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1 Introduction

There is an extensive literature that relies on questions in which individuals are asked to

report their happiness in a few ordered categories such as “very happy,”“pretty happy”or

“not too happy.”We argue that with such scales it is essentially never possible to rank the

overall happiness of two groups without strong auxiliary assumptions. Consequently, it is

impossible to use such data to make scientifically valid statements of the form “people in

country A are, on average, happier than people in country B” or that “married men are

happier than single men”unless we believe that we know a great deal about the underlying

distribution of happiness.

Our argument is simple. When placing themselves on a happiness scale that consists of

a small number of points, people place their happiness or utility in a range.1 For example,

they describe themselves as “very happy”if their utility exceeds some critical value. Oswald

(2008) refers to this as the reporting function. Any comparison of two groups presumes that

the cutoffs for the groups are identical. If not, comparing the groups would be tantamount

to declaring group A happier than group B because the proportion of As declaring them-

selves “quite happy”was greater than the proportion of Bs declaring themselves “ecstatically

happy.”

If, for example, we have a scale with three categories (two cutoffs), we can, without

apparent loss of generality, normalize the cutoffs to be 0 and 1. Given some belief about

the full underlying distribution, such as that it is logistic or normal, we can estimate two

parameters (e.g. the mean and variance) of the distribution from the distribution of the

responses across categories.

Since we can calculate the mean, it might appear that we can compare average happiness.

However, just as monotonic transformations of the utility function do not change choices

under a revealed preference model of utility, monotonic transformations do not alter the

category into which expressed utility or happiness falls. Therefore, unless the distribution

of responses across categories enables us to conclude that one underlying distribution is

greater than the other in the sense of first-order stochastic dominance, we cannot order the

means. However, we will not be able to establish first-order stochastic dominance of the

underlying distributions unless the estimated variances are identical, which is an essentially

zero-probability event. Moreover, even if our estimates of the variance are identical, since

1There is a literature (e.g. Frey and Stutzer, 2000) that distinguishes between utility as measured by
revealed preference and happiness as reported in surveys. We view the underlying concepts as the same.
Whether happiness or utility should be measured by revealed preference/willingness to pay or self-reports is
a separate issues. Our point is merely that regardless of how utility or happiness is elicited, we cannot know
more than the ranking of happiness.
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both are merely estimates subject to error, our posterior that they are identical must still

be 0.

Our argument is related to Oswald’s discussion of the reporting function. In an interesting

experiment, he asks subjects to report their height on a continuous scale from 0 to 10. He

finds that when the sample is split by sex, the response on the scale is roughly linear in actual

height. There is, of course, between respondent variation, but we will mostly abstract from

between person differences in the reporting function in what follows. Instead, we argue that

there is a fundamental difference between height and happiness. The underlying variable

height is measured on an interval scale. Regardless of whether the respondent uses metric

or imperial measures, the reporting function will have the same shape. But happiness is

ordinal. It is as if we could not agree whether height should be measured in centimeters, the

log of centimeters or the exponential of centimeters.

In principle, this problem can be solved if we are willing to tie the happiness scale to

some outcome measure. Bond and Lang (2014) develop interval measures of achievement by

tying test scores to eventual completed education and to the associated expected wages. But

as the parallel with their analysis of test scores shows, the conclusions we reach may depend

on whether we relate the underlying happiness measure to the probability of committing

suicide or some other outcome. Moreover it is not clear to us why in this case we would

not prefer to measure the related outcomes directly. As discussed in section four, regardless

of the concerns we raise about the measurement of happiness, the evidence is strong that

Moving to Opportunity reduced symptoms of depression and improved other measures of

psychological well-being.

The alternative approach, which is the one we will emphasize, is to place restrictions

on the distribution of happiness in the population. However, this, too, raises diffi culties.

Our beliefs about what distributions are plausible are likely to depend on our beliefs about,

among other things, the marginal utility of income. Yet, the relation between happiness and

income is one of the key areas of debate in happiness research.

In the next section, we present a series of simple examples. We show first that even

if happiness is normally distributed, shifting respondents from “not too happy”to “pretty

happy” can lower our estimate of average happiness. We then provide an example which

appears to avoid this problem: the distribution of responses over the three categories is higher

in the sense of first-order stochastic dominance, and estimated mean utility for the group

with more positive responses is higher. However, at one point in the utility distribution,

a substantial minority of the second group has higher utility than the members in the first

group. A simple monotonic transformation of the utility function (or happiness distribution)

fits the data equally well but reverses the comparison of mean utilities. Finally, we further
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show that when mean happiness is estimated assuming happiness is normally distributed, a

common implicit assumption, one of two simple exponential transformations can reverse any

reported happiness gap.

In the third section we prove our main result: it is (almost) never possible to rank the

mean happiness of two groups when the data are reported on a discrete ordinal scale. We

apply this result, in section four, to three findings from the happiness literature: the effect

of Moving to Opportunity on happiness (Ludwig et. al, 2013); the decline in the relative

happiness of women despite the dramatic progress they have made economically and socially

since the 1970s (Stevenson and Wolfers, 2009), and the Easterlin paradox (Easterlin, 1973).

We also investigate the impact of different distributional assumptions on comparisons more

generally, by looking at the rank order of mean happiness by country. In the fifth and final

section we discuss whether it is possible to weaken our result. We conclude that we can do

so only under (perhaps overly) strong assumptions although we hold out some hope for a

consensus on plausible restrictions on the happiness distribution which would permit strong

conclusions in some cases.

2 Some Simple Examples

Suppose we ask a large number of people belonging to two groups to assess their happiness

on a 3-point scale, and they respond as shown in example 1.

