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What determines which inputs are initially considered and eventually adopted by innovators? We examine

the evolution of input linkages from a network perspective, starting from a stylized model of network

formation. Producers direct their search for new inputs along vertical linkages, screening the network

neighborhood of existing suppliers to identify potentially useful inputs. A subset of these is then adopted,

following a tradeoff between the benefits from input variety and the costs of customizing new inputs.

Guided by this framework, we document a novel stylized fact at both the sector and the firm level:

producers are more likely to adopt inputs that are already used – directly or indirectly – by their current

suppliers. In particular, using disaggregated input-output data, we show that initial network proximity

of a sector in 1967 significantly increases the likelihood of adoption throughout the subsequent four

decades. A one-standard deviation decrease in network distance is associated with an increase in the

adoption probability by one third to one half. Similarly, U.S. firms are significantly more likely to

develop new input linkages among their suppliers’ network neighborhood. Our results imply that the

existing production network plays a crucial role in the diffusion of inputs and the evolution of technology.
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1 Introduction

The adoption of new inputs is an important dimension of technological progress. This is true for

both product innovation – where the integration of new inputs leads to new or improved output –

and for process innovation, where new inputs can raise the efficiency of production. Input-output

linkages are also important for macroeconomic outcomes: they can amplify idiosyncratic sectoral

distortions into large aggregate productivity differences (Ciccone, 2002; Jones, 2011, 2013), and

they can create aggregate fluctuations by propagating micro-level shocks (Acemoglu, Carvalho,

Ozdaglar, and Tahbaz-Salehi, 2012). Yet, input linkages are typically taken as given; little is

known about the evolution of production networks.1

In this paper, we analyze the formation of input linkages. We ask what determines which inputs

are initially considered and eventually adopted in the production of new or improved goods.2 Sim-

ilarly, why are some inputs so much more prominent than others?3 We take a network perspective

to answer these questions. To structure our analysis, we build on a standard network formation

argument and hypothesize that producers direct their search for new inputs to the network neigh-

bourhood of their existent suppliers. Guided by this stylized model, we explore the empirical

determinants of new input link formation both at the sector and the firm level. We uncover a strik-

ing empirical regularity: producers are more likely to adopt inputs that are already used upstream

– directly or indirectly – by their current suppliers. By the same token, we find that inputs that are

initially closer to many potential adopters are more likely to diffuse widely. Our results imply that

the existing input-output network plays a key role in the formation of new linkages.

To guide our analysis, we provide a stylized model of network formation at the variety level

and then explore its sector-level implications. Each variety producer is embedded in a network of

production linkages – producers do not only interact directly with their suppliers, but also indirectly

with input producers further upstream. This gives rise to the notion of network distance between

any potential buyer-supplier pair, i.e., a producer’s distance to inputs that are not (yet) directly

used. In order to keep the analysis simple, we take the arrival of new varieties as given and focus

on their input adoption decisions. In each period, a new variety emerges exogenously. It then

1The exceptions are Atalay, Hortaçsu, Roberts, and Syverson (2011) and Oberfield (2013); both examine the

evolution of linkages at the firm level. For a recent overview of the literature on production networks see Carvalho

(2014).
2Firms often experiment with several potentially suitable inputs before making their final choice. For example,

Steve Jobs famously had the first iPhone’s screen changed from plastic to hardened glass only four weeks before mass

production began in 2007.
3The number of sectors that source inputs from a given supplier follows a power law (Carvalho, 2010). Atalay

et al. (2011) and Kelly, Lustig, and Van Nieuwerburgh (2013) report evidence on the distribution of supply linkages at

the firm level. The power law in the outdegree distribution is crucial for linkages to augment idiosyncratic shocks into

aggregate fluctuations (Acemoglu et al., 2012).
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forms input linkages following three steps, where the first two build on the central mechanism of

a class of dynamic network formation models. We illustrate these steps in the graph below. First,

a new variety producer (j) draws a set of ‘essential’ input suppliers (nodes g and h). Second,

in order to customize its new variety, j searches for further potentially useful inputs among the

suppliers of g and h (i.e., among nodes a-e). In other words, the search is directed vertically in

the production network, towards the technological neighborhood of essential inputs. Third, the

new variety producer j decides which inputs to adopt among those identified in the second step.

This decision is driven by a trade-off between the benefits from a larger set of input varieties (à la

Romer, 1990) and variety-specific customization costs for each adopted input. As a result, a finite

optimal number of inputs is adopted (indicated by the dashed arrows).

"network

neighborhood"
a b c d e

j’s essential inputs g h

new producer j

input flows

� �

eventually
adopted

�

This process implies that individual producers are more likely to adopt inputs that are closer

in their network neighborhood. This is similar to the evolution of social networks, where new

friendships are more likely to form with friends of friends than with random people. In the context

of production, a firm is more likely to adopt an input that its supplier is already using, than a random

input from the product universe. The formation of new linkages delivers a law of motion, where

the current production network and its evolution are closely interrelated: on the one hand, present

network distances determine input adoption; input adoption, on the other hand, changes network

distances. This gives rise to a dynamic evolution of the input-output network. The stylized model

also delivers a power law in the number of varieties supplied, in line with the empirical regularities

observed by Carvalho, Nirei, Saito, and Tahbaz-Salehi (2014).

We then explore the sector-level implications of the variety-level mechanism. To define sectors

in the model, we build on the rules by which new commodities are assigned to sectors in actual

input-output tables. This classification is based on a variety’s essential inputs. For example, a

new variety that draws tires, an engine, and a body will be assigned to the motor vehicles sector.

We show that, based on this definition, the model predicts i) new input linkages across sectors are

more likely to emerge within the proximity of existent input supply relations and ii) the power
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law distribution of forward linkages aggregates up to the sector-level. Thus, even if the underlying

network formation is happening at the variety level, we can make use of sectoral input-output data

to examine the model’s predictions.

Following the theoretical framework, our empirical analysis examines the determinants of in-

put adoption at the sector and firm level. We first use U.S. input-output tables at the 4-digit level

between 1967 and 2002. Based on the observed intersectoral linkages in manufacturing, we com-

pute a standard measure of network distance between any sector pair. We find that sectors are

substantially more likely to adopt inputs that are initially closer in their input-output network. This

is illustrated in Figure 1. On the x-axis we plot the simplest possible measure of network distance

in 1967 – the smallest number of directed input links separating a (potential) input supplier i from

a (potential) input adopter j. This provides a simple metric for the vertical distance between an

upstream supplier and a downstream potential user of the input. For example, in 1967, the sec-

tor "Primary Batteries, Dry and Wet" (SIC 3692) had distance 2 to the (potential adopter) sector

"X-Ray Apparatus" (SIC 3844), while it had distance 4 to "Cigarettes" (SIC 2111). The y-axis

gives the frequency of input adoption events (j adopting i) observed after 1967.4 For example,

in our data we observe that "X-Ray Apparatus" producers adopted "Primary Batteries, Dry and

Wet" as an input in 1977, while "Cigarettes" never did so. The pattern in Figure 1 is striking.

Input adoption is much more frequent for sector-pairs that were already relatively close (but not

yet directly trading inputs) in the 1967 input-output network. For 22% of sector-pairs that were

two input-links apart in 1967 (distance 2), j adopted i over the subsequent 35 year period.5 This is

more than double the frequency of adoption observed for distance-3-sectors (9%), and more than

5 times the frequency observed for sectors that were 5 links apart.

Our main finding holds both in a panel setting where the input-output network evolves over

time, and also in a cross-sectional analysis showing that closer network proximity in 1967 re-

duces the subsequent time to adoption. Our results are robust to alternative definitions of network

distance and adoption. They are also unaffected by a host of controls such as size, proxies for tech-

nological progress, as well as fixed effects for adopting and input-producing sectors. Throughout,

we document economically significant magnitudes; for example, a one-standard deviation decrease

in network distance raises the adoption probability in any given 5-year period by one third to one

half.

4We say that a sector j adopts input i if there was no input flow from i to j in 1967, and such a flow is recorded at

any point thereafter in our sample, which extends until 2002.
5Not all of these ‘adoptions’ are long-lived; many reflect one-time input flows between sectors. All our findings

are robust to alternative definition of adoption. In particular, our most conservative definition requires input flows of at

least $1million over at least 15 years. In this case, the frequency of adoption for distance 2 is 4.9%, and – consistently

with the differential pattern in Figure 1 – it is significantly lower for larger distances.
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Next, we examine the formation of supplier linkages at the firm level. We use data from Com-

pustat, which includes information on major customers – those that are responsible for more than

10% of a given seller’s revenues. Because of this reporting threshold, the analysis is naturally lim-

ited to relatively important links. Based on this data, we construct a network of suppliers and their

customers. We confirm that firms are significantly more likely to adopt inputs that have previously

been used by their suppliers (close network proximity) than inputs from outside their network

neighborhood. Additionally, we show that our findings are robust to the inclusion of firm-level

controls, such as fixed effects, firm size, labor productivity, or the geographical distance between

firm pairs.

Our analysis shares a common limitation with other studies of production networks: exogenous

variation for input-output linkages is not available. This raises the concern of omitted variable

bias. For example, a general trend towards computerization may be accompanied by a gradual

spread of electronic components as inputs in production. Since these are in turn connected to

semiconductors, this process would bring sectors closer to the latter in the input-output network,

with some of them eventually directly adopting semiconductors. While this would confound our

panel results, it is less likely to affect our results that are based exclusively on initial network

distance in 1967. In fact, technological trends would only affect these results if they were related

to initial network distance. But this, in turn, is the core of our argument – initial network distance

matters for the future evolution of linkages. In addition, we show that our results also hold when

we include sector-pair fixed effects, so that we exploit only changes in network distance, i.e., the

variation that is due to new links forming or existing links disappearing over time. Consequently,

unobserved correlates of initial network distance are also unlikely to explain the pattern in the

data. These findings impose restriction on interpretations of our results: candidates to explain the

empirical regularities have to be correlated with network distance (both in levels and changes), and

be related to direct adoption of inputs. We discuss three interpretations that fit this pattern.

First, network distance may reflect technological distance in the sense that production processes

are more or less similar, rendering ‘closer’ inputs more compatible. For example, the production

of valves is technologically closer to vehicles than food processing, making the former a more

feasible input in car production. Second, network distance could proxy for spatial distance to

the extent that industries and firms that trade inputs intensively tend to coagglomerate (Ellison,

Glaeser, and Kerr, 2010). Third, network proximity may reflect more frequent social interactions

through which information about potentially useful inputs is transmitted. A second limitation of

our analysis is that, ultimately, we cannot distinguish between these mechanisms. Nevertheless,

we can narrow down possible interpretations. The fact that geographical distance between firms

does not change our results makes coagglomeration unlikely as a main driver. At the sector level,
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we show that excluding linkages formed within the same 2-digit sector does not affect our findings;

we also show that the forward-distance between sectors (i.e., links via buyers, instead of suppliers)

does not predict input adoption. This implies that horizontal similarity of sectors is not a likely

candidate to explain the pattern in the data. Rather, our results suggest that vertical distance along

supply chains is a useful starting point to understand patterns of input adoption and diffusion.

We build on a rich research agenda that has studied the diffusion of technology, starting from

the seminal work by Griliches (1957). A macro strand of this literature has focused on how par-

ticular technologies – such as electricity or semi-conductors – are progressively adopted by an

expanding range of sectors. This gives rise to General Purpose Technologies (GPT) that mark

historical eras and are seen as engines of growth (Helpman and Trajtenberg, 1998; Jovanovic and

Rousseau, 2005). As in this literature, we are interested in understanding how a particular technol-

ogy can emerge as an input supplier to many other technologies.6 Our results imply that occupying

a relatively central position in the production network – for example, when a new input is used

by already central technologies – makes wide diffusion more likely. Our paper is also related to

a micro strand of the literature that focuses on the role of social networks in the adoption of par-

ticular technologies (c.f. Young, 2003; Conley and Udry, 2010; Banerjee, Chandrasekhar, Duflo,

and Jackson, 2013). We share the view that the adoption of technologies is mediated through

a network. However, rather than focusing on the role of local social interactions, we study the

importance of distance in the technological network more broadly.7

We also naturally relate to a literature that models the evolution of technology as a recombi-

natoric process of existing ideas into new ones (Weitzman, 1998).8 The large number of possible

combinations led Weitzman to the conclusion that "the ultimate limits to growth may lie not so

much in our abilities to generate new ideas, as in our abilities to process to fruition an ever in-

creasing abundance of potentially fruitful ideas" [p.359]. This begs the question of how innovators

organize their ‘search process’ among the myriad of possible combinations. Our approach makes

6Interestingly, while Helpman and Trajtenberg (1998) rationalize the staggered diffusion of a GPT in terms of

asymmetric adoption costs, they also conjecture that the order of adoption could be the result of "linkages between

adopting sectors" and thus, that "technological proximity" may be an important factor in explaining diffusion patterns

of GPTs. Our key mechanism formalizes this notion of "technological proximity" by placing technologies in a network

and emphasizing network proximity as a key driver of adoption.
7As discussed above, proximity in the input-output network may also reflect more frequent social interaction. For

example, a tire producer is more likely to interact with people from the automotive industry than with pharmaceutical

staff. Our argument exploits the variation across sector pairs, whereas the micro literature on social networks examines

the role of local social interactions for the adoption of a given technology. See Fafchamps, Goyal, and van der Leij

(2010) for a study of the determinants of co-authorship patterns in economics, which uses an empirical strategy akin

to ours.
8Ghiglino (2012) emphasizes that the quality of ‘parental’ ideas plays an important role in this setting. On a related

point, Acemoglu, Akcigit, and Kerr (2014) show that downstream technologies that cite upstream technologies with

rapid patent growth in the past, are themselves more likely to exhibit subsequently faster innovation.
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the object of this search tangible: we view technology as ‘production recipes’ that prescribe a

combination of different inputs to produce output. Correspondingly, the search for "ideas" reflects

the combination of existing inputs into new products. Additionally, we provide evidence that this

process of recombination of inputs does not occur at random. Rather, it is directed towards inputs

that are relatively close in the production network.

