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1 Introduction

In this study, we characterize and demonstrate a solution method for an optimal com-

modity (sales) tax problem consisting of multiple goods, heterogeneous agents, and

a nonconvex policy maker optimization problem. The contribution of our approach

is to allow for more dimensions of heterogeneity than has been previously possible,

to incorporate potential model uncertainty and policy objective uncertainty, and to

relax some of the assumptions in the previous literature that were necessary to gen-

erate a convex optimization problem for the policy maker. Our solution technique

involves creating a large database of optimal responses by different individuals for

different policy parameters and using “big data” techniques to compute policy maker

objective values over these individuals.

We calibrate our model to the United States and calculate the difference be-

tween an optimal differentiated sales tax schedule versus an optimal uniform (flat)

tax schedule. We also compute the revenue loss for a given welfare level of having a

tax-exempted commodity class, such as is the case in nearly all countries. We find

that only a potentially small amount of tax revenue is lost for a given societal welfare

level by departing from an optimal differentiated sales tax schedule to a uniform flat

tax. We also find a small loss in revenue from exempting a class of goods such as

services in the United States.

Ramsey (1927) studied a representative agent economy, with multiple goods, and

a policy maker with a total tax revenue constraint and linear commodity tax instru-

ments (no lump sum taxation). The main findings were that tax rates on commodities

should be inversely related to the representative consumer’s price elasticity of de-

mand and should, therefore, vary across goods. Diamond and Mirrlees (1971a,b) and

Deaton (1977) extend the Ramsey approach by studying optimal commodity taxation

with multiple goods, a revenue constraint and multiple consumers who have identical

preferences and heterogeneous productivities (incomes). However, they make strong

assumptions on the demand functions in order attain aggregation results and to keep

the policy maker’s optimization problem convex. These three studies highlight the
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tradeoff between equalizing incomes and maximizing social welfare. However, Deaton

(1977, p.310) concedes:

The result rests on strong simplifying assumptions in order to avoid the

complexity of the general case; in particular, consumer bahaviour has been

restricted by the use of linear Engel curves and by permitting only very

limited substitution between commodities. Relaxing either of these could

alter quite fundamentally the nature of the empirical results.

Balcer et al. (1983) add minimum consumption levels to the household utility

function, but use a simple enough functional form to still allow for aggregation and a

convex optimization problem for the policy maker. Similar to Deaton (1977), Slemrod

and Bakija (2008, chapters 6 and 7), Gruber (2011, chapters 18, 20, and 25), and

Garner (2005), they find that commodity taxes will vary across goods according to

budget shares but that their ability to redistribute income is somewhat limited. In

addition, Balcer et al. (1983) find that the optimal differentiated commodity tax

schedule only provides a small revenue increase for a particular welfare level relative

to an optimal uniform (flat) tax.

In this study, we extend the Balcer et al. (1983) approach by using a more general

utility function in which aggregation does not hold, thereby rendering the govern-

ment’s optimization problem nonconvex. By doing so, we are testing the observation

of Deaton (1977, p. 310) that relaxing these simplifying assumptions “could alter

quite fundamentally the nature of the empirical results.” Further, the nonconvexity

of the government’s optimization problem requires a different set of computational

tools in order to solve for the optimal sales tax schedule. Our solution method is

scalable, parallelizable, customizable, and uses “big data” techniques.

Big data refers to any repository of data that is either large enough or com-

plex enough that distributed and parallel input and output approaches must be used

(see White, 2012, p. 3). Einav and Levin (2013) discuss the new opportunities in

economics using big data, although they focus primarily on searching for important

patterns in existing datasets. Our paper is a different application of the big data
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approach in that we use it as a solution method to theoretical models rather than

an empirical method. Our solution method is ideally suited for dealing with models

with nonconvex optimization problems, a large degree of heterogeneity, rich policy

structure, potential model uncertainty, and potential policy objective uncertainty.

Our big data approach involves generating a large database of optimal agent

behavior for an efficiently chosen sample of points in both the space of agent types

and the space of tax policies. We then use big data techniques to access this database

in order to calculate social welfare and total government revenue for each point in

the tax policy space. Next, we eliminate all tax policies that are strictly dominated

by any other policy in terms of both social welfare and total tax revenue. This leaves

us with a tax policy frontier in terms of social welfare and total tax revenue. The

last step is to iteratively refine our search for optimal tax policies around the points

remaining on the frontier and repeat the deletion step of strictly dominated policies.

The result is a close approximation of the continuous function of tax policies that

traces out the frontier of optimal social welfare and tax revenue possibilities.

Much of the current literature on optimal commodity taxation focuses on esti-

mating price elasticities for particular classes of consumption goods. Kaplow (2010),

Saez (2002), and Naito (1999) find that taxes on commodities should vary, not only

with their elasticities of demand, but also with their complementarity with leisure.

Another strand of the literature, exemplified by Einav et al. (2014), Ellison and El-

lison (2009), Ballard and Lee (2007), Scanlan (2007), Alm and Melnik (2005), and

Goolsbee (2000a,b), focuses on the effects and lack of uniformity of the sales taxation

of goods purchased on the internet. Bruce et al. (2009) estimate a loss of over $10

billion in sales tax revenue in 46 U.S. states and in the District of Columbia from

inconsistent or nonexistent sales taxation on internet commerce, particularly with

respect to interstate internet commerce.

The final policy experiment we perform in this study relates to the internet revenue

loss studies previously mentioned. We simulate the potential tax revenue loss of

exempting a category of consumption goods. Diamond and Mirrlees (1971a) suggest

the inclusion of an untaxed sector as an interesting extension. Einav et al. (2014)
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study this question with respect to internet commerce by empirically estimating the

price elasticity of internet sales consumers to price surprises. But we know of no

other studies estimating the loss from exempting a commodity group as large as the

services sector in the United States (e.g., legal fees, consulting, insurance, most health

care.) This question is especially important in the United States, not just in terms

of welfare, because services make up just under 50 percent of U.S. GDP.

The paper proceeds as follows. Section 2 presents our model of household op-

timization and the policy maker’s tax problem. Section 3 describes our solution

method, and Section 4 presents the results of our experiments. Section 5 concludes.

2 Model

Our sales tax model is one in which heterogeneous consumers must make a static

decision of how much to consume among a variety of goods available to them. We

abstract from the labor decision of these individuals by assuming an inelastic labor

supply. We also abstract from any ability of consumers to intertemporally substitute

consumption across time using savings. The model is partial equilibrium because we

do not model the production side of the economy, and consumers take the prices of

goods as given.

The invariance of goods prices and the wage distribution to tax policy changes

in our model is a potential issue. One solution is to assume a small open economy.

However, many of the goods in the United States are nontradable and labor is often

thought of as not being very mobile. So letting prices be exogenous is a potential

weakness.

Consumers also face a given schedule of sales taxes across these goods. In the

tradition of much of the commodity tax literature, we restrict the policy maker’s tax

instruments to be linear tax rates that can be differentiated according to consumption

good type. This is in contrast to the Mirrleesian approach of solving for a general tax

function of all observables. The policy maker’s problem is to choose a tax schedule

that maximizes some social welfare criterion.
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Hines (2007) and Gruber (2011) document that the United States only has a few

goods on which it collects excise taxes, that the U.S. collects the smallest percent

of tax revenue through sales or consumption taxes among developed countries, and

that U.S. sales taxes are predominantly applied heterogeneously across U.S. states.

