction but do not reach statistical significance. 

Self-Reported Health Status and Health Insurance 

Self-reported health outcomes and health insurance coverage are focused upon in Table 

4.  All three discount factors are significantly positively correlated with the probability that 

respondents are in good or better (as opposed to fair or poor) health.  Interestingly, while 

individuals with higher 𝛿𝑠 are healthier than their counterparts who discount the future more 

heavily, the average marginal effect of a change in standardized present bias (𝛽𝑞ℎ) is about twice 

as large as that for standardized 𝛿𝑎𝑣𝑔 or 𝛿𝑞ℎ: a 5.5 percentage point increase versus 2 to 3 

percentage points (relative to a sample rate of being in good or better health of 83%).  However, 

the discount factors are insignificant in the very good or better health regressions, suggesting 

their influence on overall health occurs primarily in the left tail of the distribution.  

None of the discounting variables significantly influence days not in good physical 

health, but all three are negatively and significantly associated with the number of days not in 

good mental health.  Once again, the magnitude of the coefficient on 𝛽𝑞ℎ is about twice as large 
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as that on either 𝛿𝑎𝑣𝑔 or 𝛿𝑞ℎ: the average marginal effect of standardized 𝛽𝑞ℎ is 1.3 fewer days 

per month in not good mental health (compared to a standard deviation of 8 days), versus 

average marginal effects of both of the standardized 𝛿𝑠 of 0.6 to 0.8 days.  However, the main 

conclusion, again, is that relatively patient individuals are in better health, with particularly large 

effects for persons who are less present-biased.  And virtually the same pattern is found for days 

with activity limitations, where all three discount factors are negatively and significantly 

correlated with the dependent variable, and with predicted effects for standardized 𝛽𝑞ℎ that are 

approximately about twice as large as for standardized 𝛿𝑎𝑣𝑔 or 𝛿𝑞ℎ.  The bottom line is that 

impatient individuals and present-biased individuals have worse overall health, lower mental 

health, and more activity limitations than their counterparts who discount the future less heavily.  

The final two outcomes in Table 4 demonstrate that more patient individuals, measured 

by either 𝛿𝑎𝑣𝑔 or 𝛿𝑞ℎ, are also more likely to have health insurance.  This is true for all 

consumers (models 6a and 6b), and among the subset who do not have access to insurance 

through employers or government and so must purchase it themselves (columns 7a and 7b).  This 

latter group is the one for whom time preferences seem likely to be most important (since they 

directly make decisions to buy health insurance rather than having it come from other sources) 

and, consistent with this expectation,  patience has a larger predictive effect for them: the 

average marginal effect of an increase in either standardized 𝛿𝑎𝑣𝑔 or standardized 𝛿𝑞ℎ is a 5 

percentage point increase in the likelihood of purchasing one’s own health insurance (sample 

rate 32%), versus a 4 point rise in the probability of having insurance from all sources (sample 

rate 73%).  Conversely, neither health insurance outcome is correlated with 𝛽𝑞ℎ, suggesting that 

such coverage is unrelated to present bias. 

Health Behaviors 
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Table 5 examines the health behaviors exercise, smoking, drinking, and sunscreen and 

seatbelt use, as well as obesity, which is related to health behaviors.  The relationships between 

exercise and the time-consistent discount factors are positive, though not quite significant at the 

10% level.  The average marginal effect of an increase in standardized 𝛿 is about half a day of 

exercise per month (the standard deviation for exercise is 9.96).  Patient individuals consume 

significantly fewer snacks, with an average marginal effect of 𝛿 of about 0.2 less per day 

(standard deviation 2.37).  These findings suggest that high discount rates reduce exercise and 

contribute to unhealthy eating.  The point estimates further indicate that self-control problems 

may be relevant for these decisions, as present-biased individuals snack more and exercise less 

than their counterparts.  However, neither relationship is statistically significant and the 

estimated effect on snacking is only around half as large for 𝛽𝑞ℎ as for 𝛿𝑞ℎ.  

Models (3a) through (4b) examine smoking and drinking, measured by cigarettes per day 

and binge drinking occasions per month.23  The three discount factors are negatively and 

significantly associated with both: a one-standard-deviation increase in any of the discount 

factors predicts about a one cigarette reduction in daily smoking and a 0.2 to 0.3 occasion per 

month decrease in binge drinking (sample standard deviations of both outcomes are 2.2).  

Particularly striking are the results in columns (3b) and (4b) which show that time-consistent 

discounting and present bias both play a role in explaining substance use. Our finding that 

impatient and present-biased individuals are more likely than others to smoke and drink 

excessively is consistent with prior literature finding that 𝛿 is related to smoking and drinking 

(Sutter et al. 2013) and 𝛽 to smoking (Chabris et al. 2008). 

                                                 
23 The results are robust to many other measures of smoking, including an indicator for being a regular smoker or for 

having smoked at least 100 cigarettes in one's life.  Results are similar but less significant for some other drinking 

measures, including number of drinks per week.  We prefer to use binge drinking rather than a measure of average 

drinking because moderate alcohol consumption is not necessarily unhealthy. 
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Mixed results are obtained for the two risk-reducing behaviors – sunscreen and seat belt 

use – that are examined in models (5a) through (6b).  Specifically, patient individuals are more 

likely to use seatbelts, as expected, but less often use sunscreen.24  The negative correlation 

between 𝛿 and sunscreen use might occur because more patient people are less likely to be out in 

the sun at all (e.g. tanning), and therefore less likely to use sunscreen, although the question does 

explicitly ask about use while out in the sun.  The positive coefficient for the seat belt regressions 

(the average marginal effect of 𝛿 is about three percentage points, compared to a sample rate of 

79%) is consistent with our expectations and it is mirrored by a similarly sized but less precisely 

estimated coefficient on 𝛽. 

Lastly, Table 5 examines unhealthy body weight. The results for time preference 

coefficients on obesity (models 7a and 7b) are surprising, as both 𝛿𝑎𝑣𝑔 and 𝛿𝑞ℎ are associated 

with higher rates of obesity, though neither is statistically significant.25  In other words, the point 

estimates suggest that patient individuals are more likely to have unhealthy weights, contrary to 

other studies finding a negative correlation between discount factor and BMI (e.g. 

Courtemanche, Heutel and McAlvanah forthcoming).  The final outcome in Table 5 – a dummy 

for whether respondents’ BMIs are missing – sheds some light on this puzzle.  Both 𝛿𝑎𝑣𝑔 and 

𝛿𝑞ℎ are negatively and significantly associated with the failure to report at least one of the 

components of BMI: height or weight.  This pattern would be explained if impatient individuals 

are more likely to be overweight or obese and consequently more likely to be embarrassed about 

their weight (or simply not know it). Consistent with this possibility, 119 out of 121 respondents 

                                                 
24 The sign of the coefficients on CRRA are similar: more risk-averse individuals are more likely to use seat belts 

but less likely to wear sunscreen, though the coefficients are not quite significant at the 10% level. 
25 Results are similar for regressions where the dependent variable is BMI or severe obesity. 
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for whom the information required to calculate BMI is unavailable do not report their weight in 

the survey.26  

Energy Use 

Table 6 presents regression results for the outcomes reflecting investments in energy-

efficient technologies.  Among vehicle owners, present-biased individuals are much less likely to 

have a car with high fuel economy (at least 25 miles per gallon): the average marginal effect of 

standardized 𝛽𝑞ℎ is 7 percentage points, relative to a sample rate of 61%.  Coefficients on the 𝛿s 

are positive but smaller and insignificant.  Individuals with low discount factors are also more 

likely to have installed energy-efficient lighting but in this case it is the time-consistent discount 

factor (𝛿) rather than present bias (𝛽) that matters.27  In combination, these results suggest that 

car purchases often contain a substantial “impulse” component whereas those for light bulbs do 

not.  They provide conflicting evidence on whether the energy efficiency gap (Allcott and 

Greenstone 2012) can be explained by present bias; taken at face value the findings suggest that 

it may for some energy-efficiency decisions (car fuel economy) but not for others (light bulbs).  