Example 1

Group A Group B

Very happy 20 15

Pretty happy 25 30

Not too happy 55 55

The responses in group A are higher than those in group B in the sense of first-order

stochastic dominance so that regardless of the values assigned to the three categories, two of

which are in any event mere normalizations, group A will have higher average happiness than

group B does.2 However, increasingly researchers recognize that the three categories capture

2We focus on what we view as the more sophisticated approach in this literature which views these
categories as capturing three parts of a continuum. We note, however, that is common for researchers to
assign the values 0, 1 and 2 to the three categories, in which case, group A would have mean happiness .65
while group B would have mean happiness of only .6. Alternatively, they may perform a linear transformation
by subtracting by the mean and dividing by the variance. This has no substantive impact on the results.
These approaches assume that the three points on the scale represent known points on an interval scale,
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a continuum. Therefore they are likely to estimate underlying happiness using ordered logit

or probit. For a normal distribution of happiness with mean µ and standard deviation

σ, textbook ordered probit will estimate µ/σ. Different computer packages use somewhat

different normalizations to identify the model. We will use Stata which sets the constant term

equal to zero and the variance to 1. Stata informs us that group B is .07 standard deviations

less happy than group A if we use ordered probit. and about .08 standard deviations less

happy if we use ordered logit.
But this conclusion is problematic because it assumes that the distribution of happiness

differs between the two groups only through a shift in the mean. It is highly unlikely

that a shift in the mean would induce only a shift between the top two categories and

not one between the bottom two categories. Indeed this cannot happen with either the

normal or logistic distribution. If there were roughly 400 observations in each group, a

maximum likelihood estimator for either a normal or logistic distribution would reject the

null hypothesis that the distributions differ only due to a shift in their mean.

Of course, we could estimate the ordered probit or logit separately for the two groups,

but this makes it diffi cult to interpret the difference. When estimated on a single group with

no explanatory variables, normalizing the constant to 0, as in Stata, sets the mean equal

to 0. Therefore, we cannot find a difference in mean happiness between the two groups.

Instead, we would conclude that for some unfathomable reason, members of group B declare

themselves very happy only when their happiness exceeds 1.04 standard deviations above

the mean while members of group A are very happy as long as their happiness exceeds .84

standard deviations above the mean although both groups declare themselves not too happy

if their happiness is less than .13 deviations above the mean.

Needless to say, this is an unsatisfactory conclusion. The normalizations rule out differ-

ences in the true distributions of happiness, the very phenomenon we are trying to investigate.

A more reasonable assumption is that the members of groups A and B define the categories

of happiness similarly but have both different means and standard deviations of happiness.

Without loss of generality (under the normality assumption), we set the cutoff between “not

too happy”and “pretty happy”to 0 and the cutoff between the latter category and “very

happy”to 1.

which, it will be clear we view as incorrect. There are even cases where such scales have been treated as
ratio scales: “... the data revealed that those making $55,000 were just 9 percent more satisfied than those
making $25,000.”(Dunn and Norton, 2013, p. xiv)
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Given normality, we solve

Φ

(
−µ
σ

)
= .55 (1)

Φ

(
1− µ
σ

)
= .80 (2)

for group A and similarly for group B except that we replace .80 with .85.

We find that average utility is actually lower for group A at −.18 than for group B which

has average utility −.14.3

To gain some intuition into this seemingly perverse result, consider a more extreme

situation portrayed in example 2. In this case in both groups 55% are “not too happy”but

the remaining 45% of group A are “very happy”whereas their counterparts in group B are

only “pretty happy.”Given a normal distribution, the only way for no one to have happiness

between 0 and 1 is for the variance to be infinite. With more observations to the left of 0

than to the right of it, as variance goes to infinity, mean utility goes to minus infinity. So, on

average, group A is infinitely unhappy. In contrast, when nobody reports being “very happy,”

the variance must be near zero. As the variance goes to zero, all observations are clustered

very close to zero. Even though somewhat more people find themselves with happiness just

below zero than just above it, they are all so close to zero that mean happiness among group

B is also very close to zero.

Example 2

Group A Group B

Very happy 45 0

Pretty happy 0 45

Not too happy 55 55

As the example may suggest, and it is straightforward to show, with the normal and

logistic distributions, perverse examples arise when the median response lies at one of the

extremes. In the happiness data for the United States, the median generally lies in the middle

category. However, the normal and logistic distributions are both symmetric distributions.

Asymmetric distributions can produce different results.

Even if estimated mean happiness changes in the same direction as the movement among

categories, it will rarely be the case that the distributions of happiness can be ranked in the

sense of first-order stochastic dominance. Consider example 3. Again group B appears to

3For the logistic distribution the means are -.17 and -.13.
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be happier than group A. But let us assume that happiness is logistically distributed and

normalize the cutoffs to 0 and 1 as before. Now our estimate of mean happiness for group

B (.61) is indeed above the estimated mean for group A (.50) , but the spread coeffi cient is

also larger (.42 v .36) so that the happiness distributions cross at the 14th percentile. The

results if we instead assume that happiness is normally distributed are similar.

Example 3

Group A Group B

Very happy .2 .28

Pretty happy .6 .53

Not too happy .2 .19

At first blush this may not seem problematic. Although neither group is happier in the

sense of first-order stochastic dominance, we can still say, using either distribution, that

group B is happier on average. Unfortunately, this conclusion relies on the assumption

that we know the true distribution. Any monotonic transformation of the utility function

is also a legitimate utility function. And given that the distributions cross, we can always

define a new utility function/happiness distribution that fits the data equally well and for

which the conclusion about mean utility is reversed. In example 3, starting from the normal

distribution, we can redefine all utilities below -.163 to be

u∗ = c (u+ .163)− .163. (3)

For c suffi ciently positive, the estimates of average utility will be reversed.

In fact, perverse examples can even come from standard distributions. Suppose that we

used ordinal data to estimate an underlying happiness distribution assuming normality. If we

normalize the cut-points to 0 and 1, we will obtain a parameter for the mean, µ, and standard

deviation, σ. Suppose we instead estimated a log-normal distribution, by transforming the

utilities by eX . Our new mean is

eµ+.5σ
2

If we are comparing two groups, one of which has a higher mean and the other a higher

variance, this transformation alone could reverse the ranking obtained by the normal distri-

bution. If not, we can raise the cut-point from 1 to c. This is equivalent to multiplying our

data by c and thus would have no impact on the direction of the gaps when we estimate

with the normal. However, the mean under the log-normal transformation becomes

µ = ecµ+.5c
2σ2 (4)
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There then will always be a c large enough to reverse the ranking.

