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1 Introduction

This paper provides an analytical characterization of the steady state equilibrium and of the

response of output to an unexpected monetary shock for a class of models with sticky prices.

By combining the assumptions of multiproduct firms and random menu costs the model is

able to produce, in various degrees, both the small and large price changes that have been

documented in the micro data starting with Kashyap (1995). Di↵erent sticky price set-ups,

spanning the models of Taylor (1980), Calvo (1983), Golosov and Lucas (2007), some versions

of the “CalvoPlus” model by Nakamura and Steinsson (2010), the “rational inattentiveness”

model by Reis (2006), as well as the multi-product models of Midrigan (2011), Bhattarai

and Schoenle (2014) and Alvarez and Lippi (2014), are nested by our model. This unified

framework allows us to unveil which assumptions are required to obtain each of them as an

optimal mechanism.

The main analytical result of the paper is that, in a large class of models that extends those

listed above, the total cumulative output e↵ect of a small unexpected monetary shock depends

on the ratio between two steady-state statistics: the kurtosis of the size-distribution of price

changesKur(�p

i

) and the average number of price changes per year N(�p

i

). Formally, given

the labor supply elasticity 1/✏ and a small monetary shock �, we show that the cumulative

output M, namely the area under the output impulse response function, is given by

M =
�

6 ✏

Kur(�p

i

)

N(�p

i

)
(1)

The impact of the frequency N (�p

i

) on the real output e↵ect is understood in the literature,

albeit not in such a stark fashion as in equation (1), and motivates a large body of empirical

literature. The main novelty is that the e↵ect of Kur (�p

i

) is equally important, and moti-

vates our interest to review and extend the evidence on its measurement. For a symmetric

distribution kurtosis is a scale-free statistic describing its shape, specifically its peakedness:

the extent to which “large” and “small” observations (in absolute value) appear relative to

intermediate values. We show that this statistic embodies the extent to which “selection” of

price changes occurs. The selection e↵ect, a terminology introduced by Golosov and Lucas

(2007), indicates that the size of the price changes after the shock is not taken at random

in the cross section of firms: in their menu cost model the price changes immediately after

a shock are also the largest, so that the CPI response is fast. Instead, in Calvo the size of

the average price change following a shock is constant, so that the CPI rises more slowly

and the real e↵ects are six times larger. Surprisingly, these features are fully captured by

kurtosis, as in equation (1), since it is the mass in the proximity of the adjustment barriers
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that determines the nature of the price changes following a monetary shock.

We show that a selection e↵ect also operates relative to the timing, not just the size,

of price changes. For instance in the models of Taylor and Calvo, calibrated to the same

frequency N (�p

i

), the size of the price changes is the same (so there is no selection in the

Golosov-Lucas sense). Yet the real cumulative output e↵ect in Calvo is twice the e↵ect in

Taylor. This happens because in Taylor the distribution of times until adjustment is uniform,

but in Calvo it is exponential, with a thicker right tail of firms that adjust very late. This

selection e↵ect concerning the times of adjustment is also captured by equation (1), since a

more dispersed distribution of times to adjust produces a distribution of price changes that

is a mixture of normals with di↵erent variances, and hence a higher kurtosis.

The main advantage of equation (1) is robustness: the formula allows us to discuss the

output e↵ects of small monetary shocks without having to solve for the whole general equi-

librium or providing details about several other modeling choices. We see this result in the

spirit of the su�cient statistic approach introduced in the public finance literature by Chetty

(2009) and applied to the new trade literature by Arkolakis, Costinot, and Rodriguez-Clare

(2012): in a nutshell, the identification of a robust relationship that contains useful economic

information independently of many details of the model and is, at least in principle, observ-

able in the data. Of course equation (1) does not hold in all models. For instance, it does not

hold in models where the steady state distribution of price changes is not informative about

the cost and benefits of changing prices. The simplest example is a model with no menu costs

in which (with zero inflation) the distribution of price changes mirrors the distribution of the

underlying cost shocks. Yet, if there is a monetary shock, all prices change immediately, and

there is no e↵ect on output.1 In those models additional information is needed to identify

the parameters and assess the e↵ects of monetary shocks.

Overview

We begin the paper with a review of the micro evidence on price setting behavior, across

several micro datasets, and then develop a theoretical model that is able to qualitatively

replicate the observed patterns. The empirical contribution documents the presence of small

and large price changes, i.e. a very peaked distribution of price changes, using a dataset

of price records underlying the French CPI as well as several US datasets. This finding,

reminiscent of Kashyap (1995) seminal investigation of selected catalog retail goods, persists

even at a very disaggregate level of product-outlet-type, ruling out an explanation based on

1While this example is extreme, the same logic applies in a model with a small menu cost and infrequent
shocks to production costs that are similar to those observed in empirical distribution of price changes (see
Appendix H for details).
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pure cross-section heterogeneity, and it is similar to Klenow and Kryvtsov (2008) analysis of

the US CPI data. We also acknowledge that the CPI data may contain measurement error

that tends to distort the measure of peakedness of the distribution of price changes, an issue

emphasized by Eichenbaum et al. (2014). We estimate that –after taking into consideration

measurement error and cross-sectional heterogeneity– the shape of the size-distribution of

price changes is in between a Normal and a Laplace distribution, with a kurtosis that is

about 4 for the US and about 5 for France.

We develop an analytical model that matches these patterns, featuring both the small

and large price changes which lead to excess kurtosis. The model extends the multi-product

setup developed in Alvarez and Lippi (2014), where the fixed menu cost applies to a bundle

of n goods sold by each firm. Each good is subject to idiosyncratic cost shocks that create a

motive for price adjustment. The shocks are uncorrelated across goods and we assume zero

inflation, i.e. lack of a common drift. The multi-product assumption generates the extreme

price changes, both small and large. We extend that setup by introducing random menu costs,

a feature that produces a positive excess kurtosis of the size-distribution of price changes.2 In

particular, we assume that at an exogenous rate � a firm receives an opportunity to adjust its

price at no cost, as in a Calvo setup. The model has four fundamental parameters: the size of

the menu cost relative to curvature of the profit function  /B, the volatility of idiosyncratic

cost shocks �2, the number of products n and the arrival rate of free adjustments �.

The model yields four new theoretical results. First we characterize how the inaction set

behaves as a function of the parameters. For a small menu cost  /B the model behaves as in

Barro (1972), Dixit (1991) and Golosov and Lucas (2007): the size of the inaction set displays

the usual high sensitivity (i.e. a “quartic root”) with respect to the cost and the volatility

of the shocks �2 (the option value e↵ect). Interestingly, the decision rule is una↵ected by

the presence of the free adjustments as long as the menu cost is small. The decision rule

changes substantially for large menu costs, an assumption that is useful to generate behavior

that approaches that of a Calvo model. In this case the size of the inaction set changes with

the square root of the menu cost and the arrival rate, and somewhat surprisingly it becomes

unresponsive to the volatility of idiosyncratic shock �2, so that changes in the uncertainty

faced by firms induce no change in behavior (i.e. there is no option value). This result can

be used to analyze the e↵ects of “uncertainty shocks” which have received a lot of attention

recently, as in e.g. Vavra (2013). Second, the model provides a mapping between the cost of

price adjustment and the model parameters: we give a complete analytical characterization

of the menu cost implied by observable statistics such as the frequency and the variance of

price changes. This mapping can be used to quantify a value of  /B consistent with the

2Absent random menu cost the multi-product model can at most produce a zero excess kurtosis.
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evidence on the costs of price adjustment, as measured by e.g. Levy et al. (1997). It thus

provides a new dimension to assess the plausibility of previous models, such as Calvo pricing,

by inspecting the magnitude of their implied adjustment costs.

Third, by aggregating the optimal decision rules across firms we characterize the frequency

N(�p

i

), standard deviation Std(�p

i

), and shape of the distribution of the price changes, e.g.

its kurtosis: Kur(�p

i

). We show that for any pair of parameters {n,�}, the two remaining

parameters { /B, �} map one-to-one onto the observables N(�p

i

), Std(�p

i

). This mapping

is convenient for the analysis because it allows us to “freeze” the two observables N(�p

i

) and

Std(�p

i

), which one can take from the data, while retaining the flexibility to accommodate

various shapes for the size-distribution of price changes as well as various data on the cost of

price adjustment. In particular, we show that the shape of the distribution of price changes

can be written exclusively in terms of n and the fraction of free-adjustments ` ⌘ �/N(�p

i

).

To summarize, the parameterization of the model can be thought as follows: the parameters

 /B and � are pinned down by the observations on N(�p

i

), Std(�p

i

), while the parameters

(n, `) are pinned down by the shape of the distribution of price changes, e.g. by its kurtosis,

and by the data on the costs of price adjustment. In our model the shape of the distribution

of price changes ranges from bimodal (for the model where ` = 0 and n = 1 as in the Golosov-

Lucas model) to Normal (for n = 1 and ` = 0, our version of Taylor or Reis (2006)’s model),

and Laplace (in the case ` = 1 for any n, our version of the Calvo model). In those three

models the kurtosis of price changes is, respectively, 1, 3 and 6. For any given ` the level of

kurtosis is increasing in n. Likewise, for a given n the level of kurtosis is increasing in `.3

Fourth, we use the model to characterize analytically the impulse responses of the ag-

gregate economy to a once-and-for-all unexpected permanent increase of the money supply.

The aggregate e↵ect of a monetary shock depends on the shock size, the frequency, and the

kurtosis of price adjustments. The dependence on the size of the shock is a hallmark of

menu cost models: monetary shocks that are large (relative to the size of price adjustments)

lead to almost all firms adjusting prices and hence imply neutrality. We provide a detailed

analysis of the minimum size of the shock that delivers this neutrality (full price flexibility).

Instead, small shocks yield real output e↵ects whose size crucially depends on N(�p

i

) as well

as on the kurtosis of price changes, Kur(�p

i

), a result that is new in the literature and was

discussed in equation (1).4

Although the model assumes a zero steady-state inflation, we show analytically that a

3In our set-up a given kurtosis may be obtained by di↵erent combinations of n and `, yet we argue
that models with high n yield a better representation of the cross-sectional data because it eliminates the
predominant mass of large price changes that arises in models where n is small.

4 Furthermore, our decomposition of the determinants of the real output e↵ect shows how to measure and
aggregate across heterogenous sectors, see Appendix R.

4



small inflation has only a second order e↵ect on both the kurtosis of the price changes, the

frequency of price changes as well as on the cumulative real output e↵ect. Hence the model

can be applied to economies with a positive (but small) inflation rate, as observed in most

industrialized economies.

Other related literature

In addition to the papers cited above, our analysis relates to a large literature on the prop-

agation of monetary shocks in sticky price models, unifying earlier results that compare

the propagation in the Calvo model with the propagation in either the Taylor or the menu

cost model of sticky prices.5 We show that introducing a random adjustment costs serves

a similar role as that of fat-tailed shocks in Midrigan (2011), increasing the real e↵ect of

monetary shocks and bringing the model behavior closer to a Calvo model (yet there are

some di↵erences, see the concluding remarks in Section 5 for a discussion).

Our model is related to CalvoPlus model of Nakamura and Steinsson (2010) who consider

firms facing idiosyncratic cost shocks as well as a menu cost that oscillates randomly between

a high and a small value. In their model, like in ours, the random menu cost makes the

adjustment decision state dependent, a feature that dampens substantially the real e↵ect of

monetary shocks relative to the Calvo model. Our paper also relates to the analysis of Dotsey,

King, and Wolman (1999) who study numerically the propagation of shocks when firms face a

menu cost that is drawn from a distribution with a smooth density, but face no idiosyncratic

shocks and more recently the work by Vavra (2013).6 Given the numerical nature of these

contributions, these papers do not provide an explicit map between the model fundamentals,

the steady state statistics and the propagation of shocks. We see our results as complementary

to theirs. Our model allows for an analytical characterization of the firm’s decision rule, the

economy’s steady state statistics, the identification of the key model parameters, as well as

a characterization of the relationship between these parameters/statistics and the size of the

output e↵ect of monetary shocks.

The paper is organized as follows: the next section presents the cross section evidence on

price setting behavior for France and the US. Section 3 presents the theoretical model and its

cross section predictions: it is shown that the model has fundamentally four parameters and

5A selected list is Chari, Kehoe, and McGrattan (2000), Kiley (2002), Caballero and Engel (2007), Golosov
and Lucas (2007). Chari, Kehoe, and McGrattan (2000) and Kiley (2002) obtain that, controlling for the
frequency of price changes, the response of output is stronger and more persistent under Calvo than under
Taylor contracts. Golosov and Lucas (2007) compare a monetary shock in a menu cost and a Calvo model,
with similar frequencies of price change, and find that the half-life of the response to the shock in the Calvo
set-up is about five times larger than in the menu cost model.

6 Dotsey, King, and Wolman (2009) extend their previous contribution of a random menu cost model to
incorporate idiosyncratic shocks.
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we discuss the mapping between those and observable measures of price setting behavior.

Section 4 derives the model predictions on the e↵ect of an unexpected monetary shock.

