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Abstract

We develop a revealed preference test for optimal acquisition of costly information.

The test encompasses models of rational inattention, sequential signal processing, and

search. We provide limits on the extent to which attention costs can be recovered

from choice data. We experimentally elicit state dependent stochastic choice data of

the form the tests require. In simple cases, tests confirm that subjects adjust their

attention in response to incentives as the theory dictates.

1 Introduction

Modelling behavior when information is costly to acquire has been central to economic analy-

sis since the seminal work of Stigler [1961]. As the importance of information constraints

have been increasingly recognized,1 so an ever wider array of information gathering tech-

nologies have been modelled. For example, McCall [1970] considered the case of sequential

∗We thank Roland Benabou, Dirk Bergemann, Laurens Cherchye, Bram De Rock, Thomas Demuynck,

Federico Echenique, Andrew Ellis, Paola Manzini, Marco Mariotti, Daniel Martin, Filip Matejka, Alisdair

McKay, Stephen Morris, Pietro Ortoleva, Daphna Shohamy, Laura Veldkamp and Michael Woodford for

their constructive contributions. We also thank Samuel Brown, Severine Toussaert and Isabel Trevino for

their exceptional research assistance. An early version was circulated under the title “Rational Inattention

and State Dependent Stochastic Choice”.
†Center for Experimental Social Science and Department of Economics, New York University. Email:

andrew.caplin@nyu.edu
‡Department of Economics, Brown University. Email: mark_dean@brown.edu
1For example shoppers may buy unnecessarily expensive products due to their failure to notice whether

or not sales tax is included in stated prices (Chetty et al. [2009]), while purchasers limit their attention to a

relatively small number of websites when buying over the internet (Santos et al. [2012]).
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search; Verrecchia [1982] the choice of variance of a normal signal; and Sims [2003] an unre-

stricted choice of information structure with costs based on Shannon entropy. Many other

alternatives have been implemented in the literature.2

The information costs faced by a decision maker are rarely known to an outside observer.

This makes it of interest to test a general model of optimal information acquisition that

makes minimal assumptions about these costs. In this paper we introduce precise behav-

ioral tests covering all standard theories of costly information acquisition, including rational

inattention theory as well as static and sequential signal acquisition theories.3 We establish

limits on what choice data can reveal about the costs of information. In an experimen-

tal implementation, we confirm that attentional adjustments are well-modeled as rationally

responsive to costs.

The purpose of our tests is to introduce non-parametric methods into the theory of infor-

mation acquisition. Just as unobservability of preferences motivated the revealed preference

approach to utility (Samuelson [1938], Afriat [1967]), so the unobservability of information

acquisition costs motivates our approach. In the revealed preference spirit, our tests can be

readily applied in practice, and fully characterize optimal behavior for an arbitrary finite

data set.

Enriched choice data plays a central role in our tests. We utilize “state dependent”

stochastic choice data, which describes the decision maker’s probability of choosing each

available action in each state of the world.4 While only recently introduced into revealed

preference analysis (see Caplin and Martin [2014], henceforth CM14), it is standard in the

econometric analysis of discrete choice. For example, Chetty et al. [2009] study how choice

distributions are impacted by an observable state: the inclusion or exclusion of sales taxes

in stated prices. They find evidence of incomplete state awareness among buyers.5

Our key theoretical insight is that the decision maker’s attention strategy is largely re-

vealed by their state dependent stochastic choice data. Using this observation, we describe

two conditions that render such data consistent with optimal acquisition of costly infor-

mation. A “no improving action switch” (NIAS) condition ensures that choices are optimal

given what was learned about the state of the world, as in CM14. A “no improving attention

cycles” (NIAC) condition ensures that total utility cannot be raised by reassigning atten-

2See, for example Reis [2006], van Nieuwerburgh and Veldkamp [2009] and Woodford [2012].
3That our conditions characterize so many distinct microeconomic models is striking. It echoes the finding

of Manzini and Mariotti [2007] that identical conditions (“weak WARP”) capture the behavioral content of

many apparently distinct procedural models of boundedly rational behavior.
4The key role of data enrichment has arisen previously in our use of “choice process” data to test theories

of sequential search (Caplin et al. [2011]).
5The data set has a long history in psychometric research. It is essential to the formulation of the

Weber-Fechner laws on limits to perceptual discrimination (see Murray [1993]).
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tion strategies across decision problems. Our main result is that these conditions, clearly

necessary for rationality, are also sufficient. Any data set in which they are satisfied can be

rationalized with a standard model of costly information acquisition.

We provide limits on the identification of attention costs from choice data, providing

bounds on the relative costs of all chosen attention strategies. We show also that the as-

sumptions that more informative strategies (in the sense of Blackwell) are more costly, that

mixed strategies are feasible, and that inattention is costless put no additional restrictions

on the data.6

We implement our tests by experimentally eliciting state dependent stochastic choice

data. We test for three important forms of optimal information gathering behavior: respon-

siveness on the extensive margin; responsiveness on the intensive margin; and the presence of

spillover effects. Our experiments demonstrate all three forms of behavior: when incentives

are increased, more is learned; when the relative importance of differentiating between differ-

ent states changes, subjects focus their attention appropriately; and the introduction of an

action that increases the returns to attention has spillover effects on the choice probabilities

of previously available alternatives. Our data indicates that subjects actively modify their

attention in response to incentives in line with the optimizing model. Alternative theories

in which learning is unresponsive to attentional incentives are clearly rejected.

Our paper is related to a recent literature analyzing specific models of costly information

acquisition. Matejka and McKay [2011] study the implications of rational inattention with

Shannon entropy costs for state dependent stochastic choice data, while Ellis [2012] uses

deterministic state dependent choice to study a model in which a decision maker has a

fixed set of information partitions to choose from. de Oliveira et al. [2013] consider a more

general model of attention using choice over menus as their data. Unlike these papers, our

revealed preference approach provides necessary and sufficient conditions in any arbitrary

finite data set. Such approaches have recently been applied to various behavioral models of

individual and group decision making (Crawford [2010], Cherchye et al. [2011], de Clippel

and Rozen [2012]). Our work also fits into a growing literature aimed at identifying the

behavioral implications of models in which the information state of the decision maker is

unknown (Manzini and Mariotti [2012], Masatlioglu et al. [2012], Dillenberger et al. [2012],

Bergemann and Morris [2013b]).