Our focus on input-output networks is also related to a literature that emphasizes the role of in-

tersectoral linkages in determining macro-economic outcomes, such as productivity and aggregate

fluctuations (Jones, 2013; Carvalho, 2010; Acemoglu et al., 2012; Bigio and La’O, 2013).9 Further

afield, input-output linkages also have important implications for the organization of production

and the optimal allocation of ownership rights along global supply chains (Antràs and Chor, 2013;

Costinot, Vogel, and Wang, 2013). These literatures invariably take the input-output network as an

exogenously given restriction on production technologies, while we examine its evolution.

Our work also builds on a literature of dynamic network formation models (Vázquez, 2003;

Jackson and Rogers, 2007; Chaney, 2014). As in these papers, our network evolution process

stresses the fact that existing links can be used to find new links: goods producers probe their

existing set of input suppliers to find other potentially useful varieties for their own production

process. Finally, our paper is closely related to Atalay et al. (2011) and Oberfield (2013), who

model input link formation in buyer-supplier networks. Atalay et al. (2011) estimate a model

where new links form in part randomly, and in part due to preferential attachment (to prominent,

but not necessarily nearby suppliers). Oberfield (2013) provides a mechanism whereby producers

randomly search for the lowest cost input supplier. In these mechanisms, firms do not exploit

existing supply linkages to search for new inputs; in contrast, we emphasize the role of linkages

in directing the search for potential inputs. Relative to the existing literature, we are the first to

document the novel stylized fact that input adoption is strongly associated with proximity in the

production network – and that, consequently, the existing production network plays an important

role in its subsequent evolution.

The paper is organized as follows. Section 2 uses the diffusion of semiconductors as a case

study of input adoption in a network. Section 3 describes our model of input adoption, starting at

the product variety level and then aggregating these into sectors. Section 4 introduces our measure

of network distance and describes our sector-level data. In Sections 5 and 6 we present empirical

results at the sector- and the firm-level, respectively. Section 7 concludes.

9This work in turn builds on an older literature that emphasizes the role of input-output linkages for co-movement

across sectors (c.f. Long and Plosser, 1983; Horvath, 1998; Conley and Dupor, 2003). See also Foerster, Sarte, and

Watson (2011) and di Giovanni, Levchenko, and Mejean (2014) for empirical evidence supporting these mechanisms.
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2 Input Diffusion in a Network: The Case of Semiconductors

The diffusion of semiconductors, a key general purpose input, provides a telling illustration of

input adoption in a network. Figure 2 shows a network representation of the US input-output table

in 1967. Each 4-digit SIC sector is represented by a node, and edges between these nodes depict

input flows across sectors. The solid black node on the left hand side of the graph corresponds to

the sector "Semiconductors and related devices". The red nodes mark sectors that directly sourced

semiconductors as an input in 1967 – only a handful of technologies did so. Finally, the red arrows

point to indirect users of semiconductors with distance 2, i.e., sectors that sourced inputs which in

turn used semiconductors.

Given this starting point, Figures 3-5 show the path of diffusion of semiconductors across

sectors over the subsequent 15 years.10 Blue dots in Figure 3 represent sectors that adopted semi-

conductors in 1972, as per the detailed input output tables of that year. Note that the new adopters

also add new indirect paths to semi-conductors, as indicated by the blue lines in Figure 3. Cyan

and green dots in Figures 4 and 5 correspond to sectors that adopted semiconductors by 1977 and

1982, respectively. As before, lines in the respective color represent newly formed indirect links.

We ask whether these indirect linkages to semi-conductors are informative about the likelihood of

subsequent direct adoption of semiconductors as an input.

The pattern emerging from these Figures is striking. Every single one of the seven adopters

in 1972 previously had an indirect connection to semiconductors via one other intermediate input.

In the terminology of networks, all second-round adopters of semiconductors were two edges

away (i.e., distance 2) from semiconductors. Similarly, four out of the five sectors that adopted

semiconductors by 1977 sourced inputs from either the 1972 or the 1967 adopters. By 1982, the

number of sectors using semiconductors as an input had more than trebled relative to 1967, setting

the stage for the generalized adoption that would ensue in the 1990s and 2000s. Summarizing,

early adoption of semiconductors was strongly associated with initial network proximity.

It is instructive to focus on one of these paths of adoption to illustrate the role of linkages across

sectors in the diffusion of semiconductors. In 1967, the "Computers and Office Equipment" sec-

tor did not yet directly source semiconductors as an input. However, computers used "Electronic

Components", which in turn used "Semiconductors and Related Devices." That is, computers were

distance 2 from semiconductors. In the early 1970s, new computer varieties increasingly used

the newly developed integrated circuits (a good classified in "Electronic Components", which in

turn used semiconducting materials intensively). The increasing reliance on integrated circuits

10Note that throughout we hold the 1967 network fixed. That is, all colored edges refer to input linkages observed

in 1967.
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was accompanied by a direct use of semiconducting materials in computer production.11 Corre-

spondingly, the "Computers and Office Equipment" sector adopted semiconductors in 1972 in our

data.12

3 A Model of Input Diffusion in a Network of Technologies

In this section we present a stylized model of dynamic input diffusion across a network of intercon-

nected product varieties. New varieties emerge exogenously every time period. Interconnections

across varieties reflect input needs, i.e., each variety is produced by incorporating other, already ex-

istent, varieties as intermediate inputs. These input linkages across varieties give rise to a network

that evolves over time, as new varieties are introduced and new links are formed.

Building on the dynamic network formation models of Jackson and Rogers (2007) and Chaney

(2014), we begin by describing the set of feasible inputs available to each new variety. Following

this literature, our network evolution process stresses the fact that existing links can be used to find

new links. In our context, this means that a new variety first draws a set of ‘essential’ inputs and

can then probe the network neighborhood of this set to find other varieties that can be of potential

use as inputs.

Given this set of potential inputs available to each new variety, we proceed to endogenize the

input adoption decision. We assume that input adoption is costly. Specifically, in order for a new

variety to adopt an input, it must be customized at a cost that is specific to each variety-input pair.

In the model, new variety producers face a trade-off between this customization cost and a love of

variety effect accruing to adopting additional inputs. The solution to this tradeoff determines the

total number of inputs that each new variety adopts.

Finally, in order to derive testable predictions that can be taken to sectoral input-output data, we

explore the sector level implications of the variety level model. We classify varieties into sectors

based on a principle of similarity of inputs that is also used in the construction of input-output

tables. As a result, sectors are composed of varieties that share similar production processes, i.e.,

varieties that process similar input bundles. Based on this definition we can show that the key

variety level mechanism – a new variety is more likely to adopt inputs in its network neighborhood

– is still present after aggregation to the sectoral level.

11The world’s first personal computer – the ‘Kenbak-1’ produced in 1970 – was the first computer device to source

integrated circuits as an input (from the "Electronic Components" sector) and, alongside it, semiconductors.
12This argument can be extended further – to a sector that had distance 3 from semiconductors in 1967: the "Scales

and Balances" sector sourced early computer varieties (but not semiconductors) in the late 1960s to store and perform

calculations on weighting measurements. Throughout the 1970s the introduction of newer, smaller computer equip-

ment varieties – itself made possible by the adoption of integrated circuits – opened the way for the production of

industrial and retail digital scales. These eventually incorporated semiconductors directly by 1977.
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3.1 Variety Level Model

Given a finite number of product varieties, t, we define a variety-level input-output matrix as a

weighted directed network, represented by a t × t matrix where each entry vij ≥ 0 denotes the

flow of input variety i into variety j’s production process. We say that j uses input i if vij > 0.

Correspondingly, we define the unweighted directed network as the binary t× t matrix where each

entry bij ∈ {0, 1} indicates whether product variety j uses input variety i. To characterize the

evolution of the variety-level network, we focus on bij , i.e., the formation of links.13

This production network evolves over time as new varieties arrive sequentially in the economy.

In particular, at each time t a new variety is added to the economy.14 Each new product variety

initially draws a finite set Kt of necessary or ‘essential’ inputs; let mK denote the number of

input varieties in this set (for simplicity ignoring the subscript t). These draws occur uniformly at

random across all existing varieties. Essential inputs can be thought of as defining features of the

new variety. For example, if t is a car its set Kt will include a body, an engine, wheels, etc. There

can be different varieties (or versions) of each essential input, but not all are necessarily used. For

example, a car producer may consider several different engine options.

In a second step, the new variety can adopt further inputs. This reflects a stage of refinement

of variety t by adding features beyond the essential ones. To identify potentially useful inputs,

the producer directs its search to inputs that are already used by its essential suppliers. In the car

example, the producer may look for options to make the body lighter (e.g., by using ultra-light

carbon fiber) or add luxury features to the car. This second round search delivers a spectrum of

potential inputs, and only a subset of these will eventually be adopted. To formalize the process

of networked input search in the supplier network, let Nt denote the set of input varieties that pro-

ducer t identifies as useful from its network search. This search follows the links of t’s essential

input suppliers in the set Kt. The number of varieties in the set Nt is denoted by mN . One inter-

pretation of this setup is that the network neighborhood of essential inputs defines which further

varieties are technologically close to t and can therefore be of potential use in its production pro-

cess. Alternatively, the setup can be interpreted as a local search process by which the developers

of the new variety receive information about other useful technologies via the personal interaction

with their essential input suppliers.

We use this setup to study the probability with which a new variety t adopts a given input i.

In the theory of network formation, this is related to the evolution of the outdegree of variety i.15

13Below, we show that under price symmetry, vij ≥ 0 is proportional to bij .
14We use the index t to denote the new variety in each respective period. Thus, the index t refers to both the latest

new variety that has been introduced, and the time period when this happened. Since varieties can be both inputs and

output in our model, we use the notation ‘input varieties’ vs. ‘output/product varieties’ depending on the context.
15The outdegree of i gives the number of varieties to which i supplies, i.e., the number of other varieties that use
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The outdegree of each variety, douti (t), is heterogeneous across i and over time t. For an existing

variety with outdegree douti (t) at time t, the expected growth rate of its outdegree is given by:

∂douti (t)

∂t
= pK

mK

t
+ pN

mKd
out
i (t)

t

mN

mK(pKmK + pNmN)
(1)

This expression can be decomposed into two parts. The first term in (1) gives the contribution

of random adoptions of variety i as an essential input. Recall that each newly introduced variety

selects mK essential inputs uniformly at random from the set of all existing t varieties. Hence

mK/t gives the probability that variety i is selected as a possible essential input. Whether or not

the new product t ends up sourcing variety i is determined by an adoption decision that we model

below in Section 3.2. For now, we take the adoption probability pK as given and symmetric across

all mK essential inputs.

The second term in (1) relates to the networked adoption of inputs. It gives the probability

that variety i is adopted by the new variety t indirectly, i.e., via the linkages of t’s essential inputs.

To interpret this term, notice that A ≡ mKd
out
i (t)/t is the expected number of randomly drawn

essential inputs that in turn use variety i as an input; in other words, A is the expected number

of indirect links that lead from product variety t via its essential inputs k to input variety i.16

Next, B ≡ mN/[mK(pKmK + pNmN)] is the probability of any given variety in t’s network

neighborhood to actually be ‘drawn’ by t, i.e., to be examined more closely as a potential input. To

see this, note that the new variety t initially draws mK essential inputs. In turn, in expectation each

of these sources inputs from pNmN+pKmK varieties.17 Thus, mK(pKmK+pNmN ) gives the total

number of input links of t’s essential input suppliers. In other words, it is the size of the network

neighborhood that t searches for potential input varieties. Since t draws mN (potential) inputs from

this network, B is the probability that a given input i is drawn. Note that the same input i can show

up several times in t’s network neighborhood – via different essential inputs. In our car example,

both body and wheels (essential inputs) may use aluminum (network input). This is reflected in

the multiplication A ·B – the (expected) number of links in t’s network neighborhood leading to i,

times the probability of any such link to be considered by t as a potential input. Finally, pN is the

probability that an input that has been selected by t as a potential input will actually be adopted.18

variety i as an input. In contrast, the indegree of i is the number of inputs that i itself uses.
16To see this, note that the probability that a randomly drawn essential variety k itself sources inputs from variety i

is douti (t)/t, i.e., the number of varieties that i supplies to, divided by the overall number of varieties in the economy

in period t. In addition, mK is the number of such random draws of essential inputs.
17This expression also corresponds to the expected indegree, which is the same across varieties in our setup. As for

pK , we take pN as given for now and model the adoption decision in Section 3.2.
18A simple numerical example can provide further illustration: suppose that producer t draws mK = 5 essential

inputs, and that the average indegree is 10. Then the size of t’s network neighborhood is 50, i.e., there are 50 links
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Altogether, the second term in equation (1) thus captures the odds of i being adopted by the new

variety t through the latter’s network search. Importantly, if i already features as an input of a large

number of varieties (high douti (t)), then it is more likely that the new variety also adopts it. This is

the core of the mechanism.

Given our setup above, we can characterize the distribution of outdegrees at any time t by

means of a mean-field approximation of (1), as in Jackson and Rogers (2007). The mean field

approximation is derived by taking a continuous time version of the law of motion in equation (1)

where all actions happen deterministically at a rate proportional to the expected change. To do this,

let r ≡ pKmK

pNmN
be the ratio of essential inputs to the number of network inputs. In addition, denote

by m = pNmN + pKmK the expected number of inputs adopted by variety t. Then, the following

proposition is immediate from Theorem 1 in Jackson and Rogers (2007):

Proposition 1. In the mean-field approximation of equation (1), the variety outdegree distribution

has a cumulative distribution function given by Ft(d
out) = 1−

(
rm

dout+rm

)1+r
at any time t.

