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Certainly in our own profession, the benefits of colleagues from whom we hope to learn are tangible

enough to lead us to spend a considerable fraction of our time fighting over who they shall be, and

another fraction travelling to talk with those we wish we could have as colleagues but cannot. We know

this kind of external effect is common to all the arts and sciences - the “creative professions.” All of

intellectual history is the history of such effects.

Robert Lucas (1988)

1 Introduction

Peers play a key role in activities that benefit from social interaction, including sharing ideas. This is

important because combining existing ideas to produce new knowledge is central to an influential strand

of modern growth theory (Romer, 1990; Jones, 1995; Weitzman, 1998). In other words, enhancing our

understanding of peer effects will enhance our understanding of growth. As Mokyr (2002, p. 7) notes:

“[w]hat makes knowledge a cultural entity . . . is that it is distributed to, shared with, and acquired

from others; if that acquisition becomes too difficult, . . . knowledge will not be accessible to those who

do not have it but are seeking to apply it.” The challenges of accessing knowledge and cooperating to

produce new knowledge highlight the importance of the spatial organization of human capital. However,

in a modern market economy with free movement, the ultimate location of talent is largely unplanned,

resulting from individual utility-maximizing and organizations’ recruitment decisions, raising questions

about the efficiency of the spatial allocation of labor.1

Certain peers are likely to be more influential than others in activities such as innovation. In science,

for example, the highly skewed distribution of output per individual is well documented. Almost a

century ago Lotka (1926) observed that 6% of physicists produced more than 50% of all papers. Since

then, the relative importance of scientists in the right tail of the output distribution – stars – has

endured (Rosen, 1981; Narin and Breitzman, 1995; Ernst et al., 2000). Stars are not only highly

productive themselves, but they also have a significant impact on the productivity of their peers. In

1The efficient allocation is also likely to have changed over time. One reason is that the extent and nature of collaboration is itself
evolving. In the case of science, for example, Benjamin Jones (2009) develops a “knowledge burden” theory that the depth and breadth
of knowledge required to work at the outward shifting research frontier is increasing, raising the returns to collaboration. Agrawal et al.
(2013) report data that support the knowledge burden hypothesis. Pulling in the opposite direction, however, is evidence that evolving
communications technologies reduce the distance-related costs of collaboration (Agrawal and Goldfarb, 2008; Kim et al., 2009). These
forces have the potential to alter the spatial organization of science, including the tendency (and desirability) of leading scientists to
concentrate at top departments.
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two separate studies of scientists, Azoulay et al. (2010) and Oettl (2012) both report significant star-

specific peer effects, utilizing data on unexpected star deaths as a natural experiment. However, these

studies focus on the effect of stars on their coauthors, many of whom are not co-located with the star.

We examine the effect of stars in terms of their influence on the productivity of their local envi-

ronment.2 In particular, we examine the relative importance of two channels through which stars may

influence the productivity of their local environment. First, stars may directly affect their colleagues’

productivity. This is the dominant theme of the extant peer effects literature (Sacerdote, 2001; Mas

and Moretti, 2009), much of which is focused on college students because their random assignment

into dorm rooms and other social groupings is empirically useful for addressing identification chal-

lenges. Second, stars may affect subsequent recruitment through a desire of others to be near them for

productivity, reputational, or consumption reasons. For example, Waldinger (2013) reports evidence

of long-lasting effects on the quality of recruits of star dismissals in Nazi Germany and Roach and

Sauermann (2010) report a strong preference of scientists to work with higher quality scientists.

Thus, building on the prior literature that asked if stars matter, we examine why stars matter.

We focus on two distinct channels: 1) star effects on the future productivity of incumbent peers,

and 2) star effects the quality of subsequent recruits (in terms of their historical productivity). The

distinction has important implications. For example, if the primary benefit of hiring a star occurs

through enhancing the quality of subsequent recruits, then organizations with greater resources for

further growth through additional hiring will enjoy higher returns from recruiting a star than will

otherwise similar organizations. This is not the case if the benefits are instead primarily due to

enhancing incumbent productivity.

We develop a model of how the hiring of a star affects incumbent productivity and the quality

of subsequent recruitment in order to generate testable hypotheses. Then, we use a rich longitudi-

nal dataset on incumbent and new recruit (“joiner”) productivity in a contemporary field of science,

evolutionary biology, to identify the causal impact of hiring a star on department-level productivity.

We choose this empirical setting because the benefits of knowledge sharing in this industry (scientific

2Other star-related studies focus on different benefits, such as Zucker et al. (1998), who identify the location of star scientists as a
key determinant of the timing and location of the birth of biotechnology firms. Other knowledge flow studies that emphasize spatial
relationships concern the effect of co-location on the direction of research as reflected in citation patterns as opposed to productivity
(Jaffe et al., 1993; Agrawal et al., 2006; Singh and Agrawal, 2011; Catalini, 2013).
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research) are well documented (Mokyr, 2002; Jones, 2009; Kim et al., 2009; Azoulay et al., 2010) and

the subfield of biology is well defined by a particular set of journals as we describe below. We base our

productivity estimates on a sample of 255 evolutionary biology departments that published 149,947 ar-

ticles over the 29-year period 1980 to 2008. We employ a difference-in-differences estimation approach,

comparing the productivity of “treated” to “control” departments before versus after the arrival of a

star, to estimate the impact of a star hire on department productivity, where treatment refers to the

recruitment of a star.

Unlike several of the main empirical studies in the peer effects literature, we do not employ random

assignment in our methodological approach and thus must take several additional steps to address

identification concerns. It is possible, for example, that stars are attracted to moving to departments

that are on the rise (reverse causality), rather than stars arriving at a department and causing the rise in

productivity. In addition, it is possible that an omitted variable, such as a positive shock to department

resources (e.g., philanthropic gifts, sharp increases in government funding, the construction of a new

building), causes the department to both hire a star and increase its overall productivity in terms

of both incumbent productivity and the quality of subsequent recruits. Our difference-in-differences

estimation method partially addresses these concerns by controlling for general productivity trends

(time fixed effects) and department-specific attributes (department fixed effects). However, a concern

remains that time-specific department-level shocks could lead to a misidentification of causal effects.

To complement our initial empirical approach, we take three additional steps that, while not fully

ruling out alternative explanations, give us further confidence that the relationship between the arrival

of a star and department productivity is indeed causal. First, we employ a spline regression analysis

and find: 1) the main effect persists over time (throughout the eight years examined after the arrival

of the star) and 2) no evidence of a pre-trend in increasing productivity prior to the arrival of the star.

These results help to rule out the alternate explanation (reverse causality) that stars in our sample move

to departments because those departments are on the rise. Second, we add controls for department-

and university-level shocks that may influence both the hiring of a star and non-star-related output

by controlling for changes in the size, quality, and presence of a star in another subfield within biology

(developmental biology, which is distinct from our focal subfield of evolutionary biology) as well as two
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additional unrelated departments at the focal university: mathematics and psychology. These results

help to rule out the alternate explanation (omitted variable bias) that university- or even department-

level shocks that may be correlated with both the recruiting of a star as well as the productivity of

incumbents and quality of joiners are driving our result. Third, we employ an instrumental variable

analysis based on a count of the number of stars at other institutions who are at risk of moving to the

focal institution in any given year, which is a function of the star’s career age and work history (based

on prior interactions with researchers from the focal university’s region). This instrument is correlated

with the probability of department i hiring a star in year t but is not correlated with department-

level output. Our main results are robust to each of these extensions. While none of these individual

tests are fully conclusive with respect to identification, together they provide further evidence that is

consistent with our causal interpretation and inconsistent with alternative explanations.

We find evidence of a large overall star effect. On average, department-level output increases by

54% after the arrival of a star. A significant fraction of the star effect is indirect: after removing the

direct contribution of the star, department level output still increases by 48%. In terms of department-

level productivity, which we estimate by controlling for department size, we observe a 26% increase

after excluding the star’s contribution. This implies that much of the observed indirect output gains

are due to increasing department quality, not just size. The effect does not seem to diminish even by

the end of our sample period, eight years after the arrival of a star.

We next turn our attention to composition and distinguish between incumbent scientists who are in

the department prior to the star and new recruits (“joiners”) who join the department after the star’s

arrival. We further decompose the samples of incumbents and joiners into those who conduct research

related to the star versus those who do not. We find that related incumbents increase their productivity

after the arrival of the star by 49%, whereas the effect on unrelated incumbents is negative, perhaps

due to resource shifting (negative point estimate, but statistically insignificant at standard levels).

The overall star effect on incumbent productivity (related and unrelated combined) is neutral. Thus,

by disaggregating departments and distinguishing between co-located peers who are related versus

unrelated to the star in terms of their position in idea space, we offer a first step towards reconciling

the seemingly contradictory findings described above, reporting evidence that is on the one hand
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consistent with Waldinger (2012) (that is, no aggregate productivity effect on incumbents from hiring

a star) and on the other hand consistent with others (Azoulay et al., 2010; Oettl, 2012) (that is,

significant productivity effects on some) .

We then examine the impact of hiring a star on the quality of joiners. Since by definition joiners

are not present in the department in the pre-star period, we shift our analytical approach to examining

the quality of joiners (measured by the citation-weighted stock of their publications) who join the

department in the years before versus after the arrival of the star. Overall, the quality of joiners jumps

significantly (68%) after the arrival of a star. When we split the sample into related and unrelated

joiners, the estimated increase in the quality of related joiners is a striking 434%. Interestingly, the

quality of unrelated joiners also increases by 48%. Thus, although stars do not seem to generate

production benefits (spillovers) for unrelated incumbents, they do appear to provide recruiting benefits

for unrelated scientists that lead to attracting higher-quality joiners.