The remainder of Table 6 examines residential energy use.  Present-biased individuals are 

much less likely to live in a well-insulated residence – the average marginal effect of 

standardized 𝛽𝑞ℎ is 7 percentage points, relative to a sample rate of 86% – but this outcome is 

uncorrelated with 𝛿 (models 3a and 3b).  The next two pairs of models (4a-5b) demonstrate that 

the discount factor 𝛿 is positively correlated with having a programmable thermostat and with 

consuming less energy than average: the average marginal effects of the 𝛿s for these two 

outcomes are between 2 and 4 percentage points (sample rates are 45% for both), although the 

                                                 
26 54 of 121 also fail to report their height. 
27 These findings are consistent with Allcott and Taubinsky (2013) – see their Table A2-1. 
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effects are not quite significant at the 10% level.  Conversely, the correlations of these outcomes 

with 𝛽𝑞ℎ are less significant and even negative for less energy than average.  None of the 

discount factors are correlated with the likelihood of having had an energy audit.  However, 

more patient and less present-biased individuals keep their homes warmer (i.e. use less air 

conditioning) in the summer: a one standard deviation increase in 𝛿 predicts an increase of 

around 0.3 degrees and the estimated effect for a corresponding rise in 𝛽𝑞ℎ is around 0.5 degrees.  

The importance of 𝛿𝑞ℎ and 𝛽𝑞ℎ for this last outcome supports an interpretation that 

individuals choose their home temperature partially through a longer-term decision-making 

process, where they presumably weigh the benefits of lower temperatures against the costs of 

more air conditioning expenses (and perhaps any environmental concerns that they have), but 

that some also suffer from self-control problems that cause them to use a more comfortable 

(lower) temperature setting that they would view as optimal from a time-consistent discounting 

framework. 

Financial Outcomes 

Results for financial outcomes are reported in Table 7.  Patient individuals are more 

likely to have a credit card – the average marginal effect of 𝛿𝑎𝑣𝑔 is 1.7 percentage points – and 

they also relatively often have non-retirement savings or retirement savings, although none of 

these coefficients are statistically significant.  The strongest relationship here is between unpaid 

credit card balances and the time-consistent discount factor (either 𝛿𝑎𝑣𝑔 or 𝛿𝑞ℎ), where patient 

individuals have significantly lower balances, as expected.  Present bias (𝛽𝑞ℎ) is also positively 

and significantly correlated with the probability of having non-retirement savings – the average 

marginal effect is 4.5 percentage points – and somewhat less strongly and less significantly so 

with the likelihood of having retirement savings.  This makes sense since the pre-commitment 
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implied with many types of retirement savings (e.g. automatic deposits of funds from the 

paycheck and penalties for early withdrawal) would be expected to reduce the role of present 

bias.  Conversely, unlike Meier and Sprenger (2010), we do not observe a significant correlation 

between present bias 𝛽𝑞ℎ and credit card balance.   

V. Other Time Preference Measures 

 We next turn to a consideration of the alternative time preference variables.  This section 

has two objectives: to evaluate how closely our main elicited time preference measures for 

money are related to these alternative measures, and to analyze the extent of attenuation bias 

from measurement error in regressions using only the elicited monetary discount factor. 

Associations Between Elicited Time Preferences and Alternative Measures 

 In Table 8, we examine the relationship between our elicited monetary time preference 

measures and the other variables potentially related to time preference.  The first three outcomes 

are the self-reported indicators of patience, general willpower, and willpower over junk food, 

each ranked on a ten-point scale and modeled with negative binomial regressions.  These 

variables can be thought of as measures of time preferences in their own right or, particularly for 

the willpower variables, as measures of hyperbolic discounting.   

Neither self-reported patience nor willpower over junk food is significantly related to the 

elicited monetary discount factors.  General willpower, however, is positively correlated with 

both 𝛿𝑎𝑣𝑔 from a specification that assumes time-consistent preferences, and with 𝛿𝑞ℎ and 𝛽𝑞ℎ 

from a quasi-hyperbolic discounting specification.  The average marginal effects of standardized 

𝛿𝑎𝑣𝑔, 𝛿𝑞ℎ, and 𝛽𝑞ℎ on a 10-point willpower score are all between 0.2 and 0.3, or about one-tenth 

of a standard deviation.  Willpower, or lack thereof, has been hypothesized to be a determinant 

of present bias (e.g. see Ruhm, 2012), so that the significant effect on 𝛽𝑞ℎ makes sense. 
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However, it is also reasonable to think of willpower as a more fundamental component of time 

discounting, potentially explaining the relationship with 𝛿𝑞ℎ. 

 The next outcome is the monthly discount factor based on responses to the hypothetical 

migraine questions, denoted 𝛿𝑚𝑖𝑔𝑟𝑎𝑖𝑛𝑒.  We run a linear regression with all discount factors 

standardized.  One standard deviation increases in 𝛿𝑎𝑣𝑔, 𝛿𝑞ℎ, and 𝛽𝑞ℎ are associated with 

increases in 𝛿𝑚𝑖𝑔𝑟𝑎𝑖𝑛𝑒 of around 0.06, 0.07, and 0.04 standard deviations, respectively, with the 

first two of these being significant at the 10% level.  These results can be interpreted in two 

ways.  First, they provide evidence that the elicited discount factors represent actual time 

preferences, rather than just noise.  Second, the relatively weak relationship raises the possibility 

that individuals discount in different ways across different domains (Chapman and Elstein 1995), 

or that respondents do not perfectly understand the (fairly complicated) migraine medication 

questions, so that these questions measure discount factors with error. 

 The results for the last dependent variable in Table 8 show that the monetary discount 

factors are significantly correlated with the CRT score, which likely reflects a combination of 

patience and cognitive ability.  In these negative binomial regressions, the CRT score, which 

ranges from 0 to 3, is positively and significantly correlated with both measures of 𝛿, with the 

average marginal effects being around 0.1.  The present bias parameter 𝛽𝑞ℎ is positive but not 

significant.  This last result is somewhat surprising, given that this the CRT score has been 

viewed as a measure of the ability to resist intuitive but incorrect answers.  However, an 

alternative possibility is this score is associated with broader measures of cognitive skill which 

are either correlated with or a component of time-consistent discounting. 

