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ature. We were unable to find support for the argument in Bulow-Summers(1984) that
the efficiency cost of taxing risky capital income is much larger than that implied by the
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Many studies in recent years have attempted to measure the efficiency cost of tax-
ing capital income. Doing so is greatly complicated, however, by the importance of risk
considerations in capital investment decisions.

Following Harberger (1971), the efficiency cost of any tax change can be measured by
— >, T,AX,, where T, measures the taxes due per unit of the-s’th activity, while A X,
measures the change in the chosen amount of the s’th activity due to the tax change.
Changes in the amount of the s’th activity affect social welfare to the extent that marginal
benefits from the activity differ from marginal costs. But this difference between marginal
benefits and costs, externalities aside, equals the per unit tax due on this activity.

Harberger did not address the question of how to modify this measure when either T,
or AX, is stochastic. Procedures used in the recent literature for dealing with the effects
of risk when measuring the efficiency costs arising from taxes on risky capital income vary
widely. Many studies have used the observed average tax payments, T,, made per unit of
the s’th type of capital to measure the tax distortion discouraging that type of investment.?
The efficiency cost of a tax change is then measured by — ), T,E'(AX,). Here, E(AX,)
represents the expected change in investment due to the tax change.? In contrast, other
studies have atternpted to estimate the efficiency cost of capital income taxes under the
simplifying assumption that the tax distortion on any investment can be measured by
that on a riskless investment with the same expected depreciation rate and the same tax
treatment.> If 7 measures the taxes that would be paid on a unit invested in such an
equivalent but riskless project, and again some procedure is used to forecast E(AX,), then
the measure of the efficiency cost of capital income taxes becomes — > . ITrE(AX,).

1 See, for example, Feldstein(1978) and Fullerton, Shoven, and Whalley (1978). Tech-
nically, they measure an average tax rate, then choose parameters such that the resulting
before-tax rate of return to capital approximates that observed on average in the data.

2 We will not discuss the procedures used to forecast E(AX,), and assume that whatever
model is used to make these forecasts is consistent with the empirical evidence.

® See, for example, Fullerton and Gordon (1983) and Slemrod(1983).



The latter approach typically results in a substantially smaller estimate of the effi-
ciency cost of taxing capital income since for reasonable parameter values T* << T,,
for a representative risky project s. Investors in the risky project would require a higher
expected rate of return (a risk premium) to compensate them for the extra risk that they
bear. As a rosult, when a tax is imposed on the return to capital investments, average tax
payments are greater on risky projects since some fraction of this risk premium must also
be paid in taxes.* Much of the variation in the estimates of the efficiency cost of corporate
taxes reported in recent studies seems to result from this variation in methodology. As a
result, some recent studies have reported results using both approaches.®

Similar differences exist in theoretical analyses of the appropriate measure of the
efficiency cost of taxing risky capital income. For example, the model used by Gordon
(1985) implies that the tax distortion arising from a tax on risky capital income would
be correctly measured by — Y, T?* E(AX,) The basic intuition is that the government, by
taxing away some fraction of the income from a project also takes away some fraction of
the risk. The gain to investors from no longer bearing as much risk just offsets their loss
from paying more taxes on average on a risky project.®

Bulow and Summers (1984) claim in contrast that the efficiency cost of taxing capital
income is much greater to the extent that this income is risky. They argue that most of the
risk in the return on a project is due to random fluctuations in the price of the asset, rather
than random fluctuations in the accruing income. Due to the risk in the future asset price,
these projects must also earn a larger income to compensate investors for risk. Existing
income taxes on risky projects tax away some fraction of this larger income. However,
since changes in asset values do not enter into the corporate income tax base, investors
must still absorb the entire random fluctuation in the price of the asset.” Therefore, the
tax distortion is greater the riskier the project.

Both of these papers use a two period model in which all investment decisions are
made in the first period and any random events occur in the second period. This two-
period framework has several weaknesses. First, the effect of randomness in AX, on the
measure of efficiency costs cannot be addressed since in a two period model, all investment
decisions are made in the first period, before any random event occurs. In addition, it
is difficult to treat second period asset prices as market clearing prices — the value of a
capital asset at any date should reflect the present value of the future after-tax earnings
that would be received from that asset, yet in the second period of a two-period model,

4 For a discussion of some problems with using an average tax rate, even ignoring risk,
see Auerbach (1984).

% See, for example, Galper, Lucke, and Toder(1985).

& This paper assumes that the cost to the government of bearing risk is the same as
that faced by private investors. To the extent that the government can bear risk more
cheaply than private investors, there is an efficiency gain from taxing risky capital income.
For further discussion, see Tobin (1958) or Stiglitz (1969).

T Only to the extent that there are capital gains taxes does the government absorb any
risk in their argument.



there are no future earnings. Given this problem, Bulow-Summers assume that second
period asset prices are exogenous, and so assume away any link between the tax law and
the discounted present value of future after-tax income. The objective of this paper is to
analyze the efficiency costs of taxing risky capital income in an infinite horizon mode] in
which both the income earned on capital and the market value of existing capital fluctuate
randomly over time. We will then compare this measure with the measures derived in a
two-period setting, and also with those measures used in empirical studies.

Our first main conclusion is that the stochastic properties of the AX, play a key role
in the measure of the efficiency cost of capital income taxes. If the amount invested in each
capital project were nonstochastic, then the efficiency cost of changing the capital income
tax would be correctly measured by — >, TPE(AX,). In general, however, future invest-
ment rates, and the effect of the tax law on future investment rates, are stochastic since
they are based on future information. When they are, the efficiency cost of changing the
capital income tax would be measured by — Y, T"c(AX,), where c(AX,) is the certainty
equivalent of the lottery AX,.