The proof follows immediately from Jackson and Rogers (2007) and is omitted here.19 For

large dout relative to rm, this approximates a scale free distribution with a tail parameter given by

1 + r = m
pNmN

. That is, as the number of network inputs grows large relative to the number of

essential inputs, the outdegree distribution of varieties approaches a power law.

3.2 Input Adoption Decision

In the following, we describe the input adoption decision in detail. A new variety producer t

decides which inputs to adopt from the set of essential inputs, Kt, and from the set Nt of potentially

useful inputs that were identified during the network search stage. The adoption decision is driven

by a trade-off between two forces. On the one hand, a producer benefits from a larger set of input

varieties, as in standard endogenous growth models in the spirit of Romer (1990). On the other

hand, there is a variety-specific customization cost for each adopted input. To model the input

adoption decision, we introduce a production function that uses other varieties as intermediates

leading to further input varieties via t’s essential input suppliers. Assume that t decides to closely examine 10 of these

input varieties. Then the chance of any input variety from the network neighborhood to be drawn is B = 0.2. Next,

suppose that input i is extremely prominent, being used by 10% of all varieties. Then douti (t)/t = 0.1, and A = 5 ·0.1
is the expected number of indirect links from t to i, given that t draws 5 essential inputs. Consequently, the chance of

i to be drawn by t for closer examination is A · B = 0.1. Finally, if t actually adopts half of these potential network

inputs, then i has a 5% chance of being adopted by t as a result of the latter’s network search.
19The quality of this mean field approximation can be checked against simulations of the original law of motion. As

Jackson and Rogers (2007) show, the mean field result above accords well with simulated distributions of the actual

process. In fact, following Dorogovtsev, Mendes, and Samukhin (2000, equ. 9) it is possible to derive a closed-form

solution for F (dout) without appealing to a mean field approximation. Based on these expressions, Dorogovtsev et al.

(2000, equ. 11) show that in the limit of large dout, the distribution implied by the mean-field approximation above is

indeed correct. We thank Enghin Atalay for bringing this point to our attention.
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together with labor. Thus, the underlying production structure is a network of linkages across

varieties. We focus on a partial equilibrium analysis and illustrate the tradeoff that governs the

adoption decision in the symmetric case.

Variety Production

We begin by clarifying notation. We use k to denote elements of the set of essential inputs Kt,

and n for network inputs in Nt. Note that both these sets represent potentially used inputs. Let

K̂t ⊆ Kt and N̂t ⊆ Nt be the subsets of essential and network inputs, respectively, that are actually

adopted. In the following, we model the decision of a new variety producer t who decides which

inputs to adopt.

Each product variety t uses other varieties as intermediate inputs. Their quantities are denoted

by xtk and xtn for essential and network inputs, respectively. For illustration, we keep the sets of

essential and network inputs separate in the production function, by assuming that they enter two

different composites. Inputs of each category enter production as substitutes with elasticity ǫ > 1,

so that the corresponding composites are given by:

X
K
t =


∑

k∈K̂t

x
ǫ−1

ǫ

tk




ǫ
ǫ−1

and X
N
t =


∑

n∈N̂t

x
ǫ−1

ǫ

tn




ǫ
ǫ−1

(2)

In order to adopt an input, it must be customized at a cost that is specific to each product-input

pair. For example, customizing a light sensor for a car is different from customizing a light sensor

for an outdoor lamp, and both in turn are different from customizing a rear view camera for a car.

We denote this product-input specific customization cost by ct,k and ct,n for essential and network

inputs, respectively. To simplify the analysis, we assume that the customization cost is negligible

for essential inputs, so that ct,k = 0, ∀k ∈ Kt. This reflects our interpretation that a variety’s

essential inputs are fundamental parts whose integration is standardized, such as wheels or an

engine for a car.20 Because the input composites in (2) feature returns to the number of varieties,

the optimal decision for the producer of t is to adopt all essential inputs k ∈ Kt, so that K̂t = Kt.
21

On the other hand, adopting network inputs is subject to the customization cost ct,n > 0, ∀n ∈

Nt. These are calculated as ct,n = b · rt,n, where b > 0 and rt,n is uniformly distributed over the

20We build on this notion below when aggregating varieties into sectors.

21To see this, note that in the symmetric case, XK
t = K̂

1

ǫ−1

t ·
(
K̂tx̄Kt

)
, where x̄Kt is the quantity used of each

essential input. Thus, the more essential inputs are adopted (higher K̂t), the larger is XK
t , for any given total amount

of essential inputs used (K̂tx̄Kt).
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unit interval. The total cost of adopting a subset N̂t of these inputs is given by

Ct =
∑

n∈N̂t

ct,n (3)

We assume that the customization cost is paid in units of t’s output, yt, in every period of pro-

duction.22 This ensures that our results are not driven by scale effects.23 We can now specify

the variety production function. The two input composites XK
t and X

N
t enter in a Cobb-Douglas

fashion, in combination with labor, lt.
24 For a given (annualized) input customization cost Ct, the

output of variety t is given by:

yt =
At

1 + Ct

(
X

K
t

)α (
X

N
t

)β
l1−α−β
t (4)

where At is the productivity draw of producer t. Note that Ct < 1 must hold, and that Ct can be

interpreted akin to a tax on output, used to cover the initial adoption cost.25

Optimization and Input Adoption

A variety producer t solves the cost minimization problem associated with (4), by choosing the set

of network inputs N̂t, as well as the quantity of each input. We begin by analyzing the latter. For

given sets Kt and N̂t, the optimal choice of input quantity xik and xin in the two aggregates in (2)

yields the corresponding price indexes26

ΦK
t =

(
∑

k∈Kt

φ1−ǫ
k

) 1

1−ǫ

and ΦN
t =


∑

n∈N̂t

φ1−ǫ
n




1

1−ǫ

(5)

22Thus, Ct can be thought of as annualized customization cost, paid in units of output.
23In contrast, if C was a fixed cost, higher demand for a given variety would also lead it to adopt more inputs. This

would render the basic structure of our model untractable. In addition to ensuring tractability, this setup is also in line

with our technological interpretation that once a variety has chosen its inputs, these are stable over time – that is, a

variety is defined by its input use.
24Thus, the two input composites are gross complements. This assumption does not affect our qualitative results –

we could alternatively assume that the two composites are substitutes, or we could include all inputs in one aggregator.

The advantage of our formulation is that we can separate essential inputs and network inputs in a straightforward

fashion.
25The optimization problem described below ensures that this condition holds as long as at least one network input

n has an associated customization cost ct,n < 1.
26We use the notation Kt rather than K̂t to underline that all essential inputs are adopted.
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where φk and φn are the prices of essential and network inputs, respectively. Labor lt is also chosen

optimally, taking the wage w as given. The marginal cost of producing variety t is then

MCt =
1 + Ct

At

(
ΦK

t

α

)α (
ΦN

t

β

)β (
w

1− α− β

)1−α−β

(6)

This expression holds for a given set of adopted network inputs N̂ . Next, we obtain the optimal

set of network inputs, by collecting the terms in (6) that depend on this choice, Ct and ΦN
t , and

substituting from (3) and (5):

N̂∗
t = argmin

N̂t⊆Nt






1 +

∑

n∈N̂t

ct,n





∑

n∈N̂t

φ1−ǫ
n




β

1−ǫ





(7)

If the set Nt has many elements, this is a complex combinatorial problem that must be solved

numerically. Note that for each potential input variety n in t’s network neighborhood, a lower price

φn makes adoption more likely. Thus, technological progress in variety production can raise the

rate of adoption, by lowering the input price. We will test this prediction in our empirical analysis.

In the following, we illustrate the adoption decision by focusing on the simplified symmetric case.

Symmetry and Illustration of the Adoption Decision

To examine the symmetric case, we assume that each variety has the same technology draw At =

A, and that final demand is such that the price of each variety is a constant markup over its marginal

cost.27 In addition, recall that in expectation each variety uses the same number of essential inputs,

mK , and it draws the same number of potentially useful network inputs,mN . What remains to be

shown for the symmetric equilibrium is that each variety also adopts – in expectation – the same

number of network inputs.

Adoption costs are also symmetric in expectations, but their realizations vary across the input

varieties in Nt. However, we can rank the mN network inputs in Nt by their adoption costs, such

that ct,1 < ct,2 < ... < ct,mN
. Because customization costs are uniformly distributed, the ordered

draws n = 1, ..., mN will lie (in expectation) on the line ct,n = b · n
mN

. Let m̂N ≤ mN denote

the number of adopted inputs (i.e., the size of the set N̂t). Then the total cost of customization is

given by
∑m̂N

n=1 ct,n = b
mN

m̂N (m̂N+1)
2

, which is increasing and convex in m̂N . In expectation, this

customization cost function is the same for each new variety t. Consequently, each new variety is

expected to adopt the same number of inputs from its network environment. In other words, the

27This follows if we assume that all varieties are aggregated into a final good with elasticity of substitution ǫ. Then
both final and intermediate demand for all varieties imply the profit-maximizing markup ǫ/(ǫ− 1).
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expected indegree is the same for all varieties. Thus, in expectation our model features a symmetric

equilibrium with all new varieties facing the same marginal cost in (6) and therefore charging the

same price. Note, however, that variety producers use different sets of inputs. Thus, the outdegree

may be asymmetric – some varieties are more popular suppliers than others. Nevertheless, the total

demand for an input affects neither its pricing nor its own adoption of inputs. Consequently, in our

setup, symmetry in prices and indegree is compatible with asymmetry in the number of forward

linkages (i.e., the outdegree).

Under symmetry of prices (φn = φ, ∀n), and given the above ranking of customization costs,

(7) simplifies to:

m̂∗
N = argmin

m̂N≤mN

{(
1

m̂N

) β

ǫ−1

+
b

2mN

m̂N(m̂N + 1)

(m̂N )
β

ǫ−1

}
φβ (8)

The first expression in (8) is decreasing in m̂N , while the second expression is increasing if

β < 2(ǫ − 1).28 This delivers a U-shape with a unique minimum (see Figure A.1 in the ap-

pendix). To illustrate the intuition for this functional form, the ranking of network inputs by their

(randomly drawn) customization costs is crucial. When few inputs are adopted (low m̂N ), cus-

tomization costs of these low-ranked inputs are small, and therefore the input variety effect à la

Romer (1990) dominates. For higher m̂N , customization costs for each additional adopted input

are larger, outweighing the input variety effect. Thus, production costs eventually become increas-

ing in m̂N . The optimal number of adopted network inputs, m̂∗
N , corresponds to the minimum of

the U-shaped curve given by (8).

Note that our analysis in the symmetric case endogenizes the probability pN of adopting net-

work inputs, which we took as given in (1). Each new variety draws mN network inputs, and

according to (8), it will adopt m̂∗
N of these. The likelihood of adoption is thus a-priori the same

for any network input in the set Nt, and it is given by pN = m̂∗
N/mN . Finally, because of price

symmetry, a variety producer j uses the same amount of each input variety i, conditional on this

input being used (bij = 1). Thus, the corresponding value of the input purchase, vij , is propor-

tional to the binary variable bij . This becomes important below when we aggregate our model

to the sector level: our variety level predictions are derived for the unweighted directed network

(based on binary bij), while input-output data deliver a weighted (value-based) network. Due to

the proportionality, we can show that variety-level predictions hold at the sector level.

28For example, suppose that the overall expenditure share for intermediate inputs is 0.5, and that half of these are
network inputs. This implies β = 0.25. Then ǫ > 1.125 will ensure that the second expression in (8) is decreasing in
m̂N . As a comparison, the average elasticity of substitution reported by Broda and Weinstein (2006) is 4.
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3.3 Sector Level Implications

Our model of networked input adoption is defined at the variety level. However, the most promi-

nent source for production network data is available at the sector level in the form of input-output

tables. In order to render these data useable for our purposes, we now explore the sectoral impli-

cations of our model.

Aggregation of Varieties into Sectors

We start by defining how varieties are assigned to sectors in the context of our model, employing

a principle of similarity of inputs. As a result, sectors are composed of varieties that share similar

input bundles. This input-based approach is also a guiding principle of actual sectoral classification

systems like NAICS.29 To capture this notion, we define a binary baseline vector µsj that defines a

sector sj based on its inputs. This can be thought of as a blueprint for the typical inputs used by

varieties in sector sj . For example, the car sector may be represented by a baseline vector µsj with

unit entries in ‘body’, ‘engine’, and ‘wheels’. In the context of our model, the vector µsj represents

the classification scheme for new varieties. Each variety is then classified into the sector whose µsj

has the maximum overlap with the variety’s list of essential inputs.30 In other words, a variety’s

essential inputs are compared to the typical inputs used by all sectors in the economy, and it is then

classified into the most similar one. The following definition formalizes this principle:

Definition 1. (Definition of a Sector): At time t, a sectoral classification system is a partition of

the set of existent varieties into J sectors. Each sector sj, with j = 1, ..., J , is defined by a t-

dimensional binary vector, µsj , with a total of x ones and t−x zeros, with unit entries in the vector

being elected at random. Each existent variety is assigned to a sector by finding the sector sj that

maximizes the overlap between that variety’s binary vector of essential inputs and the vector µsj .

Any new variety introduced at time t + 1 is classified into a sector in the same way.

Note that this definition allows for overlap among sectors, in that different sectors can share

some elements across their baseline vectors. For example, ‘wheels’ may be represented in both

the bicycle and car baseline vectors. This definition induces a sectoral input-output network of

dimension J × J , where nodes are now sectors and directed edges, asisj , represent intersectoral

input flows from sector si to sector sj . According to our definition, these directed edges reflect

29For example, the Bureau of Labor Statistics provides a detailed explanation of this production-based principle:
"Industries are classified on the basis of their production or supply function – establishments using similar raw material
inputs, capital equipment, and labor are classified in the same industry" (Murphy, 1998, p.44).

