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examine three nationally representative datasets and find that misreporting appears to be sensitive to
differences in survey context. When we compare predicted BMI distributions using the two validation
approaches, we find that the standard correction is affected by differences in misreporting while our
correction is not. Finally, we present several examples that demonstrate the potential importance of
our correction for future econometric analyses and estimates of obesity rates.
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1 Introduction 

Obesity, defined as having a body mass index (BMI) of at least 30, is associated with heart 

disease, diabetes, high blood pressure, stroke, and other health problems (Strum, 2002).1 The 

obesity rate among U.S. adults rose from 13% in 1960 to 34% in 2008, with obesity’s annual 

costs reaching 112,000 lives and $190 billion in medical expenses (Flegal et al., 1998; Flegal et 

al., 2005; Ogden and Carroll, 2010; Cawley and Meyerhoefer, 2012). This sharp increase has 

prompted a large literature examining its causes and consequences.  

Obtaining accurate data on weight and height has long been problematic for researchers. 

Medically measured weight and height are obviously ideal, but they are expensive to collect in 

large samples. For this reason, only one large-scale U.S. government health dataset – the 

National Health and Nutrition Examination Surveys (NHANES) – contains measured weights 

and heights. However, the NHANES has several limitations. Though large enough to produce 

national-level descriptive statistics, it is often too small for more sophisticated estimation. 

Moreover, the NHANES consists of repeated cross-sections so it does not allow for the use of 

panel data methods. Finally, although the NHANES contains excellent health information, it 

includes a limited number of economic and demographic variables.  

Other datasets include respondents’ self-reported weight and height, often obtained through 

telephone surveys (e.g. Behavioral Risk Factor Surveillance System (BRFSS)). The use of self-

reported data permits a larger sample size and broader geographic coverage, but is limited by the 

fact that self-reports are often subject to considerable measurement error. Some respondents may 

not know their current weight, while others might misreport their weight and height in an effort 

                                                            
1 BMI=weight in kilograms divided by height in squared meters. 
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to adhere to social norms. Cawley (2002) finds that underweight people tend to overreport their 

weight while those who are heavier tend to underreport. Rowland (1990) finds similar results for 

weight and also documents a tendency to exaggerate height that is more pronounced among the 

overweight. For both sexes, these results imply that the distribution of self-reported weight is 

more compressed than the distribution of measured weight, and obesity rates computed from 

self-reported weight and height are understated. Moreover, the systematic, non-classical nature 

of the measurement error suggests that bias in regression estimates is possible regardless of 

whether BMI is an independent or dependent variable, and that the direction of the bias is 

unclear. 

Two papers by Cawley (2002; 2004) were the first to attempt to correct for the misreporting 

of height and weight. Since the NHANES was not a suitable dataset for the topic of either paper, 

Cawley used the 1979 cohort of the National Longitudinal Survey of Youth, which contains self-

reported weight and height.2 He attempted to correct measurement error in these variables by 

using the NHANES as a validation sample for the NLSY79 and applying a procedure developed 

by Lee and Sepanski (1995). For each race and gender group, Cawley regressed measured weight 

and height on the corresponding self-reports and their squares in NHANES, and then used the 

resulting regression estimates to predict the NLSY79 respondents’ actual weights and heights.  

This correction is now common in the economics-of-obesity literature. Several recent papers 

have used this correction when studying the impacts of obesity on labor market outcomes (e.g., 

                                                            
2 The first paper, Cawley (2002), tests for rational addiction in caloric intake, which requires panel data. The second, 
Cawley (2004), examines the impact of obesity on wages, and wages are not available in the NHANES. 
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Cawley and Danzinger, 2005; Gregory, 2010; Gregory and Ruhm, 2011; Majumder, 2013). It has 

also been used in a number of papers that examine potential economic determinants of obesity.3   

Unfortunately, the standard validation method may not be appropriate if the amount or type 

of measurement error differs between the primary and validation samples. This potential problem 

is acknowledged in Cawley (2004) and Cawley and Burhauser (2006). As Han et al. (2009) point 

out, NHANES respondents should expect to be measured when they report their height and 

weight, while respondents in the NLSY cohorts and other commonly used datasets do not. 

Furthermore, Pinkston (2014) notes that interview mode (in-person vs. telephone) affects self-

reported values of respondents in the NLSY cohorts—even though in-person interviewees do not 

expect to be measured.  

Our paper develops an alternative correction for self-reported weight and height that relies 

on weaker assumptions about the relationship between measured and reported values in the 

primary and validation datasets. Instead of using the reported values, we predict actual measures 

using the percentile rank of reported values in their respective distributions. Our method is robust 

to differences across samples in the severity (or type) of measurement error as long as the 

rankings of respondents based on reported values resemble the rankings based on actual 

measures in both datasets, and both datasets represent the same population (e.g., nationally 

representative samples).  

                                                            
3 Potential determinates of obesity studied using Cawley’s correction include age (Baum and Ruhm, 2009), income 
(Cawley et al., 2010), unemployment rate (Ruhm, 2005), childhood socioeconomic status (Baum and Ruhm, 2009), 
food prices (Lakdawalla and Philipson, 2002; Chou et al., 2004; Courtemanche et al., forthcoming; Goldman et al., 
2011), cigarette prices (Chou et al., 2004; Baum, 2009), alcohol prices (Chou et al., 2004), food stamps (Fan, 2010; 
Baum, 2011), restaurant density (Chou et al., 2004), on-the-job physical activity (Lakdawalla and Philipson, 2002), 
smoking bans (Chou et al., 2004), urban sprawl (Plantinga and Bernell, 2007; Eid et al., 2008), and time preference 
(Courtemanche et al., forthcoming). 
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We illustrate our method using data from the BRFSS and the American Time Use Survey 

(ATUS), and show that our rank-based method produces distributions of predicted BMI that are 

consistent across datasets, and close to the distribution of measured BMI in the population. We 

also show that the standard validation approach is sensitive to the differences in misreporting 

between the primary and validation datasets.  

Finally, we illustrate how the corrections can influence regressions coefficients and 

estimates of the prevalence of obesity. We consider basic regressions that include BMI or obesity 

as either a dependent or an independent variable, and compare estimates that use our adjustment 

to analogous estimates that use either no correction or the standard correction. Although our 

correction generally does not affect the signs of coefficient estimates or statistical significance, it 

can lead to important differences in the magnitudes of the estimates. We then revisit the Centers 

for Disease Control’s (CDC’s) well-known map of obesity rates by state and demonstrate that 

correcting the BRFSS data for measurement error dramatically increases the estimated 

prevalence for most states. 

2 The Problem of Transportability and an Alternative Approach 

Let b denote the true measures of height or weight in the population, and ෨ܾ௝ denote the 

reported value in sample j, where ݆ ൌ ܲ, ܸ indicates the primary or validation dataset. The 

reported values, ෨ܾ௝, are allowed to have arbitrary (potentially nonclassical) measurement error.  
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The standard validation approach is based on work by Lee and Sepanski (1995) (L&S in 

what follows) and others in the statistics literature.4 We can distill two conditions from this 

literature that must be met when using validation data to correct for measurement error: 

C1. There must be a surrogate for b. A variable, ௝ܾ
௦, is a surrogate for b if the distribution 

of y given ሺܾ, ௝ܾ
௦ሻ is the same as the distribution of y given b.5  In cases where b is a 

dependent variable that is measured with error, ௝ܾ
௦ is a surrogate if its distribution 

depends only on the true response (Carroll et al., 2006). 

C2. The surrogate, ௝ܾ
௦, must satisfy some form of transportability across datasets. 

Transportability is usually described as the distribution of b conditional on ௝ܾ
௦	being 

the same in both datasets; however, L&S use a weaker form of transportability, 

which requires	ܧሺܾ|ܾ௉
௦ሻ ൌ ሺܾ|ܾ௏ܧ

௦ሻ. 6 

The first condition simply states that a surrogate for b contains no information about the 

dependent variable that is not also contained in b (and possibly other observed covariates). This 

condition is easily satisfied by the reported values, ෨ܾ௝.  

The second condition, transportability, is essential if the procedure used to generate 

predicted values in the validation dataset is to be applied to the primary dataset. C2 requires that 

researchers make additional assumptions about the characteristics of the primary and validation 

datasets. Carroll et al. (2006) note that validation data are ideally drawn from a random 

                                                            
4 See Bound et al. (2001) for a brief survey of this work, and Carroll et al. (2006) for more depth. 
5 In addition to L&S, see Carroll et al. (2006). 
6 See Bound et al. (2001) or Carroll et al. (2006) for examples of the stronger version of transportability. Strictly 
speaking, L&S assume that the expectation of y conditional on ௝ܾ

௦ is the same in both datasets, but that reduces to 
ሺܾ|ܾ௉ܧ

௦ሻ ൌ ሺܾ|ܾ௏ܧ
௦ሻ in the current context.  
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subsample of the primary data, and warn that transportability may not be satisfied when the 

validation data are drawn from external sources.  

Bound et al. (2001) point out that misreporting in survey data often varies with the context 

of the survey. This means that in transportability may not hold when the validation data are 

drawn from an external source. As Cawley and Burkhauser (2006) note, the NHANES surveys 

collect self-reported height and weight during face-to-face interviews, while surveys used in the 

social sciences often collect at least some data by telephone. For example, the BRFSS, ATUS 

and PSID surveys are conducted by telephone. Both the 1979 and 1997 cohorts of the NLSY 

combine in-person and telephone interviews.7 

Bound et al. (2001) also note that transportability requires both datasets to be 

representative of the same population. There is ample evidence in the literature suggesting that 

different populations misreport height and weight differently.8 Therefore, we want to stress that 

neither the method we develop nor the standard validation approach is appropriate if the 

validation data are not representative of the same population as the primary data. As in previous 

work on obesity, we use datasets that are weighted to be nationally representative. Furthermore, 

we explicitly assume that the distribution of b, ܨሺܾሻ, does not vary across samples.  

