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1 Introduction

Bewley economies, as e.g., in Bewley (1977, 1983) and Aiyagari (1994),1 represent one
of the fundamental workhorses of modern macroeconomics, its main tool when moving
away from the study of effi cient economies with a representative agent to allow e.g., for
incomplete markets.2 In these economies the evolution of aggregate variables does not
generally constitute a suffi cient representation of equilibrium, which instead requires the
characterization of the dynamics of the distributions across heterogeneous agents.
In Bewley economies each agent faces a stochastic process for labor earnings and

solves an infinite horizon consumption-saving problem with incomplete markets. Typi-
cally, agents are restricted to save by investing in a risk-free bond and are not allowed
to borrow. The postulated process for labor earnings determines the dynamics of the
equilibrium distributions for consumption, savings, and wealth.3

Bewley models have been successful in the study of several macroeconomic phenom-
ena of interest. Calibrated versions of this class of models have been used to study welfare
costs of inflation (Imrohoroglu, 1992), asset pricing (Mankiw, 1986 and Huggett, 1993),
unemployment benefits (Hansen and Imrohoroglu, 1992), fiscal policy (Aiyagari, 1995
and Heathcote, 2005), and labor productivity (Heathcote, Storesletten, and Violante,
2008a, 2008b; Storesletten, Telmer, and Yaron, 2001; and Krueger and Perri, 2008).4

On the other hand, Bewley models are hardly able to reproduce the observed dis-
tribution of wealth in many countries; see e.g., Aiyagari (1994) and Huggett (1993).
More specifically, they cannot reproduce the high inequality and the fat right tail that
empirical distributions of wealth tend to display.5 This is because at high wealth levels,
the incentives for precautionary savings taper off and the tails of the wealth distribution
remain thin; see Carroll (1997) and Quadrini (1999) for a discussion of these issues.6

1The Bewley economy terminology is rather generally adopted and has been introduced by Ljungqvist
and Sargent (2004).

2The assumption of complete markets is generally rejected in the data; see e.g., Attanasio and Davis
(1996), Fisher and Johnson (2006) and Jappelli and Pistaferri (2006).

3More recent specifications of the model allow for aggregate risks and an equilibrium determination
of labor earnings and interest rates; see Huggett (1993), Aiyagari (1994), Rios-Rull (1995), Krusell and
Smith (2006, 2008). and Ljungqvist and Sargent (2004), Ch. 17, for a review of results.

4See Heathcoate-Storesletten-Violante (2010) for a recent survey of the quantitative implications of
Bewley models.

5Large top wealth shares in the U.S. since the 60’s are documented e.g., by Wolff (1987, 2004) and,
more recently, by Kopczuk and Saez (2014) using estate tax return data; Piketty and Zucman (2014)
find large and increasing wealth-to-income ratios in the U.S. and Europe in 1970-2010 national balance
sheets data. Fat tails for the distributions of wealth are also well documented, for example by Nirei-
Souma (2004) for the U.S. and Japan from 1960 to 1999, by Clementi-Gallegati (2004) for Italy from
1977 to 2002, and by Dagsvik-Vatne (1999) for Norway in 1998. Using the richest sample of the U.S.,
the Forbes 400, during 1988-2003 Klass et al. (2007) find e.g., that the top end of the wealth distribution
obeys a Pareto law.

6Stochastic labor earnings can in principle generate some skewness in the distribution of wealth, es-
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In the present paper we analytically study the wealth distribution in the context
of Bewley economies extended to allow for idiosyncratic capital income risk, which is
naturally interpreted as entrepreneurial risk.7

,
To this end we provide first an analysis

of the standard Income Fluctuation problem, as e.g., in Chamberlain-Wilson (2000), ex-
tended to account for capital income risk.8 We restrict ourselves to idiosyncratic labor
earnings and capital income for simplicity. As in Aiyagari (1994), the borrowing con-
straint together with stochastic incomes assures a lower bound to wealth acting as a
reflecting barrier.9 Furthermore, we show that the consumption function under borrow-
ing constraints is strictly concave at lower wealth levels, consistent with, e.g. Saez and
Zuchman (2014)’s evidence of substantial saving rate differentials across wealth levels. In
this environment, therefore, the rich can get richer through savings, while the poor may
not save enough to escape a poverty trap. Such non-ergodicity however would imply no
social mobility between rich and poor, which seems incompatible with observed levels of
social mobility in income over time and across generations; see for example Chetty, Hen-
dren, Kline, and Saez (2014). We analytically show however that enough idiosyncratic
capital income risk induces an ergodic stationary wealth distribution which is fat tailed,
more precisely, a Pareto distribution in the right tail. We also show that it is capital
income risk, rather than labor earnings, that drives the properties of the right tail of the

pecially if the earnings process is itself skewed and persistent. Extensive evidence for the skewedness of
the income distribution has been put forth in a series of papers by Emmanuel Saez and Thomas Piketty
(some with co-authors), starting with Saez and Piketty (2003) on the U.S. We refer to Atkinson, Saez,
and Piketty (2011) for a survey and to the excellent website of the database they have collected (with
Facundo Alvaredo), The World Top Incomes Database. However, most empirical studies of labor earn-
ings find some form of stationarity of the earnings process; see Guvenen (2007) and e.g., the discussion
of Primiceri and van Rens (2006) by Heathcote (2008). Persistent income shocks are often postulated
to explain the cross-sectional distribution of consumption but seem hardly enough to produce fat tailed
distributions of wealth; see e.g., Storesletten, Telmer, Yaron (2004). See also Cagetti and De Nardi
(2008) for a survey.

7Capital income risk has been introduced by Angeletos and Calvet (2005) and Angeletos (2007)
and further studied by Panousi (2008) and by ourselves (Benhabib, Bisin, and Zhu, 2011 and 2013).
Quadrini (1999, 2000) and Cagetti and De Nardi (2006) study entrepreneurial risk explicitly. Jones
and Kim (2014) study entrepreneurs in a growth context under risk introduced by creative destruction.
Relatedly, Krusell and Smith (1998) introduce heterogeneous discount rates to numerically produce
some skewness in the distribution of wealth. We refer to these papers and our previous papers, as
well as to Benhabib and Bisin (2006) and Benhabib and Zhu (2008), for more general evidence on the
macroeconomic relevance of capital income risk.

8The work by Levhari and Srinivasan (1969), Schectman (1976), Schectman and Escudero (1977),
Chamberlain-Wilson (2000), Huggett (1993), Rabault (2002), Carroll and Kimball (2005) has been
instrumental to provide several incremental pieces to our characterization of the solution of (various
specifications of) the Income Fluctuation problem; see Ljungqvist and Sargent (2004), Ch. 16, as well
as Rios-Rull (1995) and Krusell-Smith (2006), for a review of results regarding the standard Income
Fluctuation problem.