30This notion of overlap can be made formal by use of the Hamming distance between two binary vectors of the
same length. This distance gives the number of elements by which the two binary vectors differ. Thus, we classify
a given variety into the sector sj whose baseline vector µsj has the minimum Hamming distance to this variety’s
essential inputs.
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varieties that have been classified into sector sj and source inputs from varieties classified into

sector si.31

Sector-Level Predictions

We now turn to the evolution of the sector-level input-output network over time. At the variety

level, the key mechanism of network formation relied on a notion of network proximity: a new

variety is more likely to adopt inputs in its network neighborhood, as defined by the set of varieties

that supply inputs to the new variety’s essential inputs. We now show that such a mechanism is still

present under aggregation at the sectoral level. To see this, we first define a sector-level measure

of network proximity for any ordered pair of sectors for which there is no input supply relation at

time t. This definition exploits variety-level input flows from sector si to sector sj

Definition 2. (Sector-level Network Proximity): Take any ordered pair of sectors (sj ,si) such that

asisj = 0 at time t. The network proximity of (si, sj) is defined as n(si,sj) ≡ µ′
sj
νsi where νsi is a

t × 1 vector, with each entry νsi(v) giving the number of varieties from sector si that are sourced

as inputs by variety v, for v = 1, .., t. Then sector si is closer to sj than to sj′ if n(si,sj) > n(si,sj′)
.

This definition states that sector si is closer to sj if varieties from si are used more frequently

as inputs by varieties that define sector sj . For example, if sj is the "vehicles" sector then its

defining varieties will include body parts. If body parts, in turn, source many steel varieties (from

sector si="steel") then this will imply a relatively high proximity of "steel" to "vehicles". Formally,

n(si,sj) gives the number of varieties in sector si that are sourced as inputs by varieties which appear

in the baseline vector of sector sj .32 Next, we use this definition to aggregate varieties to the sector

level. A new variety t will be classified into the sector sj whose baseline vector is most similar

to t’s essential inputs. The sector-level network proximity n(si,sj) then tells us how closely we

should expect t to be connected to inputs from each sector si. Intuitively, if t is classified into

sector sj , it must have a relatively large number of essential inputs that are also present in sj’s

baseline vector µsj . Thus, t must also have many input links in common with the varieties in µsj .

This is the proximity dimension that n(si,sj) ≡ µ′
sj
νsi exploits. Given this definition, the following

proposition shows that the network proximity mechanism underlying the variety level model is still

present when we aggregate varieties into sectors.

31For a fixed number of sectors J , as t becomes large, eventually all sector pairs will exhibit non-zero flows asisj .
We study sector-level adoption, meaning that asisj goes from zero to positive. We thus implicitly assume that the
time t input-output network is sparse, i.e., that many asisj ’s are zero. In addition, note that economies with zero asisj
can be maintained even for large t if the sectoral classification system is expanded by raising J , i.e., by refining the
sectoral detail.

32Note that this proximity definition need not be symmetric, i.e., generically n(si,sj) 6= n(sj ,si), as is standard for
network distance metrics in the context of directed graphs.
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Proposition 2. Take any two sectors sj and sj′ that previously did not source inputs from sector

si, i.e., asisj = asis′j = 0 at t− 1. If at time t − 1 sector si is closer to sj (i.e., n(si,sj) > n(si,sj′)
),

then sj will be more likely to adopt an input from si at t.

We provide a formal proof in the appendix. Here, we briefly describe the intuition. First note

that any new input linkages at period tmust be due to the new variety t; all pre-existing varieties do

not change their linkage structure. Whether t links sj and si depends on (i) whether t is classified

as an element of sector sj , and (ii) whether it then sources input(s) from sector si. The proof links

both steps by following the classification scheme for sectors described above: The new variety t

randomly draws a set of essential inputs. It is then classified into the sector sj that has the closest

overlap with these essential inputs. Thus, the fact that t is sorted into sector sj tells us that it

shares more essential inputs with varieties in sj than with varieties in any other sector sj′ . This is

criterion (i). Criterion (ii) then incorporates new link formation via the network neighborhood of

t’s essential inputs. If many of these link to sector si, t is more likely to source from si.33 Finally,

combining (i) and (ii), if t is classified into a sector sj that has many indirect input linkages to si,

t is expected to itself have such indirect linkages to si; and these in turn raise the probability that

t directly adopts inputs from si. Summing up, since a-priory t is equally likely to ‘fall’ into any

sector, the sector sj closest to si (among those that are not yet directly linked to si) is most likely

to establish a new link to si.

Having established that the key network proximity mechanism holds at the sectoral level, we

now characterize the size distribution of links. In particular, we are interested in understanding

whether our variety level model, when aggregated to the sectoral level, can generate the fat tailed

behavior of sectoral outdegrees emphasized in Acemoglu et al. (2012). Note that the induced sector

level network consists of weighted links across sectors, reflecting the number of existing varieties

at time t that are both: (i) classified in the same sector sj and (ii) source as inputs varieties from

a given sector si. Thus, sector-level input flows asisj are given by asisj ≡
∑

i∈si

∑
j∈sj

vij , where

vij denotes the sales of input variety i to product variety j. This, in turn, implies that sector si’s

total sales, i.e., its (weighted) outdegree, are doutsi
≡

∑J

j=1 asisj . Having established this notation

we can move on to the following proposition:

Proposition 3. In the symmetric equilibrium, if the variety-level outdegree distribution at time t is

power law, so is the distribution of sectoral weighted outdegrees.

33More generally, the new variety t can form links to inputs in sector si directly – by drawing variety i ∈ si as an
essential input – or indirectly, via its network of essential inputs. Regarding the former, this initial draw is symmetric
across all existing inputs. Thus, it does not differentially affect link formation across sectors. The proof therefore
focuses on the adoption via the network of essential inputs.
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In the following, we provide a sketch of the proof; for a formal proof see the appendix. The

proof of Proposition 3 relies on the fact that the sum of a finite number of power law distributed

random variables is itself a power law random variable. It follows two steps. First, we build on

the fact that at any time t, the number of varieties in each sector follows a Binomial distribution.

Second, we note that under the assumption of price symmetry, the sectoral (weighted) outdegree

is proportional to the total number of varieties to which a sector supplies inputs at time t, where

the constant of proportionality is given by the price φ. Thus, under the assumption that at time

t the variety level outdegree distribution is power law distributed, a sector’s weighted outdegree

is given by the (finite) random sum of power law distributed variables. Based on known results

on the behavior of random sums of power law variables (see Jessen and Mikosch, 2006, Lemma

3.1) we can then show that any sector’s weighted outdegree is itself power law distributed with the

same tail exponent as the variety-level outdegree distribution.

4 Empirical Framework and Sector-Level Data

While the core mechanism of the model works at the variety level, our aggregation results in

Proposition 3 allow us to employ sector level data. Because the most reliable data are available

at the sectoral level, these are the basis for our main empirical analysis. We use US input-output

benchmark tables between 1967 and 2002 (at the 4 digit level) and track input adoption over time.

We then ask whether initial network proximity – measured by existing input linkages – predicts

subsequent input adoption. We proceed as follows: we first introduce our measure of network

proximity. Second, we describe our data and discuss the definition of adoption in the context of

input-output tables. Finally, we present empirical results analyzing both the time to adoption after

1967 and the likelihood of adoption in any given benchmark year. We also provide falsification

tests such as network distance following forward- (as opposed to backward) linkages. To save

on notation, we use j (instead of sj) to denote the input-using sector, and i (instead of si) for the

input-producing sector.

4.1 Network Proximity

When aggregated to the sectoral level, our model predicts that sector j is the more likely to adopt

input i the more closely j is already related to i via indirect network connections. In the following,

we use a standard measure of network distance that captures this notion. It builds on the hypothesis

that sectors trading inputs more intensively are ‘closer’ in the technology landscape.34 Crucially,

34Note that our model makes two simplifying assumptions. First, local search occurs only at the level of two degrees
of separation (i.e., across direct neighbors of ‘parents’). Second, the model emphasizes the number of (indirect) routes,
abstracting from the intensity of linkages. In the data, however, adoptions can occur between sectors that are initially
more than two nodes apart. Also, the intensity of linkages (input shares) is not symmetric in the data. Our empirical
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the distance measure can also be calculated if there is no direct path linking two sectors – in this

case we compute the shortest path via intermediate steps.

Formally, we define a direct-requirements input-output matrix Γ where each element Γij rep-

resents the cost share of inputs from sector i in the total intermediate input expenditures of sector

j. If Γij is non-zero, we define the distance from i to j as dij = 1
Γij
. Thus, the more important

input i is in the production of j, the closer is dij to 1 (the minimum possible distance between two

sectors). The case Γij > 0 holds if a direct connection between i and j exists, i.e., if j has already

adopted i. However, since we study adoption itself, the relevant starting point is Γij = 0.

Provided that j indirectly sources inputs from i – via its network of suppliers – we define the

distance dij as the sum of the distances along the shortest path that connects i and j. For example,

if j uses input k, which in turn sources inputs from i, then dij = dik + dkj .35 Formally, for two

sectors i and j that are not directly connected, the shortest path is given by:

dij = min
k 6=i

{
1

Γik

+ dkj

}
(9)

As this equation shows, if there exist more than one such paths linking j and i, then dij is the min-

imum distance path, i.e., the directed path between the two nodes such that the sum of the weights

of its constituent edges is minimized. This shortest path algorithm yields distances between any

two sectors in the economy.

4.2 Data and Main Variables

In the following, we describe our dataset and the derivation of our main variables. We use y (years)

to denote the time dimension, in order to avoid confusion with the variety index t above.

Input-Output Data

We calculate the measure of network distance dij , using the Bureau of Economic Analysis (BEA)

Benchmark Input-Output Use Tables. The BEA provides U.S. input-output (I-O) data at the 4-digit

SIC level in 5-year periods (benchmark years) between 1967 and 2002. Following Carvalho (2010)

and Acemoglu et al. (2012), we view the input-output matrix as a network of input-flows, where

each sector is a node, and each input-supply relationship is a (weighted) directed edge linking two

nodes.

measure of distance captures both these features.
35See, for example, Ahuja, Magnanti, and Orlin (1993) or Jackson (2008) for a review of distance and shortest path

measures in networks. Note that, in principle, the distance measure can also be calculated in the opposite direction
– looking for the shortest path by following forward linkages from sector j to sector i, dji. Our use of dij reflects
the notion of distance implied by our model, which focuses on network proximity via linkages to input providers
(upstream), as opposed to customers (downstream).
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For some sectors, the level of aggregation or coverage changes over time. We account for this

by aggregating sectors, and match the resulting I-O panel to the Annual Survey of Manufacturing

(ASM) 1987 SIC classification.36 In 1997, the BEA changed the I-O classification from SIC to

NAICS. While the Census Bureau provides a correspondence, the match is imperfect for many

sectors at the 4-digit level. To make sectors comparable beyond the last SIC-based I-O table in

1992, we employ the following procedure: (i) if several NAICS sectors match a single SIC sector,

the former are aggregated; (ii) if several SIC sectors were merged into one NAICS sector in 1997,

industry-commodity specific shares from the 1992 I-O table are used to disaggregate NAICS into

the corresponding SIC components.37 The switch to NAICS also reclassified products into new

sectors, and the correspondence assigns these in part to existing SIC sectors. This creates events

that look like adoption in 1997.38 To avoid that this affects our results, we exclude new linkages

formed in 1997 in our baseline analysis. Nevertheless, in the robustness analysis we show that our

results hold even if we add the noisy 1997 data.

Overall, our approach to making sectors comparable yields a coherent set of 358 sectors for

all I-O benchmark years between 1967 and 2002. For each sector-input pair, we calculate our

central explanatory variable: network distance in 1967, d67ij . To identify the minimum distance

path between i-j pairs, we use a standard Dijkstra’s shortest path algorithm (see for example Ahuja

et al., 1993).

Input Adoption and Time to Adopt

We define input adoption as an event in a given year y, where a sector j begins to use an input i.

We say that j has adopted i in y if it has not used the input prior to year y, and begins to purchase

a positive amount of the input in y. Formally, the indicator variable for adoption in year y is thus

defined as:

Aij(y) =





1, if Γij(y) > 0 and Γij(y
′) = 0, ∀y′ < y

0, otherwise
(10)

Note that this definition yields Aij(y) = 0 in the cases of pre-existing links and when an input

connection between i and j existed in the past but disappears in y (broken links).

We compute two definitions of adoption, a broad (Abr
ij ) and a narrow one (Anar

ij ), using 5-year

36For a detailed description of this methodology see Voigtländer (2014). One example are paper mills (SIC 2621)
and paperboard mills (SIC 2631). Both are reported separately in the I-O data before 1987, but aggregated to one
sector thereafter. We treat these as one sector, ‘paper and paperboard mills’ over the full sample period.

37The original NAICS-SIC correspondence is available at http://www.census.gov/epcd/www/naicstab.htm. The ex-
tended correspondence that includes industry-commodity specific weights is available upon request from the authors.

38The 2002 I-O data, on the other hand, are directly comparable with their 1997 counterpart, so that we can clearly
identify adoption events in this year.
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intervals corresponding to IO benchmark years. Abr
ij requires that i has not been used in y − 5,

and is used in y. Therefore, the broad definition potentially also captures cases where inputs are

adopted and then dropped again.39 Many of these short-term adoption events are probably noise,

but some may also reflect actual attempts to integrate new inputs. The narrow definition excludes

such events, requiring that i be used for at least 10 years after adoption, i.e., in y + 5 and y + 10.

This comes at the cost of ‘losing’ adoptions during the last two benchmark years in our sample.