Section 5 discusses the robustness and scope of our main results.

2 The distribution of price changes: micro-evidence

A vast amount of research has investigated the patterns of price changes at the microeconomic

level in the past decade. A recurring fact that emerges from those studies is that the size

distribution of price changes exhibits a large amount of small price changes, as noted by

Klenow and Malin (2010); Cavallo (2010); Klenow and Kryvtsov (2008); Chen et al. (2008)

and Midrigan (2009, 2011) using selected samples of micro data from the US as well as many

other industrial countries. This section revisits this evidence using a detailed dataset of

price quotes underlying the French Consumer Price Index (about 65% of the CPI weights

from 2003 to 2011). We discuss measurement error by comparing the CPI data with other

sources, presumably less a↵ected by measurement error. Finally, we compare our evidence

with comparable evidence for the US.

Two issues that are investigated in detail concern heterogeneity and measurement error.

Heterogeneity across type of goods and of outlets is pervasive in price data. A well known

result is that a mixture of distributions with di↵erent variances and the same kurtosis will

have a larger kurtosis. For this reason we standardize the data at levels at which we suspect

there is heterogeneity in the variances and focus on the kurtosis of the pooled data. We define

the standardized price changes, z, by demeaning and dividing by the standard deviation of

price changes at fine cell levels. A cell is a category of good and of outlet type. We then

compute the statistics for the pooled standardized data.7 The nature of the correction for

measurement error is to compare the CPI statistics with data for similar goods and outlet

types that are less a↵ected by measurement error, as in the internet store scraped data from

Cavallo (2010), and the scanner data sets used by Midrigan (2011), Eichenbaum et al. (2014)

among others. We also analyze the e↵ect of outliers by looking at the di↵erential e↵ect of

trimming across datasets. The practice of normalizing the data as well as removing outliers

has been used before, as in e.g. Klenow and Kryvtsov (2008); Midrigan (2009).

We find it useful to compare the empirical distribution of price changes to three para-

metric distributions ordered in terms of increasing frequency of “extreme” price changes: the

binomial, the Normal, and the Laplace distribution. Our analysis shows that, after removing

the (time invariant) cross section heterogeneity and correcting for measurement error, the

size distribution of price changes still features a considerable mass of large as well as small

7The model of Section 3 allows for sector (and/or good or outlet) heterogeneity and discusses aggregation.
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price changes, relative to the binomial distribution implied by the standard menu cost model.

Overall we conclude that, after taking into account heterogeneity and measurement error, the

shape of the empirical distribution of price changes lays in between a Normal and a Laplace

distribution. To quantify the presence of extreme price changes we focus on statistics that

are informative about the shape of the size distribution, that are appropriate for symmetric,

zero-mean, distributions and that are scale-free. These statistics measure the frequency of

extreme (i.e. large and small) observations relative to the standard deviation of the distri-

bution. Because of its prominent role in our theoretical analysis we will focus especially on

kurtosis whose value, for the benchmark Binomial, Normal and Laplace distribution, is 1, 3

and 6 respectively.

2.1 The French microeconomic data underlying the CPI

The data are a longitudinal dataset of monthly price quotes collected by the INSEE in order to

compute the French CPI, over the period 2003:4 to 2011:4.8 Each record relates to a precisely

defined product sold in a particular outlet in a given month. It contains the price level of the

product, as well as limited additional information such as an outlet identifier, an index (when

relevant) for package size (say 1 liter) and flags indicating the presence of sales. The raw

dataset contains around 11 million price quotes and covers about 65% of the CPI weights.9

The dataset also includes CPI weights, which we use to compute aggregate statistics. Price

changes are computed as 100 times the log-di↵erence in prices per unit. To minimize the

presence of measurement errors we discarded observations with item substitutions (which

might give rise to spurious price changes) and removed “outliers” which, in our baseline

analysis, we defined as price changes whose absolute value is smaller than 0.1 percent, or

larger than (about) 120 percent.10

An important issue with the data on price changes is the treatment of sales. The relevance

of dealing with sales in analyzing price stickiness was emphasized by Nakamura and Steinsson

(2008); Kehoe and Midrigan (2007) and Midrigan (2011) inter alia. The INSEE dataset

contains an indicator variable that identifies whether a given observed price corresponds to a

sales promotion discount (either seasonal sale or temporary discounts).11 Price changes that

8The dataset is documented in details in Berardi, Gautier, and Le Bihan (2013).
9Some categories of goods and services are not available in our sample: fresh foods, rents, and prices

centrally collected by the statistical institute - among which car prices and administered and public utility
prices (e.g. electricity). Note that, while rents are out of our dataset, cost of owner-occupied housing is not
incorporated in the French CPI, so the share of housing in the CPI is lower than in some other countries.

10Some sales involve large discounts, up to 70%, e.g. in clothing. The upper threshold 100 · log(10/3),
which is about 120 percent log points, allows us to accommodate the after-sale price to return to the original
level. See Appendix B for more information and several robustness checks.

11The flag is documented by the field agent rather than constructed using a statistical filter. Baudry et al.
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Figure 1: Histogram of Standardized Price Adjustments: French CPI 2003-2011

All data Excluding sales
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The figures use the elementary CPI data from France (2003-2011). Price changes are the log di↵erence in price
per unit, standardized by good category (272) and outlet type (11) and pooled. Price changes equal to zero are
discarded. The upper panel uses about 1.5 million data points, the lower panel about 1.1 million.

result from sales (including price changes from a sales price to a regular one) account for

approximately 17% of all the price changes. Overall, the incidence of sales on the frequency

of price change is less important than in the US where according to Nakamura and Steinsson

(2008) the share of price change due to sales is 21.5%. In the following, as a robustness check,

we report results both with and without sales observations.

We now document the patterns on the peakedness and thick tails of the distribution of

price changes. As those patterns vary considerably across sectors and outlet types, a concern

already mentioned is that a large variance and kurtosis of price changes may essentially reflect

that observations of price changes are drawn from a mixture of distributions, and thus may

be artefacts.We consider a breakdown of the data into J “cells”, where each cell is defined by

a good category and outlet type (for instance, one cell will be bread in supermarkets). We

will here use the finest partition possible in our data (each cell is a COICOP category at the

6-digit level in an outlet type) and have around 1,500 cells.12 In each cell j the standardized

price change at date t for good i is defined as z
jit

= (�p

jit

�m

j

)/�
j

where m
j

and �
j

are the

mean and standard deviation of price changes in cell j, and price changes equal to zero are

disregarded (index i reflects that there is typically more than one store or good type per cell

(2007) investigate the extent of “undetected” sales and conclude this is a limited concern.
12There are 11 outlet types and 272 CPI categories. Not every category of good is sold in every outlet type

so there are about half of the potential 2,992 cells.
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e.g., di↵erent types of bread or di↵erent stores selling bread in the sample at a given date).

Figure 1 is a weighted histogram of the standardized price changes. On the same graph

we superimpose the density of the standard Normal distribution as well as the standardized

Laplace distribution (both have unit variance). The Laplace distribution has a kurtosis of

6 and is thus more peaked than the Normal. It is apparent that the empirical distribution

of standardized price changes is closer to the Laplace distribution than to the Normal.13

We also consider the statistic E[|�p

i

|]/Std(�p

i

) as a (reverse) measure of the frequency of

extreme price changes. The main di↵erence of this statistic with respect to kurtosis is that

it is less sensitive to extreme outliers. For the Binomial, Normal and Laplace distributions

the reference values for this statistic are: 1, 0.80 and 0.70.

Table 1 reports the frequency of price changes as well as selected moments of the distri-

bution of price changes. The frequency of price change is around 17% per month, or about 2

price changes per year. The fraction of price decreases among price changes is around 40%.

The average absolute price change (not reported in the table) is sizable (9.2%), as is the

standard deviation of price changes (16.6%). These patterns match those documented by

Alvarez et al. (2006) for the Euro area. With the qualification that the frequency of price

changes is typically found to be smaller in the Euro area than in the US, they also broadly

match the US evidence by e.g. Nakamura and Steinsson (2008). The kurtosis and peaked-

ness of the distribution of price changes have not been quantitatively documented so far on

European data. The kurtosis of non-standardized price changes is very high: 12.8. This level

of kurtosis is of same order of magnitude as that documented by Klenow and Malin (2010)

for the US. As argued above, a high kurtosis is likely the consequence of a mixture of obser-

vations taken from distributions with di↵erent variances. Considering the standardized price

changes, i.e. correcting for cross-section heterogeneity in the variances, reduces kurtosis to

8.9 (also, kurtosis is halved on data excluding sales). Unfortunately the information available

in the CPI data prevents us from correcting heterogeneity at a finer level (e.g., we do not

know the UPC of the product or the store where it is sold). In other databases where more

information is available the reduction in the measured kurtosis is even more prominent, as

shown using US scanner dataset in Appendix B.1. It is shown that kurtosis falls by another

30 to 40% when moving to the product-store level.

The fraction of extreme (small or large) price changes is noticeable. The fraction of

absolute standardized price changes lower than one fourth of the mean is 22.2 percent. Also

12.9 percent of absolute normalized price changes are larger than 2 times the mean of the

absolute standardized price change. Overall, it appears that these figures are very close to the

13In Appendix B.2 we provide similar histograms by groups of good at a disaggregated level. Most of them
have the same pattern as Figure 1, that is a distribution that is more peaked than the gaussian, and often
more peaked than the Laplace.
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Table 1: Selected moments from the distribution of price changes

Data Benchmarks
all records exc.sales Normal Laplace

Frequency of price changes 17.1 14.7
Fraction of price changes that are decreases 39.2 35.7

Moments for the size of price changes: �p
i

Average 0.3 1.1
Standard deviation 16.6 8.0
Kurtosis 12.8 20.9

Moments of standardized price changes: z
Kurtosis 8.89 10.40 3 6
Moments for the absolute value of standardized price changes: |z|
Average: E (|z|) 0.70 0.69 0.80 0.70
Fraction of observations < 0.25 · E (|z|) 22.2 20.7 15.8 22.1
Fraction of observations < 0.5 · E (|z|) 39.3 38.6 31.0 39.4
Fraction of observations > 2 · E (|z|) 12.9 12.5 11.1 13.5
Fraction of observations > 4 · E (|z|) 1.8 2.0 0.0 1.8
Number of obs. with �p

i

6= 0 1,544,829 1,080,183
Source is INSEE, monthly price records from French CPI, data from 2003:4 to 2011:4. Coverage is around
65% of CPI weight since rents, and prices of fresh food and centrally collected items (e.g. electricity, train
and airplane tickets) are not included in the dataset. Frequency of price change is the average fraction
of price changes per month, in percent. Size of price change is the first-di↵erence in the logarithm of
price per unit, expressed in percent. Observations with imputed prices or quality change are discarded.
Observations outside the interval 0.1  |�pi|  100 · log(10/3) are removed as outliers. “Exc. sales”
exclude observations flagged as sales by the INSEE data collectors. Moments are computed aggregating
all prices changes using CPI weights at the product level. The third and fourth panels report moments
for the standardized price change zijt =

�pijt�mj

�j
where mj and �j are the mean and standard deviation

of price changes in category j (see the text). The Normal and Laplace distributions used in the last two
columns have a zero mean and standard deviation equal to one.

ones that would be produced by a (standardized) Laplace distribution. Consistently, the size

of the average absolute standardized price change in the data is equal to 0.70, the same value

that obtains for the statistic E[|�p

i

|]/Std(�p

i

) if �p

i

follows a Laplace distribution. There

is a mass of large price changes, say larger than 4 standard deviations, that are virtually

absent in the Gaussian case.

Removing sales has a large e↵ect on the variance of price changes, as indicated by the

results reported in the second column of Table 1.14 However, removing sales does not a↵ect

our findings on the peakedness of the distribution. Kurtosis actually increases when sales

14We remove the observations flagged as sales as well as the subsequent increase back to the “regular”
price. To compute the standardized non-sales price changes, we first discard sales-related observations, then
standardize the data.
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observations are removed both in the raw data as well as in the standardized data. This

is also visible in the right panel of Figure 1 which plots the distribution of standardized

(ex-sales) price changes.

2.2 Measurement error and the estimation of kurtosis

In this section we discuss evidence on the magnitude of both very large and very small price

changes due to measurement error, and discuss its e↵ect on measures of kurtosis. Eichen-

baum et al. (2014) warned that the small price changes recorded in the data may reflect

measurement error. Appendix B.3 explores the concerns raised by Eichenbaum et al. (2014)

and concludes that they also apply to the French data, albeit to a lesser extent. We analyze

here the consequences of one particular type of measurement error and derive a simple cor-

rection for kurtosis. We show that a small amount of this measurement error, inconsequential

for measuring the aggregate the cost of living, may have sizeable consequences for the mea-

surement of the descriptive statistics displayed in Table 1, such as kurtosis, and suggest a

procedure to correct for it.