The rest of this section compares the standard validation approach and our rank-based 

alternative. In section 2.1, we focus on the assumptions required for the standard approach to 

satisfy transportability, and discuss when those assumptions are unlikely to hold. In section 2.2, 
                                                            
7 The use of telephone surveys is clearly described under the heading “Interview Methods” in the documentation for 
each cohort. Pinkston (2014) notes that the reported weight of white women is especially sensitive to interview 
methods. 
8 This is why predictions have been made separately by race and gender group since Cawley (2002, 2004). Cawley 
(2004) also notes that misreporting varies by body mass. Maclean and Sikora (2014) discuss the importance of both 
samples having the same age distribution. Cawley and Choi (2014) find that the misreporting of height, weight and 
other variables differs by education group. Cawley and Burkhauser (2006) and Courtemanche et al. (2014) note that 
misreporting can vary across time periods. 
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we develop an alternative surrogate that satisfies the transportability condition under weaker 

assumptions. 

2.1 The	Standard	Validation	Method	

 Consider the regression of some dependent variable y on b and other covariates. Assume 

we only observe the self-reported values, ෨ܾ௉, in the primary data set. In the standard approach, 

we would estimate 

 ܾ ൌ ൫ߟ ෨ܾ௏൯ ൅ ߳ (1)

using the validation sample, and then use  

෠ܾ ൌ ൫ߟ̂ ෨ܾ௉൯ 

in place of b as an independent variable in our primary sample.9 

This approach assumes that ෨ܾ௝ is a surrogate for ܾ, and that it is transportable. In this 

case, transportability is satisfied under the following assumption: 

A1. The expected value of the true measure conditional on the reported value is the same 

in both the primary and validation datasets; i.e., 	ܧ൫ܾห ෨ܾ௉൯ ൌ ൫ܾหܧ ෨ܾ௏൯ if ෨ܾ௉ ൌ ෨ܾ
௏.10 

We would expect this assumption to hold when an internal validation sample is drawn at random 

from the primary sample. But when the validation data are drawn from an external dataset, 

transportability is satisfied only if the reporting error in ෨ܾ௝ is the same in the two data sources. 

Transportability is more likely to be satisfied when the external validation sample is more similar 

                                                            
9 In Cawley (2004) and other papers in the obesity literature, the dependent variable is actually regressed on a 
nonlinear function of the predicted values, BMI. As we discuss later, L&S argue that it would be preferable to 
predict the nonlinear function directly. 
10 This is the weaker form of transportability used by L&S. 
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to the primary sample. Assumption A1 is very strong, and is less likely to hold, when there are 

differences in interview modes (in-person vs. telephone) or other differences between the data 

sources.  In any case, the required assumptions should be spelled out carefully and, whenever 

possible, evaluated empirically.  

2.2 An	Alternative	Method	Based	on	Percentile	Rank	

The theory supporting the use of validation data does not require us to only use the 

reported measures, ෨ܾ௝, as surrogates for b. Any surrogate for ܾ that satisfies transportability can 

be used. We exploit this fact and propose an alternative surrogate that can satisfy transportability 

in cases where the reported values themselves do not. 

As before, we assume that the ෨ܾ௝ are surrogates for b. Following the previous literature, 

the ෨ܾ௝ are functions of ܾ and a random error term that is not correlated with 11.ݕ  This implies 

that the percentile rank of ෨ܾ௝, given by the distribution function ܩ௝ሺ ෨ܾ௝ሻ, is a function of b and the 

same random error. Therefore, ܩ௝ሺ ෨ܾ௝ሻ is also a surrogate for the true value, b, satisfying C1. 

Our approach uses the percentile rank of the report, ෨ܾ௝, to generate predicted values of b. 

The advantage of using percentiles over using levels of the self-reports is that it requires a 

weaker assumption about the relationship between ෨ܾ௝ and the true values, b. Specifically, we 

assume:  

                                                            
11 Following equation (1), ෨ܾ௩ ൌ ଵሺܾିߟ െ ߳ሻ, where ିߟଵሺ	. ሻ describes how reported values differ from what 
respondents believe the actual measure is. Although ߳ is not correlated with ݕ, it could be correlated with ܾ. 
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A2. The expected value of the true measure conditional on the reported value is 

monotonically increasing in the reported value; i.e., ෨ܾ″ > ෨ܾ′, implies that         

|ሺܾܧ ෨ܾ″ሻ > Eሺܾ| ෨ܾ′ሻ.12 

In other words, given any two people who report their weight, the person who reports the higher 

weight is expected to actually weigh more. A2 is a much weaker assumption than A1. If A2 does 

not hold, then it is hard to see how respondent reports convey any useful information about 

actual height and weight. Assumption A2 is unaffected by differences in measurement error 

across samples, as long as reported values still allow a relevant (expected) ranking of 

respondents in each sample. Finally, note that the monotonicity described by A2 is testable in the 

validation sample but not in the primary samples.13 

Now consider the unconditional distribution of true values, ܨሺܾሻ. As long as both 

samples are representative of the same populations, ܨሺܾሻ does not vary between datasets. Both 

௝ሺܩ ሺܾሻ andܨ ෨ܾ௝ሻ are continuous, monotonically increasing functions with ranges in the 

interval	ሾ0, 1ሿ. This implies that for every value of ෨ܾ௝ there is a ܾ such that 

ሺܾሻܨ ൌ ௝ሺܩ ෨ܾ௝ሻ. 

In general, ܾ ് ෨ܾ
௝; however, taking the inverse of ܨሺ∙ሻ, we have: 

ܾ ൌ ௝ሺܩଵሺିܨ ෨ܾ௝ሻሻ, 

which maps reported values into the true values of ܾ. 

                                                            
12 This is akin to the assumptions made in the principal-agent literature to allow the use of the first-order approach to 
solving maximization programs (see Milgrom, 1981, and Rogerson, 1985). A sufficient, but not necessary, condition 
for this assumption is the first-order stochastic dominance of ܨሺܾ| ෨ܾ″ሻ over ܨሺܾ| ෨ܾ′ሻ. 
13 We test A2 for each race and gender group in NHANES using nonparametric regressions of actual height and 
weight on their reported values. We cannot reject monotonicity in any case. 
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 Note that ିܨଵሺ∙ሻ does not depend on which sample the reported values, ෨ܾ௝, are drawn 

from. It simply takes the percentile rank associated with a reported value in sample ݆ and returns 

the measured value that has the same position in the distribution of measured values. As a result, 

௏ሺܩ|൫ܾܨ ෨ܾ௏ሻ൯ ൌ ௉ሺܩ|൫ܾܨ ෨ܾ௉ሻ൯. This implies that the percentile ranks, ܩ௝ሺ ෨ܾ௝ሻ, satisfy 

transportability, even when the reported values do not. Therefore, the percentile rank approach 

satisfies both of the conditions required for the use of validation data. 

3 Data and the Transportability of Self-Reported Measures 

This section begins with a brief introduction to the data sets we use in our analysis. We then 

show that self-reported height and weight do not appear to satisfy transportability between these 

datasets. 

3.1 Three Data Sets 

We use two primary datasets: the Behavioral Risk Factor Surveillance System (BRFSS) and the 

American Time Use Survey (ATUS). The BRFSS is a telephone survey conducted by the 

Centers for Disease Control in conjunction with state health departments. It focuses on health 

and risky behaviors, but also contains a wide variety of demographic variables. The primary 

advantage of the BRFSS for obesity studies is its size. With over 300,000 respondents per year in 

the later waves, the BRFSS is large enough to compute reliable state-level descriptive statistics. 

Additionally, the large sample size makes it popular among economists seeking to identify causal 

effects using inherently inefficient estimation techniques such as instrumental variables.  

The ATUS was designed to measure how people spend their time rather than to study 

health outcomes. It is a telephone survey that asks respondents to sequentially report what they 
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did on the day prior to the interview. ATUS respondents are selected from households that have 

completed their final month of participation in the Current Population Survey (CPS). In addition 

to the time diary, the ATUS includes demographic information about respondents and members 

of the respondent’s household, and employment status information for the respondent and the 

respondent’s spouse. In 2006, 2007, and 2008, the U.S. Department of Agriculture’s Economic 

Research Service (ERS) sponsored Eating and Health Module, which collects information about 

the respondent’s health, including weight and height, and additional information on time spent 

eating and drinking.  

 Following the previous literature, our external validation data are drawn from the 

National Health and Nutrition Examination Survey (NHANES). NHANES is collected by the 

Centers for Disease Control and Prevention with the goal of assessing the health status and 

behaviors of children and adults in the United States. Respondents are asked their weight and 

height during the initial face-to-face interview administered in the respondent’s home. Weight 

and height is then measured during a physical examination that may take place up to several 

weeks after the in-home interview. Respondents are told about other components of the survey 

before they consent to the initial interview, and they are compensated for participating.14 We use 

data on race, gender, and age from the demographic background files of the 2007-2008 wave; 

reported values of height and weight from the Weight History questionnaire; and measures of 

actual height and weight from the physical examination.  