 In sum, our elicited monetary time preference measures are only somewhat predictive of 

the other time preference proxies.  This could indicate that the alternative indicators are not as 
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informative about actual discounting behavior as the elicited time preferences.  Alternatively, 

these other proxies may capture information about one’s “true” discount factor beyond that 

contained in the elicited small-stakes monetary measures.  To the extent that the latter occurs, 

our estimated effects on consumer behaviors from Tables 4-7 may suffer from attenuation bias, 

and incorporating the other time preference variables may help to mitigate this bias.  We 

consider this possibility next.      

Multiple Time Preference Proxies and Consumer Behaviors 

We assess the extent of attenuation bias in our earlier estimates by implementing the 

approach of Lubotsky and Wittenberg (2006) (hereafter LW).  They consider the case where 

several proxies are available for an unobserved variable, and show that attenuation bias can be 

minimized by running a regression including all of the proxies together and computing a 

weighted average of their coefficient estimates.  This approach has some similarities to factor 

analysis, but is superior in our case because the weights are allowed to differ across outcomes, 

consistent with the notion of time preferences varying across domains. 

 We apply LW’s method to our context as follows.  Let 𝛿𝑦𝑖
∗  be the discount factor applied 

by individual i in the domain of outcome y.  We do not observe the latent variable 𝛿𝑦
∗ .  Instead, 

we observe 𝛿𝑎𝑣𝑔 – the elicited discount factor based on small-stakes financial questions and not 

allowed to vary for different outcomes – and the other proxies discussed above.  As mentioned, 

we exclude CRT score from the set of proxies since it likely reflects cognitive ability as well as 

time preference, which violates the assumptions of the subsequent analysis.28  For the health 

outcomes, the included proxies are 𝛿𝑎𝑣𝑔, the migraine discount factor 𝛿𝑚𝑖𝑔𝑟𝑎𝑖𝑛𝑒, and self-

                                                 
28 This ambiguity is also why we do not use CRT score as a control variable.  Unreported regressions (available 

upon request) show that adding it to either the set of controls or proxies does not meaningfully affect the results. 
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reported patience, willpower, and willpower over junk food.  For the energy use and financial 

outcomes, there is little rationale for including the health-specific discounting measures so we 

only utilize 𝛿𝑎𝑣𝑔, patience, and willpower.29  

Our approach is modeled as  

𝑦𝑖 = 𝛾0 + 𝛾1𝛿𝑦𝑖
∗ + 𝜸𝟐𝑿𝒊 + 𝜀𝑖                                                         (6) 

𝑥𝑗𝑖 = 𝜌0𝑗 + 𝜌1𝑗𝛿𝑦𝑖
∗ + 𝜌2𝑗𝑿𝒊 + 𝑢𝑗𝑖                                                      (7) 

Where 𝑥𝑗𝑖 in equation (7) represents the proxy variables.  Equations (6) and (7) cannot be 

estimated due to the unobservable covariate 𝛿𝑦
∗ , but the parameter of interest 𝛾1 can be recovered 

from a linear combination of the coefficients from a regression of 𝑦 on all the proxy variables 

together: 

𝑦𝑖 = 𝜃0 + ∑ 𝜃1𝑗𝑥𝑗𝑖

𝑘

𝑗=1

+ 𝜽𝟐𝑿𝒊 + 𝜇𝑖.                                                 (8) 

where 𝑘 = 5 for the health outcomes and 3 for the energy and financial outcomes.  Assuming 

that 𝛿𝑦
∗  is uncorrelated with 𝜀 and that ∀ 𝑗 𝑢𝑗  is uncorrelated with 𝛿𝑦

∗  and 𝜀, LW show that 𝛾1 is 

estimated with the least amount of bias by  

𝛾1̂ = ∑
𝑐𝑜𝑣(𝑦, 𝑥𝑗)

𝑐𝑜𝑣(𝑦, 𝑥1)
𝜃1𝑗̂

𝑘

𝑗=1

                                                           (9) 

where 𝑥1 is the proxy variable chosen as the base.  We use as 𝑥1 the proxy with the largest value 

of 𝑐𝑜𝑣(𝑦, 𝑥𝑗), meaning that 𝑥1’s coefficient will have a weight of 1 and the weights for the other 

proxies’ coefficients will be less than 1.  LW show that when 𝑥1 is chosen in this manner, 𝛿𝑦
∗  will 

                                                 
29 In unreported regressions (available upon request), we verify that the health-related discounting proxies offer little 

predictive power for the energy use and financial outcomes beyond that of the more general time preference 

measures. 
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have the same scale as 𝑥1.  We standardize all our proxy variables before estimating (8), so 

regardless of which proxy emerges as 𝑥1 – which could vary for different outcomes – the scale of 

𝛿𝑦
∗  will be (approximately) that of a standardized variable, i.e. mean of 0 and standard deviation 

of 1.  𝛾1̂ from equation (9) can therefore be compared directly to 𝛾1̂ from equation (4).30   

Before presenting our results, a few caveats should be discussed.  First, it is unclear how 

LW’s procedure should be applied to non-linear models, so we estimate linear models even for 

the binary and count outcomes.31  Second, since it is also unclear how LW's method could be 

used in the case of two unobserved variables that are potentially both affected by the same 

proxies, we did not attempt to implement a multiple proxies procedure featuring a quasi-

hyperbolic specification of 𝛽 and 𝛿.  Finally, our multiple proxies procedure requires the strong 

assumption that all proxies are uncorrelated with the error term in (8).  For these reasons, we 

consider the results from this section to be robustness checks of our main results as opposed to 

our preferred estimates.32  

Table 9 reports the estimated effects of 𝛿𝑦
∗  on the health, energy, and financial outcomes.  

For comparison purposes, we also present estimates using 𝛿𝑎𝑣𝑔 as the only proxy for purposes of 

comparison; these estimates are nearly identical to those from Tables 4-7, differing only because 

                                                 
30 Intuitively, this procedure can be illustrated as follows.  Suppose 𝛿𝑎𝑣𝑔 = 𝛿𝑦

∗; i.e. the regression without the 

additional proxies – equation (4) – does not suffer from attenuation bias.   The coefficient for 𝛿𝑎𝑣𝑔 in (8) is the same 

as that from (4), the coefficients for the other proxies in (8) are 0, and 𝛾1 from (9) is the same as 𝛾1 from (4).  

Alternatively, suppose 𝛿𝑎𝑣𝑔 is a fairly poor proxy for 𝛿𝑦
∗ and equation (4) therefore suffers from considerable 

attenuation bias.  To the extent that the additional proxies add explanatory power to regression (8), 𝛾1 from (9) will 

be larger than 𝛾1 from (4), meaning that (9) corrects for at least some of the attenuation bias. 
31 The average marginal effects from our previous probit and negative binomial regressions are very similar to those 

from linear regressions, so we do not expect that this limitation is consequential.   
32 Another possible issue is that LW’s procedure allows for negative weights, and it is not clear how these should be 

interpreted.  For instance, suppose one proxy is strongly related to the outcome in the expected direction, whereas 

another proxy is strongly related in the opposite direction.  The “wrong-signed” coefficient could receive a negative 

weight, in which case it would count the same toward as 𝛾1̂ as if it were “right-signed.”  In practice, such strong 

wrong-signed correlations are rare in our data, and our conclusions are not meaningfully affected by replacing the 

negative weights with zeroes or positive weights of the same magnitudes (results available upon request).   
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we use linear models here to be consistent with the linear models used for the multiple proxies 

approach.  Full regression results are in Appendix Tables A5-A8, including the coefficient 

estimates, standard errors, and covariance ratios (weights) for each proxy in regression (8), along 

with sample sizes.   