Let the observed price changes �p

m

be given by a mixture of two distributions:

�p

m

=

8
<

:
�p

u

with prob. ⇣

✏ with prob. 1� ⇣

where we interpret ✏ as measurement error and�p

u

as a “true” price change. This assumption

aims to capture that, even at the finest level of disaggregation, some price changes in the CPI

data are the consequence of small product substitutions (e.g. di↵erent brands for a given good

being recorded) which do not reflect an actual change in the good’s price. Likewise, in scanner

dataset, spuriously small price changes may originate from the weekly nature of the prices

being recorded, which e.g. averages customers with and without discount coupons. Assume

the distribution of �p

u

has standard deviation �
u

and kurtosis k
u

. Likewise the distribution

of ✏ has standard deviation �
e

and kurtosis k
e

. Both distributions are assumed to have zero

expected value. One interpretation is that quality changes (not recorded by the statistical

o�ce) generate “artificial” price changes. We assume that these price changes are small, i.e.

that �
e

is small, and that the process for the unreported change in quality is independent

of the “true” changes in prices. The kurtosis of the observed price changes, Kur(�p

m

), is

then equal to: Kur(�p

m

) = k

u

⇣�

4
u

+(k
✏

/k

u

)�4
e

⇣

2
�

4
u

+(1�⇣)2�4
e

+2⇣(1�⇣)�2
e

�

2
u

. Letting �
e

go to zero we obtain that

kurtosis measured over the (observed) price changes is: lim
�

e

#0 Kur(�p

m

) = k

u

/⇣. Thus, if

the sample includes a fraction ⇣ of true price changes and the rest are spuriously imputed

small price changes the kurtosis will increase by a factor 1/⇣, relative to the kurtosis of the
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true distribution.15 The limit Kur(�p

m

) = k

u

/⇣ suggests to quantify ⇣ by comparing the

observed kurtosis across a sample with measurement error and one without. We now turn to

addressing this issue empirically.

We match a subset of our French CPI data with the prices for several French retailers

taken from the Billion Price Project (BPP) dataset (see Cavallo (2010)). The BPP data

are “scraped” on-line, thus they are arguably less contaminated by measurement errors.16

We compare the results obtained using the scraped BPP data from two large retailers with

our results based on the CPI data for a similar type of outlet: to this end we restrict

our dataset to CPI price records in “hypermarkets”, excluding gasoline. We also compare

with the BPP data from a large French retailer specialized in electronic and appliances. In

that case we restrict the CPI dataset to goods in the category of appliances and electronic

using the Coicop nomenclature, collected in outlets type “hypermarkets”,“supermarkets”,

and “large area specialists”. Comparing the values of kurtosis from both data sets suggests

that ⇣ ⇠= 0.5. We can apply this magnitude to the full sample of CPI data of Table 1, for which

no “measurement error-free” counterpart like the BPP exists, to obtain a corrected kurtosis.

The number thus obtained for the kurtosis ranges between 4 and 5 (using the kurtosis of

8.9 of standardized price changes), so it lays in between the kurtosis of the Normal and the

Laplace distribution.

Sensitivity to trimming. To assess the hypothesis that large price changes are due to

measurement error we compare the di↵erential e↵ect on kurtosis of trimming large (absolute

value) price changes in CPI vs trimming them in scanner data. For the French CPI we

find that excluding (log percent) price changes for which |�p

i

| � 100 log(2), instead of just

excluding those that are |�p

i

| � 100 log(10/3), decreases kurtosis from 8.9 to 7.2 (see lines 4

and 8 of Table 6). We interpret this as evidence of measurement error under the hypothesis

that large price changes in the CPI are due to transcription data errors, which are virtually

absent in internet scraped data.17 Similar evidence on the e↵ects of trimming using US

scanner data is presented in the next section.

15Under this interpretation the number of measured price changes, denoted by Nam will be higher than the
number of true price changes per unit of time, say Nau. Let’s denote Na✏ the expected number of incorrectly
imputed price changes. We have: Nam = Nau+Na✏ = ⇣Nam+(1� ⇣)Nam. Thus if we have two estimates of
Kur(�pi) and of N(�pi) and we assume that one has no measurement error and the other has a fraction ⇣
of small imputed price changes as described above, can estimate ⇣ using either the ratio of the two estimates
of kurtosis or the ratio of the two estimates of the number of price changes per unit of time.

16 We are extremely grateful to Alberto Cavallo for sharing part of his data with us.
17In the French CPI we have observed cases where a single large price change which reverts to its original

value, which corresponds to consecutive prices that are equal except for the transposition of a digit, which is
almost surely a clerical error.
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Table 2: Comparison of the CPI vs. the BPP data in France

Statistic BPP BPP CPI BPP CPI
retailer 1 retailer 5 Hypermarkets retailer 4 Large ret. electr.

duration (months) 8.58 8.06 4.82 6.44 7.24
Statistics for standardized price changes: z

mean |z| 0.71 0.70 0.65 0.78 0.70
% below 0.5 mean |z| 37.8 40.9 45.5 29.2 41.7
% below 0.25 mean |z| 17.5 25.3 26.2 15.3 23.1
kurtosis of z 5.5 4.3 10.1 2.8 6.3

Note: The BPP data are documented in Cavallo (2010). Results were communicated by the author.
For CPI data source is INSEE, monthly price records from French CPI, data from 2003:4 to 2011:4.
Sub-sample in column (3) is price records in outlet type “hypermarkets”. Sub-sample in column (5) is
goods in the category of appliances and electronic , as identified using the Coicop nomenclature, collected
in the following outlets type: “hypermarkets”,“supermarkets”, and “large area specialists”. Data are
standardized within each subsample using Coicop categories.

2.3 A comparison with the US data

This section compares the French evidence with the US evidence presented, respectively, in

Klenow and Kryvtsov (2008) and in the scanner data used by Eichenbaum, Jaimovich, and

Rebelo (2011), as well as other scanner datasets. Figure 2 plots four histograms: two are price

changes from the US and French CPI data, while the other two are theoretical benchmarks.

The first one (in red) is the distribution of standardized (weighted) price changes (excluding

sales) for the US based on Figure 3 of Klenow and Kryvtsov (2008).18 Since the distribution

is truncated at -3 and +3, its standard deviation is 0.83 instead of 1. Its kurtosis is 6.95. The

second histogram (in blue) is the distribution of the standardized price changes (excl. sales)

for the French CPI, constructed using the trimming criteria used for the US. This distribu-

tion has a standard deviation 0.95 and a kurtosis of 4.42. The smaller standard deviation

and much smaller kurtosis than in Table 1 are due to the discretization and truncation. To

see the e↵ect of these treatment of the data, note that Klenow and Malin (2010) report a

kurtosis of 10 for posted prices and 17.4 for regular prices, without discretizing, censoring, or

standardizing the data. For comparison Vavra (2013) finds that after trimming the data in a

way similar to our treatment of the French data, but without standardizing it, the kurtosis of

US CPI price changes is 6.4. On the other hand, Vavra finds that the kurtosis of standardized

price changes is 4.9.19 The figure also reports the standardized Normal and Laplace distri-

18The histogram has twenty four bins, spaced every 0.25 units, of the distribution of standardized regular
price changes (excl. sales). The standardization was done by ELI, the narrowest categories of goods. After
standardization the distributions are weighed according to the CPI weight.

19See Table IV and footnote 6 of Vavra (2013) for the specifics on the trimming. We thank Vavra for
providing this statistics which is not available in his paper.
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butions (discretized and truncated). The main message of Figure 2 is that the histogram of

standardized, non-sales, price change are rather similar in France and the US. Furthermore,

in both cases the shape is closer to that of a Laplace distribution than to a Gaussian one

(and consistently with previous sub-section, in both cases we conjecture measurement error

explains why these distributions are actually more peaked than the Laplace).

Figure 2: Histogram of Standardized Price Adjustments: US and French CPI
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Sales data are excluded. Data for France are from the CPI as in Figure 1. The CPI data for
the US are taken from Figure 3 in Klenow and Kryvtsov (2008). Price changes equal to zero are
discarded.

Table 3 provides a further comparison based on datasets presumably less subject to mea-

surement errors. For France we use data from the BPP, and those from hypermarkets in

the CPI dataset. For the US we use the scanner data evidence reported by Eichenbaum,

Jaimovich, and Rebelo (2011), Midrigan (2011), as well as our own analysis of the Symphony-

IRI scanner dataset. As reflected by the summary statistics, the distribution is somewhat

more peaked in France; for instance the kurtosis is 5 in the BPP against values between

3 and 4 in US scanner datasets described below. Overall, we find that the share of small

price changes is non-negligible in both countries. For completeness we report complementary

evidence taken from scanner data sets, described in more detail in the online Appendix B.1.

While generally immune to measurement errors due to transcription and product substitu-

tions, even scanner price data are a↵ected by measurement error since they report average

weekly prices for an item, so that observed prices are an average of prices paid by customers

with and without discounts. We hypothesize, as Midrigan (2011) and Eichenbaum et al.
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(2014) among others, that the weekly averaging introduces spurious small price changes.

The EJR column of Table 3 uses the data from Eichenbaum, Jaimovich, and Rebelo (2011):

after standardizing at the good-store level and removing very extreme price changes (smaller

than 0.1% or larger than 120% (log points) as in our benchmark for France), yields a kur-

tosis of 3.0. Alternatively, trimming price changes smaller than one dollar cent, certainly

due to measurement error, the kurtosis falls little below the one of the Normal. Likewise,

using the larger Symphony-IRI dataset (see Bronnenberg, Kruger, and Mela (2008)), shows

that removing extreme price changes and standardizing the data reduces kurtosis from a

level of about 30 to 4.3. Finally, we notice that the e↵ect of extreme price changes on the

measurement of kurtosis is also present in the CPI. For the French CPI excluding (log per-

cent) price changes for which |�p

i

|  1 as opposed to only excluding those price changes for

which |�p

i

|  1/10, reduces kurtosis from 7.2 to 6.3 (see lines 4 vs 11 of Table 6). For the

Norvegian CPI Wulfsberg (2010) finds that kurtosis is also sensitive to both large and small

price changes, removing the 1 and 99 percentiles decreases kurtosis from 8.1 to 5.7.

Table 3: Comparison across datasets for large Hypermarkets in France and the US

France US (scanner data)
CPI BPP EJR Symphony IRI Midrigan (2009)

Statistics for standardized price changes: z

mean of |z| 0.65 0.70 0.78 0.73 -
% below 0.50 mean |z| 45 39 33 39 29
% below 0.25 mean |z| 24 21 23 25 13
kurtosis of z 10 5 3.0 4.3 3.5

All price changes including sales. The BPP statistics for France are an average of the ones reported in Table 2.
The EJR scanner data are from Eichenbaum, Jaimovich, and Rebelo (2011), the IRI scanner data are from
the Symphony-IRI database described in Appendix B.1. For both scanner data sets individual observations are
average weekly prices. We remove price changes outside the interval 0.1  |�pi|  100·log(10/3) and standardize
the data at the good (upc) store level (see Appendix B.1). The data from Midrigan (2009) are taken from his
Table 1 and 2b, using simple averages of the AC Nielsen and Dominick’s scanner data. Midrigan standardizes
price changes by dividing by the mean absolute value of the price changes at the product-store-month level. He
also removes price changes smaller than 1 cent or larger than 100%.

Overall we conclude that, after accounting for heterogeneity and measurement error, the

presence of both small and large price changes appears relevant in France as well as in the

US. The shape of the standardized empirical distribution of price changes lays in between a

Normal and a Laplace distribution. The distribution appears close to a Normal in the US

and closer to Laplace in France. We summarize the results of this section by stating that the

standardized distribution of price changes, after taking measurement error and heterogeneity

into account, has kurtosis of about 4 for US and of about 5 for France.
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3 A tractable menu cost model

This section presents a menu cost model aimed at qualitatively matching the patterns docu-

mented above. In the canonical menu cost model price adjustments occur when a threshold

is hit, so that the implied distribution of price changes fails to generate the small changes

that appear in the data (see the discussion in Midrigan (2011); Cavallo (2010); Alvarez and

Lippi (2014)). The model that we propose here is able to produce a large mass of small price

changes and the positive excess kurtosis that we documented above. Two ingredients are

key to this end: (i) the random menu costs and that (ii) the menu cost faced by the firm,  ,

applies to a bundle of n goods, so that after paying the fixed cost the firm can reprice one

or all goods at no extra cost. Each of these assumptions individually is capable to generate

some small price changes and higher kurtosis than in a canonical model where n = 1 and

where menu costs are constant. The assumption of random menu costs is key to generate a

positive excess kurtosis in the distribution of price changes. The combination of the two is

important: in the models where n = 1 (with or without random menu costs) the distribution

of price changes has a mass point at the adjustment threshold, a feature that is in stark

contrast with the evidence discussed above. The prominence of “large” price changes (i.e. a

“U shaped” distribution) persists even in a model with n = 2, as in Midrigan (2011) where

the distribution of price changes asymptotes near the adjustment threshold, or n = 3 as in

Bhattarai and Schoenle (2014). We show below that in order to generate a shape of the size

distribution that is comparable to the one in the data one needs n � 6.