What if one group has both a higher mean and higher variance when estimated normally?

We can then transform the data by −e−cX to be left-skewed log-normal. The mean of

happiness becomes

µ = −e−cµ+.5c2σ2 (5)

which is decreasing in σ. Thus there must be some c that will reverse the gap. It should

be noted that in both cases these are just simple monotonic transformations of the utility

function. Since happiness is ordinal, these transformations represent the responses equally

well.4

There is a risk that our criticism will be confused with one that is trite. It is, of course,

possible to argue that even though a lower proportion of group A than of group B is very

happy, the As in this group are much happier than the Bs or that the unhappy Bs are much

more unhappy than the unhappy As. But our argument is different. The allocation of the

responses across the three categories strongly suggests that the variance of utility differs

between the two groups. Therefore, one of the above possibilities should be recognized as

highly likely.

Our focus is on reversals in the estimation of means. However, there is a small but growing

literature discussed below that analyzes the dispersion of happiness. It is straightforward

to generate plausible examples in which different assumptions about the distribution of

happiness lead to different conclusions about relative variances. However, we make no claim

that there is always an easy transformation that generates such a reversal.

Finally, we note that the examples do not require that utility be unbounded. Even

if we believed that utility is uniformly distributed over some range, in all three examples

the cumulative distributions of the utilities of the two groups would cross. However, with

bounded utility, it is also possible to construct generic examples where the cdfs do not cross.

3 The General Argument

Assumption 1 Utility u is unbounded.

Assumption 2 The cumulative distribution function F (u) is continuous with F ′ (u) > 0.

Assumption 3 The cumulative distribution function can be written as a function of (u−m) /s

where u is the utility level, m is a measure of central tendency and s is a measure of spread.

4It is worth noting that our analysis stands in sharp contrast with Hammond, Liberini and Proto (2011)
who accept Pareto superiority as a normative principle but view stochastic dominance of subjective well-being
as reported in categories as a necessary and suffi cient condition for Pareto superiority.
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In the case of the normal, m is the mean, s is the standard deviation. For the Cauchy

distribution m is the median or mode, and s is a transformation of the entropy. Of course,

in the case of the Cauchy distribution, it would not be meaningful to try to estimate mean

utility. While not all distributions satisfying assumptions 1 and 2 will also satisfy assumption

3, depending on how one defines “standard,”most or all standard distributions do. These

include the extreme value, logistic (including generalized logistic if the auxiliary parameters

are held constant) and Laplace.

These three assumptions are suffi cient to ensure the absence of first-order stochastic

dominance except in a knife-edge case.

Proposition 1 Under assumptions 1-3, if the happiness or utility of two groups is drawn
from the same distribution except for the values of m and s, the cumulative distribution

functions of utility for the groups cross at −∞ < u∗ < ∞ unless s is identical for the two

groups.

Proof.
u∗ =

m2s1 −m1s2
s1 − s2

,

where 1 and 2 denote the two groups, which is finite for s1 6= s2.

Remark 1 Assumption 3 can be replaced with other assumptions. For example, if both

distributions are symmetric, then one will have lower density at both ±∞ which is suffi cient

to ensure that first-order stochastic dominance fails.

Remark 2 Stochastic dominance can exist in three parameter models. If, for example,

Fi (x) =

(
1 + e

− (x−mi)
si

)−τ i
, there are values of the parameters such that Fa (x) ≤ Fb (x) , ∀x.

However, in general, even with four or more ordinal categories of response, three-parameter

models cannot be estimated without additional restrictions that go beyond normalizations.

We are now in a position to prove the major result of this paper.

Theorem 1 Let F
(
u−m1

s1

)
and F

(
u−m2

s2

)
be the estimated cumulative distribution functions

from categorical data on happiness. Then there is a transformation of the utility function

that fits the data equally well but that reverses the ranking of the mean utilities.

Proof. WLOG let m1 < m2. Let u∗ represent the solution to F
(
u−m1

s1

)
= F

(
u−m2

s2

)
and

assume that F
(
u′−m1

s1

)
> F

(
u′−m2

s2

)
⇔ −∞ < u′ < u∗. Normalize the value of the lowest

cutoff to be 0 so that F
(
0−m1

s1

)
is the predicted proportion of type 1s in the lowest category
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and similarly for type 2s and normalize the value of the highest cutoff to be 1 so that

1−F
(
1−m1

s1

)
is the predicted proportion of type 1s in the highest category and similarly for

type 2s. Choose any ũ such that ũ < min(0, u∗).

m1 =

∫ ũ

−∞
uF ′

(
u−m1

s1

)
du+

∫ ∞
ũ

uF ′
(
u−m1

s1

)
du (6)

m2 =

∫ ũ

−∞
uF ′

(
u−m2

s2

)
du+

∫ ∞
ũ

uF ′
(
u−m2

s2

)
du. (7)

Integration by parts, subtracting and noting that the cdfs are equal at ±∞ gives

m2−m1 =

∫ ũ

−∞

(
F

(
u−m2

s2

)
− F

(
u−m1

s1

))
du+

∫ ∞
ũ

(
F

(
u−m2

s2

)
− F

(
u−m1

s1

))
du

where the first integral is negative and the second is positive.

Replace u with γ (u− ũ) + ũ for u < ũ, then we have

m′2 −m′1 = γ

∫ ũ

−∞

(
F

(
u−m2

s2

)
− F

(
u−m1

s1

))
du+

∫ ∞
ũ

(
F

(
u−m2

s2

)
− F

(
u−m1

s1

))
du

= (γ − 1)

∫ ũ

−∞

(
F

(
u−m2

s2

)
− F

(
u−m1

s1

))
du+m2 −m1 < 0

⇔ γ > 1− m2 −m1∫ ũ
−∞

(
F
(
u−m2

s2

)
− F

(
u−m1

s1

))
du
.