Section 2 introduces the basic model of costly information acquisition. Section 3 provides

our characterization. Section 4 establishes limits on identification of attention costs. Section

5 provides model extensions. Section 6 details our experimental design, with results in section

6This result is in the spirit of Afriat [1967], and pinpoints limits on the identifiability of cost functions in

behavioral data.
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7. Section 8 relates our work to the broader literature. Section 9 concludes.

2 A Model of Costly Information Acquisition

2.1 Actions, Prizes, States, and Beliefs

A decision maker (DM) is initially unaware of the consequences attached to available options.

With attention, this uncertainty can be reduced. To formalize, we consider choice between

actions the payoff of which depend on the realization of a state  from a set Ω of cardinality

 Prior beliefs are captured by  ∈ Γ = ∆(Ω). An action  is a mapping from Ω to a prize

space . We use  to denote the grand set of actions.

Our goal is to identify conditions under which choice data can be rationalized as resulting

from maximization of net utility by a Bayesian expected utility maximizer with costs of

acquiring information. For the next two sections we focus squarely on costs of information

acquisition. Hence we treat as known to the outside observer or econometrician both prior

beliefs  ∈ Γ and the expected utility function  :  −→ R, with 
 denoting the expected

utility of action  in state . In section 5.2 we allow for unknown utility and for an unknown

prior.

2.2 State Dependent Stochastic Choice Data

Let  ⊂ F ≡ { ∈ 2∅| is finite} be a finite set of decision problems (defined by the set
of available alternatives) with generic element  ∈ . The idealized data set that we use

to test the model of costly information acquisition is state dependent stochastic choice data.

This describes for each decision problem the likelihood of choosing each available action

in each state of the world. We define Q to be the set of mappings from Ω to probability

distributions over  with finite support. Given  ∈ Q, we let  denote the probability
of the DM choosing action  in state  and denote as  () ⊂  the set of actions chosen

with non-zero probability in some state of the world under state dependent stochastic choice

function . For  ∈ F , we define Q as all data sets with  () ⊂ .

Definition 1 A state dependent stochastic choice data set () comprises a finite set of

decision problems  ⊂ F and a function  : → Q, with () ∈ Q.

2.3 Attention Strategies and Attention Costs

The DM chooses an attention strategy for each given decision problem that defines the effort

that they put into learning the state of the world. Initially we assume that information
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processing is static (the extension to sequential choice of information is considered in section

5.1). We define an attention strategy as a stochastic mapping from states of the world

to subjective signals. Since we are characterizing expected utility maximizers, we identify

each subjective signal with its associated posterior beliefs  ∈ Γ, which is equivalent to the

subjective information state of the DM following the receipt of that signal. Having selected

an attention strategy, the DM can condition choice of action only on these signals. Feasible

attention strategies satisfy Bayes’ rule.

Definition 2 Given prior  ∈ Γ, feasible attention strategies Π() comprise all mappings

 : Ω→∆(Γ) that have finite support Γ() ⊂ Γ and that satisfy Bayes’ law, so that for all

 ∈ Ω and  ∈ Γ(),

 =
()X

∈Ω
()

,

where () ≡ ()({}) is the probability of posterior beliefs  given state . Let Π̃ ≡
∪Π() denote all attention strategies.

An attention cost function maps attention strategies to the corresponding level of disu-

tility.

Definition 3 Given prior  ∈ Γ, an attention cost function is a mapping  : Π()→ R̄

with () ∈ R for some  ∈ Π(). We let K denote the class of such functions.

Note that we put no restrictions on the cost function, meaning that our model nests all

standard models of static information acquisition, including a ‘rational inattention’ model in

which  would equal the Shannon mutual information between prior and posterior informa-

tion states (e.g. Sims [2003]). We allow costs to be infinite to nest constraints on information

acquisition - as when a hard limit is imposed on the mutual information between prior and

posteriors (Sims [2003]), or when the DM can choose only certain partitional information

structures (Ellis [2012]) or normal signals (Verrecchia [1982]). To avoid triviality we assume

that finite-cost feasible attention strategies exists.

In sections 2 through 4 we impose no cross-prior restrictions on behavior. Until that

point it simplifies notation to specify arbitrary  ∈ Γ, to limit the state space to satisfy

  0, and to let Π identify feasible attention strategies given this prior.

2.4 Costly Information Representations

We model a DM who chooses an attention strategy to maximize gross payoffs net of infor-

mation costs. The gross payoff associated with attention strategy  ∈ Π in decision problem

5



 ∈ F is calculated assuming that actions are chosen optimally in each posterior state. Let

 : F×Π→ R denote the gross payoff of using a particular attention strategy in a particular

decision problem:

( ) =
X

∈Γ()

"X


()

#
();

where () = max∈
P

 

. We make the standard assumption that attention costs

are additively separable from the prize-based utility derived from the actions taken. We

let Π̂ : K × F → Π map cost functions and decision problems into rationally inattentive

strategies. These are the strategies (if any) that maximize gross payoff net of attention

costs,

Π̂() = argmax
∈Π

{( )−()} 

The choice of the DM conditional on the signal received is captured by the function

 : Γ()→ ∆(), with () the probability of action  ∈  given  ∈ Γ(). An attention

strategy is consistent with observed state dependent stochastic choice data in some decision

problem if optimal choice contingent on the signal received could produce such a pattern of

data.

Definition 4 For decision problem , attention strategy  ∈ Π is consistent with  ∈ Q

if there exists  : Γ()→ ∆() such that:

1. Final choices are optimal:

()  0 =⇒
X




 ≥

X




 all  ∈ 

2. The attention and choice functions match the data:

 =
X

∈Γ()
()

()

A data set admits a costly information representation if there exists an information

cost function such that behavior in each decision problem is consistent with an optimal

information strategy given those costs.

Definition 5 Data set () has a costly information representation (̃ ̃) if there

exists ̃ ∈ K and ̃ :  → Π such that, for all  ∈ , ̃() ≡ ̃ is consistent with ()

and satisfies ̃ ∈ Π̂(̃ ).
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3 Characterization

We establish two conditions as necessary and sufficient for () to have a costly information

acquisition representation. The first ensures optimality of final choice given an attention

strategy and applies to each decision problem separately. The second ensures optimality of

the attention strategy and applies to the collection of decision problems.