 For consistency, we restrict the samples from all three data sets to 2007 and 2008. We 

also focus on respondents between the ages of 19 and 64 who identify themselves as Caucasian, 

                                                            
14 In contrast, BRFSS respondents are not compensated at all for participation. ATUS respondents are offered a 
small incentive only if their household did not provide a valid phone number when they participated in the CPS. 
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African-American or any other racial or ethnic group.15 All estimation is weighted to ensure that 

each sample is representative of the same population. 

 Table 1 presents basic summary statistics for the three datasets. Even with all race and 

gender groups pooled together, average reported weight is higher in the NHANES (180 lbs) 

sample than either BRFSS (178.6) or ATUS (178). Average measured weight is roughly two 

pounds heavier than reported weight for the full NHANES sample. 

 The demographic variables in Table 1 are very similar across samples, which is 

consistent with the samples being representative of the same populations. The one notable 

exception is that black respondents appear to be underrepresented in the BRFSS. Such 

differences may point to shortcomings in the sample weights used; however, any shortcomings in 

BRFSS sample weights would affect both of the correction methods we compare. Therefore, we 

ignore this difference in the work that follows. 

3.2 The Transportability of Self-Reported Height and Weight 

 The most relevant difference in methodology between the surveys is that respondents in 

the BRFSS and ATUS are interviewed by telephone, while respondents in the NHANES are 

interviewed in person and should expect to be measured in the near future.16 It seems natural to 

expect misreporting to be more severe in telephone surveys than in face-to-face surveys 

conducted in the weeks leading up to a medical examination. Pinkston (2014) points out that 

phone interviews in the NLSY cohorts are associated with lower reported weights for white 

                                                            
15 All respondents who identify as Hispanic are included in the “other” category. We did not divide this category 
further due to the sample size in NHANES. For the sake of convenience, we refer to these groups as though they are 
defined by race, even though that is not strictly correct. 
16 See the online documentation for NHANES for more detail. Although respondents are told about the physical 
examinations before the initial interview, any effect of that knowledge may be lessened by the amount of time 
between the in-home interviews and the physical examinations. 
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women than in-person interviews, even though NLSY respondents have no reason to believe 

they will be measured in either case.  

 Comparing differences in misreporting between our datasets is straightforward. We 

expect the distribution of actual height and weight to be the same in all three datasets because 

they are all representative samples of the same population.17 If the distributions of a reported 

value are not the same in two samples that have the same distribution of actual measures, the 

relationships between actual and reported measures are also not the same. Therefore, a 

comparison of reported height and weight across samples should be sufficient to evaluate 

whether the use of reported values in levels is transportable.  

 Figures 1A compare the densities of reported weight and height across samples for white, 

black and other women. The results cast substantial doubt on the transportability of reported 

weight for women in these samples. Relative to white women in NHANES, white women in both 

BRFSS and ATUS report weights between 120 and 150 pounds more frequently and report 

higher weights less frequently. The comparison of reported weight produces a similar picture for 

women of other races. We only see a difference in the reported weights of black women in the 

upper half of their distributions; however, self-reported height appears more sensitive to context 

for black women than for white or other women. 

Figures 1B make analogous comparisons for men. Differences in reported weight are less 

pronounced for men than for women; but differences in height appear to be larger, especially for 

black and other men. In contrast to the results for women, black men and men from other races 

                                                            
17 The distributions of measured height or weight would only differ between samples if the surveys did not all 
represent the population they claim to represent, or if the measurements were somehow affected by differences in 
data collection. Either of these scenarios would make any use of NHANES as a validation sample suspect, and 
neither scenario can be ruled out because we do not observe measured values in the BRFSS or ATUS data.  
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appear more likely to report higher weights when interviewed on the phone than when 

interviewed in person. 

Tables 2A and 2B compare the self-reported measures in BRFSS and ATUS, 

respectively, to those from NHANES. Each table presents averages of reported height and 

weight, followed by the medians, 75th and 90th percentiles. The final column of each table 

presents nonparametric Kolmogorov-Smirnov tests for the equality of distributions between 

samples. 

In both tables, we see that women reported lower weights in the telephone surveys than in 

the NHANES, with the difference being larger for black and white women than for women of 

other races. The differences in average reported weight are driven more by the upper tail for 

black and (to a lesser degree) other women than for white women. 

The differences in reported distributions are again less pronounced for men. We only see 

differences in reported weight for black men and men of other races, and again they appear to 

report higher weights when they cannot be observed by the interviewer. There are small 

differences in reported height, but they are less obvious in the summary statistics than the kernel 

densities. 

The only cases in which Kolmogorov-Smirnov tests cannot reject the equality across 

samples of either measure are for white and black men in BRFSS compared to NHANES; 

however, we can reject the equality of reported BMI distributions (not shown) for black men. 

Overall, these results suggest that transportability is likely not satisfied in most cases when self-

reported weight and height are used as surrogates for measured weight and height.  
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Finally, it is worth noting that some differences in the results for BRFSS and ATUS 

should be expected. Although both are conducted over the telephone, they have different focuses. 

Differences in reporting error could be caused by something as simple as differences in the 

preceding questions or in the surveys’ introductions. This could explain why our results cast 

doubt on the use of the NHANES as a validation sample for white men in the ATUS, but not in 

the BRFSS. It is possible that the misreporting of white men is sensitive to the focus of previous 

questions on health-related topics. 

4 Comparing Methods for Predicting BMI 

As noted earlier, the standard method for correcting BMI is to regress measured height and 

weight in NHANES on reported values, and then use the estimated coefficients to predict the 

measured values in the primary dataset. Specifically, for each race and gender category, we 

regress measured height (or weight) on cubic polynomials in age and reported height (or weight). 

We then predict actual height and weight, and use those values to calculate predicted BMI.18 

 Our method is similar, but uses the percentile rank of the reports and a more flexible 

functional form. Consistent with the fact that percentile ranks are (roughly) uniformly distributed 

between zero and one, while reported (and actual) measures are not, we found that regressing the 

actual measures on simple polynomials of the percentile ranks resulted in predicted values in 

                                                            
18 L&S argue that constructing a nonlinear function of mismeasured variables from predicted values of those 
variables may provide a useful approximation, but predicting the nonlinear function directly is preferable. In the 
case of BMI, this means that researchers who are interested in BMI should predict BMI directly instead of 
constructing it from predicted height and weight; however, we find that the mean squared error associated with the 
prediction of BMI is higher in NHANES when BMI is predicted directly than when it is constructed from predicted 
height and weight. Furthermore, predicting height and weight is more consistent with the previous obesity literature. 
Therefore, we do not follow the advice of L&S in this particular case. 
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NHANES that were poor fits for the actual measures.19 Instead, we regressed the measured 

values on cubic basis splines (b-splines) in the percentile ranks, which resulted in a fit that was 

comparable to that achieved when using simple polynomials in the standard method.20  

 The fact that measured height and weight can be accurately predicted with simpler 

functions of the reported values themselves than they can be predicted with percentiles is an 

advantage of the standard validation approach. Researchers who have access to an appropriate 

internal validation sample, for example, should use the standard method because nothing will be 

gained by transforming mismeasured variables into percentiles only to use a more complicated 

functional form to fit the actual measurements. In what follows, we will compare predictions 

using cubic b-splines of the percentiles to predictions using cubic polynomials of reported levels. 

We do not show predictions using splines of the reported values because those predictions are 

indistinguishable from the simpler predictions that are common in the literature.21 

 Figures 2A through 2F compare kernel densities of predicted BMI using our percentile 

method to predictions using the standard validation approach for each race and gender group. 

Each figure contains four graphs, one for each prediction method and primary data set. Each 

graph compares predicted BMI from a primary data set to the analogous prediction from 

NHANES, as well as measured BMI from NHANES. At the bottom of each figure, we include 

results for Kolmogorov-Smirnov tests of the differences observed in each graph. 

                                                            
19 The distributions of percentile ranks differ from uniform distributions only because of clustering in the self-
reports, typically around multiples of five pounds. 
20 The details of our estimation are included in the Appendix. 
21 The ܴଶ for all of the regressions used to predict height and weight are over 0.9. When measured values are 
regressed on self-reported levels, there is little for a spline function to explain that is not already explained by a 
polynomial. 
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 Figure 2A shows that the standard method can produce values of predicted BMI that 

differ significantly between samples. These differences follow the differences between samples 

in reported weight, and the Kolmogorov-Smirnov tests strongly reject the hypothesis that the 

standard method produces predicted values in ATUS or BRFSS that are equal to those in 

NHANES. Again, this suggests that the standard method is inappropriate in our context.22 

 In contrast, the density functions of BMI predicted using the percentile rank method are 

very similar across samples. The density of predicted BMI in ATUS is almost indistinguishable 

from the analogous density in NHANES. The Kolmogorov-Smirnov tests both have p-values 

over 0.8, providing no reason to doubt that the density functions of predicted BMI are the same 

across samples when our method is used. 

 The results for black women (Figure 2C) and women of other races (2E) are similar to 

those for white women. The densities of predicted BMI using our approach are noticeably closer 

to the corresponding densities in NHANES, which makes them more similar to measured BMI in 

NHANES (and presumably the national population). Kolmogorov-Smirnov tests again reject the 

equality of the standard method across data sets, but fail to reject equality when using our 

method. 