9See also Achdou, Lasry, Lions and Moll (2014) for numerical solutions of a model with stochastic
returns and borrowing constraints, exploring the interaction of aggregate shocks and inequality on the
transition dynamics of the macroeconomy.
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wealth distribution.10

The rest of the paper is organized as follows. We present the basic setup of our
economy in Section 2. Section 3 contains the characterization of the income fluctuation
problem with idiosyncratic capital income risk. In Section 4 we show that the wealth
accumulation process has a unique stationary distribution and the stationary distribution
displays a fat right tail. In Section 5 we show that our analysis of the wealth distribution
induced by the income fluctuation problem can be embedded in general equilibrium.
Section 6 contains some simulation results regarding the stationary wealth distribution
and the social mobility of the wealth accumulation process.

2 The economy

Consider an infinite horizon economy with a continuum of agents uniformly distributed
with measure 1.11 Let {ct}∞t=0 denote an agent consumption process and {at+1}∞t=0 his/her
wealth process. In the economy, each agent faces a no-borrowing constraint at each time
t:

ct ≤ at.

Let {yt}∞t=0 represent an agent’s earnings process and {Rt+1}∞t=0 his/her idiosyncratic
rate of return on wealth process.
Each agent in the economy solves the Income Fluctuation (IF) problem which is

obtained under Constant Relative Risk Aversion (CRRA) preferences,

u(ct) =
c1−γ
t

1− γ ,

constant discounting β < 1, and capital income risk and earnings processes, {Rt+1}∞t=0

and {yt}∞t=0:

max
{ct}∞t=0,{at+1}∞t=0

E
∞∑
t=0

βt
c1−γ
t

1− γ (IF)

s.t. at+1 = Rt+1(at − ct) + yt+1

10This complements the results in our previous papers (Benhabib, Bisin, and Zhu, 2011 and 2013),
which focus on overlapping generation economies. An alternative approach to generate fat tails with-
out stochastic returns is to introduce a model with bequests, where the probability of death (and/or
retirement) is independent of age. In these models, the stochastic component is not stochastic returns
but the length of life. For models that embody such features, see Wold and Whittle (1957), Castaneda,
Gimenez and Rios-Rull (2003), and Benhabib and Bisin (2006). On the other hand, sidestepping the
income fluctuation problem by assuming a constant savings rate, Nirei (2014) shows that thick tails are
a direct consequence of the linearity of the wealth equation.
11We avoid introducing notation to index agents in the paper.
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ct ≤ at

a0 given.

The following assumptions characterize formally the stochastic properties of the economic
environment:

Assumption 1 Rt and yt are stochastic processes, identically and independently dis-
tributed (i.i.d.) over time and across agents: yt has probability density function f(y)
on bounded support [y

¯
, ȳ], with y

¯
> 0 and Rt has probability density function g(R) on

support [R
¯
, R̄). Furthermore, yt satisfies i) (ȳ)−γ < βE

[
Rt (yt)

−γ] , while Rt satis-

fies: ii) R̄>R
¯
> 0 large enough,12 iii) βER1−γ

t < 1; iv)
(
βER1−γ

t

) 1
γ ERt < 1;and v)

Pr(βRt > 1) > 0 and any finite moment of Rt exists.

2.1 Outline

It is useful to briefly outline the role of our assumptions and our strategy to obtain the
main results in the paper. Assumptions 1.i) and 1.ii) guarantee that an agent with zero
wealth at some time t will not consume all his/her income at time t+ 1 for high enough
realizations of earnings and rates of return; as a consequence, the lower bound of the
wealth space is a reflecting barrier, i.e. the wealth accumulation process is not stuck at
the lower end of the wealth space, a = 0 (see Lemma 7 in the Appendix). The stochastic
process for wealth is then ergodic.
Assumptions 1.iii) and 1.iv) guarantee that the wealth accumulation process is sta-

tionary. In particular, Assumption 1.iii) guarantees that the aggregate economy displays
no unbounded growth in consumption and wealth.13 Assumption 1.iv) implies that

βERt < 1.

This is enough to guarantee that the economy contracts, giving rise to a stationary dis-
tribution of wealth. However, since we cannot obtain explicit solutions for consumption
or savings policies, we have to explicitly show that under suitable assumptions there are
no disjoint invariant sets or cyclic sets in wealth, so that agents do not get trapped in
subsets of the support of the wealth distribution. In other words we have to show that
the stochastic process for wealth is ergodic, and that a unique stationary distribution
exists. We show this in Lemmata 6 and 8 in the Appendix. We then have to show that

12While R̄ =∞ is allowed for, a finite R̄, as derived in the proof of Theorem 4, is suffi cient for all our
results.
13We can allow for exogenous growth g > 1 in earnings, as in Aiyagari and McGrattan (1998). To

this end, we need to deflate the variables by the growth rate and let the borrowing constraint grow
at growth rate. In our context, since we allow for no borrowing, no modification of the constraint is
needed. However, Assumption 1.2.iii) would have to be modified so that Pr(βRtgγ > 1) > 0.
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idiosyncratic capital income risk can give rise to a fat-tailed wealth distribution. Since
in our economic environment policy functions are not linear and explicit solutions are
not available even under CRRA preferences, we cannot use the results of Kesten (1973),
for example as in Benhabib, Bisin and Zhu (2011). We are nonetheless able to show that
consumption and savings policies are asymptotically linear; a result which, under appro-
priate assumptions, allow us to apply Mirek (2011)’s generalization of Kesten (1973).
We do this in Propositions 3, 4 and 5. The fat right tail of the stationary distribution
of wealth, obtained in Theorem 3, exploits crucially that Pr(βRt > 1) > 0, that is,
Assumption 1.v).

3 The income fluctuation problemwith idiosyncratic
capital income risk

In this section we show several technical results about the consumption function c(a)
which solves problem IF, as a build-up for its characterization of the wealth distribution
in the next section. All proofs are in the Appendix.

Theorem 1 A consumption function c(a) which satisfies the constraints of the IF prob-
lem and furthermore satifies

i) the Euler equation

u′(c(a)) ≥ βERt+1u
′(c [R(a− c(a)) + y]) with equality if c(a) < a, (1)

and

ii) the transversality condition
lim
t→∞

Eβtu′(ct)at = 0, (2)

represents a solution of the IF problem.

By strict concavity of u(c), there exists a unique c(a) which solves the IF problem.
The study of c(a) requires studying two auxiliary problems. The first is a version

the IF problem in which the stochastic process for earnings {yt}∞0 is turned off, that is,
yt = 0, for any t ≥ 0. The second is a finite horizon version of the IF problem. In both
cases we naturally maintain the relevant specification and assumptions imposed on our
main IF problem.
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3.1 The IF problem with no earnings

The formal IF problem with no earnings is:

max
{ct}∞t=0,{at+1}∞t=0

E

∞∑
t=0

βt
c1−γ
t

1− γ (IF with no earnings)

s.t. at+1 = Rt+1(at − ct)
ct ≤ at

a0 given.