This measure of the efficiency cost of capital income taxes in principle can be ei-
ther larger or smaller than that produced using the measure — Y., TPE(AX,), the type of
measure used in the empirical studies by Fullerton-Gordon (1983) and Slemrod(1983). De-
termining the relative size of these two measures of the efficiency cost is extremely difficult
except in very special cases. For example, if there were no risk in asset values, only in asset
income, then taxing capital income would in fact be less costly than is suggested using the
measure — ), T E(AX,). While we argue intuitively that the efficiency cost of capital
income taxes should normally be smaller than is implied by the measure — 3", T}E(AX,),
definitive results await further theoretical work and simulation studies.

Finally, we find that the efficiency cost of taxing corporate income should be less if the
tax allows ex post depreciation as a deduction rather than ex ante expected depreciation.
However, this result is clear only under a set of assumptions which imply that the efficiency

cost of a tax which allows ex ante expected depreciation as a deduction is overestimated
by the expression — ), TPE(AX,).

The organization of the paper is as follows. In the first section, we describe the
assumptions used in the model. In section 2, we derive a measure of the efficiency cost of
a permanent increase in the tax rate on capital income assuming the style of corporate tax
currently used in the U.S. This measure of the efficiency cost of corporate income taxation
is then compared in section 3 with those used in earlier papers. In section 4, we derive
a measure of the efficiency cost of corporate taxation under the assumption that the tax
law uses economic depreciation, basing the depreciation deduction on the ex post change
in asset values. Finally, in section 5 we summarize the main results.



1. Structure of the model

For simplicity of notation, we assume that there is one firm in the economy, which
behaves competitively.® If this firm has a capital stock K; at the beginning of any given
period ¢, then its actual income from capital during the period is 6;f(K:), where the
function f(.) satisfies the normal properties of a production function, and where 6; is a
random variable whose probability distribution is left arbitrary. This income from capital
is subject to corporate taxes at rate 7, leaving an after-tax income of (1 — 7)6,f(K;). We
assume here that the tax law allows full loss-offset.

Each period, capital is subject to a random proportional depreciation rate 6:, so that
the capital stock remaining at the end of period ¢ is only (1 — &)K. The firm can add to
its capital stock each period, but faces convex adjustment costs when it does so. If the firm
were to add N to its capital stock in period t, the cost of doing so would be g:(N¢; ¢:),
where ¢:(0) =0, ¢; > 0, and ¢;' > 0. Here, ¢; represents other random factors which may
affect the size of these adjustment costs. This type of specification of the cost of additions
to the capital stock has been used extensively in recent papers.® if the chosen amount of
new investment is N, then the firm’s capital stock in period ¢ + 1 would equall®

Kip1=(1—-6)K:+ Ny = ZNt — Il (1 = 8i—y). (1)

Under current tax law, whenever a firm undertakes new investment, it accrues the
right to a stream of depreciation deductions from its taxable income, and perhaps also to
an investment tax credit. To capture the economic effects of such deductions, we assume
that the firm can deduct z¢; from its taxable income in the period of the investment,
implying that the after-tax cost of adding N; to the capital stock would be (1 — rz)g;.?
For simplicity, we assume that the value of z does not change over time, and that z < 1.

8 All our results concerning efficiency costs generalize trivially if we allow for many
firms, simply requiring a sum across firms.
® See, for example, Summers (1981), Abel (1980), or Hayashi (1982).

10 In equation (1) and throughout the paper, we adopt the convention that Hf,;i.(l -
5t—v) =1.

11 The term 7z is intended to measure the present-value of whatever tax savings result
under existing law from undertaking a unit of investment, so would equal the tax credit rate
plus 7 times the present-value of depreciation deductions. Since depreciation deductions
are normally risk-free in nominal terms, the appropriate discount rate would simply be
the after-tax interest rate on nominally risk-free securities. We assume in the model that
the tax savings occur immediately to simplify the discussion concerning the use of the tax
revenue.



We also assume that there is a representative consumer who lives forever. His objective
function in period t, Wi, is assumed to equal .

W =E S pu(cy), 2)

where C, is consumption in period s, where 3 is the discount factor for future utility, and
where the expression E; is the expectations operator based on information available when
decisions are made in period ¢t. The consumption good is assumed to be the numeraire, and
SO its price remains constant over time. All values and rates of return therefore represent
real rather than nominal figures.

In each period s, our representative consumer receives income from any financial
securities that he owns, receives some exogenous income, w,, which is also stochastic,
and receives a perhaps stochastic lump-sum transfer from the government of L,. He then
chooses how much to consume that period and how much to invest in each of the available
securities so as to maximize expected utility. Each period the individual can invest in risky
physical capital in each of the firms and also in riskless bonds of any maturity. We assume
that these bonds are pure discount bonds — a bond of maturity n in period s pays a unit
of real goods in period s+ n and sells in period s for R,,,.}? Let the individual’s holdings
of bonds in period s of maturity n be denoted by B,,. The aggregate supply of such bonds
in the economy is assumed to be zero, so that in equilibrium the R,, must adjust so that
B, =0.1°

The representative individual’s budget constraint in period s is therefore

Co=wy+ Y Ren(Botnt1 — Ben) + (1~ 1)0,f(K,) — (1 = 72)qs(N)) + L,.  (3)

Each period, he must choose how much to invest in bonds of each maturity and in new
capital, subject to this budget constraint, so as to maximize expected utility. The first-
order condition characterizing optimal bond holdings of maturity n in period t can be
expressed as

R U} = EUL,.. (4)

12 The objective here is simply to define the real risk free rate at which goods can be
traded between any two time periods. Such a rate implicitly exists no matter what the
characteristics of actual securities are.

