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The paper develops a multistep estimation procedure to investigate versions of Merton’s

(1973) intertemporal capital asset pricing model (ICAPM). The first step estimates the

conditional covariances of asset returns with the risk factors using Engle’s (2002) dynamic

conditional correlation (DCC) model, and the second step estimates the prices of risks in a

panel regression. Simulations demonstrate that the estimation method produces unbiased

estimates in situations with up to 100 test assets. The results are robust to using different

portfolios as test assets as well as to including state variables in addition to the market

return. We invariably find that the conditional covariance of an asset’s return with the

market return is a priced risk. When including additional state variables in the analysis we

find that the covariance of asset returns with the bond yield does not have a significant price

of risk, but we find that the covariance of returns with the return on the HML portfolio of

Fama and French (1992) does have a significant price of risk. Surprisingly, the significant

results on the risk-return tradeoff relative to using only the market return as a test asset

are not caused by an increase in statistical power from using the cross section of returns,

but rather from a change in the point estimates. The results provide support for Merton’s

(1973) ICAPM and show that a risk-return tradeoff exists in the time series.

Merton’s (1973) ICAPM states that the conditional expected return on any asset is

proportional to its conditional covariance with the return on the market, as well as to its

conditional covariances with state variables that describe future investment opportunities.

The coefficient linking the expected return on an asset to the conditional covariance of the

asset’s return with the return on the market is the relative risk aversion of a representative

investor, and the prices of the risks induced by the conditional covariances of returns with

state variables are determined, as Merton (1973) states, by investors’ desires to hedge against

unfavorable shifts in the investment opportunity set, that is, by what Cochrane (2014) calls

investors’ state-variable aversion. An immediate implication of the ICAPM is that the

conditional expected return on the market is proportional to the conditional variance of
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the market, and to the covariances of the market return with innovations in state variables.

Many existing studies focus on the implication for the expected return on the market and test

the ICAPM by estimating the relation between the return on the market and the conditional

variance of the market. These studies find mixed evidence on the relation between risk and

expected return.1

A time-series relation between conditional measures of risk and conditional expected

returns should be present both for the market return, as well as for individual assets or

portfolios of assets. The expected return of any asset should vary through time proportionally

to the asset’s conditional covariances with the market return and with state variables, and

the same coefficients should describe this relation for all assets.

When we use the market return as the only test asset, we find only a marginally signif-

icant estimate of the risk-return tradeoff, which confirms the findings in previous studies.

However, when we include additional test assets as well as the market, we consistently find

positive, statistically significant estimates of the risk-return tradeoff. These estimates in-

dicate strong evidence of a time-series relation between the conditional covariances of the

returns on portfolios with the market return and the conditional expected returns on the

portfolios. The results are generally robust to using different test assets, as well as to the

inclusion of additional state variables.

We demonstrate that our multi-asset estimator is a weighted average of the individual

estimates one would obtain by estimating the risk-return relation using individual portfolios.

When estimating the risk-return relation using the Fama and French (1992) 25 size and book-

to-market portfolios one-by-one, we find that most of the estimates for the four smallest size

quintiles are positive and significant, and most are larger than the estimate based on the

market return only. Thus, the result that the multi-asset estimate is positive and significant

1Lettau and Ludvigson (2010) provide a review of the literature on the risk-return tradeoff. See Hedegaard
and Hodrick (2014) for recent estimates.
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is not simply driven by small stocks, but it arises from the fact that there is a positive

risk-return relation for a variety of portfolios.

In the ICAPM, investors not only care about their level of wealth, but also about the

distribution of future returns. As a result, the risk of an asset is measured not only by the

covariance of the asset’s return with the return on wealth, but also by the asset’s covariances

with state variables containing information about future investment opportunities. Merton

(1973) suggests that the risk free interest rate is one such state variable to which investors

would desire to hedge against its unanticipated adverse changes. Scruggs (1998) was the first

to include the return on a long-term Treasury bond as an additional state variable noting

that in his sample its omission induces a negative bias in the estimate of the price of risk

associated with the return on the market. When including this second state variable, he

finds a positive and significant price of risk for the return on the market, and a negative

and significant price of risk for the return on the long-term bond. While we are able to

replicate his parameter estimates, we find larger standard errors in his sample implying that

the estimates are less significant. Furthermore, including the next 15 years of data results in

estimates that are much closer to zero and no longer at all significant, a finding supportive of

the conclusions in Scruggs and Glabadanidis (2003). Nevertheless, the conditional covariance

of the return on an asset with the return on the market remains a significantly priced risk

factor.2

In factor models, often the factors are thought of as mimicking portfolios for unobserved

state variables. For instance, Fama and French (1992) suggest that the HML and SMB

portfolios are mimicking portfolios for underlying common risk factors in returns. Despite the

success of factor models in explaining the cross-sectional variation in returns in unconditional

2Guo and Whitelaw (2006) also stress that estimating the risk-return tradeoff of the market return with
its conditional variance requires controlling for the effects of additional state variables. However, they do
not attempt to measure the conditional covariances of returns with their state variables. They merely argue
that the conditional covariances are proportional to a linear prediction based on the state variables.
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frameworks, there has so far been little evidence that these factors are helpful in explaining

the time-series variation in expected returns. We include the Fama-French factors as state

variables and examine their ability to explain the time-series variation in returns. We find

that controlling for the conditional covariation with the market return drives out the size-

effect. This confirms the results in Lewellen and Nagel (2006), who use a different estimation

procedure and arrive at the same conclusion. On the other hand, the HML portfolio carries

a positive and significant price of risk in the time series. This provides support for the idea

that the HML portfolio acts as a mimicking portfolio for some underlying state variables.

Two studies of the ICAPM that find strongly supportive time series results are Bali

(2008) and Bali and Engle (2010). Both of these papers test the ICAPM using multiple

assets, but unfortunately they report incorrect severely understated standard errors. Af-

ter estimating the conditional covariances, Bali (2008) and Bali and Engle (2010) use a

traditional Seemingly Unrelated Regression (SUR) approach to estimate the coefficient of

relative risk aversion. As we discuss in Section 2.1, the SUR estimation minimizes the pricing

errors on transformed portfolios which may not have any economic relevance. More impor-

tantly, Bali (2008) and Bali and Engle (2010) employ the usual SUR standard errors that do

not account for the conditional heteroskedasticity of the error terms and that consequently

severely understate the true standard errors and overstate the t-statistics. When we develop

heteroskedasticity consistent standard errors, the resulting t-statistics are on average four

times smaller than the ones reported in Bali and Engle (2010) causing the parameter esti-

mates generally to become statistically insignificant. We demonstrate that while there is no

evidence of a risk-return relation in daily data, which is the investment horizon used in Bali

and Engle (2010), there is strong evidence of a risk-return tradeoff for longer horizons of one

to three months. We demonstrate these horizon effects using the overlapping data inference

approach of Hedegaard and Hodrick (2014).

The organization of the paper is as follows. Section 1 lays out the asset pricing frame-
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work. Section 2 presents our estimation method which first estimates DCC models and then

uses one of several different methods to estimate the model subject to the cross-equation

restrictions of the theory. Section 3 describes the data. Section 4 discusses the results of

the estimation when the return on the market is the only state variable. Section 5 includes

additional state variables such as the yield on long-term bonds and the Fama-French factors.

Section 6 relates our findings to the existing literature. In particular, we replicate the results

in Bali and Engle (2010), and we provide both corrected t-statistics as well as estimates

using the methodology of Section 2. We also update the results in Scruggs (1998). Section 7

concludes.

1 The Asset Pricing Model

Merton (1973) derives the ICAPM by analyzing the optimal portfolio choice of an individual

investor, aggregating across investors, and imposing equilibrium. He derives an expression

that the conditional expected return on any asset i must satisfy

Et(Ri,t+1)− RF,t = γM covt(Ri,t+1, RM,t+1) +

K∑
k=2

γk covt(Ri,t+1, Sk,t+1), i = 1, . . . , N (1)

where RF,t is the risk free return, RM,t+1 is the return on the market, S2, . . . , SK denote

K − 1 state variables that contain information about future investment opportunities, and

covt denotes the conditional covariance operator. Merton shows that the coefficient γM is the

relative risk aversion of a representative agent, and similarly, the γk coefficients are weighted

averages across investors of their state-variable aversions. Thus, the sign and magnitude

of the γ′ks are determined by the curvature of the investors’ value functions.3 Aggregating

3We treat the prices of risk, the γk’s, as constants. Maio and Santa-Clara (2012) argue incorrectly
that in this case one can condition down such that equation (3) holds with the unconditional expectation
on the left-hand side with unconditional covariances on the right-hand side. This is incorrect because
the unconditional expectation of a conditional covariance equals the unconditional covariance minus the
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across assets implies that the conditional expected return on the market is given by

Et(RM,t+1)−RF,t = γMVt(RM,t+1) +
K∑
k=2

γk covt(RM,t+1, Sk,t+1). (2)

where Vt(RM,t+1) is the conditional variance of the market return. If there are no state

variables (or, if the sensitivity of the representative investor’s value function with respect to

the state variables is small, or the variation in the state variables is very small), the model

simplifies to the conditional CAPM in which Et(RM,t+1)− RF,t = γMVt(RM,t+1).

As noted in the introduction, many existing studies of the ICAPM focus on equation (2),

whereas we include multiple test-assets while also including the market return and focus on

equation (1). We simplify notation by letting the first state variable be the return on the

market, such that S1,t+1 = RM,t+1 and γ1 = γM , in which case we can write equation (1) as

Et (Ri,t+1)−RF,t =

K∑
k=1

γk covt (Ri,t+1, Sk,t+1) , i = 1, ..., N. (3)

To represent the model in econometric form, compile the prices of risks into the vector

γ = (γ1, ..., γK)
′ ; let St+1 = (S1,t+1, . . . , SK,t+1)

′ be the vector of state variables; let Rt+1 =

(R1,t+1 − RF,t, . . . , RN,t+1 − RF,t)
′ be the vector of excess returns on the test assets; and

let Zt+1 =
(
S′

t+1,R
′
t+1

)′
be the (K +N)−dimensional vector of state variables and returns.

Because some state variables may also be returns, we interpret the notation flexibly so as not

to double count these returns, and we make the appropriate adjustments to the dimension

of Zt+1. Let H t denote the conditional covariance matrix of Zt+1.
4 We use the notation

HNK,t to denote the lower left (N ×K)-block of H t containing the conditional covariances

unconditional covariance of the conditional means. Since the conditional means vary through time with the
conditional variance, equation (3) does not condition down. This point was first made by Grant (1977) and
was expanded upon by Jagannathan and Wang (1996), Lewellen and Nagel (2006), and Boguth, Carlson,
Fisher, and Simutin (2011).