This problem can indeed be solved in closed form, following Levhari and Srinivasan
(1969). Note that for this problem the borrowing constraint is never binding because
Inada conditions are satisfied for CRRA utility.

Proposition 1 The unique solution to the IF problem with no earnings is

cno(a) = φa, for some 0 < φ < 1.

3.2 The finite IF problem

For any T > 0, let the finite IF problem be:

max
{ct}Tt=0,{at+1}

T−1
t=0

E
T∑
t=0

βt
c1−γ
t

1− γ (finite IF)

s.t. at+1 = Rt+1(at − ct) + yt+1, for 0 ≤ t ≤ T − 1

ct ≤ at, for 0 ≤ t ≤ T

a0 given.

With some notational abuse, let ct denote consumption t periods from the end-period
T , that is, consumption at time T − t.

Proposition 2 The unique solution to the finite IF problem is a consumption function
ct(a) which is continuous and increasing in a. Furthermore, let st denote the induced
savings function,

st(a) = a− ct(a).

Then st(a) is also continuous and increasing in a.
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3.3 Characterization of c(a)

We can now derive a relation between ct(a), cno(a) and c(a). The following Lemma is a
straightforward extension of Proposition 2.3 and Proposition 2.4 in Rabault (2002).

Lemma 1 limt→∞ c
t(a) exists, it is continuous and satisfies the Euler equation. Fur-

thermore,
lim
t→∞

ct(a) ≥ cno(a).

The main result of this section follows:

Theorem 2 The unique solution to the IF problem is the consumption function c(a)
which satisfies:

c(a) = lim
t→∞

ct(a).

Let the induced savings function s(a) be

s(a) = a− c(a).

Proposition 3 The consumption and savings functions c(a) and s(a) are continuous
and increasing in a.

Carroll and Kimball (2005) show that ct(a) is concave.14 But Lemma 2 guarantees
that c(a) = limt→∞ c

t(a) and thus c(a) is also a concave function of a.

Proposition 4 The consumption function c(a) is a concave function of a.

The most important result of this section is that the optimal consumption function
c(a), in the limit for a→∞, is linear and has the same slope as the optimal consumption
function of the income fluctuation problem with no earnings, φ.

Proposition 5 The consumption function c(a) satisfies lima→∞
c(a)
a

= φ.

The proof, in the Appendix, is non-trivial.

14See also Carroll, Slacalek, and Tokuoka (2014).
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4 The stationary distribution

In this section we study the distribution of wealth in the economy. The wealth accumu-
lation equation of the IF problem is

at+1 = Rt+1(at − c(at)) + yt+1. (3)

It is useful to compare it with the IF with no earnings. Using Lemma 1 we have:

at+1 = Rt+1(at − c(at)) + yt+1

≤ Rt+1(at − cno(at)) + yt+1

= Rt+1(1− φ)at + yt+1.

Let
µ = 1− φ =

(
βER1−γ) 1γ .

Thus µ < 1 by Assumption 1.iii). We have

at+1 ≤ µRt+1at + yt+1.

The main results in this section are the following two theorems.

Theorem 3 There exists a unique stationary distribution for at+1 which satisfies the
stochastic wealth accumulation equation (3).

The proof, in the Appendix, requires several steps. First we show that the wealth
accumulation process {at+1}∞t=0 induced by equation (3) above is ϕ− irreducible, i.e.,
there exists a non trivial measure ϕ on [y,∞) such that if ϕ(A) > 0, the probability that
the process enters the set A in finite time is strictly positive for any initial condition (see
Chapter 4 of Meyn and Tweedie (2009)). We also show that a = y represents a reflecting
barrier for the process. To show that there exists a unique stationary wealth distribution
we exploit the results in Meyn and Tweedie (2009) and show that the process {at+1}∞t=0

is ergodic.
Finally, the in the next theorem we show that the wealth accumulation process

{at+1}∞t=0 has a fat tail. We use the characterization of c(a) and s(a) in Section 3.3,
and in particular the fact that s(a)

a
is increasing in a and s(a)

a
approaches µ as a goes

to infinity; this allows us to apply some results by Mirek (2011) regarding conditions
for asymptotically Pareto stationary distributions for processes induced by non-linear
stochastic difference equations.

Theorem 4 The unique stationary distribution for at+1 which satisfies the stochastic
wealth accumulation equation (3) has a fat tail; i.e., there exist 1 < α <∞ and an ε > 0
arbitrarily small such that

E (M ε)α = 1, M ε = µεRt and µ− µε < ε.
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and

lim inf
a→∞

Pr(at+1 > a)

a−α
≥ C,

where C is a positive constant.

Proof. Since s(a)
a
is increasing in a and s(a)

a
approaches µ as a goes to infinity, we can

pick a large aε such that

µ− s(aε)

aε
< ε.

Let

µε =
s(aε)

aε
.

Thus µ− ε < µε ≤ µ.
Let

l(a) =

{
s(a), a ≤ aε

µεa, a ≥ aε
. (4)

Note that l(a) ≤ s(a) for ∀a ∈ [y
¯
,∞), since s(a)

a
is increasing in a; furthermore, the

function l(a) in (4) is Lipschitz continuous, since s(a) is Lipschitz continuous.
Let

ψ(a) = Rtl(a) + y.

Nowwe apply Theorem 1.8 of Mirek (2011), to show that the stochastic process {ãt+1}∞t=0,
induced by ãt+1 = ψ(ãt), has a unique stationary distribution and that the tail of the
stationary distribution for ãt+1 is asymptotic to a Pareto law, i.e.

lim
a→∞

Pr(ãt+1 > a)

a−α
= C,

where C is a positive constant.
In order to apply Theorem 1.8 of Mirek (2011), we need to verify Assumption 1.6

and Assumption 1.7 of Mirek (2011).
By the definition of ψ(·) we have

lim
τ→0

[
τψ

(
1

τ
a

)]
= M εa for ∀a ∈ [y

¯
,∞).

Let
Nt = ΩRt + yt

where
Ω = max

a∈[y
¯
,aε]
|s(a)− µεa|.

It is easy to verify that

|ψ(a)−M εa| < Nt for ∀a ∈ [y
¯
,∞).
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Thus ψ(·) satisfies Assumption 1.6 (Shape of the mappings) of Mirek (2011).
Obviously, the conditional law of logM ε is non arithmetic. Let h(d) = logE (M ε)d.

By Assumption 1.iv) we have E (µRt) < 1. Thus h(1) = logE (M ε) ≤ logE (µR) < 0.
We now show that Assumption 1.iii) and Assumption 1.iv) imply that there exists κ > 1
such that µκE(Rt)

κ > 1. By Jensen’s inequality we have E(Rt)
1−γ ≥ (ERt)

1−γ. Also,
Assumption 1.2.iv) implies that βERt < 1. Thus

µ =
(
βE(Rt)

1−γ) 1γ ≥ β.