13 Except when noted, our expressions for the efficiency cost of tax changes are identical
under the alternative assumption that the country can borrow and lend without limit
internationally at some fixed interest rates.



Similarly, the first-crder conditions for the optimal investment in the firm’s capital stock

in period ¢ can be expressed, using equation (1), as:!*
(o]
(1 —r2)U{ = (1 — 1) E, Z{H:)=2(1 — bt40))0t+s {4, B Ui 4, (5a)
s=1
This equation can also be expressed as:
(1 —72)qU{ = EefU{ 1 [(1 — n)0s41fiyy + (1 —72)(1 — b141) qe 4] (50)

2. Welfare costs of tax changes

In analyzing the welfare effects of taxing capital income, we assume that the revenue
received from the tax on capital income is returned in a lump sum fashion to individuals.
We do this, not because this is a realistic policy option, but in order to avoid obscuring the
measure of the welfare cost of changing the tax rate on capital income with any welfare
effects arising from how the extra tax revenue is used. Similarly, we assume that there are
no other taxes in use, so that no second best welfare effects arise due to changing demands
for other taxed activitics. Adding these complications would be straight-forward, but
would again obscure the analysis.

Government tax revenue, G,, collected in period s from the representative individual,
equals

G, = 10 f(K.) ~ 2q,(V.)]. (6)
By assumption, L, = G,.

In measuring the welfare costs of permanent tax changes introduced in the initial
period ¢ = 0, we simply use the representative individual’s welfare measure, W,. Differen-

tiating W; with respect to 7, allowing L, to readjust appropriately in each period s, we
find that

Proposition 1: The effect on welfare of a permanent marginal increase in 7, the taz
rate on capital income, enacted in the initial period, equals

W, _ 7(1- L
ar  (1-7) Zﬂ Ueto e ()

14 We assume throughout the paper that equations (5ab) always hold with equality, so
assume that any constraint that Ny > O is nonbinding. Note that due to depreciation of
existing capital, the capital stock can still be reduced even when the gross investment rate,
N;, is positive.



Proof: Differentiating the welfare measure of the representative individual with re-
spect to 7, and using the first order conditions to eliminate any direct effects of behavioral
responses on welfare, given the L,, we find that

W, 2. 8N,
o1 ‘E"f\; o7

{ > B (T4 (1 = 6))0n fh] — rzqiﬂ’Uj} : (8)

n=s+1

Using equation (5a) to reexpress the first term in equation (8), and simplifying, immedi-
ately gives the result stated in the proposition. | '

We find in the proposition that the marginal welfare loss from an increase in 7 consists
of a sum of expressions each containing a tax term multiplied by a change in behavior. It
therefore corresponds to the measure,’® — Y TAX,, derived in Harberger (1971) for a
marginal welfare loss from a tax change. In our context, this measure of the welfare loss is
stochastic, however, and the loss that would occur under each possible contingency must
be weighted by t" = marginal utility of income under that contingency.

This measure of the marginal welfare loss from tax changes differs from each of the
measures that have been commonly used in the literature. The past literature has focussed
on how to revise the measure of the tax distortion term in Harberger’s welfare loss measure
to account for the effects of uncertainty. Proposition 1 shows that this has not been the
right focus. In equation (7), the tax parameter, 7(1 — 2)/(1 — 7), which measures the size
of the tax distortion, is unaffected by any of the sources of uncertainty. This term in fact
simply equals the market value of the taxes collected on a unit of investment in physical
capital, measured in consumption units as of the date the investment is made. To see
this, note that the utility loss from the taxes paid on the income from a unit of capital
investment in period ¢ would equal

[so]

~12qUs + 7 Z B~ U8, 1, M5 =t 42(1 = 64)]. (9)

s=t4+1

Using equation (5a) to substitute for the second term, and simplifying, gives Ulgir(1 —
z)/(1 — 7). To measure the tax loss from a unit of new investment, we must divide by
g¢» and to reexpress this in consumption units in period ¢ we must divide again by UY,
yielding the tax distortion measure that appears in proposition 1.16 Therefore, the market

15 Equation (7) describes a measure of the welfare gain from a tax increase, so the welfare
loss has the opposite sign.

16 This measure of the present value of tax payments from a dollar of new investment
is the same as would be derived using the more standard Hall-J~rgenson (1967) approach.
In their model, but using our notation, a dollar of new investment must earn a before tax
return each period of (r +6)(1 — 72)/(1 — 7). The taxes that would be paid on this return
each period would equal (r + 6)(1 ~r72)/(1—7) — (r +6) = (1 — 2)(r + 6)/(1 — 7). But an
initial investment of a dollar implies an extra amount of capital ¢ periods later of (1 — §)°.
The present value of tax payments resulting from a dollar of new investment therefore
equals [7(1 —2)(r +6)/(1 —7)] ,(1—-6)! (1 +r) "t =r(1—2)/(1 = 7).
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value of the taxes paid on a unit of new investment is unaffccted by the riskiness of the
project, and can be measured most easily by taking the present value of the taxes paid on
a risk-free project, discounted to the present using the risk-free interest rate.

Proposition 1 shows, however, that uncertainty in the behavioral response to a tax
change, ¢/0N,/d7, does complicate the measure of the welfare loss. To isolate the effects
of this uncertainty on the measure of the welfare loss, it is useful to derlve the following
result.

