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Empirical work on choice models, especially work on relatively new top-
ics or data sets, frequently starts with descriptive, or what is often colloqui-
ally referred to as “reduced form”, results. Authors often rightly stress that
the parameters obtained from this part of the analysis are not meant to
have a behavioral interpretation. Rather the descriptive results are viewed
as suggestive of relationships that any appropriate model should generate.

This paper begins by providing a simple formalization of this process. It
results in what I call the “descriptive form” of a choice model1. Though the
descriptive form is derived from a behavioral model, its parameters will not
have a behavioral interpretation. On the other hand the parameters of the
descriptive form will have an interpretation in terms of fit. This will endow
the descriptive form with a meaning in the sense that we will understand
what differences in its value imply. It will also make them comparable
across data sets making it easier to tell where and why modeling differences
are required.

Section 2 of the paper considers the relationship between the descriptive
form and the behavioral (or “structural”) form of a choice model. This
clarifies a number of conceptual points. Perhaps most important among
them is the relationship between the expectation operator an agent uses in
determining which course of action to take and the expectation operator
emanating from the data generating process. We show that sometimes
we can test whether the conditional mean of an agent’s expectations are
unbiased (conditional on a subset of the variables the agent knew at the
time the choice was made). The test does not require us to specify any
aspect of the behavioral model other than that the agent makes the choice
that maximizes the agent’s perceived value. In particular it does not require
us to specify the contents of agents’ information sets or their impact on the
agent’s perceptions (or “priors”); aspects of the specification the researcher
typically knows little about. When the test fails, that is when we find that
the agent’s expectations are biased, the test results quantify the bias in the
agent’s expectations as functions of the variables that the test conditions

1Initially I called this form an “interpretable reduced form”. I changed my terminology so as not
to conflict with other usage of the term “reduced form”. However the adjective “interpretable”, is the
relevant distinction between the colloquial usage of term reduced form and what I am proposing here.
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on.
The general discussion applies to both single agent and multiple agent

problems, but the last three sections of the paper focus on the analysis of
discrete choice models with interacting agents. These are discrete choice
models where the outcome of one agent’s choice depends on the actions of
other agents. Both our theoretical and econometric models for interacting
agent problems are at a relatively early stage of development. So these are
cases where the descriptive form is particularly relevant.

The econometric treatment of interacting agent discrete choice models
has been a topic of discussion for some time (see, for e.g., Heckman’s, 1978,
discussion of the “coherence” problem). Importantly, Tamer (2003) noted
the connection of this literature to the phenomena of multiple equilibria
that had been discussed extensively in the economic theory literature. The
econometric analysis of models with multiple equilibria often has to deal
with the fact that the empirical researcher does not have the information
needed to focus on a particular equilibrium. We note that a simple set
estimator, introduced by Pakes and Porter (2013), for the parameters of
the descriptive form of these models has desirable properties and compare
it to other estimators recently introduced for this problem. Our estimator
allows for the approximation errors generated by the construction of the de-
scriptive form as well as the endogeneity correction that prior econometric
research in this area has focused on.

This part of the paper contains an example. The example starts by
computing a sequential Markov Perfect equilibria to a market. The equi-
librium values for alternative actions and the optimal policies are then used
to compute its true descriptive form. Proceeding in this way makes it clear
why two period models designed to summarize the data on the impact of
the number and type of competitors on the value of being active need to
allow for both a structural error that is correlated with the right hand side
variables of interest and for approximation errors which are uncorrelated
(or mean independent) of the right hand side variables by construction.
We then show that the estimator introduced in Pakes and Porter (2013) is
able to accommodate both types of errors under quite weak assumptions.
The paper concludes by using simulated data from the computed equilib-
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rium in a Monte Carlo study of the performance of alternative estimators
for the descriptive form of this model.

1 Behavioral and Descriptive Forms.

The behavioral form. We can not investigate the relationship between
statistics that summarize the implications of an appropriate behavioral
model and that model without specifying the behavioral model. So we
start with a “high level” set of assumptions on the behavioral model.

Our agent choses a d ∈ D, and we are after a summary of how variables
in the agent’s environment affect its choice. I will focus on the case where
# D is finite (discrete choice)2. V (d, ω) will denote the value that would
be generated by the decision for any d ∈ D and state of the world ω ∈ Ω.
J ∈ J will represent the agent’s information set at the time the decision is
made and since the decision is made prior to the realization of the outcome,
J ⊂ Ω. E[·|J] will provide the agent’s expectation conditional on that
information set3. Then

V (d, J) = E[V (d, ω)|J], (1)

is the agent’s perception of the value of the outcome from choosing “d” at
the time the choice is made.

Notice that V (d, J) needs to be specified for values of d that the agent
does not chose. To describe the determinants of the agent’s choice we will
have to describe the determinants of the perceived values of the actions
not taken (i.e. for counterfactual choices or values for actions “off the
equilibrium path”). Finally we assume

d(J) = argmaxd∈DV (d, J), (2)

so we are assuming, as in Savage (1956), that agent’s decisions maximize

2The notion and use of the descriptive form do not depend on the form of the choice set, but im-
plementation details do. In particular special issues arise in using it for models with discrete choice
sets.

3I will assume that V (·) is finite everywhere and with the addition of assumptions introduced below
this will imply that all expectations exist.
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the expected (discounted) returns from their perceptions of the values gen-
erated by different outcomes.

The descriptive form. Our goal is to summarize the impact of different
variables on V (d, J) using statistics that both have an intrinsic meaning
and can be compared across data sets. If E(·|·) provides the conditional
expectations generated by the true data generating process (or DGP), our
descriptive summary is given by gd(x) where

gd(x) ≡ E[V (d, J)|x]. (3)

gd(x) is our descriptive form. Notice that it has the properties that ∀d ∈ D

V (d, Ji) = gd(x) + εd, with E[εd|x] = 0, and εd measurable J. (4)

gd(·) has a familiar statistical interpretation. If it is the conditional mean
(or regression function) of the agent’s evaluations, then our descriptive
form is the minimum mean square error predictor of those evaluations.
Often researchers restrict gd(x) to be linear, in which case the descriptive
form is the best linear predictor of those evaluations4.

Note that, as described here, the descriptive form provides a summary
of the correlates of the agent’s perceptions of the value of a choice rather
than the DGP’s expected value of the choice. We investigate the relation-
ship between these two values below. One advantage of distinguishing the
agent’s perceptions from the expectations generated by the DGP is that it
will allow us to compare perceptions to outcomes.

There are three properties of the descriptive form that I want to em-
phasize as they underlie much of the discussion below.

• First
E[V (d, ω)|J] 6= E[V (d, ω)|J] = V (d, J),

i.e. the agent’s expectations need not equal the averages generated by
the DGP, and the difference may be of interest.

4Linearity and parsimony in the choice of x often enables us to focus in on characteristics of V (d, Ji)
that can easily be kept in the mind of the researcher and the subsequent readers of the paper. On the other
hand most of the technical detail in the paper would go through if, instead, we used a non-parametric
estimate of E[V (d, Ji)|x], it would just be much harder to interpret the output of the estimation routine.
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• Second, the disturbances, i.e. the {εd}d∈D, enter the descriptive form
in an additively separable way and are either mean independent or
orthogonal to the included variables by construction.

• These disturbances are known to the agent when the choice is made
(i.e. {εd}d∈D ∈ J); it is only the analyst that does not know their
values.

Finaly keep in mind that when we apply the expectation operator E[V (·)|x]
we average over agents with the same x in a given data set. Different data
sets can generate different descriptive forms for many reasons; the distribu-
tion of information sets, agents’ perceptions given those information sets,
or the relationship of either to x may differ across environments. If gd(x)
does differ across two data sets it will typically be of interest to understand
why. Just as the function gd(x) might provide clues as to how the behavior
in a given data set varies with x, differences in gd(x) across data sets might
provide clues as to how different environments impact behavior. Of course
to obtain a coherent explanation of behavioral differences we will need to
understand what determines V (·). The descriptive form is only meant as
a tool to this end. It provides a summary of what an appropriate model
for V (·) must rationalize.

Familiar Examples. There is quite a bit of empirical work that can best
be understood as presenting results on the descriptive form of a behavioral
model, rather than on the behavioral model per se.