The appendix tables show that the alternative proxies are occasionally statistically 

significant, but none of them are significant more frequently than the standard measure 𝛿𝑎𝑣𝑔.  

𝛿𝑎𝑣𝑔 and self-reported willpower are tied for the most significant associations in the expected 

direction (8 of the 26 outcomes for each), with the other three proxies performing worse.33  A 

particularly interesting result is that the two health-specific time preference proxies – 𝛿𝑚𝑖𝑔𝑟𝑎𝑖𝑛𝑒 

and willpower with junk food – are worse predictors of health-related outcomes than the 

analogous general proxies 𝛿𝑎𝑣𝑔 and willpower.  𝛿𝑚𝑖𝑔𝑟𝑎𝑖𝑛𝑒 and willpower with junk food are only 

significantly associated in the expected direction for 2 and 3 of the 15 health outcomes, 

respectively, compared to 6 and 7 for 𝛿𝑎𝑣𝑔 and general willpower.  Willpower with junk food 

does seem to influence the weight-related outcomes exercise, snacking, and obesity, but general 

willpower predicts them just as well. 

 Turning to the estimated effects of 𝛿𝑦
∗  in Table 9, we see that implementing the multiple 

proxies approach generally suggests that results using 𝛿𝑎𝑣𝑔 may be conservative.  In seven cases, 

𝛿𝑎𝑣𝑔 was insignificant or had a “wrong-signed” association in Tables 4-7 but becomes 

significant in the expected direction using the multiple proxies method.  This occurs for the 

outcomes very good or better health, exercise, sunscreen use, obesity, well-insulated home, less 

                                                 
33 While 8 of 26 may not seem like a substantial number of statistically significant associations, note that including 

all the time preference proxies together in the same regressions results in considerable multicollinearity.  For this 

reason, there are many more significant results for the linear combination of these coefficients than there are for any 

one coefficient individually. 
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energy than average, and any credit card.  For ten other outcomes – good or better health, mental 

health, activity limitations, any health insurance, bought own health insurance, snacking, seat 

belt use, missing BMI, installed CFL, and summer temperature in the home – 𝛿𝑎𝑣𝑔 was 

significant in the expected direction in Tables 4-7 but the magnitude of its effect increases in 

Table 9.  In six of these ten cases (good or better health, mental health, activity limitations, seat 

belts, installed CFL, and summer temperature), the increase in magnitude is greater than two of 

the original estimate’s standard errors.  For fuel-efficient car and programmable thermostat, 

neither 𝛿𝑎𝑣𝑔 or 𝛿𝑦
∗  are significant but the estimate for 𝛿𝑦

∗  is notably larger and approaches 

significance at the 10% level.  In the cases of smoking, binge drinking, and credit card balance, 

𝛿𝑎𝑣𝑔 was already significant and the magnitude for 𝛿𝑦
∗  is nearly identical.  For the final four 

outcomes – physical health, energy audit, and non-retirement and retirement savings – 𝛿𝑎𝑣𝑔 and 

𝛿𝑦
∗  are both insignificant and their estimated effects are small.   

 In sum, for 19 of the 26 outcomes the multiple proxies approach strengthens the results.  

We therefore view the findings from Tables 4-7 as conservative.  This appears to be especially 

true for energy use.  Recall that Table 6 provided only weak evidence of an association between 

time-consistent discount factor and the seven energy outcomes, with 𝛿𝑎𝑣𝑔 only being statistically 

significant twice.  This number rises to four using the multiple proxies method, with significance 

almost being obtained in two other cases.           

VI. Conclusion 

This paper provides evidence that many outcomes and behaviors related to health, 

energy, and finances are correlated with time preference parameters elicited from MPLs.  The 

time-consistent discount factor 𝛿𝑎𝑣𝑔 is statistically significantly associated, in the expected 
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direction, with 14 of our 26 outcomes.  Using the quasi-hyperbolic specification, 𝛿𝑞ℎ and present 

bias 𝛽𝑞ℎ are significantly related to 13 and 9 outcomes, respectively, in the hypothesized 

direction.  These are impressive results, given the relatively small sample and the modest 

financial payments provided to randomly chosen participants.  We also explore alternate time 

preference measures, and show that in general they are no better at predicting outcomes than the 

standard, MPL-elicited measure.  However, a multiple proxies approach to address measurement 

error in elicited monetary time preferences suggests that our estimated effects of 𝛿𝑎𝑣𝑔 on these 

outcomes are likely conservative. Unfortunately, this method is not well suited to simultaneously 

examining the present-biased and time-consistent components of discounting, so we cannot say 

if our estimates of the coefficients on 𝛽𝑞ℎ are similarly understated.  

We believe that the findings are actually even more meaningful than they appear at first 

glance.  Not all of the dependent variables are equally important, and some of the strongest and 

most interesting results are obtained for outcomes that we judge to be the most central.  For 

example, we obtain the striking finding that patient individuals are in better health for all of our 

overall measures except days in poor physical health (i.e. for good or better health, very good or 

better health (in the multiple proxies regression only), days in bad mental health, and days where 

poor health significantly limited activities).  Moreover, while both the time-consistent and 

present-biased components of discounting have a significant effect, the latter are larger.  

The results are somewhat less consistent for health risks and behaviors, but our 

interpretation again is that the findings for some of the riskiest behaviors – e.g. binge drinking 

and smoking – tell a similar story: both 𝛿𝑞ℎ and 𝛽𝑞ℎ matter but the latter is often more important.  

Most other results for health behaviors are in the hypothesized direction, and some that are 
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anomalous (e.g. the use of sunscreen in the main specifications but not the multiple proxy 

regressions) we consider to be smaller health risks. 

Though the estimates for energy use are somewhat mixed, once again some of the 

strongest and most interesting results are obtained for outcomes that we think are the most 

important.  For instance, present-biased individuals are less likely to purchase high-fuel-

economy vehicles, and passenger cars are the largest source of transportation-related carbon 

emissions.34  Air-conditioning represents about one-fourth of total home electricity use (the 

largest single component),35 and present-biased individuals (as well as persons with low discount 

factors more generally) report keeping their houses at higher temperatures during the summer, 

probably resulting in significant electricity savings.  The results for many of the other energy 

outcomes (e.g. whether an energy audit has been conducted or there is a programmable 

thermostat in the home) seem likely to generate less energy savings than the factors just 

mentioned, although results for these variables are consistent with theoretical expectations more 

often than not. 

Present-biased individuals are also less likely to have retirement or non-retirement 

savings, a first-order financial consideration, and persons who discount the future less heavily 

hold less credit card debt, as anticipated. Our limited data on financial outcomes prevents us 

from saying more in this regard, but these results seem informative and potentially important. 