In this respect, our exercise in this paper is hypothetical in that no uniform federal

sales tax schedule exists in the United States. However, the qualitative results can

be applied appropriately to inform sales tax policy at the state level in the U.S. as

well as potential tax reform questions at the national level.

2.1 Household problem

Let the economy be characterized by a measure of individuals characterized by type

θ = (η, w) and I different consumption goods ci, where i = 1, 2, ...I. Define total

consumption by an individual C by the constant elasticity of substitution (CES)

aggregator,1

C ≡

(
I∑
i=1

αi(ci − c̄i)
η−1
η

) η
η−1

∀η ≥ 1 (1)

where η ≥ 1 is the elasticity of substitution among all of the consumption goods,

αi ∈ [0, 1] is the weight on the consumption of each type of good with
∑

i αi = 1,

and c̄i ≥ 0 is a minimum level of consumption for each type of good. The constant

relative risk aversion (CRRA) utility function for the individual with CES preferences

over total consumption is the following,

u(C) =
C1−γ − 1

1− γ
∀γ ≥ 1 (2)

where total consumption of an individual C is defined in (1) and γ ≥ 1 is the coefficient

of relative risk aversion.

Let the price of consumption good i be determined by the perfectly competitive

equilibrium assumption of marginal cost pricing with the additional sales tax perfectly

passed on to consumers of good i. If mci is the marginal cost of producing good i

1See Armington (1969) and Dixit and Stiglitz (1977).
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and τi is the sales tax rate on good i, then competitive equilibrium implies that the

price of each consumption good pi is given by.

pi = (1 + τi)mci (3)

We can normalize the marginal cost of each good to unity mci = 1 for all i by simply

changing the units of each good. So the price of each good can be simplified to its

normalized version.

pi = 1 + τi (4)

Given a nominal wage of w, the household budget constraint is,

I∑
i=1

(1 + τi)ci ≤ w (5)

The household’s problem is to choose a consumption basket {ci}Ii=1 to maximize utility

(2) subject to the budget constraint (5). In this example, we will allow consumers

to be heterogeneous in terms of their elasticity of substitution η among different

consumption goods and in terms of income w. So θ = (η, w) ∈ Θ = [1,∞)× (0,∞).

Let the joint density over consumer types in the economy be f(η, w) = f(η)f(w),

where η ∼ U [ηmin, ηmax] and w ∼ GG
(
a, b,m

)
, where U is the uniform distribution

and GG is the three-parameter generalized gamma distribution.2

(GG) : f(y; a, b,m) =
m

baΓ
(
a
m

)ya−1e−( yb )
m

y ∈ [0,∞), a, b,m > 0 (6)

Now we can write the consumer’s optimization problem in terms of vectors of

variables,

max
c

u
(
c; η, w, τ

)
s.t. w ≥

i∑
i=1

(1 + τi)ci and ci ≥ c̄i ∀i (7)

2McDonald (1984) started a long literature showing that the generalized beta (GB) family of dis-
tributions with three parameters or more fits the income distribution better than the two-parameter
GB family distributions, such as the log normal. In particular, the GB distributions with three
parameters or more capture well fat right tails that are characteristic of the income distribution.
See also McDonald et al. (2013).
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where c = {ci}Ii=1 and τ = {τi}Ii=1. If the budget constraint binds and ci ≥ c̄i for all

i, the solution to (7) can be reduced to I − 1 Euler equations,

αi (ci − c̄i)−
1
η = αI

1 + τi
1 + τI

(cI − c̄I)−
1
η for i = {1, 2, ...I − 1} (8)

where w and all the τi are introduced into (8) because good cI is substituted out

of the utility function using the budget constraint. The solution to this problem is

individual consumption functions ci(η, w, τ ) that are a functions of consumer type

(η, w) and tax rates τ . This household has equilibrium utility u
(
c(η, w, τ )

)
and

total taxes paid of r(η, w, τ ) =
∑I

i=1 τici(η, w, τ ).

However, it is also the case that both the budget constraint and ci ≥ c̄i are not

satisfied for some sales tax schedules τ .

∃ τ : w <
I∑
i=1

(1 + τi)c̄i (9)

We want to examine the effects of a wide range of tax policies τ , but we do not want

to worry about redistribution issues or have individual utilities with consumption at

or near c̄i dominate any social welfare function in the policy maker’s problem.

Balcer et al. (1983) address this same issue in their model by transferring revenue

(collected from taxes) to the poorest individuals so that they can meet the minimum

consumption constraint. However, this method still poses the problem of how far

above c̄i should the transfer allow the poorest to consume. The chosen level still

affects their utility and their corresponding weight in a social welfare function. To

avoid this problem, we provide a small functional variation to the total individual

consumption aggregator (1) and utility function (2) so that utility is globally defined

and concave, even for individual consumption levels at or below the minimum ci ≤

c̄i+ε. However, the purpose of this functional adjustment is to cause as little distortion

as possible while providing a remedy to a computational issue. Appendix A-1 details

our adjustment.
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2.2 Policy maker’s problem

The policy maker’s problem is to choose a schedule of sales tax rates on the different

consumption goods τ = {τ1, τ2, ...τI} in order to maximize total utility in the econ-

omy subject to total tax revenues being greater than or equal to some exogenously

determined amount R̄,

max
τ

∫
η

∫
w

f(η)f(w)u
(
c
(
η, w, τ

))
dη dw

s.t.

∫
η

∫
w

f(η)f(w)
I∑
i=1

τici(η, w, τ )dη dw ≥ R̄

(10)

This is equivalent to a specific weighting of both total utility and total revenue in the

policy maker’s objective function. However, this approach can accomodate any well

defined objective function with any weighting scheme.3

The optimization problem (10) is not convex because the individual demand func-

tions cannot be aggregated. This is due to the general specification of the CES total

consumption aggregator (1) as well as the heterogeneity across household types (η, w).

The solution to the policy maker’s problem is a tax schedule τ will be a function of

the distribution of consumer types in the economy τ
(
f(η, w)

)
. However, finding

this solution to the nonconvex optimization problem (10) requires a new solution

technique.

2.3 Calibration

For the experiment that follows, we calibrate our sales tax model to fit U.S. data

as well as some parameter values taken from other studies. Table 4 summarizes

the calibration. The first dimension of heterogeneity among the households in our

model is the elasticity of substitution among consumption goods η. We calibrate the

distribution of the different elasticities of substitution across individuals in our model

to be uniformly distributed η ∼ U [3.7, 4.5]. This is consistent with an estimated

3Notice that policy maker’s objective function (10) implies that each individual in the economy
is weighted equally because we use f(η, w) as the weighting function. Saez and Stantcheva (2013)
derive endogenous welfare weights that are a function of society’s preferences for redistribution.
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average price over marginal cost markup in the U.S of about 1.32 or 32%, and markup

range from 1.25 to 1.37. Christopoulou and Vermeulen (2012) estimate the price over

marginal cost markup in the U.S. to have been about 1.32 or 32% in the 1990s. In

DSGE models with imperfect competition, the equilibrium markup is η/(η − 1), a

function of the constant elasticity of substitution among differentiated consumption

goods.