Perhaps the most obvious example is the use of two period models as a
framework for summarizing relationships in the data before going on to a
more realistic, though typically far more complicated, sequential models of
behavior. A familiar example, and one we return to below, is the two-period
entry model used in Industrial Organization. Here the goal is typically to
summarize the impact of the number and types of firms on the value of
being active (for a review of the literature, see Berry and Tamer, 2007).
An important more recent strand in the I.O. literature has used two period
models to document how different covariates are related to the profit splits
in vertical markets (see, for e.g. Ho, 2009; Crawford and Yurukoglu, 2012;
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and Grennan, 2013).
Another example where descriptive models have been of extensive use

are choice models where the opinions of multiple agents go into the deci-
sion making process in an unknown way. Examples include choices that
affect more than one member of a family (see, chapter 5 in Browning, et.
al., forthcoming) and hospital choices (determined by doctors patients and
insurers; see Ho and Pakes, forthcoming). A familiar goal here is to deter-
mine the relationship between features of the environment (e.g.s; sources
of income in family choice and features of insurance contracts in hospital
choice) and the choice made.

Descriptive models are often also used in single agent decision making
problems. This is particularly true when there are dynamic implications
of the choice (for example the choice of durable, network, experience or
storable goods) and/or when there is extensive uncertainty and the re-
searcher does not have a lot of information on the contents of the agents’
information sets or the form of its prior distributions (e.g. the choice of a
place to shop at when the prices and goods at different outlets are uncer-
tain).

In all of these cases it is possible to formulate and estimate a behav-
ioral model. Typically however, with the data and prior information avail-
able, that model would require restrictive assumptions and permutations
of those assumptions would require considerable programing and compu-
tational time. As a result the researcher often starts with summaries of
the data which illuminate the aspects of the problem that the behavioral
model should capture. The challenge then becomes to construct a model
that both rationalizes the dominant features of the summary statistics
and attaches magnitudes to effects of interest. The descriptive form I am
proposing is a way of formalizing the first step and examining the implica-
tions of that formalization. Its advantage is that the coefficients estimated
from it have an interpretation and can be compared across data sets.

Descriptive forms and approximations to behavioral models. The descriptive
form is not meant to be an approximation to a behavioral model. The
distinction lies in the properties of the disturbance and the related issue
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of the interpretation of the estimates. To see this consider the issues that
would arise were we to write down a behavioral model, linearize it, and
take the linear form to data in an attempt to get the “first order effect”
of a particular variable on an outcome. Typically the first question that
would arise would be the relationship between the included controls and the
disturbance term; in particular do we need instruments? The descriptive
form, on the other hand, has a mean independent residual by construction.

If we want a descriptive form that conditions on a factor in the envi-
ronment that is not captured by the covariates in the data, then we have
to create an observable that captures what we want to condtion on. For
example a panel data study might want to condition on individual spe-
cific constant terms in order to generate a description of the variables that
are related to changes in an agent’s behavior over time. However if we
are to add structure to a descriptive form we must be explicit about ex-
actly the structure we are adding; that is we need to know what we are
conditioning on to understand what we are describing. In practice, the dis-
tinction between a descriptive form and an approximation to a behavioral
model has lead to some confusion. I will illustrate with the development
of two-period entry models in Industrial Organization (though many of
the analytic frameworks used in labor and/or public finance are subject to
similar criticisms).

The two-period entry models are attempts to describe the factors that
are related to the value of being active in a market. These models focused
on the impact of the number of different types of competitors on that value
as this was a particular concern of the anti-trust authorities. Early stud-
ies that used the number of active firms as a determinant of the value of
being active often found the number of active firms was positively related
to that value. This because more profitable markets induced more active
firms and researchers could not condition on all the determinants of mar-
ket profitability. Though a two period model is clearly a descriptive and
not a behavioral model, the early entry models did not describe what the
researchers wanted to describe.

The reaction to these results included a new generation of two period
entry models that worried about “endogeneity”. An oft-cited starting point
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is Bresnahan and Reiss (1987). Their model did not allow for any hetero-
geneity among firms but subsequent work incorporated varying degrees of
heterogeneity, culminating in the recent work of Ciliberto and Tamer (2009)
which allows for arbitrary heterogeneity among firms. All these models rec-
ognized the problem created by unobserved determinants of market prof-
itability. Different models endogenized the errors in different ways but they
all went to the opposite extreme; they assumed that the two-period model,
when combined with a simple (usually linear) functional form, was the true
value of being active.

We come back to this in section 3 where we compare these two period
behavioral models to descriptive models for the value of being active. Both
formulations try to account for unobservable determinants of market prof-
itability. The conceptual differences are that; (i) the two period behavioral
models do not allow for the approximation error which emanates from a
descriptive form (the {εd} in equation 4), and (ii) the behavioral models do
not specify the covariance structure of disturbances a priori, and hence are
not able to be explicit about what one is conditioning on when describing
the estimated effects. In addition there are fairly significant computational
differences between the two approaches.

There are two remaining parts of the paper. First we clarify the rela-
tionship between the behavioral and descriptive form of a model. This is
a bit of a digression from the main purpose of this paper which is to de-
fine the descriptive form and provide an estimator for it in discrete choice
settings. However the digression does result in some useful insights. In
particular we show that it is sometimes possible to examine properties of
the agent’s expectation operator without specifying the behavioral model
that underlies the agent’s decisions. In particular we will be able to test
whether the agent’s expectations are unbiased, and if they are biased we
can consider what that bias is a function of. We then return to economet-
ric issues that arise in estimating the descriptive form of discrete choice
decision problem.
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2 Digression: Behavioral vs Descriptive Forms.

One advantage of having explicit definitions for both the descriptive and
behavioral form is that it allows us to examine the relationship between
them. This section explores that relationship.

The descriptive form depends on the expectations emanating from the
data generating process, and the behavioral form depends on the agent’s
expectation operator. So the relationship between them will depend on
the relationship between the agent’s expectation of the returns from its
decisions (our V (d, J)) and the expectation of the actual realizations of
those returns (of V (d, ω)) resulting from the DGP. Recalling that E[·|·] is
our notation for the conditional expectations generated by the DGP, since
J ⊂ Ω we can write

V (d, ω) = E[V (d, ω)|J] + ξd, with E[ξd|J] = 0.

Further for any x we can write

E[V (d, ω)|J] = fd(x) + ud with E[ud|x] = 0.

So
V (d, ω) = fd(x) + ud + ξd, (5)

with

ξd ∈ Ω, and E[ξd|J] = 0, while ud ∈ J, and E[ud|x] = 0.

The behavioral form depends on the agent’s expectations conditional on
J and the descriptive form depends on the averages emanating from the
DGP conditional on the researchers choice of explanatory variables or x.
Hence the relationship between them depends on whether or not x ∈ J.

If x /∈ J, or x was not known to the agent when its decision was made,
then the decision could not have been a function of the realization of x. As a
result gd(x) = E[V (d, J)|x] neither provides an interpretable description of
the agent’s choice behavior (in the sense defined above), nor the behavioral
form of the choice equation5. So we focus on the case in which x is known
when d is chosen, or x ∈ J.

5The actual outcome, V (ω, d), can depend on an x /∈ J, but to use that information in estimation in
a consistent way requires additional assumptions on how expectations are formed, and our goal in this
section is to see what we can learn from the data about how those expectations are formed.
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Assume x ∈ J. Choices are made based on agent’s perceptions of the
likely outcomes from those choices. So the descriptive form of the choice
model is derived from agent’s beliefs on likely outcomes. The actual out-
comes depends on the DGP which may or may not be consistent with those
beliefs. We now consider what we can learn about the relationship between
perceptions and the actual process generating the data by comparing the
descriptive form of the choice equation to the outcome equation. Note that
this comparison does not depend on the actual form of the true behavioral
model (the specification for information sets, priors, and functional forms
for primitives), but rather just on the notion that agents make choices
based on their own perceptions of what is best for them.

We compare the information obtained from estimating the descriptive
form of the choice model in equation (4), with the information that can be
obtained from the outcome, or equation (5). Recall that the descriptive
form of the choice model is E[V (d,Ω)|J] = gd(x)+εd, εd ∈ J, and E[εd|x] =
0, while the outcomes are given by V (d, ω) = fd(x) + ud + ξd, ud ∈
J, and E[ud|x] = 0. Since E[ξd|x, ε] = 0, the relationship between between
the expected value generated by the DGP and the agent’s expectations
(which determines choices) depends on the relationship between

• f(x) ≡ [f1(x), . . . , fD(x)] to g(x) ≡ [g1(x), . . . , gD(x)], and of

• ε ≡ [ε1, . . . , εD] to u ≡ [u1, . . . , uD].