 Finally, we examine how well alternative time preference measures perform at 

predicting behavior.  Self-reported willpower is correlated with all MPL-elicited discount factors 

and also with about as many consumer behavior variables as the elicited monetary discount 

factor.  There is no evidence that time preference parameters obtained from questions 

                                                 
34 See http://www.epa.gov/climatechange/ghgemissions/sources/transportation.html.  
35 See http://www.eia.gov/energyexplained/index.cfm?page=electricity_use.  

http://www.epa.gov/climatechange/ghgemissions/sources/transportation.html
http://www.eia.gov/energyexplained/index.cfm?page=electricity_use


34 

 

specifically about a health decision are better predictors of health outcomes than the standard 

time preference parameters pertaining to monetary outcomes. 

This study suggests many areas for future research.  First, would our results persist with 

larger samples or with preference elicitation strategies that provided respondents with larger risks 

or rewards?  Second, do the observed responses of future bias represent true preferences or 

measurement error?  If future bias exists, how do we explain it and what are the implications for 

these types of modeling efforts? Third, which of the outcomes examined in this investigation are 

most important and what other outcomes would be critical to analyze?  More generally, are there 

strategies for deciding which dependent variables, among an almost infinite set of possibilities 

and domains, research should study?  Fourth, do the phenomena observed in this analysis show 

systematic patterns among subgroups stratified by characteristics such as age, gender and 

socioeconomic status?  Fifth, if present bias matters, what is the role of sophistication versus 

naiveté?  And, is there differential demand for commitment devices or elimination of choice sets 

across the domains of health, energy and financial decisions?  Finally, although our results 

suggest numerous potential avenues for policy, which interventions would actually lead to 

improvements in social welfare and how would these most effectively be implemented? 
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Table 1: Hypothetical Payoffs Received in Different Time Periods 

Red Block Black Block Blue Block 

Payoff 

Today 

Payoff 

in One 

Month 

Discount 

factor if 

indifferent 

Percent 

Choosing 

Larger 

Amount 

Payoff 

Today 

Payoff 

in Six 

Months 

Discount 

factor if 

indifferent 

Percent 

Choosing 

Larger 

Amount 

Payoff 

in Six 

Months 

Payoff 

in 

Seven 

Months 

Discount 

factor if 

indifferent 

Percent 

Choosing 

Larger 

Amount 

$29 $30 0.9667 24.22 $29 $30 0.9944 10.43 $29 $30 0.9667 37.83 

$28 $30 0.9333 31.38 $28 $30 0.9886 13.99 $28 $30 0.9333 42.80 

$26 $30 0.8667 45.78 $26 $30 0.9764 18.68 $26 $30 0.8667 51.39 

$24 $30 0.8000 60.37 $24 $30 0.9634 28.03 $24 $30 0.8000 61.81 

$21 $30 0.7000 73.38 $21 $30 0.9423 40.31 $21 $30 0.7000 72.33 

$17 $30 0.5667 85.69 $17 $30 0.9097 62.34 $17 $30 0.5667 83.99 

$13 $30 0.4333 87.09 $13 $30 0.8699 71.88 $13 $30 0.4333 85.57 

    $8 $30 0.8023 78.51     
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Table 2: Calculated Discount Factors 

Parameter 
Average 

[St. Error] 

Percentile 

5th 10th 25th 50th 75th 90th 95th 

𝛿𝑎𝑣𝑔 
0.846 

[0.004] 
0.447 0.578 0.808 0.905 0.945 0.967 0.979 

𝛿𝑞ℎ 
0.864 

[0.005] 
0.458 0.508 0.834 0.924 0.964 0.990 0.997 

𝛽𝑞ℎ 
0.936 

[0.007] 
0.619 0.678 0.843 0.944 1.012 1.107 1.252 

Note: Table displays values of the specified parameter at given points in the distribution as well as the mean value and its standard 

error (in brackets). The sample size is 1,154. 
 

 

Table 3: Estimate of Risk Aversion Obtained Using Lottery Questions 

Lottery A Lottery B 
EV(A) EV(B) Difference 

CRRA if 
just 

indifferent 

Percent 
Choosing 

A 
Prob $ Prob $ Prob $ Prob $ 

20% $ 20.00 80% $ 16.00 20% $ 38.50 80% $   1.00 $    16.80 $     8.50 $       8.30 -0.95 86.96 
30% $ 20.00 70% $ 16.00 30% $ 38.50 70% $   1.00 $    17.20 $    12.25 $       4.95 -0.49 84.46 
40% $ 20.00 60% $ 16.00 40% $ 38.50 60% $   1.00 $    17.60 $    16.00 $       1.60 -0.15 82.62 
50% $ 20.00 50% $ 16.00 50% $ 38.50 50% $   1.00 $    18.00 $    19.75 $    (1.75) 0.14 73.11 
60% $ 20.00 40% $ 16.00 60% $ 38.50 40% $   1.00 $    18.40 $    23.50 $    (5.10) 0.41 64.67 
70% $ 20.00 30% $ 16.00 70% $ 38.50 30% $   1.00 $    18.80 $    27.25 $    (8.45) 0.68 54.73 
80% $ 20.00 20% $ 16.00 80% $ 38.50 20% $   1.00 $    19.20 $    31.00 $  (11.80) 0.97 46.63 
90% $ 20.00 10% $ 16.00 90% $ 38.50 10% $   1.00 $    19.60 $    34.75 $  (15.15) 1.37 41.55 
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Table 4: Self-Reported Health Status and Health Insurance 

 Good or Better Health Very Good or Better Health Days Physical Health Not 

Good 

Days Mental Health Not 

Good 

 (1a) (1b) (2a) (4a) (4a) (3b) (4a) (4b) 

𝛿𝑎𝑣𝑔 0.024**  -0.008  0.239  -0.658**  

 (0.011)  (0.015)  (0.265)  (0.263)  

𝛿𝑞h  0.027**  -0.009  0.256  -0.753*** 

  (0.012)  (0.017)  (0.294)  (0.291) 

𝛽𝑞h  0.055***  0.015  -0.263  -1.331*** 

  (0.018)  (0.025)  (0.434)  (0.429) 

N 1,085 1,085 1,085 1,086 

 Days Activity is Limited Any Health Insurance Bought Own Health 

Insurance 

 

  (5a) (5b) (6a) (6b) (7a) (7b)   

𝛿𝑎𝑣𝑔 -0.658***  0.036***  0.048**    

 (0.246)  (0.012)  (0.020)    

𝛿𝑞h  -0.737***  0.041***  0.052**   

  (0.274)  (0.014)  (0.023)   

𝛽𝑞h  -1.454***  0.009  0.013   

  (0.424)  (0.020)  (0.035)   

N 1,085 1,078 425   

Notes: Robust standard errors in parentheses.  *** p<0.01, ** p<0.05, * p<0.1.  All regressions include the following unreported controls: a constant, indicators 

for five-year age categories, gender, race, indicators for five education categories, an indicator for married, indicators for three family size categories, indicators 

for ten income categories, and CRRA. 𝛿𝑎𝑣𝑔, 𝛿𝑞h, and 𝛽𝑞h are standardized to have a mean of 0 and standard deviation of 1. The sample in models (7a) and (7b) 

includes only persons who do not have health insurance through their or their spouse's employer or through the government. 
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Table 5: Health Behaviors 

