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ABSTRACT

To test how practice interruptions affect worker productivity, we estimate how temporal breaks affect
surgeons’ performance of coronary artery bypass grafting (CABG). Using a sample of 188 surgeons
who performed 56,315 CABG procedures in Pennsylvania between 2006 and 2010, we find that a
surgeon’s additional day away from the operating room raised patients’ inpatient mortality risk by
up to 0.067 percentage points (2.4% relative effect) but reduced total hospitalization costs by up to
0.59 percentage points.  In analyses of 93 high-volume surgeons treating 9,853 patients admitted via
an emergency department, where temporal distance effects are most plausibly exogenous, an additional
day away raised mortality risk by 0.398 percentage points (11.4% relative effect) but reduced cost
by up to 1.396 percentage points.  These estimates imply a cost per life-year saved ranging from $7,871
to $18,500, rendering additional treatment intensity within surgery cost-effective at conventional cutoffs.
Our findings are consistent with the hypothesis that after returning from temporal breaks surgeons
may be less likely to recognize and address life-threatening complications, in turn reducing resource
use. This form of human capital loss would explain the decrease in worker productivity and the
simultaneous reduction in input use.
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I. Introduction 

Fluctuations of human capital and worker productivity have been the subject of a long literature 

stretching back to Ben-Porath (1967).  This early work on human capital and productivity 

spurred multiple lines of inquiry.  One of these has focused on organizational forgetting, in that a 

firm’s productivity may erode because its workers’ human capital decays or because of turnover 

or breaks in production (Argote, 1999, Darr, Argote and Epple, 1995; Benkard 2000; Thompson 

2007, David and Brachet, 2009 & 2011).   

 

Previous research has measured the reduction in individual worker productivity when the 

temporal distance between tasks increases. These reductions have been documented for jobs with 

routine tasks ranging from data entry (Globerson Levin and Shtub, 1989) to mechanical 

assembly (Bailey, 1989) and car radio production (Shafer, Nembhard, and Uzumeri, 2001).  

Recent work has focused on more complex tasks arising in the provision of health care.  These 

studies suggest temporal distance effects may substantially impact patient outcomes in surgery 

(Hockenberry, Lien and Chou, 2008) and in the delivery of emergency medical services (David 

and Brachet, 2011).  

 

In this paper we make three contributions.  First, we develop a framework for distinguishing 

between two mechanisms that explain how a decline in surgeon human capital, measured here as 

increased temporal distance, might impair surgeon productivity, measured here as patient 

outcomes.  Previous literature has documented that organizational and individual skill 

depreciation between performing temporally distant  tasks adversely affects health care 



	

	
	

outcomes, but the underlying mechanism has not been established (Hockenberry, Lien and Chou, 

2008; David and Brachet, 2011).   

 

Increasing temporal distance could lead to either inefficient care or inattentive care.  After 

temporal breaks, surgeons may fail to identify and treat life-threatening complications 

(inattentive care). For instance, surgeons may be less likely to notice small but potentially life-

threatening anomalies during surgery that require additional tests or procedures to ensure the 

patient’s survival. This form of human capital depreciation will reduce the patient’s survival 

probability and at the same time reduce resource use.  

 

Alternatively, temporal breaks may erode surgeons’ proficiency and thus prompt them to apply 

more treatment (inefficient care). For instance, surgeons may take longer to complete a given 

procedure or compensate for lower proficiency with additional testing and procedures. This form 

of human capital depreciation will raise the surgeon’s resource use without raising the patient’s 

survival probability.  

 

We observe the resource use and survival probabilities of patients undergoing coronary artery 

bypass grafting (CABG) and thus can distinguish between these two forms of surgeon human 

capital depreciation empirically.  We find that the time since the surgeon last performed the 

procedure raises peri-procedural mortality in a clinically meaningful and statistically significant 

way.  The temporal distance effects are lasting in that they also predict in-hospital mortality.  We 

also find that temporal distance is associated with reduced resource use. This pattern is consistent 

with the hypothesis that temporal breaks lead to inattentive care in that surgeons tend to miss 



	

	
	

altogether and therefore fail to address life-threatening complications, rather than notice but 

address them less efficiently. Policies that affect surgeons’ procedure schedules may reduce 

operative mortality for patients undergoing coronary revascularization but they may also raise 

cost. 

 

Second, we test and compare how two measures of temporal distance affect surgeon 

performance.  We examine both the impact of the number of days since the surgeon last 

performed CABG surgery, which captures the effect of depreciation in procedure-specific human 

capital, and the impact of the number of days since the surgeon performed any procedure, which 

proxies for depreciation in general surgical human capital.1  Our empirical results suggest that 

general surgical human capital affects patient outcomes substantially more than procedure-

specific human capital. 

 

Finally, we exploit the variation in resource use induced by variation in temporal distance to 

measure the productivity of additional medical spending on the margin.  Our back-of-the-

envelope calculation suggests that the cost per life-year saved resulting from more attentive, and 

thus intensive treatment within a chosen procedure, ranges from $7,400 to $17,500, in line with 

other recent estimates (Doyle, 2005 & 2011; Chandra and Staiger 2007; Almond, Doyle, 

Kowalski and Williams, 2010) and well below the conventional $100,000 per life-year threshold 

(Cutler, 2004). 

																																																													
1 We examined the frequency distributions of the  other procedures and found those that are 

typically performed by the surgeons who perform CABG include heart valve procedures, 

procedures on thoracic vessels (other than bypass), and device implants. 	



	

	
	

 

2. Background 

2.1 Background on human capital depreciation 

There is an extensive literature in industrial engineering that seeks to establish the degree of 

human capital depreciation, also referred to as forgetting, in productive tasks.  Several studies 

have examined the speed of human capital depreciation by randomizing individuals engaged in a 

repetitive task, ranging from breaks of one day to a few weeks to even a few months (Globerson, 

Levin and Shtub, 1989; Bailey, 1989: Shafer, Nembhard and Uzumeri, 2001).  Worker 

productivity declined a few percentage points after an interruption lasting a single day 

(Globerson, Levin and Shtub, 1989) and increased at an increasing rate with each additional day 

of interruption (Jaber, 2011).   