Definitions: Weak and Strong Rationality.
I will say an agent is weakly rational w.r.t. an x ∈ J if

f(x) = g(x), (a.e. x) (6)

and I will say an agent is strongly rational if

f(x) = g(x) and ε(J) = u(J), (a.e. J). ♠ (7)

If an agent is weakly rational and x ∈ J then the descriptive model,
which is always an unbiased predictor of the agent’s expectations, is also an
unbiased predictor of the outcomes. If the agent is strongly rational, it has
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unbiased expectations and its decisions are optimal in the sense that they
maximize the expected values emanating from the DGP. Next we consider
what can be learned on the relationship of perceptions to realizations when
both choice and outcome data are available6.

2.1 Tests of rationality when J is unknown.

It is easiest to explain the issues that arise in quantifying agents’ biases if
we assume the researcher can observe the outcome up to an error which is
mean zero conditional on x. This is often the case when the outcomes of
interest are measured in monetary units. Below we generalize and allow
for outcomes that are only observed up to both a mean zero error and a
parameter vector that needs to be estimated. This would typically be the
case if outcomes were measured in “utils” and agents’ choices maximize
their evaluations of the likely utility from their actions.

Most of the empirical analysis of outcome equations assumes that all
the researcher can construct are error prone measures of the realizations of
the outcome from the decision actually made, our V (d = d(J), ω). So we
start with this assumption and show how it leads directly to the problem of
separating out selection effects from the effects of interest. Then we allow
the researcher access to error prone measures of outcomes for all possible
decisions, for {V (d, ω)}d∈D. When this is possible we can circumvent the
selection problem and investigate biases in agents’ perceptions directly.

Three preliminary points. Throughout we assume that the researcher
does not know either the agents’ information sets, or their priors given
those information sets. Second, this section of the paper assumes that we
can use the descriptive form of the choice model to estimate g(x) but not
the distribution ε conditional on x. The next section of the paper will
provide a method of partially identifying g(x) in discrete choice models
(with or without interacting agents). Finally we note that the rest of this
section can allow for measurement error in our measure of realizations,
or of V (d, ω), provided it is mean zero conditional on the x used in the

6One could study how perceptions are formed more directly by eliciting information on beliefs. For
a review of the literature on eliciting beliefs, see Manski, 2004. Hendren, 2013, considers the case where
the elicited beliefs might not be the same as the beliefs the agent basis its actions on.
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descriptive model. For notational simplicity, instead of adding a separate
term for measurement error, I simply reinterpret the ξ term in equation
(5) to be the sum of the expectational and the measurement error.

Testing when all we observe is V (d = d(J), ω). Then the only regres-
sion functions that the outcomes generate is

E[V (d, ω)|x, d = d(J)] = (8)

fd(J)(x) + E
[
ud(J)|εd(J) ≥ max

q 6=d(J)
(gq(x)− gd(J)(x) + εq)

]
≡ fd(J)(x) + rd(J)(x).

rd(J)(x) is a “selection” term. It is the expectation of ud(J) conditional on
the choice made; that is conditional on gd(J)(x)+εd(J) = maxq[gq(x)+εq]. It
arises because the ε that determines the decision and the u that determines
the outcome conditional on that decision will not, in general, be distributed
independently of one another.

Generally for rd(J)(x) ≡ 0, that is for the regression function for the
observed choice to uncover the mean outcome for a randomly drawn agent
with characteristics x, the disturbance in the outcome equation would have
to be mean independent of the disturbance in the choice equation. Put dif-
ferently the unlikely condition is that all variables that the agent uses to
predict outcomes that are not in the econometricians data set are not, in
fact, predictors of the mean outcome. In our context this is a rather neg-
ative result as it implies that as long as there is some variable that effects
outcomes that the agent can, but the econometrician can not, condition
on, we should expect a difference between the expectation of the func-
tion determining choices and the expectation of the function of the chosen
alternative (and this, even if the agent is strongly rational). 7

7Of course the function E[V (d, ω)|x, d = d(J)] = fd(J)(x) + rd(J)(x) may be of interest per se. It
tells us the average value of the outcome for individuals with characteristics x who chose decision d. For
example consider an immigration model, let d = 1 be the decision to leave one’s native land, and let the
outcome of interest be a measure of future income. Then fd=1(x) + rd=1(x) would provide the average of
the income measure for individuals with characteristic x who do migrate. The only point I am making is
that fd=1(x) + rd=1(x) does not provide the impact of migrating on a randomly chosen individual with
characteristics x.
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There is a large literature on correcting for selection in different contexts.
Perhaps most closely related to the discussion here is the literature on es-
timating “treatment effects”, a literature which focuses on the relationship
between the outcome equation and the selection equation in models with
binomial choice (see for e.g. Imbens and Angrist, 1994, and Heckman and
Vytlacil, 1999). Reviewing that literature would be a paper in itself, so I
am going to suffice with a suggestion for one way of circumventing selec-
tion problems in multinomial choice models. When it is available it will
generate a rather direct test for weak rationality and a quantification of
biases when weak rationality fails.

Testing when we can construct an unbiased approximation to
{V (d, ω)}d∈D. There is an interesting dichotomy in the empirical litera-
ture. When we formulate choice models we assume we can write down
an approximation to the agent’s expectation of the value that would be
generated were it to chose any of the possible alternatives (those that are
chosen and those that are not). In contrast we seldom (if ever) analyze
the outcome function for the alternatives not chosen. The counterfactual
specifications needed for the choice model are for the returns the agent
expected to obtain. To construct counterfactuals for the outcome equation
we require a specification for the expectation of the actual returns from
counterfactual choices. Given that agent’s expectations are inherently un-
observed, it is often easier to specify the actual returns from counterfactual
choices than to specify the agents’ expected returns from those choices. The
rest of this section examines possibilities when we can construct, possibly
error prone, measures of outcomes for counterfactual choices.

I distinguish two cases. The first is when we can measure the value of
the outcome directly (as when outcome values are measured in dollars). In
the second case we only know what aspects of the outcome are valued, but
not the specification of the function that aggregates these different aspects
of the outcome into “utility”. In these cases we assume we can measure the
valued aspects of the outcome for counterfactual choices. As we illustrate
below the assumptions and data needed to construct the counterfactual
outcome, or (in the second case) the valued aspects of the outcome for
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counterfactual choices, are similar to the assumptions and data needed to
construct the value of these objects for the choices actually made8.

We begin with the case in which we can construct the values of coun-
terfactual outcomes. When we can assess that value for counterfactual
choices we can regress V (d, ω) on x for every realization of ω ∈ Ω. Since
E[ud|x] = E[ξd|x] = 0, this generates a consistent estimate of the fd(x)
defined in equation (5). The bias in an agent’s estimate of V (d, ω), as a
function of x, which we label bd(x), will then be

bd(x) ≡ E[V (d, ω)− gd(x)|x], (9)

and if the agent is weakly rational then bd(x) ≡ 0. So when we can con-
struct V (d, ω) for all d we can test for weak rationality, and when it is not
accepted we can measure how agent’s biases are related to x.

An example might be helpful here. Assume we have estimated a demand
system and either know or have estimated costs for a market consisting of
a number of retail outlets. Say the outlets (e.g. gas stations) need to make
a simultaneous decision on which of a finite set of prices to set for the
next period; so di ∈ {p1, . . . , pD}, and assume that the goal is to set prices
to maximize current profits. The demand given the price depends on the
prices of neighboring gas stations; if there are N competitors it depends
on d−i ∈ {p1, . . . , pD}N−1. The data contains what the agents did do.

We begin by analyzing the actual choice of prices as a function of x’s
known at the time the decision was made (for e.g. as a function of sum-
mary statistics calculated from past sales and prices). This gives us the
g(x) in equation (3). Since the game is a simultaneous move game, when
constructing counterfactual profits for a given agent we can fix the agent’s
competitors’ prices at the prices they actually chose, and evaluate the de-
mand and cost system at alternative prices for the one agent whose coun-
terfactual profits we are constructing. This gives us the profits the agent
would have had were a particular p chosen for those who did not chose that
p as well as for those who did. We then regress those profits on the same
variables that were used to analyze the decision. This gives us the f(x)
in equation (5). This can then be compared to g(x) to determine whether

8Though both of these will typically be harder for dynamic (in contrast to static) choice problems.
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the agents were “weakly rational” and investigate the biases in the agents’
expectations if they are not.