 Days Exercise last Month Snacks per Day Cigarettes per Day Times Binge Drinking last 

Month 
 (1a) (1b) (2a) (2b) (3a) (3b) (4a) (4b) 

𝛿𝑎𝑣𝑔 0.409  -0.184***  -0.846***  -0.172**  

 (0.359)  (0.070)  (0.315)  (0.076)  

𝛿𝑞h  0.510  -0.197**  -1.032***  -0.199** 

  (0.402)  (0.079)  (0.361)  (0.085) 

𝛽𝑞h  0.631  -0.104  -1.569**  -0.335*** 

  (0.541)  (0.113)  (0.576)  (0.119) 

N 1,087 1,077 1,083 1,083 

 Always/Nearly Always Use 

Sunscreen 

Always Use Seat Belts Obese BMI Missing 

  (5a) (5b) (6a) (6b) (7a) (7b) (8a) (8b) 

𝛿𝑎𝑣𝑔 -0.031**  0.028**  0.017  -0.021***  

 (0.014)  (0.012)  (0.017)  (0.007)  

𝛿𝑞h  -0.033**  0.033**  0.020  -0.024*** 

  (0.016)  (0.013)  (0.019)  (0.008) 

𝛽𝑞h  -0.031  0.028  -0.005  -0.006 

  (0.023)  (0.020)  (0.025)  (0.014) 

N 1,084 1,083 998 1,079 

Notes: Robust standard errors in parentheses.  *** p<0.01, ** p<0.05, * p<0.1.  All regressions include the following unreported controls: a constant, indicators 

for five-year age categories, gender, race, indicators for five education categories, an indicator for married, indicators for three family size categories, indicators 

for ten income categories, and CRRA. 𝛿𝑎𝑣𝑔, 𝛿𝑞h, and 𝛽𝑞h are standardized to have a mean of 0 and standard deviation of 1.  
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Table 6: Energy Use 

 High mpg Installed CFL Well-Insulated Programmable Thermostat 

 (1a) (1b) (2a) (2b) (3a) (3b) (4a) (4b) 

𝛿𝑎𝑣𝑔 0.015  0.048**  -0.001  0.033  

 (0.018)  (0.021)  (0.018)  (0.024)  

𝛿𝑞h  0.016  0.059**  -0.012  0.037 

  (0.020)  (0.024)  (0.022)  (0.028) 

𝛽𝑞h  0.072**  0.004  0.070**  0.015 

  (0.028)  (0.037)  (0.029)  (0.039) 

N 881 526 494 510 

 Less Energy than Average Energy Audit Summer Temperature in 

Home 

 

 (5a) (5b) (6a) (6b) (7a) (7b)   

𝛿𝑎𝑣𝑔 0.029  -0.003  0.350*    

 (0.024)  (0.019)  (0.204)    

𝛿𝑞h  0.026  -0.001  0.348   

  (0.028)  (0.021)  (0.227)   

𝛽𝑞h  -0.037  -0.020  0.485*   

  (0.040)  (0.033)  (0.283)   

N 520 514 728  

Notes: Robust standard errors in parentheses.  *** p<0.01, ** p<0.05, * p<0.1.  All regressions include the following unreported controls: a constant, indicators 

for five-year age categories, gender, race, indicators for five education categories, an indicator for married, indicators for three family size categories, indicators 

for ten income categories, and CRRA. 𝛿𝑎𝑣𝑔, 𝛿𝑞h, and 𝛽𝑞h are standardized to have a mean of 0 and standard deviation of 1.  The sample in models (2a) through 

(6b) includes only persons who have owned their home for more than two years, and the sample in models (7a) and (7b) includes only those homeowners who 

have a thermostat. 
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Table 7: Financial Outcomes 

 Any Credit Card ln(Credit Card Balance) Any Non-Retirement Savings Any Retirement Savings 

 (1a) (1b) (2a) (2b) (3a) (3b) (4a) (4b) 

𝛿𝑎𝑣𝑔 0.017  -0.382**  0.003  0.017  

 (0.014)  (0.159)  (0.015)  (0.015)  

𝛿𝑞h  0.019  -0.463***  0.004  0.020 

  (0.015)  (0.177)  (0.017)  (0.017) 

𝛽𝑞h  0.011  -0.079  0.045*  0.033 

  (0.022)  (0.273)  (0.024)  (0.023) 

N 1,072 631 1,076 1,074 
Notes: Robust standard errors in parentheses.  *** p<0.01, ** p<0.05, * p<0.1.  All regressions include the following unreported controls: a constant, indicators 

for five-year age categories, gender, race, indicators for five education categories, an indicator for married, indicators for three family size categories, indicators 

for ten income categories, and CRRA. 𝛿𝑎𝑣𝑔, 𝛿𝑞h, and 𝛽𝑞h are standardized to have a mean of 0 and standard deviation of 1.   
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Table 8: Alternate Time Preference Measures  

  Patience Willpower Willpower with Junk Food 

 (1a) (1b) (2a) (2b) (3a) (3b) 

𝛿𝑎𝑣𝑔 0.016  0.201**  -0.018  

 (0.036)  (0.095)  (0.102)  

𝛿𝑞h  0.019  0.220**  -0.010 

  (0.041)  (0.107)  (0.115) 

𝛽𝑞h  -0.055  0.282**  -0.065 

  (0.051)  (0.135)  (0.158) 

N 1,078 1,075 1,079 

  𝛿𝑚𝑖𝑔𝑟𝑎𝑖𝑛𝑒 CRT Score  

  (4a) (4b) (5a) (5b)   

𝛿𝑎𝑣𝑔 0.059*  0.114***    

 (0.035)  (0.022)    

𝛿𝑞h  0.071*  0.125***   

  (0.039)  (0.025)   

𝛽𝑞h  0.042  0.026   

  (0.051)  (0.045)   

N 1,075 1,076  

Notes: Robust standard errors in parentheses.  *** p<0.01, ** p<0.05, * p<0.1.  All regressions include the following unreported controls: a constant, indicators 

for five-year age categories, gender, race, indicators for five education categories, an indicator for married, indicators for three family size categories, indicators 

for ten income categories, and CRRA. 𝛿𝑎𝑣𝑔, 𝛿𝑞h, and 𝛽𝑞h are standardized are standardized to have a mean of 0 and standard deviation of 1.