Thus

E (µRt)
κ ≥ E (βRt)

κ ≥
∫
{βRt>1}

(βRt)
κ .

By Assumption 1.v), Pr(βRt > 1) > 0. Thus there exists κ > 1 such that µκE(Rt)
κ > 1.

We could pick µε such that (µε)κE(Rt)
κ > 1. Thus h(κ) = logE (M ε)κ > 0. By

Assumption 1.v), any finite moment of Rt exists. Thus h(d) is a continuous function of
d. Thus there exists α > 1 such that h(α) = 0, i.e. E (M ε)α = 1. Also we know that
h(d) is a convex function of d. Thus there is a unique α > 0, such that E (M ε)α = 1.
Moreover, E [(M ε)α | logM ε|] <∞, sinceM ε has a lower bound, and, by Assumption

1.v), any finite moment of Rt exists.
We also know that E(Nt)

α < ∞ since yt has bounded support and, by Assumption
1.v), any finite moment of Rt exists.
Thus M ε and Nt satisfy Assumption 1.7 (Moments condition for the heavy tail) of

Mirek (2011).
By Lemma 7 in the Appendix, a =y

¯
is a reflecting barrier of the process {at+1}∞t=0.

Assumption 1.ii) requires that the upper bound of the support of Rt, R̄ is large enough.
Consider first the case in which Rt is unbounded, R̄ =∞. It follows that in this case the
support of the stationary distribution for ãt+1 is unbounded.
Applying Theorem 1.8 of Mirek (2011), we find that the stationary distribution ãt+1

has a Pareto tail. Finally, we show that the stationary wealth distribution at+1, has a
fat tail.
Pick a0 = ã0. The stochastic process {at+1}∞t=0 is induced by

at+1 = Rt+1s(at) + yt+1.

And the stochastic process {ãt+1}∞t=0 is induced by

ãt+1 = Rt+1l(ãt) + yt+1.

For a path of (Rt, yt), we have at ≥ ãt. Thus for ∀a >y
¯
, we have

Pr(at > a) ≥ Pr(ãt > a).
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This implies that
Pr(at+1 > a) ≥ Pr(ãt+1 > a),

since the stochastic processes {at+1}∞t=0 and {ãt+1}∞t=0 are ergodic. Thus

lim inf
a→∞

Pr(at+1 > a)

a−α
≥ lim inf

a→∞

Pr(ãt+1 > a)

a−α
= lim

a→∞

Pr(ãt+1 > a)

a−α
= C.

Consider now the case in which the distribution of R is on a bounded support [R
¯
, R̄].

Along with Assumption 1.ii), we can now construct a suffi cient condition on R̄. Evaluate
c(a)
a
at a = ȳ and compute R̄

(
1− c(ȳ)

ȳ

)
. If R̄

(
1− c(ȳ)

ȳ

)
> 1, then the economy’s station-

ary distribution of wealth has fat tails. But suppose instead that R̄
(

1− c(ȳ)
ȳ

)
< 1. In

this case pick an R̂ > R̄ and such that R̂
(

1− c(ȳ)
ȳ

)
> 1 and perturb g, the distribution

of R, as follows: g(R; ε) = (1− ε)g(R) for any R ∈ [R
¯
, R̄] and g(R̂; ε) has mass ε. Note

that g(., 0) = g, so that we effectively produced a continuous parametrization of the
distribution g. The parametrization is continuous in the sense that

∫
h(r)g(R; ε)dR is

continuous in ε for any continuous function h. Now this construction guarantees that
wealth a can escape to the expanding region with positive probability ε. Indeed by
Berge’s maximum theorem c(ȳ)

ȳ
is continuous in ε and R̂ can be chosen large enough to

compensate any local variation in c(ȳ)
ȳ
. As a consequence, this construction produces an

economy whose stationary distribution of wealth has fat tails even with a distribution
of R which is bounded above. What is really needed is that the distribution of R has
any positive density above the R∗ such that R∗

(
1− c(ȳ)

ȳ

)
= 1, even if the support is not

connected. �

5 General equilibrium

In this section we embed the analysis of the distribution of wealth induced by the IF
problem in general equilibrium. Following Angeletos (2007) we assume that each agent
acts as entrepreneur of his own individual firm. Each firm has a constant returns to scale
neo-classical production function

F (k, n,A)

where k, n are, respectively, capital and labor, and A is an idiosyncratic productivity
shock. Agents can only use their own savings as capital in their own firm. In each
period t+ 1, each agent observes his/her firm’s productivity shock At+1 and decides how
much labor to hire in a competitive labor market, nt+1. Therefore, each firm faces the
same market wage rate wt+1. The capital he/she invests is instead predetermined, but
the agent can decide not to engage in production, in which case nt+1 = 0 and the capital
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invested is carried over (with no return nor depreciation) to the next period. The firm’s
profits in period t+ 1 are denoted πt+1:

πt+1 = max {F (kt+1, nt+1, At+1)− wnt+1 + (1− δ)kt+1, kt+1} . (5)

Letting each agent’s earnings in period t + 1 are denoted wt+1et+1, where et+1 is
his/her idiosyncratic (exogenous) labor supply, we have

at+1 = πt+1 + wt+1et+1.

Furthermore,
kt+1 = at − ct.

Given a sequence {wt}∞t=0 , each agent solves the following modified IF problem:

max
{ct,nt}∞t=0,{kt+1,at+1}∞t=0

E
∞∑
t=0

βt
c1−γ
t

1− γ (Gen Eq IF)

s.t. at+1 = πt+1 + wt+1et+1 where πt+1 is defined in (5)

kt+1 = at − ct
ct ≤ at

k0 given.

Definition 2 A stationary general equilibrium in our economy consists of a constant
wage rate w, sequences {ct, nt}∞t=0, {kt+1, at+1}∞t=0 which constitute a solution to the Gen
Eq IF problem under wt = w for any t ≥ 0, and a distribution v(at+1), such that the
following conditions hold:
(i) labour markets clear: Ent = Eet;

15

(ii) v is a stationary distribution of at+1.

We can now illustrate how such an equilibrium can be constructed, inducing a sta-
tionary distribution of wealth v(at+1) with the same properties, notably the fat tail, as
the one characterized in the previous section under appropriate assumptions for the sto-
chastic processes {At+1}∞t=0 and {et}

∞
t=0. The first order conditions of each agent firm’s

labor choice requires
∂F

∂n
(kt+1, nt+1, At+1) = wt+1;

which, under constant returns to scale implies,

∂F

∂n

(
1,
nt+1

kt+1

, At+1

)
= wt+1. (6)

15The usual abuse of the Law of Large Number guarantees that the market clearing condition as
stated holds in the cross-section of agents.
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Equation (6) can be solved to give

nt+1

kt+1

= n (wt+1, At+1) ; or nt+1 = g (wt+1, At+1) kt+1.