 

While studies of human capital depreciation in manufacturing settings have focused on the 

performance of repetitive tasks, they have ignored more complex cognitive tasks like those often 

found in health care delivery. For instance, highly variable “inputs” in health care delivery, such 

as each patient’s individual anatomy and disease progression profile, differ from the largely 

homogeneous inputs found in manufacturing.  Thus healthcare delivery, and in our case surgery, 

places significant demands on workers’ cognitive skills.  Earlier work examined how breaks in 

the performance of cardiac surgery affect patient outcomes, arguing that these outcomes reflect 

productivity differences (Hockenberry, Lien and Chou, 2008).  For CABG surgery in Taiwan, 

the authors estimated that relative to a 0-2 day break, a break from performing CABG of 3-14 

days raised mortality by 11-14%, and a break of more than 15 days raised mortality by 22%.   

 



	

	
	

That study only measured temporal distance between performing CABG procedures.  Yet, 

studies on forgetting suggest that other activities in which workers engage during breaks from 

the productive task of interest may play an equally important role in human capital depreciation 

(Jaber, 2011).  In our context, many surgeons will perform other procedures, such as isolated 

heart valve procedures and other vascular procedures that require the same cognitive skill set as 

CABG and that therefore may slow the rate of skill depreciation between CABG procedures.  

Thus, to the extent that Hockenberry et al. did not account for the performance of skill-

preserving tasks between the CABG surgeries they observed, their results would underestimate 

the true effect of skill depreciation on surgeon productivity. In this paper, we contrast the 

performance effects of the number of days since the surgeon last performed CABG with the 

performance effects of the number of days since the surgeon performed any procedure to assess 

the role of CABG-specific skill components in explaining the productivity loss after temporal 

breaks. 

 

2.2 The performance and organization of CABG 

Coronary artery bypass graft (CABG) is a major surgical procedure intended to improve the 

heart’s supply with oxygen.  A surgeon harvests part of a vessel from a different area of the body 

(typically the groin or chest wall), opens the chest cavity, and implants the harvested vessel 

segment to bypass the diseased section of the artery.  CABG surgery takes approximately four 

hours and patients generally spend at least one week recovering in the hospital.  In some cases 

the patient will also need a concomitant valve replacement or repair procedure, which lengthens 

surgery time further (Hockenberry et al, 2011).   

  



	

	
	

3. Methods 

3.1 Empirical model 

We assume that a surgeon’s human capital Q0 decays exponentially over time at rate δ (Rubin 

and Wenzel, 1996; Kahana and Adler, 2012): 

Q(t) = Q0e
-δt.  

or 

lnQ(t) = lnQ0 - δt (1) 

If we further assume that patient outcomes improve with human capital, (1) predicts that a 

surgeon’s longer temporal break will reduce patient survival. 

Our proxy for the current stock of human capital Q(t) is based on the literature on organizational 

learning and forgetting.2  This literature has shown that past production experience impacts 

productivity (Argote, Beckman and Epple, 1990; Benkard, 2000), which in our setting would be 

reflected in increased survival.  These studies also conclude that the stock of past production 

experience will depreciate with t, the time since it was accumulated (Argote, Beckman and 

Epple, 1990; Benkard, 2000).  This form of organizational forgetting is thought to be tied, at 

least in part, to individual worker human capital decay (David and Brachet, 2011). Furthermore, 

a long literature indicates that provider quality is a function of experience, specifically there is a 

relationship between a provider’s volume of procedures and patient outcomes (Luft, Bunker, 

																																																													
2 The lifetime stock of accumulated capital and its depreciation will be captured empirically by 

individual fixed effects and surgeons’ years of experience, measured by the time since they 

graduated from medical school.   In line with the industrial engineering literature on forgetting, 

we focus here on the short-term fluctuations of this stock. 



	

	
	

Enthoven, 1979; Luft, Hunt and Maerki, 1987; Halm, Lee and Chassin, 2003; Gaynor, Seider 

and Vogt, 2005: Hockenberry, Lien and Chou, 2010). 3    

 

Thus we estimate the following equation: 

mi,j,k,y = β0 + β1 ln(hospital volume) i,j + β2 ln(surgeon volume) i,k +  β3 days since last 

procedurei,j + β4 Xi + ρj + φk + ψy + εi,j,k,y (2) 

																																																													
3 There is disagreement on whether this is due to patients sorting to better providers (selective 

referral) or whether experience itself in the form of volume actually improves outcomes (practice 

makes  perfect).  Our identification strategy is based on the inclusion of hospital and surgeon 

fixed effects, ρj and φk respectively.  All the hospitals and nearly all the surgeons in our data were 

performing CABG on patients prior to the start of our study period.   Thus we argue that hospital 

and surgeon fixed effects control for provider quality that has been revealed to the market at the 

start of the study period.  Furthermore, in the case of the depreciation effect, any positive 

selection effect where an increased demand for a surgeon’s service is attributable to unobserved 

surgeon characteristics is likely to bias the estimate of the temporal distance effect, represented 

by β3 in equation (2), toward zero.  Pennsylvania has a public report card system for both 

hospitals and surgeons performing CABG, which appears to steer patients away from poorly 

performing and  low-volume surgeons (those performing fewer than 30 procedures annually) 

whereas distance from home is the main driver of hospital choice (Wang, Hockenberry, Chou 

and Yang, 2011; Epstein, 2010).  There is little variation in these report cards over time.  

Nevertheless we conducted robustness checks by including recent report card information in our 

specifications.  The effects of report cards on mortality were not precisely estimated, and did not 

change the coefficients or statistical significance of our temporal distance measures.  	