We also examine the extent to which the star effect on department-level productivity is correlated

with department rank. We assume that a star’s share of their department’s knowledge stock is greater

at lower-ranked institutions and thus we expect the direct proportional productivity effect of hiring a

star to be larger at lower-ranked institutions. Indeed, we find the star effect is significantly greater at

lower-ranked institutions.

Finally, we explore the role of star engagement. Some stars engage with their new colleagues

significantly more than others through collaborative relationships. Does engagement level influence

the impact stars have on their department’s productivity, or is their presence alone enough? We find

that engagement through collaboration explains most of the increase in incumbent productivity but

only a much smaller fraction of the increase in quality of new recruits.

The paper proceeds as follows. We briefly sketch our theoretical framework in Section 2 and develop

it fully in Appendix A. We describe our data in Section 3 and our empirical strategy in Section 4. We

report and interpret our basic difference-in-differences results in Section 5. In Section 6, we provide

further evidence for a causal interpretation. We conclude with a discussion of the implications of our

findings in Section 7.
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2 Theoretical Framework

To generate testable hypotheses, we develop a model of how the hiring of a star affects incum-

bent productivity and the quality of subsequent recruitment (formalized in Appendix A). We assume

Romer-style knowledge-production functions, where incumbent productivity depends on local knowl-

edge stocks. The impact of these stocks is allowed to differ depending on whether the knowledge is

related or unrelated to the research of an incumbent scientist.

Hiring a star has direct positive impacts on incumbent productivity, and we assume these effects are

larger for related incumbents. The proportional direct impact is also larger for lower-ranked institutions

since the star’s knowledge stock is a larger proportion of the total local stock. Critically, however, the

star’s impact on incumbent productivity is also conditioned on the impact of the star hire on subsequent

recruitment. We introduce the idea of a recruitment function to capture this recruitment channel. For

a given research area, this function shows how the quality of the applicant pool depends on existing

local knowledge stocks, as well as on the speed with which the quality of the marginal hire declines

with the number of hires in a particular research area.

We show that the average quality of subsequent joiners in both related and unrelated areas rises as

a result of hiring a star. However, the star hire also shifts the optimal composition of hiring towards

scientists working in areas related to the star. Overall, it is possible for the productivity of unrelated

incumbents to decline relative to a no-star-hire baseline, notwithstanding a direct positive impact on

their productivity.

The model suggests a number of testable hypotheses. A star hire will: 1) increase the productivity of

related incumbents; 2) increase or decrease the productivity of unrelated incumbents, depending on the

balance of the direct effect of the star’s knowledge stock and the indirect effect through the composition

of subsequent hiring; 3) increase the quality of both related and unrelated joiners; and 4) have larger

proportional effects on incumbent productivity and joiner quality in lower-ranked institutions.
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3 Empirical Setting and Data

Our study focuses on the field of evolutionary biology, a sub-field of biology concerned with the processes

that generate diversity of life on earth (e.g., the origin of species). Research in evolutionary biology

consists of both theoretical and experimental contributions. While experimental evolutionary biology

can be capital intensive due to the costs of running experiments in a lab, productivity within the

discipline is not predicated on access to very specific facilities, as is the case in experimental particle

physics and empirical astronomy. Evolutionary biology’s mix of theoretical and experimental research

activities makes it a good test subject for an initial exploration of the star effect on department growth.

3.1 Defining Evolutionary Biology

We use bibliometric data from the ISI Web of Science to calculate output at the department level

and to identify the locations of evolutionary biologists. A critical first step is to define the field of

evolutionary biology. We impute department membership using the following approach.

First, we collect data on all articles published in the four main society journals of evolutionary

biology: Evolution, Systematic Biology, Molecular Biology and Evolution, and Journal of Evolutionary

Biology. These are the primary journals of the Society for the Study of Evolution, Society for Systematic

Biology, Society for Molecular Biology and Evolution, and European Society of Evolutionary Biology,

respectively. We focus on these four society journals since every article published in each of these

journals concerns evolutionary biology and is relevant to evolutionary biologists. This yields 15,256

articles.

Next, we collect all 149,947 articles that are referenced at least once by these 15,526 society journal

articles. We call this set the corpus of influence since all of these referenced articles have had some

impact on an evolutionary biology article. These 149,946 will serve as the basis of evolutionary biology

knowledge for the purposes of our study.

Finally, we weight this corpus of influence by how many times each article has been cited by an

article published in the set of 15,256 evolutionary biology society journal articles within five years of

publication. There are 501,952 references from the 15,256 society journal articles to the 149,946 corpus

of influence articles. We use the 501,952 references to construct our citation-weighted publication
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measure.

The key benefit of this approach, as opposed to simply using the ISI Journal Citation reports field

definitions, is that it allows us to include general journals that evolutionary biologists are likely to

publish in, such as Science, Nature, and Cell (among others).

3.2 Identifying Authors

We next attempt to attribute the 149,946 articles in the corpus of influence to individual authors. One

problem with the ISI Web of Science data is that until recently it listed only the first initial, a middle

initial (if present), and the last name for each author. Since our empirical objective is to trace the

movement of evolutionary biologists across departments, it is first necessary to disambiguate authors

(that is, to distinguish J Smith from JA Smith). We rely on heuristics developed by Tang and Walsh

(2010) to disambiguate between authors who share the same name. The heuristic considers backward

citations of two focal papers. If two papers reference similar papers (weighted by how many times the

paper has been cited, i.e., how obscure or popular it is), then the likelihood of the papers belonging to

the same author increases, and we link the two papers to the same author. We repeat this process for

all papers with authors who have the same first initial and last name. We exclude scientists who do

not have more than two publications linked to their name.

3.3 Identifying Scientist Locations

Using the generated unique author identifiers for each evolutionary biology paper, we next attribute

each scientist to a particular institution for every year they are active. A scientist is active from the year

they publish their first paper to the year they publish their last paper. Here again, we must overcome

a data deficiency inherent within the ISI Web of Science data. Until recently, the Web of Science

did not link institutions listed on an article to the authors. Instead, we impute author location using

reprint information that provides a one-to-one mapping between the reprint author and the scientist’s

affiliation. In addition, we take advantage of the fact that almost 57% of evolutionary biology papers

are produced with only a single institution listing. We thus are able to directly attribute the location

of all authors on these papers to the focal institution.
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We note that this method of location attribution is more effective within evolutionary biology than

many other science disciplines since article production within evolutionary biology is not characterized

by large teams (2.55 average authors per paper).

3.4 Unit of Analysis

Our unit of analysis is the department-year. We include all evolutionary biology departments that had

at least one scientist present in 1980 and at least one scientist present in 2008. This criterion ensures

that we are not simply counting new entrants or other idiosyncratic details of the data. Furthermore,

this ensures that for any given department-year, a department is at risk of hiring a star scientist. Two-

hundred-fifty-five departments fit this criterion. As such, we have 7,395 department-year observations.

3.5 Dependent Variables

We use three key dependent variables: 1) Outputit: the sum of the citation-weighted papers published

by scientists present at department i in year t; 2) IncumbentOutputit: the sum of the citation-weighted

papers published by scientists present the year prior to the star’s arrival at department i in year t;

and 3) JoinerQualityit: the mean citation-weighted stock of papers published up until year t − 1 of

all scientists who join department i in year t.

We only use citations from articles published in the four evolutionary biology society journals that

are made within five years of the focal paper’s publication. In the majority of our specifications, we

also exclude the publications of the arriving star.

3.6 Independent Variables

Our key independent variable is Starit−1, which equals 1 if the year is greater than or equal to the year

a star scientist (above the 90th percentile of citation-weighted stock of papers published up until year

t− 1) joins department i and 0 otherwise. To ensure we observe adequate pre-treatment observations,

we only examine the arrival of stars starting in 1985. Furthermore, we only examine the impact of the

first arrival of a star. We provide a histogram of the variation in year of first star arrival in Figure

1. As the figure illustrates, the timing of first star arrival varies significantly across institutions, with
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approximately two thirds of the universities that recruit a star doing so during the first ten years

(1985-1995) and the remainder doing so in the second ten years (1995-2005).

3.7 Descriptive Statistics

We provide summary statistics of our dataset in Table 1. The average department in our sample

produces just over 80 citation-weighted publications per year. When we exclude the contributions of

the star, this number is reduced to just under 77 citation-weighted publications per year. While it

initially may appear that the star is not contributing much to the department, we should note that

this is the mean across all department-years and as such includes departments that never receive a

star as well as the output of departments prior to the arrival of a star. On average, just under 22

scientists are active in each department in a given year, and incumbent scientists produce fewer than

18 citation-weighted publications a year.

4 Empirical Strategy

We examine the relationship between the arrival of a star scientist and the subsequent output of the

department. The main empirical model we estimate is:

E[Yit] = exp(αStarit−1 + β lnScientistsit + δt + µi + εit), (1)

where Yit is one of our three dependent variables. As previously mentioned, we remove the arriving

star’s contributions to Yit in most specifications.

Of the 255 departments, 178 receive a star. The departments that do not receive a star act as con-

trol departments, allowing us to perform a difference-in-differences type estimation. The traditional

post-treatment and treated cross-sectional unit coefficients are subsumed by the time dummies (δt) and

department fixed effects (µi), respectively.3 Since the dependent variable is a count variable, we esti-

mate our key specification using poisson quasi maximum-likelihood methods and adopt “Wooldridge”

3All identification of α arises from the staggered arrival of stars at the 178 departments (Figure 1) that receive a star due to the
inclusion of time and department fixed effects. As such, while the control departments do not directly contribute to the estimation
of α, they do aid in identifying β and δ, which may be correlated with α and thus influence the precision by which α is estimated.
Estimating Equation 1 with only treated departments yields results that are both economically and statistically similar.
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robust standard errors clustered at the department-level, which allows for arbitrary serial correlation

(Wooldridge, 1999).