 The results for men are less striking than the results for women, but still support our 

approach. The density functions for white men (Figure 2B) appear more similar when the 

percentile method is used than when the standard method is used, but testing the equality of 

distributions suggests that none of these differences are statistically significant. This is consistent 

with misreporting being less pronounced for white men than for other groups. Although the 

                                                            
22 Recall that all three datasets should be representative of the same population. Therefore, the true BMI 
distributions should not vary by sample. 
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graphs of kernel densities for black men do not tell an obvious story, the K-S tests reject the 

standard approach and fail to reject our percentile method.23 Finally, the standard method is 

rejected for men of other races when we compare the ATUS to NHANES, and the percentile 

method again produces predictions of BMI that are more consistent across contexts. 

 As a robustness check, we also tested for differences in the density functions of predicted 

BMI between the ATUS and BRFSS (not shown). We would not expect our percentile correction 

to produce different distributions between the two primary samples, and we find no evidence that 

it does. On the other hand, we find statistically significant differences for men and women of 

other races in these surveys when the standard correction is used, which is consistent with the 

less obvious differences in context discussed above (e.g., survey content) affecting 

misreporting.24 

5 Do These Differences Matter? 

The results of sections 3 and 4 suggest that using the relationship between reported and actual 

height and weight in the NHANES to predict BMI in data from the ATUS or BRSS is 

inappropriate in most cases. Furthermore, the rank-based alternative we propose appears to work 

well in practice, producing predictions of BMI that are consistent across random samples of the 

same population. In this section we provide results that illustrate the potential importance of our 

adjustment to empirical work. 

                                                            
23Regardless of method, the BMI of black men appears to be more difficult to predict that the BMI of other groups. 
This is appears to be due to errors in the prediction of height for black men. We considered the possibility that this 
difficulty is related to the small sample size for black men; however, we found similar results when we expanded the 
NHANES sample to include the 2005-2006 and 2009-2010 waves. 
24 Kolmogorov-Smirnov tests reject the equality of distributions of BMI predicted using the standard correction with 
p-values less than or equal to 0.001 for other women and men. No other test suggests a statistically significant 
difference in predicted values between any ATUS and BRFSS subsamples. 
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5.1 Effects of BMI Correction on Regression Estimates 

This section is intended to illustrate the impact our adjustment might have on empirical work that 

uses BMI or obesity in regressions. For both the BRFSS and ATUS, we consider one case where 

BMI or obesity is an explanatory variable and one case where it is the dependent variable. We 

report the results both for the full sample and for each raceൈgender subgroup. None of the 

estimates presented in this section consider endogeneity or any other complications researchers 

might encounter. These results are presented for demonstration purposes only. 

 To assist with the interpretation of results, Table 3 presents average BMI and percentages 

overweight, obese (BMI൒ 30), and class II/III obese (BMI൒ 35) by correction method and 

raceൈgender group for both the BRFSS and ATUS samples. Averages for the measured values 

from NHANES are included for comparison.  

Both correction methods result in greater average BMI in most cases, but the differences 

between the two methods and reported values at the means appear to be fairly small. It is in the 

comparison of the upper tails of the distribution that we see important differences emerge. In 

both the ATUS and the BRFSS, roughly 10.5% of population reports a BMI of 35 or higher. 

Applying the standard correction raises this to 12.5%. Applying our percentile-based correction 

produces estimates of nearly 14%, which is close to the NHANES rate of 14.4%. Consistent with 

those who are the most prone to misreporting also being the most sensitive to context, the 

differences between our rank-based correction and the standard correction are typically largest in 

cases where the standard correction appears to matter the most. 

 The patterns seen in the full sample are seen to some degree in most of the race and 

gender groups, but they are most pronounced for white women. The average reported BMI for 
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this group is 26.9. The standard correction increases average BMI to 27.6, and our correction 

increases it further to 28.2, which is the same as the average measured BMI from NHANES. The 

differences in the correction methods are again larger at the upper tails of the distribution. For 

example, the overall obesity rate based on uncorrected reports is 25.5%. The standard correction 

increases the rate to 30%, and our correction increases it further to 32.7%.  The actual rate from 

NHANES is 33.8%. Thus our correction still slightly underestimates the obesity rate for white 

women, but it does significantly better than the standard approach. Looking at class II/III 

obesity, the rate is under 11% when self-reported measures are used, just over 13% using the 

standard correction, and around 16% using our percentile-based correction, which again is 

slightly lower than the actual rate from NHANES (17.3%). 

 Black men are the most obvious exception to the pattern seen in the full sample. The 

average self-reported BMI in both the BRFSS and the ATUS samples is nearly indistinguishable 

from average measured BMI in NHANES for black men. Furthermore, while black men appear 

to under-report obesity and class II/III obesity slightly, the incidence of self-reported overweight 

status is higher than the actual incidence for black men.  

5.1.1    BRFSS: Food Prices and BMI 

For our first empirical example, we use the BRFSS to evaluate the relationship between 

state-level food prices and BMI. Table 4 reports coefficient estimates of interest from OLS 

regressions of BMI on food price and other basic control variables, as well as probit estimates 

(presented as average marginal effects) of the effects of food prices on the probabilities of being 

obese or class II/III obese. In each case, results are presented with no adjustment, adjustment 

using the standard approach, and then adjustment using our percentile method. The control 

variables include race (dummies for non-Hispanic black and non-Hispanic white), education 
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(dummies for some high school, high school graduate, some college, and four-year college 

degree or greater), marital status (dummies for married, divorced, and widowed), age, inflation-

adjusted household income, and a dummy for whether the year was 2008. The state food price 

measure is computed from city-level data from the Council for Community and Economic 

Research (formerly American Chamber of Commerce Researchers Association) Cost of Living 

Index.25 The sample average food price is $2.56, so a one-dollar increase in food price represents 

approximately a 40% increase relative to the mean. 

The results presented in Table 4 suggest that neither the standard correction nor our 

correction affect the conclusion that higher food prices are associated with lower body mass; 

however, the choice of correction method has potentially important implications for the 

magnitudes of coefficients. For the full sample and for most subgroups, the standard correction 

leads to larger magnitudes than no correction, while our correction leads to even larger 

magnitudes than the standard correction. This is consistent with the aforementioned result that 

measurement error in self-reported weight and height serves to compress the BMI distribution. 

The more measurement error is eliminated, the more “stretched out” the BMI distribution 

becomes. In other words, the smaller the measurement error, the larger the change in BMI that is 

associated with a given change in food prices. For the 0-1 variables, this stretching out of the 

distribution increases the number of lower-BMI individuals (i.e. those closer to the cutoff) that 

are categorized as obese or class II/III obese. It is therefore not surprising that our correction, 

which purges the most measurement error, would lead to larger magnitudes than the standard 

                                                            
25 Following Chou et al. (2004), for each city we average over the prices of each grocery food item, weighting by the 
C2ER shares of each item’s importance in the basket of goods. We then define state prices as the population-
weighted average of the prices in the state’s C2ER markets. Prices are in 2008 dollars. 
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correction, which purges some measurement error, which in turn leads to larger magnitudes than 

using no correction.  

More specifically, consider the whole-sample regressions. The effect of food price on BMI 

using our percentile correction is 23% larger (-0.937 compared to -0.764) than that using no 

correction, and 9% larger (-0.937 compared to -0.858) than that using the standard levels-based 

correction. For obesity, the estimated effect using our approach is 20% larger than with no 

correction, and 3.4% larger than with the standard correction. The differences are most striking, 

however, for class II/III obesity. The estimates with our correction are 64% and 28% larger than 

those using no correction and the standard correction, respectively. The finding that mitigating 

measurement error matters most for class II/III obesity makes sense in light of the 

aforementioned results from the literature that the extent of misreporting of both weight and 

height increases as weight increases (Rowland, 1990; Cawley, 2002). In other words, correcting 

measurement error leads to the largest increases in BMI among the right tail of the distribution, 

where the Class II/III obesity cutoff lies.  

Accurately estimating effects on class II/III obesity is vital, as a recent meta-analysis found 

that an increased risk of mortality from high BMI does not begin until crossing the class II/III 

obesity threshold (Flegal et al., 2013). To illustrate, suppose we are interested in predicting lives 

saved from a calorie tax that raises the price of the food basket by $1. Obesity is estimated to 

cause 112,000 deaths per year (Flegal et al., 2005), and Flegal et al.’s (2013) results suggest it is 

reasonable to attribute all of the premature mortality from obesity to class II/III obesity. The 

class II/III obesity rate in the 2007-2008 NHANES is 14.4%. Using the estimate with our 

correction of -0.041 a $1 increase in food prices would reduce class II/III obesity by 28.5%, 

compared to 22.2% using the standard correction’s estimate of -0.032 and 17.4% using the 
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estimate with no correction of -0.025. Multiplying these numbers by the annual deaths from 

obesity, the estimated lives saved from the hypothetical policy are 31,889 using our correction, 

compared to 24,889 using the standard correction and 19,444 with no correction. Therefore, the 

chosen correction method can lead to important differences in policy implications, even if the 

general conclusions about sign and statistical significance are unaffected. 

Turning to the subsamples, we observe the same general pattern of the magnitudes 

increasing as measurement error is purged for all groups except black women, black men, and 

men of a race other than white or black. Even for these three groups, however, our correction still 

leads to the largest magnitudes for class II/III obesity – substantially larger magnitudes for black 

women and other men. For BMI, our correction increases the food price effect most substantially 

relative to the standard correction for other men (14% larger estimated food price effect), black 

women (14% larger), and white women (13%). For class II/III obesity our correction increases 

the estimated food price effect by over 20% relative to the standard correction for all groups 

except black men. The largest changes are among other men (44%), white women (41%), and 

black women (37%).  