We use the broad definition as our main measure and document the robustness of our results using

the narrow measure.

Next, we define the time that it takes a given sector to adopt an input:

Tij = yAdopt − 1967 , (11)

where yAdopt is the year in which sector j adopted input i; formally,Aij(yAdopt) = 1. Note that this

measure is only defined if i) there was no input link between i and j in 1967 (Γij(1967) = 0), and

ii) adoption occurred before the end of our sample in 2002. Altogether, there are 128,164 i-j pairs

in our dataset. Out of these, 16,684 have Γij > 0 in 1967, which leaves 111,480 possible adoption

events. During the subsequent four decades until 2002, we observe 19,885 adoptions in our broad

measure and 8,765 in the narrow one.40

Sectoral Characteristics

We use sector-level data from the NBER-CES Manufacturing Industry Database, which provides

total factor productivity (TFP), output price deflators, wages, value of shipments, and capital stock

at the 4-digit SIC level over the period 1958-2005. These data are collected from various years

of the Annual Survey of Manufactures (ASM).41 We use these data to derive control variables

for input producing and adopting sectors. We also calculate changes in TFP for input producing

sectors, △TFPi to test the prediction that sectors with rapid productivity growth are more likely

to be adopted. Since this variable may be endogenous to adoption, we also compute the changes

in TFP before 1967, starting from the earliest year for which data is available, 1958. This variable,

△TFP 58−67
i , strongly predicts△TFPi after 1967.

39However, multiple adoption events are excluded because our definition yieldsAij(y) = 0 if a connection between
i and j had existed before.

40As discussed above, this excludes 1997 to avoid that adoption events reflect the change from SIC to NAICS in
that year.

41See Bartelsman and Grey (1996) for a documentation.
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5 Sector-Level Evidence

In this section, we test our model’s main prediction that closer network proximity raises the likeli-

hood of subsequent input adoption. We approach this question in two ways. First, we use a panel

approach to show that the probability of sector j adopting input i by in year y depends on tech-

nological distance dij at y − 5 (i.e., in the previous I-O benchmark year). Second, we show that

conditional on adoption occurring, it tends to happen earlier for smaller initial network distance

d67ij . This analysis includes only sector pairs for which adoption occurred over our sample period.

It thus addresses the potential concern that our results may be driven by the absence of adoption

events for technologically very distant sectors (such as vehicles and processed food). Instead, our

time-to-adopt results – by exploiting only variation among actual adoptions – suggests that the

network distance to feasible potential inputs plays an important role. We also show that, in line

with our model, more rapid technological progress in an input producing sector goes hand-in-hand

with higher odds of adoption.

5.1 Panel Estimation: Probability of Adoption

Does closer network proximity raise the likelihood of input adoption? In the following, we exam-

ine this question in the context of a panel in 5-year intervals between 1967 and 2002. For each I-O

benchmark year y, we compute our distance measures dij(y) as described in Section 4.2. For all

i-j pairs that were not directly connected in any year prior to y, we ask whether the probability of

adopting in year y depends on our lagged network distance measure dij(y − 5):

Prob (Aij(y) = 1) = g (ln dij(y − 5), Xi(y), Xj(y)) , (12)

whereXi (Xj) are additional controls for the input-producing (adopting) sector, such as changes in

total factor productivity or fixed effects. We use log distance to avoid that outliers affect our results

disproportionately. The dependent variable in each regression is the indicator Aij(y) as defined

in (10).42 We estimate different functional forms g(·). Given the binary nature of the dependent

variable, our main specification is the probit model. We also estimate a linear probability model

and hazard models, finding very similar results.

Main Results

We begin by reporting results for our baseline specification – the Probit model – in columns 1

and 2 of Table 1. The coefficient on network distance is highly significant and negative. Thus,

lower initial network distance makes adoption more likely. In order to interpret the magnitude our

42Note that this definition excludes all (directed) i-j pairs with input flows prior to y. This also implies that after
input adoption in y, the corresponding i-j pair is excluded from the sample in all years y′ > y.
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results, we also report standardized coefficients in square brackets for our two main explanatory

variables: network distance and TFP in input producing sectors. They show how a one standard

deviation increase in the respective explanatory variable affects the probability of adoption. With a

standardized coefficient of -2.31 percentage points, the effect of network distance is economically

significant.43 The coefficient remains unchanged in column 2, which controls for TFP growth over

the previous five years in both the input-producing (i) and adopting sector (j). The coefficient

on △TFPi is positive and highly significant, but the magnitude is markedly smaller – with a

standardized effect of 0.04 percentage points for an average i-j pair. The differences in magnitude

suggests that network proximity is the quantitatively more important driver of pair-specific input

adoption (at least over the short 5-year horizon that we analyze here).44 Finally, there is no clear

relationship between TFP growth of adopting sectors (△TFPj) and input adoption.

In columns 3 and 4 in Table 1 we show that our results also hold in a simple linear probability

model (OLS). According to the estimate in column 3, a one standard deviation (std) increase in

dij(y − 5) is associated with an increase in the probability of adoption by 1.41 percentage points

throughout the following five years. The coefficient remains unchanged in column 4, which con-

trols for TFP growth over the previous five years. TFP changes in input producing and adopting

sectors have the same sign and significance as in the Probit model, and both remain quantitatively

small.

In columns 5 and 6 we estimate a proportional hazard model. The hazard ratio for distance

implies that as dij(y − 5) increases by one unit, the rate of adoption in any given period will

be 0.594 as high as before, i.e., it will decrease by 40.6%. Alternatively, a one std increase in

dij(y − 5) reduces the adoption rate by 56.3%.45 The corresponding standardized relative hazard

coefficient is -4.12 percentage points, implying that over the entire sample period, a one standard

deviation increase in network distance is associated with a 4.12 pp. lower probability of adoption.

TFP growth in both input producing and adopting sectors have hazard ratios above 1, indicating

that TFP growth is associated with faster adoption. The magnitude of both TFP effects remains

small, with standardized coefficients in the range of 0.1%. In sum, the hazard model confirms the

economically and statistically significant (negative) relationship between initial network distance

and the odds of input adoption, as well as the quantitatively small positive effect of TFP growth in

43The marginal effect implied by the Probit coefficient in column 1 is -0.0145, and the standard deviation of network
distance is 1.59.

44Another possible explanation for the small effect is that input producers may charge strategically low prices in
order to attract customers (which may be particularly true during the 5 years leading up to adoption). Because our data
measure changes in revenue TFP, they would understate actual (physical) efficiency growth in the presence of falling
prices (Foster, Haltiwanger, and Syverson, 2008; Garcia-Marin and Voigtländer, 2013).

45The coefficient is ln(0.594)=-0.521, and thus exp(-0.521*1.59)=0.437 is the hazard ratio for a one std (1.59)
increase in network distance.
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input producing sectors.

Additional controls, robustness, and forward linkage distance

In Table 2 we present alternative specifications for our probit regression, including (benchmark)

year fixed effects and additional controls. Columns 1-4 use our broad measure of input adoption;

columns 5-8 use the narrow one, which requires new i-j links to persist for 15 years in order to be

counted as adoption. In addition to the broad/narrow categories, the measures of network distance

also vary in two additional dimensions: first, columns 2 and 6 exclude input links that are formed

between 4-digit sectors within the same 2-digit industry. This reduces the number of adoption

events by 9%.46 Thus, most input adoptions occur across 2-digit sectors. Second, columns 3 and 7

use network distance measured at the beginning of the sample period, in 1967, d67ij . All regressions

in Table 2 now control for the level of TFP and employment in adopting (j) and input-producing

(i) sectors. Controlling for sector size (employment) captures an important potential confounding

factor – that larger sectors may be mechanically more connected and more likely to adopt.

We find that neither the additional controls nor the variations in the network distance measure

change our results. Throughout all specifications, network distance is strongly negatively associ-

ated with adoption probabilities. For lagged distance, this effect is very similar in magnitude to the

results in Table 1 – a one std decline in dij(y−5) raises the odds of adoption in y by 1.8 percentage

points. Note that the coefficients on dij(y − 5) are almost unchanged when we exclude linkages

within 2-digit industries (columns 2 and 6). This makes it unlikely that horizontal similarity of

sectors is driving our results. When using distance in 1967 (columns 3 and 7), a one std reduction

in d67ij (0.65) raises the probability of adoption by approximately 1.2 percentage points. This some-

what smaller estimate is probably due to the fact that d67ij becomes an increasingly more imprecise

measure towards the end of our sample period. Importantly, the fact that our results remain strong

when we use d67ij suggests that unobserved trends are unlikely to be a major confounding factors.

When including the time-varying distance dij(y−5) together with the initial distance d67ij (columns

4 and 8), we find that both are significantly positively associated with the probability of adoption.

In line with our model, inputs that are produced more efficiently (higher TFPi) are more likely

to be adopted. In our baseline specification (col 1), a one std increase in TFPi raises the adoption

probability by 0.25 percentage points.47 On the other hand, the coefficients on efficiency of the

46For the broad (narrow) measure, we count 19,885 (8,765) input adoption events in our sample (excluding 1997),
and this number declines to 18,111 (8,054) when excluding adoption events within 2-digit industries.

47We thus confirm our previous finding that network proximity is the quantitatively dominant effect. The difference
in magnitudes is even more striking for the narrow definition of adoption: the results in col 4 imply that a one std
decrease in dij(y − 5) (increase in TFPi) raises the odds of adoption by 1.74 (0.08) percentage points. Short-run
changes in TFP (△5TFPi) do not have a clear additional impact on adoption – the corresponding coefficient signs
are ambiguous. And even for the narrow definition of adoption, where the coefficients are positive and significant, the
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adopting sector have ambiguous signs and are mostly insignificant. Finally, sector size (measured

by employment) is associated with both higher probability of adopting and being adopted.

Is the observed relationship between network distance and input adoption merely driven by

unobserved sectoral characteristics? For example, more ‘dynamic’ sectors may be more central in

the input-output network and also adopt new inputs more frequently. In Table 3 we address this

issue by including fixed effects for input-producing and input-using sectors.48 Both significance

and magnitude of the coefficient on network distance are unchanged. Remarkably, the standardized

coefficient of initial network distance d67ij is now larger than the one for the time-varying measure

dij(y − 5) (columns 4 and 8). This implies that, once sectoral idiosyncracies are filtered out,

distance in 1967 is strongly associated with input adoption even as the network itself evolves over

time.49 In other words, in line with our argument, the initial network structure of the production

network provides strong predictive power for its long-run evolution. The evidence on TFP in input

producing sectors (TFPi) is now mixed, with mostly positive but quantitatively small coefficients.

Among the controls that are not separately reported in Table 3, TFPj (for adopting sectors) shows

no clear relationship with the likelihood of input adoption, and the relationship between input

adoption and employment is now ambiguous for input producing sectors (i), and less robust than

above for adopting sectors (j). Panel B of Table 3 documents very similar results when we restrict

adoption events to purchases above $1 million. This ensures that minor transactions in input-output

tables do not drive our results. Note that in our most restrictive specification (using the narrow

definition of adoption) in column 8, only network distance d67ij is strongly negatively associated

with input adoption, while dij(y − 5) is insignificant and positive. This provides further support

for our focus on initial network distance.

In Table 4 we include more restrictive pairwise fixed effects for each i-j combination. Our

baseline analysis does not include these because we emphasize the role of initial network distance

in explaining the subsequent evolution of linkages, and i-j fixed effects effectively filter out the

distance in 1967. However, including i-j effects also offers an advantage: it allows us to restrict

the identifying variation to changes in network distance. We can thus examine whether shortened

network distances due to previous input diffusion raised the subsequent likelihood of adoption.

For example, semiconductors were 2 nodes away from "scales and balances" in 1967, with the

magnitude is small (with a one std increase in△5TFPi leading to a rise in the adoption probability by 0.3 p.p.).
48The incidental parameter problem that is typically present in panel regressions with fixed effects does not affect

our results. As shown by Egger, Larch, Staub, and Winkelmann (2011), in a setting with all possible pairs of N
sectors, the probit model with fixed effects can be estimated consistently. Intuitively, this holds because adding one
sector to a dataset with N sectors gives 2N additional observations, but only 2 additional fixed effects.

49To see this, note that in 1972 (the first year in our panel), dij(y − 5) = d67ij . For each benchmark year thereafter,
dij(y − 5) reflects the updated input-output network, due to newly formed input connections.
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shortest path being semiconductors→ electronic components→ computing equipment → scales

and balances. Thus, when computing equipment adopted semiconductors in 1972, it also reduced

the distance between semiconductors and "scales and balances", which eventually adopted semi-

conductors directly (see also our discussion in Section 2). Our results in Table 4 provide strong

evidence that this pattern holds broadly in our data. We find a strong and significant negative rela-

tionship between lagged network distance and input adoption in all specifications, and for both the

broad and the narrow measure of adoption.50 Importantly, our results are unchanged when we ex-

clude links within the same 2-digit industry (cols 2 and 5). This makes it unlikely that unobserved

trends at the more aggregate industry level are responsible for our results. The coefficient on TFP

of input-producing sectors becomes ambiguous and mostly insignificant when we include i-j fixed

effects. Thus, network distance turns out to be the more robust among the two main correlates of

input adoption in our analysis.

Finally, in Table 5 we use the network distance between i and j following forward linkages.

We define the forward distance dji – analogous to the distance based on backward linkages – as the

shortest path that connects j and i via output flows (beginning from j). For example, if j supplies

to k, which in turn supplies to i, then dji = djk+dki, where djk is the shortest-distance forward link

between j and k. We find that the coefficient is statistically insignificant and quantitatively small

in almost all specifications – this holds irrespective of whether we include only forward distances

(cols 1 and 4), or forward distance and backward distance simultaneously. The only time when

the coefficient on forward distance is significant (col 3), its sign is positive. Thus, if anything,

shorter forward distance is associated with a (marginally) smaller probability of adoption. For

example, the forward distance from rubber to automobiles is short, with tires as the connecting

link. But rubber producers do not adopt cars as an input. These findings make it unlikely that our

main measure for network proximity merely captures technologically similar clusters – if this was

the case, we should find results irrespective of the direction of input (or output) flows within such

clusters. Importantly, our main results are unchanged when we control for forward distance – both

for the broad definition (cols 2 and 3) and for the narrow definition (cols 5 and 6) of adoption.