46 

 

Table 9: Multiple Proxies 

 Good or 

Better 

Health 

Very 

Good or 

Better 

Health 

Days 

Physical 

Health 

Not Good 

Days 

Mental 

Health 

Not Good 

Days 

Activity 

Limited 

Any 

Health 

Insurance 

Bought 

Own 

Health 

Insurance 

Days 

Exercise 

last Month 

Snacks 

per Day 

𝛿𝑦𝑖
∗̂  0.072*** 0.099*** -0.522 -1.767*** -1.161*** 0.048** 0.067** 3.096*** -0.318*** 

mult. proxies (0.019) (0.019) (0.639) (0.436) (0.330) (0.019) (0.028) (0.372) (0.114) 

𝛿𝑎𝑣𝑔 0.029** -0.007 0.120 -0.840*** -0.541** 0.037** 0.043** 0.286 -0.203** 

single proxy (0.013) (0.015) (0.262) (0.305) (0.260) (0.016) (0.018) (0.309) (0.084) 

 Cigarettes 

per Day 

Binge 

Drinking 

last Month 

Always/ 

Nearly 

Always 

Use 

Sunscreen 

Always 

Use Seat 

Belts 

Obese BMI 

Missing 

High mpg Installed 

CFL 

Well-

Insulated 

𝛿𝑦𝑖
∗̂  -0.724** -0.174 0.051*** 0.077*** -0.071*** -0.029** 0.038 0.090*** 0.052*** 

mult. proxies (0.290) (0.109) (0.016) (0.021) (0.020) (0.013) (0.026) (0.032) (0.020) 

𝛿𝑎𝑣𝑔 -0.541** -0.104 -0.031** 0.030** 0.017 -0.030** 0.015 0.053** 0.001 

single proxy (0.260) (0.088) (0.015) (0.014) (0.017) (0.012) (0.019) (0.024) (0.018) 

 Programm

-able 

Thermo-

stat 

Less 

Energy 

than 

Average 

Energy 

Audit 

Summer 

Tempera-

ture in 

Home 

Any 

Credit 

Card 

ln(Credit 

Card 

Balance) 

Any Non-

Retire-

ment 

Savings 

Any 

Retire-

ment 

Savings 

 

𝛿𝑦𝑖
∗̂  0.059 0.070** 0.0003 0.778*** 0.032* -0.371** -0.004 0.010  

mult. proxies (0.036) (0.034) (0.020) (0.281) (0.019) (0.164) (0.017) (0.014)  

𝛿𝑎𝑣𝑔 0.033 0.020 -0.0004 0.350* 0.016 -0.382** 0.003 0.017  

single proxy (0.024) (0.025) (0.019) (0.204) (0.015) (0.159) (0.015) (0.014)  

Notes: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Weights in the index are in brackets. All regressions include the following 

unreported controls: a constant, indicators for five-year age categories, gender, race, indicators for five education categories, an indicator for married, indicators 

for three family size categories, indicators for ten income categories, and CRRA. All discounting variables are standardized to have a mean of 0 and standard 

deviation of 1.  The sample in the installed CFL through Energy Audit columns includes only persons who have owned their home for more than two years. 
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Appendix Table A1: Summary Statistics of Control Variables 

Variable Mean 

(Standard Error) 

[Number nonmissing] 

CRRA .4420 

(.0212) 

[1310] 

Age (years) 43.05 

(.4437) 

[1268] 

Income ($1,000) 57.85 

(3.63) 

[1252] 

Female .5008 

(.0139) 

[1302] 

White .757 

(.0118) 

[1325] 

Married .4712 

(.0137) 

[1320] 

Less than High School .1185 

(.0089) 

[1317] 

High School Graduate .3204 

(.0129) 

[1317] 

Some College .2065 

(.0112) 

[1317] 

College Graduate .2627 

(.0121) 

[1317] 

Postgraduate .0919 

(.0080) 

[1317] 

Number of Children 2.350 

(.0411) 

[1310] 
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Appendix Table A2: Summary Statistics of Health Outcomes 

Variable Mean 

(Standard Error) 

[Number nonmissing] 

Good or Better Health .8284 

(.0104) 

[1317] 

Very Good or Better Health .5110 

(.0138) 

[1317] 

Days of Last 30 Physical Health Not Good 

(0 if None) 

4.467 

(.2269) 

[1316] 

Days of Last 30 Mental Health Not Good 

(0 if None) 

5.016 

(.2230) 

[1317] 

Days of Last 30 Health-Related Functional Limitations 

(0 if None) 

3.567 

(.1980) 

[1316] 

Any Health Insurance .7289 

(.0123) 

[1313] 

Bought Own Health Insurance 

(Conditional on Not Having Employer Provided or Public Insurance) 

.3219 

(.0204) 

[525] 

Obese (BMI≥30) .3231 

(.0135) 

[1204] 

Days of Last 30 Exercised 

(0 if No Exercise) 

10.68 

(.2743) 

[1317] 

Snacks (Salty or Sweet) in Typical Day 

(0 if No Snacks) 

2.887 

(.0657) 

[1306] 

Cigarettes Smoked in Typical Day 

(0 for Non-Smokers) 

4.035 

(.0607) 

[1317] 

Days of Last 30 Binge Drank 

(0 if No Binge Drinking) 

1.053 

(.0607) 

[1315] 

Always/Nearly Always Uses Sunscreen when in Sun .3260 

(.0129) 

[1316] 

Always/Nearly Always Uses Seat Belts in Car .7932 

(.0112) 

[1320] 
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Appendix Table A3: Summary Statistics of Energy and Financial Outcomes 

 

Variable Mean 

(Standard Error) 

[Number nonmissing] 

High Miles per Gallon (>25) Car 

(Car Owners Only) 

.6136 

(.015) 

[1056] 

Ever Install CFL 

(Homeowners for 2+ Years Only) 

.682 

(.0185) 

[632] 

Home is Well-Insulated 

(Homeowners for 2+ Years Only) 

.8619 

(.0138) 

[630] 

Have a Programmable Thermostat 

(Homeowners for 2+ Years Only) 

.4509 

(.0200) 

[621] 

Consumes Less Energy than Average 

(Homeowners for 2+ Years Only) 

.4483 

(.0198) 

[629] 

Ever Had an Energy Audit 

(Homeowners for 2+ Years Only) 

.2173 

(.0165) 

[626] 

Summer Temperature in Home 

(Homeowners for 2+ Years with a Thermostat Only) 

73.78 

(.1937) 

[456] 

Have At Least One Credit Card .5922 

(.0136) 

[1307] 

Credit Card Balance 

(Those with Credit Cards Only)  

3396 

(475.5) 

[754] 

Any Non-Retirement Savings 

 

.4440 

(.0138) 

[1304] 

Any Retirement Savings .3903 

(.0135) 

[1299] 
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Appendix Table A4: Summary Statistics of Alternate Time Preference Measures 

Variable Mean 

(Standard Error) 

[Number nonmissing] 

Self-Assessed Patience 

(1 to 10; 10 is Most Patient) 

5.995 

(.0757) 

[1302] 

Self-Assessed Willpower 

(1 to 10; 10 is Most Willpower) 

6.386 

(.0704) 

[1299] 

Self-Assessed Willpower with Junk Food 

(1 to 10; 10 is Most Willpower) 

5.238 

(.0822) 

[1304] 

𝛿𝑚𝑖𝑔𝑟𝑎𝑖𝑛𝑒 .9361 

(.0011) 

[1295] 

CRT score .5729 

(.0252) 

[1304] 
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Table A5: Self-Reported Health and Health Insurance – Multiple Proxies 

 Good or 

Better Health 

Very Good or 

Better Health 

Days Physical 

Health Not 

Good 

Days Mental 

Health Not 

Good 

Days Activity 

is Limited 

Any Health 

Insurance 

Bought Own 

Health 

Insurance 

𝛿𝑎𝑣𝑔 0.025* -0.018 0.152 -0.772** -0.423 0.037** 0.044** 

 (0.013) (0.015) (0.270) (0.311) (0.262) (0.016) (0.018) 