Things are slightly more complicated and require more assumptions
when we only know what aspects of the outcome are valued, but not the
function which aggregates them into a single outcome index, as then we
need to also estimate the aggregator function. Here we assume that the
aggregator function is common across agents and belongs to a paramet-
ric family whose parameters we estimate along with the g(x) and f(x)
functions in equations (3) and (5). A second example illustrates this.

Consider a set of agents who wants to chose an outlet to minimize the
cost of buying a particular good. We know that this cost is a function of
travel time and the purchase price of the good; properties of the possible
choices that may or may not be known by the agent at the time it makes
its decision. The first step of the analysis is the same as above; we analyze
outlet choice as a function of x’s known to the agent at the time the decision
was made (e.g.; distance to the outlet or past prices of goods bought at
the outlet).

To analyze all (including counterfactual) outcomes we need to measure
each agent’s travel time and purchase price were it to shop at each outlet
in the choice set (up to conditional mean zero errors). Next we run linear
regressions of travel time and purchase price for each possible choice on
the same x’s we used to analyze the choice of outlet; call these vectors of
functions (one for each outlet) f p(x) and f t(x) respectively.

Now we come to the extra step in this case. Unlike in the previous
case here we need to assume a function which aggregates travel times and
purchase prices into an outcome value. Say we are willing to assume that
the agent perceives cost to be a linear function of the travel time and the
purchase price of the good. Then the expected cost of outlet d conditional
on the x’s used to analyze choices is αpf pd (x)+αtf td(x) for d = 1, . . . , D and
some (αp, αt). We chose estimates of the (αp, αt) that minimize a metric
in bias; so there is a sense in which our bias estimates are the minimal
estimates of bias one could get from the data and our assumptions. For
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example we first find the (αp, αt) that

minαp,αt

∑
i,d∈D

(
αpf pd (xi) + αtf td(xi)− gd(xi)

)2

,

say (α̂p, α̂t). Then our estimate of the bias in the perceived cost of outlet
d as a function of x is

bd(x) = α̂pf pd (x) + α̂tf td(x)− gd(x).

In both these cases the analysis of bias is intuitive; it compares the
expectation of the actual outcome equation conditional on x to the expec-
tation of the function that determines the agent’s choices conditional on x.
If these differ, and the agent is maximizing the expected outcome condi-
tional on its own beliefs, the agent’s expectations are biased. Importantly
the test does not require us to specify either

• the agent’s information set (our J), or

• the priors the agent uses to form E[V (·)|J].

Both of these are objects the researcher typically knows little about.
Moreover, once we obtain an estimate bd(x) we can back out an estimate

of rd(x) from equation (8), and use this, together with what can be learned
about the ε disturbances from the descriptive form of the choice equation,
to provide a deeper understanding of the relationship between the agent’s
beliefs and actual outcomes (for e.g. if bd(x) ≡ 0 we might ask if the agent
is strongly rational). I leave this to subsequent research and now return to
the issue of constructing the descriptive form for discrete choice models.

3 Descriptive Forms for Entry Games.

This section of the paper constructs descriptive forms for entry games. Its
purpose is to illustrate how to construct, estimate, and interpret descriptive
forms for interacting agent discrete choice problems. Special emphasis will
be given to the “endogeneity” problem briefly introduced above. That is
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we will be interested in a summary of the impact on the number and type
of firms on the value of being active conditional on unobserved aspects of
market profitability.

We start by computing Markov Perfect equilibria for two entry games
(one where location is endogenous and one where it is not). Next the
computed values from these games are used to generate the true descrip-
tive forms for each model. This will make it clear that the worry about
endogeneity that was the impetus behind the modern entry literature in
Industrial Organization is justified. We then simulate data using the es-
timated policies and use that data in a Monte Carlo study of alternative
estimators for the descriptive form.

3.1 The Computed Equilibria and the True Descriptive Form.

We compute equilibrium policies for two different Ericson-Pakes (1995)
style Markov Perfect dynamic models. In each computed equilibria firms
differed in two dimensions; their location (the east or west side of town) and
the quality of the product they market. For a given model we computed
many different equilibria that differed only in market size. So the possible
states of the game, which we index by σ, consists of a counting measure for
the number of active firms at the different quality-location combinations
and market size. Consumers also differed in two dimensions; their location,
and their sensitivity to price. Both were assumed to distribute uniformly,
and the west side of town was made somewhat more sensitive to price (or
poorer) than the east.

The difference between the two models analyzed is that in one qual-
ity was endogenous in that firms invest in developing it (as in Goertler
and Gordon, 2011, or Benkard, 2004) and firms were randomly assigned
a location in which they could (but need not) enter (so location decisions
where exogenous). In the second model quality was set exogenously but
the firms could chose a location in which to enter (as in Seim, 2008, or
Mazzeo, 2002).

From the point of view of the exercise conducted below there are two
important differences between the two models. In the model in which
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location was endogenous we allowed for a market-specific fixed cost which
differed across quality levels and time periods and will be assumed known
to the econometrician. There was no such fixed cost in the market with
endogenous quality, so the model with endogenous location will have an
additional “instrument” in the analysis below. Second in the model with
investment the discrete dynamic choice for both potential entrants and
incumbents was “binomial” (they could either be active in the coming
period or not)9. In the model with a location choice, there were three
possible choices for potential entrants; they could enter west, enter east,
or not enter.

The rest of the specification of the two models was standard. In both
the prices and quantities marketed conditional on σ were determined by a
Nash in prices (or Bertrand) equilibrium. In the model in which one could
invest to improve the quality of the product marginal cost was assumed
constant and the same across firms. In the model where quality was set
exogenously, marginal costs increased with quality. The equilibrium profit
vectors for every σ were fed into a Pakes and McGuire (1994) algorithm
to determine dynamic policies that satisfied Markov Perfect equilibrium
conditions. Information was symmetric except for the random draws de-
termining entry costs and selloff values which were only known to the firm
receiving them; though all firms knew the distribution from which they
were drawn (as in Seim, 2008). Both the entry costs and selloff value
distributions were exponential.

We computed equilibria for the model with endogenous quality but ex-
ogenous location for ten different market sizes. Each market could have up
to six active firms. There were nine potential entrants in the model with
exogenous quality but endogenous location (three at each quality level).
For this model we computed equilibria for sixty different markets which
differed by both the fixed costs assigned to the different quality levels, and
market size10. So in the model with endogenous location choice we will have
two sets of variables that generate permanent differences between markets;

9In that model incumbents also chose an investment with stochastic outcomes. The outcomes condi-
tional on the investment were modeled as in Pakes McGuire, 1994.

10The fixed costs and market sizes were drawn from four independent mean zero normals. The market
size had unit variance and the fixed cost had a variance of .25.
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market size, and the fixed costs of different quality levels. In the model
with endogenous location choices the only permanent difference between
markets will be their market size.

To obtain the data set used in the Monte Carlo analysis we used the
equilibrium policies to simulate a “cross-section” of markets. The markets
for the model with investment are obtained as three thousand draws from
the invariant distributions of each of the ten market sizes. The markets
for the model with multinomial entry decisions were fifty draws from the
invariant distribution of each the sixty markets.

The estimators we want to evaluate will all be set estimators derived
from various moment inequality constraints. We chose this large a data
set (approximately thirty thousand markets) to insure that the “confidence
intervals” obtained from the dimension by dimension end points of the set
estimators generated by the inequalities obtained from our data are close
to the dimension by dimension end points of the “identified set” that would
be obtained from an infinity of markets generated by our particular DGPs.

The True Descriptive Forms. We want to characterize the determi-
nants of the the value of being an active firm and, as in the prior literature,
we will be particularly interested in quantifying the effects of increased
competition on that value11. We will also mimic prior research in that we
will use linear functional forms for the descriptive form. In the Monte Carlo
analysis that follows we will not assume that the researcher has access to
all the relevant state variables. In particular we will assume the researcher
does not know market size. As a result for each model we will present a
true descriptive form that does, and that does not, condition on market
size.