The market clearing condition i) in Definition 2 is then satisfied by a constant wage rate
w such that

Ent+1 = E (g (w,At+1))Ekt+1,

as long as the process {At+1}∞t=0 is i.i.d. over time and in the cross-section and Ekt+1 is
constant over time.
From the constant returns to scale assumption, once again, we can write profits πt+1

as:
πt+1 = Rt+1kt+1

where {Rt+1}∞t=0 is induced by the process {At+1}∞t=0 as follows:

Rt+1 = max

{
∂F

∂k

(
1,
nt+1

kt+1

, At+1

)
+ 1− δ, 1

}
.

Letting then yt+1 = wet+1, the dynamic equation for wealth can be written as

at+1 = Rt+1(at − ct) + yt+1.

We conclude that the solution to Gen Eq IF induces a stochastic process {at+1}∞t=0

which has the same properties as the one induced by the IF problem as long as i) Ekt+1

is constant and ii) the process {Rt+1}∞t=0 induced by {At+1}∞t=0 and the process{yt}
∞
t=0

induced by {et}∞t=0 satisfy Assumption 1. In particular, in this case, {at+1}∞t=0 has a
unique stationary distribution. The stationary distribution of {at+1}∞t=0 induces in turn
a stationary distribution of kt+1. The aggregate capital Ekt+1 is the first moment of the
stationary distribution of kt+1 and is therefore constant. As a consequence, the labor
market indeed clear with a constant wage w as postulated. It is verified then that at a
stationary general equilibrium, as long as ii) above is satisfied, the stochastic process
{at+1}∞t=0 has the same properties as the one induced by the IF problem; it displays, in
particular, a fat tail.

6 Simulation

In this section we carry out a simulation of the Bewley economy we studied in the paper.
The objective is simply to illustrate that a reasonable (though not calibrated) parameter
set produces a stationary wealth distribution which is Pareto in the tail with an exponent
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in the same order of magnitude as the one estimated for various developed economies,
that is, about 2.16 We shall defer a careful calibration exercise to future work.17

Consider a Bewley economy as introduced in Section 2, with the following specifi-
cations: log preferences (γ = 1); a uniformly distributed earnings process over support
[1, 44]; a rate of return process Rt defined on [0.8, 1, 1.08, 9] with associated probabilities
[0.2, 0.4, 0.39, 0.01]; β = 0.92.18

Under this specification, we solve for the consumption function which, consistently
with Propositions 4 and 5, is a concave function linear in the tail, as shown in Figure 1.

Figure 1: Consumption function

The stationary distribution of wealth, obtained for a million households after iterating
for 400 periods, is shown in Figure 2.19

16See the references in footnote 5.
17Calibrating the (idiosyncratic component of) the rate of return on wealth, in particular, appears

delicate. However, Saez and Zucman (2014)’s method produces a large idiosyncratic variance consistent
with the large documented variability of two major components of capital income, ownership of princi-
pal residence (see Case and Shiller, 1989; and Flavin and Yamashita, 2002) and private business equity
(Moskowitz and Vissing-Jorgensen, 2002; and Bitler, Moskowitz and Vissing-Jorgensen, 2005). See An-
geletos (2007), Quadrini (2000), and Benhabib and Zhu (2008) for more evidence on the macroeconomic
relevance of idiosyncratic capital income risk.
18The process Rt implies an expected return of 7% and hence βER < 1 is satisfied.
19We determine that a stationary distribution once we find convergence of cut-offs for wealth quintiles

as well as top decile and percentile. Given the large returns available, convergence requires a large
number of simulated households.
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Figure 2: Stationary distribution of wealth

The distribution of wealth by quintiles and for top shares for the U.S. economy and the
model is given below:

Quintiles
Economy First Second Third Fourth F ifth
U.S. −.003 .013 .05 .122 .817
Model .058 .077 .091 .107 .668

Percentiles
Economy 90th− 95th 95th− 99th 99th− 100th
U.S. .113 .231 .347
Model .077 .135 .387

While the match for quintiles and top shares seems quite reasonable,20 the tail index or
Pareto tail for the U.S. economy is smaller than in the simulation (between 1.5 − 2.0
rather than 2.1).21.

20This comparison implicitly assumes that the wealth distribution for the U.S. is close to stationary.
This might in general not be the case if the wealth distribution is hit frequently enough by aggregate
shocks like wars, major business cycle events (e.g., a depression), changes in tax schemes, social insurance
institutions, and so on; see Saez and Piketty (2003). We leave the study of the transition of the
distribution of wealth for future work.
21The tail exponent is computed using a Matlab package, plfit, based on Clauset, Shalizi, and Newman

(2009).
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Our analysis of the stochastic process of wealth induced by stochastic earnings and
capital income risk has direct implications with regards to the social mobility at the
stationary distribution. From our simulations we compute the 5-year quintile transition
matrix which we compare to the corresponding transition matrix for the U.S., estimated
by Klevmarken, Lupton and Stafford (2003) for 1994-1999 (see Table 9, p. 342).22 There
are several methods to more formally measure social mobility for transition matrices.23.
We adopt the Shorrocks index, which gives the average probability over all wealth classes
of leaving the initial wealth class over the observation period.24 This index takes value
0.8375 for the simulated 5-year quintile transition matrix, while only 0.6610 for the
corresponding matrix for the U.S., indicating that our specification overestimates social
mobility. A similar result is obtained when we compare the Shorrocks index of social
mobility for the transition matrix from our simulation with the corresponding one for
the U.S. estimated by Hurst and Kerwin (2003), Tables 2 and 5.25 In this case, however,
the overestimation of social mobility in the simulation is more moderate: the Shorrocks
index is .9516 and .885 respectively for the simulated matrix and the U.S. matrix.26 We
conclude that, while i.i.d. shocks can generate a fat right tail not too different from the
one observed in the data, further and careful calibrations would be required to more
closely match other aspects of to data, in particular the tail index and social mobility
jointly. To this end it seems of first order importance to allow for persistence in both the
earnings and in the capital income risk processes. We in fact experimented along these
lines, introducing a small degree of persistence in the returns with a transition matrix
that slightly deviates from the i.i.d. case. Persistence indeed shifts the distribution to
the right and reduces social mobility, thereby helping the model to better fit both the

22The (one-year) quintile transition matrix we obtain from the simulation is

T =


.7244 .2440 .0214 0 .0103
.2137 .4511 .3020 .0222 .0109
.0588 .2286 .4250 .2770 .0106
.0031 .0753 .2268 .5771 .1178

0 .0009 .0249 .1237 .8505

 .
Since the quintile transition matrix is obtained from the stationary distribution it is time homogeneous
and the t-years transition matrix, for any t > 1, is then simply computed as T t.
23See, e.g., Section 5 in Dardanoni (1993).