We also estimate our main specification with a full set of leading and lagging indicators of the star

arrival variable in the following form:

E[Yit] = exp(α−10Starit−10 + α−9Starit−9 + ...+ α−2Starit−2

+ α0Starit + ...+ α8Starit+8 + β lnScientistsit + δt + µi).

(2)

The leading indicators help discern the extent to which reverse-causality influences our coefficients,

that is, whether changes in department output influence the likelihood of recruiting a star. The

leading indicators also help to identify if there is an issue of omitted changes in department resources

that precedes the recruitment of a star. Finally, the lagged indicators allow us to explore temporal

dynamics, in particular the duration of the star effect.

5 Difference-in-Differences Results

5.1 Department Output Increases after the Arrival of a Star

We begin by examining the relationship between the arrival of a star and the productivity of the

department. The estimated coefficient on Star (Table 2, Column 1) implies that after a star arrives,

department-level output increases by 53.7%, on average, per year (e0.430 − 1 = 0.537). This is not

surprising since the department now has a star who, by definition, is prolific. However, even after we

remove the star’s contribution, we still find a department-level increase in output of 48% per year on

average (Column 2).

Recognizing that recruiting a star may coincide with an overall expansion of the department, we

add a control for the number of scientists present in the department in the focal year. The estimated

coefficient on Star indicates that a department’s productivity (output per scientist) increases by 26%,

on average, after the arrival of a star, still excluding the star’s contribution to department output (Col-

umn 3). This estimate is both economically and statistically significant (1% level). Furthermore, this
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26% increase corresponds to an approximate increase of just under eight citation-weighted publications.

We present the results from Columns 2 and 3 in graphical form in Figure 2 by estimating Equation

2. Department-level output remains reasonably constant in the years leading up to recruiting the star.

Specifically, output in years t−10 to t−2 is statistically indistinguishable from output in the year prior

to the star’s arrival (t−1), the omitted category. The bars correspond to 95% confidence intervals.

Output increases sharply the year of the star’s arrival relative to t−1. Thus, we find no evidence of

a pre-trend. In other words, stars do not appear to be moving in order to join departments “on the

rise.” Furthermore, when we remove the output of the star in Panel (b), we only observe an increase

in post-arrival output two years after the star’s arrival. This delay may be driven by new recruits who

may be more likely to join due to the presence of the star. Moreover, the increase in output relative

to t−1 persists for the full period for which we have data (up to t+8).

We next distinguish between incumbent scientists, who are in the department before the star arrives,

and subsequent recruits (“joiners”). We begin by focusing on incumbents. Specifically, we drop joiners

from the sample and estimate the prior equation based solely on incumbent data, controlling for the

number of incumbents (as defined by their presence the year prior to the star’s arrival) present in year

t. The arrival of a star does not seem to have an economically or statistically significant relationship

with incumbent output (Column 4). Since we define incumbents as scientists present the year prior

to a star’s arrival, we are only able to examine changes to incumbent output for departments that are

“treated” by recruiting a star. We graphically present this non-relationship in Figure 3. As can be

seen, there is no observable change in incumbent output either prior to the star’s arrival or after.

5.2 Star Effect on Joiner Quality

We turn next to examining joiners. We are not able to estimate joiner output the way we do for

incumbents since by construction joiners have no output at the focal department prior to their arrival.

Therefore, it is impossible to estimate a change in joiner productivity between the periods pre- and

post-arrival of the star using our prior approach. However, we are able to observe variation in the

quality of joiners before versus after the arrival of a star. To do this, we calculate the mean annual

citation-weighted stock of papers published during the period prior to year t for each scientist joining
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department i in year t. Significant variation exists in the quality of joining cohorts (mean = 37, standard

dev. = 78, min. = 1, max = 2348, Table 1). Thus, we estimate the relationship between joiner quality

(dependent variable) and the presence of a star (Table 3). As before, we use the department as the

unit of analysis and employ both department and year fixed effects. The estimated coefficient on star

indicates that after the arrival of a star, the mean quality of joining scientists increases by more than

70% (Column 1). We once again observe no pre-trends in this specification when presented graphically

(Figure 4). It is interesting to note that the increase in joiner quality commences one year after the

star’s arrival, suggesting that the arrival of the star triggers an increase in subsequent recruits.

Next, we examine whether this boost in joiner quality applies across all levels of recruits (rookie,

mid-career, senior). A number of studies document variation in productivity of scientists over their

professional lifecycle (Lillard and Weiss, 1978; Levin and Stephan, 1991; Jones, 2010). Furthermore,

Weinberg (2006) reports evidence that the extent to which a researcher is influenced by their co-located

peers varies with age. To explore this issue in our setting in terms of how star impact on the quality

of joiners varies with joiner vintage, we split the sample according to career age: 1) early-career (up

to 10 years of publishing experience), 2) mid-career (10-20 years), and 3) late-career (more than 20

years). We report results in Columns 2, 3, and 4. The largest increase in quality appears to come

from mid-career joiners, although the point estimates are not statistically distinguishable from those

of early- and late-career.

5.3 Star Effect on Related Scientists

We further dissect our main result by examining the difference between scientists who are working on

topics related to the star versus those who are not. We classify a scientist as related if they cite at

least one of the star’s papers in any year prior to t0−1 and unrelated otherwise. We split the sample

accordingly. On average, 9% of incumbents and an equal fraction of joiners (9%) are related to the

star. We find that the portion of the department that does research in areas related to that of the star

experiences a significantly greater increase in output than the unrelated portion (Table 4, Column 1

versus 3). In fact, after the arrival of a star, the output of related scientists increases by more than

126% compared to 11% for unrelated but where only the point estimate on the related scientists is
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statistically significant. In Figure 5 we plot the estimated coefficients from Equation 2. Once again,

we observe no pre-trends.

In contrast to our earlier “no effect” result on incumbents, we find that incumbents who are related

increase their productivity by 49% on average (Column 2). This result is hidden in the aggregate

result reported earlier concerning incumbents since related incumbents represent a small fraction of

overall incumbents (9%). Furthermore, the arrival of a star may adversely affect the level of resources

allocated to unrelated incumbents, shifting resources from unrelated to related areas (e.g., future

hires, department funds), which may result in a decrease in their productivity. The negative, albeit

insignificant at conventional levels, point estimate may reflect that (Column 4). The negative effect on

unrelated incumbents counteracts the positive effect on related incumbents such that, in the aggregate,

the overall effect on incumbents is neutral, as reported above (Table 2, Column 4) and consistent

with the aggregate findings reported in Waldinger (2012). Figure 6 presents these results graphically.

Neither panel displays any form of pre-trends. In addition, only Panel (a), examining related incumbent

output, reveals an increase in output after the star’s arrival. This increase is only temporary, with the

largest increase occurring four years after the star’s arrival.

5.4 Star Effect on Related Joiners

We combine our analyses on joiner quality and relatedness in the analysis we report in Table 5. We

classify joiners as related or unrelated following the procedure described above. We split the sample

according to relatedness and, following the procedure described in Section 5.2 above, we estimate the

relationship between joiner quality and the presence of a star. Although the quality of both types

of joiners increases after the arrival of the star, the increase is much greater for joiners who work in

related areas of research: 434% compared to 48% (Columns 1 and 2, respectively). The differences are

less stark when we calculate the effect size on joiner quality. The arrival of a star corresponds to an

increase in related and unrelated joiner quality (stock) by 9.6 and eight citation-weighted publications,

respectively. Still, it is interesting to note that the quality of unrelated joiners increases after the arrival

of a star, in contrast to the productivity of unrelated incumbents, which does not increase.
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5.5 Department Rank

Next, we examine the extent to which the star effect on department-level productivity is influenced by

the rank of the institution. In Table 6, we report the point estimates of Starit−1 for regressions using

our three main dependent variables (Output w/o Star, Incumbent Output, and Joiner Quality) split by

institutions in the Top 25 at the time of the star’s arrival versus not-Top 25. The rank splits reveal

large heterogeneity in effects across institution types. Top departments experience less of a gain after

the arrival of their first star compared to institutions outside of the Top 25. These results are robust

to different cutoffs for top institutions (e.g., Top 10, Top 50).

5.6 Collaboration

To explore the possible channels through which the recruited stars affect new departments, we ex-

amine the extent to which star engagement with their new colleagues is associated with the observed

department-level productivity gains. We employ co-production of new knowledge (i.e., coauthorship)

as a proxy measure for star engagement and report the results in Table 7. First, we focus on the

sample that includes all scientists (Columns 1-3). The variable Collaborations w/Star is a count of

the number of collaborations between the star and a colleague in the same department. An additional

collaboration with the star is associated with a 1.6% increase in overall department-level productivity

but is statistically insignificant. The effect is twice as large when we focus only on related peers (3.4%).

Star engagement is not correlated with the productivity of unrelated peers.

Although star collaboration accounts for some of the variation in department-level productivity

(as compared to the point estimates in Table 2, Column 3 and Table 4, Column 1), it does not fully

account for the increase in productivity after the star’s arrival. While co-production between stars

and their department peers is important, it does not fully explain the productivity increase post-star

arrival. That said, collaboration is only one channel through which stars may engage with their peers.

However, star collaboration does seem to account for all of the productivity boost for incumbents

(Columns 4-6). As with the results we report in Columns 1 through 3, more star collaboration is

associated with a greater increase in incumbent productivity, but in contrast to Columns 1 through 3,

in Columns 4 through 6 the inclusion of the collaboration variable causes the main effect of the star’s
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arrival to disappear. This stands in stark contrast to the large and statistically significant effect from

the arrival of a star on related incumbent productivity that we report in Table 4, Column 2.