Corollary 1: The effect on welfare of a permanent marginal increase in 7, the taz
rate on capital income, enacted in the initial period, also equals

3W0 _U,T(

? - (1 _ 1. ZRO squ, a -+ Zﬁ’COV(Ua, qs aN )} . (10)

Proof: Substituting the identity
q,0N,/01 = Eo(q,0N,/d7) + [¢,0N, /8t — Ey(¢,0N,/87)]

into equation (7) gives

IW, _ (1 — z) [iﬁ Eo(U )Eo(q, 3

or ~ (1-1) |& (v ’q’aN )]' ()

Using equation (4) to substitute for B°EoU} immediately gives the desired result. J

In this corollary, we decompose the efficiency cost of a tax change into two terms. We will
examine each in turn.

The first term corresponds directly to the measure — 3, TP E(AX,), and would have
exactly the same form in a nonstochastic model. Here, T equals the present value of the
taxes paid on a dollar of new (risk-free) investment made in period s, discounted back to
the present at the risk-free rate, while £(AX,) measures the expected change in the dollar
amount of new investment in period s.

The second term in equation (10) describes how the measure of the efficiency cost of
a tax change differs in form due to the presence of risk. It is nonzero only to the degree
that the tax change leads to a stochastic change in the value of capital investment which is
correlated with the stochastic value of the marginal utility of income. The ex post measure
of the efficiency cost of a tax increase due to revised decisions in period s is ~T7*AX,. If the
loss is large when the individual can least afford it, then the certainty equivalent of the loss
is underestimated by its expected value, and conversely. Since future investment decisions
will be based on information available in the future but not known now, these decisions will
be stochastic given today’s information. This randomness in future investment decisions
could result from any source of uncertainty, such as randomness in other sources of income,

8



and not just from randomness in the return to new investments. Therefore, this term
should be nonzero even for investments in risk-free projects, since the amount invested in
such projects in future periods, and the response of this investment rate to tax changes,
will depend on future events.

In a two period model, the behavioral response to a tax change is nonstochastic, since
it occurs before any new information is revealed. Therefore, measures of the efficiency cost
derived in a two period model, such as in Gordon (1985), would omit this second term in
equation (10).

It is difficult to say anything in general even about the sign of this second term, let
alone its size. In order to shed some light on the factors which influence the sign of this
term, we will examine a very special case. In particular, assume that: (A1) U(C,) =
cm/( —1), (A2) f(K:) = mKy, (A3) wy =0, (A4) ¢:(K;) = Ky, and (A3} 8, and §; are
each 1td. This particular set of assumptions is one of the few examples in which analytical
solutions exist for optimal behavior in an infinite horizon stochastic model.}7 Given these
assumptions there are two sources of uncertainty left — 8; and 6; — and each has different
effects on the size of the second term in equation (7). If we ignore uncertainty in &, and
so assume that (A6) 6; is nonstochastic, then we can prove the following result.

Proposition 2a: Given assumptions (A1) - (A6), it follows that

cov(U,,8N,/d1) > 0.

Proof: See the appendix.

Therefore, if the only source of uncertainty is in the annual earnings from capital,
then the covariance term must be positive and the true welfare cost of increasing the cor-
porate tax rate is less than that forecast using an expression of the form — 3, T"E(AX,).
The intuition underlying this result might be explained as follows. Whenever a favorable
outcome for §; occurs, the individual will divide this windfall between extra current con-
sumption and extra savings which finances further capital investment. Under the «bove
assumptions, N, /8t = —aK, for some constant a. Therefore, when the desired capital
stock is large, due to a favorable outcome of s, the drop in investment due to a tax increase
would also be large. Therefore the behavioral response is greatest in just those states when
the individual can best afford it, implying that in the presence of uncertainty the welfare
loss from a tax increase would be overestimated by the measure — 2. TrE(AX,).18

If instead the only uncertainty is in &, so that we replace (A6) with (A7) 6, = 1, then
we find the following.

17 In analyzing this model, we do make use of the assumption that the economy is closed.
18 1t is easy to show in this example that welfare still drops due to a tax increase as long
as the gross investment rate is positive.



Proposition 2b: Given assumptions (A1) - (A5) plus assumption (A7), then if
7 15 increased in period O it follows that cov(U;,dN,/d7r) > 0 if a > s/(1 + s), where
o = K,+1/(C, + K5+1).19

Proof: See the appendix.

Since @ < 1, it must be that a < s/(1 + s) for large enough values of s. However,
it does not necessarily follow that the covariance is negative when o < s/{1 + s). In the
proof, we show that U/ and AN, /dr are positively correlated due to all random events
that have occurred from date 1 to date s — 1, but are negatively correlated due to the
random event at date s when a < s/(1+ s) and conversely. Therefore, it is difficult to say
anything in general about the sign of the second term in equation {7) when the source of
the uncertainty is a random 4.

The intuitive reason why this case is more complicated can be described as follows. As
before, when past luck has been unfavorable, the individual will choose both to consume
less and to maintain a smaller capital stock. Under our assumptions, the drop in the size
of the desired capital stock due to a tax increase is proportional to the size of the capital
stock, so is small when the capital stock is small. This implies a positive covariance between
U! and 8N, /3. In addition, however, when §, is large, the capital stock is unexpectedly
smaller and new investment is needed to replace what was lost. When taxes are increased,
less capital would have been present to begin with, so the amount of capital that needs to

be replaced is less. Taken by itself, this factor suggests a negative covariance between U!
and N, /0O7.