	

	
	

where mi,j,k,y is a mortality indicator for patient i at hospital j whose procedure was performed by 

surgeon k in calendar year y.  Hospital and surgeon volume are measured as the volume in the 

year leading up to and including the procedure on the patient surgeon k operated on just before 

operating on patient i.4  X are the observable characteristics of patient i including gender, race, 

age, source of insurance coverage and comorbidities. Each of our models also includes hospital 

and surgeon fixed effects, ρj and φk, as well as year fixed effects, ψy.   

 

The coefficient β3 for “days since last procedure” is the empirical estimate of δ; it captures the 

depreciation of human capital, measured by its effect on the patient’s mortality risk, due to 

increased temporal distance since CABG or any surgical procedure was last performed by the 

patient’s surgeon.  Since we measure time as the number of days since last performing CABG or 

any procedure, β3 is the effect of an additional elapsed day on the patient’s probability of death, 

and is expected to be positive. To distinguish between depreciation in procedure-specific and 

general surgical human capital, we estimate separate models in which we define temporal 

distance as the number of days since last performing CABG or last performing any inpatient 

procedure.  We estimate linear probability models and cluster the standard errors at the surgeon 

level to account for within-surgeon correlation of the disturbances across procedures. 

 

																																																													
4 By construction, temporal distance and surgeon volume will be correlated.  The correlation 

between surgeon volume and time since the surgeon last performed CABG was -.21.  The 

correlation between surgeon volume and time since the surgeon last performed any inpatient 

procedure was -.12.  We estimated specifications of our models excluding surgeon volume with 

nearly identical results.	



	

	
	

To distinguish between the two competing forms of surgeon human capital depreciation 

(inattentive care versus inefficient care), we model the total cost C of treating a patient whose 

health and socio-demographic characteristics at the time of admission are represented by x and 

whose surgeon last performed a procedure t days ago: 

C(t, x) = a(x) + p(x)r(t)c(t)  

where a is the fixed cost of performing the procedure, p is the probability that the patient will 

suffer a life-threatening complication during the procedure, r is ratio of the potential 

complications the physician observes and treats successfully, and c is the effort and time cost to 

the surgeon of addressing the complication. In line with our model of inattentive care we assume 

that r decreases with t: r’ < 0.  Thus, the patient’s mortality risk is p(1-r) and an increase in the 

surgeon’s time away will increase the patient’s mortality risk by –pr’ > 0.  In line with our model 

of inefficient care, we assume that the cost of addressing a complication c increases with the time 

since the last procedure t: c’ > 0. 

 

A priori the effect of time away from the operating room on total cost is ambiguous:  

Ct =p[ r’c + rc’]. (6) 

The first term in brackets, r’c < 0, represents “inattentive care” resulting from increased temporal 

distance: the surgeon will be less likely to spot, and consequently address successfully, a life-

threatening complication, thus raising mortality but reducing cost. The second term in brackets, 

rc’ > 0, represents “inefficient care” resulting from increased temporal distance: the surgeon will 

expend more resources to rescue the patient and thus raise cost without raising mortality. Our 

data allow us to assess empirically which of these effects dominates. 

 



	

	
	

To obtain empirical estimates of the impact of temporal distance on resource use we estimate the 

following equation: 

ln(costs) i,j,k,y = β0 + β1 ln(hospital volume) i,j + β2 ln(surgeon volume) i,k +  β3 days since last 

procedurei,j + β4 mortality + β5 Xi + ρj + φk + ψy + εi,j,k,y (7) 

where costs are total inpatient costs.5  An indicator for the patient’s death before discharge (in-

hospital mortality) is included to avoid conflating differences in charges with differences in 

patient mortality outcomes.  All other covariates are defined as in the mortality model (2). 

 

3.2 Robustness Checks 

Increases in temporal distance could be correlated with unobserved determinants of patient 

survival or hospital charges and thus endogenous.  For instance, surgeons aware of and 

concerned about skill depreciation might select relatively healthier patients to operate on 

immediately after returning to work, in which case our mortality estimates would understate the 

true impact of temporal breaks and any reduction in cost would be explained at least in part by 

patient selection.  If, on the other hand, surgeons returning to work triage patients in that they 

operate first on those patients who are at highest risk of death, our mortality estimate will 

overstate the true effect. To mitigate this endogeneity concern, we perform a series of robustness 

checks.  

 
As a first robustness check, we restrict the sample to patients who were admitted emergently and 

thereby reduce further the possibility that selection on unobservables may be driving the results.6  

																																																													
5 We also estimated models where we looked at post-operative length of stay, a more objective 

measure of resource use, and found the results to be consistent with the charges results.      



	

	
	

When patients are admitted emergently, surgeons have little scope for patient selection, thereby 

mitigating the effect of unobserved patient heterogeneity in confounding the measured effect of 

temporal distance on outcomes. Moreover, as emergently admitted patients are typically more 

acutely ill than electively admitted patients, the mortality outcomes for emergently admitted 

patients should be particularly sensitive to surgeon skill and thus to the time since last 

performing CABG or any inpatient procedure.  

 

As a second robustness check, we restrict the sample to CABGs performed by surgeons 

performing at least 100 CABG procedures per annum. This is the threshold used by the Leapfrog 

Group, a coalition of large health care purchasers, to define high procedures volumes, which are 

thought to improve performance. This robustness check mitigates the possibility that the 

temporal distance effect could be confounded by systematic unobservable quality differences 

between high and low volume surgeons and the severity of the patients they treat.7   

Third, we test if temporal distance predicts differences in observable patient characteristics that 

are likely correlated with unobserved patient severity or complexity.  Specifically, we test 

																																																																																																																																																																																																				
6 The Pennsylvania claims data we use indicate whether the patient’s procedure was emergent, 

urgent or elective. These classifications are based on clinical criteria established by the National 

Uniform Billing Committee.  