3.1 A random menu cost problem for a firm selling n = 1 good.

Consider a firm whose profit-maximizing price at time t, p⇤(t), follows the process dp⇤(t) =

� dW (t) where W (t) is a standard brownian motion with no drift, and � is the standard

deviation of the iid innovations to p

⇤. The technology to change prices is as follows: to

change the price at will the firm needs to incur a fixed menu cost of size  . However, with

some probability the firm receives an opportunity to adjust the price “for free”. Assume this

probability is Poisson, i.e. that the free-adjustments have a constant hazard rate per unit of

time, equal to �. Let p(t) denote the “price gap” at time t, i.e. the di↵erence between the

actual sale price P (t) and the profit maximizing price p

⇤(t), i.e. p(t) ⌘ P (t) � p

⇤(t). The

instantaneous firm losses (i.e. reduction in profits) created by the price gap are given by the

quadratic function: B p

2(t). Let V (p) be the present-value cost function for a firm with price

gap p. Upon the arrival of a free adjustment opportunity the firm optimally resets the price
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gap to zero, hence the Bellman equation for the range of inaction reads:

r V (p) = Bp

2 + � [V (0)� V (p)] +
�

2

2
V

00(p) , for p 2 (�p̄, p̄) ,

where p̄ is the threshold rule defining the region where inaction is optimal (see Appendix O

for the calculations of this section). This equation states that the flow value of the Bellman

equation is given by the instantaneous losses, Bp

2, plus the expected change in the value

function, which is due either to a free adjustment (with rate � in which case the price gap

is reset to zero) or to the volatility of shocks �2 (there is no first order derivative of the

value function since the price gaps have no drift). The value-matching and smooth-pasting

conditions are given by V (p̄) = V (0) +  and V

0(p̄) = 0. Two properties of the optimal

threshold p̄ are worth noticing (proved later for any n): the value function, and the optimal

decision rules, are a function of �+ r, as opposed to each of them separately. Intuitively this

is because when a free adjustment opportunity occurs the price gap is adjusted, so that �

acts as an addition to the discount factor. Second, for a small value of  /B or a small value

of �+ r, the value of p̄ is insensitive to �+ r. More precisely, the derivative of p̄ with respect

to �+ r is zero as  /B or �+ r tend to zero. A Taylor expansion of the value function yields

the following approximate optimal threshold p̄ =
⇣

6 �2

B

⌘ 1
4
which is accurate when  /B is

small.20

Computing the expected time between adjustments yields an expression for the average

number of adjustments per period, N(�p

i

), which we use to measure the fraction of free

adjustments over the total number of adjustments, a variable we call `, as

` ⌘ �

N(�p

i

)
=

e

p
2� + e

�
p
2� � 2

e

p
2� + e

�
p
2�

2 (0, 1) where we define � ⌘ �p̄

2

�

2

which shows that the fraction of free adjustments ` depends only on the parameter �. The

parameter � can be interpreted as the ratio between �, the number of free adjustments, and

�

2
/p̄

2, the number of adjustments in a model where � = 0 and the threshold policy p̄ is

followed.

The distribution of price changes w(�p

i

) is symmetric around �p

i

= 0. This distribution

has a mass point at �p

i

= ±p̄ with probability 1 � `, i.e. this is the fraction of price

changes that occurs because the price gap reaches the boundaries of the inaction region. The

remaining fraction of price changes, `, occurs when a free adjustment opportunity arrives, at

which time the price gap is set to zero. Price changes in the range p 2 (�p̄, p̄) have a density

20 Exactly the same expression was established by Barro (1972) and Dixit (1991) for the case in which
� = 0. Below we discuss an approximate threshold for the case in which  is large.
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` g(p) where g(p) denotes the density of the invariant distribution of price gaps given by

g(p) =

p
2�

2p̄
�
e

p
2� � 1

�2
⇣
e

p
2�(2� |p|

p̄

) � e

p
2� |p|

p̄

⌘
for p 2 [�p̄, p̄] . (2)

Thus the distribution of price changes is given by

8
<

:
Pr (�p

i

= �p̄) = Pr (�p

i

= p̄) = 1
2 (1� `)

Pr (�p
i

2 dp) = ` g(p)dp ⌘ w(�p

i

)dp for p 2 (�p̄, p̄)

which is a symmetric “tent shaped” distribution in the (�p̄, p̄) interval with the two mass

points at the boundaries ±p̄. As detailed below the kurtosis of this distribution is increasing

in �, and in particular the distribution of price changes is more peaked than that of a standard

menu cost model where � = 0.

We make two remarks about this simple model which will hold, and be generalized, in

the more general model developed next. The first one is that the shape of the distribution of

price changes depends only on the fraction of free adjustments ` (or, equivalently, on �). This

means that two economies, or sectors, that di↵er in the standard deviation of price changes

Std(�p

i

) and/or in the frequency of price adjustment N(�p

i

) will display a distribution of

price changes with exactly the same shape (once its scale is adjusted) provided that they

have the same value of `. This property is useful to aggregate the sectors of an economy that

are heterogenous in their steady state features N(�p

i

), Std(�p

i

). Because of this property

the ratio of moments from the size distribution of price changes, such as kurtosis, are scale

free and can be used to retrieve information on �. The second property, which we state here

and prove below for the more general economy, is that the “shape” of the impulse response

function of this economy to a (once and for all) monetary shock depends only on `. We will

show how one can simply scale (or relabel) one or both axes of an impulse function to analyze

economies with the same ` that di↵er in either N(�p

i

) or Std(�p

i

).

3.2 Extending the model to multi-product firms

This section incorporates the model with free adjustment opportunities discussed above into

the model of Alvarez and Lippi (2014) where the firm is selling n goods, so that p is now a

vector in Rn, but pays a single fixed adjustment cost to change the n prices. We incorporate

this feature for several reasons. First, as explained above, in the model with n = 1 good there

is a mass point on price changes of size |�p

i

| = p̄. For n = 2 the mass point disappears but

the distribution of price changes still features the largest mass of observations (the highest

density) near the adjustment thresholds. There is no evidence of this in any data set we can
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find. Values of n � 3 eliminate this problem. Second, the model with � = 0 has a kurtosis

that increases with n, hence providing an alternative to random menu costs. Third, for large

n and � = 0 the distribution of price changes tends to the Normal distribution, which is both

a nice benchmark and an accurate description of the price changes for some sectors. Finally,

the multi-product model with (n > 1) has an alternative, broader, “rational inattentiveness”

interpretation for the adjustment cost  . In particular, one can assume that the firm freely

observes its total profits but not the individual ones (for each product), unless it either pays

the cost  or a free observation opportunity arrives, in which case it is able to set the optimal

price to each of them. This is useful because it allows a broader interpretation of the menu

cost, including not only the physical cost of changing prices but also the cost related to

gathering and processing the information for individual products.21

We now briefly describe the setup of the firm problem with n products. As before the

free adjustment opportunities are independent of the driving processes {W
i

(t)} for price

gaps, and arrive according to a Poisson process with constant intensity �. In between price

adjustments each of the price gaps evolves according to a Brownian motion dp
i

(t) = � dW
i

(t).

It is assumed that all price gaps are subject to the same variance �2 and that the innovations

are independent across price gaps.22

We assume that, when the opportunity arrives, the firm can adjust all prices without

paying the cost  . The analysis of the multi product problem can be greatly simplified by

using the sum of the squared price gaps, y ⌘ ||p||2 as a state variable, instead of the vector

p = (p1, ..., pn), as done in Alvarez and Lippi (2014). The scalar y summarizes the state

because the period objective function can be written as a function of it and because, from

an application of Ito’s lemma, one can derive a one dimensional di↵usion which describes its

law of motion, namely

dy = n�

2 dt + 2 �
p
y dW

where W is a standard Brownian motion.

Using N(�p

i

) and V ar(�p

i

) to denote the frequency and the (cross sectional) variance

of the price changes of product i the next proposition establishes a useful relationship that

holds in a large class of models for any policy for price changes, which we describe by a

stopping time rule:

21As an example, see Chakrabarti and Scholnick (2007) who argue that for stores as Amazon or Barnes
and Noble physical menu cost are small, yet prices change infrequently, and thus conclude that the cost may
be of a di↵erent nature. Interestingly, they find that for such retailers price changes are synchronized across
products, which is an implication of the multi-product model.

22 Alvarez and Lippi (2014) discuss the case with correlated price gaps. Intuitively, as correlation increase
the model becomes more similar to the n = 1 case, since the price changes of a firm become more similar.
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Proposition 1 Let ⌧ describe the time at which a price change takes place, so that all price

gaps are closed. Assume the stopping time treats each of the n price gaps symmetrically. For

any finite stopping time ⌧ we have:

N(�p

i

) · V ar(�p

i

) = �

2
. (3)

The proposition highlights the trade-o↵ for the firm’s policy: more frequent adjustments

are required to have smaller price gaps. We underline that equation (3) holds for any stopping

rule, not just for the optimal one. See Appendix A for the proof, where the reader can verify

that the key assumptions are the random walks and symmetry; indeed equation (3) holds for

a larger class of models, for instance those with correlated price gaps and a richer class of

random adjustment cost.

Upon the arrival of a free adjustment opportunity the firm will set the price gap to zero,

hence the Bellman equation for the range of inaction reads:

r v(y) = B y + � [v(0)� v(y)] + n�

2
v

0(y) + 2�2
y v

00(y), for y 2 (0, ȳ) , (4)

where B y is the sum of the deviation from the optimal profits from the n goods.

We note that given the symmetry of the problem after an adjustment of the n prices the

firm will set each of the price gap to zero, i.e. will set ||p||2 = y = 0. The value matching

condition is then v(0)+ = v(ȳ), which uses that when y reaches a critical value, denoted by

ȳ, by paying the fixed cost  the firm can change the n prices. The smooth pasting condition

is v0(ȳ) = 0.

The next lemma establishes how to solve for ȳ using the solution of a simpler problem

where � = 0 discussed in Alvarez and Lippi (2014). It turns out that a simple change of

variables allows us to use the solution for the case of � = 0 to compute the solution for the

case of interest in this paper. The change of variables consists in using r + � as the interest

rate in the solution of the problem with � = 0. We have:

Lemma 1 Let v(y; r,�) and ȳ(r,�) be the optimal value function and adjustment threshold

for a problem with discount rate r and arrival rate �. Then v(y; r,�) = v(y; r + �, 0) +
�

r

v(0; r + �, 0) for all y � 0 and thus ȳ(r,�) = ȳ(r + �, 0).

The proof of this lemma follows immediately from a guess and verify strategy. The lemma

allows us to use the characterization of ȳ with respect to r given in Proposition 4 of Alvarez

and Lippi (2014) to study the e↵ect of r + � on ȳ. In Appendix F we write the analytical

solution for the value function, and give more details on it. The next proposition summarizes

that result and extends the characterization of the optimal threshold to the case where  
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is large, a case that is useful to understand the behavior of an economy with a lot of free

adjustments opportunity as in a Calvo mechanism (see Appendix A for the proof).

Proposition 2 Assume �2
> 0, n � 1, �+ r > 0 and B > 0, and let ȳ be the threshold for

the optimal decision rule. We then have that:

1. As  ! 0 then ȳp
2(n+2)�2  

B

! 1 or ȳ ⇡
q
2(n+ 2)�2  

B

.

2. As  ! 1 we have ȳ

 

! (r + �)/B or ȳ ⇡  

B

(r + �) . Moreover this also holds for

large n and large  

n

, namely lim
 /n!1 lim

n!1
ȳ/n

 /n

= (r + �)/B or ȳ

n

⇡  /n

B

(r + �).

The proposition shows that ȳ is approximately constant with respect to � for small values

of  , so that for small menu costs the result is the well known quartic root formula (recall that

y has the units of a squared price gap) and the inaction region is increasing in the variance

of the shock, due to the higher option value. Interestingly, and novel in the literature, the

second part of the proposition shows that for large values of the adjustment cost the rule

becomes a square root and that the optimal threshold does not depends on �, which shows

that for large adjustment costs the option value component of the decision becomes negligible.

Moreover, when the menu costs are large the threshold ȳ is increasing in �: the prospect of

receiving a free adjustment tomorrow increases inaction today.

We now turn to the discussion of the model implications for the frequency of price changes.

We let N(�p

i

) be the expected number of adjustments per unit of time of a model with a

given � and ȳ. We establish the following (see Appendix A for the proof):

Proposition 3 Let � denote the gamma function. The fraction of free adjustments is ` =

�/N(�p

i

), where

` =

P1
i=1

�(n

2 )
i!�(n

2+i)

⇥
n

2

⇤
i

�

i

P1
i=0

�(n

2 )
i!�(n

2+i)

⇥
n

2

⇤
i

�

i

⌘ L(�, n), where � ⌘ �ȳ

n�

2
(5)

The proposition shows that ` is a function only of two variables: n and �, and that it

is increasing in �. As was the case for the model with n = 1, the parameter � can be

interpreted as the ratio between �, the number of free adjustments, and n�

2
/p̄

2, the number

of adjustments in a model where � = 0 and the threshold policy ȳ is followed. For a given

n there is a one to one and onto mapping between � and `: as � ! 0 then ` ! 0, and as

�! 1 then `! 1.