If the only uncertainty were exogenous movements in g¢;, so that ¢; depended on o+
but not Ny, then a similar result to proposition 2b can be proven. Neither of these cases,
however, provides a very appealing model of the underlying source of asset price volatility
since in both these examples the market value of the existing capital stock and the rate of
new investment will be negatively correlated, contrary to the evidence in Abel (1980) or
Summers (1981).

We have not been able to prove anything in general about the sign of this term, let
alone its size. Simulation studies would probably be useful, and we are in the process
of attempting them. We do expect, however, that with reasonable parameter values this
term will turn out to be positive. Consider first the effects of an unexpected increase in
income in some period ¢. This would certainly cause the value of U] to fall. Also, as long
as the investor has decreasing absolute risk aversion, investment in risky capital should
be higher. For this second term to be positive, all that is needed in addition is that the
drop in investment expenditures due to taxes be greater under those contingencies when
the investment rate is greater. It is hard to come up with circumstances when this would
not be true.

19 See the appendix for a demonstration that « does not vary over time under our
assumptions. ‘
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If the random event is an increase in the expected rate of return on future investment,
rather than an unexpected increase in income, and if the economy is open and faces an
exogenous world interest rate, then again the value of U{ should fall. The investment rate
in risky capital would certainly rise, and again the covariance would be positive as long as
the drop in investment due to taxes is larger when the investment rate is larger.?°

Finally, if we consider past random events which lead to a larger inherited capital stock,
current consumption will certainly be higher, and the value of U/ lower. In addition, we
would normally expect the current investment rate to be higher — not only is there more
capital to be maintained but also the same random outcomes which made past investment
more attractive presumably continue to make new investment attractive. If so, then the
covariance would be positive as long as the drop in investment due to taxes is larger when
the investment rate is larger.

3. Comparison with other measures of the marginal welfare loss

In order to compare the measure of the efficiency cost of a tax increase derived here
with those used in previous studies, we run into the problem that much of the past liter-
ature follows the Hall-Jorgenson (1967) approach and assumes myopic expectations when
modelling investment behavior. In order to make our model more comparable, we now
make the following additional assumptions: (B1) the depreciation rate is nonstochastic
and constant over time for each firm, (B2) the economy is open and can borrow and lend
freely at a constant risk-free world interest rate r, and (B3) there is no international trade
in risky securities.

Given these assumptions, we prove the following corollary:

Corollary 2: Given assumptions (B1)-(B3), the effect on welfare of a permanent
marginal increase in 7, enacted in the initial period, also equals

Wy 7(1—2)
ar (1-1)

(0 > (141, O

Qg1 )
r
s=1

+ (-80S L+ 1) (d s

s=1

+Zﬂ’cov t,q, 2% )] ' (13)

Proof: Substituting the identity N, /87 = 8K ,+1/07—(1—6)9K, /87 into equation
(10) and simplifying yields the desired result. J

%0 In a closed economy, however, an increase in the expected rate of return to future
investment would likely lead to an increase in savings and therefore a rise in U{, so results
may reverse.
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In this corollary, we decompose the same measure of the efficiency cost of a tax change
into three terms. The first term again corresponds in form to the Harberger measure,
-2, TFPEAX,, and is almost exactly the measure of the efficiency cost used in Fullerton-
Gordon (1983) and Slemrod(1983). Here, T* now equals the taxes due each period on the
income earned from a dollar invested in a risk-free project,?! discounted to the present at
the risk-free rate, while EAX, equals the change in the dollar value of the capital in place
in period s due to the tax change.??

These papers ignore the last two terms in equation (13). The last term we have already
discussed. The second term captures the effects of expected changes in asset prices on the
tax distortion. The same type of term would appear in a nonstochastic model when asset
prices are expected to change.?® Past studies of efficiency costs have ignored any expected
changes in asset prices. If in fact asset prices are expected to fall in the future, as perhaps
would be the case for particular assets such as computers, then the efficiency cost of a tax
increase would be greater.

A number of other studies, e.g. Fullerton, Shoven, and Whalley (1978), also measure
the efficiency cost of tax changes by a term closely corresponding to the first term in
equation (13), except that they measure the tax parameter by the average taxes paid per
period by a typical project, rather than by the taxes that would have been paid by an
equivalent but riskless project. If our intuition is right that the last term in equation (13)
is positive, and if we ignore the second term in the equation, then these studies should
substantially overestimate the efficiency costs of taxing risky capital income.

In order to discuss the nature of the argument in Bulow and Summers (1984), it is
useful to prove the following proposition:

Proposition 3: The effect on welfare of a permanent marginal increase in 7, enacted
in the initial period, equals

6W0 _ = s ,aKs+1
a7 - EO ;Toﬂ Ua ar (14)
here (1-2) [ ahfr +9) (€~ 2, )V
(1 —2z) rq(r+ oy \9s T 941/ Y 841
T = 1—71 { 1+ TA-9) u! } (15)

21 Given the tax law, a dollar invested in a risk-free project must earn a rate of return
(r+8)(1—72)/(1~7), and therefore must pay in taxes each year (r+6)(1 —72)/(1—7) —
(r+6)=r(1-2)(r+68)/(1—1).

These past papers, however, used a nonstochastic model to forecast EAX,, and try
to forecast EGK/J7, rather than Eq'0K/d7. Note that E(¢'0K/d7) # E(¢')E(d K /dr).