5.1.2    ATUS: Food Prices and BMI 

 Table 5 is analogous to Table 4, but presents estimated effects of food prices on body 

mass using data from the ATUS. Overall, the results are very similar, but the standard errors are 

larger in Table 5 due to the smaller sample size. Looking at the entire sample, the estimated 

effect of food prices on BMI is smallest when reported BMI is used and largest when our rank-

based correction is used. Furthermore, correcting for measurement error appears to have the 

largest effect when we consider class II/III obesity. The estimated effect of an increase in food 

prices on the probability of class II/III obesity is 29% larger with the standard correction than 
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with reported values (-0.036 versus -0.028), and 22% larger with our correction than with the 

standard correction (-0.044 versus -0.036). 

 Looking within race and gender groups, the results for white women again show that 

correcting for measurement error results in larger estimated effects of prices on body mass. The 

estimated effects of food prices on BMI fall for black men as we correct for measurement error, 

which is consistent with black men reporting themselves as overweight more often than they are. 

5.1.3    BRFSS: BMI and Diabetes 

We next turn to an examination of the implications of our rank-based correction in regressions 

with a weight-related independent variable. For the BRFSS, we consider a question of broad 

interest to epidemiologists and health policy researchers: the impact of obesity on diabetes. We 

estimate probit models with a dummy for whether the individual has ever been diagnosed with 

diabetes as the dependent variable; either BMI, obese, or class II/III obese as the independent 

variable of interest; and the same set of controls as our preceding BRFSS analysis in Section 

5.1.1.  

Average marginal effects of BMI, obesity, and class II/III obesity on P(Diabetes) are 

reported in Table 6. In all regressions, the association between BMI, obesity, or class II/III 

obesity and diabetes is positive and statistically significant, so the correction method again does 

not influence the general conclusions. However, important differences again emerge in the 

magnitudes. In most regressions, the standard correction leads to smaller magnitudes than no 

correction, while our correction leads to even smaller magnitudes than the standard correction. 

This is the opposite of the pattern observed when the weight-related variable was the outcome, 

but is again consistent with the observation that measurement error compresses the BMI 

distribution. Correcting measurement error leads to a larger change in BMI being associated with 
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a given change in diabetes, and therefore a smaller coefficient estimate when BMI is an 

explanatory variable. 

Turning to the results for the full sample, the most interesting observation is that the 

corrections have only a minimal effect on the estimated relationship between BMI and diabetes, 

but more substantial effects on the estimates for obesity and class II/III obesity. Being obese is 

estimated to increase P(Diabetes) by 6.9 percentage points using no correction, 6.5 percentage 

points using the standard levels correction, and 6.2 percentage points using our percentile 

correction. Our correction therefore leads to a 10% smaller magnitude than no correction, and a 

5% smaller magnitude than the standard correction. 

For most subsamples, we observe the same pattern of the estimated effects of obesity and 

severe obesity on P(diabetes) decreasing with the extent of the measurement error purged. The 

most notable exceptions are for black men, but they are also the only group for which the 

incidence of class II/III obesity appears to be lower when our correction is used than it is when 

the standard correction is used. In the BMI regressions, our correction makes the biggest 

difference for black women (10% smaller magnitude than no correction, 8% smaller magnitude 

than the standard correction). In the obesity and class II/III obesity regressions, our correction is 

most consequential for white women. The estimated effect of obesity on P(diabetes) using our 

correction is 14% smaller than using no correction, and 7% smaller than using the standard 

correction. For class II/III obesity, these numbers are 10% and 6%, respectively. It is not 

surprising that the correction is important for white women since they are the group among 

which underreported weight is the most common.  
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5.1.4    ATUS: BMI and Disability 

The results in Table 7 provide another example of how correcting for measurement error can 

affect estimates that use a measure of body mass as an independent variable. In this case, we use 

data from the ATUS to consider effects of BMI, obesity and class II/III obesity on the probability 

of being out of labor force due to disability.26 The results in Table 7 are average marginal effects 

from probit models that use the same controls as previous regressions in the section. 

 As in the case of diabetes, adjusting for measurement error does not affect the basic 

conclusion that body mass is positively associated with disability, but it does reduce the 

estimated effects. The average marginal effect of obesity on disability falls by 26%, from 0.024 

(0.005) to 0.018 (0.004), when the standard correction is applied; and by 32%, to 0.016 (0.004) 

when our percentile correction is used. The difference between our correction and the standard 

correction is more pronounced when we consider the effects of class II/III obesity. The estimated 

effects fall by 22% when our correction is used, but by only 6% when the standard correction is 

used. The results, therefore, are again consistent with measurement error compressing the upper 

tail of the BMI distribution and resulting in fewer people being classified as obese or class II/III 

obese.  

 The patterns of effects for most race and gender groups are similar to those for the entire 

sample. The results for white women again mirror those for the full sample most closely; 

however the results for black women may be the most striking. The average marginal effect of 

class II/III obesity on the probability a black woman is disabled falls by nearly 26% when the 

standard correction is applied, but by more than half when our rank-based correction is used. 

                                                            
26 This variable equals one if the respondent reported being out of the labor force due to disability in either the 
ATUS or the CPS. Its mean (standard deviation) is 0.0559 (0.2297). We acknowledge that this is variable is not an 
ideal measure of disability; however, it is still useful for the purpose of our demonstration. 
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5.2 Obesity Maps 

Finally, we demonstrate the effect of measurement error correction on the estimated 

prevalence of obesity in the United States. Figure 3 is inspired by the well-known obesity maps 

produced by the CDC using data from BFRSS.27 Figure 4 is similar to Figure 3, but uses the 

standard validation method to correct for measurement error before calculating the prevalence of 

obesity. Finally, Figure 5 shows the map after our rank-based method has been used.  

These three figures demonstrate that correcting for measurement error can have dramatic 

effects on the estimated prevalence of obesity. Our percentile correction has a larger effect than 

the standard validation approach because the standard approach is biased by the measurement 

error it aims to correct. Looking at the nation as a whole, we find that 27.3% of the population 

reports being obese, 30.8% are found to be obese using the standard correction, and 33.3% are 

found to be obese using the correction we propose. 

Table 8 summarizes the pattern of obesity prevalence in Figures 4-5. When no correction is 

made, the obesity rates for most states (34) are higher than 25 percent and less than or equal to 

30 percent, while no state has an obesity rate over 35 percent. With the standard correction, most 

states (29) fall into the 30-35 percent range and three fall into the 35-40 percent range. Using our 

correction, the modal obesity rate still falls into the 30-35 percent range, but now 15 states have 

obesity rates in the 35-40 percent range. Furthermore, we find at least a quarter of the adult 

population in every state is obese when our correction is applied.  

It is also interesting to look at the number of states that move to a higher interval of obesity 

prevalence when we correct for measurement error. When using the standard correction, 36 
                                                            
27 There are a couple minor differences between our maps and those produced by the CDC. While the CDC map 
considers all states and uses data on all adults, we focus on adults between the ages of 19 and 64 in the continental 
United States. We also pool data from 2007 and 2008 into one map instead of creating separate maps for each year. 
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states move to the next highest prevalence interval, while 12 states do not change ranges. Using 

our approach, no state remains in the same prevalence interval and 14 move up two intervals, 

which is consistent with a median increase in the prevalence of obesity (not shown) of just over 

six percentage points. 

Effects of correcting for measurement error also vary by state. The largest absolute 

increases in prevalence when our correction is applied are in West Virginia and Iowa (7.5 and 

7.1 percentage points, respectively). The smallest increases, 5.0 and 5.2 points, are in New York 

and Rhode Island. As a percent of reported obesity prevalence, estimated prevalence increased 

the most (by over 27 percent) in Delaware and Utah, and the least (around 17.4 percent) in 

Mississippi and South Carolina. Finally, the corrections increase the variance between states (not 

shown) from 5.88 to 6.21 with the standard correction and 6.53 with our correction. 

6 Conclusion 

Since Cawley (2002, 2004) it has been common in the economics-of-obesity literature to 

correct for reporting error in height and weight by using data from the NHANES as an external 

validation sample for the authors’ primary data. The standard approach regresses the measured 

values on the reported values using NHANES data, and then uses the estimated coefficients to 

predict height and weight in the primary dataset. This approach relies on the assumption that the 

misreporting of height and weight is the same in both surveys, even though interview methods 

and context often differ between surveys. 

We propose an alternative correction that does not require misreporting to be constant 

across samples. Instead, we assume that if person A says she weighs more than an otherwise 

similar person B, the conditional expectation of A’s actual weight is higher than B’s. This 
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assumption implies that the relationship between the percentile rank of a respondent’s reported 

height or weight and her measured height or weight will be the same in both samples, as long as 

the samples are representative of the same population. We can then use percentile ranks of 

reported values, in place of the reported values themselves, to predict measured values.   

The implementation of our rank-based correction is similar to the standard approach. Other 

than calculating the percentiles, the only difference is that our regressions require functional 

forms of the percentile ranks that are more flexible than the polynomials that are commonly used 

with self-reported values. The result is a correction for measurement error that is more robust 

than the standard approach, while still being easy to implement. 

To illustrate the value of our correction, we compare data from the NHANES and two 

nationally representative telephone surveys, the BRFSS and the ATUS. Since all three datasets 

are representative of the same population, we would expect the distributions of reported height 

and weight to be the same if there are no survey effects; however, we repeatedly reject the 

hypothesis that the distributions of these self-reports are the same across datasets. Furthermore, 

our results suggest that misreporting is more sensitive to context in cases (e.g., the weight of 

white women) where misreporting is more severe in the NHANES sample. 