7	We also estimated models with interaction terms for volume and temporal distance to 

differentiate between the effects of volume and temporal distance directly.  However, the 

coefficients on the volume term and the interaction term were not significant.  This could 

indicate that low-volume surgeons typically treat otherwise healthier patients, which would mute 

possible the inattention effects for that group.  	



	

	
	

whether temporal distance was is correlated with the number of patient comorbidities and with 

the probability that the patient was admitted with acute myocardial infarction (AMI), a common 

marker of patient complexity. 

 

3.3 Data 

We use the Pennsylvania Inpatient Hospital Discharge Data from the Pennsylvania Health Care 

Cost Containment Council (PHC4) from the third quarter of 2006 through the fourth quarter of 

2010.   The PHC4 data include patients' demographic characteristics, insurance coverage, 

comorbid conditions as captured by the International Classification of Diseases, Ninth Revision 

Clinical Modification (ICD-9CM) codes, hospital identifiers, and surgeons’ license numbers.  

From these data we identify all adults (age 18 years or older) undergoing CABG in Pennsylvania 

hospitals using relevant procedure codes.8 

3.3.1 Outcomes 

We estimate the effect of the surgeon’s temporal break on two dimensions of performance: the 

patient’s risk of death during hospitalization, and the natural logarithm of total hospitalization 

cost. We use two mortality measures as proxies for overall procedure quality9: peri-procedural 

mortality, defined as death within one day of the procedure, and in-hospital mortality, defined as 

death at any time before discharge.  The PHC4 data include hospital charges, which we convert 

to cost using Medicare cost-to-charge ratios. 

																																																													
8 ICD-9 CM procedure codes 36.10-36.17 and 36.19. 

9 The standard 30-day mortality measure is not available in these data because we only have 

information through discharge from the current admission, and most patients are discharged 

within a week of the procedure.	



	

	
	

 

3.3.2 Time Since Last Procedure 

We measure the covariate of interest, the time since the surgeon last performed surgery, in two 

ways: the number of days since the surgeon last performed a CABG procedure and the number 

of days since the surgeon last performed any inpatient procedure.  PHC4 used restricted date-of-

procedure data to construct an additional variable coded as the number of days since the 

operating physician was last listed as the operating physician for any inpatient procedure and a 

variable indicating the sequence of all the records for which a physician was listed as the 

operating physician.10 

 

3.3.3 Provider Characteristics 

We include hospital CABG volume and surgeon CABG volume. Both volume measures are 

defined as the number of CABG procedures performed at the hospital or by the surgeon during 

the 365 days leading up to each procedure included in the sample.  We also include categorical 

variables for hospital size (beds) and each physician’s years of experience, defined as the number 

of years since graduation from medical school at the time of the procedure. 

 

3.3.4 Patient and Discharge Characteristics 

																																																													
10 This was provided to us upon request from PHC4.  In order to get access to this variable, 

PHC4 had to remove day of week information from the data to limit the risk identification of 

patients, and we are therefore unable to consider day of the week effects.  However, 

Hockenberry Lien and Chou (2008) examined this issue and found that “weekend effects” did 

not explain the temporal distance effect on mortality.	



	

	
	

Patient-level independent variables include patient age in years, gender, race/ethnicity indicators, 

and primary payer (private payer, Medicare, Medicaid, uninsured). To capture the effect of co-

morbidities that might affect the outcome independently of the surgeon’s time since last 

procedure, we also include a comorbidity index developed by Elixhauser et al. (1998), the 

number of vessels bypassed (indicator variables from 1 to 4 or more), the type of admission 

(elective, urgent, or emergent), an indicator that the admitting diagnosis was acute myocardial 

infarction (AMI), and the number of days from patient admission to procedure (to capture the 

effects of patients who were frail enough to require hospitalization for stabilization before the 

procedure, or who were admitted for unrelated reasons and the vascular occlusion was 

subsequently discovered).  We also include indicators that the procedure included 

cardiopulmonary bypass and that it included a concomitant valve procedure, as both indicate 

potentially more complex procedures and more time under anesthesia, which in turn could affect 

outcomes. 

 

4. Results 

4.1 Provider and Patient Characteristics 

The study sample includes 56,315 discharges, 188 surgeons, and 62 hospitals. Mean 1-day 

mortality was 0.62%, mean in-hospital mortality was 2.72%, and average total cost was $35,343. 

For surgeons performing at least 100 CABG procedures per annum, mean 1-day mortality was 

0.52%, mean in-hospital mortality was 2.47% and total cost was $32,900, consistent with the 

hypothesis that high-volume providers are more efficient and effective.  As would be expected, 

emergently admitted patients had higher mortality rates and cost, and the procedures performed 



	

	
	

by high-volume surgeons on this group again resulted in lower mortality and lower cost (Table 

1). 

 

The mean number of days since last performing any inpatient procedure was 1.99 for all 

surgeons and 1.52 for high-volume surgeons.  The number of days since last performing CABG 

was 3.96 for all surgeons and 2.64 for high-volume surgeons. Figures 1 and 2 show the 

distributions of the two measures of temporal distance for all physicians in the sample.  Figure 3 

shows the mean number of comorbid conditions among patients as a function of the number of 

days since their surgeon last performed any inpatient procedure.  Given the nature of the 

condition and the procedure, most patients were elderly and covered primarily through Medicare. 

Seven in ten patients were male and nearly ninety percent were white (Table 1). 

 

4.2 The Effect of Temporal Breaks on Mortality  

In the full sample, an additional day without performing any inpatient procedure was associated 

with an increase in 1-day mortality by nearly 0.05 percentage points, or 7.4% relative to the 

sample mean (Table 2).  The absolute effect on in-hospital mortality was larger at nearly 0.07 

percentage points, but on a relative basis it was smaller, 2.5%.  The effect was smaller in relative 

magnitude and not statistically significant when temporal distance was defined as days since last 

CABG rather than last inpatient procedure.   