Table 1: Calibration parameters, matching targets, and sources

Parameter Value/Distribution Matching target
η U [3.7, 4.5] 1.32 average U.S. markup

w GG(a, b,m), CPS 2011 household income bracket
a = 1.67, b = 20510, m = 0.74 count data

γ 2 Estimates of CRRA between 2 and 10

Average markup estimates for η come from Christopoulou and Vermeulen (2012). Our GG approximation
of the distribution of U.S. household income was estimated by generalized method of moments following
McDonald et al. (2013) and uses Current Population Survey income bracket count data from Current
Population Survey (2012, Table HINC-01). For estimates of the constant coefficient of relative risk aversion,
see Mankiw and Zeldes (1991), Blake (1996), Campbell (1996), Kocherlakota (1996), and Mehra and
Prescott (1985).

For the distribution of income w in our model we follow McDonald et al. (2013)

and use the simplest distribution from the generalized beta (GB) family that captures

well the fat right tail of the income distribution. We use 42 moments from the

U.S. household income distribution of 2011 reported in Current Population Survey

(2012, Table HINC-01). We use generalized method of moments to test a number of

distributions from the GB family, and the three-parameter generalized gamma (GG)

distribution had the best fit. Table 4 shows the estimated values for parameters a, b,

and m of the GG distribution, and Figure 1 shows how the estimated GG distribution

fits the empirical data.4

We use the Consumer Expenditure Survey (CEX) 2011 broad category summary

tables data to calibrate the expenditure shares αi in the model, as well as the min-

imum consumptions c̄i. We aggregate expenditures into eight categories (I = 8):

4The Technical Appendix details how we estimated the generalized gamma (GG) distribution,
how well it fit the moments, and how it outperformed other distributions.
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Figure 1: Histogram of U.S. household income
and estimated generalized gamma
(GG) distribution
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food, transportation, entertainment, owned dwellings, rented dwellings, alcohol and

tobacco, other (taxed), and other (not taxed). We divided expenditures into eight

categories for the following two reasons. First, the more consumption categories in-

creases the computational requirments for solving the model. Second, we wanted to

separate out some of the key consumption categories that apear in tax policy de-

bates. In particular, we will focus one of our experiments on the commodity category

of “other (not taxed)”. This category includes many of the services that have no sales

tax in the United States, such as personal services, vehicle finance charges, vehicle in-

surance, health care, and education. A more complete description of the consumption

categories and what they include is in Appendix A-2.

Figure 2 shows average total expenditure by household income category on each of

the eight categories of consumption goods. One problem withe the measure of income

on the x-axis of Figure 2 is that it does not match up well with the concept of income

in our model. Our static model includes no savings decisions. However, income in the

CEX is used for both consumption and savings. For this reason, we compute total
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Figure 2: Consumption expenditure by house-
hold income category of eight goods

	
  $-­‐	
  	
  	
  	
  

	
  $5,000	
  	
  

	
  $10,000	
  	
  

	
  $15,000	
  	
  

	
  $20,000	
  	
  

	
  $25,000	
  	
  

	
  $30,000	
  	
  

Less	
  than	
  
$5,000	
  

$5,000	
  to	
  
$9,999	
  

$10,000	
  
to	
  

$14,999	
  	
  

$15,000	
  
to	
  19,999	
  

$20,000	
  
to	
  

$29,999	
  

$30,000	
  
to	
  

$39,999	
  

$40,000	
  
to	
  

$49,999	
  

$50,000	
  
to	
  

$69,999	
  

$70,000	
  
to	
  

$79,999	
  

$80,000	
  
to	
  

$99,999	
  	
  

$100,000	
  
to	
  

$119,999	
  

$120,000	
  
to	
  

$149,000	
  

$150,000	
  
and	
  more	
  

Av
er
ag
e	
  
ho

us
eh

ol
d	
  
ex
pe

nd
itu

re
	
  

CEX	
  income	
  categories	
  

Food	
  

Transporta=on	
  

Entertainment	
  

Other	
  (not	
  taxed)	
  

Other	
  (taxed)	
  

Owned	
  dwellings	
  

Rented	
  dwellings	
  

Alcohol	
  and	
  tobacco	
  

expenditure by households in a particular income category as our empirical analog of

income in our model. Figure 3 shows the expenditures from Figure 2 as a percent of

average total expenditure by households in a particular income category.

We estimate the minimum consumption of the poorest individuals c̄i and the

consumption expenditure share of the wealthiest individuals αi as the coefficients

from the following regression,

ci,j = c̄i + αiAV GTOTEXPj + εi,j ∀i, j (11)

where ci,j is the average consumption of the ith good by the average household in the

jth income category, AV GTOTEXPj is the average total consumption expenditure

by households in income category j, and εi,j is a zero-mean, i.i.d. random variable.

Table 2 presents the estimated values for c̄i and αi obtained by running the OLS

regression in (11) for each of the eight consumption goods categories. Because neg-

ative values for minimum consumption levels c̄i and expenditure shares αi do not

make sense, we adjust our calibration of the minimum consumption of goods that are

projected to be negative for AV GTOTEXPj = 0 to be c̄i = 0. This adjustment was

made for the four categories of Transportation, Entertainment, Other (taxed), and
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Figure 3: Expenditure share by average total
household consumption
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Owned dwellings. The adjustment of αi = 0.01 for any initially estimated αi < 0 only

had to be implemented for the one consumption category of Alcohol and tobacco. For

our calibration of c̄i and αi, we use the adjusted values in the rightmost two columns

of Table 2.5

Because the coefficient of relative risk aversion γ does not change the household’s

optimal consumption decision c, we did not include it as a dimension of heterogeneity

across households. However, variation in this parameter does affect the optimal tax

policy τ because it affects the utility levels of households, and total utility is one of

the inputs to the government objective. We choose the parameter value γ = 2 for

all households, which is a common value in within the range of 2 to 10 found in the

literature.6

5Note from Figure 2 that a linear specification as in (11) is likely not fully appropriate. How-
ever, a linear specification is the only one that allows us to estimate, in a consistent manner, the
consumption minimum c̄i and the expenditure share αi for each consumption category i. If we did
a log specification for AV GTOTEXPj , we would not be able to estimate c̄i by taking the predicted
value of ci,j at AV GTOTEXPj = 0. We would also not be able to estimate the consumption share
of the wealthiest individuals αi by letting AV GTOTEXPj go to infinity because the share would
necessarily go to zero. The same problems exist for a quadratic specification of (11). For this reason,
we use the linear specification to calibrate our model.

6See Mankiw and Zeldes (1991), Blake (1996), Campbell (1996), Kocherlakota (1996), and Mehra
and Prescott (1985).
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Table 2: Estimated c̄i and αi

Implied demand

Consumption initial initial adjusted adjusted elasticity ranking

category (i) c̄i αi c̄i αi (lowest to highest)a

Food $691 0.135 $691 0.135 3

Transportation -$957 0.189 $0 0.189 6

Entertainment -$605 0.074 $0 0.074 5

Other (not taxed) $29 0.140 $29 0.140 4

Other (taxed) -$123 0.249 $0 0.249 8

Owned dwellings -$3,269 0.223 $0 0.223 7

Rented dwellings $4,012 -0.025 $4,012 0.010 1

Alcohol and tobacco $222 0.014 $222 0.014 2

Source: Consumer Expenditure Survey 2011 Broad Summary Table.
a Demand elasticities are inversely related to c̄iα

−η
i . We calculated ranking for average η = 4.1. See

Technical Appendix for derivation.