We now turn to characterizing the invariant distribution of y for the case where � > 0, a

key ingredient to compute the size-distribution of price changes. The density of the invariant
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distribution solves the Kolmogorov forward equation: �

2�2f(y) = f

00(y)y �
�
n

2 � 2
�
f

0(y) for

y 2 (0, ȳ), with the two boundary conditions f(ȳ) = 0 and
R

ȳ

0 f(y)dy = 1. It is clear from

these conditions that f(·) is uniquely defined for a given triplet: ȳ > 0, n � 1 and �/�2 � 0.

The general solution of this ODE is

f(y) =

✓
�y

2�2

◆(n

4�
1
2)
"
C1 I

⌫

 
2

r
�y

2�2

!
+ C2 K

⌫

 
2

r
�y

2�2

!#
(6)

where I

⌫

and K

⌫

are the modified Bessel functions of the first and second kind, C1, C2 are

two arbitrary constants and ⌫ = |n2 � 1|, see Zaitsev and Polyanin (2003) for a proof. The

constants C1, C2 are chosen to satisfy the two boundary conditions.23 While the density in

equation (6) depends on 3 constants n, � and ȳ, its shape depends only on 2 constants,

namely n and �, as formally stated in Lemma 2 in Appendix A. The lemma shows that one

can normalize ȳ to 1 and compute the density for the corresponding �. Finally we also use

equation (6) to find a closed form expression for f in terms of a power series displayed in

equation (32), derived in Appendix C.

We denote the marginal distribution of price changes by w(�p

i

). Recall that a firm

changes all prices when y first reaches ȳ or when a free adjustment opportunity occurs even

though y < ȳ. Therefore to characterize the price changes �p
i

of good i belonging to the

vector of price gaps p we need three objects: the fraction of free adjustments `, the invariant

distribution f(y) and the marginal distribution of price changes conditional on a value of y,

!(�p

i

; y) which, following Proposition 6 of Alvarez and Lippi (2014) when n � 2, is

!(�p

i

; y) =

8
><

>:

1
Beta(n�1

2 ,

1
2)

p
y

✓
1�

⇣
�p

ip
y

⌘2◆(n�3)/2

if (�p

i

)2  y

0 if (�p

i

)2 > y

(7)

where Beta(·, ·) denotes the Beta function. In this case the (cross-sectional) standard devia-

tion of the price changes is Std (�p

i

; y) =
p
y/n. The marginal distribution of price changes

w(�p

i

) is given by

w(�p

i

) = !(�p

i

; ȳ) (1� `) +

Z
ȳ

0

!(�p

i

; y)f(y)dy

�
` for n � 2 . (8)

For the case when n = 2 the density of the price changes diverges at the boundaries of the

domain where �p

i

= ±
p
ȳ/n, as can be seen in Figure 3. This feature echoes the two mass

23 We note that both modified Bessel functions are positive, that I⌫(y) is exponentially increasing with
I⌫(0) � 0, and that K⌫(y) is exponentially decreasing with K⌫(0) = +1.
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points that occur in the n = 1 case where a non-zero mass of price changes occurs exactly

at the boundaries. For n � 6 the shape of the density takes a tent-shape, similar to the one

that is seen in the data. As the fraction of free adjustments approaches 1 the shape of the

density function converges to the shape of the Laplace distribution. The next proposition

shows that n and ` completely determine the shape of the distribution of price changes (see

Appendix A for the proof):

Proposition 4 Let w(�p

i

;n, `, 1) be the density function for the price changes �p

i

in an

economy with n goods, a share ` of free adjustments, and a unit standard deviation of price

changes Std(�p

i

) = 1. This density function is homogenous of degree -1 in �p

i

and Std(�p

i

),

which implies

w (a�p

i

;n, `, a) =
1

a

w (�p

i

;n, `, 1) for all a > 0. (9)

The proposition establishes that the “shape” of the size distribution of price changes has

2 parameters: n and `. Every two economies sharing these parameters will have the same

size distribution of price changes once the scale is adjusted. The proposition implies that we

can aggregate firms or industries that are heterogenous in terms of frequency N(�p

i

) and

standard deviation of price changes Std(�p

i

) provided that n and ` are the same. Notice in

particular that the frequency of price changes N(�p

i

) does not have an independent e↵ect

on the distribution of price changes as long as ` remains constant.

Figure 3: Size distribution of price changes
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Note: All distributions are zero mean with unit standard deviation. As stated in Proposition 4 the shape
of this distribution only depends on ` and n.
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Notice that the distribution w(�p

i

) is a mixture of the !(�p

i

, y) densities. These densi-

ties are scaled versions of each other with di↵erent standard deviations. This increases the

kurtosis of the distribution of price changes compared to the case where � = 0. In particular

Proposition 6 in Alvarez and Lippi (2014) shows that the variance and kurtosis of !(�p

i

, y)

are given by y/n and 3n/(n+ 2) respectively. Using that �p

i

is distributed as a mixture of

the !(�p

i

, y), we can compute several moments of interest, such as

V ar(�p

i

) = (1� `)
ȳ

n

+ `

Z
ȳ

0

y

n

f(y)dy (10)

Kur(�p

i

) =
3n

2 + n

(1� `) ȳ2 + `

R
ȳ

0 y

2
f(y)dy

h
(1� `) ȳ + `

R
ȳ

0 y f(y)dy
i2 >

3n

2 + n

It is immediate from Proposition 4 that the value of the kurtosis Kur(�p

i

) depends only

on two parameters: n and `. For instance, if one were to change the parameters  /B,�

and �

2 keeping the same values for ` and n, the kurtosis of the price changes would not

change. Moreover, kurtosis is increasing in both n and `, as can be seen in Figure 5 which

plots the value of Kur(�p

i

)/6 for various combinations of n and `, the only two parameters

determining kurtosis. For small values of ` kurtosis is increasing in n up to a level of 3. For

instance, if ` = 0 and n ! 1, the kurtosis converges to 3 since the distribution of price

changes at the time of adjusting for each firm becomes normal; this value is the highest that

the purely multi-product model with ` = 0 can produce. For any n, as the fraction of free

adjustments ` increases, the kurtosis increases towards 6, the maximum value achieved in our

model when ` = 1.24 The inequality that appears in the second line is a well known result:

the mixture of distributions with the same kurtosis but with di↵erent variances has higher

kurtosis, which follows from Jensen’s inequality. Equation (33) in Appendix D displays a

closed form solution for kurtosis which does not involve solving for f(y).

To conclude the description of the model we summarize a few special cases nested by our

setup. The Golosov-Lucas model is obtained when n = 1 and ` = 0, implying a kurtosis of

1. The Taylor model, or equivalently “rational inattentiveness” model by Reis, is obtained

when n = 1 and ` = 0, implying a kurtosis of 3. The Calvo model is obtained for `! 1, for

all values of n, implying a kurtosis of 6. Additionally, two recent models can be proxied: the

“CalvoPlus” model by Nakamura and Steinsson (2010) for the special case of no intermediate

goods (s
m

= 0 using their notation), is obtained assuming n = 1 and ` 2 (0, 1). The

multiproduct model of Midrigan (2011) is obtained assuming n = 2 and modeling the fat

24The relationship between the fraction of free adjustment and the “mass of small price changes”, a statistic
that is closely related to kurtosis, was noticed in the numerical simulations of Nakamura and Steinsson (2010)
(see their footnote 15, where their “frequency of low repricing opportunities”, 1� ↵, is essentially our `).
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tailed shock by assuming ` 2 (0, 1).25 Depending on the parameter choice for `, the last two

models can generate a kurtosis between 1 and 6. It is shown in Section 4.1 that higher values

of kurtosis are essential in both models to explain why the real e↵ects in those models are

closer to Calvo than to Golosov-Lucas.

The map between the fundamental parameters and observables. Our model has

four independent parameters: the scaled menu cost  /B, the volatility of shocks �, the

number of goods n and the rate of free adjustment opportunities �. We find it convenient

to pin down two of these parameters, namely  /B and � by matching observable statistics

that are available in micro datasets: the frequency N(�p

i

) and the variance V ar(�p

i

) of

price changes. Given these statistics the model has two residual parameters: n and �, with

the latter mapping one-to-one and onto ` = �/N(�p

i

). The parametrization of the model

can thus be usefully interpreted as choosing n and ` to match two empirical observations,

in addition to N(�p

i

), V ar(�p

i

). It was shown in Proposition 4 how ` and n shape the

distribution of price changes, in particular its kurtosis. In the next section we show how ` and

n map into the cost of price adjustments, for given values of N(�p

i

) and V ar(�p

i

). Kurtosis

and the costs of price adjustments can thus be used to discipline the parameterization of the

model, as we discuss next.

3.3 On the implied cost of price adjustment

In this section we give a characterization of the model implications for the size of the menu

cost, i.e. a mapping between observable statistics and the value of  /B or  (we also discuss

how to measure B). We consider two measures for the cost of price adjustment: the first one

is the cost of a single price adjustment as a fraction of profits:  /n. Recall that  is the cost

that a firm must pay if it decides to adjust all prices instantaneously (i.e. without waiting for

a free adjustment). Measuring this cost as a fraction of profits transforms these magnitudes

into units that have an intuitive interpretation. The second measure is the average flow cost

of price adjustment given by: N(�p

i

)  

n

(1� `). This cost measures the average amount

of resources that the firm pays to adjust prices per period. The di↵erence between the

two measures should be clear: when all price adjustments are costly, as in a model where

` = 0, the relevant measure of price adjustments is  /n, so that the total flow cost of price

adjustment borne by a firm per year is N(�p

i

)  /n. Allowing for a fraction of adjustments to

be free the total flow cost must be multiplied by 1� `, as some of the adjustments that occur

during the period are free. The latter measure is useful because it relates more directly to

25Yet it di↵ers in that the fat-tailed shocks mainly contribute to large price changes, see Appendix H for
a formal discussion.
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what has been measured in the data by Levy et al. (1997); Zbaracki et al. (2004), namely the

“average” cost of a price adjustment. The next proposition analyzes the mapping between

the scaled menu cost  /n , and B, `, n, N(�p

i

) and V ar(�p

i

).

Proposition 5 Fix the number of products n � 1 and let r # 0. There is a unique triplet

(�2
,�, ) consistent with any triplet ` 2 [0, 1], V ar(�p

i

) > 0 and N(�p

i

) > 0. Moreover,

fixing any value `, the menu cost  � 0 can be written as:

 

n

= B

V ar(�p

i

)

N(�p

i

)
 (n , `) (11)

where  is only a function of (n, `). For all n � 1 the function  (n, ·) satisfies:

lim
`!0

 (n, `) =
n

2 (n+ 2)
, lim

`!1
 (n, `) = 1 , lim

`!1
 (n, `) (1� `) = 0 , (12)

lim
`!1

 (n0
, `)/n0

 (n, `)/n
 1 for n

0 � n, and lim
n!1

 (n, `)/n

 (1, `)/1
! 0 as `! 1 . (13)

Equation (11) shows that for any fixed n � 1 and ` 2 [0, 1] the menu cost  is propor-

tional to the ratio V ar(�p

i

)/N(�p

i

). This is intuitive: economies with higher frequency of

price changes are obtained by having a proportionally lower menu cost, and economies with

more extreme price changes, are obtained with a proportionally higher menu cost. Second,

equation (11) shows that the menu cost is proportional to B, which measures the benefits of

closing a (unit square) price gap. The parameter B is related to the curvature of the profit

function, and thus it relates to demand elasticities and mark-ups. Using a fully specified mi-

croeconomic problem where firms face a constant demand elasticity ⌘ (equal across products)

gives that B = ⌘(⌘� 1)/2, which can be written in terms of the (net) markup over marginal

costs m ⌘ 1/(⌘ � 1) so that B = (1 + m)/(2m2).26 The last expression is useful to calibrate

the model using empirical estimates of the markup such as the ones by Christopoulou and

Vermeulen (2012): the estimated markups average around 28% for the US manufacturing

sector, and around 36% for market services (slightly smaller values are obtained for France,

see their Table 1).27 A similar value for the US, namely a markup rate of about 33%, is used

by Nakamura and Steinsson (2010).

The left panel of Figure 4 illustrates the comparative static e↵ect of ` and n on the

implied menu cost, fixing B V ar(�p

i

)/ N(�p

i

), i.e. it plots the function  (n, `). Fixing

26Nakamura and Steinsson (2010) notice that lower markups (higher values of demand elasticity) ⌘ must
imply higher menu costs, as shown by equation (11). Footnote 14 in their paper discusses evidence on the
markup rates across several microeconomic studies and macro papers.