 

The estimated impact of days since last inpatient procedure on mortality was larger in the 

restricted samples.  Among emergent patients (Table 2), an additional day increased 1-day 

mortality by .11 percentage points (12.5%) and in-hospital mortality by .20 percentage points 



	

	
	

(5.0%).  Compared to 1-day mortality, temporal breaks had a larger absolute effect on in-hospital 

mortality but their magnitude relative to in-hospital mortality was smaller.  

 

Among all patients whose CABG was performed by a high-volume surgeon (Table 2), an 

additional day away from the OR increased 1-day mortality by 0.09 percentage points (a 17.5% 

relative effect) and in-hospital mortality by 0.17 percentage points (a 6.8% relative effect).  In 

contrast to the results for the full sample, a one-day increase in time since CABG also 

significantly increased 1-day mortality by .03 percentage points and in-hospital mortality by .08 

percentage points, effects that were still smaller in magnitude than the impacts from an 

additional day since any inpatient procedure. 

 

Finally, among emergently admitted patients whose CABG was performed by a high-volume 

surgeon (Table 2), an additional day away from the OR increased 1-day mortality by 0.22 

percentage points (31.5%) and in-hospital mortality by nearly a 0.40 percentage points (11.44%).  

Again, a one day increase in time since CABG also significantly increased 1-day mortality by 

nearly 0.08 percentage points and in-hospital mortality by nearly 0.21 percentage points, effects 

that were still smaller in magnitude than the impacts from an additional day since any inpatient 

procedure. 

 

4.3 The Effect of Temporal Breaks on Costs 

In the full sample, an additional day without performing any inpatient procedure was associated 

with a statistically significant decrease in total cost of about 0.6 percent, or nearly $210 (Table 

3).  Consistent with the results for patient mortality, the reduction was only 1/6 as large at 0.1 



	

	
	

percent, or $36, for an additional day since last performing CABG.  In the case of emergently 

admitted patients an additional day away from the OR reduced cost by about 0.8 percent, or 

about $329.    Again the impact was generally smaller when temporal distance was defined as the 

number of days since last performing CABG, at 0.1 percent. 

 

Finally, among those treated by a high volume surgeon, an additional day without performing 

any inpatient procedure was associated with a statistically significant decrease in total cost of 

about 1.1 percent, or nearly $349 (Table 3).  The reduction was only 40% as large for an 

additional day since CABG at 0.4 percent, or $141.  In the case of emergently admitted patients 

treated by high volume surgeons, an additional day away from the OR reduced cost by about 1.4 

percent, or about $518.    Again, the impact was generally smaller when temporal distance was 

defined as the number of days since last performing CABG, at 0.4 percent. 

 

4.4 Robustness checks 

To test whether there was evidence that our temporal distance effects were the result of selection 

bias, we estimated a set of additional regression equations.  If observed patient comorbidity or 

the probability of the patient having an AMI at admission were associated with temporal 

distance, this would indicate some patient selection.  The results of these estimations are reported 

in Table 4.  As is evident, none of the point estimates of the effect of temporal distance on 

patient comorbidity or AMI are precisely estimated, nor are they clinically significant.  Since 

comorbidity represents one of the main characteristics a surgeon would use to engage in 

selection behavior, it is unlikely that our effects are driven by selection. 

  



	

	
	

4.5 The Implied Cost of Saving an Additional Life-Year 

We use the simultaneous increase in mortality and decrease in cost associated with increased 

temporal distance to calculate the implied cost of saving an additional year of life. In Table 5 we 

summarize the previous results and derive the implied cost per life-year saved for each 

subsample. Specifically, we reproduce the percentage-point reduction in in-hospital mortality 

associated with a shortening the temporal distance (defined as time since last inpatient 

procedure) by one day and translate the mortality reduction into the implied increase in life 

expectancy assuming that patients could expect to live an additional 17.6 years after surviving 

CABG (van Domburg, Kappetein, and Bogers, 2009).  The resulting cost per life-year saved 

ranges from $7,871 to $18,500.  

 

5. Discussion 

We find that, after accounting for patient and provider characteristics, an additional day since the 

surgeon’s last inpatient procedure raised peri-procedural mortality of CABG patients on average 

by 7.4% and in-hospital mortality by 2.5%. Hockenberry, Lien and Chou (2008) found that the 

impact of increasing time away to be monotonically increasing, so the implied cumulative effect 

of several days away from the operating room on outcomes could be substantial. The large 

effects we observe here are likely attributable to differences in how temporal distance was 

measured.  The earlier work used a reference group of 0-2 days and compared procedures 

grouped into 2-14 day and 15+ day breaks.  However, learning theory suggests that forgetting 

follows an exponential or power function path.  As such, the largest reductions in human capital 

would occur in the first few of days.   

 



	

	
	

In the data used here, most procedures were performed by surgeons who had been in the 

operating room in the last 7 days.   One might ask whether we expect surgeons to experience 

skill depreciation so quickly.  In fact, the industrial engineering literature suggests the 

depreciation is quite rapid, and continues out for months.  The more recent literature also finds 

that this depreciation effect is independent of how quickly or how much learning was 

accumulated (Jaber, 2011).     

 

In this study, the data did not allow us to parse out which of the multiple skills that surgeons use 

to perform CABG procedures were depreciating and how rapidly.  They could be primarily 

cognitive in nature and thus consistent with our hypothesis of inattentive care, which in turn is 

supported by the results we report here.  They could also include dexterity or the ability to 

manage a surgical team.  If it were possible to randomize surgeons to longer breaks from surgery 

and measure these different types of skill, then one could estimate more accurately skill-specific 

depreciation functions. 