3 Solution Method

Our big data approach to solving for the optimal tax policy τ
(
f(θ)

)
is an iterative

process. We first specify the type space of households, the tax policy space, and

the type space distribution. We then create a large database containing a diverse

collection of household responses to a diverse collection of tax policies. Using the

distribution for the type space, we compute societal utility and total revenue for each

tax policy in the sample. We then strategically add new tax policies to the database

near the area of interest and repeat the process to find societal utility and total revnue

for these new policies. We can continue to add new policies to the database until a

sufficient level of refinement is achieved.

We define the type space to be Θ = [3.7, 4.5] × [8000, 500000], where a point

θ ∈ Θ, θ = (η, w) describes a household. We choose a set of M equidistributed

points {θm}Mm=1 to represent a simulated sample of households.7 For our eight good

model, the tax policy space is defined to be T = (0, 1)8, where a point τ ∈ T, τ =

(τ1, τ2, . . . , τ8) describes a potential tax policy. We choose a set of N equidistributed

points {τn}Nn=1 to represent a simulated approximation of all possible tax policies. In

order to ensure that the simulated households θm and policies τn are representative

7See Technical Appendix T-2 for more information on equidistributed sequences and quasi-Monte
Carlo integration.
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of the space, M and N must be large. Note that more sample households and tax

policies can be added to the database at a later time if further refinement is desired.

We now consider the set {τn}Nn=1 × {θm}Mm=1. This represents the N tax policies

that may be faced by each of the M household types. We must solve for the household

optimal choice c(θ, τ ) for every possible combination of τn and θm, which requires

solving a total of M ×N optimization problems. We use parallel processing to divide

these independent optimization problems evenly across nodes on supercomputer. We

compute the optimal household consumption of each good c
(
θm, τn

)
. From this we

get household utility u
(
c
(
θm, τn

))
as well as the revenue generated by that household

r
(
θm, τn

)
=
∑8

i=1 τici
(
θm, τn

)
.

These values for utility and revenue are then stored as a list of length M × N .

Since the equidistributed sequences are deterministic and thus perfectly replicable,

we can save on storage space by not storing the actual values of each θm = (ηm, wm).

We store the values in an HDF (Hierarchical Data Format) database. HDF is a

database format that allows very large databases to be stored in shared fashion across

multiple machines. It also allows for parallel input and output, and is optimized for

non-contiguous access. This is necessary, as during the computation process there

are numerous processes that need simultaneous access to non-adjacent portions of

the database. Collette (2013) is a great reference for using HDF5 with the Python

programming language.

We access the HDF database and compute a societal welfare measure U
(
τn
)

and

a total revenue measure R
(
τn
)

for each tax policy τn using the joint density function

f(η, w),

U
(
τn
)

=
M∑
m=1

f(θm)u
(
c(θm, τn)

)
∀ τn (12)

R
(
τn
)

=
M∑
m=1

f(θm)r
(
θm, τn

)
∀ τn. (13)

This step is relatively cheap computationally, and amounts to performing quasi-Monte

Carlo integration.
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We use a linesweeping algorithm to find any tax policies that are strictly domi-

nated in terms of both social welfare Un and total revenue Rn. We make a list of tax

policies that are not dominated. Call these dominating points D1 = {τn}N1
n=1, where

N1 ≤ N is the number of tax policies that were not strictly dominated.

We next refine our analysis of tax policies around the policies that were not strictly

dominated. We expand the policy space by adding in new tax policies that are εp

away from the elements of D1. The complete set of new tax policies to analyze is

given by the following tensor product:

D2 = {τn}N2
n=1 = {τ ⊗ [−εp, εp] | τ ∈ D1} (14)

We solve the household problem for all household types θm for each τ ∈ D2 and

add the corresponding u
(
c
(
θm, τn

)
and r

(
θm, τn

)
to the database. We then repeat the

linesweep algorithm to find the points that are strictly dominating, D3. We continue

expanding the database using this iterative process until we have traced out a smooth

total welfare-total revenue possibilities frontier of tax policies.

Note that after each iteration we keep all of the solutions and do not delete the

dominated points, since changing the distribution will change the points that are

dominated. This allows us to quickly examine how the results would change for a

different distribution.

Table 3 shows the size of the type space and policy space for our database, as well

as the computational time and final database size, for three iterations.

Table 3: Computation time and database size for three iterations utilizing
96 processors

Refine- Points Points Incremental Total

ment in type in policy database revenue-utility

iteration space space computation computation Size of

p M N M ×N time time database

1 5, 100 12, 000 61, 200, 000 5.8 hours 25.1 seconds 1.0 GB

2 5, 100 34, 426 175, 572, 600 12.1 hours 61.4 seconds 2.8 GB

3 5, 100 57, 786 294, 708, 600 11.6 hours 120.1 seconds 4.7 GB
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4 Results

We use our solution method from Section 3 on the model with heterogeneous house-

holds and eight consumption goods described in Section 2 to perform three experi-

ments. The first experiment is to compare the total utility-revenue frontiers and the

corresponding sets of optimal tax policies when the tax policy is allowed to be opti-

mally set for each good (differentiated tax policy) versus a tax policy in which the

rate on each of the goods is constrained to be equal (flat tax policy). Next, we show

how the optimally differentiated tax policy is affected by a change in the underlying

distribution of income.

Our last experiment is to study how the optimal total utility-revenue frontier and

the corresponding set of optimal differentiated tax policies change when one class of

goods is exempted from the tax. For this experiment, we use the “Other (not taxed)”

category from our calibration.

4.1 Optimal differentiated sales tax versus optimal flat tax

Our first experiment is to study the differences in economic outcomes between an

unconstrained optimal sales tax schedule τ̂ that is allowed to be differentiated across

goods i versus a flat tax schedule in which the tax rates across all goods are constrained

to be equal τ̄ such that τi = τj. Figure 4 shows the difference in total utility versus

total revenue frontiers associated with the two policy types. Each point on the two

curves in Figure 4 represents a tax policy that is not strictly dominated in terms of

total revenue and total utility given the underlying parameters of the model.8

Figure 5 shows how the optimal tax rate for each good i changes along the frontier

from Figure 4 in terms of total revenue.9 The first goods categories on which the op-

8Note that total revenue-total utility frontier for the optimally differentiated tax policy does not
have any revenues for the low levels of total utility that exist for the flat tax. This is because our tax
policy space is bounded above somewhat arbitrarily by tax rates of 100 percent. If we had allowed
the tax policy space to have a higher upper bound we could have populated that frontier in that
extreme portion of Figure 4. However, we think commodity tax rates beyond 100 percent are not
interesting for our broad categories of consumption goods.