27 The evidence for the US services is consistent with the gross margins, based on accounting data, reported
in the Annual Retail Trade Survey by the US Census (see http://www.census.gov/retail/).
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Figure 4: Implied cost of price adjustment
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All economies in the figures feature Std(�pi) = 0.10 and a markup of 25%. For those in the left panel
we set N(�pi) = 1.5.

a value of n it can be seen that the menu cost  /n is increasing in `. This is intuitive: a

larger fraction of free adjustments ` requires a higher menu cost, since firms must choose

not to adjust prices even when the current price is far away from their ideal price. Indeed

equation (12) shows that as ` ! 1, the implied menu cost diverges to +1. This happens

because, in our version of Calvo’s model, the menu cost must prevent any price change, and

since the underlying shocks are assumed to follow a random walk in some instances there are

arbitrarily large benefits of changing prices. On the other hand, for ` = 0 and n = 1, our

version of Golosov-Lucas ’s model, the menu cost attains its smallest (strictly positive) value.

Fixing ` and moving across lines shows that the implied fixed cost  /n is not monotone in

the number of products n. Indeed, as stated in equation (12) for a very small share ` the

values of  /n are increasing in n. On the other hand, for larger value of the share `, the

order of the implied fixed cost is reversed.

The model also has clear predictions about the per period (say yearly) cost of price ad-

justments borne by the firms: (1�`)N(�p

i

) /n. In spite of the fact that the cost of a single

deliberate price adjustment diverges as `! 1, the total yearly cost of adjustment converge to

zero continuously. This can be seen in the right panel of Figure 4. A simple transformation

gives the yearly cost of price adjustments as a fraction of revenues: (1�`)N(�p

i

)  /n
⌘

, where the

scaling by ⌘ transforms the units from fraction of profits into fraction of revenues.28 This

28Since R = ⌘⇧ where R is revenues per good and ⇧ profits per good.
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statistic is useful because it has empirical counterparts, studied e.g. by Levy et al. (1997).

Using equation (11) and the previous definition for the markup yields

Yearly costs of price adjustment

Yearly revenues
=

1

2

V ar(�p

i

)

m
(1� `) (n , `) (14)

Figure 4 plots the two cost measures in equation (11) and (14) as functions of `, n for an

economy with N(�p

i

) = 1.5, Std(�p

i

) = 0.10 and a markup m ⇡ 25% (i.e. B = 10). We see

this parametrization as being consistent with the US data on price adjustments, markups,

and the size distribution of price changes discussed above. Alternative parametrizations

are readily computed, as discussed below. The figure illustrates how observations on the

costs of price adjustments can be used to parametrize the model. Levy et al. (1997) and

Dutta et al. (1999) (Table IV and Table 3, respectively) document that for multi-product

stores (a handful of supermarkets chain and one drugstore chain) the average cost of price

adjustment is around 0.7 percent of revenues. For an economy with n = 10 (a reasonable

parametrization to fit the size-distribution of price changes) the right panel of the figure

shows that the model reproduces the yearly cost of 0.7% of revenues when the fraction of

free adjustments ` is around 60%. The upper panel indicates that at this level of ` the cost

of one price adjustment is around 5% of profits.

4 The cumulative output e↵ect of a monetary shock

In this section we discuss the response of the economy’s aggregate output to an unexpected

(once and for all) increase of the money supply of size �, starting from a steady state with

zero inflation. Our main objective is to characterize the total cumulative output e↵ect of

the monetary shock, namely the area under the output’s impulse response, as a function of

the 4 fundamental model parameters: the frequency N(�p

i

), standard deviation Std(�p

i

),

the number of products in the firm’s bundle n, and the fraction of free adjustments `.29

While the main focus of this section is on the cumulative output e↵ect of a monetary shock,

in Appendix G we also provide a characterization of the whole impulse response of the

aggregate price level (and hence of output).

29 Caballero and Engel (2007) perform a related exercise using the Caplin Spulber (S,s) model augmented
with a random opportunity of price change, which occurs at rate �. They study how increasing � a↵ects
the response of the price level (see their Figure 3). There are two channels through which this works: by
a↵ecting the frequency of price adjustment and by changing the size and mass of price adjusters. One
important di↵erence with respect to them is that our comparative static analysis of a higher � is done
keeping N(�pi) and Std(�pi) constant. As discussed at the beginning of Section 3.3 this implies adjusting
the parameters � and  /B accordingly.
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General Equilibrium Setup. The general equilibrium set up is essentially the one in

Golosov and Lucas (2007), adapted to multi-product firms as in Alvarez and Lippi (2014)

(see their Appendix B). Each firm produces n goods, each with a linear labor only technology,

subject to idiosyncratic productivity shocks independent across products, whose logs follows a

BM with instantaneous variance �2. As in the previous sections, a firm is subject to a random

menu cost to simultaneously change the price of its n products. In a period of length dt this

cost equals  
`

units of labor with probability 1��dt, or zero. Also each firm faces a demand

with constant elasticity ⌘ > 1 for each of its n products, coming from households’s CES utility

function for the consumption aggregate. To keep the expenditure shares stationary across

goods, in the face of the permanent idiosyncratic shocks, we assume an o↵setting preference

shocks. The p
i

(t) in our previous sections are the logs of the markups in each product of the

firm relative to the static optimal markup, and our quadratic objective function can be taken

to be a second order expansion on the firm’s profits with B = (1/2)⌘(⌘ � 1). Households’

have a constant discount rate r and an instantaneous utility function which is additively

separable: log in real balances, linear in leisure, and has constant intertemporal elasticity of

substitution 1/✏ for the consumption aggregate, so that the labor supply elasticity to real

wages is 1/✏.

Area under output’s impulse response. We focus on the cumulative sum (integral) of

the output above the steady-state level after a monetary shock of size � > 0. This measure

is closely related to the output variance due to monetary shocks, which is sometimes used in

the literature.30 We define the cumulative output e↵ect M after a shock � as:

M(�) =
1

✏

Z 1

0

(� � P(�, t)) dt (15)

where P(�, t) is the cumulative e↵ect of the monetary shock � on the (log) of the aggregate

price level t periods after the shock (see Appendix G for a rigorous definition of P(�, t) and a

characterization of the impulse response). Intuitively, the argument of the integral gives the

aggregate real wages at time t, which are then mapped into output according to the labor

supply elasticity 1/✏. Integrating over time gives the total cumulative e↵ect.

To characterize M(�) we consider the expected cumulative output deviation from steady

state of a firm with a vector of price gaps p:

m (p1, ..., pn) = �E
"Z

⌧

0

nX

i=1

p

i

(t) dt
��
p(0) = p

#
(16)

30 For more discussion and evidence on this equivalence see footnote 21 of Nakamura and Steinsson (2010).
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where ⌧ is the stopping time associated with the optimal decision rule described as the first

time that ||p(t)||2 reaches threshold ȳ or that a free adjustment opportunity arrives. Note

that, by definition, if ||p||2 � ȳ then m(p) = 0. Intuitively, a firm with a price gap �p

i

(t)

for good type i is producing p

i

(t)/✏ percent excess output compared to its steady state at

time t. Thus, integrating over time until the (random) time of adjustment ⌧ , m(p)/n gives

the expected total excess output produced by a firm that immediately after the monetary

shock has a vector of price gaps equal to p. Three remarks about this solution are in order.

First, given the GE structure, identical to the one in Golosov and Lucas (2007), a once and

for all increase in money supply is followed by a once and for all increase in nominal wages,

and leaves nominal interest rates unaltered. Second, by using the steady state decision rule,

ȳ, we are ignoring the general equilibrium feedback e↵ects. In Proposition 7 of Alvarez

and Lippi (2014) we showed that, given a combination of the general equilibrium set-up in

Golosov and Lucas (2007) and the lack of the strategic complementarities, these e↵ects are

of second order.31 Third, we use that after the first price change the expected contribution

to output of each firm is zero since positive and negative output contributions are equally

likely, i.e. m(0) = 0. This is convenient since it allows us to characterize the propagation

of the monetary shocks without having to keep track of the time evolution for the whole

distribution of price gaps.

The function m(p) defined in equation (16) is extremely useful: exploiting the knowledge

about the infinitesimal changes of the state, and properties of the period payo↵s, yields a

full characterization of the cumulative impulse response without having to solve for (or sim-

ulate) the whole impulse response function. The idea, which is novel in the macroeconomics

literature, follows the same logic used to compute expected values using a Bellman (or Kol-

mogorov) equation and maps the characterization of m(p) into the solution of a di↵erential

equation. For example in the n = 1 case, where p is a scalar price gap in (�p̄, p̄), a Bellman-

equation type of logic gives �m(p) = �p + m

00(p)�2
/2 with boundary condition m(p̄) = 0

and negative symmetry m(p) = �m(�p), with closed form solution:

m(p) = �p

�

+
p̄

�

 
e

p
2� p

p̄ � e

�
p
2� p

p̄

e

p
2� � e

�
p
2�

!
for all p 2 [�p̄ , p̄] where � ⌘ �p̄

2
/�

2
. (17)

The final element to define M(�) is the density of the invariant distribution g(p) for

a vector of price gaps p 2 Rn which is directly implied by the invariant density of the

squared price gaps f(y), given in equation (6), and by the observation that in steady state

the distribution of price gaps with ||p||2 = y is uniform on the n dimensional hypersphere of

31This proposition can be extended in a straightforward way to this paper using the logic of Lemma 1.
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square radius y, whose closed form expression is given by:

g (p1, ..., pn) = f

�
p

2
1 + · · ·+ p

2
n

� � (n/2)

⇡

n/2 (p21 + · · ·+ p

2
n

)(n�2)/2
. (18)

Thus we can write

M(�) =
1

✏n

Z
...

Z
m (p1 � �, ..., p

n

� �) g (p1, ..., pn) dp1 ... dpn (19)

Note that M takes g(p) firms with price gap vector p in steady state, shifts them down by �,

which amounts to increasing the marginal nominal cost on impact, and then computes their

contribution m (p1 � �, ..., p

n

� �).

Recall that, for any n � 1 we can index the steady state of an economy by three numbers,

N (�p

i

) , Std (�p

i

) , and `, for which we can always find the values of (�, , �2) to rationalize

them. The next proposition shows that M can be normalized, i.e. written in terms of the

values of an economy with one price change per year, and where the monetary shock is

measured in terms of steady-state size of price changes.

Proposition 6 Consider an economy whose firms produce n > 1 products, with steady-state

statistics (N(�p

i

), Std(�p

i

), `). Then

M (�;N(�p

i

), Std(�p

i

), n, `) =
Std(�p

i

)

N(�p

i

)
M
✓

�

Std(�p

i

)
; 1, 1, n, `

◆
(20)

Equation (20) shows that keeping (n, `) fixed, M can be scaled by the steady state

frequency of price changes N (�p

i

), and that the size of the monetary shock should be

measured relative to steady state size of price changes Std (�p

i

).

4.1 The case of a small monetary shock

To focus on a small shock �, a realistic standard in this literature, we take the first order ap-

proximation to equation (15), using equation (20) we obtain M (�;N(�p

i

), Std(�p

i

), n, `) ⇡
�/N(�p

i

) M0 (0; 1, 1, n, `). Thus for a small monetary shock, Std(�p

i

) has no e↵ect on

the cumulative output e↵ect. The usefulness of the approach developed in this section is

easily seen in the n = 1 case. Using the closed form solution for g(p) in equation (2)

and the expression for m(p) in equation (17) we can now analytically compute the cumula-

tive e↵ect of a small monetary shock of size � using equation (19) and the approximation
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M(�) ⇡ �/N(�p

i

)M0(0) which yields

�M0(0) =
�

✏N(�p

i

)

e

p
2� + e

�
p
2�

�
e

p
2� + e

�
p
2� � 2

�2
⇣
e

p
2� + e

�
p
2� � 2� 2�

⌘
. (21)

This formula can be used to compare a Calvo model where `! 1 (or �! 1, see equation (5))

with a Golosov-Lucas model, where ` ! 0 (or � ! 0). Simple analysis shows that in Calvo

we have �M0(0) = �

✏N(�p

i

) , whereas in Golosov-Lucas we have �M0(0) = �

6✏N(�p

i

) , so that

the cumulative output e↵ect in these models di↵ers by a factor of 6. Interestingly, the number

6 is exactly the ratio between the kurtosis of price changes in each of these models. The next

result shows that this result is general and applies to any n � 1 and ` 2 (0, 1).

Proposition 7 Consider an economy whose firms produce n > 1 products, with steady-state

statistics N(�p

i

), Std(�p

i

), ` and a steady-state kurtosis of price changes Kur (�p

i

). For a

small monetary shock � we have the following first order Taylor expansion:

M (�;N(�p

i

), Std(�p

i

), n, `) ⇡ �

✏

Kur (�p

i

)

6N(�p

i

)
=
�

✏

P1
i=2

1
i!�(n

2+i)

�
�ȳ

2�2

�
i

�

P1
i=1

1
i!�(n

2+i)

�
�ȳ

2�2

�
i

(22)

This proposition is quite useful to explain what produces the di↵erent results that are

found in the literature on the real e↵ects of monetary policy. The proposition illustrates how

it is possible for two models sharing similar features, e.g. calibrated to the same observables

N(�p

i

), Std(�p

i

) and sharing the same preference specification (labor elasticity 1/✏), to

produce di↵erent predictions about the output e↵ect: what is needed is that the model

predicts a di↵erent kurtosis of price changes.