The absence of adequate controls for the differential profitability of dif-
ferent markets was a major reason for the development of empirical entry
models which allowed for the endogeneity of the variables measuring the
extent of competition. It was thought that a lack of data on either the
demand or supply conditions in the market would generate a positive bias

11The value being active of an incumbent in a given location differs from that of a potential entrant in
the same location as the entrant must spend one period in setting up before it earns profits.
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in the estimates of the impact of competing firms on the value of being
active, and the focus of the research was the effect of competing firms on
that value. So the goal of the endogeneity correction was to analyze the ef-
fects of competition on firm value conditional on unobserved determinants
of market profitability. By leaving out market size we insure that we will
be faced with an analogous endogeneity problem.

We will also assume that the researcher only observed high or low qual-
ity. In the model with investment there were five possible quality levels so
we assumed the researcher only knows whether q was in one of the three
highest or the two lowest quality levels. In the model where quality is cho-
sen at the outset there were three quality levels and we assume that the
researcher only observes whether active firms are in one of the top two or
not.

The researcher’s goal is to characterize how the following variables affect
the value of an active firm

• nq,l, the number of firms in the same (q, l) slot as the firm in question,

• nq, the number of competitors of the same quality as the firm in
question,

• nl, the number of competitors in the same location as the firm in
question.

Let j index firms and (Hj, lj) be indicators for high quality and a western
location respectively. ThenXj = (Hj, lj, nlj ,qj , nlj , nqj) is the set of variables
the researcher observes on each firm and the market the firm is in. Note
that Xj does not include market size, which we denote by S. However
the vector of variables that the researcher actually wants to condition the
firm’s value on is s ≡ (Xj, S). More formally let V (qj, lj;σ) be the value of
being active when a firm’s location is lj, its quality is qj, and the market is
in state σ (which recall consists of a counting measure for the number of
active firms at the different quality-location combinations and market size).
Then the researcher wants to estimate the coefficients in the projection of
V (qj, lj, σ) onto Xj conditional on sσ. By construction

V (qj, lj, σ) = Xj,σβx +
∑
s

{S = sσ}βs + µj,σ,
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with, for each component of X, say Xk,
∑

j,σ µj,σXj,k,σ = 0; while for each
distinct value of sσ,

∑
j µj,σ{S = sσ} = 0. Notice that µj,σ is likely to be

correlated across j for a given σ. So to complete the specification we define

νσ = E[µj,σ|σ] and εj,σ = µj,σ − νσ

so that the εj,σ are mean independent of σ, or E[εj,σ|σ] = 0. The resulting
descriptive model states that a firm will be active if and only if

V (qj, lj, σ) = Xj,σβx +
∑
s

{S = sσ}βs + νσ + εj,σ (10)

is greater than zero. Since the value of being active has both a disturbance
which varies across incumbents in the same market (εj,σ), and a disturbance
that has the same value for all firms in that market (νσ), we should expect
correlation in the disturbances of potentially active firms in a given market.

Estimates of the Descriptive Form. The actual descriptive forms
generated by our simulated data for our two models are provided in Table
1. There are two sets of estimates for each model. One provides the
coefficients from the descriptive forms for the value of being active when
we do, and one when we do not, include the market size dummies. When
we condition on market size the estimates are similar across models; all
competitive effects are negative and highly significant, and the absolute
value of the effect of the number of firms in the same quality and location
is noticeable larger than for firms that are marketing goods of different
quality or are found in a different location12. Notice also that the standard
errors are extremely small as expected from sample sizes this large.

The comparison of the results from when we do, and when we do not,
condition on market size make it clear that applied researchers’ worries
about endogeneity are warranted. When we do not include the market size
dummies the coefficients which represent competitive effects fall markedly
in both models. The coefficient on the number of competitors in the same
location and quality falls (in absolute value) by a third or more, that on

12The largest percentage difference between models is in the impact of the number of firms in the same
location, which is less important in the model with endogenous location choices. This should not be
surprising since the model with endogenous location choices allows for arbitrage across locations.

22



the number of firms in the same location but different quality is divided by
about three, and that on firms in a different location but the same quality
goes from significantly negative to significantly positive (where significant
can be interpreted in either a statistical or an economic sense). In addition
the R2 falls dramatically when we do not condition on market size. Keep
in mind that the goal of the estimators that use an endogeneity correction
is to obtain estimates of the parameters in columns (1) and (3) when the
data on market size is not available.

Table 1: Descriptive Forms For the Value of Being Active∗

Model Exogenous Location Endogenous Location

θ With Mkt.Size No Mkt.Size. With Mkt.Size No Mkt. Size

nl,q -0.73 (0.01) -0.48 (0.01) -1.04 (0.03) -0.51 (0.01)
n−l -0.58 (0.01) -0.17 (0.02) -0.36 (0.04) -0.13 (0.01)
n−q -0.07 (0.01) 0.18 (0.01) -0.15 (0.01) 0.62 (0.05)
q 1.59 (0.01) 1.69 (0.02) 1.43 (0.06) 1.33 (0.06)
R2 0.74 n.r. 0.28 n.r. 0.85 n.r. 0.41 n.r.

∗ The estimated descriptive forms included a location indicator. We have normalized its coef-

ficient so as to be comparable to the estimators from the moment inequality estimators (which

require a normalization, see below).

There is one more aspect of the results that is important to what follows.
Even when the market size dummies are included, about twenty percent of
the variance in the value of being active in the descriptive form is noise in
the sense that it is not correlated with the right hand side variables deter-
mining the competitive effects. The market size variable is a determinant
of whether any agent wants to be active, and, as a result, is correlated
with the competitive effects variables. So these results imply that, at least
when we do not have the data on all variables that we want the descriptive
form to condition on, the estimation procedure should allow for two types
of unobservables. One that assumes the structure of the omitted variable
that we want to condition on and is the cause of the endogeneity problem.
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The other unobservable is generated by the approximation involved in go-
ing from the behavioral to the descriptive form and is uncorrelated with
the included right hand side variables by construction.

3.2 Estimation Algorithms.

As noted early work on entry models that did not allow the disturbance
to be correlated with the variables measuring competitive effects often
found unintuitively small (sometimes positive) effects of the number of
competitors on the value of being active. These results were typically
attributed to omitted determinants of the profitability of markets. So
researchers looked for an analytic framework which allowed the variables
representing the effects of competition, i.e. the number of different types
of firms, to be correlated with the disturbance.

An assortment of estimation algorithms that allowed for this correlation
have been considered. The most detailed of them is the generalization of
discrete choice introduced by Ciliberto and Tamer (2009) specifically for
the entry problem (though the basic idea applies much more generally and
largely dates back to Tamer, 2003). I labeled this model the generalized
discrete choice (the GDC) model in Pakes (2010). It uses the inequality
constraints generated by Nash equilibria, together with an ingenious esti-
mation algorithm which is outlined below, to account for the endogeneity
of right hand side variables.

I will also compare this to an estimation algorithm that explicitly treats
our approximation to the value of being active as a descriptive form and
hence allows for approximation error; albeit a descriptive form which con-
ditions on an omitted, market-specific, profitability parameter. This esti-
mator, which is based on a theorem in Pakes and Porter (2013), is also
relatively easy to implement.

Both estimation algorithms treat the estimation problem as a discrete
choice problem. Write the value for each possible choice as

V (d,Xj,m, σ) = Xj,σβd +
∑
s

{S = sσ}βs,d + νd,σ + εd,j,σ

where d ∈ Dj, the choice set, and we use the normalization βd = βs,d =
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νd,σ = εd,j,σ = 0 for the choice of not to be active. In both models the
incumbent choice is binomial (to be active or not) which is the same as the
choice set for potential entrants in the model with exogenous location. In
the model with endongenous location choices the potential entrant faces a
trinomial choice; it can remain inactive, or chose to enter west or east.

Recall that the researcher does not observe σ; so we can not impose the
constraints that would be implied if two markets had the same σ. Hence
we simply index the markets (or different time periods in a given market)
by m and rewrite the choice equation as

V (d,Xj,m,m) = Xj,mβd +
∑
s

{S = sm}βs,d + νd,m + εd,j,m, (11)

for d ∈ Dj, j = 1, . . . nm, and m = 1, . . .M . We assume that the appropri-
ate limiting approximations for the properties of estimators has M growing
large.