4We denote conditional moments of random variables that will be realized at time t+ 1 with a subscript
t to indicate when they enter the information set.
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of Rt+1 with the state variables St+1. We can now write the asset pricing model as

Rt+1 = μ+HNK,tγ + εt+1, Et(εt+1) = 0N , Vt(εt+1) = HNN,t (4)

where we have introduced a vector of asset specific constants, μ, and the vector of innovations

in returns, εt+1. The innovations have mean zero and covariance matrix HNN,t which is the

lower right (N ×N)-block of H t. We do not assume conditional normality.

We want to test the time series prediction that higher systematic risk at a point in

time as given by larger conditional covariances requires the conditional risk premium to be

higher. We test this time series prediction by examining constrained regressions of returns

on risks, which are measured as the covariances of the returns with the market return and

with additional state variables.

2 Estimation

2.1 Estimating the Model

In this section we first discuss alternative ways to estimate the system (4) under the assump-

tion that the conditional covariance matrices are known. We then turn to the estimation

of the conditional covariance matrix process in Section 2.3 below. We use a sequential es-

timation approach in which we first estimate the conditional covariances, and then, taking

these as given, we estimate the fundamental parameters of the model. We demonstrate

below through simulations that the estimates of the fundamental parameters in the second

step are unbiased and that their standard errors are correctly estimated, even though the

conditional covariances are estimated in a first step and then treated as known.5

5Cochrane (2005) credits Shanken (1992) with deriving correct standard errors in the i.i.d. environment
of unconditional beta models. In discussing the need for such corrections in an analogous GMM setting,
Cochrane (2005, p. 258) notes, “In my experience so far with this method, the correction for the fact that
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To simplify notation, define

X t =

[
IN | HNK,t

]
(5)

and δ ≡ (μ′,γ ′)′. Then, the system (4) can be written as

Rt+1 = X tδ + εt+1. (6)

There are several ways of estimating the parameters of this system of equations.

Each of the methods we consider can be thought of as minimizing the sum of quadratic

forms in the pricing errors

T∑
t=1

(Rt+1 −Xtδ)
′W−1

t (Rt+1 −Xtδ) (7)

for some weighting matrices, W t, which are in the time-t information set. By setting W t =

IN , we obtain the constrained OLS estimator.

We explore three other choices of W t. First, if we set W t = HNN,t, we obtain the

conditional generalized least squares (CGLS) estimator, which is equivalent to maximum

likelihood under the assumption of conditional normality for this part of the model. This

estimation method is efficient, but it is likely less robust than OLS. Second, we scale the

time-t observations by their conditional standard deviations, but we do not account for the

correlations of the innovations. That is, we set W t = diag(h1,t, . . . , hN,t), where hi,t is the

conditional variance of Ri,t+1. The advantage of this approach is that it scales the time-t

observations by their conditional standard deviations to avoid the results being driven by

large returns in periods with high volatility. At the same time, by not scaling the system

Ef is estimated is very small in practice, so that little damage is done in ignoring it (as is the case with the
Shanken correction).” Newey and McFadden (1994) discuss how to derive corrections to the standard errors
resulting from first stage estimation, but such analysis is quite difficult in our application.
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by the inverse of the full conditional covariance matrix, we maintain a robust estimation

procedure. Finally, we estimate the parameters of the system using SUR, which corresponds

to W t = Σ, where Σ is the estimated unconditional covariance matrix of the innovations,

but we do not use the traditional SUR standard errors.

In each case, the first order conditions of the minimization are considered to be orthog-

onality conditions of Hansen’s (1982) GMM method, and we construct the standard errors

appropriately with GMM allowing for the conditional heteroskedasticity and cross-correlation

of the residuals. We derive explicit expressions for μ̂ and γ̂ as well as the GMM estimates

of their standard errors in Appendix A.

When reporting our results below, we primarily focus on the constrained OLS estimation.

We examine all estimation procedures in more detail using simulations, and we discuss the

results of the alternative estimation procedures in sections 4.4 and 4.5.

2.2 On the Importance of Including a Constant

Before discussing the estimation of the conditional covariance matrices, we briefly discuss

the specification of the model. Scruggs (1998) and Nyberg (2012) estimate models such as

equation (4) with and without constant terms in the conditional means of the asset returns

finding that the estimated prices of risks in their models are much more significant when the

models are estimated without constants. Lanne and Saikkonen (2006) explicitly advocate

estimating asset pricing models without constants to impose the null hypothesis. Scruggs

(1998, p. 589) cautions that estimating without a constant can lead to “misleading estimates”

of the prices of risks because the market excess return is positive on average and the variance

of the market return is positive by construction.

In Hedegaard and Hodrick (2014) we demonstrate the importance of including a constant

in the maximum likelihood estimation of the single factor conditional CAPM when the only

asset in the estimation is the market return. In that framework, if a constant is not included
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in the conditional mean, the estimate of γM is merely the average return on the market

divided by the average conditional variance of the market, which does not examine the

time series prediction of the conditional CAPM that the conditional expected return on the

market moves simultaneously with the conditional variance of the market return.

Appendix A demonstrates an analogous point in the context of multivariate conditional

asset pricing models. Including constant terms in the conditional means of the returns is

necessary to allow for a test of the time series prediction of the model that the conditional

expected returns vary contemporaneously with the conditional covariances of the returns

with the risk factors. If asset-specific constants are not included in the estimation, the

constrained OLS estimator of γ̂ is

γ̂ =

(
1

T

T∑
t=1

H ′
NK,tHNK,t

)−1

1

T

T∑
t=1

H ′
NK,tRt+1. (8)

Notice that this estimator of γ does not test the prediction of the theory that the conditional

expected returns move with the conditional covariances of the returns with the risk factors.

Equation (8) is the multivariate analogue to the findings of Hedegaard and Hodrick (2014)

for the single factor conditional CAPM. Consider the case of the conditional CAPM, in

which the market is the only state variable. Since the covariances of the test-assets with

the market are generally positive, and average returns on the test-assets are positive, the

estimator mechanically produces a positive and significant estimate of γM .

On the other hand, when asset-specific constants are included, the constrained OLS

estimator of γ is

γ̂ =

(
1

T

T∑
t=1

H ′
NK,t

(
HNK,t −HNK,t

))−1(
1

T

T∑
t=1

H ′
NK,t

(
Rt+1 −Rt+1

))
, (9)

where X t denotes the time series average of the matrix process X t. Consider again the
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case of the conditional CAPM. Now, since the returns are demeaned in the second term,

the estimator of γM is only positive when the sample covariance between the conditional

covariance with the market and future returns on the test-assets is positive. In this sense,

the significance of γ̂ arises purely from the time series predictability of returns. These results

are, of course, merely a reinterpretation of the standard results for the intercept and slope

in a linear time series regression.

2.3 Multivariate GARCH Models

The challenges in conditional multivariate asset pricing are estimating the conditional covari-

ances between the returns and the risk factors and linking these covariances to the conditional

means of the asset returns. Bollerslev, Engle, and Wooldridge (1988) were the first to use

a multivariate generalized autoregressive conditional heteroskedasticity (GARCH) model to

estimate conditional second moments and link them simultaneously to conditional first mo-

ments.6 One can think of this approach as adding simultaneous estimation of the conditional

second moments to the GMM system of equations of the previous section. Unfortunately,

this simultaneous estimation approach is computationally difficult and is tractable only for

a small number of returns. It quickly becomes intractable when the cross section of returns

is expanded.

To examine the time series predictions of conditional asset pricing models for multiple

assets, one must estimate the conditional covariance matrices, H t, of both the state variables

and returns. Here we explore the dynamic conditional correlation (DCC) model of Engle

(2002).7 Under the null hypothesis in which the returns are not predictable but have constant

6Garch-in-Mean models with multiple assets have also been used by Ng (1991) and DeSantis and Gerard
(1997, 1998). Ng (1991) uses decile portfolios ranked on either size or beta to test the conditional CAPM.
DeSantis and Gerard (1997, 1998) use currency portfolios as additional sources of risks that must also be
simultaneously priced.

7We also examined the constant conditional correlation (CCC) model of Bollerslev (1990), which is used
by Ng (1991). Because the results are similar, we only report the results of the DCC models. Other
approaches, such as mixed data sampling (MIDAS) could also be used. See Hedegaard and Hodrick (2014)
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means with conditionally heteroskedastic innovations, we can write the mean equations and

the traditional GARCH (1,1) models for each return as follows (similarly for the K state

variables):

Ri,t+1 = αi
0 + εi,t+1, εi,t+1 ∼ N(0, hi,t) (10)

hi,t+1 = ωi + αiε
2
i,t+1 + δihi,t. (11)

As in Engle (2002), we model H t as

H t = DtP tDt (12)

where Dt = diag(h
1/2
1t , . . . , h

1/2
Nt ) and P t = [ρij,t] represent positive definite correlation ma-

trices with ρii,t = 1 on the diagonal. We assume that

ρij,t =
qij,t√
qii,tqjj,t

, (13)

and that the matrix process Qt = [qij,t] follows

Qt+1 = S(1− a1 − a2) + a1(ut+1u
′
t+1) + a2Qt (14)

where S is the unconditional correlation matrix, the standardized innovations are ut+1 =

D−1
t εt+1, and a1 and a2 are scalar parameters that describe the persistence of the correla-

tions. We use maximum likelihood to estimate the parameters of the DCC model and the

conditional covariances as described in the Appendix.

Of course, under the alternative hypothesis, the conditional means of the returns depend

on the conditional covariances of the returns with the risk factors, and the likelihood function

for a comparison of GARCH and MIDAS approaches to estimating the risk-return tradeoff in the single
equation case when the market return is the only priced asset.
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does not separate into GARCH and correlation parts as demonstrated in the Appendix.

Estimating under this hypothesis leads to the curse of dimensionality. Rather than doing

everything simultaneously, we perform a four-step estimation as follows:

i. Estimate GARCH(1,1) models for the conditional variances of the individual asset

returns, including the market, as well as the state variables. For each process, we

estimate the model in equations (10)-(11).

ii. Estimate the DCC model for the correlation matrix process for all assets and state

variables, using the standardized residuals from step one.

iii. Compute the conditional covariance matrix process using the conditional variances

from step one and the conditional correlation matrix from step two.

iv. Estimate the risk-return parameters in the constrained system (4).

We use simulations to demonstrate that the multistep estimation produces well-behaved

point estimates and t-statistics. Intuitively, if the time variation in expected returns is small

relative to the innovation variance, the error in estimating the conditional covariances is

small when the conditional mean is assumed to be constant.

2.4 ODIN Estimation

In addition to the basic parameter estimates and standard errors described above that are

derived for non-overlapping monthly data, for the actual estimation we also report param-

eter estimates and standard errors calculated with overlapping data inference (ODIN) as

in Hedegaard and Hodrick (2014). The ODIN methodology allows the econometrician to

use all of the available daily data, even when the forecast horizon is set to an arbitrarily

longer interval. Theoretical models are essentially silent on the period of time over which

the predictions of the model are thought to hold, and Merton (1980, p. 336) suggested that
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a one month interval is “not an unreasonable choice” in statistical analyses of the risk-return

tradeoff.