Finally, we note that since the ordinal responses are reported in categories, in finite

samples, depending on the number of observations from each group, there can be a positive

probability that the estimated s will be the same for two independent samples. However, as

the sample gets large, this probability gets small.

Remark 3 Let L = Σj∈GiΣcdc lnF c
j (mi, si) be the log-likelihood function of distribution

F (m, s) for group Gi from J independent observations of data d with C categories and let

m̂i, ŝi be the parameter estimates that maximize the estimated likelihood, then

N .5 (ŝi − si)→d N
(
0, σ2s

)
This remark follows from the standard properties of maximum-likelihood estimators. It

follows directly that for large but finite samples, the estimated measures of spread will almost

never be equal.
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This, in turn, leads to our main result.

Conclusion 1 If happiness (or utility) is reported using a discrete ordinal scale, in large
samples it will (almost) never be possible to rank the mean happiness of two groups without

additional restrictions on the nature of the happiness distribution.5

4 Empirical Applications

4.1 Moving to Opportunity

Economists have long postulated that living in a poor neighborhood may make it more

diffi cult to escape poverty. Motivated by this idea and the positive results of the Gautreaux

desegregation program in Chicago,6 the Moving-to-Opportunity experiment targeted families

living in public housing in high poverty areas. Eligible families were invited to apply for the

chance to receive a Section 8 housing (rental assistance) voucher. Applicants were randomly

assigned into three groups: no voucher (Control group), Section 8 voucher that could only

be used in an area with a poverty rate below 10% (Experimental group), and a standard

Section 8 voucher (Section 8 group).

The program has been assessed at multiple stages.7 A long-term follow-up (Ludwig et al,

2012, 2013) emphasizes that subjects in the experimental group were substantially happier

than those in the control group. We reexamine the evidence for this conclusion.

The participants in the long-term MTO evaluation study were asked “Taken all together,

how would you say things are these days —would you say that you are very happy, pretty

happy, or not too happy?”The authors focus on the effect on the distribution of responses

across categories. Nothing we write below can or will contradict the finding that MTO

increases the proportion of individuals who report that they are “very happy”and reduces

the proportion who say they are “not too happy.”If these are the socially relevant categories,

5The intuition behind this is relatively straightforward. Needless to say, if the true variances are not
equal, then asymptotically the probability that the estimates differ by less than ε goes to 0 as the samples
become large. Suppose, however, that sA = sB = s. Then ŝA →d N

(
s, σ2A

)
and ŝB →d N

(
s, σ2B

)
.

Define α = ŝA − ŝB . Then since ŝA and ŝB are asymptotically independent normals, α→d N
(
0, σ2

)
where

σ ≡ (σA + σB).5 . The asymptotic density at α = 0 is (2π)−.5 σ−1. Since the density is maximized at 0, the
probability that α falls in the range −εσ < α < εσ is less than 2εσ

(
2πσ2

)−.5
= (2/π)

.5
ε which can be made

arbitrarily small for any sequence of σ approaching 0.We are grateful to Zhongjun Qu for providing us with
this argument.

6The Gautreaux program came out of a court-ordered desegration program in Chicago in the 1970s. See
Rosenbaum (1995) for a detailed analysis.

7For the earliest evaluation, see Katz, Kling, and Liebman (2001). For an intermediate-term evaluation,
see Kling, Liebman, and Katz (2007).
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then there is no need to estimate a mean, or any other single summary measure of happiness.

Thus, for example, we might believe that people are “not depressed,”“mildly depressed”or

“severely depressed”and view variation in depression within these categories as unimportant.

We take no position on the accuracy of this view of depression, but if we accept it, an

intervention that reduces the proportion of severely and mildly depressed individuals reduces

depression since variation in depression within categories is unimportant. We return to this

point in our conclusions.

However, we believe that happiness should be viewed as continuous. Therefore, state-

ments about mean happiness and not just the frequency of responses within categories are

potentially relevant. Ludwig et al (2012, table S4) report intent-to-treat estimates on the

experimental group using intervals of 1 unit between the categories, as is common in the

literature, but also ordered probit and logit. For purposes of comparison with the literature,

Ludwig et al not only show the effects on the distribution of responses but also consider the

case where they assign values of 3, 2, and 1 to the three responses. In all three cases, they

find positive effects on average happiness that fall just short of significance at the .05 level.

If we believed that happiness is normally distributed, normalizing the cutoffs to 0 and 1,

we would find that the control group does have a lower mean (.44 v. .60). But, the control

group also has a higher variance (.79 vs .63). The cdfs cross at the 83rd percentile, which

is 1.20 units of happiness (and also in the extreme left tail of the distributions). Thus if we

simply define a new utility function which increases the values of happiness above 1.20 we

can reverse the mean happiness. This utility function would explain the data equally well.

Alternatively, we can perform an exponential transformation to get a log-normal distri-

bution of happiness. Keeping our underlying cut-points fixed at 0 and 1, the exponential

transformation will still show that the experimental group (2.22) is happier than the control

group (2.14). But, as discussed in section 2, since the control group has a higher variance of

happiness, we can raise their mean relative to the experimental group by raising the cut-point

between pretty happy and very happy. If we raise our cut point to 1.33, or equivalently raise

each individual’s happiness to the 1.33rd power after performing the exponential transfor-

mation, the mean utilities of the two groups are equal. As we show in figure 1, this amounts

to a somewhat right-skewed distribution of happiness, meaning the differences among the

happiest individuals are greater than the differences among the least happy. This utility

function is just a monotonic transformation of the one underlying the normal distribution

and thus fits the data equally well. Therefore, we cannot determine whether the causal effect

of MTO on happiness is positive on average. One plausible interpretation of the data is that

moving to a low poverty area reduced both the probability of being extremely unhappy and

extremely happy.

11



One solution to this indeterminacy is to tie our assessment of (un)happiness to some

other outcome variable. This is the approach we use in Bond and Lang (2014) where we

scale test scores in a given grade by the eventual educational attainment of students with

those test scores. The limited number of points on the happiness scale makes this diffi cult.