3.1 Minimal Attention Strategies

The key to our approach is the observation that, if a DM is behaving optimally, then one

can learn much about their attention strategy from state dependent stochastic choice data.

In particular, one can identify the average posterior beliefs that a DM must have had when

choosing each act.

Definition 6 Given  ∈ Q and  ∈  () define the revealed posterior () ∈ Γ,

 () =



X









all  ∈ Ω.

The revealed posterior () is the probability of state of the world  conditional on

action  being chosen given state dependent stochastic choice data . If the DM chooses

each action in at most one subjective information state then the revealed posteriors are the

same as their true posteriors when  was chosen. If they choose the same action in more

than one subjective state then the revealed posterior is the corresponding weighted average.

We can use the revealed posteriors to construct a “revealed” attention strategy for each

decision problem. We do so by assuming that any action is chosen in at most one subjective

state. Under this assumption we can identify the resulting attention strategy directly from

the data. The probability of posterior  in state of the world  is calculated by adding up

probabilities of choosing all actions that have that revealed posterior.

Definition 7 Given  ∈ Q,  ∈ Ω, and  =  () for some  ∈  (), define the minimal

attention strategy ̄ ∈ Π to satisfy,

̄() =
X

{∈ ()|()=}
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While the minimal attention strategy may not be the same as the DM’s true attention

strategy, a key observation is that it must be weakly less informative (in the sense of statistical

sufficiency) than any attention strategy consistent with the data. Intuitively, this means

that the minimal attention strategy can be obtained by “adding noise” to the true attention

strategy.

Definition 8 Attention strategy  ∈ Π is sufficient for attention strategy  ∈ Π (equiva-

lently  is a garbling of ) if there exists a |Γ()|×|Γ()| matrix  ≥ 0 withP∈Γ() 
 = 1

all  and such that, for all  ∈ Γ() and  ∈ Ω,

(
) =

X
∈Γ()

(
)

Lemma 1 establishes that any consistent attention strategy must be sufficient for the

minimal attention strategy.

Lemma 1 If  ∈ Π is consistent with  ∈ Q, then it is sufficient for ̄
Proof. All proofs can be found in online appendix 1.

Blackwell’s theorem establishes the equivalence of the statistical notion of sufficiency and

the economic notion “more valuable than”. If attention strategy  is sufficient for strategy

, then it yields (weakly) higher gross payoffs in any decision problem. This result plays a

significant role in our characterization.

Remark 1 Given decision problem  ∈ F and   ∈ Π with  sufficient for ,

( ) ≥ ( )

3.2 No Improving Actions Switches

Our first condition ensures that the DM’s choices are optimal given posterior beliefs. It spec-

ifies that, when one identifies in the data the revealed posterior associated with any chosen

action, this action must be optimal at that posterior. CM14 show that this condition char-

acterizes Bayesian behavior regardless of the rationality of attentional choice. The strategic

analog is derived by Bergemann and Morris [2013b] in characterizing Bayesian correlated

equilibria.

Condition D1 (No Improving Action Switches) Data set () satisfies NIAS if, for

every  ∈  and  ∈  (()),X


 (())

 ≥

X


 (())
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all  ∈ .

3.3 No Improving Attention Cycles

Our second condition restricts choice of attention strategy across decision problems. Essen-

tially, it cannot be the case that total gross utility can be increased by reassigning atten-

tion strategies across decision problems. To illustrate, consider a decision problem with two

equiprobable states and two available actions,  = { }, and with the state dependent
payoffs,

(
1  


2 ) = (10 0); (


1  


2) = (0 20)

Suppose now that the observed choice behavior is,


1() = 1−

2() =
2

3
= 1−

1() = 
2()

Now consider a second decision problem differing only in that the action set is

 = { }, with ( 
1  


2) = (0 10), with corresponding data,


1() = 1−

2() =
3

4
= 1−

1() = 
2()

The specified data looks problematic with respect to optimal information acquisition.

Action set  provides greater reward for discriminating between states, yet the DM is more

discerning under action set . To crystallize the resulting problem, note that, for behavior

to be consistent with costly information acquisition for some cost function  it must be the

case that,

( )−() ≥ ( )−();

( )−() ≥ ( )−()

While we do not observe attention strategies directly, it is immediate that ( ) = ( ̄)

for  ∈ {}. Furthermore, as  is sufficient for ̄, Blackwell’s theorem tells us that

( ) ≥ ( ̄) for  ∈ {} (see Remark 1) Thus we can insert the minimal attention
strategies in the calculation of gross benefits to conclude,

( ̄)−( ̄) ≥ (̄)−(̄) ≥ ( ̄)−( ̄)

For there to exist a cost function that can rationalize this data, the left hand side of

9



this inequality must be no lower than the right hand side. Using this condition we conclude

that, for this data to be rationalizable, gross benefit must be maximized by the assignment

of minimal attention strategies to decision problems observed in the data,

( ̄) +( ̄) ≥ ( ̄) +( ̄) (1)

In the above example ( ̄)+( ̄) = 171
2
, while ( ̄)+( ̄) = 1711

12
. Thus,

there is no cost function that can be used to rationalize this data. The NIAC condition

ensures precisely that no such cycles of attention strategy raise gross utility.

Condition D2 (No Improving Attention Cycles) Data set () satisfies NIAC if,

for any set of decision problems 1 2   ∈  with  = 1,

−1X
=1

( ̄
) ≥

−1X
=1

( ̄
+1)

where ̄ = ̄().

The NIAC condition is analogous to the cyclical monotonicity condition discussed in

Rockafellar [1970], and has been used in other recent work examining the revealed preference

implications of behavioral models (see for example Crawford [2010]).

3.4 Characterization

Our first main result is that, while clearly necessary conditions, NIAC and NIAS together

are also sufficient for () to have a costly information acquisition representation. We

establish this by applying the results of Koopmans and Beckmann [1957] concerning the

linear allocation problem. The cost function that we introduce is based on the shadow prices

that decentralize the optimal allocation in their model (see also Rochet [1987]).

Theorem 1 Data set () has a costly information acquisition representation if and only

if it satisfies NIAS and NIAC.