Given that the forecast horizon is monthly, though, there is no reason why the returns

must be sampled as calendar months. Indeed, with a monthly forecast interval, the first

sampling day could be chosen to be any of the (on average) 22 trading days in the month.

Consider a forecast interval F , where F equals 5 for weekly data, 22 for monthly data, or 66

for quarterly data. The ODIN parameter estimate is derived by maximizing the average of

the F non-overlapping MLE equations for each of the F possible sampling days. As a result,

the ODIN estimation uses all of the available daily data, for any given forecast horizon.

In this application, we first estimate the DCC model using ODIN. For, say, a 22 day

forecast interval, we calculate 22 day returns for all assets for the 22 different possible starting

dates. To estimate the DCC model, we maximize the sum of the 22 individual likelihoods

for the 22 different models, resulting in one set of GARCH parameters for each return

process, and one set of DCC parameters. Using the estimated parameters, we calculate the

22-day-ahead conditional covariance matrix of the returns, for each day.

Finally, we use overlapping constrained regressions to estimate the risk-return tradeoff.

We regress 22-day-ahead returns on the conditional covariances, for each day in our sam-

ple. The standard errors are then corrected for the overlap in the forecasts, as in Hansen

and Hodrick’s (1980) application of Hansen’s (1982) GMM, but allowing for conditionally

heteroskedastic errors in the estimator of the spectral density matrix. The simulations in

Hedegaard and Hodrick (2014) suggest that the standard errors from this strategy are well

behaved in sample sizes such as ours and are generally smaller than the standard errors

from any particular non-overlapping sample. Using ODIN also forces the econometrician to

consider all F parameter estimates than arise from different sampling dates, and as in Hede-

gaard and Hodrick (2014), we demonstrate in Section 4 that the non-overlapping estimates

vary greatly with changes in the sampling start date.

15



3 Data

We begin by estimating the conditional CAPM in which case the market return is the only

risk factor. For the market portfolio, we use the value-weighted return on the CRSP market

portfolio. When estimating the model, we always include the market return as well as one

of the following five additional data sets: i) six size and book-to-market sorted portfolios,

ii) size sorted decile portfolios, iii) book-to-market sorted decile portfolios, iv) 25 size and

book-to-market sorted portfolios, v) 100 size and book-to-market sorted portfolios, and vi)

10 market beta sorted portfolios. We obtain the beta-sorted portfolios from CRSP and the

remaining data from Ken French’s web site. In all cases, we use excess returns that are

constructed as the difference of the raw returns and the one-month risk-free rate. Including

the market return does not induce a redundant set of orthogonality conditions, which would

induce singularity into the covariance matrix, because the market is value weighted, and the

weights on the portfolios vary over time.

For our first multi-factor model, we use the yield on the 10-year Treasury bond from the

Federal Reserve Bank of St. Louis as an additional state variable. Since monthly observations

on the yield are available from February 1954 to December 2012 we limit all of our samples

to these 707 monthly observations, and in our simulations we consequently use this same

number of observations. For daily data, the 10-year Treasury yields are available from

January 1962 to December 2012.

The next multi-factor model is the conditional Fama and French (1992) model in which

we examine whether the HML and SMB portfolios are mimicking portfolios for underlying

common risk factors in returns that can explain the time-series variation in returns. The

HML and SMB series are also taken from Ken French’s web site. Bali and Engle (2010) also

include conditional covariances with a number of other potential risk factors like the change

in the fed funds rate, the term premium, the default spread, and stock market volatility, and
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we discuss their data sources in Section 6.1.

4 The Market as the only State-Variable

Table 1 presents the estimation results with monthly returns, reporting results both for the

standard non-overlapping estimation from calendar months and for the ODIN estimation

based on constrained OLS estimation of the system of equations. We report asymptotic and

bootstrap standard errors and p-values, where the bootstrapped values are based on 1,000

simulations.

The estimation with the market return as the only test asset produces a positive point

estimate of the risk-return tradeoff of 3.61 with a standard error of 2.14 and a p-value

of .09 indicating only marginal significance of the parameter estimate. As noted in the

introduction, previous papers have generally reported relatively insignificant estimates of

γM using the market as the only test asset. One of our main results is that when adding

additional test assets, the parameter estimates of γM become more significant as the p-values

fall to between .01 and .04 (except when using the 10 book-to-market portfolios in which

case the p- value is .08).8

[Table 1 about here.]

These estimates use the traditional, non-overlapping, calendar monthly returns. However,

the estimates are very sensitive to the day of the month on which returns are sampled. If

we instead use a fixed 22-day forecast interval and consider the various estimates that are

obtained from the 22 different possible starting dates using the return on the market as the

only test-asset, we find that the point estimates of γM vary from 0.97 to 3.71. Thus, the

reported estimate of 3.61 in Table 1 is in the upper range of the different monthly estimates.

8This discussion uses covariances based on a DCCmodel estimated to all assets. We also estimate bivariate
DCC models of each test-asset and the market, which allows the mean-reversion dynamics to depend on the
test-asset. This only leads to minor differences as the point estimates of γ change by less than 0.05.
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When we use the 25 size and book-to-market sorted portfolios as test assets, the various

non-overlapping estimates of γM range from 1.54 to 4.64. The calendar month estimate

of 4.74 reported in Table 1 falls outside this range since all months do not have the same

number of trading days, such that the standard monthly returns do not correspond to a fixed

22 day forecast interval for any starting date. In general, the estimates based on the usual

non-overlapping calendar monthly sampling are at the upper range of the different estimates

obtained from varying the sampling start date. Due to the sensitivity of the estimates to the

sampling start date, we also consider the ODIN estimation, in which we maximize the sum of

the 22 likelihood functions associated with the 22 different possible starting datesassociated

with the 22 different possible starting datesassociated with the 22 different possible starting

dates to derive the parameters of the DCC model and the conditional covariances and then

minimize the sum of the 22 constrained OLS objective functions to estimated the price of

market risk.

The ODIN estimates are all positive, but they are less significant than their non-overlapping

counterparts. The standard errors for the ODIN model are always smaller than the stan-

dard errors for the non-overlapping estimations, illustrating the increased precision that the

ODIN estimation offers. However, the point estimates are also smaller in magnitude because

ODIN average across all the starting dates, and it is the differences across the starting dates

that results in less significant estimates. The ODIN estimates of γM are significant at the

10% level for 5 portfolios, while the estimate of γM is significant at the 1% level for the 10

beta-sorted portfolios. Overall, the evidence in favor of a risk-return tradeoff at the 1-month

horizon remains relatively weak, but as we demonstrate below, it becomes very strong at the

2-month to 3-month horizon.
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4.1 Cross-Sectional Implications

We also examine the cross-sectional implications of the model by testing the hypothesis that

all intercepts jointly equal zero, using a Wald test. The model is generally rejected when

including multiple test assets.

Nevertheless, although the model is rejected, the conditional CAPM explains a large part

of the time-series variation in returns. To demonstrate the partial success of the model, we

focus on the market portfolio and the 25 size and book-to-market sorted portfolios as test

assets. The top plot in Figure 1 shows the average returns on each of the 26 test assets

along with two standard deviation intervals. These are the pricing errors under the null

hypothesis of γM = 0, that is, the pricing errors that would arise if there were no risk-return

relationship and the estimated value of γM were zero. The standard deviations are based on

average returns, and the standard deviations would be larger if γM were estimated. The usual

patterns in average returns across size and book-to-market are clearly visible—on average,

value stocks outperform growth stocks, and small stocks outperform large stocks.

The bottom plot in Figure 1 shows the constants from the estimated model with their

two standard deviation intervals. Although the usual patterns across book-to-market are

still clearly visible, the conditional CAPM explains the average returns across portfolios

very well. The conditional model overadjusts the expected returns for low book-to-market

stocks as the constant terms are negative.

Note that the constants are parameters of the model that are not directly minimized by

the estimation. As in any time series regression, the constants pick up the average of the

dependent variable minus the slope coefficient times the average of the regressor. Nothing in

the model or the estimation procedure makes the constants close to zero. If there were no risk-

return tradeoff in the time series, the estimated value of γM would be zero and the constants

would equal the average returns in the top plot. In particular, even if there were a cross-

sectional relation between average returns on portfolios and the portfolios’ unconditional
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covariance with the market, but no time-series relation, the estimated γM would be zero,

and the constants would pick up the average returns on the different portfolios. The estimate

of γM will only be non-zero if a time series relation exists between the future returns on the

portfolios and their conditional covariances with the market. In this sense, the conditional

CAPM is a success.

While the conditional CAPM is useful in explaining the average time series variation in

returns, it clearly fails to explain the time-series and cross-sectional variation jointly. As

noted above, the bottom plot in Figure 1 shows the usual patterns across book-to-market

sorted portfolios. This finding is similar to the results in Lewellen and Nagel (2006), who

find that the conditional CAPM captures the variation in size-portfolios, but that it does

not explain the variation in book-to-market sorted portfolios. We thus agree with Lewellen

and Nagel (2006) that the conditional CAPM does not fully explain asset pricing anomalies.

[Figure 1 about here.]

4.2 Alternative Horizons

To explore if the risk-return relationship of the conditional CAPM is present at alternative

horizons, we vary the forecast interval from 1 to 60 days and estimate the model based

on the 25 size and book-to-market sorted portfolios.9 Figure 2 shows the point estimates

of γM as a function of the forecast interval, along with a band indicating plus and minus

two standard deviations. The estimated risk-return tradeoff increases as a function of the

forecast interval, up to about a 2 month horizon. It is insignificant at horizons shorter than

1 month, at which point it is significant at the 10% level, and becomes significant at the 1%

level at a 2 month forecast horizon. The ODIN estimation methodology ensures that the

estimations are robust even for long forecast intervals. With quarterly observations we only

9The results are similar for the other data sets.
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have 236 non-overlapping intervals, but using overlapping data results in stable parameter

estimates. When estimating the ODIN model in Table 1 using two month returns instead

of one month returns, four specifications are significant at the 1% level and the remaining

three specifications are significant at the 5% level. Hence, while the evidence in favor of a

risk-return tradeoff at the one-month horizon is relatively weak, it is very strong at longer

horizons.