24Formally, for an square matrix A with m rows the Shorrocks index given by s(A) =

m−
∑
j

ajj

m−1 ; see
Shorrocks(1978).
25Hurst and Kerwin (2003)’s matrix is a sample cross-section average over 10—15 years, from 1985-89

to 1999. The simulated matrix we construct for comparison is a 12-year quintile transmission matrix.
26The same qualitative result is obtained comparing our simulated quintile transition process with

the 6-year quintile matrix obtained by Kennickell and Starr-McCluer (1997), Table 6. Also, measures of
social mobility alternative to Shorrocks index, like the second largest eigenvalue of the transition matrix
(see Dardanoni (1993), yield no qualitative differences in all these comparisons .
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stationary distribution of wealth as well as relevant aspects of social mobility. Also, some
non-homogeneity in savings, beyond that implied by the concave consumption function
of the Bewley model, may be introduced to account for fatter tails and less social mobility
in wealth distribution.

7 Conclusions

In this paper we construct a general equilibrium model with idiosyncratic capital income
risks in a Bewley economy and analytically demonstrate that the resulting wealth distri-
bution has a fat right tail under well defined and natural conditions on the parameters
and stochastic structure of the economy. Simulations confirm that, once idiosyncratic
capital income risk is taken into account, Bewley models can reproduce fundamental
stylized properties of the wealth distribution observed in the data for the U.S. and other
developed economies.
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Appendix

Proof of Theorem 1. A feasible policy c(a) is said to overtake another feasible policy
ĉ(a) if starting from the same initial wealth a0, the policies c(a) and ĉ(a) yield stochastic
consumption processes (ct) and (ĉt) that satisfy

E

[
T∑
t=0

βt (u(ct)− u(ĉt))

]
> 0 for all T > some T0.

Also, a feasible policy is said to be optimal if it overtakes all other feasible policies.
Proof: For an a0, the stochastic consumption process (ct) is induced by the policy

c(a). Let (ĉt) be an alternative stochastic consumption process, starting from the same
initial wealth a0. By the strict concavity of u(·), we have

E

[
T∑
t=0

βt (u(ct)− u(ĉt))

]
≥ E

[
T∑
t=0

βtu′(ct)(ct − ĉt)
]
.

From the budget constraint we have

at+1 = Rt+1(at − ct) + yt+1

and
ât+1 = Rt+1(ât − ĉt) + yt+1.

For a path of (Rt, yt), we have

at+1 − ât+1

Rt+1

= at − ct − (ât − ĉt) (7)

and

ct − ĉt = at − ât −
at+1 − ât+1

Rt+1

.

Therefore we have

T∑
t=0

βtu′(ct)(ct − ĉt) =
T∑
t=0

βtu′(ct)

(
at − ât −

at+1 − ât+1

Rt+1

)
.

Using a0 = â0 and rearranging terms, we have

T∑
t=0

βtu′(ct)(ct− ĉt) = −
T∑
t=0

βt[u′(ct)−βRt+1u
′(ct+1)]

at+1 − ât+1

Rt+1

−βTu′(cT )
aT+1 − âT+1

RT+1

.
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Using equation (7) we have

T∑
t=0

βtu′(ct)(ct − ĉt) = −
T∑
t=0

βt[u′(ct)− βRt+1u
′(ct+1)]{at − ct − (ât − ĉt)}

−βTu′(cT )[aT − cT − (âT − ĉT )]

≥ −
T∑
t=0

βt[u′(ct)− βRt+1u
′(ct+1)]{at − ct − (ât − ĉt)} − βTu′(cT )aT .

Thus we have

E

[
T∑
t=0

βtu′(ct)(ct − ĉt)
]
≥ −E

(
T∑
t=0

βt[u′(ct)− βERt+1u
′(ct+1)]{at − ct − (ât − ĉt)}

)
−EβTu′(cT )aT . (8)

By the Euler equation (1) we have u′(ct) − βERt+1u
′(ct+1) ≥ 0. If ct < at, then

u′(ct) = βERt+1u
′(ct+1). If ct = at, then at − ct − (ât − ĉt) = −(ât − ĉt) ≤ 0. Thus

−E
(

T∑
t=0

βt[u′(ct)− βERt+1u
′(ct+1)]{at − ct − (ât − ĉt)}

)
≥ 0. (9)

Combining equations (8) and (9) we have

E

[
T∑
t=0

βtu′(ct)(ct − ĉt)
]
≥ −EβTu′(cT )aT .

By the transversality condition (2) we know that for large T ,

E

[
T∑
t=0

βt (u(ct)− u(ĉt))

]
≥ 0. �

Proof of Proposition 1. The Euler equation of this problem is

c−γt = βERt+1c
−γ
t+1. (10)

Guess ct = φat. From the Euler equation (10) we have

φ = 1−
(
βER1−γ) 1γ ,

which is > 0 by Assumption 1.iii).
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It is easy to verify the transversality condition,

lim
t→∞

E
(
βtc−γt at

)
= 0. �

Let V t(a) be the optimal value function of an agent who has wealth a and has t
periods to the end T . Thus we have

V t(a) = max
c≤a

{
u(c) + βEV t−1 (R(a− c) + y)

}
for t > 1

and
V 1(a) = max

c≤a
u(c).

We have the Euler equation of this problem, for t > 1

u′(ct(a)) ≥ βE[Ru′(ct−1(R(a− ct(a)) + y)] with equality if ct(a) < a.

Proof of Proposition 2. Continuity is a consequence of the Theorem of the Maximum
and mathematical induction. The proof that ct(a) and st(a) are increasing can be easily
adapted from the proof of Theorem 1.5 of Schechtman (1976); it makes use of the fact
that ct(a) > 0, a consequence of Inada conditions which hold for CRRA utility functions.
�

Proof of Theorem 2. By Lemma 1 we know that c(a) satisfies the Euler equation.
Now we verify that c(a) satisfies the transversality condition (2).
By Lemma 1 and Theorem 2 we have

ct ≥ φat.

Note that at ≥y
¯
for t ≥ 1. We have

u′(ct)at ≤ φ−γ
(
y
¯

)1−γ
for t ≥ 1.

Thus
lim
t→∞

Eβtu′(ct)at = 0. �

Proof of Proposition 3. By Lemma 1, c(a) is continuous. Thus s(a) is continuous
since s(a) = a− c(a).
Also, by Lemma 1, limt→∞ s

t(a) = s(a), since limt→∞ c
t(a) = c(a), st(a) = a− ct(a),

and s(a) = a− c(a). The conclusion that c(a) and s(a) are increasing in a follows from
part (ii) of Proposition 2. �

27



Note that Proposition 3 implies that c(a) and s(a) are Lipschitz continuous. For ã,
â > 0, without loss of generality, we assume that ã < â. We have c(ã) ≤ c(â) and
s(ã) ≤ s(â). Also c(ã) + s(ã) = ã and c(â) + s(â) = â. Thus

c(â)− c(ã) + s(â)− s(ã) = â− ã.