4 Identification

In this section we establish limits on identification of the cost function. We open by consider-

ing three natural restrictions on attention cost functions: weak monotonicity with respect to

sufficiency; feasibility of mixed strategies; and costless inattention. In principle these restric-

tions might tighten requirements for rationalizability of stochastic choice data, since they
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constrain costs of unchosen strategies. Theorem 2 establishes that this is not the case: if

state dependent stochastic choice is rationalizable, then it is rationalizable by a cost function

that satisfies these three conditions. Following this we provide limits on the recoverability of

the cost function by characterizing all weakly monotonic cost functions that can rationalize

a given data set.

4.1 Weak Monotonicity

A partial ranking of the informativeness of attention strategies is provided by the notion of

statistical sufficiency (see definition 8). A natural condition for an attention cost function

is that more information is (weakly) more costly. Free disposal of information would imply

this property, as would a ranking based on Shannon mutual information.7

Condition K1  ∈ K satisfies weak monotonicity in information if, for any   ∈ Π

with  sufficient for ,

() ≥ ()

4.2 Mixture Feasibility

In addition to using pure attention strategies, it may be feasible for the DM to mix these

strategies using some randomizing device.

Definition 9 Given attention strategies   ∈ Π, and  ∈ [0 1], the mixture strategy
 ◦  + (1− ) ◦  ≡  ∈ Π is defined by,

() = () + (1− )()

all  ∈ Ω and  ∈ Γ() ∪ Γ().

The definition implies that the mixing is not of the posteriors themselves, but of the odds

of the given posteriors. To illustrate, consider again a case with two equiprobable states. Let

attention strategy  be equally likely to produce posteriors (3 7) and (7 3), with  equally

likely to produce posteriors (1 9) and (9 1). Then the mixture strategy 05◦ +05 ◦  is
equally likely to produce all four posteriors.

7While in many ways intuitively attractive, this assumption may not be universally valid. In a world

with discrete signals it may be very costly or even impossible to generate continous changes in information.

Moreover the DM may be restricted to some fixed set of signals in which case less informative structures

are essentially disallowed. It may not be possible to automatically and freely dispose of information once

learned.
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A natural assumption is that DMs can choose to mix attention strategies and pay the

corresponding expected costs. They could flip a coin and choose strategy  if the coin comes

down heads and strategy  if it comes down tails. In expectation the cost of this strategy

would be half that of  and half that of . Allowing such mixtures puts an upper bound on

the cost of the strategy 05◦  + 05 ◦ . However, it does not pin down the cost precisely,
since there may be a more efficient way of constructing the mixed attention strategy.

Condition K2 Mixture Feasibility: for any two strategies   ∈ Π and  ∈ (0 1), the
cost of the mixture strategy  = ◦  + (1− ) ◦  ∈ Π satisfies,

 () ≤ () + (1− )()

4.3 Normalization

It is typical in the applied literature to allow inattention at no cost, and otherwise to have

costs be non-negative. Given weak monotonicity, non-negativity of the entire function follows

immediately if one ensures that inattention is costless.

Condition K3 Define  ∈ Π as the strategy in which () = 1 all  ∈ Ω. Attentional

cost function  ∈ K satisfies normalization if it is non-negative where real-valued,

with () = 0.

4.4 Theorem 2

Theorem 2 states that, whenever a costly information acquisition representation exists, one

also exists in which the cost function satisfies conditions K1 through K3. Whatever one

thinks of the above assumptions on intuitive grounds, even if any one or all of them are in

fact false, any data set that can be rationalized can equally be rationalized by a function

that satisfies them all.

Theorem 2 Data set () satisfies NIAS and NIAC if and only if it has a costly infor-

mation acquisition representation with conditions K1 to K3 satisfied.

This result has the flavor of the Afriat characterization of rationality of choice from budget

sets (Afriat [1967]), which states that choices can be rationalized by a non-satiated utility

function if and only if they can be rationalized by a non-satiated, continuous, monotone,

and concave utility function.

Not all restrictions on the form of the cost function can be so readily absorbed. For exam-

ple, we cannot strengthen condition K1 to cover the case of strict monotonicity with respect

12



to sufficiency. We show in online appendix 2 that there are data sets satisfying NIAS and

NIAC yet for which there exists no cost function that produces a costly information acquisi-

tion representation with a cost function that is strictly monotonic with the informativeness

of the information structure.

4.5 Recoverability

Theorem 1 tells us the conditions under which there exists an attentional cost function that

will rationalize the data. We now provide conditions that identify the set of all such cost

functions, in the spirit of Varian [1984] and Cherchye et al. [2011]. We restrict ourselves

to cost functions that satisfy weak monotonicity, so that we can treat minimal attention

strategies as optimal. The key observation is that the choice of ̄ in decision problem 

puts an upper bound on its cost relative to that of any other strategy  ∈ Π,

(̄)−() ≤ ( ̄)−( ) (2)

This directly implies an upper and lower bound on the relative costs of any two revealed

attention strategies ̄, ̄ for  ∈ .

( ̄)−( ̄) ≤ (̄)−(̄) ≤ ( ̄)−( ̄)

An obvious corollary of theorem 1 is that a weakly monotonic attentional cost function

can rationalize a data set if and only it satisfies this inequality for every , ∈ , and the

costs of unchosen attention strategies are high enough to satisfy inequality 2.

This condition implies potentially tighter bounds on the relative cost of any two revealed

attention strategies. Consider the corresponding inequalities in string 1 ∈  with

1 =  and  = ,

(̄1)−(̄2) ≤ (1 ̄
1)−(1 ̄

2);

(̄2)−(̄3) ≤ (2 ̄
2)−(2 ̄

3);

...

(̄−1)−(̄) ≤ (−1 ̄
−1)−(−1 ̄

)

Summing these inequalities yields a bound on (̄)−(̄) This relative cost must obey
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such bounds for all cycles, implying

(̄)−(̄) ≤ min
{1∈|1==}

−1X
=1

£
( ̄

)−( ̄
+1)

¤
; (3)

Considering the reverse string 1 ∈  with 1 =  and  =  yields

(̄)−(̄) ≥ max
{1∈|1==}

−1X
=1

£
( ̄

+1)−( ̄
)
¤
 (4)

Note also that if one considers cost functions for which inattention is free, the above

inequalities can be used to place absolute bounds on the level of costs. Moreover if one ever

sees a switch in attention strategy for decision problems that are “close together”, in that

available vectors of state dependent payoffs always fall within   0, then one can bound

cost differences to within . Hence, with a rich enough data set, arbitrarily tight bounds

can be placed on costs in models in which the data is generated by a finite set of possible

attention strategies.