There are several reasons why the risk-return tradeoff may not be detectable at shorter

horizons. First, aspects of the trading process induced by market microstructure frictions,

non-synchronous portfolio investment decisions, and individual stock illiquidity that are out-

side the theory dominate the autocorrelations in short-horizon returns. More importantly,

when more volatile trading environments arise, theory predicts that stock returns are ex-

pected to be contemporaneously negatively correlated with the increase in volatility because

prices must fall to provide an increase in expected returns, as in Campbell and Hentschel

(1992). If the adjustment of expected returns to news that increases the conditional variance

is not precisely contemporaneously correlated with the increase in the conditional variance

because of market illiquidity or the non-synchronous trading of investors, using a short hori-

zon for testing the conditional risk-return tradeoff may find a negative relation as volatility

increases and prices fall slightly later.10

[Figure 2 about here.]

10Müller, Durand, and Maller (2011) discuss estimation of the risk-return relation at the daily horizon,
with the market as the only test-asset. They argue that in this case one must explicitly account for weekend
effects which they include in a COGARCH framework. When ignoring weekend effects, they find a positive
and significant risk-return relation, but adjusting for weekend effects the significance disappears, and they
conclude that using daily data does not provide support for Merton’s ICAPM. Bali and Engle (2010) use
daily data, and we discuss their results below.
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4.3 The OLS Panel Data Estimator

Appendix A.2 shows that the constrained OLS estimator of γM is a weighted average of the

individual estimates, γi,M obtained by OLS estimation using a single portfolio. Specifically,

γ̂M =
N∑
i=1

V̂ (σ̂iM,t) γ̂i,M∑N
k=1 V̂ (σ̂kM,t)

. (15)

where γ̂i,M =
ˆcov(σ̂iM,t,Ri,t+1)

V̂ (σ̂iM,t)
is the estimate of γM based on portfolio i only, and V̂ , ˆcov,

and σ̂ denote sample moments. The weights are determined by the sample variances of the

conditional covariances of each asset return with the return on the market, and the estimate

associated with the asset with the highest variation in the conditional covariance with the

market receives the highest weight.

[Figure 3 about here.]

The top panel of Figure 3 presents the individual γ̂i,M ’s from the one asset case for each

of the 26 test assets. The first asset is the market portfolio, and the other assets are the

25 size and book-to-market sorted portfolios ordered within size quintiles from low to high

book-to-market beginning with the smallest quintile. The circles indicate the point estimates

and the vertical lines indicate the two standard error bounds. One sees that while estimating

with just the market portfolio implies an insignificant risk-return tradeoff, most of the γ̂i,M ’s

for the four smallest size quintiles are larger than the point estimate from the market only,

and the vast majority are more than two standard errors from zero. The horizontal line

is the weighted average of the individual estimates, which is the constrained OLS estimate,

and this is significantly different from zero.

The bottom panel in Figure 3 presents the weights that the 26 individual estimates receive

in the constrained estimation. Within each size quintile, the estimate of γM based on growth

stocks receives the highest weight. Interestingly, these are the point estimates of γM with the
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lowest values. Despite this, since most of the individual estimates of γM are larger than the

estimate based on the market only, the constrained estimate from the system of equations

is significant. Importantly, one sees that the significance of the constrained estimate is not

driven purely by small stocks. An individually significant risk-return relation exists for all

portfolios except for those in the largest quintile.

estimator from the panel data regression will be more efficient than the estimator using

the market alone.

4.4 GMM Estimations of the Panel Data System

As Cochrane (2005) notes, using a weighting matrix in GMM estimation of asset pricing

models can be interpreted as forming portfolios of assets, and GMM estimation can be

interpreted as choosing the parameters to minimize the pricing errors on these statistical

portfolios. The counterpart of this point in our framework is found by taking the Cholesky

decomposition of W−1
t = CtC

′
t, in which case one sees that GMM estimation minimizes the

sum of squared pricing errors on the N portfolios

C ′
t(Rt+1 −Xtδ). (16)

The estimation method with W t = diag(h1,t, . . . , hN,t) simply scales the observations by

their conditional standard deviations and then minimizes the squared errors of the resulting

standardized pricing errors. The SUR and CGLS methods both exploit the correlation struc-

ture of the assets to extract statistically orthogonal components with the lowest variance.

Because the different portfolios used as test assets are highly correlated, HNN,t and Σ are

close to singular, and the resulting priced portfolios consequently have extreme long/short

weights on the original test assets. Although CGLS and SUR may asymptotically improve

the efficiency of the estimator, the weighting matrix may in practice put a lot of weight on
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portfolios with little economic relevance. We analyze the different methods using simulations

below, but we first discuss the results of the alternative estimations.

Our first finding is that standardizing the time-t observations by their conditional stan-

dard deviations (but not using correlations) does not change the estimation results in any

economically or statistically significant way. This finding is important because it demon-

strates that the previous results are not spuriously driven by large returns in periods with

high volatility.

Next, we turn to the SUR and CGLS estimation procedures which both use the correlation

structure of the test assets to standardize the system (4). Table 2 shows the results for

the CGLS estimation (the results for the SUR estimation are similar). The estimates of

γM are systematically lower than for the constrained OLS estimation, and they are now

all insignificantly different from 0 at traditional marginal levels of significance. To better

understand the SUR and CGLS estimations, we examine the Cholesky decomposition of

Σ−1 for the SUR estimation with the market and the 10 book-to-market sorted portfolios,

and we find that the ratio of the largest absolute weight to the smallest absolute weight for

the 11 rows is generally above 100. Using the market and the 25 size- and book-to-market

sorted portfolios the ratios of absolute weights are again above 100, and for several moment

conditions the ratio exceeds 1000. As a result, the SUR procedure chooses the parameters

of the model to minimize the squared pricing errors on highly levered portfolios that are

not economically meaningful. We further examine the statistical properties of the SUR and

CGLS estimators below using simulations.

[Table 2 about here.]

24



4.5 Simulations

As seen in Table 1 with the actual data, the standard error of γM generally does not decrease

as we add more test assets. To understand why, in this section we analyze the estimation

procedure in more detail using simulations. Our goals are to determine the degree of bias that

is introduced by the multistep estimation, to determine the accuracy of the standard errors

that do not account for the first stage estimation, and to examine if there is an increase in

power from using additional returns. Moreover, we compare the different ways of estimating

the constrained system of equations.

For each of the data sets described above, we estimate a DCC model as described in

steps one and two above. We then assume a value of γM and simulate from the GARCH-in-

Mean model of equation (3). We perform 1,000 simulations, and for each one we draw the

innovations randomly with replacement from the original standardized residuals. For each

of the simulated data sets we repeat the four step estimation procedure above to estimate

the price of risk, γM . Finally, we test the null hypothesis that γM = 0. We focus first on the

constrained OLS estimation of the system, and we then turn to the alternative estimations

below.

Figure 4 presents the mean of γM in Panel A on the left side. The estimates only have

small biases, which are larger for higher values of γM . The online appendix presents QQ-

plots of the t-statistics under the null hypothesis γM = 0 indicating that they are very well

behaved (nevertheless, we also use the empirical distributions of the t-statistics under the

null for inference).

Panel B on the right side presents plots of the power of the test of the null hypothesis

γM = 0 against the alternative hypotheses γM = 2, 4 or 6, for the different data sets. Note

that the empirical size of the test is exactly 5%, since we use the empirical distribution of

the t-statistic under the null. Somewhat surprisingly, though, we see essentially no increase

in power from including additional test assets.
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[Figure 4 about here.]

To understand in more detail why the power of the test does not increase as more test

assets are included, we perform additional simulations. Instead of using the correlation

structure from the actual test portfolios, we consider scenarios in which the assets have

a lower or higher correlation. When the assets display a low correlation with each other,

adding more test assets clearly improves the power to reject the null. However, as we increase

the correlation between assets, the power increase gradually disappears. Intuitively, when

the correlation between test assets is very high, the returns move closely together and the

additional assets fail to increase the precision of the estimation in these sample sizes.

We also analyze the SUR and CGLS methods using simulations. Whereas the constrained

OLS method produces estimates of γM that were nearly unbiased for all simulations, both

the SUR and CGLS methods result in a downward bias for γM . This bias is around −0.5

when the true value is γM = 0 and increases to −2 when γM = 6. The distribution of the

t-statistics also deteriorates when using 25 and 100 test assets. Interestingly, the power of

the test of γM = 0 against a given alternative value of γM increases as more test assets are

included. The SUR and CGLS methods both have the ability, at least for simulated data,

to improve inference when using highly correlated portfolios. The reason is, as described

above, that the two methods are able to extract orthogonal portfolios from the original test

assets.

We thus face a tradeoff between constrained OLS, which prices economically interesting

portfolios and produces unbiased estimates of γM with larger standard errrors, and SUR and

CGLS which price economically uninteresting portfolios, and produce severely biased, but

more efficient estimates. We have chosen to focus mainly on the constrained OLS estimator,

since it is unbiased and directly minimizes the pricing errors on the original test assets.

Ultimately, in the data, adding additional test assets allows us to reject the null of no risk-

return relation using constrained OLS, not because of an increase in power, but because
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of an increase in the point estimate of γM . As noted above, this increase is driven by all

stocks except those the largest quintile (all but the largest decile when using the 100 size-

and book-to-market sorted portfolios).

5 The ICAPM with Additional State-Variables

5.1 The Market and the Long-Term Yield as State Variables

We now add the yield on a long-term bond as a second risk factor. Merton (1973) notes

that “. . . there exists at least one element of the opportunity set which is directly observable:

namely, the interest rate, and it is definitely changing stochastically over time.” This makes

the interest rate a prime candidate for a state variable. In Merton’s model, the yields on

all bonds are perfectly correlated because they are driven by a one-factor model with a

stochastic instantaneous risk-free rate. When yields are not perfectly correlated, we must

decide on a specific maturity. We use the yield on the 10-year Treasury bond as the state

variable, since indexed bonds are not available for a sufficiently long time period, and we

first-difference the yields when estimating the GARCH model in equations (10) and (11).

Since we use stock portfolios as test assets, the price of risk for the covariance with the

10-year Treasury yield is only identified if the correlations between the portfolio returns and

innovations in the yield are non-zero. The conditional correlation of the return on the market

and the change in the 10-year Treasury yield is negative between 1960 and 2001, after which

the correlation becomes positive. The magnitude is sizable and varies from −0.45 to 0.4.11

A decrease in the bond yield is a deterioration in investment opportunities, since a long-

term investor will earn a lower return on long-term bonds (which are risk-free to the long-

11When we estimate the DCC GARCH model on the different data sets, the estimates of the DCC GARCH
parameters change. Consequently, the precise estimate of the conditional correlation between the market
and the innovations in the Treasury yield are different for the different data sets. However, the differences
are small.
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term investor, ignoring inflation). Assets that do well when the yield falls (such as long-

term bonds) have a negative covariance with changes in the yield. Such assets provide

a hedge against deteriorations in investment opportunities and should command a lower

return. Thus, we would expect a positive price of risk for γF .

Table 3 presents the results for both the non-overlapping estimations and the ODIN

estimations. The non-overlapping estimations use monthly data from 1954 to 2012, while

the ODIN estimations use daily data from 1962 to 2012 since daily observations on 10-year

Treasury yields are only available after 1962. The estimated values of γM for the standard

non-overlapping estimations are similar to the results for the univariate model in Table 1.