An Application of a Theorem in Pakes and Porter (2013). We
begin with an estimator for the descriptive form. Recall that though we
want a descriptive form that conditions on market characteristics, sm is
both unobserved and correlated with components of Xj,m. One way of
treating this problem is to set λd,m =

∑
s{S = sm}βs,d + νd,m in equation

(11), rewrite that equation as

V (d,Xj,m,m) = Xj,mβd + λd,m + εd,j,m, (12)

and try to develop an estimator which allows for the λd,m.
Formally the problem is now a discrete choice problem with choice-

specific fixed effects. We are interested in the βd parameters but must
contend with the fact that to estimate those parameters we need to con-
dition on the {λd,m}; a set of terms which we expect to be correlated with
the Xj,m and whose cardinality grows with sample size. Also though the
model tells us that the εd,j,m are mean independent of the right hand side
variables, it provides no further information about their distribution.

We now introduce a theorem that allows us to bound the parameters
of interest without imposing any constraints on the {λd,m} or a particular

25



distribution on the [ε1,j,m, . . . εDj ,j,m]; which can differ arbitrarily across
choice sets and markets. On the other had it does require that all agents
with the same choice set in the same market have the same distribution of
the [ε1,j,m, . . . εDj ,j,m].

Assumption 1. Assume each agent j in market m choses d to

max
d∈{1,...,Dj}

[
Xj,mβd + λd,m + εd,j,m

]
,

and that if agents (j, q) in market m face the same choice set (i.e Dj = Dq),
then the distribution of

[ε1,q,m, . . . , εD,q,m] conditional on [{λd,m}, Xj,m, Xq] ≡ Ω(j, q)

is the same as the distribution of

[ε1,j,m, . . . , εD,j,m] conditional on Ω(j, q) ♠.

Note that the assumption on the error distribution does not restrict
the joint distribution of the disturbances across choices (either their cor-
relation pattern or their marginals), and it allows these distributions to
differ arbitrarily across choice sets and markets. Indeed our Assumption
almost follows from the way we constructed the descriptive form as that
construction guarantees that the disturbances are uncorrelated with Xj,m

and λd,m. “Almost” because that construction does not insure that the
disturbances in the restrictive form satisfy the condition that two agents
in the same market with the same choice set satisfy the exchangeability
assumption above. So our statistical model does require a strengthening
of the assumptions used to generate our economic model. The following
theorem presents implications of this Assumption used in estimation.

Theorem: Pakes and Porter (2013). Let r ∈ {Dj, Dj−1, . . . , 2} where
Dj is the cardinality of Dj, the choice set. If Dj = Dq, define δrj,q(β;m) to
be the rth largest value of [Xj,m,d −Xq,m,d]β. That is

δ
Dj

j,q (β;m) = argmaxd∈Dj
[Xj,m,d −Xq,m,d]βd,
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while

δ
Dj−1
j,q (β;m) = argmax

{d:d6=δ
Dj
j,q (β;m),d∈Dj}

[Xj,m,d −Xq,m,d]βd

is the choice that yields the second highest value of that difference, and so
on. Then for l = 0, . . . , D − 2

Pr
{ l∑

r=0

{dq = δ(j, q)D−r(β0;m)} |Xq,m, λ1,m, . . . , λDj ,m

}
≤

Pr
{ l∑

r=0

{dj = δ(j, q)D−r(β0;m)} |Xj,m, λ1,m, . . . , λDj ,m

}
. ♠

The theorem provides D − 1 conditional moment inequalities. It states
that at the true β0 agent j’s probability of each of the following events
conditional on (Xj,m, Xq.m) is at least as large as those events for agent q:

choosing δ
Dj

j,q (β;m); choosing one of the set of choices {δDj

j,q (β;m), δ
Dj−1
j,q (β;m)};

choosing one of the set of choices {δDj

j,q (β;m), δ
Dj−1
j,q (β;m), δ

Dj−2
j,q (β;m)}, and

so on. Consequently the theorem implies that if f(·) is any positive func-
tion of (Xj,m, Xq,m), then for any l we can form the unconditional moment
inequality

E
( l∑
r=0

[
{dj = δ(j, q)D−r(β;m)}−{dq = δ(j, q)D−r(β;m)}

]
f(Xj,m, Xq,m)

)
≥ 0,

(13)
and know that it is satisfied at β = β0. That is values of β that do not
make inequalities positive are unlikely to be the true β0.

These are inequalities we can take to data. Of course if β satisfies them,
then so will κ×β for any κ > 0. So we will have to normalize one coefficient
in the analysis below.

The GDC Estimator (Ciliberto and Tamer, 2009). The GDC es-
timator also considers the choice model in equation (12), that is

V (d,Xj,m,m) = Xj,mβd + λd,m + εd,j,m,
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where λd,m =
∑

s{S = sm}βs,d + νd,m and βd = λd,m = εd,j,m = 0 for the
choice of not begin active. However the GDC estimator makes different
assumptions on the {λd,m} and the {εd,j,m} then the estimator discussed
above, and this leads to a different estimator for the parameters of interest.

The GDC estimator assumes that the data is generated by a Nash equi-
librium to the game in which both {λd,m} and the {εd,j,m} are known to
all the agents playing the game. As a result both of the unobservables
are determinants of the {nl,q, n−l, n−q} components of Xj.m. This differs
from the implications of the assumptions used to derive the descriptive
form; their the {λd,m} are correlated with the competitive effect variables
but the {εd,j,m} represent approximation error and are uncorrelated with
{nl,q, n−l, n−q} by construction. The GDC estimator also assumes a para-
metric distribution for both the {λd,m} and the {εd,j,m}; the descriptive
form places no restriction on the {λd,m} and uses the orthogonality condi-
tion implied by the way it is constructed and Assumption 1 to structure
the distribution of the {εd,j,m}.

I now provide a brief explanation of Ciliberto and Tamer’s (2009) GDC
algorithm. Let β be a vector which consists of particular values for both
the βd parameters in equation (12) and the parameters of the disturbance
distribution. Fix β and let a superscript “o” denote the observed value of
a variable. Define dom = [do1,m, . . . d

o
J,m], where doj,m = [do1,j,m, . . . d

o
Dj ,j,m

], so
that dom denotes the choices actually made by participants in market m.
Simulate a draw from the joint distribution of {λd,m + εd,j,m} and check
whether the Nash equilibrium conditions are satisfied for that particular
market when those conditions are evaluated at β, the draw on the distur-
bances, and dm = dom. Since this is a full information game, the check
entails seeing whether each agent’s actual choice is the best choice possible
given the actions of the other agents13. Simulate many draws from the dis-
turbance distribution, and check whether the Nash conditions are satisfied
at dom for each. The fraction of times that the Nash conditions are satisfied
gives us an unbiased estimator of the probability that the necessary con-

13Notice that the fact that the game admits multiple equilibria implies that there may be more than
one set of decisions which will satisfy the Nash conditions. The implicit assumption is that there is a
mechanism that selects out the equilibria actually played but this selection mechanism is unknown to the
researcher. All the researcher knows is that the actual outcome satisfies one of the set of Nash conditions.
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ditions of a Nash equilibria are satisfied at the observed choice when we
evaluate those conditions at that β.

Since the Nash conditions are necessary but not sufficient for a vector
of choices to be made, the probability of a particular set of decisions sat-
isfying the Nash conditions conditional on the true value of the parameter
vector can be greater than the probability that those decisions represent
the selected equilibrium. So if we simulate the probability that the Nash
conditions are satisfied for a given value of the parameter, the expectation
of the simulated probability is an upper bound (or an “outer measure”) for
the probability of observing the given market structure conditional on that
parameter value. The estimation algorithm consists of finding all values of
the parameter vector that make the cross market average of the difference
between the simulated frequencies of the decisions satisfying the Nash con-
ditions and the observed frequencies of the vector of decisions greater than
zero14.

More formally if P (dm; β) is the simulated (outer) probabilities and
Xm = [X1,m, . . . , XJ,m], then the model implies that

E[P (dm; β)− {dom}|Xj,m] ≥ 0, when β = β0,

where now the expectation operator integrates out over both the simulated
draws which underly the {P (dm; β)}, and the data generating process which
underlies the {dom}. Consequently if f(Xj,m) is any positive function of Xj,m

we can form set estimators of β by finding all those values for β which imply
positive values for functions of the form

M−1
∑
m

[
P (dm; β)− {dom}

]
f(Xm,j) ≥ 0. (14)

The GDC estimator requires auxiliary distributional assumptions. Con-
ditional on those assumptions it does account for endogeneity by allowing
the disturbance to be correlated with the number and type of competitors.
However it does not account for approximation error.