Thus we have
0 ≤ c(â)− c(ã) ≤ â− ã

and
0 ≤ s(â)− s(ã) ≤ â− ã.

Thus
|c(â)− c(ã)| ≤ |â− ã|

and
|s(â)− s(ã)| ≤ |â− ã|.

Proof of Proposition 5. The proof involves several steps, producing a characterization
of c(a)

a
.

Lemma 2 ∃ζ >y
¯
, such that s(a) = 0, ∀a ∈ (0, ζ].

Proof. Suppose that s(a) > 0 for a >y
¯
. Pick a0 >y

¯
. For any finite t ≥ 0, we have at >y

¯and u′(ct) = βERt+1u
′(ct+1). Thus

u′(c0) = βtER1R2 · · ·Rt−1Rtu
′(ct). (11)

By Lemma 1 and Theorem 2 we have

ct ≥ φat > φy
¯
.

Thus equation (11) implies that

u′(c0) ≤
(
φy
¯

)−γ
(βER)t . (12)

Thus the right hand side of equation (12) approaches 0 as t goes to infinity. A contradic-
tion. Thus s(ζ) = 0 for some ζ >y

¯
. By the monotonicity of s(a), we know that s(a) = 0,

∀a ∈ (0, ζ].
We can now show the following:

Lemma 3 c(a)
a
is decreasing in a.
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Proof. By Lemma 2 we know that c(y
¯
) =y
¯
. For ∀a >y

¯
, c(a)

a
≤ 1 =

c(y
¯
)

y
¯
. Note that −c(a)

is a convex function of a, since c(a) is a concave function of a. For â > ã >y
¯
, we have27

c(â)− c(y
¯
)

â− y
¯

≤
c(ã)− c(y

¯
)

ã− y
¯

.

This implies that
c(â)ã ≤ c(ã)â− [â− ã− (c(â)− c(ã))] y

¯
. (13)

Since c(a) is Lipschitz continuous, we have

c(â)− c(ã) ≤ â− ã. (14)

Combining inequalities (13) and (14) we have

c(â)ã ≤ c(ã)â,

i.e.
c(â)

â
≤ c(ã)

ã
.

By Theorems 1 and Proposition 1 we know that c(a)
a
≥ φ. Thus we have

lim
a→∞

c(a)

a
exists.

Let

λ = lim
a→∞

c(a)

a
. (15)

Note that λ ≤ 1 since c(a) ≤ a.
The Euler equation of this problem is

c−γt ≥ βERt+1c
−γ
t+1 with equality if ct < at. (16)

Lemma 4 λ ∈ [φ, 1).

27See Lemma 16 on page 113 of Royden (1988).
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Proof. Suppose that λ = 1. Thus

lim inf
at→∞

c(at)

at
= lim

at→∞

c(at)

at
= 1.

From the Euler equation (16) we have

c−γt ≥ βERt+1c
−γ
t+1 ≥ βERt+1a

−γ
t+1

since ct+1 ≤ at+1 and γ ≥ 1.
Thus (

c(at)

at

)−γ
≥ βERt+1

(
Rt+1

(
1− c(at)

at

)
+
yt+1

at

)−γ
.

By Fatou’s lemma we have

lim inf
at→∞

ERt+1

(
Rt+1

(
1− c(at)

at

)
+
yt+1

at

)−γ
≥ E lim inf

at→∞

[
Rt+1

(
Rt+1

(
1− c(at)

at

)
+
yt+1

at

)−γ]
.

Thus

1 = lim
at→∞

(
c(at)

at

)−γ
≥ β lim

at→∞
ERt+1

(
Rt+1

(
1− c(at)

at

)
+
yt+1

at

)−γ
= β lim inf

at→∞
ERt+1

(
Rt+1

(
1− c(at)

at

)
+
yt+1

at

)−γ
≥ βE lim inf

at→∞

[
Rt+1

(
Rt+1

(
1− c(at)

at

)
+
yt+1

at

)−γ]

= βE lim
at→∞

[
Rt+1

(
Rt+1

(
1− c(at)

at

)
+
yt+1

at

)−γ]
= ∞.

A contradiction.

From Lemma 4 we know that ct < at when at is large enough. Thus the equality of
the Euler equation holds

c−γt = βERt+1c
−γ
t+1.
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Thus (
ct
at

)−γ
= βERt+1

(
ct+1

at

)−γ
. (17)

Taking limits on both sides of equation (17) we have

lim
at→∞

(
ct
at

)−γ
= β lim

at→∞
ERt+1

(
ct+1

at

)−γ
.

Thus

λ−γ = β lim
at→∞

ERt+1

(
ct+1

at

)−γ
. (18)

We turn to the computation of limat→∞ERt+1

(
ct+1
at

)−γ
.

In order to compute limat→∞ERt+1

(
ct+1
at

)−γ
, we first show a lemma.

Lemma 5 For ∀H > 0, ∃J > 0, such that at+1 > H for at > J . Here J does not depend
on realizations of Rt+1 and yt+1.

Proof. Note that

at+1

at
=
Rt+1(at − ct) + yt+1

at
≥ Rt+1

(
1− ct

at

)
.

From equation (15) we know that for some ε > 0, ∃J1 > 0, such that

ct
at
< λ+ ε

for at > J1. Thus
at+1

at
≥ Rt+1

(
1− ct

at

)
≥ Rt+1(1− λ− ε). (19)

And
at+1

at
≥ Rt+1(1− λ− ε) ≥ R

¯
(1− λ− ε).

We pick J > J1 such that R¯
(1− λ− ε) ≥ H

J
. Thus for at > J , we have

at+1

at
≥ H

J
.

This implies that

at+1 ≥
H

J
at > H.
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From equation (15) we know that for some η > 0, ∃H > 0, such that

ct+1

at+1

> λ− η (20)

for at+1 > H.
From Lemma 5 and equations (19) and (20) we have

Rt+1

(
ct+1

at

)−γ
= Rt+1

(
ct+1

at+1

at+1

at

)−γ
≤ (λ− η)−γ (1− λ− ε)−γR1−γ

t+1

for at > J . And
(λ− η)−γ (1− λ− ε)−γER1−γ

t+1 <∞

since γ ≥ 1. Thus when at is large enough, (λ− η)−γ (1 − λ − ε)−γR1−γ
t+1 is a dominant

function of Rt+1

(
ct+1
at

)−γ
.