 

While temporal breaks raise mortality risk, we also find that they reduce the total cost of 

hospitalization, again consistent with the inattentive-care hypothesis.11 The reduction in resource 

																																																													
11 Conceivably, the temporal-distance effects might be muted or even reversed for 30-day 

mortality. For instance, surgeons returning from relatively short breaks away from the operating 

room might also discharge patients sooner, i.e. before they die in-hospital. To test for this 

possibility, we estimated multinomial logit models but found no evidence that the number of 

days since performing any or a CABG procedure last was systematically associated with the 

patient’s likelihood of being discharged to a skilled nursing facility rather than home. This 



	

	
	

use after a practice interruption runs counter to studies of other settings, which found more inputs 

were needed to produce a given unit of output as human capital declined (Argote, Beckman and 

Epple, 1990; Benkard, 2000).  However, the result is consistent with the hypothesis that surgeons 

returning from a temporal break may be more likely to miss complications that arise during or 

after the procedure.  Surgeons who miss life-threatening complications raise their patients’ 

mortality risk but they also use fewer resources than surgeons who notice and address these 

complications.  

 

As in any study using administrative data, we were limited in the clinical information we could 

bring to bear in our risk adjustment.  Even after controlling for surgeon fixed effects, endogenous 

scheduling of patients by severity may have confounded the estimates. For instance, surgeons 

may have scheduled electively admitted patients with the least (unobserved) risk of life-

threatening complications to be treated after returning from longer temporal breaks. In this case, 

we would underestimate the effect of days between procedures on patient mortality. To the 

extent that unobserved patient characteristics on which the surgeons sort patients are correlated 

with the patient severity measures that we do observe in our data, sorting on observables reveals 

the likely extent of any bias imparted by unobserved heterogeneity (Altonji, Elder and Taber, 

2005).  In sensitivity analyses we examined the contribution of our clinical severity measures on 

the effects of temporal distance. The effect estimates without the severity controls were slightly 

																																																																																																																																																																																																				
finding is consistent with the fact that in our data the temporal distance effects for perioperative 

mortality are qualitatively identical to those for in-hospital mortality. Borzecki et al. (2010) also 

reported strong concordance between in-hospital and 30 day mortality across facilities for a 

variety of conditions.. 



	

	
	

smaller in magnitude than in the adjusted model but still statistically significant.  Assuming high 

correlation between these observables and the unobserved severity characteristics, our estimates 

of the temporal-distance effects should be viewed as conservative. 

 

We also did not find any systematic association between temporal distance and other markers of 

patient complexity, such as the number of comorbidities or the probability of having been 

admitted with acute myocardial infarction.	This is perhaps not too surprising, as the organization 

of cardiac surgery and referral patterns vary widely across hospitals and markets, as do surgeons’ 

affiliations with hospitals (Berenson, Ginsburg and May, 2006). Cardiac surgeons still take call 

with affiliated hospitals regardless of the employment relationship (i.e. employed by the hospital 

or independent).   

 

In addition, the PHC4 data did not include the time of day that each procedure was performed.  

Thus, we had to use admission times to classify the first procedure of the day for the purpose of 

assigning temporal distance.  To the extent that we measured temporal distance with error, our 

estimates would suffer from attenuation bias and again should be viewed as conservative. 

Sensitivity analyses that included an indicator for procedures performed on a day with other 

procedures did not materially change the estimated impact of temporal distance.  

 

To minimize possible selection bias, we estimated the equations for the subsample of the 

approximately 3 out of every 10 patients who were admitted emergently.  The emergent nature of 

the admission places a premium on timely decisions and interventions, which should be 

particularly sensitive to fluctuations in the surgeon’s attention and application of skill. For these 



	

	
	

reasons, estimates based on this subset of patients should be less vulnerable to selection bias and 

more accurate in capturing the effect of temporal distance on mortality. For emergently admitted 

patients essentially all the sorting is determined by a call schedule which is fixed ex ante. Of 

course, it is possible that surgeons with below-average temporal-distance measures also succeed 

in securing slots on the call schedule during which emergently admitted patients are healthier on 

average. To minimize the confounding effect of this type of unobserved heterogeneity, we 

included surgeon and hospital fixed effects. For both mortality measures and both measures of 

temporal distance, we find larger effects on mortality and resource use.  

 

As a second robustness check, we estimated the equations for the subsample of procedures 

performed by high-volume surgeons.  High-volume surgeons would be expected to develop more 

effective routines than low-volume surgeons of maintaining their performance potential during a 

break and of regaining it after a break, resulting in a smaller estimated effect size. On the other 

hand, high-volume surgeons might be more likely to operate on patients with more complex, yet 

unobserved disease and therefore more likely to miss a life-threatening complication. This would 

be the case if low-volume providers are more selective and avoid emergently admitted patients, 

allowing them to treat patients who are healthier and more robust than the acutely ill patients 

treated by high-volume providers. Healthier patients are unlikely to die in the short term unless 

the procedure was performed very poorly.  For these patients, mortality may be too coarse a 

measure to capture any temporal-distance effects on productivity. In addition, surgeons who 

perform only a few procedures a year are away from the operating room for more days on 

average than high-volume surgeons. Because our models include surgeon fixed effects, the 

departures from their best performance may not be as pronounced. On balance, we did not find 



	

	
	

statistically significant reductions in effect size for any of the measures of mortality and temporal 

breaks; to the contrary, for several specifications the effect size increased when the sample was 

limited to high-volume surgeons. 

 

For patients who were admitted emergently and treated by a high-volume surgeon, extending the 

surgeon’s temporal break by an additional day raised the patient’s 1-day mortality risk by 31.5% 

and the in-hospital mortality risk by 11.4%. 

 

In conclusion, we find that practice interruptions in the form of a surgeon’s additional day away 

from the operating room raised patients’ mortality risk by up to 0.4 percentage points but 

reduced the total cost of hospitalization by up to 1.4%.   