This discreteness may be missing variation within the categories that represents important

distinctions in happiness. But, compared with variation at the high end of the scale, variation

in happiness at the low end of the scale might prove to be more closely correlated with other

signs of psychological distress, which were also shown in Ludwig et al to be beneficially

influenced by moving to a neighborhood with a lower poverty rate.

Thus, in settings where we do not have direct measures of psychological well-being, it

may be possible, we are agnostic on this point, to use data from other settings such as

MTO to scale happiness in a more compelling way. For MTO, the strongest evidence of

positive psychological benefits comes from direct measures of the prevalence of psychological

problems. Provided that these conditions are discrete rather than continuous, our concerns

about happiness scales do not apply to such things as measures of depression.

4.2 The Paradox of Declining Female Happiness

One surprising result from the happiness literature, documented by Stevenson and Wolfers

(2009), is that women’s happiness appears to have fallen relative to men’s from 1972-2006

despite the great social and economic progress women made during this period. Again, this

result is easily reversed.

We use the publicly available file created by Stevenson and Wolfers from the General

Social Survey (GSS), a nationally representative survey of social attitudes conducted annu-

ally or biennially since 1972. The GSS assesses subjective well being using responses to the

question later adopted in the MTO study. While the question remains constant over time,

its position in the survey does not, which could lead to biases in responses in different years.8

Stevenson and Wolfers use split-ballot experiments to modify the data to account for these

differences.9

To simplify the analysis and ease exposition, we create two subgroups: those from the

first five surveys (1972-1976) and those from the last five surveys (1998-2006) but can ob-

tain similar results using the full time series. We display the distribution of happiness in

these groups in Table 2. Using ordered probit, Stevenson and Wolfers found that women

8For example, Stevenson and Wolfers (2009) note that in every year but 1972, the question followed a
question on marital happiness, which may cause differences in the impact of one’s marriage on his or her
response to the general happiness assessment. See Smith (1990).

9For details of this process, see appendix A of Stevenson and Wolfers (2008b).
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lost ground to men at the rate of .376 standard deviations per century. We confirm this

result between the two subgroups; ordered probit estimates that women were .09 standard

deviations less happy relative to men in the later sample than the early.

However, as discussed previously, ordered probit assumes that the variance of happiness

is constant across sex and over time, an assumption we can easily reject. When we allow the

variances to differ, we find women’s happiness has more variance than men’s and that the

variance of happiness has declined over time. This is what one would expect from looking

at the data. Most of the differences between the sexes and over time are due to there being

more “very happy”women in the early years. When more people are “very happy”but there

is no difference in the number “not too happy”the distribution must have higher variance

to fit the data. Relaxing the constant variance assumption lowers the growth of the gap to

.07.

Now, we transform the utility function by

ũ = −e−Cu (8)

so that the distribution of happiness is given by the left-skewed log normal distribution.

Since their utility distribution has the highest variance under the normality assumption,

choosing a C suffi ciently large lowers the mean utility of women in the early period by more

than it does men’s. As we show in in Figure 2, for C ≥ 3.9 women become happier over time

relative to men, as one might expect given their social progress in the period. Large values

of C will show large increases in relative female happiness.

Admittedly, when C = 3.9, the distribution is fairly skewed. This implies that utility

differences among the unhappiest people are far greater than differences among the happiest.

All happy people have happiness between 0.02 and 0, while 5% of the distribution has

happiness below −250. Of course, this distribution fits the data just as well as the normal.

From the data alone it is diffi cult to argue that one utility distribution is clearly more

plausible.

Further, this is just one scale and distribution based on a simple transformation under

which women gain happiness relative to men. There are an infinite number of others, and

more complex transformations may create distributions that are more intuitively appealing.

Ultimately if we can gain consensus about plausible restrictions on the happiness distribution

(e.g. skewness, kurtosis) or at least a reasonable loss function involving these moments, it

may be possible in some cases to conclude that no plausible transformation will reverse a

particular finding.
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4.3 Easterlin Paradox

No question in the happiness literature has received more attention than the “Easterlin

Paradox,” the observation that in some settings higher incomes do not appear correlated

with higher levels of happiness. Easterlin (1973, 1974) found that income and subjective

well-being assessments were strongly and positively correlated within a country in a given

year, but not over time and across countries. This, and subsequent studies, led Easterlin

(1994) to conclude, “Will raising the incomes of all increase the happiness of all? The answer

to this question can now be given with somewhat greater assurance than twenty years ago. It

is ‘no’.”Easterlin instead concludes that the weight of the evidence supports the conclusion

that individuals judge their happiness relative to their peers and not on an absolute scale.

The paradox was recently called into question in a comprehensive study by Stevenson

and Wolfers (2008a).10 They use ordered probit both across countries and over time within

countries and find a strong relation between happiness and economic development. However,

they find that the United States is an exception. Happiness has not increased despite sub-

stantial growth in per capita incomes. They attribute this to the substantial rise in income

inequality over the last 30 years which occurred simultaneously with the rise in real GDP.

We match the GSS data from Stevenson and Wolfers (2009) with U.S. per capita real

disposable income data from the 2013 Economic Report of the President to get a time series

of national happiness and income data. Fixing the cut-points to 0 and 1, we estimate the

two parameters of a normal distribution for each year using the GSS and regress the means

on per capita disposable income. As we show in Figure 3, we do indeed find an Easterlin

Paradox. Ordinary Least Squares estimates imply that a $10,000 per capita increase in real

disposable income is actually associated with a decrease in happiness in the United States

of .02 units, although, with a p-value of only .11, it is not statistically significant.

However, figure 4 shows that we also estimate a strong negative relation between real per

capita disposable income and the variance of happiness. A $10,000 increase in per capita

income is associated with a statistically significant .04 unit decrease in the standard deviation

of happiness. This may be somewhat surprising given the increase in income inequality over

the time period, but is what one would expect from the data and has been demonstrated

previously by Stevenson and Wolfers (2008b) and Dutta and Foster (2013).11 As real income

has increased, fewer people report being very happy, but there is a zero to slightly negative

change in the number of people who report being not too happy.