5.2 Cross-Sectional Estimation: Time to Adoption

In the following, we analyze how initial network distance in 1967 affects the time that it takes until

a sector j adopts an input i, Tij . This is conditional on adoption being observed by the end of our

50The magnitude of the standardized effect is now somewhat smaller than above, at about 0.6% for the broad
adoption measure. One reason for this difference may be that we now have to use OLS regressions, which generally
yield somewhat lower coefficients than the probit model. We use OLS because, in contrast to our earlier analysis,
using probit in a setup with i-j effects would suffer from the incidental parameter problem (see also footnote 48).
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sample period in 2002. We run the following regression:

Tij = β · d67ij + γ · △TFPi + δi + δj + εij , (13)

where d67ij is network distance in 1967, and △TFPi denotes the (average annual) change in total

factor productivity in the input producing sector between 1967 and the year of adoption.51 Finally,

δi and δj are input-producing and adopting sector fixed effects, respectively.

Table 6 reports the results, using OLS regressions. We use fixed effects for input adopting

sectors (δj) throughout, capturing the large degree of heterogeneity across sectors. Using also input

producing sector fixed effects reflects a tradeoff: on the one hand, some sectors are more central

in the network than others, which we expect to raise their likelihood of being adopted. Using fixed

effects δi will absorb this variation, which may attenuate our results. On the other hand, there are

many other potential sector-specific features that may confound our results; including δi controls

for those that are time-invariant. In practice, our results are robust to either specification: cols

1-3 do not include δi, while all other specifications in Table 6 do so. The coefficient on network

distance is actually stronger when including δi, which is probably due to the substantially improved

fit of the regression (the R2 increases from 0.19 in col 1 to 0.73 in col 4, with all other variables

being the same). In the following, we discuss the individual results in detail.

Column 1 shows a strong positive association between initial network distance and time to

adopt. We also find a strong negative relationship between TFP growth in i and average adoption

time for i. Themain difference with our panel results is that TFP growth now shows a quantitatively

important relationship with adoption. A one std increase in △TFPi is associated with a 1.8 year

increase in time to adopt. To put this estimate in context, the average time to adopt (conditional

on adoption occurring prior to 2002) in our sample is 16.7 years. One explanation for the larger

results on TFP growth is that – in contrast to our panel results in 5-year intervals – the cross-

sectional results on time to adopt exploit long-term changes in productivity. Our findings thus

suggests that input adoption reacts more to secular trends than to short-time hikes in the efficiency

of input production.

In col 2 we use TFP growth of input-producing sectors between to 1958 and 1967, which

is highly correlated with the post-1967 TFP growth. Focusing on historical efficiency growth in

the input-producing sector i addresses the possibility of reverse causality, i.e., that firms in i may

anticipate the adoption of i and thus innovate, rather the other way around. The coefficient on

△TFPi(1958−67) is highly significant but much smaller than in col 1, with a standardized effect

51By using average annual changes, we avoid that later adoption is mechanically associated with higher efficiency
gains, because technology advances more over longer horizons.
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of -0.28 years. To obtain a coefficient estimate that can be more readily compared with our baseline

results, and at the same time addresses the possibility of reverse causality, we employ a 2-stage

least square approach. We use pre-1967 TFP growth to predict TFP growth between 1967 and

the year of adoption.52 The first stage has very strong predictive power, with an F-statistic above

800. The second stage results are shown in col 3: output from sectors that see faster TFP growth

is adopted significantly faster by other sectors, with a standardized coefficient of -3.88.

For the remaining columns (4-8), we introduce fixed effects also for the input-producing sector.

This raises the magnitude of coefficients for both network distance and TFP growth. Our baseline

specification in col 4 implies that a one std decrease in d67ij reduces the time to adopt by 2.14 years,

while a one std increase in △TFPi(1967 − yadopt) reduces time to adopt by 6.7 years. Columns

5 and 6 show that our results are also robust to excluding early adoptions that occurred in 1972,

as well as to including 1997 (when the IO tables shifted from SIC to NAICS). Finally, excluding

adoptions that occurred within 2-digit industries (col 7) and using the narrow definition of adoption

(col 8) also yields similar estimates.

6 Firm-Level Evidence

In this section we analyze the relationship between network distance and input adoption at the

firm level. This is motivated by the fact that network linkages ultimately reflect the flow of inputs

across individual producers. To make progress in this direction, we use some (limited) information

on firm-to-firm linkages.

6.1 Description of firm-level data

We use data from Compustat, which includes information on supply linkages. In accordance with

Financial Accounting Standards Rule No.131, publicly listed firms are required to disclose the

identity of their major customers. A major customer is defined as any firm responsible for more

than 10% of the seller’s revenues, although firms occasionally report the identity of customers

below that threshold. This firm-level network data can be linked to the balance sheet information

in Compustat, allowing us to associate information on firms’ customers and suppliers with other

firm-level observables.53

The raw data is reported annually and covers the period from 1977 to 2008 for a total of 43,506

52Note that this approach is only feasible if we do not use input producer fixed effects δi. Also, it is important
to emphasize that we do not interpret this as an ‘instrumental variable’ regression because it cannot address omitted
variable concerns.

53Cohen and Frazzini (2008) were the first to explore firm linkages from this data source to examine return pre-
dictability across linked firms. Kelly et al. (2013) also use these data to show that firm level volatility depends on the
structure of buyer-supplier linkages. Finally, Atalay et al. (2011) use the same data source to develop a model of the
buyer-supplier networks in the U.S. economy. We are grateful to the latter set of authors for sharing their data with us.
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firm-to-firm links. To reduce noise, we aggregate the information on customer-supplier linkages

over non-overlapping 5-year intervals.54 We define a directed customer-supplier network at the

firm level as follows: a directed edge from node i to node j is present if – at any point during the

5-year interval – firm j is reported as a major customer of firm i. Note that this customer-supplier

network is binary; weights cannot be computed because information on the value of product flows

from i to j is not systematically reported.

Based on this definition of firm-level customer-supplier networks, we define our measures of

network distance and input adoption in an analogous way to the sector-level input-output data.

First, for each 5-year interval, we define the network distance between any two firms present in

the dataset as the length of the shortest directed path between any two nodes. Since the network is

binary, distance reflects the minimum number of directed edges that lead from i to j. If i supplies

directly to j, distance dij = 1; if i supplies to k, and k to j, then dij = 2, etc. Second, we say that

firm j has adopted an input being supplied by firm i if, in a 5-year interval, firm i reports firm j as

a major customer, and it did not do so at any previous time in our dataset. Our final panel dataset

includes approximately 14.5 million firm pairs with distance dij > 1, i.e., firms that are not directly

linked. About 1,200 firm pairs have distance dij = 2; 200 have dij = 3, and a few have distances

4 or 5. For the vast majority of firm pairs, no path exists based on the binary network (so that

dij = ∞). The lack of network connections is in part due to the restrictive nature of the data with

the 10% reporting threshold. We thus interpret our results as exploratory rather than conclusive.

As mentioned above, we supplement these data with other firm-level observables available

from Compustat. These include firm employees and sales. As a proxy for firm-level productivity

growth, we first compute labor productivity as sales per worker and derive its growth rate over each

5-year window. In order to control for geographical proximity between two firms, we compute the

distance between their headquarters. To proxy for technological similarity, we use the 4-digit SIC

code classifying the main sector of activity of each firm.

6.2 Firm-level results

For all i-j pairs that were not directly connected in any 5-year period prior to y, we run panel

regressions of the form:

Prob (Aij(y) = 1) = g (Iij(y − 5), Xi(y), Xj(y)) , (14)

where Aij(y) is an indicator that equals one if firm j adopted input i in the 5-year period y. Our

main explanatory variable is an indicator for whether firms i and j were indirectly connected, via

54The 5-year intervals are 1977-81, 1982-86,...,2002-06.

30



one other node, in the previous period: the dummy Iij(y − 5) equals one if the binary directed

distance between i and j equalled 2. The coefficient on this variable reflects by how much the

probability of adoption in any given interval increases if dij = 2, as compared to dij > 2.55

Xi (Xj) are additional controls for the input-producing (adopting) firm, such as the number of

employees, output per worker, and the (lagged) growth thereof. We also include fixed effects for

each time period, and for adopting and producing firms. Due to the large number of firm pairs, the

probit and the hazard model are computationally unfeasible in the presence of firm fixed effects.

We thus use the linear probability model for the functional form of g(·) in those specifications.

Table 7 presents our firm-level results. In column 1 we use a simple OLS regression with

time-period dummies, including only Iij(y − 5) and the geographic distance between firms. Both

are highly significant and have the expected sign – previous indirect connections (i.e., network

proximity) increase the probability of new link formation, while geographic distance reduces this

probability. To interpret and compare the magnitude of our estimates, we provide standardized

coefficients in square brackets. For our main explanatory variable, these reflect the change in

adoption probability when an indirect link existed (Iij(y − 5) = 1), as compared to when it did

not exist (Iij(y − 5) = 0). For all continuous variables, the standardized coefficients represent

the change in adoption probability due to a one standard deviation increase in the explanatory

variable. The standardized coefficient for network proximity is economically sizeable, with 2.85%.

In contrast, geographical distance has a minuscule effect: reducing log distance by one standard

deviation increases the probability of j adopting i by merely 0.007%. Both the magnitude and

significance of these effects are confirmed by the probit model in column 2.

In column 3 we introduce fixed effects for input-producing and (potential) adopting firms, i

and j. Our results remain unchanged. The same is true when we add controls for firm size,

productivity, and productivity growth (column 4). The coefficient for productivity growth in input-

producing firms is positive and significant. This confirms the sector-level result that efficiency

gains in input production are associated with a higher likelihood of adoption (however, the effect

is quantitatively small). In column 5 we exclude all i − j firm pairs that belong to the same 2-

digit SIC industry. The coefficient on Iij(y − 5) falls only slightly and remains highly significant.

This implies that technological proximity alone is probably not the main driver of our results –

initial network proximity raises the likelihood of adoption also for inputs from different industries.

Finally, we restrict the sample to input-producing firms i from manufacturing (col 6), and from

the service sector (col 7). We find very similar results in both samples, suggesting that the role of

network proximity is not limited to physical inputs.

55As explained above, the vast majority of the remaining firm pairs have an infinite binary distance. All results are
practically identical when we exclude the few cases with dij = 3,4, or 5.
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7 Conclusion and Broader Implications

Input-output linkages have important implications for macroeconomic outcomes. While typically

observed at the sectoral level, these linkages reflect the flow of products between individual pro-

ducers, and thus ultimately the underlying technology at the product level. The evolution of the

input-output structure is therefore at the heart of technological progress. We studied the mecha-

nism of input link formation both theoretically and empirically. Guided by a stylized model of

directed search in a network, we uncovered a strong and novel empirical regularity: sectors (and

firms) that are closer in the input-output network are significantly more likely to form new input

linkages. In other words, the existing production network plays an important role for the diffusion

of inputs and thus for the evolution of the input-output network itself.

Our theoretical and empirical results have several important implications. First, from a network

perspective, General Purpose Technologies (GPTs) correspond to central nodes, i.e., extremely

prominent inputs. Our findings shed new light on the rise of general purpose inputs: inputs that

are initially closer to many potential adopters are more likely to become widely adopted. The left

panel of Figure 6 illustrates this finding. It plots the (log) number of sectors that adopted input

i after 1967 against the initial average network distance of i (see note to figure for details). The

latter is low whenever i is indirectly linked to many, relatively large, manufacturing sectors; it thus

reflects the "network growth potential" of input i. In the regression underlying the figure, network

growth potential accounts for more than 25% of cross-sectional variation in input diffusion (based

on the R2).56 In sum, the figure shows that network proximity is a crucial determinant of input

diffusion, and is thus a potentially important factor in the rise of GPTs.

Second, our findings can help to explain sector-level growth patterns. Intuitively, if initial

network proximity is associated with extensive margin growth (i.e., input diffusion), variation in

the former should also predict differential growth across sectors. The right panel of Figure 6 shows

that this is indeed the case. It plots 1967-2002 employment growth for each input-producing sector

against our measure of initial "network growth potential". This relationship is naturally more noisy

than the result on input diffusion, because growth is affected by many drivers other than adoption

by other sectors. Nevertheless, the result is quantitatively important: a one-standard deviation

increase in initial network distance is associated with a (highly significant) decline in sector-level

growth by 0.2 standard deviations. This suggests that our network view of input diffusion may

have implications for structural change and unbalanced growth (see Herrendorf, Rogerson, and

Valentinyi, 2014, and references therein).

56We note in passing that this dwarfs the explanatory power of an input producer’s TFP growth, which accounts for
merely 1% (despite the fact that it is statistically highly significant).
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Third, our results give rise to a possible new channel by which misallocation may affect ag-

gregate productivity. Input-output linkages can amplify micro-level distortions to a given sector i,

leading to static losses in aggregate efficiency (Jones, 2013). In our setting, distortions can also

give rise to dynamic aggregate productivity losses: distorting sectors that use i as an input can

affect i’s subsequent diffusion. To see this, consider our earlier example of semiconductors. A

crucial gateway that connected these to other sectors in the economy was the "Electronic Compo-

nents" sector. Consequently, (hypothetical) distortions to the latter could have stunted the diffusion

of semiconductors. Thus, our findings suggest the possibility that distortions to "network bottle-

necks" can have an impact on aggregate productivity growth.