9The smooth lines in Figure 5 are actually fitted logistic functions that minimize the L1 norm
of the points in tax policy space. This is because more fuzziness exists in the exact location of the
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Figure 4: Total utility-revenue frontiers for op-
timal differentiated tax versus optimal
flat tax

timal tax rates increase as the revenue requirements increase are alcohol and tobacco,

entertainment, and rented dwellings. These goods have some of the lowest average

elasticities of demand as shown in the last column of Table 2. The optimal tax rates

that are the last to go up—other (taxed), owned dwellings, and transportation—have

the highest average elasticities of demand.10

A broad initial interpretation of our results here confirms the Ramsey (1927)

finding that optimal tax rates should vary with the elasticity of demand for a given

good. With the underlying heterogeneity in elasticities of substitution, and thereby

elasticities of demand, an optimally differentiated tax policy allows the policy maker

to maximize total revenue collection given a particular total utility level. The optimal

policies for the flat tax regime are everywhere interior to the optimally differentiated

optimal tax rates than in the resulting total utility and total revenue. Figure 18 in the Technical
Appendix, which is available upon request, shows an example.

10The elasticity of demand of individual j on good consumption good i is a function of individual
j’s elasticity of substitution among consumption goods ηj , his total consumption Cj (which is a
function of income wj), the minimum consumption of that particular good c̄i, and the expenditure
share of the wealthy on that good αi. Although the elasticity varies for each individual based on
ηj and wj , each individual’s elasticity is inversely related to the product c̄iα

−ηj
i . So the elasticty

increases with αi and decreases with c̄i. See the Technical Appendix for a derivation.
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Figure 5: Optimal tax rates for good i for differ-
ent levels of total revenue

sales tax regime.

However, we find that the revenue loss of an optimal flat tax regime relative to

the optimally differentiated tax regime might not be that large. Figure 6 shows the

percent loss in total revenue for a given total utility level for each of our experiments.

The solid line in Figure 6 shows the revenue loss percent for the flat tax versus the op-

timally differentiated tax. The most revenue lost by the policy is just over 30 percent.

This loss might not be that large if one considers the information and enforcement

requirements and costs associated with an optimally differentiated sales tax system.

We interpret this as evidence that a broad-based flat tax system might be a reasonable

option for fundamental tax reform. Performing this experiment merely entailed re-

computing the total revenue-total utility frontier on a portion of the database, which

only took 1.4 seconds of computation time in contrast to the multiple hundred CPU

hours to compute the database as shown in Table 3.
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Figure 6: Percent loss in total revenue from op-
timal flat tax relative to optimal differ-
entiated tax
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4.2 Effect of exempting services

Our final experiment might have the most relevance to the U.S. economy. We compare

the total revenue-total utility frontier from the optimally differentiated sales tax policy

on all eight consumption goods from Section 4.1 to an optimally differentiated tax

policy on only seven goods with the eighth good being exempted. For this experiment,

we use the consumption category from our calibration in Section 2.3 of “Other (not

taxed)” to be our exempted category.

As is described in Table 4 of Appendix A-2, the “Other (not taxed)” consumption

category includes goods such as household services, vehicle finance charges, vehicle

insurance, health care, and education. These categories are not taxed in the United

States and represent approximately 14 percent of all U.S. consumption expenditures.

Figure 7 shows the difference in total revenue-total utility frontiers between the

optimally differentiated unconstrained sales tax policy versus the optimal policy with

the nontaxed services category exempted. The loss in total revenue for a given total
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Figure 7: Total utility-revenue frontiers for op-
timal differentiated tax versus opti-
mal differentiated tax with services ex-
empted

Figure 8: Difference in other seven optimally dif-
ferentiated tax rates including non-
taxed services minus tax rates exempt-
ing services
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Figure 9: Total utility-revenue frontiers for opti-
mal flat tax versus optimal flat tax with
services exempted

utility level is roughly constant at about 2 percent for all levels of total utility. This is

because the estimated share parameter αi from the utility function is estimated to be a

mid-to-low range value of αi = 0.14, as shown in Table 2. In addition, the estimated

minimum consumption for this category is very low at c̄i = $29. This implies a

relatively high elasticity of demand for nontaxed services, and exempting them only

slightly impairs the ability of the policy maker to raise revenue. The elasticities of

demand for most of the other goods are lower relative to that of nontaxed services.

Figure 8 shows the difference in taxes for each good i, which is the optimal dif-

ferentiated tax exempting services minus the optimal differentiated tax including an

optimal tax on services. For low levels of total revenue, the revenue lost from ex-

empting services is made up primarily by increases in the low elasticity of demand

categories of entertainment, alcohol and tobacco, and rented dwellings. The optimal

tax on rented dwellings increases by a maximum of 30 percent. However, at the high

end of total revenues, it is primarily through tax increases on the high elasticity of

demand categories of other (taxed), owned dwellings, and transportation that the

difference is made up.
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We test whether this result is specific to the optimally differentiated tax exper-

iment by repeating it in a flat tax environment. That is, we compare the total

revenue-total utility frontier from an optimal flat tax regime to that of an optimal

flat tax in which the services category tax rate is constrained to be zero. Figure 9

shows the difference in total utility-revenue frontiers. The loss in total revenue for a

given utility level is still small. The loss from the exempted flat tax relative to the all

inclusive flat tax is roughly constant at nearly 3 percent for all levels of total utility,

very similar to the loss of the exempted differentiated tax regime relative to the all

inclusive differentiated tax regime.

For those interested in fundamental tax reform that broadens the tax base, this

experiment suggests that economy-wide commodity taxation could maintain the ex-

emption for services that currently exists in the U.S. tax system without overly im-

pairing the ability of the policymaker to raise revenue. These two experiments with a

services exemption and recomputing the total revenue-total utility frontier only took

3.4 seconds of computation time in contrast to the multiple hundred CPU hours to

compute the database as shown in Table 3.

5 Conclusion

This paper proposes and describes a solution method for optimal policy problems

that involve large dimensions of heterogeneity, nonconvex policy-maker optimization

problems, and potential policy objective uncertainty. We use a big data approach

to generate a large database of agent behaviors across the space of agent types and

potential policies. Once this database is generated, we can very quickly compute

frontiers in terms of the components of the policy objectives and perform experiments

on how changes in the underlying distributions and other characteristics of the model

affect the optimal outcomes.

We demonstrate this method by performing two experiments in an environment

calibrated to the United States looking at optimal commodity taxation. We assume

the objective of the policy maker includes total revenue and societal utility as com-
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ponents, but we make no assumptions as to the weighting of those components. We

first test how the total revenue-total utility frontier changes from an environment in

which the commodity taxes for each good can be set independently and optimally

verses a flat tax environment in which all commodity tax rates are equal and are

set optimally. We find that the percent loss of restricting policy to a flat tax regime

incurs a loss no higher than 32 percent for a given level of total utility, but often

much less than 30 percent. If one thinks that the information and enforcement costs

of an optimally differentiated commodity tax are sufficiently high, this result could

be evidence that a broad-based flat tax might be a good practical tax policy.

We also measure the effect of exempting a particular class of consumption good.

In the United States, as well as in many other countries, many services are not taxed.

Because the elasticity of demand is relatively high for the services that are exempted

in the U.S. economy, we find a very small loss in terms of total revenue for a given

level of total utility. This relationship is robust to the level of total utility and to

whether the tax regime is an optimally differentiated sales tax or an optimal flat

tax. In both cases, the loss in total revenue is everywhere less than 3 percent. This

suggests that any tax reform that maintains the tax exemption for services might not

overly impair the ability of the policy maker to raise revenue.
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APPENDIX

A-1 Hybrid function to deal with minimum con-

sumption requirement

Because some household’s income is not enough to purchase the minimum consump-
tion of each good, as described in (9), the total consumption aggregator (1) will be
undefined for consumption levels less than the minimum ci < c̄i and household utility
(2) will be negative infinity if any one of the household consumption levels is equal
to the minimum ci = c̄i.