Note that

lim
at→∞

ct+1

at+1

= lim
at→∞

c(at+1)

at+1

= λ a.s.

by Lemma 5 and equation (15). And

lim
at→∞

at+1

at
= lim

at→∞

(
Rt+1(at − ct) + yt+1

at

)
= Rt+1(1− λ) a.s.

since yt+1 ∈ [y
¯
, ȳ]. Thus

lim
at→∞

ct+1

at
= lim

at→∞

ct+1

at+1

at+1

at
= λ(1− λ)Rt+1 a.s.

Thus by the Dominated Convergence Theorem, we have

lim
at→∞

ERt+1

(
ct+1

at

)−γ
= ERt+1

(
lim
at→∞

ct+1

at

)−γ
= λ−γ(1− λ)−γER1−γ

t+1 . (21)

Combining equations (18) and (21) we have

λ−γ = βλ−γ(1− λ)−γER1−γ
t+1 . (22)

By Lemma 4 we know that λ ≥ φ > 0. Thus we find λ from equation (22)

λ = 1−
(
βER1−γ) 1γ .

Thus λ = φ.

Proof of Theorem 3. The proof requires several steps.
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Lemma 6 The wealth accumulation process (at) is ψ−irreducible.

Proof. First we show that the process (at) is ϕ−irreducible. We construct a measure ϕ
on [y

¯
,∞) such that

ϕ(A) =

∫
A

f(y)dy.

where f (y) is the density of labor earnings {y} . Note that the borrowing constraint
binds in finite time with a positive probability for ∀a0 ∈ [y

¯
,∞). Suppose not. For any

finite t ≥ 0, we have at >y
¯
and u′(ct) = βERt+1u

′(ct+1). Following the same procedure
as in the proof of Lemma 2, we obtain a contradiction. If the borrowing constraint binds
at period t, then at+1 = yt+1. Thus any set A such that

∫
A
f(y)dy > 0 can be reached in

finite time with a positive probability. The process (at) is ϕ−irreducible.
By Proposition 4.2.2 in Meyn and Tweedie (2009), there exists a probability measure

ψ on [y
¯
,∞) such that the process {at+1}∞t=0 is ψ−irreducible, since it is ϕ−irreducible.

Lemma 7 a = y
¯
is a reflecting barrier of the process (at).

Proof. If at =y
¯
, then there exists ŷ close to ȳ such that Pr(at+1 ∈ [ŷ, ȳ]|at =y

¯
) =

Pr(yt+1 ∈ [ŷ, ȳ]) > 0, since s(y
¯
) = 0. To show that at+2 can be greater than ȳ with a

positive probability, it is suffi cient to show that s(ȳ) > 0. Suppose that s(ȳ) = 0. Thus
s(a) = 0 for a ∈ [y

¯
, ȳ]. Thus by the Euler equation we have

(ȳ)−γ ≥ βE
[
Rt (yt)

−γ] .
This is impossible under Assumption 1.i). Thus s(ȳ) > 0 and a =y is a reflecting barrier
of the process {at+1}∞t=0.
To show that there exists a unique stationary wealth distribution, we have to show

that the process (at) is ergodic. Actually, we can show that it is geometrically ergodic.

Lemma 8 The process {at+1}∞t=0 is geometrically ergodic.

Proof. To show that the process (at) is geometrically ergodic, we use part (iii) of
Theorem 15.0.1 of Meyn and Tweedie (2009). We need to verify that

a the process {at+1}∞t=0 is ψ−irreducible;

b the process {at+1}∞t=0 is aperiodic;
28 and

28For the definition of aperiodic, see page 114 of Meyn and Tweedie (2009).

33



c there exists a petite set C,29 constants b < ∞, ρ > 0 and a function V ≥ 1 finite at
some point in [y

¯
,∞) satisfying

EV (at+1)− V (at) ≤ −ρV (at) + bIC(at), ∀at ∈ [y
¯
,∞).

By Lemma 6, the process {at+1}∞t=0 is ψ−irreducible.
For a ϕ−irreducible Markov process, when there exists a v1−small set A with v1(A) >

0,30 then the stochastic process is called strongly aperiodic; see Meyn and Tweedie (2009,
p. 114). We construct a measure v1 on [y

¯
,∞) such that

v1(A) =

∫
A

f(y)dy.

By Lemma 2, we know that s(a) = 0, ∀a ∈ [y
¯
, ζ]. Thus [y

¯
, ζ] is v1−small and v1([y

¯
, ζ]) =∫ ζ

y
¯
f(y)dy > 0. The process (at) is strongly aperiodic.

We now show that an interval [y
¯
,B] is a petite set for ∀B >y

¯
. To show this, we first

show that R
¯
s(a)+y

¯
< a for a ∈ (y

¯
,∞). For s(a) = 0, this is obviously true. For s(a) > 0,

suppose that R
¯
s(a)+y

¯
≥ a, we have

u′(c(a)) = βERtu
′(c(Rts(a) + y)) ≤ βERtu

′(c(a)).

We obtain a contradiction since Assumption 1.iv) implies that βERt < 1. Also by
Lemma 2, there exists an interval [y

¯
, ζ], such that s(a) = 0, ∀a ∈ [y

¯
, ζ]. For an interval

[y
¯
,B], ∀a0 ∈ [y

¯
,B], there exists a common t such that the borrowing constraint binds at

period t with a positive probability. Then for any set A ⊂ [y
¯
, ȳ], Pr(at+1 ∈ A|s(at) =

0) =
∫
A
f(y)dy. Note that a t−step probability transition kernel is the probability

transition kernel of a specific sampled chain. Thus we construct a measure va on [y
¯
,∞)

such that va has a positive measure on [y
¯
, ȳ] and va((ȳ,∞)) = 0. The t−step probability

transition kernel of a process starting from ∀a0 ∈ [y
¯
,B] is greater than the measure va.

An interval [y
¯
,B] is a petite set for ∀B >y

¯
.

We pick a function V (a) = a + 1, ∀a ∈ [y
¯
,∞). Thus V (a) > 1 for a ∈ [y

¯
,∞).

Pick 0 < q < 1 − µERt. Let ρ = 1 − µERt − q > 0 and b = 1 − µERt + Ey. Pick
B > y

¯
, such that B + 1 ≥ b

q
. Let C = [y

¯
,B]. Thus C is a petite set. Therefore, for

∀at ∈ [y
¯
,∞), we have

EV (at+1)− V (at) = E (at+1)− at
≤ − (1− µERt)V (at) + 1− µERt + Ey

≤ −ρV (at) + bIC(at)

where IC(·) is an indicator function.
By Theorem 15.0.1 of Meyn and Tweedie (2009) the process (at) is geometrically

ergodic.

29For the definition of petite sets, see page 117 of Meyn and Tweedie (2009).
30For the definition of small sets, see page 102 of Meyn and Tweedie (2009).
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