When we compare predictions of BMI using the standard approach and our rank-based 

approach, we find that the standard approach predicts statistically significant differences in the 

distributions of BMI between samples that are representative of the same populations, and those 

differences reflect the differences in reported values. We find no evidence of such differences 

between samples when BMI is predicted using our alternative method. In other words, the 
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standard approach appears to be biased by differences between samples in the misreporting it 

aims to correct, while our approach is robust to such differences.  

We also consider how corrections for misreported height and weight might affect empirical 

research. We find that the estimated prevalence of obesity and class II/III obesity is higher when 

our rank-based correction is used than when either the standard correction or no correction is 

used. Next, we present examples of regression estimates with body mass as either a dependent or 

an independent variable. In each of these examples, we find differences in coefficient estimates 

that are consistent with measurement error compressing the upper tail of the distribution. The 

differences in coefficient estimates between our correction and the standard correction are often 

similar in size to the differences in estimates between the standard correction and uncorrected 

reports. These differences are often economically significant and could affect the conclusions 

researchers and policymakers draw.   

There are a few caveats we wish to discuss. First of all, we must stress that neither the 

standard approach nor our proposed alternative should be used every time researchers encounter 

self-reported height and weight. We argue that our rank-based method should be used when the 

validation and primary samples are representative of the same population and there is concern 

that misreporting differs across samples. However, the standard approach is appropriate when 

this concern is not present, such as when the validation data are a random subsample of the 

primary data. One such example is the Physical Measures subsample of the Health and 

Retirement Study. The use of an internal validation sample should obviously be preferred to an 

external validation sample, even when our correction is used; however, such data are rarely 

available to social scientists. 
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There are also cases in which we believe no use of validation data is likely to reliably 

address the measurement error concern. In particular, both the standard validation method and 

our alternative method rely on the assumption that the validation sample and the primary sample 

are representative of the same population.28 Researchers who doubt that this assumption holds in 

their data should be wary of using either validation method. Obvious examples include when the 

primary and validation data survey respondents in different times or places, or when the samples 

span different age ranges. In such cases, it is unclear whether measurement error would be 

minimized by the standard correction, our correction, or no correction. One strategy would be to 

restrict the validation sample to match the primary sample as closely as possible, and then verify 

that the conclusions reached are similar using each of the three approaches.29 Additionally, it is 

unclear that either correction method reliably improves on uncorrected measures when using 

primary data from surveys, such as the NLSY cohorts, that include a non-random combination of 

in-person and telephone interviews.30 In some applications, researchers may need to adjust for 

differing patterns of misreporting within their sample before any correction is applied using 

external validation data. 

More broadly, our work should be seen as a warning (or reminder) that external validation 

data should be used with caution. The reporting error we wish to correct can be sensitive to 

differences in interview context, and even our rank-based method requires stronger assumptions 

than the use of an internal validation sample would. Furthermore, context could vary in ways that 

are less obvious than differences in interview method, geography, or sample age range. For 

                                                            
28 Differences in misreporting between populations would affect the standard correction, and differences in the 
distributions of actual height and weight would affect our alternative correction. See Section 2 for more detail. 
29 For instance, if the primary data includes only 18-39 year olds, researchers should drop those 40 and older from 
the NHANES when constructing the validation sample. Researchers should also match their primary data to 
NHANES surveys from the closest years available. 
30 We invite readers who still doubt the potential effects of context on the misreporting to look at how self-reported 
weight varies with telephone interviews in the NLSY79 or NLSY97. 
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example, there is no reason to assume that misreporting in surveys that span decades, such as the 

BRFSS or NLSY79, has remained constant over time as waistlines expanded and social norms 

changed.31  

As a final note, we must acknowledge that body mass is not the same as body composition. 

As discussed by Burkhauser and Cawley (2008) and others, body fat percentage or other 

measures of adiposity may be preferable to BMI in many applications. Unfortunately, measures 

of body composition are rarely available in large datasets because, like actual weight and height, 

they are more expensive to collect than self-reported weight and height. Therefore, the 

widespread use of self-reported BMI is likely to continue in the future, and reporting error will 

continue to be a problem as long as self-reported BMI is used.  

                                                            
31 Courtemanche et al. (2014) apply our correction to BRFSS year-by-year for exactly this reason. Cawley and 
Burkhauser (2006) also acknowledge this problem. 
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Appendix: How to Use Our Percentile-Based Correction 

Although our percentile-based approach may sound more complicated to implement than the 

standard approach, we want to assure the reader that the added complication is trivial. Our 

approach adds two simple steps to the standard approach. Each of those two steps requires one 

line of code in Stata. 

First, we find the percentile rank of the reported measure in the relevant subsample. This 

is easily done in Stata using the “cumul” command by dataset, race or ethnic group, and gender. 

Using reported weight as an example, we would have: 

bysort dataset race sex: cumul reported_weight [aw= samp_wt], g(wt_rank) equal 

where wt_rank is the newly created percentile rank in the distribution of reported_weight for the 

subsample determined by the indicators dataset, race and sex. 

 Actual weight must then be regressed on a flexible function of wt_rank, and a polynomial 

in age. We found that simple polynomials in wt_rank were not flexible enough to predict actual 

weight, and used cubic basis splines in wt_rank instead. The second step our method adds to the 

standard approach generates the splines with the user-written command “bspline”.1 For example, 

bspline, xvar(wt_rank) p(3) gen(wt_spline) knots(0, .05, .1, .25, .5, .75, .9, .95, 1) 

where wt_spline is the prefix of the generated splines.2 

 From this point on, our approach closely resembles the standard approach. Our splines 

simply replace the polynomial in reported weight that previous authors have used: 

                                                            
1The command “bspline” was written by Roger Newson. Documentation and code can be found here: 
http://econpapers.repec.org/RePEc:boc:bocode:s411701 
2 The number and spacing of knots can be adjusted as needed to improve the fit of the predicted values. 
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reg actual_weight (i.race##i.sex)##(c.age##c.age##c.age  c.wt_spline*) [aw=samp_wt], nocons 

Weight is predicted in both the validation sample, which contains actual_weight, and the primary 

sample. Finally, the process can be repeated for height, allowing a predicted BMI measure to be 

constructed.3  

 

  	

                                                            
3 Alternatively, BMI itself could be predicted directly following the same approach. 
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Table 1. Summary Statistics by Dataset 
  BRFSS ATUS NHANES 

Reported Height 67.37 67.21 67.24 
(4.18) (4.10) (4.08) 

Reported Weight 178.6 178 180 
(44.67) (43.60) (45.15) 

Actual Height 
…. …. 

66.9 
(3.88) 

Actual Weight 
…. …. 

181.8 
(47.18) 

White 0.680 0.689 0.674 
(0.466) (0.463) (0.469) 

Black 0.103 0.114 0.119 
(0.303) (0.318) (0.323) 

Other Race/Ethnicity 0.217 0.197 0.207 
(0.412) (0.397) (0.405) 

Male 0.516 0.513 0.504 
(0.500) (0.500) (0.500) 

Age 41.29 41.34 41.05 
(12.48) (12.54) (12.67) 

Observations 17,721 539,072 4,113 
Notes:  Standard deviations are in parentheses. All samples weighted to be representive of 
adults in the US between the ages of 19 and 64 in the years 2007 and 2008. "Other 
Race/Ethnicity" includes all respondents who indentify as Hispanic. 
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Table 2A. Comparison of Self-Reported Values: BRFSS vs. NHANES
    

Mean 
Percentiles of Distribution Kolmogorov-Smirnov 

    Median 75th 90th Test (p-value) 

White Women 

Weight 
NHANES 163.907 155  185  220  

0.003 
BRFSS  159.947 150  180  210  

Height 
NHANES  64.828 65  67  68  

0.972 
BRFSS  64.857 65  67  68  

White Men 

Weight 
NHANES  199.387 195  220  250  

0.591 
BRFSS  200.060 195  220  250  

Height 
NHANES  70.690 71  73  74  

0.559 
BRFSS  70.731 71  72  74  

Black Women 

Weight 
NHANES  182.627 170  214  250  

0.047 
BRFSS  178.571 170  200  240  

Height 
NHANES  64.729 65  67  68  

0.572 
BRFSS  64.793 65  67  68  

Black Men 

Weight 
NHANES  198.628 190  225  250  

0.179 
BRFSS  201.797 195  225  260  

Height 
NHANES  70.221 70  72  74  

0.317 
BRFSS  70.279 70  72  74  

Other Women 

Weight 
NHANES  154.718 148  175  205  

0.498 
BRFSS  153.868 148  172  200  

Height 
NHANES  62.893 63  65  66  

0.025 
BRFSS  63.171 63  65  67  

Other Men 

Weight 
NHANES  180.930 175  200  230  

0.017 
BRFSS  183.433 179  200  230  

Height 
NHANES  67.585 67  70  72  

<0.001 
BRFSS  68.142 68  71  72  

Notes: All samples weighted to be representative of adults in the US between the ages of 19 and 64 in the years 2007 and 2008. "Other" 
includes all respondents who identify as Hispanic. 
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Table 2B. Comparison of Self-Reported Values: ATUS vs. NHANES 
    

Mean 
Percentiles of Distribution Kolmogorov-Smirnov 

    Median 75th 90th Test (p-value) 