5.7 Robustness Checks

We present additional robustness to our main analysis in Appendix B. First, we examine the effect of

star departures in addition to star arrivals and find that the departure of a star has a negative effect

on output (total output and incumbent-only output). The relationship between a star’s departure and

joiner quality is statistically insignificant, highlighting the possible path-dependency of joiner quality

once a star arrives. In addition, the positive relationship between star arrival, total output, and joiner

quality remains, alleviating concerns that our results are inflated due to the departure of scientists at

other institutions. Second, we further refine our star arrival variable by only considering the arrival of

scientists who are members of the National Academies of Sciences (an even more illustrious sample).

We observe that the arrival of a National Academies scientist at a non-Top 25 institution has a positive

effect on total output, no effect on incumbent output, and a positive impact on joiner quality. Third, we

explore what happens when an incumbent star scientist becomes a member of the National Academies

of Science; we observe no statistically significant relationship between the appointment of a scientist

to the National Academies of Science and our three main outcome measures.

6 Is the Estimated Star Effect Causal?

The previous section documents an economically and statistically significant star effect on department

productivity (excluding the output of the star), related incumbent productivity, and post-star joiner

quality. However, suspicion remains that these effects might not reflect the causal impact of the star.

Star recruitment might just be a manifestation of a broader strategy to improve department size and

quality (omitted variable bias). Moreover, the successful recruitment of the star might itself be the

result of independently improving department performance (reverse causality bias). We adopt a three-

strand approach to further support a causal interpretation of the Section 5 results.

First, we rely on the spline regressions and associated graphics presented in Section 5 to examine pre-

trends in productivity and joiner quality. These figures allow us to examine whether the improvement
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in performance pre-dates the arrival of the star. The strong absence of any pre-trends helps rule out a

broader department-improvement strategy or reverse causality from performance to star recruitment.

Second, we add controls for department- and university-level resource shocks that might influence both

the hiring of a star and output. The controls help to mitigate concerns about resource shocks that are

contemporaneous with the arrival of the star and thus not discernible in the pre-trends identified from

the spline regressions. We add controls for changes in the size, quality, and presence of a star in another

subfield within biology (developmental biology, which is distinct from our focal subfield of evolutionary

biology) as well as two additional unrelated departments at the focal university: mathematics and

psychology. Third, we introduce an instrument for star recruitment based on a time-varying measure

of move risk for stars in evolutionary biology who have a well-defined pre-existing connection with the

focal department.

6.1 Additional Department and University Controls

In Table 7, we control for department- and university-level shocks that may influence both the hiring

of a star and department-level output. We do this by controlling for the presence of a star and

the department size at the focal institution’s developmental biology, mathematics, and psychology

departments. We construct our developmental biology sample in a similar fashion to the one outlined in

Section 3.1 by drawing upon all articles cited at least once in the following main developmental biology

journals: Development, Developmental Biology, Developmental Cell, and Genes & Development. We

construct our mathematics and psychology departments by drawing upon all articles published in

journals classified as “Mathematics” or “Psychology” in the ISI Journal Citation Reports. Controlling

for these effects only slightly diminishes the magnitude of the reported effects.

6.2 An Instrument for Star Recruitment

The splines and controls help to rule out strategies to improve evolutionary biology department per-

formance and strategies that coincide with the recruitment of the star that are also present in other

biology disciplines and the wider university. However, the recruitment of the star might still be coin-

cident with a new strategy of department improvement that is specific to evolutionary biology. This
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suggests the use of an instrument for star recruitment that is plausibly uncorrelated with any change

in departmental strategy.

A potential instrument for the successful recruitment of a star must incorporate both the movability

of stars in year t (due to exogenous reasons) and the likelihood of moving to department i (due to

pre-determined reasons). We incorporate these two components by interacting the set of star scientists

who are in the prime moving window in year t (time-varying) with the set of star scientists who have a

pre-determined link to institution i (time-invariant). We construct a variable TotalStarMoversit that

cumulates the count of star scientists who form coauthoring relationships with scientists at department

i in the first five years of the star’s career (and is thus time-invariant) and who in year t have a career

age between six and nine.4 Appendix C presents evidence that these two assumptions have predictive

power. This variable satisfies the exclusion restriction since the quality of coauthors at department i

are controlled for with the department fixed effects included in all specifications and we have seen from

the splines presented in Figures 2-6 that there are no productivity pre-trends.5 Lastly, this variable is

cumulative since our endogenous variable is a dummy that stays “on” once treatment has occurred.

Our instrument, MoveRisk, is a dummy set to 1 if the variable TotalStarMoversit is above the

median value across all years and institutions and 0 otherwise.6

Table 9 presents the two-stage least squares (2SLS) estimates instrumenting the arrival of a 90th

percentile star with MoveRisk. Column 1 presents the results of the first-stage regression regressing

Start−1 on the instrument MoveRiskt−1. The excluded instrument is both economically and statisti-

cally meaningful: when there are more than four scientists (above the median number of risk) at risk

of moving to institution i in year t, institution i is 20% more likely to hire a star. As can be seen in the

remainder of the specifications (Columns 2-5), the point estimates are qualitatively similar to those

generated in earlier tables.7 The point estimates are larger, but the differences are not statistically

significant.

4We only examine collaborations made in the first five years of the star scientist’s career to avoid overlap in the timing of the
formation of coauthoring relationships and the career age of greatest mobility. Results are robust to using alternate career age windows
(e.g., 5-10 years and 7-8 years).

5The lack of pre-trends helps rule out the concern that scientists in the first five years of their career are strategically coauthoring
with scientists at departments on the rise.

6The median number of stars at risk of moving is four. Results are also robust to using lnTotalStarMoversit as an instrument.
7We log transform the dependent variables ln(x + 1) to allow for easier comparison with the log-linear poisson model we present

throughout.
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Table 10 presents instrumental variables (IV) results for our analysis of department-level output,

incumbent output, and joiner quality by the scientist’s topic-relatedness to the star. Once again, the

IV results reaffirm the poisson results previously presented: the arrival of a star positively increases a

department’s output, incumbents’ output, and joiner quality for scientists who work in related areas, is

unrelated to aggregate department output and incumbent output of those working in unrelated areas,

but still increases joiner quality for scientists working in unrelated topic areas.

7 Discussion and Conclusion

We explore how the hiring of a star affects incumbent productivity and the quality of subsequent

recruitment. We find that the effects of star location are economically significant but subtle. To

illuminate the causal channels, we apply a simple model that allows for both differentiated knowledge

and recruitment spillovers. We base differentiation on the relatedness of work of the star to incumbents

and potential joiners. The model’s prediction that related incumbents should benefit from a star hire

is strongly supported in the data, with the effect being strongest where there is evidence of actual

collaboration by the star with incumbents. For unrelated incumbents, the model shows how a star

hire can actually harm incumbent productivity through hiring composition effects, despite positive

direct knowledge spillovers. Empirically, we find evidence of modest negative adverse impacts, which

also explains the failure to find evidence of productivity effects for incumbents in the aggregate. The

model’s prediction that a star will improve the quality of both related and unrelated joiners also finds

strong support in the data. Finally, we additionally uncover evidence to support the model’s prediction

of larger proportional productivity and recruitment effects in lower-ranked institutions.

The main empirical challenge is to demonstrate that the observed star-related associations are at

least in part causal. We adopt a three-part approach to support a causal interpretation: an examination

of pre-trends (to rule out a pre-existing department-improvement trend), controls for university- and

department-level shocks (e.g., surge in resources), and use of an instrument that is correlated with star

recruitment but plausibly uncorrelated with broader department improvement strategies. While none

of these approaches provides perfectly clean identification on its own, together they give evidence that

is consistent with a casual explanation of the observed star effects and inconsistent with the plausible
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alternative explanations.

Reflecting on these results, we decompose the overall indirect star effect (26%) to determine the

relative importance of production versus recruiting externalities. Overall, based on rough calculations

that extrapolate from mean productivity changes in response to a star’s arrival, we estimate that

roughly 9% of this effect is due to a boost in related incumbent productivity, 0% is due to a boost

in unrelated incumbent productivity, 38% is due to a quality increase in related joiners, and 53% is

due to a quality increase in unrelated joiners.8 The impact from unrelated joiners is high relative to

related joiners, despite a significantly greater quality increase in related joiners, due to a larger average

number of unrelated joiners.

What are possible normative implications of our findings on why stars matter? In general, our

findings on the impact of stars on colleague productivity and the dynamics of recruitment suggest that

the location decisions of stars are important for the spatial organization of industrial activity. However,

the evidence that highly productive individuals are drawn to one another for reputational as well as

productivity reasons raises a concern that there may be excessive positive sorting of talent from an

efficiency perspective at top-ranked organizations.

Such sorting might lead to missed opportunities for the development of strong clusters of related

human capital to form around a star at less highly-ranked organizations. On the other hand, under

certain conditions particular institutions should have a strong incentive to pursue star-focused strategies

to ascend the rankings. Our findings suggest that star-recruitment strategies may be most effective

where a cadre of related incumbents is already present and the organization has a flow of new hiring slots

sufficient to take advantage of the improved quality of potential new recruits. Our findings thus have

possible lessons for public/private funding and endowment strategies for seeding dynamic innovation

clusters.