10See also Deaton (2008) who finds similar results from the Gallup World Poll using OLS on a basic
10-point scale.
11Clark, Fleche and Senik (2014, forthcoming) argue that this is a standard pattern — growth reduces

happiness inequality.
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Since high-income periods have a lower mean and variance than low-income periods,

we know that a left-skewed log normal distribution will reverse the trend. In fact, we do

not need to skew the distribution that much. For values of C ≥ .45 we find the expected

positive relationship between income and happiness. In Figure 5, we show the distribution

of happiness under this set of parameters in 2006. Here the cut-point values of happiness

would be −1 to go from not too happy to pretty happy and −.64 to go from pretty happy

to very happy. There is variation among the happiest and least happy individuals, although

more so among the latter given the skewness of the distribution.

For C > 2, this positive relationship becomes statistically significant. We plot the C =

2.05 case in Figure 6. Here, a $10,000 increase in real per capita disposable income is

associated with a .22 unit increase in happiness. If we are willing to accept this amount

of skewness in the happiness distribution, then raising the incomes of all does not raise

the happiness of all but does raise average happiness. There are other distributions and

transformations that replicate this result; there is no way to determine from the data which

utility function is correct.

As in the case of MTO, if we are convinced that the response categories in the survey are

the ones that are relevant for policy purposes, we can avoid this problem. However, unlike

the case of the female happiness paradox where it might be possible to conclude that no

plausible happiness distribution would reverse the result, it is evident that plausible (at least

to us) distributions can reverse the basic finding.

4.4 Cross-Country Comparisons

In the previous sections, we found that three conclusions based on normally-distributed hap-

piness assumptions could be reversed by simple log-normal transformations. In this subsec-

tion we explore the sensitivity of happiness comparisons to such transformations in general.

Using data from the World Values Survey, we estimate mean happiness at the country level

for a normal distribution, as well as a log-normal distribution with C = 2, .5,−.5, and −2.12

The ordering of countries in Table 3 represents their happiness ranking when happiness

is distributed normally, and the columns list their ranking under the different log-normal

transformations. Although the actual degree of skewness varies across countries due to

differences in the variance of the underlying normal distribution, moving from left to right

in the columns represents moving from a relatively right-skewed to a relatively left-skewed

12In contrast with the other data we use, the World Values Survey elicits happiness responses on a 4-value
scale: not at all happy, not very happy, quite happy, and very happy. Because the fraction of not at all
happy responses is almost universally trivial, we combine these responses with those of not very happy to
get a 3-point scale. This allows us to follow the same approach as in the previous three subsections.
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distribution. Doing so has dramatic effects on the rank-ordering of happiness. The five

happiest countries when happiness is right-skewed are Ghana, Guatemala, Mexico, Trinidad

and Tobago, and South Africa. Three of these countries rank in the bottom ten when

happiness is left-skewed, and only one (Mexico) ranks in the upper half. The top five under

the extreme left-skewed distribution of happiness (New Zealand, Sweden, Canada, Norway,

and Great Britain) fare relatively better under right-skewed happiness, though only Great

Britain remains in the top ten. The rank-correlation between the log-normal transformations

with C = 2 and C = −2 is .156.

There are some countries whose rank remains fairly stable throughout the distribution.

Great Britain is the third happiest country under a normal distribution and has its rank vary

between 2 and 8 under the skewed distributions. Moldova, the world’s least happy country

under the normal distribution, is never able to rise above 4th worst in the skewed transforma-

tions. These cases are counterbalanced by countries like Ghana and Ethiopia. Ghana ranges

from the world’s happiest to the world’s 3rd least happy depending on whether happiness is

right- or left-skewed. Ethiopia, the 10th least happy under the normal distribution, is able

to rise as high as 7th when happiness is right-skewed, placing it above the United States,

Australia, and Great Britain, among others.

The wide variation in ranking suggests that in most cases the amount of skewness allowed

in the distribution can have substantial impacts on cross-group comparisons. Even the most

skewed-distributions we explored here are not, to us, implausible. They involve a smaller

exponential transformation than required to have a significant and positive relationship be-

tween average happiness and per capita income over time in the United States (see figure 5).

We do find the ranking under the left-skewed distribution to be more in-line with our priors

than the right-skew or the normal, though we stress there is nothing in the happiness data

itself that would allow us to choose among the distributions. Interestingly, the right-skewed

distributions would imply a strong negative correlation between per capita GDP, while the

left-skewed implies a strong positive relation.13

5 Discussion and Conclusions

As we have demonstrated, key conclusions of happiness studies depend on assumptions about

the underlying distribution of happiness, something about which the data can give us little

or no guidance. Since the estimated cdfs (almost) always cross when we assume a particular

13Using 2005 data from the IMF on purchasing power parity equivalent per capita GDP, the coeffi cient
on a regression of estimated mean happiness and the natural logarithm of per capita GDP is -4.79 for the
right-skewed (C = 2) distribution and .60 for the left-skewed distribution (C = −2).
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distribution of utility, there is always some transformation that preserves the rank order of

individuals and changes the direction of the estimated gap in mean happiness.

Is there any way to create compelling cross-group comparisons?

Perhaps the simplest assumption one could make is to assume that we know the policy-

relevant distribution of happiness. For instance, if we believe happiness is distributed nor-

mally, we can fix the cut-points between "not too happy", "pretty happy", and "very happy"

and estimate the means and variances of each group through ordered probit.

It should be clear that the choice of a particular distribution almost inevitably implies

taking a stand on some of the very issues that have been the focus of the happiness litera-

ture. Thus since wealth and income are highly skewed, a normal distribution of happiness

would almost necessarily require the marginal utility of wealth or income to be sharply di-

minishing. We do not, however, rule out the possibility that the profession could achieve

near consensus on some reasonable restrictions on the happiness distribution and that these

restrictions would be adequate to allow us to reach strong conclusions about the ranking of

mean happiness in some cases.