14One could also use the sufficient conditions for a unique equilibrium to get lower bounds (or an “inner
measure”) to those probabilities and add an additional set of inequalities to the estimation algorithm,
see Pakes (2010).
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3.3 Monte Carlo Results.

Next we move to the results on the alternative estimators. We begin with
the data generated by the model where location is exogenous so the only
choice is whether to be active or not. The data generated from this model
are used in a Monte Carlo analysis of both the GDC and the Pakes-Porter
estimator. We then move on to the data generated by the model where
there is a location choice. Our interest here is primarily to see how well the
Pakes-Porter estimator behaves when there is a multinomial, in contrast to
a binomial, choice. So here we only present the results for the Pakes-Porter
estimator. All confidence intervals presented below are formed using the
moment-shifting technique described in the paper by Andrews and Soares
(2010).

The Model with Exogenous Location. We are primarily interested in
estimators that do not assume that the market size variable is observable,
as this reflects the empirical reality that we can not condition on all the
determinants of market profitability that we would like to when analyzing
the effect of the number and type of competitors on the value of being
active. The first row of Table 2 takes the results from the descriptive
form that uses market size from Table 1; i.e. it provides the parameter
values we are hoping that the estimators uncover. The second row is just
a reminder of what one would estimate by OLS when market size is not
available and we do not account for endogeneity. The rest of the rows
present alternative estimators. We return to them after clarifying some of
the details of the estimation algorithms. In particular the GDC estimator
requires a parametric assumption on the distribution of disturbances, while
the P-P estimator requires a normalization.

To generate the GDC estimator we assumed that the firm specific cost
shock was exponential (as it was in the simulated equilibrium), and that the
market specific shock ({um}) was normally distributed. We estimated the
variance of the market specific effect, and will report it, but when we cal-
culate confidence intervals for the other parameters estimated by the GDC
estimator we assume that this variance is known and fixed at its estimated
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value. This because then we estimate the same number of parameters with
the P-P estimator as we do with the GDC estimator (otherwise we would
be estimating one more parameter for the GDC estimator).

The normalization we used for the P-P estimator was to set the dummy
variable for the “west” location, or lw = 1. There is a normalization
implicit in the GDC estimator through the choice for the distribution of
idiosyncratic disturbance (or ε). Still were we not to impose the lw = 1
constraint with the GDC estimator it would be estimating more parameters
than the Pakes-Porter estimator. So we present one set of results for the
GDC estimator where lw was set equal to one, and one where this constraint
was not imposed. When the constraint is imposed the GDC estimator
estimates the same number of parameters as we does the P-P estimator;
otherwise it estimates one additional parameter.

Computational Burden Before proceeding to the results a note on com-
putational burden is in order. All calculations are done on a Dell T7500
Workstation.15 The compute time for one thousand function evaluations
of the Pakes-Porter algorithm was 1.93 seconds, while for the GDC algo-
rithm it was 25.3 seconds. We evaluated 21 grid points in each of our four
dimensions (i.e. 214 grid points). The total computational time was about
6 minutes for Pakes Porter, and 82 minutes for GDC. As can be seen from
the description of the algorithms, the GDC algorithm is also significantly
harder to code up and de-bug than the Pakes-Porter algorithm. So one
advantage of the Pakes Porter algorithm is that it requires considerably
less compute and programming time.

Results For all rows of estimators in Table 2 we had enough data to
condition on the number of potentially active firms at each location-quality
node (this gave us about seventy-five inequalities). The potential location
is the location that an incumbent could exit from, and for a potential
entrant it was the location the entrant could enter into. When we assume
the market size dummy variable is available we condition on the number
of potentially active firms at each location and the market size. So our

15 This had 72GB of RAM, Windows 7, with Intel Xeon X5690 CPU, 3.47GHz with 6 cores.
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instruments for the estimators in equations (13) and (14) were indicator
functions for all possible vectors of the number of firms who could be active
at each quality-location node16.

We present estimators that assume that the market size variable is ob-
servable in rows 3 and 4 of the table, and the estimators which do not use
the market size variable in rows 5 to 7. Since the P-P estimator uses dif-
ferences in the probability of being active in a given market across agents,
the algorithm differences out the effect of market size. Hence the only dif-
ference in the estimation algorithm underlying row (3) (when we do have
access to the markets size variable) and row (5) (when we do not have
access to that variable) is that row (3) uses more instruments. In actual
applications we would often have a variable that is correlated with, but
not an exact measure of market profitability, so we might expect estimates
somewhere between rows (3) and (5) for the Pakes-Porter estimator.

16For the GDC estimator this resulted in 735 moments for the estimates in the column that used market
size dummies and 435 moments for the estimates that did not use them. For the P-P estimator there
were 470 moments when we used market size dummies and 278 moments when we did not.
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Table 2 Monte Carlo Results (Exogenous Location):
Confidence Intervals for the GDC and P-P Estimators.

Estimator nl,q n−l n−q q

Descriptive Form

1. OLS with Mkt Size -0.73 (.01) -0.58 (.01) -0.07 (.01) 1.59 (.01)

2. OLS without Mkt Size -0.48 (.01) -0.17 (.02) 0.18 (.01) 1.69 (.02)

With Market Size

3. P-P Inequalities [-1.02,-0.68] [-0.69,-0.25] [-0.22,-0.02] [1.22,1.88]

4. GDC Inequalities [-1.10,-0.63] [-0.91, -0.35] [-0.13,0.17] [1.09,1.53]

Without Market Size

5. P-P Inequalities [-1.14,-0.65] [-0.81,-0.44] [-0.27,-0.03] [0.91,1.27]
6. GDC, lw = 1 [-1.50,-0.11] [-1.05,-0.61] [-0.55,0.05] [0.81, 1.97]
7. GDC, lw 6= 1 [-0.60,-0.49] [-0.22,-0.05] [0.08,0.17] [0.39,0.96]

1 For rows 6 and 7, the GDC estimator also estimated the variance of a random market effect. In
all cases we got a point estimate and set it at its estimated value when calculating the confidence
intervals for the remaining coefficients. The estimate of the variance of the market effect for row
6 was .45 and its confidence interval was [.44, .48], and for row 7 it was .48 with a confidence
interval of [.41,.51].

Rows (5) to (7) of the table make it clear that either correction for
endogeneity improves on the OLS estimates that does not correct for en-
dogeneity considerably (compare these to the estimates in row 2 above).
Recall that both estimators require different assumptions than those that
generated the data. The P-P estimator requires that the distribution of the
disturbances for the different agents in a given market be identical, while
the GDC estimator goes further and imposes a parametric assumption on
the distribution of the disturbance and incorrectly assumes that the agent
specific component of the assumed distribution (the {εj,d,m}) are correlated
with the right hand side variables. So perhaps the most important lesson
from the table is that some correction for endogeneity, even if that correc-
tion is based on assumptions which are likely to be false, is quite helpful.
I am going to focus on the row (6) results for the GDC estimator, as they
are more directly comparable to the results from the P-P estimator (then
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both estimators estimate the same number of parameters).17

What is striking about the estimates in rows 5 and 6 is that they indicate
that the confidence intervals for each parameter produced by both the P-P
estimator and, at least the lw = 1, GDC estimator cover their true values.
With this much data these confidence intervals are close to the boundaries
of the identified set obtained from the various estimators. The lengths
of the the confidence intervals for the two estimators do differ. The P-P
estimators confidence intervals are shorter for all variables, and sometimes
the difference is quite noticeable. This despite the fact that the GDC
estimator uses a parametric distribution for the disturbances, while the P-
P estimator does not. Apparently the GDC-estimator’s miss-specification
in the distribution function is reflected in the tightness of the bounds it
produces on, particularly, the n−l and q coefficients 18.

The Model with Endogenous Location Choices. This subsection
uses the P-P estimator to evaluate the model with an endogenous location
choice. Recall that in that model potential entrants are presented with a
trinomial choice (enter east, enter west, or do not enter), while the incum-
bents face the binomial choice of whether to exit or remain active. Also
there are now observable differences between markets that can be used as
instruments (the fixed costs of the three qualities differ by market).