8These calculations are crude. The mean output value prior to a star’s arrival for departments that receive a star is 31 citation-
weighted publications. A 26% increase corresponds to an increase of eight citation-weighted publications after the first star’s arrival.
We disaggregate this increase into the fractions from related versus unrelated peers. While the output of related scientists increases
by 126% (exp(.815)-1), the mean is only three citation-weighted publications, corresponding to an increase in 3.7 citation-weighted
publications, or 47% of the total eight citation-weighted publications, so we can attribute the remaining 53% to unrelated scientists.
Since the output of unrelated incumbents does not increase after the star’s arrival, unrelated joiners account for 47% of the total
increase. Related incumbents, however, experience a 49% increase in output after the star’s arrival from a baseline of 1.5 citation-
weighted publications prior to the star’s arrival or 0.7 citation-weighted publications. Thus, if 0.7 citation-weighted publications (9%
of eight) can be attributed to related incumbents, then the remaining three (38% of eight) citation-weighted publications of the total
3.7 related scientist increase can be attributed to joiners.
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Although a university department is a rather special local knowledge economy, our findings on the

relative importance of knowledge- and recruitment-related externalities are also suggestive of a broader

role of “stars” – scientists, CEOs, entrepreneurs, and the like – in the dynamics of local agglomeration

and growth. We plan to extend our analysis of why stars matter to include these broader effects in

future research.
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Figure 1: Number of Departments that Recruit their First Star (by year)
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Note: The above histogram displays the year in which departments recruit their first star.
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Figure 3: Department Output – Incumbents Only
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Notes: This figure plots point estimates for leading and lagging indicators for the arrival of a department’s first star. The figure plots the point
estimates of the following specification:
E[Yit] = exp(α−10 Starit−10 + α−9 Starit−9 + . . .+ α−2Starit−2 + α0Starit + . . .+ α8Starit+8 + βIncumbentsit + δt + µi). E[Yit] is the
incumbent output of department i in year t. Starit−10 is set to 1 for years up to and including 10 years prior to the arrival of the star and 0
otherwise. Starit+8 is set to 1 for all years eight years after the arrival of the star and 0 otherwise. Incumbentsit controls for the number of
incumbents present in year t at department i. We define incumbents as scientists who are present in department i the year prior to the star’s
arrival. The omitted category is one year prior to the star’s arrival. The vertical bars correspond to 95% confidence intervals with
department-clustered standard errors.

26



Figure 4: Joiner Quality
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Notes: This figure plots point estimates for leading and lagging indicators for the arrival of a department’s first star. The figure plots the point
estimates of the following specification: E[Yit] = exp(α−10 Starit−10 +α−9 Starit−9 + . . .+α−2Starit−2 +α0Starit + . . .+α8Starit+8 + δt +µi).
E[Yit] is the mean quality of scientists who join department i in year t. Starit−10 is set to 1 for years up to and including 10 years prior to the
arrival of the star and 0 otherwise. Starit+8 is set to 1 for all years eight years after the arrival of the star and 0 otherwise. The omitted category
is one year prior to the star’s arrival. The vertical bars correspond to 95% confidence intervals with department-clustered standard errors.
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Table 1: Summary Statistics; N = 7,395

Variables Mean Median Std. Dev. Min. Max.

Output 80.90 26 155.32 0 2500

Output w/o Star 76.75 24 151.60 0 2498

Scientists 21.67 14 24.23 1 175

Incumbent Output 17.61 2 53.83 0 1650

Incumbents 6.60 3 9.88 0 93

Star 0.43 0 0.49 0 1

Joiner Quality 36.53 14 78.34 1 2348

Joiner Quality - Early Career 27.97 11.5 56.16 1 1137

Joiner Quality - Mid Career 72.15 19 163.79 1 2925

Joiner Quality - Late Career 108.65 23 296.53 1 3242

Output w/o Star - Related 14.62 0 49.89 0 1687

Output w/o Star - Unrelated 62.13 20 127.91 0 2498

Incumbent Output - Related 3.93 0 18.61 0 719

Incumbent Output - Unrelated 13.68 1 48.96 0 1650

Joiner Quality - Related 21.21 0 94.29 0 1766

Joiner Quality - Unrelated 29.71 0 73.26 0 2348

MoveRisk 51.15 26 67.67 0 589
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Table 2: Main Results
(1) (2) (3) (4)

Dependent Variable: Output Output w/o Star Output w/o Star Incumbent Output

Start−1 0.430∗∗ 0.392∗∗ 0.230∗∗ 0.045
(0.077) (0.082) (0.077) (0.084)

ln Scientists 1.274∗∗

(0.092)

ln (Incumbents +1) 1.230∗∗

(0.090)

Department Fixed Effects X X X X
Year Fixed Effects X X X X

Observations 7140 7140 7140 4984
Number of Departments 255 255 255 178
Log-Likelihood -155577 -151447 -122950 -48134

Pre-Star Mean of
Dependent Variable: 30.87 30.87 30.87 13.24
Effect Size of Start−1
on Dependent Variable† 16.59 14.82 7.98 0.61

Notes: This table reports coefficients for four Poisson quasi-maximum likelihood (QML) regressions. Observations are at the departmenti-yeart
level. Output refers to Citation-Weighted Publications. Columns 2 and 3 remove the Output of the arriving star. Incumbent Output is a count of
the Citation-Weighted Publication of all scientists at department i who are present the year prior to the star’s arrival. The independent variable
Star is a value of 1 if the year is greater than or equal to the year of the star’s arrival and 0 otherwise. The two control variables ln Scientists and
ln (Incumbents +1) are the natural logarithm of the count of the number of scientists present at department i in year t and the number of
incumbent scientists (who are present the year prior to the star’s arrival) who are present at department i in year t, respectively. Robust
standard errors clustered at the department are in parentheses.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01
† Effect size is calculated as (exp(β̂)− 1)× x̄, where β̂ is the estimated coefficient of Start−1 and x̄ is the mean of the dependent variable before
the star’s arrival.
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Table 3: Characteristics of Joining Scientists

(1) (2) (3) (4)
Dependent Variable: Joiner Quality Joiner Quality Joiner Quality Joiner Quality
Sample: Early Career Mid Career Late Career

Start−1 0.543∗∗ 0.675∗∗ 0.971∗∗ 0.863+

(0.120) (0.128) (0.252) (0.492)

Department Fixed Effects X X X X
Year Fixed Effects X X X X

Observations 3629 3051 1539 735
Number of Departments 250 244 215 155

Pre-Star Mean of
Dependent Variable: 17.99 15.68 27.02 34.71
Effect Size of Start−1
on Dependent Variable† 12.91 15.21 49.73 46.74

Notes: This table reports coefficients for four Poisson quasi-maximum likelihood (QML) regressions. Observations are at the departmenti-yeart
level. Joiner Quality is the mean stock of all scientists hired by department i in year t. The dependent variables in Columns 2, 3, and 4 are the
mean stock of all scientists hired by department i in year t who have a career age of less than 10, between 10 and 20, and more than 20,
respectively. The independent variable Star is a value of 1 if the year is greater than or equal to the year of the star’s arrival and 0 otherwise.
Robust standard errors clustered at the department are in parentheses.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01
† Effect size is calculated as (exp(β̂)− 1)× x̄, where β̂ is the estimated coefficient of Start−1 and x̄ is the mean of the dependent variable before
the star’s arrival.
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Table 4: Output by Topically Related and Unrelated Scientists

(1) (2) (3) (4)
Dependent Variable: Output w/o Star
Sample: All Incumbents All Incumbents

SubSample: Related Unrelated

Start−1 0.815∗∗ 0.401∗ 0.105 −0.017
(0.242) (0.173) (0.083) (0.092)

ln Scientists 1.380∗∗ 1.243∗∗

(0.278) (0.090)

ln (Incumbents +1) 1.049∗∗ 1.304∗∗

(0.175) (0.089)

Department Fixed Effects X X X X
Year Fixed Effects X X X X

Observations 4704 3472 7140 4984
Number of Departments 168 124 255 178

Pre-Star Mean of
Dependent Variable: 2.97 1.48 27.90 11.76
Effect Size of Start−1
on Dependent Variable† 3.74 0.73 3.09 −0.20

Notes: This table reports coefficients for four Poisson quasi-maximum likelihood (QML) regressions. Observations are at the departmenti-yeart
level. The dependent variable, Output w/o Star, is the Citation-Weighted Publications in year t net of the arriving star’s contributions split by
the characteristics of the scientist. Columns 1-2 only include scientists who are topically related to the arriving star (make at least one reference
in their papers to the arriving star), while Columns 3-4 only include scientists who are topically unrelated to the star (do not make any references
to the papers of the arriving star). Columns 1 and 3 include all scientists, and Columns 2 and 4 include all incumbents present the year prior to
the star’s arrival. The independent variable Star is a value of 1 if the year is greater than or equal to the year of the star’s arrival and 0
otherwise. The two control variables ln Scientists and ln (Incumbents +1) are the natural logarithm of the count of the number of scientists
present at department i in year t and the number of incumbent scientists (who are present the year prior to the star’s arrival) who are present at
department i in year t, respectively. Robust standard errors clustered at the department are in parentheses.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01
† Effect size is calculated as (exp(β̂)− 1)× x̄, where β̂ is the estimated coefficient of Start−1 and x̄ is the mean of the dependent variable.
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Table 5: Joiner Quality by Topically Related and Unrelated

(1) (2)
Dependent Variable: Joiner Quality
SubSample: Related Unrelated

Start−1 1.676∗∗ 0.390∗∗

(0.378) (0.120)

Department Fixed Effects X X
Year Fixed Effects X X

Observations 2663 3629
Number of Departments 151 250

Pre-Star Mean of
Dependent Variable: 2.20 16.69
Effect Size of Start−1
on Dependent Variable† 9.56 7.96