C ≡

(
I∑
i=1

αi(ci − c̄i)
η−1
η

) η
η−1

∀η ≥ 1 (1)

u(C) =
C1−γ − 1

1− γ
∀γ ≥ 1 (2)

The problem is that, given a tax schedule τ = {τi}Ii=1, some households income
w is not sufficient to be able to afford the minimum amount of consumption.

I∑
i=1

(1 + τi)c̄i > w (A.1)

This is a problem because the exponent inside the large parentheses in (1) is undefined
for ci < c̄i. The numerical methods used require that the utility function is everywhere
defined. We will construct functions that extend the utility function and consumption
aggregator so that they are globally valid.

Define the function g1(c) in the following way.

g1(c) = c
η−1
η ∀c ≥ 0, η > 1 (A.2)

Figure 10 shows a graph of g1(c) for η = 4.2. Note that g1(c) is not defined for c < 0.

We need a function equal to g1(c) above some cutoff ε0 > 0 close to zero, but
have it be defined for c < 0. We will construct a function g(c) which has two pieces
g1(c) and g2(c) and join them with a smooth transition. The piece for low values of
consumption g2(c) should be a concave, monotone increasing function. The quadratic
function is a good candidate. We want to stitch the function g2(c) to g1(c) for all
c < ε0. This quadratic function g2(c) must equal g1(c) at ε0 and have the same first
and second derivatives at that point.

g2(c) = a0 + a1c+ 1
2
a2c

2 ∀a0, a1, a2, c

s.t. g2(ε0) = g1(ε0),

g′2(ε0) = g′1(ε0),

g′′2(ε0) = g′′1(ε0),

(A.3)
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Figure 10: Function g1(c) for c ≥ 0 and η = 4.2
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Figure 11: Function g(c) for η = 4.2 and ε0 = 0.1
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We can solve for the three unknown coefficients a0, a1, and a2 in (A.3) from the three
conditions about connecting, first derivative, and second derivative. The solution is
the following:

a0 =
(1 + η)ε

η−1
η

0

2η2

a1 =
(η2 − 1)ε

− 1
η

0

η2

a2 = −(η − 1)ε
− η+1

η

0

η2

(A.4)

Define the new hybrid function g(c) in the following way.

g(c) =

{
g1(c) for c ≥ ε0

g2(c) for c < ε0

(A.5)

Figure 11 shows the hybrid function g(c).
In order to finish constructing our aggregator, we now need to construct the inverse

function. To construct the inverse aggregator we choose a cutoff of ε1 = g(ε0). Note
that the value of ε1 is dependent on η, and as such will be different for each household.
We define the inverse of g(c) to be the following.

g−1(c) =

{
g−1

1 (c) for c ≥ ε1

g−1
2 (c) for c < ε1

(A.6)

This again provides a smooth transition. Figure 12 shows the hybrid function g−1(c).
For computational purposes, we will use the following aggregator function,

C ≡ g−1

(
I∑
i=1

αig(ci − c̄i)

)
(A.7)

where g(·) is given in (A.5) and g−1(·) is given in (A.6). This function will behave
just like (1) for most individuals. But the adjusted aggregator in (A.7) will also
accomodate consumption of individual goods less than the minimum ci < c̄i, which is
necessary for some individuals with low enough incomes as well as for computation.

A similar problem arises with the utility function (2). The aggregated consump-
tion from (A.7) may take on values where the utility function is not defined. We can
apply the same extension technique to make the utility function everywhere defined.

Define the function h1(c) in the following way.

h1(c) =
c1−γ − 1

1− γ
∀γ ≥ 1 (A.8)
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Figure 12: Function g−1(c) for η = 4.2 and ε1 = 0.17
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Figure 13: Function h(c) for γ = 2 and ε2 = 0.2
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As before, we need a function equal to h1(c) above some cutoff ε2 > 0 which is
defined for c ≤ 0. We will construct a globally valid h(c) consisting of two pieces
joined together with a smooth transition at ε2. We again use a quadratic form, and
define the second piece as follows.

h2(c) = b0 + b1c+ 1
2
b2c

2 ∀b0, b1, b2, c

s.t. h2(ε2) = h1(ε2),

h′2(ε2) = h′1(ε2),

h′′2(ε2) = h′′1(ε2),

(A.9)

Given these three conditions, we can solve for the coefficients b0, b1, and b2 in
(A.9). The solution is the following:

b0 =
ε−γ2 (−γε2 − γ2ε2 + 2εγ2)

2(γ − 1)

b1 = ε−γ2 (1 + γ)

b2 = −γε−1−γ
2

(A.10)

We can now define the hybrid utility function as follows.

h(c) =

{
h1 = (c) for c ≥ ε2

h2 = (c) for c < ε2

(A.11)

Figure 13 shows the hybrid function h(c). For computational purposes we will use
h(·) as given in (A.11) as the utility function. This function will behave just like (2)
for most individuals, but will be everywhere defined.
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A-2 Consumer Expenditure Survey (CEX) cate-

gory description and estimation of αi and c̄i

To calibrate the expenditure share of the wealthiest individuals αi and the mini-
mum consumption levels c̄i, we used U.S. consumption data from the broad category
summary tables of the 2011 Consumer Expenditure Survey (CEX). We aggregate ex-
penditures into eight categories (I = 8): food, transportation, entertainment, owned
dwellings, rented dwellings, alcohol and tobacco, other (taxed), and other (not taxed).
Table 4 details the individual consumption expenditure categories that make up each
of the eight broad consumption categories that we use.

Figure 2 shows average total expenditure by household income category on each of
the eight categories of consumption goods. One problem withe the measure of income
on the x-axis of Figure 2 is that it does not match up well with the concept of income
in our model. Our static model includes no savings decisions. However, income in the
CEX is used for both consumption and savings. For this reason, we compute total
expenditure by households in a particular income category as our empirical analog of
income in our model. Figure 3 shows the expenditures from Figure 2 as a percent of
average total expenditure by households in a particular income category.

We estimate the minimum consumption of the poorest individuals c̄i and the
consumption expenditure share of the wealthiest individuals αi as the coefficients
from the following regression in (11). Table 2 presents the estimated values for c̄i and
αi obtained by running the OLS regression in (11) for each of the eight consumption
goods categories. Because negative values for minimum consumption levels c̄i and
expenditure shares αi do not make sense, we adjust our calibration of the minimum
consumption of goods that are projected to be negative for AV GTOTEXPj = 0
to be c̄i = 0. This adjustment was made for the four categories of Transportation,
Entertainment, Other (taxed), and Owned dwellings. The adjustment of αi = 0.01 for
any initially estimated αi < 0 only had to be implemented for the one consumption
category of Alcohol and tobacco. For our calibration of c̄i and αi, we use the adjusted
values in the rightmost two columns of Table 2.