Recall from Proposition 4 that the shape of the size distribution of price changes, and

hence kurtosis, depends only on n and `. For a fixed n, kurtosis is increasing in `. Indeed,

as ` goes to 1 then kurtosis goes to 6, and hence we obtain M(�) ⇠= �/(✏N(�p

i

)), which is

the result produced by the Calvo pricing model. On the other extreme, as ` = 0 kurtosis

equals 3n/(n + 2). This implies that, for instance, in the Golosov and Lucas case of n = 1,

the impact of monetary policy is 1/6 of Calvo. Also, keeping ` = 0 and varying n from 1 to

1, the e↵ect goes from 1/6 to 1/2 of Calvo. Note that in the case of ` = 0 and n = 1 the

model becomes Taylor’s staggered price model or, equivalently, Reis (2006) model. Thus the

purely multi product Taylor-Reis case (` = 0, n = 1) delivers only half of the real e↵ects

compared to a purely Calvo model (` = 1), as further discussed below.

The discussion above makes clear that the assumption of non-gaussian shocks in Midrigan

(2011) is quite crucial to obtain real e↵ects that are closer to Calvo than to Golosov-Lucas.
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What is needed for the e↵ects to be large is a large kurtosis, which Midrigan obtains by

assuming a process for the shocks hitting the firm’s costs that are fat-tailed. It can indeed be

shown that introducing fat-tails in our version of the Golosov-Lucas model, through shocks

to the marginal cost occurring with a Poisson intensity, leads to a formally similar problem

to that of the model with free adjustment opportunities, as we do in Appendix H.

Figure 5: Cumulative output e↵ect relative to Calvo pricing: Kur(�p

i

)/6
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Figure 5 o↵ers a richer systematic comparison of the real e↵ects of monetary shocks as n

and ` vary: the vertical axis plots the real output e↵ect produced by a small monetary shock

relative to the e↵ect produced by a Calvo model where ` = 1. Four curves are plotted in the

figure, corresponding to n = 1, 2, 10,1. It appears that the model behavior for n = 2 remains

quite close to the case where n = 1, as was also seen from the analysis of the distribution

of price changes. Instead, the model behavior for n = 10 is quite close to that of a model

where n = 1. This is useful because the latter is quite tractable analytically, as discussed

below. Figure 5 shows that at any level of ` the real output e↵ect are smallest for n = 1. As

explained in Alvarez and Lippi (2014) a larger number of goods dampens the selection e↵ect

of monetary policy increasing the real output consequences of a monetary shock. Indeed at

any level of ` the e↵ect is increasing in n. The figure shows that fixing n the output e↵ect

is increasing in `. In the limit, as `! 1 the economy converges to a Calvo model where the

real e↵ects are largest and independent of n.
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It is interesting to notice that the curves plotted in the figure are convex. In particular,

some analysis reveals that the slope of the curve as ` ! 1 diverges to +1 for any level of

n (see the formula for M in the special case when n = 1 in Appendix P). The economic

implication of this property is that a small deviation from Calvo pricing, i.e. a fraction of

adjustment ` that is slightly below 1 is going to give rise to a large deviation from the real

e↵ects predicted by the Calvo pricing. That the relatively large real e↵ects in Calvo are very

sensitive to the introduction of a small amount of selection by firms regarding the timing of

price changes, is also apparent in the CalvoPlus model of Nakamura and Steinsson (2010)

(see their figure VII). Hence the finding seems robust as these models, and measure of real

e↵ects, are similar but not identical.

Additionally, equation (22), together with equation (3) and equation (5), completes the

closed form solutions for N(�p

i

), Std(�p

i

), Kur(�p

i

) and M0(0) given parameters n,�, �

2

and threshold ȳ, which instead can be solved explicitly using Lemma 1 and Proposition 2.

We finish this section discussing the economic intuition of why there is a systematic

relationship between kurtosis and the cumulative output e↵ect of an monetary shock. As it

is remarked in the literature, at least since the analysis in Golosov and Lucas (2007), the

small output e↵ect of a monetary shock in menu cost models is related to the degree to which

the firms that change prices right after the shock are of a “selected” type. In particular, in

Golosov and Lucas’s model those firms are more likely to increase prices, and hence the

aggregate price level adjusts fast initially. Instead, in Calvo’s model the average price change

of firms at any horizon t of the impulse response is always the same, equal to �. We refer to

this e↵ect as “selection on size of price changes”. This is captured in the steady state kurtosis

of the distribution of price changes, since it is the proximity to the adjustment barriers that

produces price changes that are platykurtic in menu-cost models. Yet this cannot be the

full story, since all the models for which n = 1 have that the average price changes of the

firms at any horizon in the impulse response is equal to �. Nevertheless, the model with

` = 0 (Taylor’s) produces half the cumulative output than the one with ` = 1 (Calvo). The

di↵erence across these models is in the timing of when firms adjust: in Taylor the distribution

of times until adjustment is uniform, but in Calvo it is exponential, with a thicker right tail

of firms that adjust very late. We refer to this e↵ect as to the “selection in the times of

price changes”. This e↵ect is also clearly captured by the steady state kurtosis, since a wider

distribution of times to adjust produces a distribution of price changes that is a mixture

of normals with di↵erent variances. Indeed our result in Proposition 7 extends to a more

general class of models where selection concerns exclusively the times of adjustment (not the

size), as in Carvalho and Schwartzman (2012) and Alvarez, Lippi, and Paciello (2012).

34



Lack of sensitivity to inflation. While the model we have written is based on an economy

which has a zero steady-state inflation, we argue that the characterization of kurtosis as well

as the key result on the e↵ect of monetary policy in Proposition 7 apply also for low rates of

inflation. Indeed steady-state inflation has only second order e↵ect on both the kurtosis of

the price changes as well as the area under the IRF of output for a small monetary shock.

In particular, we show that both the left and right hand side of equation (22) have a zero

derivative with respect the steady-state inflation, evaluated at zero inflation. For this we

consider an economy where the money supply grows at the rate µ and the steady state

inflation rate and the growth rate of nominal wages both equal µ. In this case the price gaps

will evolve as dp
i

(t) = �µdt+� dW
i

(t) where the negative sign of the drift reflects that wages

grow at a constant rate. For this model we let Kur(�p

i

;µ), N(�p

i

;µ) be the kurtosis and

frequency of price changes at steady state as a function of inflation µ. Likewise, we consider

a once and for all (unanticipated) increase in the level of money supply of size �, so that the

path continues to grow at rate µ right after. We let M(�;µ) be the area-under the IRF of

output after such monetary shock �, also indexed by the steady state inflation. We have the

following result:

Proposition 8 Let µ be the steady state inflation rate. Then:

0 =
@Kur(�p

i

;µ)

@ µ

����
µ=0

=
@N(�p

i

;µ)

@ µ

����
µ=0

=
@M0(0;µ)

@ µ

����
µ=0

(23)

and hence the derivative of both sides of equation (22) with respect to µ evaluated at µ = 0

is zero.

Hence, even though we have developed the result for zero inflation, this proposition shows

that the results provide a good benchmark for a low inflation economy. We think this is

important since developed economies have low but positive inflation rates. The idea behind

the proof is to exploit the symmetry of both kurtosis Kur(�p

i

;µ) and the cumulative IRF

M0(0;µ)� with respect to inflation µ around µ = 0.

To summarize, we showed that adding a small inflation has a negligible e↵ect on the

findings of the paper, including the main result in equation (1). This theoretical prediction

is consistent with evidence on the small elasticity of several price setting statistics (such as

the frequency, variance and kurtosis) provided in Gagnon (2009) and Alvarez et al. (2011).

4.2 The case of a large monetary shock

The dependence of the output e↵ect on the size of the monetary shock is a hallmark of a

menu cost models. The next proposition characterizes the smallest value of the monetary
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shock � for which all firms adjust prices immediately, in which case the impact response of

the aggregate price level equal the monetary shock, P(�, 0) = � so that prices are flexible and

there is no e↵ect on output, M(�) = 0. The value of this threshold for the monetary shock

is proportional to the Std(�p

i

) which properly scales the “size” of the monetary shocks, and

to a constant of proportionality that is increasing in `.

Proposition 9 Define � as the smallest once-and-for-all monetary shock for which there is

full price flexibility, i.e. M(�) = 0 for any � � �. We have

� = 2

r
ȳ

n

= 2Std(�p

i

)

r
L�1(`;n)

`

,

where L(·;n) is given by equation (5). Fixing any n � 1, the ratio �/(2Std(�p

i

)) is a strictly

increasing function of `, ranging from 1 to 1 as ` varies from 0 to 1.

Note that for ` = 0, we have � = 2Std(�p

i

) for all n � 1, so the minimum shock is

simply twice the standard deviation of prices. In general this threshold is increasing in `,

becoming unbounded as the model gets closer to Calvo, i.e. lim
`!1 � = +1 for all n � 1.

This is intuitive since as ` increases more of the price changes are due to the (exogenous)

free opportunity to adjust. Computing the value of � is immediate given the closed form

expressions in Proposition 3 and Proposition 9. The analysis shows that: (i) for a given `

the threshold � is decreasing in n, and (ii) for all n � 1, even for ` = 0.85 the values for

� are smaller than twice the corresponding value for ` = 0. In other words, � is a steep

convex function of `, with an infinite positive slope as ` ! 1. This finding implies that

workings of a Calvo model are substantially di↵erent from the workings of a model that is

close, but slightly below, the Calvo specification with ` = 1 (see Appendix G for a rigorous

definition and analysis of the impact e↵ect on the aggregate price level; Appendix J for more

documentation and a proof of the proposition).

5 Robustness and scope of results

Our main results, namely equation (1), applies more generally. First, while the paper focused

on an economy with ex-ante identical firms, we show in Appendix R that a straightforward

modification of equation (1) holds in a model with ex ante heterogenous sectors that di↵er in

the frequency of adjustment and/or the kurtosis of price changes. Second, equation (1) holds

also in models with di↵erent price setting frictions. For instance, a small variation of our

model assumes that the cost of a price adjustment upon a random opportunity is not free,

but is just cheaper than the regular menu cost (see Appendix S). This setup is closer to the
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original CalvoPlus model by Nakamura and Steinsson (2010) than the one in the main text.

Interestingly we found that equation (1) holds in that model too. Another variation considers

a di↵erent class of models, within a “rational inattentiveness” setup where individual firms

can observe their state only after paying a fixed “observation” cost. In Alvarez, Lippi, and

Paciello (2011) we consider the case where firms face both observation and menu costs �
so that both Reis (2006) and Golosov and Lucas (2007) are special cases. It turns out that

equation (1) holds in this model. In Alvarez, Lippi, and Paciello (2012) we consider the case

where firms face random observation cost and no menu costs. This setup produces random

adjustment times at the firm level, whose consequences for the propagation of monetary

shocks have been studied by Mankiw and Reis (2002) and Carvalho and Schwartzman (2012).

The last class of models does not feature any selection in the size of price changes but only

in the times of adjustment. Moreover, while kurtosis is between 1 and 6 in our menu cost

model, it is unbounded in these models. Interestingly, one can show that equation (1) holds

in these class of models too.

Finally, we explored a setting where the cost shocks that trigger the price changes are

not continuous, but occur infrequently and are “large”. We refer to this setting as fat-tailed

shocks, a setup that is close to the model of Gertler and Leahy (2008) and the version

of Midrigan (2011) with non-gaussian shocks (see Appendix H for details). This setting

introduces a wedge between the timing of price changes and the size-distribution of price

changes that impairs equation (1): kurtosis is not anymore a su�cient statistic about the

price setting behavior, because it also reflects the assumptions about the shape of the large

(infrequent) shocks. Compared to our model, these models require more observations to be

identified, such as direct information on the shape of the cost shocks faced by firms. We

leave this exploration for future work. Yet another extension which we leave for the future

consists in solving the model under the assumption that the cost shocks that hit the goods

sold by the firm are partially correlated.

References

Alvarez, Fernando, Martin Gonzalez-Rozada, Andres Neumeyer, and Martin Beraja. 2011.
“From Hyperinflation to Stable Prices: Argentinas evidence on menu cost models.”
manuscript, University of Chicago.

Alvarez, Fernando E. and Francesco Lippi. 2013. “The demand of liquid assets with uncertain
lumpy expenditures.” Journal of Monetary Economics 60 (7):753–770.

———. 2014. “Price setting with menu costs for multi product firms.” Econometrica
82 (1):89–135.

37



Alvarez, Fernando E., Francesco Lippi, and Luigi Paciello. 2011. “Optimal price setting with
observation and menu costs.” The Quarterly Journal of Economics 126 (4):1909–1960.

———. 2012. “Monetary Shocks in a Model with Inattentive Producers.” Eief working
papers series, Einaudi Institute for Economics and Finance (EIEF).