2% When assets prices are expected to change, the required rate of return on a dollar
invested in a risk free project would be (¢'(r + 6) — (1 — 6)Aq¢')(1 — 72)/(1 — 7) and the
annual tax payments would be (¢'(r +6) — (1 -8)A¢"Y(1 —72)/(1 — 1) = [(r + 6) — A¢'] =
r(1-2)[g'(r +6) — (1 - §)A)/(1 - 7).
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Proof: Differentiating the representative individual’s welfare with respect to r, using
equation (1) to substitute for N,, gives

oW, = _ oK,
50 = Bo D_I(r0. 1} + dyra(1 = 6))8°U, — glyrap* = UL, | 28 (16)
Using equation (5b) to reexprass the first term, and simplifying, gives
aWO — - T(l —z) ! s—1r71 ! sTy! aKO
or - Z (1 __7.) Eo[qs—lﬂ Us—l qa(l 5)15 Uo} or . (17)

Substituting the identity ¢; = ¢,_; + (¢} —¢’,_,), using equation (4), and simplifying yields
the desired result. J§

In this proposition, the term T, measures the tax distortion affecting decisions made
that period about the size of the capital stock available for production the following period.
The first term of T, is exactly what would be calculated in a certainty model which ignored
asset price changes, while the second term describes the effects of asset price changes on
the size of the tax distortion. If prices are rising, then capital need not earn as much
income to remain attractive. Since only the income, and not the capital gain due to the
price rise, is taxable, rising prices result in a smaller tax distortion.

Since Bulow and Summers examined a two period model, they focussed solely on
behavioral responses in the first period. If we focus on just the first term in equation (14),

when s = 0, we find that

OWES  r(1-2) . 40K,

(r + 8)UgEo(1+ 1)~ 1gg

ar  (1-—r1) or
oK
+ (1= ) Bo(1 + )4 (ah — 1) 2
03]
e —5)ﬂcov(U{,q'1—aI§—1-) , (13a)

(1 —2)

(1-7)

The last line follows immediately from equation (5b). The resulting measure of the welfare
loss, 3WBS/BT, corresponds very closely to that derived by Bulow and Summers.2¢ As
they emphasized, the final term in equation (13a), describing the effects of uncertainty,
should increase the measure of the efficiency cost of a tax increase — when asset prices go
up, consumption also goes up, so U] goes down.

BE U8, f1 .

However, if we compare equation (13a) with equation (13), we see that when additional
periods are added, the total welfare loss from a tax increase is not the discounted sum of

24 They omit the second term in this equation, as do most writers.
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expressions such as appear in equation (13a). The nonstochastic terms in the two equations
do correspond, but the last term in each equation, describing the effects of uncertainty, do
not. Each covariance in equation (13) can be reexpressed, given the definition of Vy, as

, 8N,

0K,
Bcov(U}, ¢, Fy ! tl

oK,
) = Blcov(U], ¢, 3

81')

)—(1=6)B%cov(U.,q.

Of these two terms, only the last appears in equation (13a). The first captures the effects
of the same stochastic events on the value of the behavioral response in the following
period. The sign of this first term should be positive, so serves to reduce the measure of
the efficiency cost. The effects of the two terms therefore are opposite, and their absolute
values should be similar. In fact, we argued above intuitively that the first term would
likely be larger in absolute value. By focussing on only one period, Bulow and Summers
omitted this first term, which depends on behavioral responses in the following period,
and thereby substantially overestimated the welfare cost of a tax increase.

4. Welfare costs of tax changes given economic depreciation

Bulow-Summers also argue that granting firms economic depreciation for tax purposes,
which would base depreciation deductions on the ex post change in the value of the firm’s
assets, will make new investment more attractive than allowing firms a deduction fixed
ex ante based on the expected change in value of the firm’s assets. This claim seems
quite compelling since under economic depreciation the firm receives a form of coinsurance
from the government at no expected cost. Under this coinsurance, the firm receives larger
deductions and larger tax savings under those contingencies when the value of the firm’s
assets have declined more.

In order to explore this reasoning further, we derive the efficiency cost of changing
the corporate tax rate when the tax bases depreciation deductions on the ex post change
in value of the firm’s assets, and compare the resulting measure with the efficiency costs
which would arise instead when depreciation deductions are based on the ex ante expected
decline in asset values. In doing so, we continue to assume (B1)-(B3), and also assume
that the expected change in ¢, is zero at each date. Under these assumptions, the ex
ante expected depreciation rate is §, and the present value of depreciation deductions of 6
per cent of the remaining asset value each year would equal 6 /(r + 6). We will therefore
compare the welfare costs as derived previously, assuming (B4) z=6/(r + 6), with those
which would occur if the tax instead allowed economic depreciation.

With economic depreciation allowed in the tax law, the after-tax income of the firm
in period ¢, denoted by Y;, would equal Y; = (1 — 7)0;f(K?) — T((1—-68)gi —qi_)K:. Tf
bonds pay the fixed interest rate, r, each period, then the representative consumer’s budget
constraint in period ¢ now equals

Ct =wt+(1+r)B¢_1—Bt+Yt—q(Nf,)+Lt. (3’)
The first-order conditions describing the optimal choices of B; and N; become
Uf =1+ r)E:U{,,, and (4"
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[o ]

GU;=E ) (16" (1 =), f, —r((1- )¢, — ¢,_)IB* UL (5a!)
’ s=t+1 ’

Proceeding as before, we find that the welfare cost of a permanent tax change, intro-
duced in the initial period, satisfies:

Proposition 4: Given assumptions (B1)-(B3), the effect on welfare of a permanent
increase in 7 enacted in the initial period, given the use of economic depreciation, equals

oW, r 2. 8N, & o —
aro - (1ir>(1+r>E°Z% or (thUtﬂt)(l“‘ﬂt . (19)

8= =8

Proof: Differentiating W with respect to 7, and using the first-order conditions to
eliminate any direct effects of behavioral responses, gives

oW, =\ ON, = o
5 =Eo Yy 3 [T Y @=8 O+ (1 - 6) — ¢ )BUL| . (20)
T =0 T t=s+1
Using equation (5a') to eliminate the terms with 8, f! and simnlifying gives
oWo T = ON, (& LerTt ot ! t+1 t—
= — — 8.
a7 1 — TEO ; e ltz——-:a q(UiB* — U{ 1,8 71)(1 ) (21)

But Eo(8N,/07)q;i(Us — U{,,) = EoE4(8N,/d7)q;(U; — UL, ,). But the only variable in
this expression that is stochastic, given the information in period ¢, is ﬂt‘HU{_,_l, and its
expectation is S*U{/(1 + r). Substituting this into equation (21) immediately gives the
desired result. g

When the tax law allows economic depreciation, the expression for the welfare loss from a
tax increase looks much different. In order to compare the welfare losses that occur under
the two alternative depreciation rules, it is helpful to prove the following result.

Corollary 3: Given assumptions (B1)-(B4), the effect on welfare of a permanent
increase tn 7 enacted in the initial period, given the use of economic depreciation, also
equals

Wo r(1—2z) X[, ,0N, o , , 0N,
5 — 1. ;[qua 5 (14+7)7° +B%ov(U.,q . )]
T F O\ e e r 1 ON, (1—6)t~°
+(1—r><1+7‘)3: t=a[EO(Qt 9) 5> (151
ON .
+ Bteov(UY, (¢ q,) aTa)(1—5)t :[ (22)

Proof: Substituting the identity q;U] = (¢} + (¢ — ¢')][EoUf + (U} — EyU])] into
equation (19) and using equation (4'), quickly gives equation (22). g
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If we compare the expressions in equations (22) and (10), we find that the first line in
equation (22) is identical in form to the right-harnd side of equation (10).25 Shifting to
economic depreciation results in the addition of the next two lines in equation (22) to the
measure of the welfare cost of a tax change. But the second line is nonzero only if E,q} # ¢/
for t > s. The rationale for this term was described above. The remaining term seems
to capture quite directly the intuition of Bulow-Suramers that economic depreciation is
more favorable than depreciation deductions fixed ex ante based on the expected decline
in asset value. Assuming that ¢/dN,/dr is negative and nonstochastic, this term includes
expressions of the form cov((g;/q,—1),U{), which is just the measure of the risk bearing cost
arising from asset price variability. The presence of this extra term should lower the welfare
cost of a tax increase. But under the assumption that ¢,dN,/dr is nonstochastic, the last
term in equation (10) is zero, and the welfare cost of tax changes given current depreciation
sules, which specify depreciation deductions ex ante, would be correctly described by the

measure — y_, THE(AX,).

If ¢;0N,/Or is stochastic, then in general it is difficult to sign the last term in equation
(22). However, the following lemma provides some assistance:

Lemma 1 If A, B, and C, are random variables, and if (1) A and B are independent,
(2) cov(B,C) >0, (3) cov(4,C) <0, and (4) E(B) <0, then cov(AB,C) > 0.

Proof: See the appendix.

In applying this lemma, let A = (¢; — ¢;)/q}, B = ¢,0N,/87, and C = U!. Then,
assumption (4) of the lemma holds as long as the tax discourages investment, while as-
sumption (3) holds as long as the representative individual is risk-averse with respect to
the volatility in asset prices. Assumption (1) would normally not hold strictly, but if the
expected change in asset prices is zero, given the information available at time ¢, then
cov(A, B) = 0, so that A and B would be uncorrelated even if not independent.2® If we
accept assumption (1) as a reasonable approximation, then the lemma says that if the
second term in equation (22) is positive then the fourth term must also be positive, while
the sign of the fourth term is ambiguous otherwise. Therefore, assumptions sufficient to
ensure that this last term in equation (22) is positive, consistent with the Bulow-Summers
intuition, should also imply that the second term in equation (10) is positive.2” In this
case, the welfare cost of a tax increase given the existing depreciation rules would be
overestimated using a measure of the form — 3", T?E(AX,).

25 The functional forms are identical, but the numerical values of the endogenous vari-
ables will be different.

2% Note that EqAB = EoE;AB. But by its definition, B is nonstochastic given the
information available at time ¢, so EqE;AB = EqE;(A)E¢(B). But if the expected change
in asset prices is zero, then E;A = 0.

2T The qualification is that the tax changes being analyzed in equations (10) and (22) are
different, and some assumptions may exist ensuring that the second term in equation (22)
is positive without implying that the corresponding term in equation (10) is also positive.
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5. Conclusions

In this paper, we have derived a measure of the efficiency cost of taxing risky capital
income in an infinite horizon stochastic model. The resulting measure differs from all
those that have been proposed in the existing literature. We show that the resulting
measure can be be represented by the expression — Y. Tre(AX,), where T' measures
the present value of the taxes that would be paid on a unit of investment in a riskless
project otherwise equivalent to X,, while ¢(AX,) represents the certainty equivalent to
the representative individual of the lottery AX,. This change in the amount of future
investment resulting from a tax change will be stochastic not only due to unexpected
changes in the profitability of new investment but also due to unexpected changes in wealth.
If AX, were nonstochastic, then this measure reduces to the measure — >, TrE(AX,)
that has been used in a number of applied studies.?®

In order to assess the complicating effects of risk on the measurement of the efficiency
costs of tax changes, we must assess how ¢(AX,) compares to E(AX,). Unfortunately,
this is difficult to do theoretically in an infinite horizon stochastic model. We argue both
intuitively and by example that the correct measure of the efficiency cost of a tax change
is likely to be smaller than that implied by the measure — > .TrE(AX,), but firm con-
clusions must await further research.