Note from Figure 2 that a linear specification as in (11) is likely not fully appro-
priate. However, a linear specification is the only one that allows us to estimate, in a
consistent manner, the consumption minimum c̄i and the expenditure share αi for each
consumption category i. If we did a log specification for AV GTOTEXPj, we would
not be able to estimate c̄i by taking the predicted value of ci,j at AV GTOTEXPj = 0.
We would also not be able to estimate the consumption share of the wealthiest individ-
uals αi by letting AV GTOTEXPj go to infinity because the share would necessarily
go to zero. The same problems exist for a quadratic specification of (11). For this
reason, we use the linear specification to calibrate our model.
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Table 4: Detail of CEX categories included in eight broad
model categories

Model category Broad CEX category Specific CEX category

Food Food all subcategories

Transportation Transportation all subcategories minus

vehicle finance charges

and vehicle insurance

Entertainment Entertainment all subcategories

Owned Housing Shelter:

dwellings Owned dwellings

Rented Housing Shelter:

dwellings Rented dwellings

Alcohol and Alcoholic Beverages n/a

Tobacco Tobacco products and n/a

smoking supplies

Other Housing Shelter: Other lodging

(taxed) Utilities, fuels, and public

services

Household operations: Other

household expenses

Housekeeping supplies

Household furnishings and

equipment

Apparel and services all subcategories

Personal care products n/a

and services

Reading n/a

Miscellaneous n/a

Other Housing Household operations:

(not taxed) Personal services

Transportation Other vehicle expenses:

Vehicle finance charges

Vehicle insurance

Health care all subcategories

Education n/a

The two expenditure categories of “Cash contributions” and “Personal insurance and pen-
sions” were excluded because they could be classified more as savings than as consumption.
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TECHNICAL APPENDIX

T-1 Fitting a generalized gamma (GG) distribu-

tion to the U.S. income distribution

McDonald (1984) and McDonald et al. (2013) have documented that the members
of the generalized beta (GB) family of distributions with three parameters or more
fit the U.S. distribution of income much better than the more commonly used two-
parameter distributions in the GB family, such as the log normal distribution. Figure
14 shows the GB family of distributions. In our case, the generalized gamma (GG)
distribution captures both the shape of the distribution where most of the mass is as
well as the thick tails.

Figure 14: Generalized beta family of distributions [taken from McDonald and Xu
(1995, Fig. 2)]

Our approach to fitting the best distribution from the GB family of distributions
in Figure 14 is to start with a simple two-parameter distribution. Because of the
shape of the empirical histogram in Figure 15 (which is just a reproduction of Figure
1 from the paper), we start with the gamma (GA) distribution shown in (T.1.1).

(GA) : f(y; a, b) =
1

baΓ(a)
ya−1e−( yb ) y ∈ [0,∞), a, b > 0 (T.1.1)
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Figure 15: Histogram of U.S. household income
and estimated generalized gamma
(GG) distribution
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The GMM estimated parameters of the gamma (GA) distribution are a = 1.36
and b = 48, 362. The fit of the GA distribution is shown in Figure 15 and listed in
the fourth column of Table 5. The fit of the GA distribution is pretty good, although
it does not put enough density in the $20,000 to $50,000 and above $200,000 income
ranges and puts too much density in the $80,000 to $120,000 range.

We then use the estimates for a and b from the two-parameter gamma (GA)
distribution and move one rung up the generalized beta (GB) distribution family
tree in Figure 14 to the three-parameter generalized gamma (GG) distribution. The
probability density function for the generalized gamma distribution is the following.

(GG) : f(y; a, b,m) =
m

baΓ
(
a
m

)ya−1e−( yb )
m

y ∈ [0,∞), a, b,m > 0 (6)

It is clear from comparing the generalized gamma (GG) distribution in (6) to the
gamma (GA) distribution in (T.1.1) that the GA is a nested case of the GG.

GA(y; a, b) = GG(y; a, b,m = 1) (T.1.2)

We use the GMM estimates of the two gamma (GA) parameters, as well as m = 1,
as initial guesses for the generalized gamma (GG) parameters in the GMM estimation.
The estimated GG parameters are reported in Table 4 and are a =?, b =?, and m =?.
Figure 15 shows that the GG distribution fits better than the GA distribution in
the $20,000 to $50,000, $80,000 to $120,000, and above $200,000 income ranges. The
fifth column of Table 5 lists how well the GG moments match the empirical moments.
In particular, note that the mean income from the estimated GG distribution comes
closer to matching the empirical mean income. This signifies that the GG distribution
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is doing a better job of matching the fat right tail of the income distribution than is
the GA distribution.

We did go one more rung up the generalized beta (GB) distribution tree in Figure
14 and estimated a four-parameter generalized beta 2 (GB2) distribution. However,
with the 42 empirical moments of the U.S. income distribution that we have, the fit
of the GB2 is nearly identical to that of the generalized gamma (GG) distribution.
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Table 5: Distribution of Household Money Income by
Selected Income Class, 2011 and estimated GA
and GG fit

Income # households households GA est. GG est.

class (000s) % % %

All households 121,084 100.0 100.0 100.0
Less than $5,000 4,261 3.5 3.5 2.9
$5,000 to $9,999 4,972 4.1 5.0 5.0
$10,000 to $14,999 7,127 5.9 5.5 5.7
$15,000 to $19,999 6,882 5.7 5.6 5.9
$20,000 to $24,999 7,095 5.9 5.5 5.8
$25,000 to $29,999 6,591 5.4 5.4 5.6
$30,000 to $34,999 6,667 5.5 5.1 5.3
$35,000 to $39,999 6,136 5.1 4.9 5.0
$40,000 to $44,999 5,795 4.8 4.6 4.7
$45,000 to $49,999 4,945 4.1 4.3 4.3
$50,000 to $54,999 5,170 4.3 4.0 4.0
$55,000 to $59,999 4,250 3.5 3.8 3.7
$60,000 to $64,999 4,432 3.7 3.5 3.4
$65,000 to $69,999 3,836 3.2 3.2 3.1
$70,000 to $74,999 3,606 3.0 3.0 2.9
$75,000 to $79,999 3,452 2.9 2.8 2.7
$80,000 to $84,999 3,036 2.5 2.6 2.4
$85,000 to $89,999 2,566 2.1 2.4 2.2
$90,000 to $94,999 2,594 2.1 2.2 2.1
$95,000 to $99,999 2,251 1.9 2.0 1.9
$100,000 to $104,999 2,527 2.1 1.8 1.7
$105,000 to $109,999 1,771 1.5 1.7 1.6
$110,000 to $114,999 1,723 1.4 1.5 1.5
$115,000 to $119,999 1,569 1.3 1.4 1.3
$120,000 to $124,999 1,540 1.3 1.3 1.2
$125,000 to $129,999 1,258 1.0 1.2 1.1
$130,000 to $134,999 1,211 1.0 1.1 1.0
$135,000 to $139,999 918 0.8 1.0 0.9
$140,000 to $144,999 1,031 0.9 0.9 0.9
$145,000 to $149,999 893 0.7 0.8 0.8
$150,000 to $154,999 1,166 1.0 0.8 0.7
$155,000 to $159,999 740 0.6 0.7 0.7
$160,000 to $164,999 697 0.6 0.6 0.6
$165,000 to $169,999 610 0.5 0.6 0.6
$170,000 to $174,999 617 0.5 0.5 0.5
$175,000 to $179,999 530 0.4 0.5 0.5
$180,000 to $184,999 460 0.4 0.4 0.4
$185,000 to $189,999 363 0.3 0.4 0.4
$190,000 to $194,999 380 0.3 0.4 0.4
$195,000 to $199,999 312 0.3 0.3 0.3
$200,000 to $249,999 2,297 1.9 2.0 2.2
$250,000 and over 2,808 2.3 1.2 1.8
Mean income $69,677 $65,860 $67,108

Median income $50,054 $50,625 $49,625

Source: 2011 Current Population Survey household income count data Current
Population Survey (2012, Table HINC-01)
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T-2 Properties and advantages of equidistributed

sequences

Equidistributed sequences are deterministic sequences of real numbers where the pro-
portion of terms falling in any subinterval is proportional to the length of that interval.
A sequence {xj}∞j=1 ⊂ D ⊂ Rn is equidistributed over D if and only if

lim
n→∞

µ(D)

n

n∑
j=1

f(xj) =

∫
D

f(x)dx (T.2.3)

for all Riemann-integrable f(x) : Rn → R, where µ(D) is the Lebesgue measure of
D.