Notes: This table reports coefficients for two Poisson quasi-maximum likelihood (QML) regressions. Observations are at the departmenti-yeart
level. Joiner Quality is the mean stock of all scientists hired by department i in year t. The Related subsample consists of scientists who are
topically related to the arriving star (make at least one reference in their papers to the arriving star) and the Unrelated subsample consists of
scientists who are not topically related to the arriving star (do not make any references to the papers of the arriving star). The independent
variable Star is a value of 1 if the year is greater than or equal to the year of the star’s arrival and 0 otherwise. Robust standard errors clustered
at the department are in parentheses.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01
† Effect size is calculated as (exp(β̂)− 1)× x̄, where β̂ is the estimated coefficient of Start−1 and x̄ is the mean of the dependent variable.
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Table 8: Main Results with Developmental Biology Controls

(1) (2) (3)
Dependent Variable: Output w/o Star Incumbent Output Joiner Quality

Start−1 0.227∗∗ 0.065 0.511∗∗

(0.071) (0.079) (0.123)

ln Scientists 1.290∗∗

(0.093)

ln (Incumbents + 1) 1.231∗∗

(0.090)

Devel. Biology Start−1 0.025 −0.065 0.105
(0.113) (0.137) (0.176)

ln (Devel. Biology Scientistst−1 +1) −0.187 0.020 −0.128
(0.149) (0.167) (0.140)

Department Fixed Effects X X X
Year Fixed Effects X X X
Math and Psychology Controls X X X

Observations 7140 4984 3629
Number of Departments 255 178 250

Pre-Star Mean of
Dependent Variable: 30.87 13.24 17.99
Effect Size of Start−1
on Dependent Variable† 7.87 0.89 12.00

Notes: This table reports coefficients for three Poisson quasi-maximum likelihood (QML) regressions. Observations are at the departmenti-yeart
level. Output refers to Citation-Weighted Publications. Columns 2 and 3 remove the output of the arriving star. Incumbent Output is a count of
the Citation-Weighted Publication of all scientists at department i who are present the year prior to the star’s arrival. The independent variable
Star is a value of 1 if the year is greater than or equal to the year of the star’s arrival, and 0 otherwise. There are four control variables. ln
Scientists and ln (Incumbents +1) are the natural logarithm of the count of the number of scientists present at department i in year t and the
number of incumbent scientists (who are present the year prior to the star’s arrival) who are present at department i in year t, respectively.
Devel. Biology Star is a value of 1 if the year is greater than or equal to the year of a developmental biology star arriving at institution i and 0
otherwise. ln (Devel. Scientists + 1) is a count of the number of developmental biology scientists present at institution i in year t− 1. All
specifications include controls for the arrival of a star and the number of scientists in the focal department’s Math and Psychology departments.
Robust standard errors clustered at the department are in parentheses.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01
† Effect size is calculated as (exp(β̂)− 1)× x̄, where β̂ is the estimated coefficient of Start−1 and x̄ is the mean of the dependent variable.
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Table 9: Instrumental Variable Results
(1) (2) (3) (4)

Estimation: OLS 2SLS 2SLS 2SLS
Dependent Variable: Start−1 Output w/o Star Incumbent Output Joiner Quality

MoveRiskt−1 0.201∗∗

(0.032)

Start−1 0.421∗ −0.127 1.499∗∗

(0.199) (0.342) (0.320)

ln Scientists 0.092∗∗ 1.248∗∗ 0.656∗∗

(0.019) (0.032) (0.049)

ln (Incumbents +1) 1.299∗∗

(0.024)

Department Fixed Effects X X X X
Year Fixed Effects X X X X

Observations 7140 7140 4984 7140
Number of Departments 255 255 178 255
Angrist-Pischke F-test 202.85 202.85 89.53 202.85

Notes: Observations are at the departmenti-yeart level. All dependent variables except for Star have a 1 added to them and are converted to
natural logarithms. Column 1 is the first-stage regression of MoveRisk on the endogenous variable Star. The variable MoveRisk is a dummy set
to 1 if the number of star scientist’s who are at risk of moving to department j (have prior coauthoring relationship with scientist at focal
institution in first five years of career and are between the career ages of six and nine [see Figure C.1]) is greater than or equal to the median
number of 4 and 0 otherwise. The independent variable Star is a value of 1 if the year is greater than or equal to the year of the star’s arrival and
0 otherwise. The two control variables ln Scientists and ln (Incumbents +1) are the natural logarithm of the count of the number of scientists
present at department i in year t and the number of incumbent scientists (who are present the year prior to the star’s arrival) who are present at
department i in year t, respectively. Robust standard errors clustered at the department are in parentheses.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01
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Appendix A: Theoretical Model

How does the hiring of a star scientist affect the performance of the hiring department? This appendix

develops a simple model of the effects of a hiring a star on both the productivity of incumbent scientists

and the quality of subsequent hires. The model generates a number of propositions that are tested in

the paper.

Direct Productivity Effects on Incumbents

We begin with the direct effect of a star hire on the productivity of incumbents, ignoring initially any

potential impacts through a changed composition of subsequent hires. We assume there are two types

of scientists: type-1 and type-2. Type-1 scientists work on topic 1, and type-2 scientists work on topic

2. We further assume that the star is of type-1, so that type-1 incumbents are “related” and type-2

incumbents are “unrelated” to the star. Individual scientist productivity is measured by the flow of

citation-weighted publications. For a given scientist of type-1, productivity is given by a Romer-style

research production function:

Ȧ1ι = λ1iA
θ11
1 Aθ122 , (A.1)

where λ1i is an individual productivity parameter for scientist i, A1 is the total citation-weighted

local knowledge stock of type-1 scientists, A2 is the total citation-weighted local knowledge stock of

type-2 scientists, and θ11 and θ12 are elasticities of individual productivity with respect to the local

knowledge stocks of type-1 and type-2 scientists, respectively. We assume θ11 > θ12, so that the

knowledge spillover effect is greater within than across types. A similar productivity equation applies

to type-2 scientists:

Ȧ2ι = λ2iA
θ21
1 Aθ222 , (A.2)

where θ22 > θ21.
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How does the hiring of a star type-1 scientist directly affect the productivity of the two scientist

types? We assume that the knowledge stock of the star is sA1, where s is the star’s knowledge stock as

a share of the initial type-1 knowledge stock at the institution. Focusing first on type-1 scientists, the

marginal productivity benefit of a one unit increase in the local knowledge stock of type-1 scientists is:

∂Ȧ1ι

∂A1
= θ11λ1iA

θ11−1
1 Aθ122 . (A.3)

The total impact on the productivity of type-1 scientists is then given by the linear approximation:

dȦ1ι ≈
∂Ȧ1ι

∂A1
dA1 =

∂Ȧ1ι

∂A1
sA1. (A.4)

Using (1) and (3), we can write the proportional effect on type-1 productivity as:

dȦ1ι

Ȧ1ι

≈ sθ11. (A.5)

Similarly, we can write the proportional effect on type-2 scientists as:

dȦ2ι

Ȧ2ι

≈ sθ21. (A.6)

Thus, the direct productivity effect will be larger for type-1 scientists and also larger for institutions

where the star represents a larger share of the initial type-1 knowledge stock (i.e., a large s). Assuming

that this share tends to rise with the rank of the institution, the direct proportional productivity effect

of the hiring of a star will be larger at lower-ranked institutions.

Indirect Productivity Effects on Incumbents through Subsequent Hiring

In addition to these direct effects, the productivity of incumbents also will be affected by any impacts of

the hiring of the star on subsequent recruitment. We therefore allow for the possibility of “recruitment

externalities” in addition to the “knowledge spillover externalities” discussed above. We assume the

department has a fixed number of hiring slots, H (not including the star). The hiring of a star may

change the composition of the applicant pool for these slots and thus the composition of the hires.
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Letting dAH1 be the change in the knowledge stock of type-1 scientists who are hired due the hiring

of the type-1 star and dAH2 the change in the knowledge stock of type-2 scientists who are hired due

to the type-1 star, the indirect effect on the productivity of type-1 scientists through the hiring channel

is:

dȦ1ι ≈
∂Ȧ1ι

∂A1
dAH1 +

∂Ȧ1ι

∂A2
dAH2. (A.7)

This in turn can be rewritten in terms of the proportional change in the productivity of type-1

scientists as:

dȦ1ι

Ȧ1ι

≈
(
θ11

A1

)
dAH1 +

(
θ12

A2

)
dAH2. (A.8)

For type-1 incumbents, we further assume that the marginal product of type-1 knowledge stock is

greater than the marginal product of type-2 knowledge stock; that is, θ11
A1

> θ12
A2

.

Similarly, the proportional indirect effect for type-2 scientists is:

dȦ2ι

Ȧ2ι

≈
(
θ21

A1

)
dAH1 +

(
θ22

A2

)
dAH2, (A.9)

where it is assumed that θ22
A2

> θ21
A1

.

We next consider how the hiring of the type-1 star affects the composition of hiring. We assume that

the institution hires the best scientists from the applicant pool for its open positions, where quality

is measured by the citation-weighted knowledge stocks of the applicants. To solve for the optimal

composition of hiring, we introduce the idea of a recruitment function. For type-1 scientists, the

recruitment function gives the quality of the applicant in the jth position in the quality ranking, where

the applicants are ranked from best to worst. Letting H1 represent the number of type-1 scientists

hired, the quality of the marginal hire is given by:

Aj1 = φ11(1 + s)A1 + φ12A2 − β1H1, (A.10)

where the parameter β1 measures how the quality of the marginal recruit falls with additional hires. In
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Figure A.1, we graph from left to right the relationship between the quality of the marginal hire and the

number of hires. Critically, the quality of the existing scientists (including the star scientist) is a shift

factor for the recruitment function. An increase in the quality of incumbents will shift the recruitment

curve upwards in Figure A.1. Thus, the initial recruitment of the star scientist can support the hiring

of better quality scientists for the additional available positions through a recruitment spillover. Note

that we allow for the possibility that potential recruits are attracted by the quality of existing scientists

of the other type, though we assume φ11 > φ12. A similar recruitment function applies for type-2 hires:

Aj2 = φ21(1 + s)A1 + φ22A2 − β2H2, (A.11)

where β2 measures the rate of decline in the quality of the marginal type-2 recruit and φ22 > φ21.