White Women 

Weight 
NHANES 163.907 155 185 220 

0.002 
ATUS 159.348 150 180 210 

Height 
NHANES  64.828 65 67 68 

0.993 
ATUS 64.773 65 67 68 

White Men 

Weight 
NHANES  199.387 195 220 250 

0.270 
ATUS 197.917 190 220 250 

Height 
NHANES  70.690 71 73 74 

0.020 
ATUS 70.487 70 72 74 

Black Women 

Weight 
NHANES  182.627 170 214 250 

0.017 
ATUS 176.208 170 200 237 

Height 
NHANES  64.729 65 67 68 

0.116 
ATUS 64.434 64 66 68 

Black Men 

Weight 
NHANES  198.628 190 225 250 

0.331 
ATUS 198.814 195 225 257 

Height 
NHANES  70.221 70 72 74 

0.060 
ATUS 69.827 70 72 74 

Other Women 

Weight 
NHANES  154.718 148 175 205 

0.001 
ATUS 150.478 140 170 197 

Height 
NHANES  62.893 63 65 66 

0.764 
ATUS 62.853 63 65 66 

Other Men 

Weight 
NHANES  180.930 175 200 230 

0.010 
ATUS 184.299 180 200 238 

Height 
NHANES  67.585 67 70 72 

0.036 
ATUS 67.931 68 70 72 

Notes: All samples weighted to be representative of adults in the US between the ages of 19 and 64 in the years 2007 and 2008. "Other" 
includes all respondents who identify as Hispanic. 
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Reported Standard Percentile Reported Standard Percentile Reported Standard Percentile Reported Standard Percentile

Method Method Method Method Method Method Method Method

Full Sample 28.51 67.0% 33.6% 14.4%
 BRFSS 27.68 28.21 28.49 63.4% 65.9% 67.2% 28.0% 31.4% 33.0% 10.5% 12.5% 13.8%

 ATUS 27.71 28.22 28.52 64.0% 66.2% 67.4% 28.5% 31.7% 33.0% 10.7% 12.5% 13.9%

White Women 28.20 60.6% 33.8% 17.3%
 BRFSS 26.91 27.63 28.22 53.2% 57.9% 60.8% 25.5% 30.0% 32.7% 10.8% 13.3% 15.8%

 ATUS 26.94 27.65 28.20 53.6% 58.0% 61.0% 25.6% 30.2% 32.6% 10.9% 13.2% 16.0%

White Men 28.42 71.2% 31.3% 10.2%
 BRFSS 28.02 28.41 28.45 71.2% 71.8% 72.0% 27.9% 30.8% 31.8% 9.1% 10.9% 11.0%

 ATUS 27.98 28.35 28.47 71.8% 72.2% 72.0% 28.2% 30.7% 31.8% 9.0% 10.8% 10.9%

Black Women 31.50 76.5% 48.1% 28.7%
 BRFSS 30.13 30.96 31.52 74.0% 76.6% 78.9% 42.2% 46.0% 47.6% 22.0% 24.9% 28.2%

 ATUS 30.11 30.90 31.52 74.5% 76.9% 79.5% 42.5% 45.8% 47.8% 21.0% 23.1% 28.2%

Black Men 28.51 65.8% 35.9% 14.0%
 BRFSS 28.45 28.60 28.47 69.7% 68.4% 67.0% 33.5% 35.5% 36.1% 12.0% 14.6% 13.6%

 ATUS 28.50 28.64 28.48 70.0% 68.8% 66.5% 33.7% 36.1% 35.1% 12.8% 14.6% 13.5%

Other Women 28.39 64.1% 35.1% 15.7%
 BRFSS 27.22 27.87 28.25 56.2% 60.8% 63.5% 27.5% 30.7% 32.7% 10.4% 12.1% 14.7%

 ATUS 27.06 27.71 28.27 54.0% 57.8% 62.9% 27.3% 30.1% 31.8% 10.3% 11.9% 14.4%

Other Men 28.13 70.8% 29.1% 9.6%
 BRFSS 27.75 28.07 28.14 68.4% 69.5% 68.9% 26.5% 29.1% 29.7% 7.9% 8.8% 9.0%

 ATUS 27.99 28.30 28.18 70.4% 71.8% 69.4% 28.6% 30.9% 30.2% 8.5% 9.2% 9.1%

Notes: Actual measures from NHANES are underlined and in italics. All samples weighted to be representive of adults in the US between the ages of 19 and 64.

BMI Obese Class II/III ObeseOverweight

Table 3.  Average Body Mass by Correction Method  and Race/Gender Group from
BRFSS and ATUS, Compared to Actual Measures from NHANES
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Table 4. BRFSS Estimated Effects of Food Prices on BMI, P(Obese), and P(Class II/III Obese) 
by Race-Gender Group and BMI Correction Method 

 BMI Obese Class II/III Obese 
 

Reported 
Standard 
Method 

Percentile 
Method 

Reported 
Standard 
Method 

Percentile 
Method 

Reported 
Standard 
Method 

Percentile 
Method 

Whole Sample 
 

-0.764 
(0.170)*** 

 

-0.858 
(0.187)*** 

-0.937 
(0.189)*** 

-0.050 
(0.010)*** 

-0.058 
(0.011)*** 

-0.060 
(0.012)*** 

-0.025 
(0.007)*** 

-0.032 
(0.009)*** 

-0.041 
(0.010)*** 

White Women 
 

-0.704 
(0.216)*** 

 

-0.786 
(0.218)*** 

-0.890 
(0.226)*** 

-0.042 
(0.012)*** 

-0.046 
(0.012)*** 

-0.051 
(0.013)*** 

-0.021 
(0.008)*** 

-0.027 
(0.008)*** 

-0.038 
(0.009)*** 

White Men 
 

-0.415 
(0.191)** 

 

-0.479 
(0.193)** 

-0.510 
(0.208)** 

-0.032 
(0.015)** 

-0.037 
(0.015)** 

-0.038 
(0.015)*** 

-0.013 
(0.011) 

-0.014 
(0.010) 

-0.017 
(0.011) 

Black Women 
 

-0.894 
(0.368)** 

 

-0.871 
(0.362)** 

-0.991 
(0.401)** 

-0.029 
(0.029) 

-0.020 
(0.033) 

-0.026 
(0.029) 

-0.050 
(0.017)*** 

-0.049 
(0.018)*** 

-0.067 
(0.021)*** 

Black Men 
 

-1.565 
(0.229)*** 

 

-1.785 
(0.258)*** 

-1.721 
(0.276)*** 

-0.130 
(0.019)*** 

-0.129 
(0.022)*** 

-0.105 
(0.019)*** 

-0.055 
(0.011)*** 

-0.077 
(0.014)*** 

-0.081 
(0.011)*** 

Other Women 
 

-1.478 
(0.321)*** 

 

-1.539 
(0.301)*** 

-1.640 
(0.334)*** 

-0.098 
(0.022)*** 

-0.113 
(0.026)*** 

-0.119 
(0.025)*** 

-0.037 
(0.010)*** 

-0.047 
(0.013)*** 

-0.061 
(0.013)*** 

Other Men 
 

-0.710 
(0.286)** 

-0.855 
(0.355)** 

-0.975 
(0.364)*** 

-0.042 
(0.017)** 

-0.063 
(0.021)*** 

-0.061 
(0.019)*** 

-0.028 
(0.011)** 

-0.036 
(0.014)** 

-0.052 
(0.020)** 

Notes: All cells report estimated effects of $1 increase in state food price basket in the corresponding regression; the average food price is $2.56. Average 
marginal effects are reported in the probit regressions for obesity and Class II/III obesity. Standard errors, heteroskedasticity-robust and clustered by state, are in 
parentheses. *** indicates statistically significant at 1% level; ** 5% level; * 10% level. The regressions include control variables for race, education, marital 
status, age, inflation-adjusted household income, and a dummy for whether the year was 2008. The BRFSS sampling weights are used. 
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Table 5. ATUS Estimated Effects of Food Prices on BMI, P(Obese), and P(Class II/III Obese) 
by Race-Gender Group and BMI Correction Method 

  BMI Obesity Class II/III Obesity 

Reported 
Standard Percentile 

Reported 
Standard Percentile 

Reported 
Standard Percentile 

  Method Method Method Method Method Method 
Whole Sample -1.099*** -1.179*** -1.251*** -0.083*** -0.083*** -0.084*** -0.028*** -0.036*** -0.044*** 

(0.182) (0.192) (0.207) (0.015) (0.018) (0.016) (0.008) (0.007) (0.011) 
        

White Women -1.050*** -1.137*** -1.139*** -0.057** -0.073*** -0.075*** -0.030 -0.034** -0.044** 
(0.376) (0.391) (0.408) (0.024) (0.024) (0.026) (0.018) (0.016) (0.021) 

        

White Men -0.605 -0.695 -0.822* -0.080** -0.085** -0.074* -0.020* -0.021 -0.008 
(0.430) (0.458) (0.487) (0.036) (0.043) (0.041) (0.012) (0.016) (0.014) 

        

Black Women -1.499 -1.675 -1.800 -0.077 -0.073 -0.084 -0.007 -0.055 -0.097 
(1.079) (1.169) (1.294) (0.071) (0.082) (0.088) (0.052) (0.046) (0.067) 

        

Black Men -1.316** -1.290** -1.198** -0.029 -0.058 -0.028 -0.049* -0.038 -0.059** 
(0.521) (0.558) (0.536) (0.067) (0.065) (0.040) (0.027) (0.039) (0.029) 

        

Other Women -0.929 -0.901 -0.978 -0.099** -0.047 -0.055 -0.015 -0.019 -0.055*** 
(0.658) (0.671) (0.677) (0.040) (0.057) (0.064) (0.014) (0.017) (0.021) 

        

Other Men -1.876*** -2.051*** -2.174*** -0.130*** -0.119** -0.150*** -0.047 -0.075** -0.079** 
  (0.692) (0.690) (0.683) (0.049) (0.049) (0.045) (0.034) (0.035) (0.032) 
Notes: All cells report estimated effects of $1 increase in state food price basket in the corresponding regression; the average food price is $2.56. Average marginal effects are reported in the 
probit regressions for obesity and Class II/III obesity. Standard errors, heteroskedasticity-robust and clustered by state, are in parentheses. *** indicates statistically significant at 1% level; ** 5% 
level; * 10% level. The regressions include control variables for race, education, marital status, age, inflation-adjusted household income, and a dummy for whether the year was 2008. The 
ATUS sampling weights are used. 