5 Extensions

Sequential sampling has been the central focus in models of information acquisition since the

work of Wald [1947]. In this section we extend our results to a model of sequential attention,

assuming that only final choices are seen: evolution of learning before choice is not directly

observable. We also extend our results to allow for unobservability of the utility function

and of the prior. In both cases, NIAS and NIAC are unchanged in essentials.

5.1 Sequentially Rational Inattention

We fix a time interval within which a decision is to be made and divide it into  ≥ 1

sub-periods. In each such sub-period the DM must choose whether or not to collect more

information conditional on what has already been learned. In the former case they must

decide what additional information to collect. In the latter, information gathering finishes

and they must choose one of the available actions. The sequence of attention and action

choices is made to maximize the net undiscounted value of final prize utility less sequential

attention costs. Neither attentional inputs nor decision time are observed.

The DM at the start of period 0 is endowed with prior beliefs  ∈ Γ. We use the time

indexed sets  and  to define the DM’s deterministic stopping rule by identifying the

states in which they respectively continue to search and stop searching. If the DM stops
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searching immediately then 0 = {} and 0 ⊂ 2Γ is empty. If not we define 0 = {}
and 0 ⊂ 2Γ as empty. In this case a first attention strategy 1 ∈ Π() is selected at the

start of period 1, with posterior 1 ∈ Γ(1) realized instantly. The stopping rule in period

1 is defined by 1 ⊂ Γ(1) which contains all the posteriors at which further information is

gathered, and 1 = Γ(1)1 the corresponding stopping set.

The process iterates from this point forward. We allow for history dependence by defining

the continuation set  for  ≥ 1 on sequences of posteriors  = ( 1  ) ∈ Γ+1. The

first time that  is empty identifies the maximal stopping time,  =  ≤  . In all earlier

periods, the DM picks a period + 1 attention strategy,

+1 :  → Π̃ with +1(
) ∈ Π()

The ensuing continuation set and attention strategy are correspondingly defined:

+1 ⊂
©
+1 ∈ Γ+2| ∈  +1 ∈ Γ(())

ª


with all other sequences of posteriors in +1 ⊂ Γ+2. The above fully specifies a sequential

attention strategy. Given prior , we let Σ() be the set of such strategies, with generic

element  ∈ Σ().

Note that each strategy  ∈ Σ() induces a probability distribution over sequences of

posteriors. Define 0 = 0 = , and let () be the probability of  ∈ Γ+1 given strategy

, with (
) being the corresponding state dependent probability,

() =
X




(

)

We turn to the evaluation of strategies  ∈ Σ(). We assume that choices are made

optimally given posteriors. Thus, when faced with decision problem , for each  ∈ 

for 0 ≤  ≤  , the decision maker will receive utility ( ), maximal expected utility at

the posterior relevant for action choice To count against reward utility are the attentional

costs which we assume to be independent of preferences over prize lotteries and additively

separable across periods.

Definition 10 Given  ∈ Γ, an admissible attention cost function  ∈ E specifies for each
 ≥ 0 cost ( ) ∈ R̄ on  = ( 1  ) ∈ Γ+1 ∈ , with (

 ) =∞ for  ∈ Π().

The above covers all standard sequential models with additive attention costs. In fact

one can enrich the domain of the period attention cost functions to include all past attention
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levels as well as the past posteriors without changing in any way the ensuing analysis.8 We

define a strategy  as sequentially rational for decision problem  if it solves the following

problem:

 ∈ arg max
∈Σ()

X
=0

⎡⎣X
∈

()( )−
X
∈

()( +1(
))

⎤⎦ 
Where such optima exist, Σ̂ : E × F → Σ identifies all sequentially rationally inattentive

strategies.

Our goal is to identify all data sets () that can be rationalized by some fixed  ∈ E
as consistent with sequentially optimal behavior in the face of costly attention. Given  ∈ F ,
the definition of consistency of  ∈ Σ() with  ∈ Q is essentially unchanged: it requires

existence of a choice function  : Γ → ∆() such that final choices are optimal for all

1 ≤  ≤  and  ∈ , and that the attention and choice functions match the data,

 =

X
=0

X
∈

(
)()

Definition 11 Data set () has a sequential costly information (SCI) represen-

tation (̃ ̃) if there exists ̃ ∈ E and ̃ :  → Σ such that, for all  ∈ , ̃() is

consistent with () and satisfies ̃() ∈ Σ̂(̃ ).

The key result is that NIAS and NIAC remain necessary (as well as sufficient) for such

a representation despite the richer class of learning behaviors covered. We establish this in

the appendix as a corollary to theorem 1. Intuitively, time consistency reduces the dynamic

problem of sequential choice to a static problem of choice of strategy.

Corollary 1 Data set () has an SCI representation if and only if it satisfies NIAS and

NIAC.

5.2 Unobservability of Prior and Utility Function

Returning to the case of static information acquisition, we now consider the observable

implications of optimal behavior when preferences and prior beliefs are unknown. As in

CM14, theorem 1 extends directly to cases in which the utility function  :  → R and the

prior are both unknown, provided the prior assigns strictly positive probability to all states,

8While substantively enriching the model by allowing for tiredness resulting from past effort etc., including

these effects greatly complicates notation.
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 ∈ Γ ≡ { ∈ Γ|  0 all }. To establish this we correspondingly amend key definitions.
We treat () as unknowns and define:

()( ) ≡
X

∈Γ()

"X


()

#
();

Π̂()() ≡ arg sup
∈Π()

©
()( )−()

ª
;

with () = max∈
P

 

. We amend the definition of a costly information repre-

sentation to avoid the conditions being satisfied by a constant utility function.

Definition 12 Data set () has a costly information representation with un-

known prior and utility function if there exists ̃ :  → R, ̃ ∈ Γ, ̃ ∈ K and

̃ : → Π such that, for all  ∈ , ̃() ≡ ̃ is consistent with (), ̃ ∈ Π̂(̃̃)(̃),

and such that ∃ ∈ ,  ∈ ,  ∈ Γ with ()  0, and  ∈  such that,X


̃

 

X


̃



The conditions for existence of such a representation are the precise analog of the NIAS

and NIAC conditions, with the additional requirement of some strict inequality in the value

of acts.