The estimates of γM vary from 3.47 using the market as the only test asset to 6.71 using

the 10 beta-sorted portfolios. The estimate of γM is insignificant when only the market is

used as a test asset, but it is significant at the 5% level in 3 estimations and at the 1% when

using the 10 beta-sorted portfolios as test assets. The estimates of γF are all negative and

insignificant, as they are smaller than their standard deviations.12

For the ODIN estimation, the estimates of γM are similar to the estimates from the

non-overlapping data, and the standard errors are always smaller despite the shorter sample

period, again illustrating the increased precision of the ODIN estimation. As a result, the

estimates of the risk-return tradeoff are now significant at the 10% level or better for all

portfolios, at the 5% level for 4 portfolios, and at the 1% level using the 10 beta-sorted

portfolios. As in the non-overlapping estimations, the ODIN estimates of γF are all negative

and insignificant.

[Table 3 about here.]

When varying the forecast intervals from one day to three months, we observe the same

12As above, the covariances are based on a DCC model estimated on all test-assets and state variables. We
also estimate bivariate DCC models (for the test-asset and the market return, as well as the test-asset and
innovations in the yield), which allows the DCC parameters to depend on the test-asset, and in particular
allows for different mean-reversion speeds for the correlation of a test-asset with the market return and the
the correlation of a test-asset with innovations in the yield. The results are similar.
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patterns as for the conditional CAPM. For short forecast horizons, the estimate of γM is

small and insignificant, but it becomes significant at the 5% at a two-week horizon and is

significant at the 1% level for a two-month horizon. The estimate of γF is always negative

and never significant.

Scruggs (1998) shows that if the market is the only test asset, and the true model is a

two-factor model, the bias arising from omitting the yield factor is

γ̂M − γM = γF
cov(σ2

M,t, σMF,t)

V (σ2
M,t)

. (17)

Scruggs reports that in his study, this bias is around −6.7. He reports an insignificant

estimate of γM in a model with only the market as a state variable, but a positive and

significant estimate when including the risk-free rate as an additional state variable. Thus,

he concludes that the differences in the estimated parameters can be ascribed to an omitted-

variable bias.

In our sample, on the contrary, the bias is much smaller, since the correlation between

stock returns and bond return has changed over time. For our estimation with multiple test

assets, we analyze the potential bias using simulations. By simulating from a two-factor

model estimated on the actual data sets, and then estimating a one-factor model in which

we omit the innovations in the yield, we find that the bias in γM is between 0.1 and 0.2,

depending on the data set. That is, the bias has the opposite sign of the bias reported by

Scruggs (1998) and is much smaller in magnitude. As seen in Table 1 and 3, the estimates

of γM are actually smaller in the two-factor model, which again is contrary to the findings

by Scruggs. We report an update of Scruggs’s results below.
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5.2 Other State-Variables

Fama and French (1992) argue that the market return, and the excess returns on portfolios of

small minus big stocks, RSMB,t+1, and of high minus low book-to-market stocks, RHML,t+1,

are risk factors that explain the average returns on various portfolios. They run OLS re-

gressions of portfolio returns on the three risk factors, and they interpret the significance of

the intercepts in these regressions as measures of the inability of the three risk factors to

explain the average returns. Grant (1977) was the first to argue that such a methodology

encounters problems when the conditional means of returns and the conditional exposures of

the returns to the risk factors vary over time. Jagannathan and Wang (1996), Lewellen and

Nagel (2006), and Boguth et al (2011) subsequently expand on this issue. The fundamental

problem is that the intercepts in the regressions are not expected to be zero if the conditional

model is true. Hence, they do not represent pricing errors of the model.

We are interested in whether RSMB,t+1 and RHML,t+1 are conditional risk factors or state

variables in the Merton (1973) context. We therefore estimate the conditional covariances of

the test asset returns with RSMB,t+1 and RHML,t+1 using the DCC model as above and then

perform constrained OLS on the following model:

Ri,t+1 = μi + γM covt(Ri,t+1, RM,t+1) + γSMB covt(Ri,t+1, RSMB,t+1)

+γHML covt(Ri,t+1, RHML,t+1) + εi,t+1 (18)

Table 4 presents the results. The sample period for the standard estimation in the top panel

is monthly data from February 1954 to December 2012.

[Table 4 about here.]

For the standard specification we consistently find that RM,t+1 and RHML,t+1 are priced

risk factors. The estimates of γM are larger than in Table 1 and retain their significance.
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The conditional covariances of returns with HML also produce in a significant price of risk

in the standard estimation with estimates of γHML ranging from 6.22 to 17.34 depending on

the test assets. Consistent with the results in Lewellen and Nagel (2006), we do not find a

significant price of risk for covariances with RSMB,t+1. Any size effect appears to be driven

out by the time variation in the conditional covariances.

The ODIN estimation uses daily data from January 1, 1962 to December 31, 2012.

Inference about the significance of γM is similar to Table 1, but the statistical significance

of RHML,t+1 is now much reduced. The coefficient estimates of γSMB are generally smaller

than their standard errors.

6 Relation to the Literature

The papers in the literature most closely related to ours are Bali (2008), Bali and Engle

(2010) and Scruggs (1998). This section demonstrates that Bali (2008) and Bali and Engle

(2010) both severely understate the standard errors of their parameter estimates leading

to false statistical significance. The results in Scruggs (1998), while also having impressive

test statistics, are found to be sample specific as extending the sample for another 15 years

results in insignificant prices of risks. This is consistent with the findings of Scruggs and

Glabadanidis (2003) who report reduced significance of the original specification of Scruggs

(1998) when adding more data.

6.1 The Bali-Engle (2010) Approach: Estimating the Risk-Return

Tradeoff with Seemingly Unrelated Regression

Bali (2008) and Bali and Engle (2010) use daily data and the SUR procedure described

above to estimate the prices of risks for various state variables. Bali (2008) estimates the

conditional covariances using a bivariate GARCH model, and Bali and Engle (2010) use
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bivariate DCC GARCH models to estimate the conditional covariances. After estimating

the conditional covariances, both papers estimate the risk-return tradeoff using a traditional

SUR method. Both papers report highly significant parameter estimates of the risk-return

tradeoff. Since their estimation methods are similar, we focus on Bali and Engle (2010). For

the conditional CAPM, which is their simplest model, they do the following:

i. Estimate AR(1) models for the conditional means of the individual asset returns and

the market return, while simultaneously estimating GARCH (1,1) models for the con-

ditional variances of the residuals. The model estimated is therefore

Ri,t+1 = αi
0 + αi

1Ri,t + εi,t+1, εi,t+1 ∼ N(0, hi,t) (19)

hi,t+1 = ωi + αiε
2
i,t+1 + δihi,t. (20)

ii. Estimate the conditional covariances for each test asset and the market portfolio using

the standardized residuals from step one and separate, bivariate DCC models

iii. Use Zellner’s (1962) Seemingly Unrelated Regression (SUR) to estimate the common

price of risk on the conditional covariances of the individual returns with the market

return in a panel of returns that excludes the market return.

In describing their methodology, Bali and Engle (2010, p. 382) state, “The panel esti-

mation method with SUR takes into account heteroskedasticity and autocorrelation as well

as contemporaneous cross-correlation of error terms.” In stark contrast to Bali and Engle,

we do not find significant estimates of the risk-return tradeoff using a daily forecast horizon.

We therefore conjectured that the standard errors in Bali and Engle (2010) are incorrect.13

Because basic SUR estimation imposes an assumption of conditional homoskedasticity in a

13Bali confirmed in an email correspondence that the Bali and Engle (2010) panel estimation was done in
EVIEWS, which produces traditional SUR standard errors, as we duplicate below.
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highly conditionally heteroskedastic model, the Bali and Engle (2010) standard errors are

too small, which severely biases the statistical evidence in favor of the significance of the

asset pricing models.

Bali and Engle (2010) use daily data on the Dow 30 stocks from July 10, 1986 to June

30, 2009 for 5,795 observations, as well as daily data on value-weighted decile portfolios

from sorts based on size, book-to-market, momentum, and industry portfolios from January

3, 1972 to June 30, 2009 for 9,462 observations. We downloaded the daily returns on the

size, book-to-market, momentum, and industry portfolios from Kenneth French’s online data

library, the same source used by Bali and Engle (2010).14

[Table 5 about here.]

Panel A of Table 5 provides the original estimates and standard errors from Bali and

Engle (2010), who find quite reasonable estimates of γ̂M that range from 1.85 for the industry

portfolios to 3.32 for the momentum portfolios. All their estimates seem highly significant

when using the incorrect standard errors. Panel B of Table 5 reports our attempt to replicate

their results and provides corrected standard errors for the SUR estimation. Differences

between our replication and the original estimation no doubt mostly arise from the first

stage DCC models given the variety of choices that must be made regarding the non-linear

estimation. Despite these differences, our point estimates are reasonably close to the original

results, except for the size-sorted portfolios.15 Note, though, that the correct standard

errors are much larger than the incorrectly calculated ones. The estimates of γM now range

from 1.74 for the industry portfolios to 3.84 for the Dow stocks (apart from the size-sorted

portfolios), and the estimates are no longer significantly different from zero. Panel C reports

14We were unable to download the daily returns on the investment-to-assets IA and return-on-assets ROA
portfolios that Bali and Engle (2010) obtained from Long Chen’s and LuZhang’s online data library because
this data library no longer exists.

15We find it puzzling that our results for the size-sorted portfolios are so different from the results in Bali
and Engle (2010). We use the same program for all of the replications, and we downloaded the data from
the same source.
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the results from our constrained OLS methodology. Here, the different weighting of the

pricing errors results in lower point estimates of γM , and all estimates are insignificant.

We also explore the Bali and Engle (2010) SUR methodology with simulations. When

the simulations match the parameters from the size decile portfolios with daily data for

the range used in the estimation, we find that the average, across the 1,000 simulations, of

the ratio of the standard deviations for the standard SUR estimation to its heteroskedastic

counterpart calculated on the same data is 0.23 indicating that the t-statistics are on average

inflated by a factor of 4.3 in these samples. Indeed, as shown in Panel B of Table 5, for the

actual data, we find that the Bali and Engle (2010) t-statistics are generally more than four

times larger than the correctly calculated ones. This is enough bias to render the estimates

insignificantly different from zero.