Assuming the institution seeks to maximize the total quality of recruits, the marginal quality of

recruits will be equalized at the optimal composition of hires. The initial optimal composition is at

point 1 in Figure A.2. Imposing the condition H1 + H2 = H, the optimal number of type-1 hires is

given by:

H1 =

(
φ11 − φ21

β1 + β2

)
(1 + s)A1 +

(
φ12 − φ22

β1 + β2

)
A2 +

(
β2

β1 + β2

)
H. (A.12)

We next identify the change in the number of type-1 hires that results from the hiring of the star.

From (12), this change is given by:

dH1 =

(
φ11 − φ21

β1 + β2

)
sA1. (A.13)

The change in type-1 hires will be positive, provided that φ11 > φ21. This will be the case if a

given improvement in the quality of type-1 scientists has a greater positive impact on the recruitment

of type-1 scientists than type-2 scientists. We assume this condition holds.

Given the assumption of a fixed number of hiring slots, any increase in the hiring of type-1 scientists

must be matched by an equal reduction in the hiring of type-2 scientists:

dH2 = −
(
φ11 − φ21

β1 + β2

)
sA1. (A.14)
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Thus, the hiring of the type-1 star will also shift the composition of subsequent hires towards type-1.

In terms of Figure A.1, the hiring of the star shifts the department from point 1 to point 2.

The indirect effects of the hiring of the star on both type-1 and type-2 incumbents can be conve-

niently examined using Figure A.2. The induced change in the type-1 knowledge stock through higher

quality subsequent hires is given by the area X+Z. The induced change in the type-2 knowledge stock

is given by the area Y − Z. Thus, area Z represents a shift from type-2 to type-1 knowledge stocks

due to the induced change in the composition of hiring in favor of type-1 scientists.

Both types of incumbents gain as a result of the increase in the knowledge stocks represented by

areas X and Y in Figure A.2. For type-1 incumbents, given we have assumed that the marginal product

of the type-1 knowledge stock is greater than the marginal product of type-2 knowledge stock, it follows

that type-1 incumbents gain from the shift in the composition of hiring; that is, they gain from the

transfer of area Z. However, given that the opposite marginal product ranking is assumed for type-2

incumbents, they lose from the transfer of area Z. Thus, the indirect productivity effect from induced

changes to subsequent hiring is positive for type-1 incumbents, thereby reinforcing the positive direct

productivity effect from the star. However, both the indirect effect and the total effect are ambiguous

for type-2 incumbents. Notwithstanding the improvement in the pool of applicants of both scientist

types and the positive direct productivity effect of the star, type-2 incumbents still therefore could

suffer an overall loss in productivity if the induced change in hiring towards type-1 scientists is large

enough.

More formally, utilizing Figure A.2 and Equation (A.8), the proportional indirect effect from the

changed composition of subsequent hiring on type-1 incumbents is given by:

dȦ1ι

Ȧ1ι

≈
(
θ11

A1

)
(X + Z) +

(
θ12

A2

)
(Y − Z)

=

(
θ11

A1

)
X +

(
θ12

A2

)
Y +

(
θ11

A1
− θ12

A2

)
Z > 0.

(A.8′)

For type-2 incumbents, the proportional indirect effect is:
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dȦ2ι

Ȧ2ι

≈
(
θ21

A1

)
(X + Z) +

(
θ22

A2

)
(Y − Z)

=

(
θ21

A1

)
X +

(
θ22

A2

)
Y +

(
θ21

A1
− θ22

A2

)
Z.

(A.9′)

Since the last term in (A.9′) is negative (i.e., the marginal product of type-1 knowledge stock is

assumed to be lower than the marginal product of type-2 knowledge stock for type-2 incumbents), the

indirect effect on type-2 incumbents is ambiguous.

Impact of Hiring a Star on the Average Quality of Subsequent Hires

We finally examine the impact of hiring a star on the average quality of subsequent hires. To determine

the impact on average quality, we first note that the total quality of type-1 hires (measured by total

citation-weighted publications) is given by:

AH1 =

∫ H1

0
Aj1dj1

= φ11(1 + s)A1H1 + φ12A2H1 −
β1

2
H2

1 .

(A.15)

Note that s is equal to zero in the case where no star is hired.

The average quality of type-1 hires is then given by:

AH1

H1
= φ11(1 + s)A1 + φ12A2 −

B1

2
H1. (A.16)

Using (A.13), the change in the average quality of type-1 hires due to the hiring of the star is then:

d

(
AH1

H1

)
=

(
φ11 −

β1

2

(
φ11 − φ21

β1 + β2

))
sA1

=

(
(φ11 + φ21)β1 + 2φ11β2

2(β1 + β2)

)
sA1 > 0.

(A.17)

Thus the average quality of type-1 hires increases as a result of hiring the type-1 star. This result

also can be seen intuitively using Figure A.1. The average quality of type-1 hires must increase given

the upward shift in the recruitment function and recognizing that the quality of the marginal type-1

hire has increased as well.

45



The average quality of type-2 hires also increases as a result of hiring the type-1 star:

d

(
AH2

H2

)
=

(
φ21 −

β2

2

(
φ11 − φ21

β1 + β2

))
sA1

=

(
(φ11 + φ21)β2 + 2φ21β1

2(β1 + β2)

)
sA1 > 0.

(A.18)

This increase in average quality is the result of both an upward shift in the recruitment function

for type-2 scientists and also a move up along the curve due to the reduced hiring (and consequently

more selective recruitment) of these scientists, which increases the quality of the marginal type-2 hire

(see Figure A.1).

Summary of Testable Propositions

The model yields a number of testable propositions:

• A type-1 star hire will increase the productivity of type-1 incumbents. This is the result of a

positive direct productivity effect from the star and a positive indirect effect through a star-

related reputation effect on hiring.

• A type-1 star hire has an ambiguous effect on the productivity of type-2 incumbents. This is the

result of a positive productivity direct effect and an ambiguous indirect productivity effect.

• Hiring a type-1 star will increase the average quality of type-1 and type-2 hires relative to the

no-star-hire baseline.

• The productivity effects will be larger at lower-ranked institutions; that is, the productivity effects

are increasing in s, the star’s citation weighted knowledge stock expressed as a share of the initial

type-1 knowledge stock.
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Figure A.1: Impact of a Type-1 Star Hire on Subsequent Recruitment

Figure A.2: Decomposition of the Impact on Subsequent Hiring-Related Knowledge Stocks
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Appendix B: Robustness Checks

We conduct three additional robustness tests for our main results. We first examine the effect of star

departures in addition to star arrivals. We report the results for our three main dependent variables

in Table B.1. Not surprisingly, star departures are associated with a decline in department output,

while the arrival of a star continues to be positively associated with an increase in department output.

Perhaps more surprisingly, the negative effect on incumbent productivity of star departures is larger

in magnitude than the positive effect of star arrival. A possible explanation is that departing stars

have developed relationships with incumbents (e.g., collaborations, mentoring, or simply knowledge

exchange) leading to adverse impacts on the productivity of those left behind. As Agrawal et al.

(2006) emphasize, relationship capital built during periods of co-location endures, at least in part,

post separation. Nonetheless, prior co-location is likely to be less effective in supporting incumbent

productivity than current co-location. The final column in Table B.1 shows a positive effect of star

departure on the quality of subsequent hires, although the coefficient is not statistically significant at

conventional levels. The positive coefficient may reflect the freeing up of resources as a result of the

star departure. However, another possibility is suggested by the model in Appendix A. In the model,

the positive effect of a star arrival comes partly through the effect on subsequent hiring. These effects

tend to be positively reinforcing, as successful recruitment supports further successful recruitment. The

positive effect of star departure may reflect this dynamic to the extent that star departure is correlated

with prior star arrival in our data.

Second, we examine the robustness of our results to an alternative method of identifying stars

(Table B.2). Rather than identifying stars based on their ranking in the distribution of citation-

weighted cumulative output, we do so based on their membership in the National Academy of Sciences

(NAS). The advantage of this method is that it is not directly related to any measures of output that

we use as dependent variables in our regressions. A disadvantage is that it reduces the number of

observed star arrivals in our data from 178 to 31 scientists. We find that the arrival of an NAS scientist

has no statistically significant impact on the output of the institution or on subsequent joiner quality

but is associated with a decrease in the output of incumbents. To check whether the arrival of an NAS

scientist has a greater impact on lower-ranked departments, we next interact our arrival variable with
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department ranking dummies. We report estimated coefficients on indicator variables for the arrival

of an NAS scientists at a Top 25 and not-Top 25 institution in Table B.3. The results indicate that

the arrival of an NAS scientist at a Top 25 institution diminishes incumbent productivity and has no

effect on subsequent joiner quality, while the arrival of an NAS scientist at a lower-ranked institution

has no effect on incumbent productivity but increases the quality of subsequent joiners.