There are a number of equidistributed sequences that possess this property. Let
p1, p2, . . . denote the sequence of prime numbers 2, 3, 5, . . ., and let {x} represent the
fractional part of x, that is {x} = x−bxc. Table 6 contains examples of a number of
equidistributed sequences. Figure 16 shows the first 10 000 points for two-dimensional
Weyl, Haber, Niederreiter, and Baker sequences.

Table 6: Equidistributed Sequences in Rn

Name of Sequence Formula for (x1, x2, . . . , xn)

Weyl ({np1/2
1 }, . . . , {np

1/2
n })

Haber
({n(n+1)

2 p
1/2
1

}
, . . . ,

{n(n+1)
2 p

1/2
n

})
Niederreiter

({
n21/(n+1)

}
, . . . ,

{
n2n/(n+1)

})
Baker ({ner1}, . . . , {nern}), rj rational and distinct

In generating our database we use a scaled Baker sequence. The nth element of
the type space is given by

θn = (ηn, wn) =
(
0.8
(
ne2 −

⌊
ne2
⌋)

+ 3.7, 492000
(
ne3 −

⌊
ne3
⌋)

+ 8, 000
)
. (T.2.4)

The initial sample points in the policy space are similarly chosen using an eight-
dimensional Baker sequence. Figure 17 shows the equidistributed points of a two-
dimensional Baker sequence on [0, 1]2.

Quasi-Monte Carlo integration is used to integrate over the type space for each
point in policy space given the type space distribution. Quasi-Monte Carlo integra-
tion is similar to Monte Carlo integration, but chooses points using equidistributed
sequences instead of pseudorandom numbers. This allows for a faster rate of con-
vergence for a large number of points. With N points in s dimensions, quasi-Monte

Carlo techniques converge in O
(

(logN)s

N

)
as opposed to O

(
1√
N

)
for Monte Carlo

techniques. 11

11See Judd (1998, Ch. 9) on quasi-Monte Carlo methods for a more thorough discussion of the
advantages of using equidistributed sequences to execute simulation-based methods
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Figure 16: Four two-dimensional equidistributed
sequences with n = 10 000

A key distinction between equidistributed sequences and pseudorandom sequences
is that equidistributed sequences do not “look like” random numbers. As can be seen
in Figures 16 and 17, they generally display substantial serial correlation. From the
outset, equidistributed sequences are chosen so as to perform accurate integration,
and are not encumbered by any other requirements of random numbers

There are other practical advantages to using equidistributed sequences in this
setting aside from the merits of quasi-Monte Carlo integration. Using equidistributed
sequences enables us to represent the entire space of households and tax polices as
a one-dimensional M × N list, which allows for easy partitioning across computing
nodes. Additionally, using equidistributed sequences makes for easy expansion of the
database. One has merely to append addtional points to the end of the list.
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Figure 17: Two-dimensional Baker sequence on
[0, 1]2 for n = 30, n = 100, and n = 1 000
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T-3 Fitting polynomials to individual good i tax

policies on the frontier

Each point in the total utility-total revenue frontiers shown in Figures 4 and 7 rep-
resents a tax policy τ = {τ1, τ2, . . . τI} that is not strictly dominated by any other
policy in terms of both total utility and total revenue. Figure 5 shows how each of the
optimal tax rates τi changes along the total utility-total revenue frontier. However,
due to the higher number of dimensions in policy space, the computed path of taxes
is relatively fuzzy compared to the smoothness of the corresponding total utility-total
revenue frontier. For this reason, we use logistic function approximations that mini-
mize the L1 distance to the points on the tax path to produce the curves in Figure
5.

Suppose that there are a total of n points along the total utility-total revenue
frontier. Then we have a list of tax policies τ1, τ2, . . . , τn and the corresponding
values for total revenue r1, r2, . . . , rn. We will write the tax on good k corresponding
to revenue ri as τi,k. We use the following form of the generalized logistic function,
paramaterized by A, B, and C, to represent τi,k as a function of total revenue.

fk(ri) =
1

1 + AkeBk(ri−Ck)
(T.3.5)

For each good k, we calculate the values of Ak, Bk, and Ck that minimize the sum of
the absolute values of the residuals,

∑n
i=1 |τi,k − fk(ri)|. Figure 18 shows an example

of the logistic function fit for the food category.

Figure 18: Logistic fit of optimal differentiated
tax on food category for points on to-
tal revenue frontier
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T-4 Derivation of price elasticity of demand

We derive the price elasticity of demand of individual household j for consumption
good i by solving for the individual demand function ci without normalizing prices
pi. Household j maximizes,

max
{cij}Ii=1

([∑I
i=1 αi (cij − c̄i)

ηj−1

ηj

] ηj
ηj−1

)1−γ

− 1

1− γ
s.t.

I∑
i=1

picij ≤ wj (T.4.1)

Particularly note in the budget constraint that we have not normalized pi to 1 and
that the tax rate is included in pi. This means that the price elasticity of demand that
we compute will be a function of price as influenced by both tax rates and by other
factors that might influence price. Also note that we can ignore the boundary of c̄i
because only a few individuals will have that bind and we have adjusted the utility
function to be defined over all consumptions positive and negative as described in
Appendix A-1. However, these critical values add more complexity to the actual
calculation of the price elasticity of demand.

The first order condition for household j gives rise to the following demand func-
tion for consumption good i,

cij =

piCγ− 1
ηj

j

αi

−ηj + c̄ij (T.4.2)

where Cj is total consumption for individual j and is the expression in the first
parentheses in the utility function in (T.4.1). The derivative of cij with respect to
price pi is,

∂cij
∂pi

= −ηjp
ηj−1
i α

ηj
i C

1−γηj
j . (T.4.3)

The price elasticty of demand can then be written as,

∂cij
∂pi

pi
cij

= −ηj
p
−ηj
i α

ηj
i C

1−γη
j

p
−ηj
i α

ηj
i C

1−γη
j + c̄i

= −ηj
p
−ηj
i C1−γη

j

p
−ηj
i C1−γη

j + c̄iα
−ηj
i

(T.4.4)

If we normalize prices pi = 1, as we have done in our model, the final expression for
individual j’s’ price elasticity of demand for good i is the following,

∂cij
∂pi

pi
cij

= −ηj
C1−γη
j

C1−γη
j + c̄iα

−ηj
i

(T.4.5)

One way to interpret this price elasticity of demand is that the average elasticty (given
individual characteristics j) increases with αi and decreases with c̄i.
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