 [0.965] [0.204] [0.025] [1] [0.758] [1] [1] 

𝛿𝑚𝑖𝑔𝑟𝑎𝑖𝑛𝑒 0.001 0.029* 0.190 -0.237 0.080 -0.018 -0.031 

 (0.012) (0.016) (0.287) (0.270) (0.239) (0.013) (0.022) 

 [0.136] [0.482] [-0.880] [0.121] [-0.226] [-0.534] [-0.655] 

Patience -0.010 0.007 0.143 -0.598* 0.050 0.010 0.012 

 (0.014) (0.017) (0.338) (0.342) (0.282) (0.015) (0.022) 

 [0.262] [0.475] [-0.973] [0.955] [0.442] [0.402] [0.415] 

Willpower 0.039*** 0.053*** -0.204 -0.408 -0.859*** -0.009 -0.027 

 (0.014) (0.018) (0.362) (0.353) (0.297) (0.015) (0.023) 

 [1] [1] [0.834] [0.961] [1] [0.421] [0.340] 

Willpower:  0.015 0.036** -0.048 -0.011 0.277 0.008 0.016 

Junk Food (0.013) (0.016) (0.318) (0.294) (0.255) (0.013) (0.021) 

 [0.712] [0.905] [1] [0.331] [0.049] [0.284] [0.431] 

N 1,060 1,071 1,060 1,068 1,061 1,059 409 

Notes: Robust standard errors in parentheses.  *** p<0.01, ** p<0.05, * p<0.1.  Weights in the index are in brackets.  All regressions include the following 

unreported controls: a constant, indicators for five-year age categories, gender, race, indicators for five education categories, an indicator for married, indicators 

for three family size categories, indicators for ten income categories, and CRRA.  All discounting variables are standardized to have a mean of 0 and standard 

deviation of 1.  The sample in the last column includes only persons who do not have health insurance through their or their spouse's employer or through the 

government. 
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Table A6: Health Behaviors – Multiple Proxies 

 Days 

Exercise 

last Month 

Snacks per 

Day 

Cigarettes 

per Day 

Times 

Binge 

Drinking 

last Month 

Always/ 

Nearly 

Always Use 

Sunscreen 

Always Use 

Seat Belts 

Obese BMI 

Missing 

𝛿𝑎𝑣𝑔 0.202 -0.176** -0.433 -0.107 -0.031** 0.024 0.018 -0.024** 

 (0.306) (0.087) (0.267) (0.091) (0.015) (0.014) (0.017) (0.012) 

 [0.367] [1] [1] [1] [0.038] [0.905] [-0.170] [1] 

𝛿𝑚𝑖𝑔𝑟𝑎𝑖𝑛𝑒 -0.964*** 0.045 -0.257 0.035 0.044*** 0.002 0.005 0.007 

 (0.302) (0.076) (0.230) (0.078) (0.014) (0.013) (0.016) (0.009) 

 [-0.415] [-0.579] [0.107] [-0.555] [1] [-0.287] [-0.012] [-0.236] 

Patience 0.998*** 0.068 0.473* -0.008 -0.012 0.023 0.013 0.004 

 (0.324) (0.081) (0.252) (0.087) (0.016) (0.015) (0.018) (0.010) 

 [0.823] [0.378] [0.045] [0.339] [0.095] [0.994] [0.043] [0.380] 

Willpower 1.198*** -0.114 -0.533* -0.039 -0.003 0.033** -0.038** -0.015 

 (0.327) (0.092) (0.277) (0.096) (0.016) (0.015) (0.018) (0.011) 

 [1] [0.731] [0.565] [0.418] [0.014] [1] [0.869] [0.563] 

Willpower:  0.795*** -0.118 0.081 0.088 0.012 -0.0002 -0.036** 0.004 

Junk Food (0.310) (0.085) (0.245) (0.080) (0.014) (0.012) (0.016) (0.009) 

 [0.758] [0.493] [0.199] [-0.323] [0.603] [0.343] [1] [0.078] 

N 1,069 1,060 1,058 1,069 1,062 1,070 979 1,062 

Notes: Robust standard errors in parentheses.  *** p<0.01, ** p<0.05, * p<0.1.  Weights in the index are in brackets.  All regressions include the following 

unreported controls: a constant, indicators for five-year age categories, gender, race, indicators for five education categories, an indicator for married, indicators 

for three family size categories, indicators for ten income categories, and CRRA.  All discounting variables are standardized to have a mean of 0 and standard 

deviation of 1.  
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Table A7: Energy Use – Multiple Proxies 

 High mpg Installed CFL Well-

Insulated 

Programmable 

Thermostat 

Less Energy 

than Average 

Energy Audit Summer 

Temperature 

in Home 

𝛿𝑎𝑣𝑔 0.014 0.047* -0.002 0.031 0.013 -0.0004 0.306 

 (0.020) (0.025) (0.017) (0.025) (0.025) (0.019) (0.206) 

 [1] [0.763] [0.027] [0.936] [0.751] [1] [1] 

Patience 0.019 0.033 -0.008 0.042 0.038 0.022 0.335* 

 (0.020) (0.024) (0.019) (0.027) (0.027) (0.022) (0.179) 

 [0.912] [0.909] [0.771] [0.977] [1] [-0.057] [1] 

Willpower 0.008 0.025 0.059*** -0.011 0.024 -0.017 0.169 

 (0.020) (0.025) (0.020) (0.027) (0.028) (0.022) (0.184) 

 [0.813] [1] [1] [1] [0.917] [-0.113] [0.811] 

N 872 520 520 513 519 517 723 

Notes: Robust standard errors in parentheses.  *** p<0.01, ** p<0.05, * p<0.1.  Weights in the index are in brackets.  All regressions include the following 

unreported controls: a constant, indicators for five-year age categories, gender, race, indicators for five education categories, an indicator for married, indicators 

for three family size categories, indicators for ten income categories, and CRRA.  All discounting variables are standardized to have a mean of 0 and standard 

deviation of 1. The sample in the middle five columns includes only persons who have owned their home for more than two years. 
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Table A8: Financial Outcomes – Multiple Proxies 

 Any Credit Card ln(Credit Card Balance) Any Non-Retirement 

Savings 

Any Retirement 

Savings 

𝛿𝑎𝑣𝑔 0.015 -0.361** -0.001 0.013 

 (0.015) (0.162) (0.015) (0.014) 

 [1] [1] [1] [1] 

Patience 0.025* -0.051 -0.003 -0.016 

 (0.015) (0.171) (0.016) (0.015) 

 [0.392] [0.202] [0.392] [-0.020] 

Willpower -0.002 -0.005 -0.003 -0.016 

 (0.016) (0.175) (0.017) (0.016) 

 [0.593] [0.069] [0.593] [0.217] 

N 1,067 621 1,066 1,054 

Notes: Robust standard errors in parentheses.  *** p<0.01, ** p<0.05, * p<0.1.  Weights in the index are in brackets.  All regressions include the following 

unreported controls: a constant, indicators for five-year age categories, gender, race, indicators for five education categories, an indicator for married, indicators 

for three family size categories, indicators for ten income categories, and CRRA.  All discounting variables are standardized to have a mean of 0 and standard 

deviation of 1.  

 