Third, we examine the effect of an incumbent scientist being elected to the National Academy of

Sciences (Table B.4). Comparing these results with our prior results allows us to distinguish between

a physical move and a change in status. The change in status could have an effect on the quality

of subsequent recruitment due to reputation effects. However, we do not observe statistically sig-

nificant associations for any of our three dependent variables. Separating the relationship between

an incumbent’s election to the National Academy of Sciences by department tier once again reveals

heterogeneity in outcomes. Table B.5 shows that irrespective of department rank, the election of an

incumbent scientist to the NAS is unrelated to changes in incumbent output and subsequent joiner

quality. On the other hand, non-Top 25 departments with an incumbent that becomes a member of the

NAS experience an increase in output net of the scientist’s own output. These results suggest that the

reputations of stars elected to the NAS are already established prior to their election. We do not have

a strong prior on how election to the NAS affects incumbents. On the one hand, the election could

help the star access funding or improve publication prospects, with positive spillovers to incumbent

colleagues. On the other hand, the election could create additional external demands on the time of

the star, reducing their capacity to support the productivity of their departmental colleagues.
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Table B.1: Star Departure Results

(1) (2) (3)
Dependent Variable: Output w/o Star Incumbent Output Joiner Quality

Star Arrivet−1 0.271∗∗ 0.100 0.536∗∗

(0.071) (0.103) (0.118)

Star Departt−1 −0.144∗ −0.186∗ 0.269
(0.066) (0.085) (0.188)

ln Scientists 1.315∗∗

(0.095)

ln (Incumbents +1) 1.224∗∗

(0.075)

Department Fixed Effects X X X
Year Fixed Effects X X X

Observations 7140 3416 3634
Number of Departments 255 122 250

Notes: This table reports coefficients for three Poisson quasi-maximum likelihood (QML) regressions. Observations are at the departmenti-yeart
level. Output w/o Star is the Citation-Weighted Publications in year t net of the departing star’s contributions. Incumbent Output is a count of
the citation-weighted publications of all scientists at department i who are present the year prior to the star’s departure. Joiner Quality is the
mean stock of all scientists hired by department i in year t. The two key independent variables Star Depart and Star Arrive are set to 1 if the
year is greater than or equal to the year of the star’s departure or arrival, respectively, and 0 otherwise. The two control variables ln Scientists
and ln (Incumbents +1) are the natural logarithm of the count of the number of scientists present at department i in year t and the number of
incumbent scientists (who are present the year prior to the star’s arrival) who are present at department i in year t, respectively. Robust
standard errors clustered at the department are in parentheses.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

Table B.2: Arrival of a National Academies Scientist Results
(1) (2) (3)

Dependent Variable: Output w/o Star Incumbent Output Joiner Quality

Arrive NAS Scientistt−1 0.042 −0.350∗∗ 0.409
(0.076) (0.100) (0.318)

ln Scientists 1.231∗∗

(0.217)

ln (Incumbents +1) 1.261∗∗

(0.130)

Department Fixed Effects X X X
Year Fixed Effects X X X

Observations 868 868 868
Number of Departments 31 31 31

Notes: This table reports coefficients for three Poisson quasi-maximum likelihood (QML) regressions. Observations are at the departmenti-yeart
level. Output w/o Star, is the citation-weighted publications in year t net of the arriving star’s contributions split by the characteristics of the
scientist. Incumbent Output is a count of the citation-weighted publication of all scientists at department i who are present the year prior to the
star’s arrival. Joiner Quality is the mean stock of all scientists hired by department i in year t. The independent variable Arrive NAS Scientist is
a value of 1 if the year is greater than or equal to the year of the arrival of a scientist who is a member of the NAS and 0 otherwise. The two
control variables ln Scientists and ln (Incumbents +1) are the natural logarithm of the count of the number of scientists present at department i
in year t and the number of incumbent scientists (who are present the year prior to the star’s arrival) who are present at department i in year t,
respectively. Robust standard errors clustered at the department are in parentheses.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01
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Table B.3: Arrival of a NAS Scientist Rank Results
(1) (2) (3)

Dependent Variable: Output w/o Star Incumbent Output Joiner Quality

Arrive NAS Scientistt−1 −0.152 −0.544∗∗ 0.002
X Top 25 (0.118) (0.116) (0.258)

Arrive NAS Scientistt−1 0.504∗∗ 0.138 0.857∗

X Non-Top 25 (0.154) (0.149) (0.376)

ln Scientists 1.078∗∗

(0.233)

ln (Incumbents +1) 1.231∗∗

(0.124)

Department Fixed Effects X X X
Year Fixed Effects X X X

Observations 868 868 868
Number of Departments 31 31 31

Notes: This table reports coefficients for three Poisson quasi-maximum likelihood (QML) regressions. Observations are at the departmenti-yeart
level. Output w/o Star, is the citation-weighted publications in year t net of the arriving star’s contributions split by the characteristics of the
scientist. Incumbent Output is a count of the citation-weighted publication of all scientists at department i who were present the year prior to the
star’s arrival. Joiner Quality is the mean stock of all scientists hired by department i in year t. The independent variable Arrive NAS Scientist is
a value of 1 if the year is greater than or equal to the year of the arrival of a scientist who is a member of the NAS and 0 otherwise. This variable
is interacted with two indicators each set to 1 if the department the scientist arrives at is a Top 25 department (at the year of arrival) or a
non-Top 25 department (at the year of arrival). The two control variables ln Scientists and ln (Incumbents +1) are the natural logarithm of the
count of the number of scientists present at department i in year t and the number of incumbent scientists (who are present the year prior to the
star’s arrival) who are present at department i in year t, respectively. Robust standard errors clustered at the department are in parentheses.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

Table B.4: Becoming a NAS Scientist Results

(1) (2) (3)
Dependent Variable: Output w/o Star Incumbent Output Joiner Quality

Became NAS Scientistt−1 0.146 −0.093 0.167
(0.157) (0.137) (0.195)

ln Scientists 1.198∗∗

(0.210)

ln (Incumbents +1) 0.956∗∗

(0.085)

Department Fixed Effects X X X
Year Fixed Effects X X X

Observations 896 896 896
Number of Departments 32 32 32

Notes: This table reports coefficients for three Poisson quasi-maximum likelihood (QML) regressions. Observations are at the departmenti-yeart
level. Output w/o Star, is the citation-weighted publications in year t net of the arriving star’s contributions split by the characteristics of the
scientist. Incumbent Output is a count of the citation-weighted publication of all scientists at department i who are present the year prior to the
star’s arrival. Joiner Quality is the mean stock of all scientists hired by department i in year t. The independent variable Became NAS Scientist
is a value of 1 if the year is greater than or equal to the year an incumbent scientist becomes a member of the NAS and 0 otherwise. The two
control variables ln Scientists and ln (Incumbents +1) are the natural logarithm of the count of the number of scientists present at department i
in year t and the number of incumbent scientists (who are present the year prior to the star’s arrival) who are present at department i in year t,
respectively. Robust standard errors clustered at the department are in parentheses.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01
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Table B.5: Becoming a NAS Scientist Rank Results

(1) (2) (3)
Dependent Variable: Output w/o Star Incumbent Output Joiner Quality

Became NAS Scientistt−1 0.091 −0.152 0.213
X Top 25 (0.173) (0.167) (0.222)

Became NAS Scientistt−1 0.341∗ 0.111 0.126
X Non-Top 25 (0.171) (0.108) (0.234)

ln Scientists 1.187∗∗

(0.208)

ln (Incumbents +1) 0.953∗∗

(0.087)

Department Fixed Effects X X X
Year Fixed Effects X X X

Observations 896 896 896
Number of Departments 32 32 32

Notes: This table reports coefficients for three Poisson quasi-maximum likelihood (QML) regressions. Observations are at the departmenti-yeart
level. Output w/o Star, is the citation-weighted publications in year t net of the arriving star’s contributions split by the characteristics of the
scientist. Incumbent Output is a count of the citation-weighted publication of all scientists at department i who are present the year prior to the
star’s arrival. Joiner Quality is the mean stock of all scientists hired by department i in year t. The independent variable Became NAS Scientist
is a value of 1 if the year is greater than or equal to the year an incumbent scientist becomes a member of the NAS and 0 otherwise. This variable
is interacted with two indicators each set to 1 if the institution the scientist arrives at is a Top 25 department (at the year of arrival) or a
non-Top 25 department (at the year of arrival). The two control variables ln Scientists and ln (Incumbents +1) are the natural logarithm of the
count of the number of scientists present at department i in year t and the number of incumbent scientists (who are present the year prior to the
star’s arrival) who are present at department i in year t, respectively. Robust standard errors clustered at the department are in parentheses.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01
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Appendix C: Additional Figures and Tables

Figure C.1: Kernel Density of Move Age
0

.0
2

.0
4

.0
6

.0
8

M
ov

e 
Pr

ob
ab

ilit
y

0 5 10 15 20 25 30 35 40
Career Age

kernel = epanechnikov, bandwidth = 1.8536

53



Table C.1: IV - Location Choice as a Function of Legacy

(1) (2) (3) (4) (5) (6)
Dependent Variable: Move Move Move Move Move Move
Estimation OLS Logit OLS OLS Logit Logit

Prior Coauthorship 0.006∗∗ 2.331∗∗ 0.007∗∗ 0.006∗∗ 3.091∗∗ 1.980∗∗

(0.002) (0.272) (0.002) (0.002) (0.293) (0.280)

Scientist Fixed Effects X X
Department Fixed Effects X X

Observations 151725 151725 151725 151725 25755 59200
R2 0.01 0.01 0.01
Log-Likelihood -904 -584 -685

F-stat 12.96 14.92 8.98
χ2 73.32 111.43 50.12

Notes: Observations are at the scientisti-departmentj level. The dependent variable, Move, is equal to 1 if scientist i ever moves to department j.
Prior Coauthorships is equal to 1 if scientist i has at least one coauthor (formed in the first five year’s of the scientist’s career) at department j
and 0 otherwise. Robust standard are in parentheses. The standard errors are clustered at the level of the department in Columns 4 and 6 and at
the scientist level in all other columns.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

54