 

Moreover, in both the outcome and spending models, the results were stronger when the 

temporal distance since last performing any inpatient procedure was used rather than temporal 

distance since last performing CABG.  While an earlier study examined the temporal distance 

between specific procedures only (Hockenberry, Lien and Chou, 2008), our estimates suggest 

that the outcome and spending effects are largely accounted for by the depreciation of general 

surgical human capital rather than procedure-specific human capital.  Thus surgeons who are 

performing other procedures between performing CABG appear to be able to maintain 

proficiency, which is important in an era of declining CABG volume.   

 

Our findings also raise the question which policies might mitigate the adverse impact of temporal 

breaks on physician performance. If temporal breaks compromise focus or attention to possible 



	

	
	

complications, as our results suggest, greater reliance on other members of the surgical team and 

the use of surgical safety protocols and checklists may be warranted (Haynes, et al, 2009; 

Birkmeyer 2010, de Vries et al. 2010). Such interventions aimed at aiding surgeons regain their 

pre-break performance levels, along with changes in scheduling that reduce the average time 

away from the operating room, might be justified if they improve expected patient outcomes 

sufficiently. Our most conservative estimates imply that raising patients’ pre-operative life 

expectancy by one year would raise costs by as little as $7,871, more than 25% less than the 

median cost per life-year saved reported by a well-known study of over 500 medical 

interventions (Tengs, Adams, Pliskin, et al, 1995). 
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1. Comorbities are those derived from the index created by Elixhauser and colleagues (1998). 
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Table 1. Summary Statistics 
 

Procedures performed by surgeons with 
annual volume of >11 CABGs 

Procedures performed by surgeons with 
annual volume of >99 CABGs 

 All admissions Emergent admissions All admissions Emergent admissions 
 56,315 16,702 33,106 9,853 
outcomes and cost  
1-day mortality (percent) 0.62 0.89 0.52 0.71 
in-hospital mortality (percent) 2.72 3.95 2.47 3.48 
total costs $35,343 $40,166 $32,900 $37,107 
provider characteristics  
days since last CABG 3.96 3.80 2.64 2.49 
days since last inpatient procedure 1.99 1.84 1.52 1.39 
surgeon annual number of CABG procedures 98 100 126 129 
years of experience 23.8 23.7 24.4 24.2 
hospital annual number of CABG procedures 327 308 376 351 
procedure characteristics (percent)  
1 vessel bypassed 30.68 26.94 29.58 25.60 
2 vessels bypassed 35.22 34.83 34.31 34.27 
3 vessels bypassed 25.07 27.23 26.00 28.02 
4 or more vessels bypassed 9.02 10.99 10.11 12.11 
cardiopulmonary bypass 63.19 57.51 65.07 61.09 
concomitant valve procedure 21.21 17.10 21.66 17.72 
emergent admission 29.65 100.00 29.74 100.00 
urgent admission 23.52 0.00 22.21 0.00 
elective admission 46.83 0.00 48.05 0.00 
patient socio-demographic characteristics (percent)  
male 71.04 69.03 70.95 69.25 
black 4.33 6.33 3.56 5.04 
Hispanic 2.18 1.98 1.88 1.48 
other race 6.12 6.10 5.96 5.02 
patient age (years) 67.1 66.5 67.2 66.7 
private insurance 34.22 33.62 33.80 33.78 
Medicaid 5.53 7.79 5.11 7.13 
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Medicare 58.17 55.93 58.68 56.10 
uninsured 2.09 2.66 2.41 2.98 
patient clinical characteristics  
AMI* as admitting diagnosis 20.95 40.85 20.41 39.47 
comorbid conditions (count) 1.38 1.32 1.36 1.29 
congestive heart failure 11.22 14.10 10.53 13.21 
valvular disease 6.14 5.69 6.13 5.65 
pulmonary circulation disorders 1.42 1.13 1.26 1.11 
peripheral vascular disorders 5.35 4.10 5.13 3.86 
hypertension uncomplicated 35.36 28.57 35.77 29.04 
hypertension complicated 5.52 6.52 5.37 6.20 
paralysis 0.64 0.72 0.58 0.58 
other neurological disorders 0.99 1.04 1.03 1.09 
chronic pulmonary disease 11.81 11.80 12.10 12.28 
diabetes-uncomplicated 15.24 13.72 15.14 13.01 
diabetes-complicated 2.61 2.30 2.51 2.37 
hypothyroidism 2.92 2.37 2.99 2.47 
renal failure 6.42 7.28 6.51 7.24 
liver disease 0.49 0.53 0.43 0.40 
peptic ulcer disease-without bleed 0.01 0.01 0.00 0.01 
AIDS 0.04 0.06 0.05 0.08 
lymphoma 0.41 0.41 0.37 0.35 
metastatic cancer 0.17 0.17 0.15 0.16 
solid tumor 0.73 0.54 0.68 0.55 
rheumatoid arthritis 0.65 0.62 0.66 0.68 
coagulopathy 5.71 5.42 5.31 5.04 
obesity 5.27 3.68 5.42 3.76 
weight loss 1.44 1.90 1.30 1.64 
fluid and electrolyte disorders 10.10 11.81 9.54 10.70 
blood loss anemia 0.70 0.83 0.87 1.14 
deficiency anemia 3.33 3.10 3.40 3.16 
alcohol abuse 1.21 1.56 1.21 1.53 
drug abuse 0.31 0.53 0.23 0.36 
psychoses 0.56 0.81 0.48 0.72 
depression 1.16 1.04 1.17 1.06 
*Note: AMI is acute myocardial infarction. 
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Table 2. Patient Mortality 
 1 day mortality In-hospital 

mortality 
1 day mortality In-hospital 

mortality 
1 day mortality In-hospital 

mortality 
1 day mortality In-hospital 

mortality 
sample mean 0.62% 2.72% 0.89% 3.95% 0.52% 2.47% 0.71% 3.48% 
                 
days since surgeon last  0.010  0.032**  -0.001  0.038  0.033**  0.083***  0.076*  0.209***  
performed CABG (0.006)  (0.015)  (0.014)  (0.028)  (0.015)  (0.027)  (0.042)  (0.065)  
                 
days since surgeon last   0.046***  0.067***  0.111***  0.202***  0.091***  0.168***  0.224***  0.398*** 
performed any 
procedure 