Of course, there are diffi culties even if we can rank means. Unless we are very traditional

utilitarians who wish to maximize the sum of utilities, we will still encounter problems for

policy purposes. We may, many philosophers would argue should, care more about increases

in utility at some parts if the distribution than at others. In this case, the Bond and Lang

(2013) criticism of test scores applies directly.

An alternative solution is to declare the ordinal scale on which people report their hap-

piness to be the policy-relevant one. Group A is happier than group B if its members

responses “stochastically dominate”B’s using the categories provided in the question about

self-assessed happiness. This approach has a great deal of intuitive appeal, and we confess

that in some cases we are inclined to accept it. However, it is trivial to find examples where,

using what appears to be a sensible partition of the data into three categories, groups appear

to be ordered in the sense of stochastic dominance, but for which the means have the re-

verse order when the full underlying distribution is examined. For example, there are many

occupations (e.g. actors) in which mean income is relatively high but most people in the

occupation have very low incomes. Other occupations have high variance but also relatively

low mean wages. When stochastic dominance fails using the full underlying distribution, it

is possible to group wages (or other variables) so that using the grouped data, stochastic

dominance appears to hold.

Of course, as the number of response categories becomes large, it becomes less plausible

that a finer grid would reverse the conclusion that the group that appears to be happier in

the sense of stochastic dominance has higher mean happiness. In the experiment described
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earlier, Oswald asked participants to report their height on a continuous scale from 0 to

10. Assuming that there are no responses at the extreme, if all respondents use the same

reporting function, then stochastic dominance is suffi cient to ensure that the ranking of the

means is independent of scale. It seems to us likely that if individual differences in the

reporting function are independent of group membership, first order stochastic dominance

will still be suffi cient to rank means. However, we note that Oswald finds evidence that

men and women use different reporting functions when converting their height to his scale.

It is also not evident that repeated observations on the same individuals will address the

problem of heterogeneity in the response function. In addition to the well-known problems

associated with estimating fixed effects with ordinal data, it is not clear that we expect

individual reporting functions to be stable over time. For example, in repeated cross-sections,

immigrants show no improvement in their host-country language skills, but they report

improvement when asked to compare their current and earlier language skills (Berman, Lang

and Siniver, 2003).

One solution when working with ordinal scales is to relate them to some measurable out-

come. In the traditional economics literature, we measure the utility of a good or outcome by

willingness to pay, imperfectly captured by the equivalent or compensating variation. The

happiness literature has called this approach into question and with it some basic assump-

tions, such as positive marginal utility of money. Invoking a monetary scale thus brings us

to a Catch-22. We cannot answer the main questions of the happiness literature using the

most obvious tool because the literature seeks to invalidate that very tool.

Finally, we note that our examples require different transformations to reverse the results

in the literature. We showed that moving to a low poverty area reduces mean happiness if

happiness is log normally distributed and strongly right skewed. But the Easterlin paradox

is resolved for the United States if happiness follows a suffi ciently left-skewed log normal

distribution. It is not obvious that there is an assumption about the distribution that

would reverse both results. It may be that we can reach suffi cient consensus about which

distributions are acceptable that we can make definitive statements in some cases.

One possibility is what we call the “Tolstoy assumption,”that there is far greater variation

in unhappiness than in happiness.14 In other words, happiness is left skewed. In this case,

it is very likely that MTO did raise happiness for those who moved to less impoverished

areas. This is consistent with the standard assumption that expanding the choice set of

rational agents should never ex ante decrease utility. But before drawing strong conclusions,

we should be explicit about the requisite assumptions.

14We apologize to lovers of Russian literature for this deliberate misinterpretation of Anna Karenina —
“All happy families are alike; each unhappy family is unhappy in its own way.”

18



References

[1] Berman, Eli, Kevin Lang and Erez Siniver, 2003.“Language-Skill Complementarity:

Returns to Immigrant Language Acquisition,’Labour Economics, 10 (3): 265-90.

[2] Clarke, Andrew E., Sarah Fleche and Claudia Senik, forthcoming. “The Great Happi-

ness Moderation,”in A.E. Clark and C. Senik, eds., Happiness and Economic Growth:

Lessons from Developing Countries, Oxford: Oxford University Press.

[3] Clarke, Andrew E., Sarah Fleche and Claudia Senik, 2014. “Economic Growth Evens

Out Happiness: Evidence from Six Surveys,’Paris School of Economics Working Paper

No. 2014-03.

[4] Bond, Timothy N. and Kevin Lang. 2013. "The Evolution of the Black-White Test Gap

in Grades K-3: The Fragility of Results." the Review of Economics and Statistics, 95

(5): 1468-79.

[5] Bond, Timothy N. and Kevin Lang. 2014, “The Black-White Education-Scaled Test-

Score Gap in Grades K-7,”unpublished.

[6] Deaton, Angus. 2008. "Income, Health, Wellbeing Around the World: Evidence from

the Gallup World Poll." Journal of Economic Perspectives, 22 (2): 53-72.

[7] Dunn, Elizabeth and Michael Norton, Happy Money: The Science of Smarter Spending,

New York: Simon & Schuster, 2013.

[8] Dutta, I. and J. Foster, 2013. “Inequality of Happiness in the United States: 1972-2010,”

Review of Income and Wealth, 59: 393-415.

[9] Easterlin, Richard A. 1973. "Does Money Buy Happiness?" The Public Interest, 30 (3):

3-10.

[10] Easterlin, Richard A. 1974. "Does Economic Growth Improve the Human Lot?" In

Nations and Households in Economic Growth: Essays in Honor of Moses Abramovitz,

ed. Paul A. David and Melvin W. Reder, 89-125. New York: Academic Press.

[11] Easterlin, Richard A. 1994. "Will Raising the Incomes of All Increase the Happiness of

All?" Journal of Economic Behavior and Organization, 27 (1): 35-47.

[12] Frey, Bruno S. and Alois Stutzer. 2003. “Maximising Happiness?”German Economic

Review, 1 (2): 145-67.