These broader implications underline the need to shed light on the mechanisms behind our

findings. We have discussed technological proximity, coagglomeration, and information diffusion

along input linkages as possible explanations for the strong relationship between network prox-

imity and input diffusion. Our findings suggest that vertical distance along supply chains is a

promising starting point to understand patterns of input adoption and diffusion. In this paper, we

have taken the necessary first step of documenting this novel pattern in the data; we leave the

systematic assessment of the underlying mechanisms for future research.
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Figure 1: Input adoption and initial network distance

Notes: The figure shows that sector pairs that are closer in the U.S. input-output network in 1967 are more likely to
see direct adoption by 2002. The x-axis shows the binary distance between input i and a potential adopting sector j
in 1967. Sectors that are already directly connected in 1967 (distance 1) are excluded from the analysis. The y-axis
shows the share of all sector pairs for which j as adopted i by 2002. The whiskers correspond to the 95% confidence
intervals.
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Adoption between 1967 and 2002
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Figure 6: Initial network distance, input diffusion, and employment growth

Notes: The left panel shows the relationship between an input sector’s (i) initial average network distance
in 1967 and its subsequent adoption by other sectors (j) over the period 1967 and 2002. The right panel
shows the relationship between initial average distance and subsequent employment growth of input sector
i. The x-axes of both panels display the average network distance of an input i to all other sectors (j) in
1967. This measure is computed as follows: first, we calculate our baseline network distance measure
(weighted and directed) for each i − j pair that is not yet directly connected in 1967. For each input i,
we then compute the weighted average over all sectors j, where weights are given by the total value of
sector j’s output, relative to aggregate manufacturing output in 1967. The y-axis of the left panel gives
the (log of) total number of sectors j which adopted i as an input in subsequent years. We use our most
conservative notion of adoption, by requiring that i supplies to j no less than a $1million for at least 15
years after the initial adoption date. The y-axis in the right panel gives the 1967-2002 employment growth
for each sector. Regressions in both panels control for (log) initial employment in sector i and for its TFP
growth between 1967 and 2002.
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TABLES

Table 1: Panel on input adoption: Baseline results

Dep. Var.: Dummy for adoption of input i by sector j in year y

(1) (2) (3) (4) (5) (6)
Estimation Probit Probit OLS OLS Hazard Hazard

Distance dij(y − 5) -0.1906∗∗∗ -0.1904∗∗∗ -0.0089∗∗∗ -0.0089∗∗∗ 0.5940∗∗∗ 0.5946∗∗∗

(0.0039) (0.0039) (0.0002) (0.0002) (0.0055) (0.0055)
[-2.31%] [-2.31%] [-1.41%] [-1.41%] [-4.12%] [-4.18%]

△5TFPi 0.0623∗ 0.0119∗∗∗ 1.405∗∗∗

(0.0372) (0.0024) (0.1038)
[0.04%] [0.09%] [0.13%]

△5TFPj -0.0376 -0.0020 1.3463
(0.1420) (0.0107) (0.4095)

Observations 563,173 563,173 563,173 563,173 577,498 577,498

Notes: The dependent variable is a dummy that takes on value 1 if sector j adopted input i in a given year y between
1972 and 2002. Adoption is defined in Section 4.2; we use the broad definition throughout in this table. The table
excludes adoptions occurring in 1997 because of the transition from SIC to NAICS classification in that year. The
main explanatory variable is network distance of input i from sector j in the previous I-O benchmark year (i.e., with a
5-year lag), as described in Section 4.1. △TFP denotes the change in total factor productivity over the previous five
years in i and j. Standard errors in parentheses, clustered at the adopting sector (j) level. * p<0.1, ** p<0.05, ***
p<0.01. Values in [square brackets] are standardized coefficients, reflecting the change in adoption probability (over
a 5-year interval) due to a one standard deviation increase in the explanatory variable.
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Table 2: Additional panel results on input adoption

Dep. Var.: Dummy for adoption of input i by sector j in year y

(1) (2) (3) (4) (5) (6) (7) (8)
Links excluded‡ 2-digit 2-digit

Broad definition of adoption Narrow definition of adoption
Distance dij(y − 5) -0.162∗∗∗ -0.158∗∗∗ -0.104∗∗∗ -0.280∗∗∗ -0.278∗∗∗ -0.134∗∗∗

(0.005) (0.005) (0.005) (0.008) (0.009) (0.009)
[-1.83%] [-1.73%] [-1.07%] [-1.74%] [-1.68%] [-0.75%]

Distance in 1967, d67ij -0.219∗∗∗ -0.100∗∗∗ -0.397∗∗∗ -0.253∗∗∗

(0.010) (0.011) (0.012) (0.015)
[-0.94%] [-0.44%] [-0.93%] [-0.31%]

TFPi -0.192∗∗∗ -0.152∗∗∗ -0.091∗∗ -0.113∗∗ 1.072∗∗∗ 1.196∗∗∗ 1.287∗∗∗ 1.301∗∗∗

(0.040) (0.043) (0.043) (0.044) (0.068) (0.065) (0.066) (0.072)
[0.27%] [0.27%] [0.28%] [-0.10%] [0.08%] [0.06%] [0.02%] [-0.13%]

TFPj -0.019 -0.036 0.037 0.036 0.061 0.075 0.080 0.081
(0.115) (0.116) (0.130) (0.129) (0.097) (0.102) (0.108) (0.109)

△5TFPi 0.251∗∗∗ 0.261∗∗∗ 0.280∗∗∗ 0.276∗∗∗ 0.142∗∗∗ 0.122∗∗∗ 0.046∗ 0.034
(0.015) (0.015) (0.015) (0.015) (0.024) (0.024) (0.024) (0.025)

△5TFPj -0.031 -0.021 -0.009 -0.010 0.013 0.018 0.032 0.033
(0.048) (0.051) (0.052) (0.052) (0.041) (0.044) (0.042) (0.042)

ln(emp)i 0.126∗∗∗ 0.137∗∗∗ 0.101∗∗∗ 0.102∗∗∗ 0.176∗∗∗ 0.192∗∗∗ 0.134∗∗∗ 0.135∗∗∗

(0.003) (0.003) (0.004) (0.004) (0.005) (0.005) (0.004) (0.004)

ln(emp)j 0.089∗∗∗ 0.094∗∗∗ 0.096∗∗∗ 0.096∗∗∗ 0.159∗∗∗ 0.164∗∗∗ 0.174∗∗∗ 0.174∗∗∗

(0.007) (0.007) (0.008) (0.008) (0.010) (0.010) (0.011) (0.011)

Year FE X X X X X X X X

Observations 519,041 611,669 430,836 307,278 380,573 380,573 309,499 291,397

Notes: All regressions are estimated by Probit. The dependent variable is a dummy that takes on value 1 if sector j
adopts input i in a given year y between 1972 and 2002. Both i and j are observed at the 4-digit SIC level, and the
panel extends over the period 1967-2002 in 5-year intervals. Adoption is defined in Section 4.2; columns 1-3 use the
broad measure, and columns 4-6 use the narrow measure. The latter requires new i-j links to remain intact for at least
15 years in order to qualify as adoption. The table excludes adoptions occurring in 1997 because of the transition
from SIC to NAICS classification in that year. The main explanatory variable is network distance of input i from
sector j in the previous I-O benchmark year (i.e., with a 5-year lag), as described in Section 4.1. Columns 3 and 6
use the distance measured in 1967. △5TFP denotes the change in total factor productivity in the 5 years prior to
each benchmark year (y), and TFP is the level in year y. The number of employees in the sector is denoted by emp.
Standard errors in parentheses, clustered at the adopting sector (j) level. * p<0.1, ** p<0.05, *** p<0.01. Values in
[square brackets] are standardized coefficients, reflecting the change in adoption probability (over a 5-year interval)
due to a one standard deviation increase in the explanatory variable.
‡ Columns 2 and 5 exclude all i-j pairs that belong to the same 2-digit industry.
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Table 3: Robustness checks – panel estimation

Dep. Var.: Dummy for adoption of input i by sector j; Probit estimation

(1) (2) (3) (4) (5) (6) (7) (8)
Years excluded 1997 none 1997 1997 1997 none 1997 1997
Links excluded‡ 2-digit 2-digit

Broad definition of adoption Narrow definition of adoption
PANEL A: All input relationships

Distance dij(y − 5) -0.208∗∗∗ -0.145∗∗∗ -0.199∗∗∗ -0.062∗∗∗ -0.362∗∗∗ -0.362∗∗∗ -0.346∗∗∗ -0.163∗∗∗

(0.012) (0.008) (0.012) (0.014) (0.024) (0.024) (0.026) (0.021)
[-1.52%] [-1.51%] [-1.52%] [-0.36%] [-1.19%] [-1.19%] [-1.25%] [-0.47%]

Distance in 1967, d67ij -0.600∗∗∗ -0.669∗∗∗

(0.035) (0.039)
[-1.64%] [-1.07%]

TFPi 0.165∗∗∗ 0.195∗∗∗ 0.190∗∗∗ -0.075 0.085 0.085 0.037 0.126∗

(0.034) (0.029) (0.037) (0.060) (0.065) (0.065) (0.070) (0.073)
[0.14%] [0.21%] [0.16%] [-0.04%] [0.04%] [0.04%] [0.02%] [0.05%]

Control Variables§ X X X X X X X X

Using Sector FE X X X X X X X X

Producing Sector FE X X X X X X X X

Year FE X X X X X X X X

Observations 519,041 611,669 430,836 307,278 380,573 380,573 309,499 291,397

PANEL B: Exclude links that reflect less than $1million input purchase

Distance dij(y − 5) -0.173∗∗∗ -0.138∗∗∗ -0.161∗∗∗ -0.063∗∗∗ -0.231∗∗∗ -0.231∗∗∗ -0.210∗∗∗ 0.022
(0.014) (0.012) (0.014) (0.014) (0.027) (0.027) (0.029) (0.022)
[-0.92%] [-0.88%] [-0.86%] [-0.30%] [-0.62%] [-0.62%] [-0.57%] [0.05%]

Distance in 1967, d67ij -0.629∗∗∗ -0.829∗∗∗

(0.031) (0.038)
[-1.67%] [-1.36%]

TFPi 0.084∗∗ 0.199∗∗∗ 0.088∗ 0.062 0.089 0.089 0.047 0.055
(0.041) (0.038) (0.046) (0.058) (0.062) (0.062) (0.068) (0.067)
[0.05%] [0.14%] [0.05%] [0.03%] [0.03%] [0.03%] [0.02%] [0.02%]

Controls as in Panel A X X X X X X X X

Observations 577,122 671,697 482,850 375,841 398,169 398,169 323,867 324,315

Notes: The dependent variable is a dummy that takes on value 1 if sector j adopts input i in a given year y (in 5-
year intervals between 1967 and 2002). Adoption is defined in Section 4.2; columns 1-4 use the broad measure, and
columns 5-8 use the narrow measure. The latter requires new i-j pairs to be present for at least 15 years in order
to qualify as adoption. Columns 2 and 6 include all benchmark years, including 1997, when the I-O classification
switched from SIC to NAICS. For description explanatory variables and additional detail see the note to Table 2.
Standard errors in parentheses, clustered at the adopting sector (j) level. * p<0.1, ** p<0.05, *** p<0.01. Values in
[square brackets] are standardized coefficients, reflecting the change in adoption probability (over a 5-year interval)
due to a one standard deviation increase in the explanatory variable.
‡ Columns 4 and 8 exclude all i-j pairs that belong to the same 2-digit industry.
§ Control Variables include TFP in the input-adopting industry, and (log) employment in both adopting and input-
producing industries.
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Table 4: Panel regressions with pairwise fixed effects

Dep. Var.: Dummy for adoption of input i by sector j in year y

(1) (2) (3) (4) (5) (6)
Remarks 2-digit† 1million‡ 2-digit 1million‡

Broad definition of adoption Narrow definition of adoption
Distance dij(y − 5) -0.0040∗∗∗ -0.0037∗∗∗ -0.0041∗∗∗ -0.0018∗∗∗ -0.0017∗∗∗ -0.0016∗∗∗

(0.0002) (0.0002) (0.0002) (0.0001) (0.0001) (0.0001)
[-0.64%] [-0.59%] [-0.57%] [-0.28%] [-0.28%] [-0.22%]

TFPi 0.0034∗ 0.0029 -0.0107∗∗∗ 0.0002 -0.0003 -0.0040∗∗∗

(0.0019) (0.0019) (0.0015) (0.0008) (0.0007) (0.0006)
[0.05%] [0.04%] [-0.16%] [0.00%] [-0.00%] [-0.06%]

Controls§ X X X X X X

Year FE X X X X X X

Pairwise i-j FE X X X X X X

Observations 556,936 523,627 568,771 555,529 522,718 566,600

Notes: All regressions are estimated by OLS. The dependent variable is a dummy that takes on value 1 if sector j
adopts input i in a given year y between 1972 and 2002. Both i and j are observed at the 4-digit SIC level, and the
panel extends over the period 1967-2002 in 5-year intervals. Adoption is defined in Section 4.2; columns 1-3 use the
broad measure, and columns 4-6 use the narrow measure. The latter requires new i-j links to remain intact for at least
15 years in order to qualify as adoption. The table excludes adoptions occurring in 1997 because of the transition from
SIC to NAICS classification in that year. The main explanatory variable is network distance of input i from sector j in
the previous I-O benchmark year (i.e., with a 5-year lag), as described in Section 4.1. TFPi is the level of TFP in the
input-producing industry in year y. Standard errors in parentheses, clustered at the adopting sector (j) level. * p<0.1,
** p<0.05, *** p<0.01. Values in [square brackets] are standardized coefficients, reflecting the change in adoption
probability (over a 5-year interval) due to a one standard deviation increase in the explanatory variable.
† Columns 2 and 5 exclude all i-j pairs that belong to the same 2-digit industry.
‡ Columns 3 and 6 exclude links that reflect less than $1million input purchase.
§ Controls include TFP in the input-adopting industry, and employment in both adopting and input-producing indus-
tries.
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Table 5: Panel results: Forward linkage distance