Bali and Engle (2010) extend their tests to include additional state variables, such as

the default premium, the term spread, the federal funds rate, and the implied volatility of

the S&P500 index. They conclude that conditional covariances with the default premium,

the term spread, and the implied volatility are also sources of risk in addition to conditional

covariance with the market return. However, when we include the conditional covariances of

the first three variables in addition to the conditional covariance with the market return as

risk factors, as in Bali and Engle’s (2010) Table 4, we find that the significance found by Bali

and Engle (2010) is due to the incorrectly calculated standard errors from the unconditional

SUR approach as none of the correctly calculated t-statistics is larger than 1.12. Further,

estimating the system using OLS instead of SUR lowers the magnitude and significance of

the estimates. Similarly, including the conditional covariance with implied volatility along

with the conditional covariance with the market return, as in Bali and Engle’s (2010) Table

6, produces insignificant prices of risk as the absolute value of the largest t-statistic is 1.75

for the SUR estimation. These results are available in an online Appendix.
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6.2 Scruggs (1998)

Scruggs (1998) incorporates innovations to the risk-free rate as a state variable, allowing the

expected return on the market to depend on its covariance with innovations in the return on

long-term bonds. He uses a constant-correlation EGARCH model, and models the market

risk premium as a linear function of the conditional market variance and the conditional

market covariance with the return on a long-term government bond. The full model is16

rM,t = γ0 + γMσ
2
M,t + γFσMF,t + εM,t (21)

rF,t = μF + εF,t (22)

log(σ2
M,t) = ωM + αMg(ψM,t−1) + δM log(σ2

M,t−1), ψM,t−1 = εM,t−1/σM,t−1 (23)

log(σ2
F,t) = ωF + αF g(ψF,t−1) + δF log(σ2

F,t−1), ψF,t−1 = εF,t−1/σF,t−1 (24)

σMF,t = ρMFσM,tσF,t (25)

g(ψM,t−1) =
(
|ψM,t−1| −

√
2/π
)
+ θMψM,t−1 (26)

g(ψF,t−1) =
(
|ψF,t−1| −

√
2/π
)
+ θFψF,t−1 (27)

[Table 6 about here.]

The estimates in Scruggs (1998) are reported in the second column of Table 6. Scruggs

uses the excess returns on the Ibbotson Associates long-term government bond total return

index from March 1950 to December 1994. Although we use the return on the Fama Bond

Portfolios for 61-120 months from CRSP over the period January 1952 to December 1994,

we are able to closely replicate his results, as shown in the third column of Table 6.17 Note

16Scruggs (1998) also considers specifications where the volatility processes are functions of the short-term
risk-free rate. His findings for these specifications are similar to the finding for the model reported here,
which corresponds to his model 3a.

17However, for his specifications 3b(i) and 3b(iii), we obtain opposite signs of both γM and γF .
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that we now use the return on long term bonds as opposed to the change in yield, as we did

above. Thus, we now expect γF to be negative. Our point estimates of γM and γF are of

the same magnitude as the estimates reported by Scruggs, however, we find that they are

not significant.18 When updating the sample to 2012, the estimates of γM and γF are now

close to zero and insignificant.

In fact, for the original sample period considered by Scruggs, the likelihood function has

multiple local minima. Scruggs reports the global minimum, but the likelihood function also

has a local minimum for which γM and γF are close to zero and insignificant. When updating

the sample, this local minimum becomes the global minimum, and the other local minimum

disappears. Also note that in our sample, the estimate of the unconditional correlation

between the return on the market and the bond return is close to zero and not statistically

significant. As a result, the price of risk on the covariance with the bond return is poorly

identified, with a standard error which is several orders of magnitude larger than the point

estimate. This contrasts with the original findings in Scruggs (1998), who finds a positive

and significant correlation between the return on the market and the bond return in his

sample.

[Table 7 about here.]

[Table 8 about here.]

18The many parameters and the non-linearities of the model make it difficult to precisely calculate standard
errors. We take care in evaluating the Hessian of the likelihood function. In particular, the Hessian returned
from the MatLab optimization routine is not reliable, as it is a so-called ‘pseudo-Hessian’ constructed with
the purpose of choosing sensible step-sizes, not to be a high-precision estimate of the second derivatives.
Instead, we use the DERIVEST suite by D’Errico (2011), an adaptive numerical differentiation toolbox that
provides high-precision first-order and second-order derivatives. When basing the t-statistics on the Hessian
matrix returned by the MatLab optimization routine, they increase from 1.0 to 1.5 for γM and from −0.73
to −1.1 for γF .
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7 Conclusion

This paper explores strategies for estimating the prices of risks in Merton’s (1973) ICAPM.

Our preferrred constrained OLS method is tractable, scales to allow multiple test assets, and

produces unbiased estimates and standard errors in our sample sizes. Whereas the previous

literature has mostly found insignificant estimates of the risk-return tradeoff when using only

the market return in tests of the conditional CAPM, including test assets in addition to the

market return consistently produces positive and significant estimates.

The increased significance of the risk-return tradeoff does not arise from an increase

in statistical power from including more test assets, as might have been expected. Using

simulations, we demonstrate that the high correlation in stock returns mitigates the effective

increase in power from adding assets. Instead, the increased significance arises from higher

point estimates.

We also analyze potentially more efficient estimation methods such as seemingly unrelated

regressions and conditional generalized least squares. Although these methods are able to

extract more power from the highly correlated test assets, this comes at a great cost. The

SUR and CGLS methods effectively minimize the pricing errors on orthogonalized portfolios,

which are linear combinations of the original test assets. Due to the correlation structure

in the original test assets, the orthogonalized portfolios have extreme long/short positions

and are not economically meaningful. Moreover, both the SUR and CGLS estimators are

severely biased in our sample sizes. We also demonstrate that the impressive test statistics

in Bali (2008) and Bali and Engle (2010) are shown to result from the use of incorrect

standard errors from the traditional SUR estimation which are four times too small in this

heteroskedastic environment.
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A Estimation

A.1 Estimating Without a Constant

If asset specific constants are not included in the estimation, equation (7) becomes

T∑
t=1

(Rt+1 −HNK,tγ)
′ W−1

t (Rt+1 −HNK,tγ) (28)

The first order condition with respect to γ is

T∑
t=1

H ′
NK,tW

−1
t (Rt+1 −HNK,tγ) = 0K (29)

where 0K represents a K−dimensional vector of zeroes. Thus, the solution for γ̂ is

γ̂ =

(
1

T

T∑
t=1

H ′
NK,tW

−1
t HNK,t

)−1

1

T

T∑
t=1

H ′
NK,tW

−1
t Rt+1 (30)

Notice that this estimator of γ does not test the prediction of the theory that the conditional

means of returns move with the conditional covariances of the returns with the risk factors.

Equation (30) is the multivariate risks analogue to the findings of Hedegaard and Hodrick

(2014) for the single factor conditional CAPM.

A.2 Estimating with Constants

When asset-specific constants are included in the estimation, equation (7) becomes

T∑
t=1

(Rt+1 − μ−HNK,tγ)
′ W−1

t (Rt+1 − μ−HNK,tγ) (31)
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The first order conditions with respect to μ are

T∑
t=1

W−1
t (Rt+1 − μ−HNK,tγ) = 0N (32)

and the first order conditions with respect to γ are

T∑
t=1

H ′
NK,tW

−1
t (Rt+1 − μ−HNK,tγ) = 0K . (33)

The solutions are

μ̂ = RW
t+1 −HW

NK,tγ̂ (34)

γ̂ =

(
1

T

T∑
t=1

H ′
NK,tW

−1
t

(
HNK,t −HW

NK,t

))−1

(35)

×
(
1

T

T∑
t=1

H ′
NK,tW

−1
t

(
Rt+1 −RW

t+1

))
, (36)

where the weighted mean of a matrix processX t is defined asXW
t ≡

(∑T
t=1 W

−1
t

)−1∑T
t=1 W

−1
t X t.

If W t ≡ W is constant, the weighted means become sample means, and the solutions

are

μ̂ = Rt+1 −HNK,tγ̂ (37)

and

γ̂ =

(
T∑
t=1

H ′
NK,tW

−1
(
HNK,t −HNK,t

))−1( T∑
t=1

H ′
NK,tW

−1
(
Rt+1 −Rt+1

))
(38)

Notice that γ̂ can only be significantly different from zero if weighted sums of the sample

covariances of the time t conditional covariances of returns with the risk factors and the

future returns at time t+ 1 are significantly different from zero.

42



In the special case of constrained OLS, W = I, and if the only source of risk is the

covariance with the market return, equation (38) reduces to

γ̂ =
T∑
t=1

H ′
NM,t

(
HNM,t −HNM,t

)( T∑
t=1

H ′
NM,t

(
HNM,t −HNM,t

))−1( T∑
t=1

H ′
NM,t

(
Rt+1 −Rt+1

))

=

(
N∑
k=1

V̂ (σ̂kM,t)

)−1( N∑
i=1

ˆcov (σ̂iM,t, Ri,t+1)

)
(39)

where HNM,t is the vector of covariances with market, V̂ (σ̂kM,t) is the sample variance of

the conditional covariance, and ˆcov (σ̂iM,t, Ri,t+1) is the sample covariance of the conditional

covariance of asset i with the future return on asset i. Multiplying and dividing within

the summation on the last term on the right-hand side by V̂ (σ̂iM,t) and recognizing that

individual OLS regressions of Ri,t+1 on a constant and σ̂iM,t would produce estimates of the

risk-return tradeoff, γ̂i,M =
ˆcov(σ̂iM,t,Ri,t+1)

V̂ (σ̂iM,t)
, demonstrates that the constrained OLS estimate

of γM is a weigthed average of the individual estimates:

γ̂M =
N∑
i=1

V̂ (σ̂iM,t) γ̂i,M∑N
k=1 V̂ (σ̂kM,t)

. (40)

A.3 GMM Standard Errors

With the notation of Section 2.1, let

f t+1 = X ′
tW

−1
t εt+1. (41)

Then, the GMM orthogonality conditions can be written as E(f t+1) = 0N+K . Denote these

sample orthogonality conditions by gT (δ) where δ = (μ′,γ ′)′ is the (N + K)-dimensional

parameter vector. Because the model is just identified, the sample orthogonality conditions

can be set to zero exactly.
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Hansen’s (1982) GMM applied to this case provides the asymptotic distribution of the

parameter estimates:
√
T
(
δ̂ − δ

)
→ N

(
0N+K ,d

−1Sd−1
)
, (42)

where d ≡ E
(

∂ft+1

∂δ′

)
and S ≡ E

(
f t+1f

′
t+1

)
. The sample counterparts of d and S are

dT = ∂gT

∂δ′ and ST = 1
T

∑T
t=1 f t+1f

′
t+1. For the general case,

dT =

⎡⎢⎣ 1
T

∑T
t=1 −W−1

t
1
T

∑T
t=1 −W−1

t HNK,t

1
T

∑T
t=1 −H ′

NK,tW
−1
t

1
T

∑T
t=1 −H ′

NK,tW
−1
t HNK,t

⎤⎥⎦ (43)