We were unable to find support for the argument in Bulow-Summers(1984) that the
efficiency cost of taxing risky capital income is much larger than that implied by measures
of the form — ), T;* E(AX,) when the main risk in the return to new investment is from
a random asset value. In particular, we show that the specific efficiency cost measure
they propose omits terms appearing in our measure derived from an infinite horizon model
which substantially reduce the measured efficiency cost. However, we do find some support
for their argument that the efficiency cost of a corporate income tax would be less if the
tax allows depreciation deductions to be based on the ex post change in asset values rather
than the ex ante expected change in asset values. This comparison is clear, however, only
under assumptions which imply that under the existing form of depreciation deductions,
the efficiency cost of a tax change is overestimated by the expression — ) TPE(AX,).

28 See, for example, Fullerton-Gordon(1982) and Slemrod(1983).
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APPENDIX

Proof of Propositions (2ab) and Lemma 1

Proof of propositions (2ab): Given assumptions (A2)-(A4), the individual faces a
budget constraint each period of C; = F, K, — Kiy1, where F; = mb; + (1 — 6,). Given
the utility function described in assumption (A1), the first-order conditions are C;7 =
BE F1C\y, where F* = mfy(1 — 7)/(1 — 72) + (1 — &). Given assumption (A5), it is
easy to show that these first-order conditions are satisfied when Kit1 = aF;K; and C, =
(1—a)FyK;. The parameter « is implicitly defined by the equation a” = BE(F( ,/Fyy1),
so does not depend on ¢ by the #id assumption. It follows trivially that da/d7 < 0.

In order to characterize the second term in equation (10), we must first characterize
ON,/07. By definition, Ny = Ky — (1—6:)K; = Ki(aF; — (1 —§&)). Differentiating with
respect to 7, we find that

aNt da aKt
— = K, — F,—(1- —_
or 1K or (i - (1-4)) or
But by backwards induction, K; = 1E(I'IE;IIF,-)FOKO. Differentiating with respect to 7
gives K, /07 = (tK:/a)(8a/dr). Substituting into equation (A1) gives
ON: _ Kida

3 = o 7Lt Dembe + (¢ + a—t)(1-&)]. (A2)

(41)

Our objective is to sign the covariance of the term in equation (A2) with U{ = [(1 -
@) FyK:]~7 given either assumptions (A6) or (A7). To do this, the following lemma is
helpful.

Lemma AL: Letx be a vector of independent random variables, and let f(x) and g(x)
be functions of these random variables. Then if the functions f (.) and g(.) are everywhere
increasing in X, then cov(f(x),g(x)) > 0.

Proof: Consider first the case in which there is only one random variable, and let
f and g represent the expected values of these two functions over the distribution of this
random variable. Each function by assumption is increasing in this random variable. Let
zM represent the minimum value at which both values f — f and g — § are nonnegative.
Assume without loss of generality that, as z increases, f — f becomes nonnegative before
g — g. It then follows that cov(f,9) = [(f - )(g-3) > (f(z™) - /) f(g —g) = 0. It is
easy to verify that the inequality is satisfied point by point for all values of .

If there are two random variables, z; and 2, then the above argument can be applied
to show that [[f fgdzildzy > [(f fdz,)([ gdz,)dz,. But each of the functions J fdz,
and f gdz, is increasing in z3, so the same argument can be reapplied to show that
J [ f9dz,dz2 > fg. If x has dimension greater than 2, the same argument can be applied
iteratively to confirm that [ fgdx > fg, implying that cov(f,g) > 0. §
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As is seen in the above expressions, any stochastic events that occurred before period
¢ affect the covariance between U{ and 8 N;/d7 only through the value of K:. But since any
stochastic increase in K; lowers the algebraic values of both U} and dN;/dr, as is seen in
the above expressions, these past stochastic events create a positive covariance according
to the lemma. Similarly, both U{ and 8 N;/0r are negative functions of the current value of
6, so this random disturbance also creates a positive covariance according to the lemma.
Finally, U{ is a positive function of §;, and ON; /97 is also as long as & > t/(1 + t). These
results plus the lexnma therefore prove Propositions (2ab).

Proof of Lemma 1: By definition,

cov(AB,C) = /ABC ABCf(A,B,C) — E(AB)E(C),

where f(A,B,C) is the joint probability distribution of 4, B, and C. Since A and B are
independent, we know that E(AB) = E(A)E(B) and that f(4,B,C) = g(4, C)h(B,C),
for some probability distributions g(A,C) and h(B, C). Therefore,

cov(AB,C) = /

ACg(A,C)/ Bh(B,C) — E(A)E(B)E(C).
AC

B
But [y BR(B,C) = E(B|C) = E(BC)/E(C). Since, by assumption, cov(B,C) > 0, it
follows that E(BC)/E(C) > E(B). Therefore,

cov(AB,C) > E(B) [/ ACg(A,C) — E(A)E(C)] = E(B)cov(4,C).

By assumptions (3) and (4) of the lemma, we can then conclude that cov(AB,C) > 0. J
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