Dep. Var.: Dummy for adoption of input i by sector j in year y

(1) (2) (3) (4) (5) (6)
Links excluded‡ 2-digit 2-digit

Broad definition of adoption Narrow definition of adoption
Forward Distance dji(y − 5) 0.010 0.010 0.027∗∗ -0.014 -0.015 0.015

(0.012) (0.012) (0.012) (0.013) (0.013) (0.012)
[0.09%] [0.08%] [0.25%] [-0.08%] [-0.07%] [0.08]

Distance dij(y − 5) -0.213∗∗∗ -0.206∗∗∗ -0.361∗∗∗ -0.350∗∗∗

(0.012) (0.013) (0.024) (0.026)
[-1.56%] [-1.56%] [-1.22%] [-1.29%]

Controls X X X X X X

Observations 488,947 488,947 406,865 358,171 358,171 292,034

Notes: The dependent variable is a dummy that takes on value 1 if sector j adopts input i in a given year y between
1972 and 2002. All regressions are estimated by Probit. Controls are all those used in Table 3, Panel A (including
all fixed effects). "Forward distance dji(y − 5)" is network distance (with a 5-year lag), using forward linkages from
sector j to sector i, i.e., via other sectors that j supplies to. For description of the remaining explanatory variables
and additional detail see the note to Table 2. Standard errors in parentheses, clustered at the adopting sector (j) level.
* p<0.1, ** p<0.05, *** p<0.01. Values in [square brackets] are standardized coefficients, reflecting the change in
adoption probability (over a 5-year interval) due to a one standard deviation increase in the explanatory variable.
‡ Columns 3 and 6 exclude all i-j pairs that belong to the same 2-digit industry.
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Table 6: Time to adoption

Dep. Var.: Time to adoption of input i by sector j after 1967

(1) (2) (3) (4) (5) (6) (7) (8)
Years excluded 1997 1997 1997 1997 1972,97 none 1997 1997
Other remarks 2SLS§ 2-digit† narrow‡

Distance dij in 1967 0.937∗∗∗ 0.968∗∗∗ 0.976∗∗∗ 3.112∗∗∗ 1.778∗∗∗ 3.104∗∗∗ 3.307∗∗∗ 1.228∗∗∗

(0.196) (0.212) (0.182) (0.341) (0.360) (0.311) (0.354) (0.290)
[0.64] [0.66] [0.67] [2.14] [1.15] [2.04] [2.28] [0.72]

△TFPi(1967− yadopt) -96.925∗∗∗ -211.401∗∗∗ -364.787∗∗∗ -331.477∗∗∗ -281.502∗∗∗ -376.759∗∗∗ -146.929∗∗∗

(3.919) (24.137) (13.186) (26.434) (11.861) (14.029) (12.575)
[-1.78] [-3.88] [-6.70] [-3.95] [-4.37] [-6.97] [-3.06]

△TFPi(1958− 67) -18.341∗∗∗

(6.189)
[-0.28]

Using Sector FE X X X X X X X X

Producing Sector FE X X X X X

R2 0.19 0.17 0.16 0.73 0.72 0.67 0.73 0.66
Observations 14,849 15,072 14,849 14,849 8,604 24,312 13,856 6,421

Notes: The dependent variable is the log of years to adoption of input i by sector j after 1967, conditional on this
adoption having happened between 1972 and 2002; see equation (11). For a description of network distance dij see
Section 4.1. △TFPi(1967− yadopt) is the average annual change in TFP in the input producing sector between 1967
and the year of adoption by j. Standard errors in parentheses, clustered at the adopting sector (j) level. * p<0.1, **
p<0.05, *** p<0.01. Values in [square brackets] are standardized coefficients, reflecting the change in the dependent
variable due to a one standard deviation increase in the explanatory variable.
§ Two stage least square regression uses historical TFP growth in input-producing sectors (△TFPi 1958-67) as in
instrument for TFP growth after 1967 (△TFPi since ’67). The first stage has an F-statistic of 807.
† Column 5 excludes all i-j pairs that belong to the same 2-digit industry.
‡ The narrow definition of adoption requires new i-j pairs to be present for at least 15 years in order to qualify as
adoption.
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Table 7: Firm level panel results

Dep. Var.: Dummy for firm j adopting inputs from firm i in a 5-year time interval y

(1) (2) (3) (4) (5) (6) (7)
OLS Probit OLS OLS OLS OLS OLS

Sample 2-digit† Manufacturing Services

Iij(y − 5) 0.02854∗∗∗ 1.61359∗∗∗ 0.02161∗∗∗ 0.02140∗∗ 0.01834∗∗ 0.01966∗∗ 0.02367∗

(0.00745) (0.11780) (0.00779) (0.00888) (0.00806) (0.00904) (0.01348)
[2.85%] [2.69%] [2.16%] [2.14%] [1.83%] [1.97%] [2.37%]

ln(geodistance) -0.00006∗∗∗ -0.05809∗∗∗ -0.00007∗∗∗ -0.00007∗∗∗ -0.00006∗∗∗ -0.00006∗∗∗ -0.00007∗∗∗

(0.00001) (0.00604) (0.00001) (0.00001) (0.00001) (0.00002) (0.00001)
[-0.007%] [-0.005%] [-0.007%] [-0.007%] [-0.006%] [-0.006%] [-0.007%]

△5 ln(Y/L)i 0.00003∗∗∗ 0.00003∗∗∗ 0.00003∗∗ 0.00003
(0.00001) (0.00001) (0.00001) (0.00002)

Controls X X X X

Using Firm FE X X X X X

Producing Firm FE X X X X X

Year FE X X X X X X X

Observations 14,634,939 14,634,939 14,634,939 8,895,481 8,461,685 4,906,536 3,381,959

Notes: The dependent variable is a dummy that takes on value 1 if firm j adopts input i in a given 5-year interval y
between 1977 and 2006. Iij(y − 5) is an indicator that equals one if firms i and j were indirectly linked (had a binary
distance of 2) in the previous five-year interval. The variable geodistance is the geographical distance between i and j.
△5 ln(Y/L)i denotes the change in output per worker in the input-producing firm (i) over the previous (lagged) 5-year
interval. Controls include the change in output per worker in the input-using firm over the previous 5 year interval
(△5 ln(Y/L)j), as well as output per worker and ln(employment) for both input-producing and input-using firms. For
a description of the firm-level dataset see Section 6.1. Standard errors in parentheses, clustered at the adopting firm
(j) level. * p<0.1, ** p<0.05, *** p<0.01. Values in [square brackets] are standardized coefficients. For the dummy
Iij(y − 5) (all other explanatory variables), these reflect the change in adoption probability due to an increase from 0
to 1 (a one standard deviation increase in the explanatory variable).
† Column 5 excludes all i-j pairs that belong to the same 2-digit SIC industry.
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A Proofs and Additional Detail on the Model

Proof of Proposition 2

Proof. We first derive the probability that the next variety to be classified into any sector sj sources

as an input – indirectly, through its essential inputs – a given individual variety from sector si.

Recall from Definition 1 that µsj is the baseline vector that defines sector sj . For example, for

a car these may be wheels, an engine, and a body. We will refer to an "ideal variety for sector

sj" as a variety that uses exactly the essential inputs in µsj . Next, let isj(≤ x) be the number of

positive entries in vector µsj which in turn use variety i as an input.1 Additionally, let ksj be the

expected overlap between the next variety to be classified into sector sj and the vector µsj , i.e., the

expected number of varieties that t has in common with the "ideal variety" for sector sj . Then the

probability that the new variety in sector sj sources from i via its parents is:

pN

(
ksj

isj
xm

+
(
mK − ksj

) douti (t)

t

)
mN

mKm
(A.1)

where m = pKmK + pNmN is the expected indegree for each variety (i.e., the expected number

of inputs). Since t drawsmK essential inputs, there are overallmKm inputs in its network neigh-

borhood. Given that t draws mN varieties from this network, the term mN

mKm
gives the probability

that it sources any given input via its network of essential inputs. Next, the term in parentheses in

(A.1) gives the probability that a given essential input sources from variety i. This breaks down

into two parts. The first term in the parentheses accounts for the possibility that i may be in the

network neighborhood of those essential inputs that classify t into sector sj (i.e., inputs in the set

µsj ). The term gives the probability that t will source from i, conditional on t being classified into

sector sj and sharing, in expectation, ksj essential inputs with the ideal variety defining sector sj .

1In other words, isj (≤ x) is the number of links that lead from the essential varieties defining sector j to variety i.
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The term
isj
xm

gives the probability of drawing i as a network input via these ideal varieties. In

expectation, the new variety will have ksj such draws. The second term accounts for the fact that t

may also adopt input i via essential inputs that are not in the set µsj , i.e., are not used to classify t

as belonging to sj . This term gives the probability of drawing i as an input via the network, given

thatmK − ksj essential inputs are expected to be drawn uniformly at random from the population.

Finally, pN is the probability that input i is actually adopted by the new variety given that it has

been discovered via its essential parents.

Now, according to our definition, each sector is a partition of the set of existent varieties. Hence,

the probability that sector sj starts sourcing from sector si at t, conditional on not having done so

till t − 1 is the probability that the new variety t selects as a network input any given variety in

sector si. This is obtained by summing the above expression over all varieties classified in sector

si:

∑

i′∈si

pN

(
ksj

i′sj
xm

+
(
mK − ksj

) douti′ (t)

t

)
mN

mKm

= pN

(
ksj

∑

i′∈si

i′sj
xm

+
(
mK − ksj

)∑

i′∈si

douti′ (t)

t

)
mN

mKm

Finally, note that ksj = k for all sectors j, i.e., the expected overlap of the new variety t with any

sector’s ‘ideal’ list is the same across all sectors. This is immediate from the joint assumption that

both ideal varieties defining a sector and the set of essential parents drawn by the new variety are

selected uniformly at random from the set of t− 1 existing varieties. Hence, the expression above

simplifies to:

pN

(
k
∑

i′∈si

i′sj
xm

+ (mK − k)
∑

i′∈si

douti′ (t)

t

)
mN

mKm

For any two sectors, j and j′, this expression will only differ in the term
∑

i′∈si

i′sj
xm

. Hence if
∑

i′∈si
i′sj >

∑
i′∈si

i′sj′ , then j is more likely to adopt a variety in sector i than j
′. Now

∑
i′∈si

i′sj =

µ′
sj
νsi ≡ n(si,sj). Thus, if si is closer to sj than to sj′ at time t− 1, then sj is more likely to adopt

from si at time t, as claimed in the proposition.

Proof of Proposition 3

Proof. First, from the proof of Proposition 2 recall that, ex-ante, the probability of any new variety

t being classified into a given sector is the same across sectors, and it is given by 1/J . This follows

immediately from the joint assumption that both the ideal varieties defining sectors and the set of

essential inputs are drawn uniformly at random from the set of existing varieties. Therefore, the
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number of varieties classified into sector si at time t, Ksi(t), is given by a Binomial distribution,

B(t, 1
J
).

Second, under the assumption of price symmetry, the sectoral (weighted) outdegree, wout
si

(t) at

time t, is proportional to the total number of varieties to which a sector sj supplies inputs at time

t, where the constant of proportionality is given by the price φ.2 Thus

wout
si

(t) =

Ksi
(t)∑

k=1

φdouti (t)

whereKsi(t) is the (random) number of varieties classified into sector si at time t.

Third, we are given that the variety-level outdegree, douti (t), is power law distributed. Notice

further that, sinceKsi(t) is distributed as a Binomial distribution, we have that:

Prob(Ksi(t) > x) = o(Prob(douti (t) > x)

that is, limx→∞
Prob(Ksi

(t)>x)

Prob(douti >x)
= 0. This is immediate from the fact that power law distributions are

heavy-tailed while binomials are thin tailed.

Given the above observations, we can apply known results regarding the tail behavior of ran-

dom sums of power-law distributed variables. From Lemma 3.7.(1) in Jessen and Mikosch (2006,

p.8) we conclude that, as x → ∞

Prob(wout
si

(t) > x) ∼ φEt(Ksi(t))Prob(d
out
i (t) > x) =

φt

J
Prob(douti (t) > x)

That is, we have shown that wout
si

(t), the sectoral weighted outdegree of sector si, inherits

the outdegree tail behavior of the varieties classified into it. Since all sectors are simply random

collections of varieties with the same outdegree distribution, this result holds true for every sector.

Therefore, we have shown that if the variety-level outdegree distribution at time t is power law, so

is the distribution of sectoral weighted outdegrees.

2The weighted outdegree refers to values of input flows, while our variety-level predictions are based on binary
(unweighted) input links. Because of price symmetry, product variety j spends the same amount for each input variety
i that it uses (see the discussion at the end of Section 3.2). Thus, the overall value of input varieties sold (outdegree)
or used (indegree) by a sector is proportional to the underlying number of input varieties.
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m̂Nm̂
∗

N

Figure A.1: Optimal choice of network input adoption

Notes: The figure illustrates the optimal choice of input adoption. The x-axis shows the number of adopted network
inputs, m̂N . These are ranked by their customization cost as explained in Section 3.2. The y-axis shows the term from
equation (8) that is proportional to marginal production cost, and that an input adopter seeks to minimize. For small
m̂N , the input variety effect à la Romer (1990) dominates, so that production costs are decreasing if more inputs are
adopted. For higher m̂N , customization costs for each additional adopted input are also high, outweighing the input
variety effect. Thus, production cost become increasing in m̂N . The optimal number of adopted network inputs is
denoted by m̂∗

N .
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