 

 

 

 



44 
 

Table 6 – BRFSS Estimated Effects of BMI, Obesity, and Class II/III obesity on P(Diabetes)  

by Race-Gender Group and BMI Correction Method 

 BMI Obese Class II/III Obese 
 

Reported 
Standard 
Method 

Percentile 
Method 

Reported 
Standard 
Method 

Percentile 
Method 

Reported 
Standard 
Method 

Percentile 
Method 

Whole Sample 0.0042 
(0.0001)*** 

 

0.0041 
(0.0001)***

0.0041 
(0.0001)***

0.069 
(0.002)*** 

0.065 
(0.003)*** 

0.062 
(0.002)*** 

0.107 
(0.005)*** 

0.102 
(0.005)*** 

0.096 
(0.004)*** 

White Women 0.0036 
(0.0001)*** 

 

0.0035 
(0.0001)***

0.0034 
(0.0001)***

0.073 
(0.002)*** 

0.068 
(0.002)*** 

0.063 
(0.002)*** 

0.103 
(0.003)*** 

0.098 
(0.003)*** 

0.088 
(0.003)*** 

White Men 
 

0.0044 
(0.0002)*** 

 

0.0042 
(0.0002)***

0.0044 
(0.0002)***

0.065 
(0.003)*** 

0.062 
(0.002)*** 

0.061 
(0.002)*** 

0.114 
(0.004)*** 

0.107 
(0.004)*** 

0.105 
(0.004)*** 

Black Women 
 

0.0051 
(0.0002)*** 

 

0.0050 
(0.0002)***

0.0046 
(0.0002)***

0.079 
(0.004)*** 

0.077 
(0.004)*** 

0.072 
(0.004)*** 

0.100 
(0.007)*** 

0.098 
(0.007)*** 

0.097 
(0.006)*** 

Black Men 
 

0.0064 
(0.0005)*** 

 

0.0058 
(0.0004)***

0.0060 
(0.0004)***

0.081 
(0.008)*** 

0.073 
(0.008)*** 

0.078 
(0.009)*** 

0.125 
(0.013)*** 

0.116 
(0.015)*** 

0.121 
(0.013)*** 

Other Women 
 

0.0040 
(0.0002)*** 

 

0.0043 
(0.0002)***

0.0043 
(0.0003)***

0.072 
(0.007)*** 

0.067 
(0.006)*** 

0.068 
(0.006)*** 

0.094 
(0.013)*** 

0.093 
(0.012)*** 

0.093 
(0.010)*** 

Other Men 
 

0.0040 
(0.0004)*** 

0.0041 
(0.0004)***

0.0041 
(0.0005)***

0.057 
(0.005)*** 

0.052 
(0.006)*** 

0.050 
(0.005)*** 

0.111 
(0.017)*** 

0.099 
(0.021)*** 

0.083 
(0.017)*** 

Notes: All regressions are probits; the cells report average marginal effects of BMI and average effects of a switch from 0 to 1 in obesity and Class II/III obesity 
status. The dependent variable is a dummy for ever being diagnosed with diabetes; its sample mean is 0.065. Standard errors, heteroskedasticity-robust and 
clustered by state, are in parentheses. *** indicates statistically significant at 1% level; ** 5% level; * 10% level. The regressions include control variables for 
race (dummies for non-Hispanic black and non-Hispanic white), education (dummies for some high school but no degree, high school degree but no further, 
some college but no degree, and four-year college degree or greater), marital status (dummies for married, divorced, and widowed), age, inflation-adjusted 
household income, and a dummy for whether the year was 2008. The BRFSS sampling weights are used. 
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Table 7. ATUS Estimated Effects of  BMI, Obesity, and Class II/III Obesity on P(Disabled) 
by Race-Gender Group and BMI Correction Method 

  BMI Obesity Class II/III Obesity 

Reported 
Standard Percentile 

Reported 
Standard Percentile 

Reported 
Standard Percentile 

  Method Method Method Method Method Method 
Whole Sample 0.0020*** 0.0019*** 0.0017*** 0.0237*** 0.0175*** 0.0161*** 0.0414*** 0.0388*** 0.0319*** 

(0.0003) (0.0003) (0.0002) (0.0045) (0.0041) (0.0041) (0.0042) (0.0041) (0.0037) 
        

White Women 0.0027*** 0.0026*** 0.0025*** 0.0369*** 0.0295*** 0.0239*** 0.0533*** 0.0498*** 0.0442*** 
(0.0005) (0.0005) (0.0005) (0.0078) (0.0076) (0.0078) (0.0093) (0.0090) (0.0081) 

        

White Men 0.0004 0.0003 0.0004 0.0050 0.0048 0.0032 0.0198** 0.0152* 0.0133* 
(0.0008) (0.0007) (0.0006) (0.0072) (0.0068) (0.0067) (0.0081) (0.0084) (0.0080) 

        

Black Women 0.0039*** 0.0038*** 0.0031*** 0.0271 0.0145 0.0164 0.0820*** 0.0607*** 0.0369** 
(0.0011) (0.0010) (0.0009) (0.0201) (0.0174) (0.0152) (0.0184) (0.0156) (0.0148) 

        

Black Men 0.0022 0.0014 0.0013 0.0617* 0.0126 0.0290 0.0709** 0.0781** 0.0622** 
(0.0032) (0.0028) (0.0025) (0.0373) (0.0290) (0.0269) (0.0316) (0.0394) (0.0301) 

        

Other Women 0.0026*** 0.0026*** 0.0026*** 0.0345*** 0.0350*** 0.0345*** 0.0411*** 0.0413*** 0.0337*** 
(0.0004) (0.0005) (0.0005) (0.0069) (0.0067) (0.0073) (0.0111) (0.0105) (0.0100) 

        

Other Men 0.0020** 0.0023*** 0.0022*** 0.0229*** 0.0198*** 0.0223*** 0.0431*** 0.0430*** 0.0373*** 
  (0.0008) (0.0008) (0.0007) (0.0077) (0.0072) (0.0070) (0.0117) (0.0099) (0.0127) 
Notes: All regressions are probits; the cells report average marginal effects of BMI and average effects of a switch from 0 to 1 in obesity and Class II/III 
obesity status. The dependent variable is a dummy for being out of labor market due to disability. Standard errors, heteroskedasticity-robust and clustered 
by state, are in parentheses. *** indicates statistically significant at 1% level; ** 5% level; * 10% level. The regressions include control variables for race 
(dummies for non-Hispanic black and non-Hispanic white), education (dummies for some high school but no degree, high school degree but no further, 
some college but no degree, and four-year college degree or greater), marital status (dummies for married, divorced, and widowed), age, inflation-adjusted 
household income, and a dummy for whether the year was 2008. The ATUS sampling weights are used.
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Table 8: Summary of State-Level Obesity 
Prevalence Results 

     Reported 
Obesity 

Standard 
Correction 

Percentile 
Correction 

Number of States in Each Range of Obesity Prevalence 
   20-25% 8 1 0 
   25-30% 34 15 3 
   30-35 % 6 29 30 
   35-40% 0 3 15 
      

Number of States Moving to a Higher Prevalence Category,  
Relative to Reported Prevalence   
   No Change -- 12 0 
   Up 1 Category -- 36 34 
   Up 2 Categories -- 0 14 
Notes: This table summarizes results presented in Figures 3, 4 and 5. The 
data are from the 2007 and 2008 BRFSS. Observations are limited to the 48 
states in the continental U.S. 
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Kolmogorov-Smirnov Tests (p-values) for Equality of Density Functions 
 Standard Method Percentile Method 
ATUS vs. NHANES 0.006 0.908 
BRFSS vs. NHANES 0.006 0.826 
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Kolmogorov-Smirnov Tests (p-values) for Equality of Density Functions 
 Standard Method Percentile Method 
ATUS vs. NHANES 0.809 0.480 
BRFSS vs. NHANES 0.819 0.382 
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Kolmogorov-Smirnov Tests (p-values) for Equality of Density Functions 
 Standard Method Percentile Method 
ATUS vs. NHANES 0.049 0.734 
BRFSS vs. NHANES 0.043 0.959 
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Kolmogorov-Smirnov Tests (p-values) for Equality of Density Functions 
 Standard Method Percentile Method 
ATUS vs. NHANES 0.075 0.312 
BRFSS vs. NHANES 0.001 0.158 
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Kolmogorov-Smirnov Tests (p-values) for Equality of Density Functions 
 Standard Method Percentile Method 
ATUS vs. NHANES 0.001 0.263 
BRFSS vs. NHANES 0.005 0.254 
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Kolmogorov-Smirnov Tests (p-values) for Equality of Density Functions 
 Standard Method Percentile Method 
ATUS vs. NHANES 0.018 0.461 
BRFSS vs. NHANES 0.813 0.579 
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