Alvarez, Fernando E., Francesco Lippi, and Andrea Pozzi. 2014. “A note on the size-
distribution of price changes in a large US dataset.” Available on Lippi’s website, EIEF.

Alvarez, Luis J., Emmanuel Dhyne, Marco Hoeberichts, Claudia Kwapil, Herve Le Bihan,
Patrick Lunnemann, Fernando Martins, Roberto Sabbatini, Harald Stahl, Philip Ver-
meulen, and Jouko Vilmunen. 2006. “Sticky Prices in the Euro Area: A Summary of
New Micro-Evidence.” Journal of the European Economic Association 4 (2-3):575–584.

Arkolakis, Costas, Arnaud Costinot, and Andres Rodriguez-Clare. 2012. “New Trade Models,
Same Old Gains?” American Economic Review 102 (1):94–130.

Barro, Robert J. 1972. “A Theory of Monopolistic Price Adjustment.” Review of Economic
Studies 39 (1):17–26.

Baudry, L., H. Le Bihan, P. Sevestre, and S. Tarrieu. 2007. “What do Thirteen Million Price
Records have to Say about Consumer Price Rigidity?” Oxford Bulletin of Economics and
Statistics 69 (2):139–183.

Berardi, Nicoletta, Erwan Gautier, and Hervé Le Bihan. 2013. “More facts about prices:
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A Proofs

Proof. (of Proposition 1). Let p(0) = 0. Define x(t) ⌘ ||p(t)||2 � n �

2
t for t � 0. Using

Ito’s lemma we can verify that the drift of ||p||2 is n�2, and hence x(t) is a Martingale. By
the optional sampling theorem x (⌧), the process stopped at ⌧ , is also a martingale. Then

E
h
x(⌧)

��� p(0)
i
= E

h
||p(⌧)||2

��� p(0)
i
� n�

2E
h
⌧

��� p(0)
i
= x(0) = 0 and since N(�p

i

) =

1/E
h
⌧

��� p(0)
i
and V ar(�p

i

) = E
h
||p(⌧)||2

��� p(0)
i
/n we obtain the desired result. ⇤

Proof. (of Lemma 1). First, note that since two value functions di↵er by a constant, then
all their derivatives are identical. Hence, if the one for the discount rate and arrival rate of
free adjustment (r + �, 0) satisfies value matching and smooth pasting, so does the one for
discount rate and arrival rate of free adjustment (r,�, 0), for the same boundary. Second,
consider the range of inaction, subtracting the value function for the problem with parameters
(r+�, 0) from the one with parameters (r,�), and using that all the derivatives are identical,
one verifies that if the Bellman equation holds for the problem with (r + �, 0), so it does for
the problem with (r,�). ⇤

Proof. (of Proposition 2 ). The first part is straightforward given Lemma 1 and Proposition 3
in Alvarez and Lippi (2014). The second part is derived from the following implicit expression
determining ȳ (see the proof of Proposition 3 in Alvarez Lippi for the derivation):
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where 
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2(s+2)(n+2s+2) . So we can write this expression as:  = B
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Since ȳ ! 1 as  ! 1 then we can define the limit:
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Simple analysis can be used to show that lim
ȳ!1 ⇠(�2

, r + �, n, ȳ) = 0 which gives the
expression in the proposition (see the Online Appendix E for a detailed derivation). ⇤

Proof. (of Proposition 3 ). To characterize N(�p

i

) we write the Kolmogorov back-
ward equation for the expected time between adjustments T (y) which solves: �T (y) =
1+ n �

2 T 0(y) + 2 y �

2 T 00(y) for y 2 (0, ȳ) and T (ȳ) = 0 (see Appendix F for a discussion
of the solution to this equation). Then the expected number of adjustments is given by
N(�p

i

) = 1/T (0), subject to T (0) < 1.
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The solution of the second order ODE for T (y) has a power series representation: T (y) =P1
i=0 ↵

i

y
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, for y 2 [0, ȳ], with the following conditions on its coe�cients {↵
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which is equation (5). ⇤

Proof. (of Proposition 4). We first state a lemma about the density f(y).

Lemma 2 Let f(y;n, �

�

2 , ȳ) be the density of y 2 [0, ȳ] in equation (6) satisfying the boundary
conditions. For any k > 0 we have: f
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Proof. (of Lemma 2 ). Consider the function f(y;n, �
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2 , ȳ) solving equation (6) (and
boundary conditions) for given n,
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2 = C1/C2) and that (6) holds (which is readily

verified by a change of variable). ⇤
We now prove the proposition. Let w (�p
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equation (8). Next we verify equation (9). From the first term in equation (8) notice that

(1� `)! (�p

i
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0
◆
dy

42



where �

0
ȳ
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2
ȳ, which completes the verification of equation (9). ⇤

Proof. (of Proposition 5). To obtain the expression in equation (11) we use the character-
ization of ` = L
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where a hat denotes a proportional change. Using Proposition 3-(iv) in Alvarez and Lippi
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That  ! 1 as `! 1 follows because L(�, n) ! 1 as �! 1 and because, by Proposition

3-(i) in Alvarez and Lippi (2014), ȳ is increasing in  and has range and domain [0,1). For
� = 0 and N(�p

i

) > 0 we obtain:  
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square root approximation of ȳ for small  (� + r)2, the expression for N(�p
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and Proposition 1, i.e. N(�p
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)V ar(�p
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2. To obtain the expression for  (n, 0) we use
Proposition 6 in Alvarez and Lippi (2014) where it is shown that for � = 0 then Kur (�p

i

) =
3n/(n+ 2).

Proof. (of Proposition 6). For any p 2 Rn with ||p||2  ȳ, we write m(p; ȳ, �,�) to emphasize
the dependence on (ȳ, �,�). A guess and verify strategy can be used to show the following
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scaling property of the function m: Let k > 0, then for all p 2 Rn with ||p||2  ȳ:

m(kp; k2
ȳ, k�,�) = km(p; ȳ, �,�) and m(p; ȳ, �

p
k,�k) =

1

k

m(p; ȳ, �,�) .

It is straightforward to verify that this function satisfies the ODE and boundary conditions
for m(p) (see e.g. the one in the main text for the n = 1 case). Recall the homogeneity of
f(y) stated in Lemma 2. Finally, note that the density g(p) can be expressed as a function
of the density f(y) given in equation (6) and the density of the sum of n coordinates of
a random variable uniformly distributed on a n dimensional hypersphere of square radius
y, as obtained in Equation 21 in Alvarez and Lippi (2014). These properties applied to
equation (19) establish the scaling property stated in the proposition.

Proof. (of Proposition 7). For the cases of n = 1 and n = 1, in Appendix P we give closed
form expressions for the kurtosis Kur (�p

i

) for any ` 2 (0, 1) and for the cumulative output
e↵ect, M(�) from which it is immediate to verify that they are proportional to each other,
as stated in the proposition.

The next lemma gives a simple expression for M0(0), which holds for all 1  n < 1 and
0  `  1.

Lemma 3 Let M(·;n) be the area under the IRF of output and f(·;n) be the density of the
invariant distribution for an economy with n products and parameters (ȳ,�, �2). Let T

n+2(y)
be the expected time until either y(t) hits ȳ or that until there is a free adjustment opportunity,
whichever happens first, starting at y(0) = y, for an economy with n + 2 products and the
same parameters (ȳ,�, �2). Then

M0(0;n) =
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ȳ

0


T
n+2(y) +
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T 0
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�
f(y;n) dy (25)

The function T
n

(y) is characterized in the proof of Proposition 3 where we give an explicit
power series representation for this function. The proof of Lemma 3 can be found in Ap-
pendix K. It uses a characterization of m(p) in terms of a two dimensional vector (z, y),
where z is the sum of the n coordinates of p. The function m(z, y) solves a PDE whose
solution can be expressed in terms of T

n

(y).
For 1 < n < 1 and ` = 0 we note that Lemma 3 simplifies substantially since T

n+2(y) =
(ȳ � y

/

(2n�2), Kur (�p

i

) = 3n/(2 + n), N(�p

i

)) = n �

2
/ȳ, and f has a simple closed form

expression (all expressions are given in Alvarez and Lippi (2014)). Using these expressions
to explicitly solve for the right hand side of equation (25) it is immediate to verify that
equation (22) holds, see Appendix Q for the details.

For 1 < n < 1 and ` = 1, with � > 0 and �2
> 0, using Proposition 3 it must be the

case that ȳ = 1. In this case, N(�p

i

) = �` = �, and the distribution of price changes is
independent across each of the n products, and given by a Laplace distribution, which has
kurtosis 6. Likewise T

n+2(y) = 1/� for all y � 0. Thus, using equation (25) we obtain the
desired result.

Finally we consider the case of 1 < n < 1 and 0 < ` < 1. Using the representation shown
in Proposition 6 for M(�) and di↵erentiating with respect to �, and evaluating at � = 0,
then M0(0) depends only on two parameters: n and `. Likewise, using the property of f in
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Proposition 4, the kurtosis of price changes also depends only on the same two parameters:
n and `. Therefore, for a given n > 1, the verification of Proposition 7 requires to check that
Kur(�p

i

)/ (6N(�p

i

)) andM0(0) are the same at all values of ` 2 (0, 1). Using Proposition 3,
it is equivalent to check the equality for any 1 < n < 1 and 0 < � < 1 where � = �ȳ/(n �2).

For Kur(�p

i

)/ (N(�p

i

)), the left hand side of equation (22), we have a closed form
solution in equation (34). This solution is derived in two steps. First we derive a expression
for Kur(�p

i

). This is done by noticing that
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where ⌧ is the stopping time associated with a price change, and where Q(y) is the expected
fourth moment at the time of adjustment ⌧ conditional on having today a squared price gap
y, i.e.
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where y(⌧) is the value of the squared price gap at the stopping time. Notice that for y 2 [0, ȳ]
the function Q(y) obeys the o.d.e.:
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0(y)n�2 +Q

00(y) 2�2
y

with boundary condition Q(ȳ) = 3ȳ2

(n+2)n . The solution of Q has a a power series representation
which is easily obtained by matching coe�cients and using the boundary conditions. The
second step is to use that Kur (�p

i

) /N (�p

i

) =(1/�)L(�, n)Kur (�p

i

) and the solution
for L in Proposition 3. This gives expression in the right had side of equation (22). See
Appendix D for more details in the algebra.

For the right hand side of equation (25), we first characterize T
n+2(y) +

2
n

T 0
n+2(y) y and

f(y;n). In the proof of Proposition 3 we developed a power series representation of T
n+2(y).

Using this power series it is immediate to obtain a power series representation of T
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See Appendix N for more details of the algebra.
For f we use the characterization in equation (6) in term of modified Bessel functions of

the first and second kind. These functions have a power series representation, which we use
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to solve for the two unknown constants C1, C2. This gives:
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where the two sequence of coe�cients � are defined in term of � functions as
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for i = 0, 1, 2, ... (28)

Due to a singularity on the power expansion of the modified Bessel function of the second
kind, the expression in equation (27) holds for all real n � 1, except when n is an even
natural number. Yet the expression is continuous on n. See Appendix C for a step-by-step
derivation.

Finally, using equation (26) and equation (27), rearranging terms and solving the resulting
integrals we have:
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For each n > 1 and �ȳ/�2
> 0 one can numerically evaluate the right and left hand side of

equation (29) and check that they are equal. This verification is straightforward since both
sides are simple functions of convergent power series, which are arbitrary well approximated
by a finite sum (a simple Matlab code for the verification, called solveMp0.m, is available on
our websites). As explained above, for n = 2 k and k 2 N and k � 1, so that n is even, this
expression should be understood as the limit for n ! 2 k (or, numerically, as the sum for
values of n close to 2 k). ⇤
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Proof. (of Proposition 8). The idea is to show that for any n, `

Kur(�p

i

;µ) = Kur(�p

i

;�µ) , N(�p

i

)(µ) = N(�p

i

)(�µ) , M(�;µ) = �M(��;�µ)
(31)

for all (µ, �) in a neighborhood of (0, 0). Note that di↵erentiating the last expression with
respect to �, and evaluating it at � = 0 we obtain that M0(0;µ) = M0(0;�µ). Hence we
have that Kur(�p

i

; ·), N(�p

i

)(·) and M0(0; ·) are symmetric functions of inflation around
µ = 0. Hence, if they are di↵erentiable, they must have zero derivative with respect to
inflation at zero inflation. Instead the symmetry in equation (31) follows from the symmetry
on the firm’s problem with respect to positive and negative drift. To understand where
this symmetry comes from, we proceed in two steps. First we analyze the symmetry of
the decision problem for the firm of Section 3.2. Second, we consider the approximation to
the GE problem for values µ 6= 0. All the arguments follow, essentially, a guess and verify
strategy of a simple nature but with a heavy notation. Appendix M provides more details
on the proof.
Proof. (of Proposition 9.) The proof proceeds by verification analyzing the condition for
which every single firm for which ||p||2 = y  ȳ before the shock will find that ||p� ◆�||2 � ȳ,
where ◆ is a vector of ones. See Appendix J for a detailed derivation.
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