A.4 Maximum Likelihood for the DCC Model

The log likelihood function of the DCC model assuming conditional normality with N assets

is

L = −1

2

T∑
t+1

(N ln(2π) + ln |H t|+ ε′t+1H
−1
t εt+1) (44)

= −1

2

T∑
t+1

(N ln(2π) + 2 ln |Dt|+ ε′t+1D
−1
t D−1

t εt+1 − u′
t+1ut+1 + ln |P t|+ u′

t+1P
−1
t ut+1)

where the term ε′t+1D
−1
t D−1

t εt+1−u′
t+1ut+1 is zero. As noted by Engle (2002), the likelihood

function separates into two parts where the first depends only on the GARCH parameters

and the second depends only on the correlation parameters. Let θ denote the parameters in

the Dt matrices, and let φ denote the parameters in the P t matrices. The volatility part

LV (θ) = −1

2

T∑
t+1

(N ln(2π) + ln |Dt|+ ε′t+1D
−1
t D−1

t εt+1) (45)

is simply the sum of the individual GARCH likelihoods, which is maximized by separately

estimating the individual GARCH processes. Then, conditional on θ̂, the correlation pa-
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rameters are found by maximizing

LC(θ̂,φ) = −1

2

T∑
t+1

(−u′
t+1ut+1 + ln |P t|+ u′

t+1P
−1
t ut+1). (46)
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Figure 1: Average Returns and Estimated Average Pricing Errors
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The figure shows estimation results for the intercepts in the ICAPM with the return on the
market as the only state variable. The model estimated is

Rt+1 = μ+HNK,tγM + εt+1, εt+1 ∼ D(0,HNN,t)

The system is estimated using OLS, and H t is estimated in a first stage using a DCC model.
As test assets, we use the market and the 25 size- and book-to-market sorted portfolios. The
top plot shows the average monthly returns on each of the 26 test assets along with two
standard deviation intervals. These are the pricing errors under the null of γM = 0. The
bottom plot shows the constants from the estimated model with their two standard deviation
intervals. Although the usual patterns across book-to-market are still clearly visible, the
conditional CAPM explains the average return across portfolios very well. Note that the
constants are not error terms that are minimized in the estimation, but parameters of the
model.

46



Figure 2: Estimate of γM as a function of the forecast interval
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The figure shows estimations results for the risk-return relation in the ICAPM with the
return on the market as the only state variable. The model estimated is

Rt+1 = μ+HNK,tγM + εt+1, εt+1 ∼ D(0,HNN,t)

We vary the forecasting interval from one day to 60 days. The system is estimated using
OLS, and H t is estimated in a first stage using a DCC model. As test assets, we use the
market and the 25 size- and book-to-market sorted portfolios. The solid line shows the point
estimate of γM and the grey area shows plus/minus two standard deviations. The estimation
uses daily data from February 1st, 1954, to December 31st, 2012.
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Figure 3: Estimates of γi,M and their Weights in the Panel Data Estimation
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The top plot shows estimations results for the risk-return relation in the ICAPM based
on individual portfolios. The return on the market is the only state variable. The model
estimated is

Ri,t+1 = μi + γi,M covt(Ri,t+1, RM,t+1) + εi,t+1, εi,t+1 ∼ D(0, σ2
i,t)

The solid horizontal line just below 5 indicates the panel data estimate, and the dashed lines
show the corresponding 95% confidence intervals. The panel data estimate is a weighted
average of the individual estimates, and the bottom plot shows the individual weight that
each estimate receives in the panel data estimator.
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Figure 4: Mean of Estimates and Power from Simulations
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Panel A shows the mean of the estimates and Panel B shows the power of the test γM = 0
against different alternative values of γM , based on simulated data. For each of the seven data
sets, we first estimate the parameters of a DCC model to real data. We then simulate from
the DCC-GARCH-in-mean model varying γM from 0 to 6. For the simulations, we draw
innovations randomly with replacement from the original residuals. Using the simulated
data, we then estimate a DCC GARCH model and finally we estimate γM using the OLS
procedure. We perform 1,000 simulations. The left plot shows the mean of the estimates
from the 1,000 simulations, for each data set and for each value of γM . The estimates are
unbiased. The right plot shows the power of the test γM = 0 against different alternative
values of γM . As the true value of γM increases, the power naturally increases. However, the
power does not increase as more test assets are added.
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Table 1: Estimation Results for the ICAPM with One State-Variable
The table shows estimations results for the risk-return relation with the return on the market as
the only state variable. The model estimated is

Ri,t+1 = μi + γM covt(Ri,t+1, RM,t+1) + εi,t+1, εi,t+1 ∼ D(0, hi,t)

The system is estimated using OLS, andH t is estimated in a first stage using a DCC model. Robust

standard errors are reported in parenthesis. As test assets, we use the portfolios in the first column.

For the standard estimation, both asymptotic standard errors and bootstrapped standard errors

are shown in parenthesis. For the ODIN estimation, only asymptotic standard errors are reported.

We also report the test statistic from a Wald test of the hypothesis that all intercepts are jointly

zero, μ̂′Σ̂
−1
μ μ̂ ∼ χ2(N), where Σ̂μ is the estimated covariance matrix for the intercepts and N is

the number of test assets. Sample: Monthly observations from February 1954 to December 2012

(707 observations). The ODIN estimation uses daily data from February 1st, 1954, to December

31st, 2012, with a 22 day forecasting interval.
Test-assets γ̂M σ̂(γ̂M ) p-value Wald p-value N

Standard Estimation

Market only 3.61 (2.14) 0.09 0.13 0.71 1
Bootstrap (2.58) 0.10

Mkt & 6 Size- and BM 4.46∗∗ (2.16) 0.04 62.72 0.00 7
Bootstrap (2.28) 0.05

Mkt & 10 Size 4.77∗∗ (2.19) 0.03 28.39 0.00 11
Bootstrap (2.39) 0.03

Mkt & 10 BM 3.91 (2.24) 0.08 18.51 0.07 11
Bootstrap (2.63) 0.10

Mkt & 25 Size- and BM 4.74∗∗ (2.22) 0.03 110.99 0.00 26
Bootstrap (2.64) 0.04

Mkt & 100 Size- and BM 4.71∗∗ (2.33) 0.04 175.34 0.00 90
Bootstrap (2.55) 0.04

Mkt & 10 δM sorted 6.86∗∗∗ (2.20) 0.00 154.01 0.00 11
Bootstrap (2.65) 0.00

ODIN Estimation

Market only 2.65∗ (1.59) 0.10 1.51 0.22 1
Mkt & 6 Size- and BM 3.15∗ (1.81) 0.08 65.79 0.00 7
Mkt & 10 Size 3.48∗ (1.81) 0.05 23.94 0.01 11
Mkt & 10 BM 2.76 (1.86) 0.14 23.91 0.01 11
Mkt & 25 Size- and BM 3.47∗ (1.89) 0.07 120.13 0.00 26
Mkt & 100 Size- and BM 3.70∗ (2.06) 0.07 207.49 0.00 90
Mkt & 10 δM sorted 5.37∗∗∗ (1.96) 0.01 195.84 0.00 11

∗∗∗,∗∗, and ∗ indicate significance at the 1%, 5%, and 10% levels, respectively. For the standard

model, the significance is based on bootstrapped p-values.
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Table 2: Estimation Results for the CGLS estimation.
The table shows estimations results for the risk-return relation with the return on the market as
the only state variable. The model estimated is

Rt+1 = μ+HNK,tγM + εt+1, εt+1 ∼ D(0,HNN,t)

The system is estimated using conditional generalized least squares (CGLS), and H t is estimated

in a first stage using a DCC model. Both robust asymptotic standard errors and bootstrapped

standard errors are shown in parenthesis. As test assets, we use the portfolios in the first column.

We also report the test statistic from a Wald test of the hypothesis that all intercepts are jointly

zero, μ̂′Σ̂
−1
μ μ̂ ∼ χ2(N), where Σ̂μ is the estimated covariance matrix for the intercepts and N is

the number of test assets. Sample: Monthly observations from February 1954 to December 2012

(707 observations). The ODIN estimation uses daily data from February 1st, 1954, to December

31st, 2012, with a 22 day forecasting interval.
Test-assets γ̂M σ̂(γ̂M ) p-Value Wald p-Wald N

Market only 2.97 (2.15) 0.17 0.00 0.95 1
Bootstrap (2.42) 0.12

Mkt & 6 Size- and BM −0.43 (1.40) 0.76 81.31 0.00 7
Bootstrap (1.03) 0.93

Mkt & 10 Size 2.78∗∗∗ (1.36) 0.04 18.75 0.07 11
Bootstrap (1.09) 0.01

Mkt & 10 BM 0.20 (1.32) 0.88 19.05 0.06 11
Bootstrap (1.02) 0.49

Mkt & 25 Size- and BM −0.15 (1.13) 0.89 156.29 0.00 26
Bootstrap (0.89) 0.62

Mkt & 100 Size- and BM 0.31 (0.98) 0.75 246.41 0.00 90
Bootstrap (0.74) 0.29

Mkt & 10 δM sorted 2.01∗∗ (1.34) 0.13 201.17 0.00 11
Bootstrap (1.21) 0.02

∗∗∗,∗∗, and ∗ indicate significance at the 1%, 5%, and 10% levels, respectively. For the standard

model, the significance is based on bootstrapped p-values.
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Table 3: Estimation Results for the ICAPM with the Market and the Long-Term Bond Yield
as State-Variables
The table shows estimations results for the ICAPM with the return on the market and the long-term
bond yield as state variables. The model estimated is

Ri,t+1 = μi + γM covt(Ri,t+1, RM,t+1) + γF covt(Ri,t+1,Δyt+1) + εi,t+1, εi,t+1 ∼ D(0, hi,t)

where Δyt+1 is the change in the long-term bond yield. The system is estimated using OLS, and Ht

is estimated in a first stage using a DCC model. Robust standard errors are reported in parenthesis.