19



[13] Hammond, Peter J., Federica Liberini and Eugenio Proto. 2011 “Individual Welfare

and Subjective Well-Being: Commentary Inspired by Sacks, Stevenson and Wolfers,”

Warwick Economic Research Papers No. 957.

[14] Katz, Lawrence F., Jeffrey R. Kling, and Jeffrey B. Liebman. 2001. "Moving to Op-

portunity in Boston: Early Results of a Randomized Mobility Experiment." Quarterly

Journal of Economics, 116 (2): 607-654.

[15] Kling, Jeffrey R., Jeffrey B. Liebman, and Lawrence F. Katz. 2007. "Experimental

Analysis of Labor Market Effects." Econometrica, 75 (1): 83-119.

[16] Ludwig, Jens, Greg J. Duncan, Lisa A. Gennetian, Lawrence F. Katz, Ronald C. Kessler,

Jeffrey R. Kling, Lisa Sanbonmatsu. 2012. "Neighborhood Effects on the Long-Term

Well-Being of Low-Income Adults,”Science, 337: 1505-1510.

[17] Ludwig, Jens, Greg J. Duncan, Lisa A. Gennetian, Lawrence F. Katz, Ronald C. Kessler,

Jeffrey R. Kling, Lisa Sanbonmatsu. 2013. "Long-Term Neighborhood Effects on Work-

ing Families: Evidence from Moving to Opportunity." NBERWorking Paper No. 18772.

[18] Oswald, Andrew J. 2008, “On the Curvature of the Reporting Function from Objective

Reality to Subjective Feelings,”Economics Letters, 100 (3): 369—372.

[19] Rosenbaum, James E. 1995. "Changing the Geography of Opportunity by Expanding

Residential Choice: Lessons from the Gautreaux Program." Housing Policy Debate, 6

(1): 231-269.

[20] Stevenson, Betsey and Justin Wolfers. 2008a. "Economic Growth and Subjective Well-

Being: Reassessing the Easterlin Paradox." Brookings Papers on Economic Activity,

1-87.

[21] Stevenson, Betsey and Justin Wolfers. 2008b. "Happiness Inequality in the United

States." Journal of Legal Studies, 37(2): S33-79.

[22] Stevenson, Betsey and Justin Wolfers. 2009. "The Paradox of Declining Female Happi-

ness." American Economic Journal: Economic Policy, 1(2): 190-225.

20



Figure 1: MTO Log-Normal Happiness Distribution with Equal Means

Figure 2: Trend in Female-Male Happiness Gap for Log-Normal Distributions
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Figure 3: Mean Happiness and National Income, Normal Distribution
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Figure 4: Standard Deviation of Happiness and National Income, Normal Distribution
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Figure 5: 2006 Log-Normal Distribution of Happiness with no Easterlin Paradox

Figure 6: Mean Happiness and National Income, Log-Normal Distribution
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Table 1: Distribution of Happiness - Moving to Opportunities
Control Compliers Experimental Compliers

Very Happy 0.242 0.262
Pretty Happy 0.470 0.564
Not Too Happy 0.288 0.174
Source: Ludwig et al (2013), Appendix Table 7.

Experimental estimates are TOT.

Table 2: Distribution of Happiness - General Social Survey
Male Female

Panel A: 1972-1976
Very Happy 0.337 0.384
Pretty Happy 0.530 0.493
Not Too Happy 0.132 0.122
Normal Mean 0.727 0.798
Normal Variance 0.424 0.471

Panel B: 1998-2006
Very Happy 0.330 0.339
Pretty Happy 0.566 0.553
Not Too Happy 0.104 0.109
Normal Mean 0.742 0.748
Normal Variance 0.346 0.367
Source: General Social Survey Stevenson-Wolfers file.

Normal means and variances calculated from answers

under assumption that happiness follows a normal

distribution with seperate means and variances
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Table 3: Country Rankings of Mean Happiness under

Log-Normal Distributions

C=2 C=0.5 C=-0.5 C=-2.0

Mexico 3 2 1 20

Trinidad and Tobago 4 3 5 36

Great Britain 8 6 2 5

Ghana 1 1 26 55

Colombia 6 4 9 33

Canada 12 8 3 3

Sweden 19 9 4 2

Switzerland 14 10 7 8

Netherlands 15 11 8 6

New Zealand 27 14 6 1

Thailand 16 13 11 9

Guatemala 2 5 30 49

Norway 29 16 10 4

Malaysia 25 17 12 7

South Africa 5 7 31 48

France 20 19 15 17

Australia 22 20 14 13

United States 28 21 13 10

Mali 9 12 23 39

Turkey 11 15 20 29

Cyprus 13 18 19 26

Brazil 23 22 16 16

Argentina 24 23 22 23

Finland 32 24 18 14

Andorra 35 26 17 11

Japan 31 27 24 21

Indonesia 36 30 21 12

Uruguay 26 25 28 27

Jordan 30 28 27 24

Viet Nam 39 33 25 15

Poland 40 34 29 18

Chile 18 29 35 42
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Table 3 Continued

Italy 44 39 32 22

Taiwan 38 38 34 30

Spain 45 41 33 19

Morocco 33 36 37 38

India 17 32 43 45

Burkina Faso 34 37 39 40

Germany 41 40 36 31

South Korea 46 45 38 25

Slovenia 43 43 41 35

Iran 42 44 42 37

China 37 42 45 43

Rwanda 47 46 40 28

Peru 10 35 48 53

Egypt 52 47 44 34

Hong Kong 55 49 46 32

Ethiopia 7 31 52 57

Ukraine 49 48 47 41

Russian Federation 51 52 49 44

Georgia 48 51 50 46

Serbia 53 53 51 47

Zambia 21 50 55 56

Bulgaria 50 54 53 52

Romania 56 55 54 50

Iraq 57 57 56 51

Moldova 54 56 57 54

Rank of estimated country mean happiness under various

log-normal trasformations. Countries listed in order of

estimated mean happiness under normal distribution.

Source: World Values Survey 2005.
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