Condition D3 (NIAS∗) Data set () satisfies NIAS∗ with respect to  ∈ Γ and  :

 → R if, for every  ∈  and  ∈ ,X


 (())

 ≥

X


 (())



all  ∈ , where,

 ( ) =



X









and there exists  ∈ ,  ∈  (()), and  ∈  such that,X


 (())

 

X


 (())



Condition D4 (NIAC∗) Data set () satisfies NIAC∗ with respect to  ∈ Γ and
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 :  → R if, for any set of decision problems 1 2   ∈  with  = 1,

−1X
=1

()( ̄
) ≥

−1X
=1

()( ̄
+1)

where ̄ = ̄().

The characterization is precisely as expected, as follows from a careful reading of the

original proof: hence this is treated as a corollary.

Corollary 2 Data set () has a costly information representation with unknown prior

and utility function if and only if there exists ̃ :  → R and ̃ ∈ Γ with respect to which

() satisfies both NIAS∗ and NIAC∗.

NIAS∗ and NIAC∗ therefore identify inequality constraints to which a solution must exist

if the data is to be rationalizable with a costly information representation. In the case in

which the prior is known but the utility function is not, these constraints are linear and

easy to check (see CM14 for the implications of NIAS∗). If the prior is also unknown, then

the conditions are non-linear, but still non-vacuous. CM14 provide an example of data

that is incompatible with NIAS∗ for any utility function and prior. The following example

demonstrates behavior that is commensurate with NIAS∗ but is not commensurate with

NIAC∗ for any non-degenerate utility function and prior.

Example 1 Let  = { }, Ω = {1 2}  = {  }  = { } with actions defined as
follows

State

Action 1 2

a x y

b y x

c x x

We show now that data set 
1() = 

2() = 1, 
1() = 

1() = 
2() = 

2() =

0, 
1() = 

2() = 1 and 
1() = 

2() = 0 does not permit a costly information

representation with unknown prior and utility function.

Intuitively, the DM in the 3 action case (choice set ) perfectly identifies the state and

chooses the action that gives prize  rather than . Since indifference is not allowed, NIAS∗

requires ()  (). In the two action case (choice set ) the DM always chooses action

, whether it yields  or . The problem with this is that the availability in set  of an action

that yields the better prize without attention implies that the cost of being perfectly informed
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must be zero, making it impossible to understand why the fully informative attention strategy

was not chosen when facing choice set . Technically, NIAC∗ fails since, with 2  0,

()( ̄) +()( ̄)−()( ̄)−()( ̄)

= () + [1() + 2()]− ()− () = 2 (()− ())  0

6 Experimental Design

6.1 Design

We introduce an experimental design that generates state dependent stochastic choice data

with which we test our conditions. Subjects are shown a screen with 100 balls that are either

red or blue. The state of the world is the number of red balls on the screen. Prior to seeing

the screen, subjects are informed of the probability distribution over states. They choose

among actions whose payoffs are state dependent. There is neither an external limit (such

as a time constraint) nor an extrinsic cost associated with understanding the state of the

world. Information constraints derive from agents’ unwillingness to trade cognitive effort for

monetary reward.

A decision problem is defined by the set of available actions. A subject faces each decision

problem 50 times.9 We estimate state dependent stochastic choice functions at the individual

and aggregate level using the observed frequency of choosing each action in each state. In

any given experiment, the subject faces four different problems. All occurrences of the same

problem are grouped, but the order of the problems is block-randomized. In estimating the

state dependent stochastic choice function we treat the 50 times that a subject faces the

same decision making environment as 50 independent repetitions of the same event.

The aim of our experiments is to generate environments in which subjects may actively

alter their attention in response to incentives. We focus on three such cases: changes to

the overall reward for attention which should lead to behavioral changes on the extensive

margin; the introduction of new actions to the choice set, which should generate spillover

effects; and changes in the states between which it important to differentiate, which should

lead to behavioral changes on the intensive margin. These experiments provide a testing

ground for the NIAS and NIAC conditions, as well as allowing us to rule out models in

which attention is fixed.

9To prevent subjects from learning to recognize patterns, we randomize the position of the balls. The

implicit assumption is that the perceptual cost of determining the state is the same for each possible config-

uration of balls.
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Subjects were recruited from the New York University student population.10 Each subject

answered 200 questions as well as 1 practice question. At the end of each session, one question

was selected at random for payment, the result of which was added to the show up fee of

$10. Subjects took on average approximately 45 minutes to complete a session. Instructions

are included in online appendix 4.

6.2 Experiment 1: The Extensive Margin

Experiment 1 tests whether subjects increase overall attentional effort as incentives increase.

It comprises four decision problems with two equally likely states: in state 1 there are 49 red

balls and in state 2 there are 51. In each decision problem there are two actions available

{ } with  indexing the decision problem. In each case,  is superior in state 1 while 

is superior in state 2. Across decision problems the reward for making the correct choice in

each state varies.11 Table 1 describes the available actions in the four decision problems in

this experiment (payoffs are in US$).

Table 1: Experiment 1

Payoffs

DP 
1 

2  
1  

2

1 2 0 0 2

2 10 0 0 10

3 20 0 0 20

4 30 0 0 30

Table 2: Experiment 2

Payoffs

DP 
1 

2  
1  

2  
1  

2

5 23 23 21 25 n/a n/a

6 23 23 21 25 30 10

7 23 23 21 25 35 5

9 23 23 21 25 40 0

Experiment 1 allows us to differentiate between models in which attention responds to

incentives and those in which it does not. While more typical in psychology (for example

signal detection theory (SDT) - Green and Swets [1966]), fixed information models have

attracted recent attention in the economics literature (e.g. Lu [2013]). SDT is clearly a

special case of our model, and so implies both NIAC and NIAS. However the same signal

structure must rationalize behavior in all decision problems. If attention does not change

as a function of incentives, neither should choice behavior vary across the decision problems

in this experiment, as the optimal action in each posterior state is independent of the

1046 subjects took part in experiment 1, 45 in experiment 2, and 24 in experiment 3. Each subject took

part in only one experiment.
11Note that these could be recorded as state dependent dollar prizes rather than direct utilities. Allowing

for risk aversion rather than risk neutrality adds more notational complexity than warranted since results

are unchanged in essentials.
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precise value of 
1 and  

2 , as long as the two are equal.
12 Increasing attention in response

to incentives also rules out models in which there is a hard constraint to the amount of

information processing instead of a marginal cost (e.g. Sims [2003]).