As test assets, we use the portfolios in the first column. We also report the test statistic from a

Wald test of the hypothesis that all intercepts are jointly zero, μ̂′Σ̂
−1
μ μ̂ ∼ χ2(N), where Σ̂μ is the

estimated covariance matrix for the intercepts and N is the number of test assets. Sample: Monthly

observations from February 1954 to December 2012 (707 observations). The ODIN estimation uses

daily data from January 1st, 1962, to December 31st, 2012, with a 22 day forecasting interval.
Test-assets γ̂M γ̂F Wald N

Standard Estimation

Market only 3.47 −23.29 0.18 1
(2.22) (56.81) [0.67]

Mkt & 6 Size- and BM 4.34∗∗ −24.76 51.12 7
(2.21) (50.19) [0.00]

Mkt & 10 Size 4.73∗∗ −6.24 29.94 11
(2.30) (67.49) [0.00]

Mkt & 10 BM 3.77 −29.77 18.60 11
(2.32) (64.58) [0.07]

Mkt & 25 Size- and BM 4.65∗∗ −15.16 111.51 26
(2.36) (87.28) [0.00]

Mkt & 100 Size- and BM 4.69∗ −5.83 176.66 90
(2.70) (163.37) [0.00]

Mkt & 10 δM sorted 6.71∗∗∗ −27.39 138.00 11
(2.35) (89.43) [0.00]

ODIN Estimation

Market only 3.22∗∗ −49.39 1.26 1
(1.55) (50.30) [0.26]

Mkt & 6 Size- and BM 3.82∗∗ −36.99 22.76 7
(1.80) (42.40) [0.00]

Mkt & 10 Size 4.20∗∗ −37.08 80.30 11
(1.85) (64.79) [0.00]

Mkt & 10 BM 3.35∗ −54.71 86.08 11
(1.81) (50.90) [0.00]

Mkt & 25 Size- and BM 4.08∗∗ −60.15 76.70 26
(1.90) (90.81) [0.00]

Mkt & 100 Size- and BM 3.85∗ −98.48 148.27 77
(2.11) (143.79) [0.00]

Mkt & 10 δM sorted 5.77∗∗∗ −63.40 157.27 11
(1.97) (82.07) [0.00]

∗∗∗,∗∗, and ∗ indicate significance at the 1%, 5%, and 10% levels, respectively. For the standard

model, the significance is based on bootstrapped p-values.52



Table 4: Estimation Results for the ICAPM with the Market, SMB and HML as State-
Variables
The table shows estimations results for the ICAPM with the return on the market, SMB and HML
as state variables. The model estimated is

Ri,t+1 = μi + γM covt(Ri,t+1, RM,t+1) + γSMB covt(Ri,t+1, RSMB,t+1)

+ γHML covt(Ri,t+1, RHML,t+1) + εi,t+1, εi,t+1 ∼ D(0, hi,t)

The system is estimated using OLS, andH t is estimated in a first stage using a DCC model. Robust

standard errors are reported in parenthesis. As test assets, we use the portfolios in the first column.

We also report the test statistic from a Wald test of the hypothesis that all intercepts are jointly

zero, μ̂′Σ̂
−1
μ μ̂ ∼ χ2(N), where Σ̂μ is the estimated covariance matrix for the intercepts and N is

the number of test assets. Sample: Monthly observations from February 1954 to December 2012

(707 observations). The ODIN estimation uses daily data from January 1st, 1962, to December

31st, 2012, with a 22 day forecasting interval.
Test-assets γ̂M γ̂SMB γ̂HML Wald N

Standard Estimation

Market only 7.90∗∗∗ −10.68 11.87∗∗ 0.38 1
(2.81) (6.86) (5.79) [0.54]

Mkt & 6 Size- and BM 5.48∗∗ −0.94 6.22∗ 45.91 7
(2.58) (3.37) (3.48) [0.00]

Mkt & 10 Size 6.76∗∗ −1.98 8.38∗ 13.52 11
(2.76) (4.44) (5.03) [0.26]

Mkt & 10 BM 5.52∗ −4.13 9.55∗ 7.77 11
(2.98) (5.95) (5.03) [0.73]

Mkt & 25 Size- and BM 6.64∗∗ −1.59 10.10∗ 93.80 26
(2.88) (4.77) (5.73) [0.00]

Mkt & 100 Size- and BM 7.54∗∗ −2.41 17.34∗∗∗ 158.30 90
(3.17) (5.10) (6.47) [0.00]

Mkt & 10 δM sorted 9.38∗∗∗ −3.81 16.55∗∗ 117.67 11
(3.59) (6.35) (7.52) [0.00]

ODIN Estimation

Market only 3.81∗ 0.28 5.62 0.25 1
(2.10) (6.71) (4.68) [0.62]

Mkt & 6 Size- and BM 3.59∗ 0.68 2.78 15.07 7
(2.07) (3.92) (3.38) [0.04]

Mkt & 10 Size 4.46∗∗ 0.19 4.69 70.75 11
(2.25) (4.89) (5.18) [0.00]

Mkt & 10 BM 3.14 1.14 3.25 88.11 11
(2.28) (6.05) (4.40) [0.00]

Mkt & 25 Size- and BM 4.37∗ −0.08 5.14 64.34 26
(2.29) (5.04) (5.65) [0.00]

Mkt & 100 Size- and BM 5.16∗∗ −0.74 9.61 138.77 77
(2.57) (5.76) (6.45) [0.00]

Mkt & 10 δM sorted 5.39∗ 2.75 7.80 110.62 11
(2.85) (6.82) (6.52) [0.00]

∗∗∗,∗∗, and ∗ indicate significance at the 1%, 5%, and 10% levels, respectively. For the standard

model, the significance is based on bootstrapped p-values.
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Table 5: Replication of Bali and Engle (2010) Table 1
The table shows the original results from Table 1 in Bali and Engle (2010) in Panel A, as
well as our replications in Panel B and Panel C. The return on the market is the only state
variables, and the model estimated is

Rt+1 = μ+HNK,tγM + εt+1, εt+1 ∼ D(0,HNN,t)

The system is estimated using seemingly unrelated regressions (SUR) in Panel A and Panel
B, and using OLS in Panel C. H t is estimated in a first stage using a DCC model. In Panel
B, the SUR standard errors correct for contemporaneous (i.e., cross-equation) correlation
and heteroskedasticity, but not for time-series heteroskedasticity. The GMM standard errors
correct for both contemporaneous correlation and heteroskedasticity, as well as for time-
series heteroskedasticity. As test assets, we use the portfolios in the first column. We also
report the test statistic from a Wald test of the hypothesis that all intercepts are jointly

zero, μ̂′Σ̂
−1

μ μ̂ ∼ χ2(N), where Σ̂μ is the estimated covariance matrix for the intercepts and
N is the number of test assets. Sample: Daily observations from January 3, 1972 to June 30,
2009 (9,462 observations). The estimation for Dow 30 stocks is based on daily observations
from July 10, 1986 to June 30, 2009 (5,795 observations).
Test-assets γM Wald p-value N

Panel A: Original Results in Bali and Engle (2010) Table 1
10 Size 1.86∗∗∗ 13.29 0.21 10

(0.37)

10 Book-to-Market 2.05∗∗∗ 15.73 0.11 10
(0.39)

10 Momentum 3.32∗∗∗ 36.71 0.00 10
(0.38)

10 Industry 1.85∗∗∗ 9.53 0.48 10
(0.38)

30 Dow Stocks 2.21∗∗∗ 18.17 0.96 30
(0.29)

Continued . . .
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Table 5 continued. . .
Test-assets γM Wald p-value N

Panel B: Replication using SUR
10 Size −0.18
SUR Standard err. (0.39) 9.10 0.52 10
GMM Standard err. (1.41) 9.25 0.51

10 Book-to-Market 1.78
SUR Standard err. (0.37) 15.74 0.11 10
GMM Standard err. (1.63) 16.10 0.10

10 Momentum 3.04∗

SUR Standard err. (0.37) 34.89 0.00 10
GMM Standard err. (1.57) 38.25 0.00

10 Industry 1.74
SUR Standard err. (0.37) 9.71 0.47 10
GMM Standard err. (1.60) 9.66 0.47

30 Dow Stocks 3.84∗

SUR Standard err. (0.42) 21.43 0.87 30
GMM Standard err. (2.19) 22.52 0.83

Panel C: Replication using OLS
10 Size −0.43 8.08 0.62 10

(2.04)

10 Book-to-Market 0.23 18.06 0.05 10
(2.00)

10 Momentum 1.06 34.57 0.00 10
(1.93)

10 Industry 0.62 10.48 0.40 10
(2.00)

30 Dow Stocks 1.63 21.25 0.88 30
(2.18)

∗∗∗,∗∗, and ∗ indicate significance at the 1%, 5%, and 10% levels, respectively.
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Table 6: Replication and Update of Scruggs (1998)
This table shows the original results from Scruggs (1998) in the second column, as well as our
replication in the third column and updated results in the fourth column. The model estimated is

rM,t = γ0 + γMσ
2
M,t + γFσMF,t + εM,t

rF,t = μF + εF,t

log(σ2M,t) = ωM + αMg(ψM,t−1) + δM log(σ2M,t−1), ψM,t−1 = εM,t−1/σM,t−1

log(σ2F,t) = ωF + αF g(ψF,t−1) + δF log(σ2F,t−1), ψF,t−1 = εF,t−1/σF,t−1

σMF,t = ρMFσM,tσF,t

g(ψM,t−1) =
(
|ψM,t−1| −

√
2/π

)
+ θMψM,t−1

g(ψF,t−1) =
(
|ψF,t−1| −

√
2/π

)
+ θFψF,t−1

Scruggs’ original study uses monthly data from March 1950 to December 1994 (538 observations)

and the return on long-term government bonds from Ibbottson Associates, whereas we base our

replication on data from January 1952 to December 1994 (516 observations) and use the return

on the Fama Bond Portfolios for 61-120 months from CRSP. The updated results are based on

data from January 1952 to December 2012 (732 observations). Heteroskedasticity robust standard

errors are reported in parenthesis.
Parameter Original Replication Update

Panel A: Conditional Mean Equation Parameters

γ0 × 100 −0.11 −0.07 0.54
(0.55) (0.74) (0.92)

γM 10.57∗∗ 7.62 −0.30
(4.48) (7.59) (12.96)

γF −49.75∗∗ −61.58 0.20
(23.47) (63.87) (417.97)

μF × 100 −0.08∗ −0.03 0.02
(0.04) (0.04) (0.04)

Continued . . .
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Table 6 continued. . .
Panel B: Conditional Second Moment Equation Parameters

ωM −0.49∗∗ −0.52 −0.87
(0.25) (0.39) (1.50)

αM 0.19∗∗∗ 0.18∗∗∗ 0.19∗∗

(0.05) (0.04) (0.09)

δM 0.92∗∗∗ 0.92∗∗∗ 0.86∗∗∗

(0.04) (0.06) (0.24)

θM −0.17 −0.27 −0.89
(0.24) (0.48) (1.92)

ωF −0.18∗∗ −0.14 −0.14∗

(0.07) (0.11) (0.08)

αF 0.38∗∗∗ 0.31∗∗∗ 0.27∗∗∗

(0.05) (0.10) (0.06)

δF 0.97∗∗∗ 0.98∗∗∗ 0.98∗∗∗

(0.01) (0.01) (0.01)

θF −0.27∗∗ −0.41∗∗∗ −0.25∗

(0.12) (0.15) (0.14)

ρMF 0.24∗∗∗ 0.19∗∗∗ 0.05
(0.05) (0.05) (0.07)

L 3318.53 2892.40 4050.01
N 538 516 732

∗∗∗,∗∗, and ∗ indicate significance at the 1%, 5%, and 10% levels, respectively.
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