As a result this model provides an opportunity to examine several dif-
ferent aspects of the P-P estimator. First it enables us to evaluate the
difference between a P-P estimator based on only the indicator function
differences for the first ranked index function difference between agents
and an estimator based on two differences in indicator functions (that in
the first, and the indicator for the combined first and the second, ranked

17The interpretation of the parameters is then relative to the lw coefficient. The argument for presenting
the results in row (7) is that a researcher analyzing this problem would probably rely solely on the
normalization implicit in the assumed distribution functions. Row (7) tells us what would happen if that
were the case.

18Interestingly, the only other time I have done a Monte Carlo comparison of this sort was to estimate
a buyer-seller network problem in Pakes (2010). Their the GDC estimator generated point estimates
that were quite close to the true values but confidence intervals that were extremely tight; so tight that
they did not cover the true values (quite the opposite of what we find here). Perhaps not surprisingly
the impact of the miss-specification of the GDC estimator seems to depend on the problem at hand.
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differences in index functions across agents). Second we can distinguish
between models that only compare agents with the same choice sets (as is
required by the Theorem) and between those that lump potential entrants
and incumbents together (this is what is done in most applications of entry
models). Finally the additional observable variables provide us instruments
that are not used as right hand side variables in the estimation, and most
prior work on entry models makes intensive use of observable instruments
of this sort.

The estimates in the first two rows of Table 3 are the descriptive form
and the OLS estimate of it that omits the market size variable for the model
with endogenous location choices (they are the last four columns of Table
1). The rest of the rows in Table 3 present results from estimates based on
alternative versions of the P-P theorem. All use inequalities constructed
by interacting differences in indicator functions for different choices be-
tween two agents with the instruments used in the last section plus those
instruments interacted with the fixed cost variables (which essentially dou-
bles the amount of instruments). When using this many instruments we
obtain point estimates (rather than sets). However the models could al-
ways accept the null that the fact that no parameter vector satisfied all
the inequality constraints was a result of sampling error.
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Table 3. Monte Carlo Results (Endogenous Location):
P-P Estimators.

Estimator nl,q n−l n−q q

Descriptive Form

1. OLS with Mkt Size -1.04 (.03) -0.36 (.04) -0.15 (.01) 1.43 (.06)

2. OLS without Mkt Size -0.51 (.01) -0.13 (.01) 0.62 (.05) 1.33 (.06)

Only Use Indicators for Largest Difference in Indexes; All Choice Sets.

3. Point Estimate -0.76 -0.58 -0.03 1.06
4. Confidence Interval [-1.49,-0.18] [-1.49,-0.15] [-0.66,0.04] [0.90,1.94]

Use Indicators for All Available Differences in Indexes; All Choice Sets.

5. Point Estimates -0.85 -0.37 -0.19 1.39
6. Confidence Interval [-1.11,-0.66] [-0.49,-0.25] [-0.24,-0.13] [1.13,1.58]

Use Indicators for All Available Differences in Indexes; Distinguish Choice Sets

7. Point Estimates -0.88 -0.36 -0.19 1.45
8. Confidence Interval [-1.14 -0.60] [-0.56,-0.30] [-0.32,-0.07] [1.19,1.63]

Rows (3) and (4) provide the results from interacting only the difference
in indicator functions for the first ranked difference in choices with the in-
struments. It does this for every couple of agents that could be active in
the market (so it compares incumbents to potential entrants). This despite
the fact that the choice sets for the potential entrants and incumbents are
different (so formally the assumptions that underlie the P-P estimator are
not satisfied). All confidence intervals cover the true parameter estimates,
but they are rather wide. Indeed for nl,q and n−l they also cover the esti-
mates obtained from the OLS regression coefficients which do not control
for market size.

Rows (5) and (6) interact both the difference in indicator functions for
the first ranked differences in index functions, and the difference in indi-
cator function for the combined first or second ranked differences in index
functions (when the latter was available) with our instruments. It still
compares all couples, so sometimes one of the pair was a potential entrant
and the other was an incumbent. Again all confidence intervals cover the
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true value of the coefficients, but now the length of the confidence intervals
are a third to a fifth of those in rows (3) and (4) (and as a consequence,
we can now reject each of the coefficients estimates in row (2)). The addi-
tion of the extra difference in indicators for the difference in index function
ranks, that is comparing indicator functions for the combined first or sec-
ond ranked difference in index functions, contained a lot of information.

Rows (7) and (8) again uses both the difference in indicators for first
ranked difference in index functions, and the difference in indicator func-
tions for the combined first or second ranked difference in index functions
(when that is available). However now we assume we can distinguish be-
tween potential entrants and incumbents, and only compare incumbents to
incumbents and potential entrants to potential entrants. The results are
very similar to those from rows (5) and (6). This is encouraging for cross
sectional analysis of entry models using P-P estimators as many of those
data sets do not distinguish between new entrants and incumbents. On
the other hand we did use a model where the unobservable (market size)
had the same value for both entry locations.

4 Conclusion.

When approaching a new choice problem (or a new choice data set) we often
begin with descriptive results. Their role is to summarize relationships
in the data that an appropriate behavioral model needs to rationalize.
Typically the focus is on covariates which might be determinants of the
choice. The purpose of this paper is to suggest a formalization of this
endeavor that; has an interpretation in terms of fit, can be compared across
data sets, and has a clear relationship to the behavioral form of the model.
We call this formalization the “descriptive form” of the model.

The descriptive form of discrete choice models is the regression func-
tion of the value the agent assigns to each choice onto a set of variables
known to the agent when the agent’s decision was made. We began by
deriving the descriptive form from the behavioral form of the model. This
necessarily generates an approximation error which is mean independent
to the included right hand side variables by construction. We then showed
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that at least in some cases the relationship between the descriptive and the
behavioral forms of the model can be used to test for a weak form of ra-
tionality of agents’ expectations; in particular we can test whether agents’
expectations are correct on average. We can do this test conditional on
any set of observables the agent knew when decisions were made, and when
agents expectations are biased we can quantify the bias as a function of
those observables.

We then considered estimation algorithms for the descriptive form, fo-
cusing on the case where the dependent variable is discrete. Often the
descriptive form we want to use for one or more of the choices conditions
on an unobserved factor with a particular structure. In our entry example
the unobservable with particular structure was a market specific fixed ef-
fect. As a result it is useful to have an estimation algorithm that allows for
group and choice specific fixed effects. We show that a rather simple semi-
parametric multinomial choice estimator introduced by Pakes and Porter
(2013) can accommodate these fixed effects. The estimator requires only
relatively weak assumptions on the disturbances (the approximation er-
rors), and can allow for choice specific fixed effects whose cardinality can
grow with sample size.

This estimator allows for unobservables which are, and which are not,
related to the included right hand side variables. The unobservables that
are related to the right hand side variable, or the “endogenous” unob-
servables, must be group specific and can be choice specific. This is a
constraint, but when using a descriptive model it is a natural constraint
as it makes clear what the researcher wants to hold constant in analyzing
the determinants of a choice. The unobservables that are not related to
the independent variables result naturally from the approximation error
obtained in deriving the descriptive form from a behavioral model.

We illustrate with a Monte Carlo analysis. We begin by noting that
a two period entry game can be viewed as a descriptive form of a more
complicated Markov Perfect dynamic model of industry evolution. The
endogeneity of the error term, which motivated the empirical literature on
two period entry models, becomes a market specific unobservable that we
want to condition on when investigating the impact of the number and type
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of competitors on the value of being active. We first show that allowing
for the market specific unobservable is essential if we want to investigate
the importance of the number and type of competitors on the value of
being active. Following the literature we chose a descriptive form for that
value which was linear in the number and types of competitors. We tried
two estimators that allowed for endogeneity of the disturbance term; the
GDC estimator of Ciliberto and Tamer (2009) and the semiparametric
multinomial choice estimator that allows for choice specific fixed effects in
Pakes and Porter (2013). Both these estimators are set estimators. The
GDC estimator requires parametric assumptions and does not allow for an
approximation error which is orthogonal to the included right hand side
variables. Our Monte Carlo analysis indicated that both set estimators
cover the true parameter vector. Somewhat surprisingly the Pakes-Porter
estimator, which is easier to both program and compute and does not
require explicit distributional assumptions, produced narrower confidence
bands than the parametric GDC estimator.
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