6.3 Experiment 2: Spillover Effects

Experiment 2 is designed to test whether the introduction of an “attention-inducing” action

can spill over to increase the probability of choosing a previously available alternative. A

theoretical example of this form is introduced in Matejka and McKay [2011] and described

in table 2. It consists of two equally likely states (49 and 51 red balls). Decision problem 5

consists of two actions,  (which pays the same amount in both states) and  (which pays

slightly more in state 2 and slightly less in state 1). Decision problems 6-8 add a further

action , which pays significantly more in state 1 and significantly less in state 2.

When action  and  are available there is little incentive to gather information, meaning

that subjects may choose to remain uninformed and choose  However, with  available also,

it becomes more important to learn the true state, as  provides a high reward in state 1 but

a low reward in state 2 - increasingly so for later decision problems. A rationally inattentive

agent may therefore select a more informative attention strategy. If this learning suggests

to the DM that state 2 is very likely, then it is optimal to choose action .

This experiment allows us to differentiate between costly information processing and

random utility models (RUMs) (McFadden [1974], Gul and Pesendorfer [2006]) which do not

allow for flexible attention. RUMs take as given a probability measure over some family of

utility functions. Prior to making a choice, one utility function gets drawn from this set

according to the specified measure. The DM then chooses in order to maximize this utility

function.13

A RUM could potentially explain an increase in accuracy as incentives increase in exper-

iment 1, as this increases the value difference between the two options. However, a general

property of RUMs is monotonicity. Addition of a new action to the set of available choices

cannot increase the probability that one of the pre-existing options will be chosen (Gul and

Pesendorfer [2006], Luce and Suppes [1965]).

Monotonicity Axiom Given  ∈ F ,  ∈ ,  ∈ \ and  ∈ Ω,

 ()


 ≥  ( ∪ ) 
12Assuming that the tie-breaking rule for the case of 1 = 05 also does not change as a function of .
13In the case of choice over lotteries, the family of utility functions can be over the lotteries themselves or,

following Gul and Pesendorfer [2006], over the underlying prize space, with the utility of a lottery equal to

its expectation according to the selected utility function.
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Monotonicity is violated by a model of costly inattention that exhibits information

spillovers of the type described above: the introduction of action  increases the probability

of choosing action  in state 2.

6.4 Experiment 3: The Intensive Margin

Table 3: Experiment 3

Payoffs

DP 
1 

2 
3 

4  
1  

2  
3  

4

9 1 0 10 0 0 1 0 10

10 10 0 1 0 0 10 0 1

11 1 0 1 0 0 1 0 1

12 10 0 10 0 0 10 0 10

In experiment 3 we vary the states in which information is valuable and measure the

extent to which subjects focus their attention accordingly. All decision problems in this

experiment involve four equally likely states comprising two identifiable groupings. States

1 and 2 are perceptually hard to distinguish from one another, being defined respectively

by 29 and 31 red balls. States 3 and 4 are also hard to distinguish from another, being

defined respectively by 69 and 71 red balls. There are four decision problems with two

possible actions, still labelled  and . The decision problems differ according to whether it

is important to differentiate between states 1 and 2 (problem 9), states 3 and 4 (problem

10), neither (problem 11), or both (problem 12), as described in table 2.

7 Results

7.1 Attention is Limited and Flexible

Before implementing the NIAS and NIAC tests, we provide evidence that subjects are neither

fully attentive nor completely inattentive. We also confirm the presence of the attentional

flexibility that SDT and standard RUM models rule out.

The first point to observe is that the experiments produce choice data that is both sto-

chastic and state dependent. Subjects gather some information prior to choice, but this

information is incomplete. Using aggregate data from the simple two action cases of ex-

periments 1 and 3 (in which there is a clear correct choice in each state), subjects made

“mistakes”, choosing the inferior action on 32% of all trials. In all three experiments, choice

behavior is significantly different across states (Fisher’s exact test,   00001). For example,
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in experiment 1, averaging across all 4 decision problems,  was chosen 75% of the time in

state 1 and 38% of the time in state 2. These patterns hold true at the individual level. For

example, of the 46 subjects in experiment 1, 15% made mistakes in less than 10% of ques-

tions, while 76% had choice behavior that was significantly different between the two states

at the 10% level. These results suggest that our subjects are absorbing some information

about the state of the world, but are not fully informed when they make their choices.

Our data also rules out the fixed-signal SDT model which does not allow subjects to

make better decisions as incentives increase in the symmetric case. As shown in figure 1b

below, our aggregate data clearly exhibits such a change, with higher proportions of correct

choices at higher incentive levels (rising from 62% in decision problem 1 to 77% in problem

4, significant at the 0.1% level while clustering at the individual). At the individual level,

54% of subjects exhibit significant changes in choice probabilities between decision problems

at the 10% level.14

Experiment 2 provides evidence against RUMs with fixed information structures. Table

4 shows that the 44 subjects who took part in the experiment demonstrate clear violations

of monotonicity. The introduction of action  increases the probability of choosing action 

in state 2 from 23% in DP 5 to 39% in DP 8. Across all decision problems, the introduction

of act  increases the choice of  in state 2 by an average of 12pp, significant at the 1% level.

At the individual level, 51% of subjects show a significant violation of monotonicity of the

type predicted by costly information acquisition theory at the 10% level.

Table 4

DP 1() 2()

5 17% 23%

6 15% 31%

7 12% 33%

8 13% 39%

7.2 NIAS and NIAC: Experiment 1

In the two state/two action set up of experiment 1, NIAS implies the existence of a cutoff

posterior probability of state 1 that determines the optimal act. For posterior beliefs above

0.5, action  is optimal, while for lower posteriors, action  is optimal. This cutoff is shown

in figure 1a together with the estimated posteriors associated with the choice of action 

14All reported standard errors and statistical tests carried out using OLS regression of the choice of act on

each trial on dummies associated with each decision problem. For aggregate data we control for clustering

at the subject level.
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and action  at the aggregate level. This figure demonstrates that NIAS is satisfied in the

aggregate data. At the individual level, for only 1 subject is there a statistically significant

violation of NIAS (i.e. the estimated posterior is significantly lower than 0.5 when  is chosen

or significantly higher than 0.5 when  is chosen at the 10% level). Moreover, as figure 2a

shows, monetary losses due to NIAS violations are small.15 As a benchmark, these losses are

compared to those that would have been observed from a population of subjects choosing at

random.16 The observed distribution is significantly different from the simulated distribution

at the 0.01% level (Kolmogorov-Smirnov test).