 (0.014)  (0.025)  (0.039)  (0.062)  (0.024)  (0.044)  (0.070)  (0.101) 

                 
ln(surgeon's annual  -0.227 -0.214 0.207 0.148 0.130 0.239 1.179 1.214* 0.120 0.128 1.185* 1.141* 1.316* 1.386* 2.930** 2.856** 
CABG volume) (0.206) (0.210) (0.374) (0.363) (0.397) (0.398) (0.725) (0.708) (0.291) (0.289) (0.606) (0.599) (0.752) (0.757) (1.261) (1.206) 
                 
ln(hospital's annual  0.093 0.091 0.376 0.387 -0.544 -0.561 0.656 0.655 -0.100 -0.103 -0.049 -0.046 -0.953 -0.968 0.104 0.107 
CABG volume) (0.220) (0.222) (0.452) (0.453) (0.640) (0.645) (0.892) (0.896) (0.242) (0.245) (0.481) (0.487) (1.122) (1.133) (1.430) (1.432) 
                 
Observations 56315 56315 56315 56315 16702 16702 16702 16702 33106 33106 33106 33106 9853 9853 9853 9853 
Sample:                 
Surgeon volume > 11 
procedures 

x x x x             

Surgeon volume > 11 
procedures-emergent 
cases 

    x x x x         

Surgeon volume > 99 
procedures 

        x x x x     

Surgeon volume > 99 
procedures-emergent 
cases 

            x x x x 

All coefficient estimates were multiplied by 100, and are thus percentage point effects 
Standard errors clustered by surgeon in parentheses; * p < 0.10, ** p < 0.05, *** p < 0.01 
All models include surgeon and hospital fixed effects and controls for patient race, payer, and comorbidity risk (Elixhauser et al, 1999) 
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Table 3. Total Charges (natural logarithm) 

sample mean of costs $35,343 $40,166 $32,900 $37,107 
         

days since surgeon last performed CABG  -0.103***  -0.113**  -0.430***  -0.404***  
 (0.032)  (0.051)  (0.065)  (0.126)  
         

days since surgeon last performed any procedure  -0.590***  -0.819***  -1.061***  -1.396***

  (0.074)  (0.131)  (0.129)  (0.225) 
         

ln(surgeon's annual CABG volume) -4.010** -4.270** -3.934* -4.243** -5.016 -4.995 -3.182 -3.823 

 (1.760) (1.771) (2.037) (2.038) (3.299) (3.134) (3.367) (3.377) 
         

ln(hospital's annual CABG volume) 2.794* 2.833* 1.269 1.300 3.716** 3.736** 3.875 3.998 

 (1.637) (1.642) (2.294) (2.294) (1.802) (1.810) (2.920) (2.976) 
         
Patient died in hospital 34.34*** 34.40*** 33.55*** 33.79*** 36.52*** 36.67*** 37.27*** 37.64*** 
 (1.760) (1.760) (2.310) (2.304) (1.946) (1.945) (2.296) (2.341) 
         

Observations 56315 56315 16702 16702 33106 33106 9853 9853 
Sample:         
Surgeon volume > 11 procedures x x       
Surgeon volume > 11 procedures-emergent cases   x x     
Surgeon volume > 99 procedures     x x   
Surgeon volume > 99 procedures-emergent cases       x x 
All coefficient estimates were multiplied by 100, and are thus percentage effects 
Standard errors clustered by surgeon in parentheses; * p < 0.10, ** p < 0.05, *** p < 0.01 
All models include surgeon and hospital fixed effects and controls for patient race, payer, and comorbidity risk (Elixhauser et al, 1999) 
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AMI coefficient estimates were multiplied by 100, and are thus percentage effects 
Standard errors clustered by surgeon in parentheses; * p < 0.10, ** p < 0.05, *** p < 0.01 
All models include surgeon and hospital fixed effects and controls for patient race, payer, and comorbidity risk (Elixhauser et al, 1999) 

Table 4. Number of Comorbidities and Diagnosis of 	Acute Myocardial Infarction (AMI) at Admission 

  Count of comorbidities AMI as admitting diagnosis 

sample mean   1.38 1.36 21.0% 21.0% 
              

days since surgeon last performed CABG     -0.000  -0.000  0.033  0.097  

     (0.000)  (0.000)  (0.028)  (0.060)  
             

days since surgeon last performed any       -0.000  0.000  0.048  0.102 

procedure      (0.000)  (0.000)  (0.065)  (0.090)
             

Observations     56315 56315 33106 33106 56315 56315 33106 33106 
Surgeon Volume per Annum             

> 11     X X   X X   
> 99       X X   X X 
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Table 5. Cost per life-year saved 

All surgeons 
All admissions 

All surgeons 
Emergent admissions 

High-volume surgeons 
All admissions 

High-volume surgeons 
Emergent admissions 

Decrease in in-hospital mortality 
(percentage points) 

0.067 0.202 0.168 0.398 

Implied increase in life expectancy 
(years)1 0.012 0.036 0.029 0.070 

Increase in costs ($)2 222 350 371 551 

Cost per life-year saved ($)3 18,500 9,722  12,793 7,871 
1 Computed as decrease in in-hospital mortality times 17.6 years of post-CABG life expectancy divided by 100. 
2 Computed using the effect from temporal distance between any procedure and Duan’s (1983) smearing estimator to retransform the log-transformed 
estimates. 
3Computed as increase in costs divided by implied increase in life expectancy.  