Figure 1a - NIAS Experiment 1 Figure 1b - NIAC Experiment 1

The NIAC condition in experiment 1 relates the change in incentives between decision

problems to the change in  , the probability that the correct decision is taken in state

 = 1 2 (action  in state 1, action  in state 2). For two state/two action problems of this

type, NIAC implies the condition,

∆ 1∆(

1 −  

1) +∆ 2∆(

2 − 

2 ) ≥ 0, (5)

where∆ indicates the change in  between two decision problems. In experiment 1, equation

5 implies only that 1 +  2, the total probability of choosing the correct action, should be

monotonic in rewards. Figure 1b shows that indeed the proportion of correct responses rises

from 62% in decision problem 1 to 77% in problem 4. Differences between all pairs of decision

problems are significant at the 1% level, apart from between problem 2 and 3, for which the

difference is not significant.

At the individual level 83% of subjects show no significant violation of the NIAC con-

15Treating point estimates as each subject’s true posterior beliefs
16The use of random benchmarks has been discussed by, for example, Beatty and Crawford [2011]. The

precise procedure used to construct the random behavior is as follows: for each decision problem and for

each state, a random number is drawn for each available action. The probability of choosing each action

from that state is then calculated as the value of the random number associated with that action divided by

the sum of all random numbers.
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dition. Losses resulting from NIAC violations at the individual level are small, as shown in

figure 2b. This figure plots the distribution of the maximal surplus possible by reassigning

attention strategies to decision problems minus the surplus generated by the observed as-

signment for each individual.17 The NIAC condition demands this number be zero. As a

comparator, we show the distribution obtained from random choice. Again, the observed

distribution is significantly different from the simulated distribution at the 0.01% level.

Fig 2a: NIAS losses Experiment 1 Fig 2b: NIAC losses Experiment 1

7.3 NIAS and NIAC: Experiment 2

For experiment 2, NIAS defines regions of acceptable posteriors for the choice of each action

in each decision problem. Table 5 describes these regions, and the aggregate posteriors

observed in the data.

Table 5: NIAS conditions for experiment 2

DP Range 1 Aggregate

   1 1 1

5 [0 50%] [50% 100%] n/a 43 52

6 [0 50%] [50% 65%] [65% 100%] 32 50 85

7 [0 50%] [50% 60%] [60% 100%] 27 51 82

8 [0 50%] [50% 575%] [575% 100%] 25 49 88

The aggregate data shows no significant violations of NIAS. At the individual level 91% of

subjects show no significant violations of NIAS, and the cost of the resulting violations is

small (Figure s1 in online appendix 3).

Applying bilateral NIAC to experiment 2 implies the following ranking on1()−2()
18,

8
1(

8)−8
2(

8) ≥ 7
1(

7)−7
2(

7) ≥ 6
1(

6)−6
2(

6)

17The actual surplus of a subject’s attention strategy is calculated assuming no violations of NIAS.
18If posterior beliefs when  is chosen in decision problem 5 made it preferable to choose  (if available),
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In the aggregate the values of 1()−2() are 29%, 18% and 18% for decision problem 8,

7, and 6 respectively. DP 8 is significantly different from DP 7 and DP 6, though DP 6 and

DP 7 are not significantly different from each other. At the individual level, 65% of subjects

show no significant violations of NIAC, and again losses are small (figure s2 in the online

appendix).

7.4 NIAS and NIAC: Experiment 3

The NIAS conditions for each decision problem in experiment 3 are,


1 (


1 − 2) + 

3 (

3 − 4) ≥ 0

Table s2 in the supplemental material shows that this condition holds at the aggregate level.

At the individual level, 92% of subjects show no significant violations of NIAS and, as shown

in figure s1 in the online appendix, the losses amongst those that do not are again small.

With regard to the NIAC condition, the equivalent of condition 5 implies that subjects

should make the right choice in a given state more often when the value of doing so is high.19

More specifically, NIAC implies six inequalities based on binary comparisons of the 4 decision

problems. Table 6 shows these inequalities, the average value of the left hand and right hand

side variables in the aggregate data, and the probability associated with the test that these

two are equal.

Table 6: NIAC conditions for experiment 3

Condition LHS RHS P

 101 +
10
2 +

9
3+

9
4≥  103 + 

10

4 +
9
1+

9
2 72.8 64.9 0.01

 93+
9
4≥  113 +

11
4 68.2 63.3 0.38

 101 +
10
2 ≥  111 +

11
2 77.3 66.9 0.02

 121 +
12
2 ≥  91+

9
2 74.8 63.7 0.02

 123 +
12
4 ≥  103 +

10
4 69.1 66.3 0.33

 121 + 
12

2 +
12
3 +

12
4 ≥  111 +

11
2 +

11
3 +

11
4 72.0 65.1 0.10

we additionally have the restriction,

61()−62() ≥ 51()−2()

However this is not the case is our aggregate data.
19The precise condition is

∆1∆(

1 − 

1) +∆3∆(

3 − 

3) +∆2∆(

2 − 

2 ) +∆4∆(

4 − 

4 ) ≥ 0
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In every case the inequality is satisfied by the point estimates in the aggregate data. In three

of the cases the differences are statistically significant at the 5% level. At the individual

level, 79% of subjects exhibit no significant failures of NIAC and, as table s2 in the appendix

shows, the resulting losses are small. Overall, 75% of subjects exhibit no significant violation

of either NIAS or NIAC.

8 Existing Literature

Many approaches have been taken to modelling costs and constraints on information acqui-

sition in economic applications, including sequential search (McCall [1970]) selection of the

variance of a normal signal (e.g. Verrecchia [1982]), and the binary choice to either be fully

informed or not (Reis [2006]). More recently, Sims [2003] introduced the concept of rational

inattention, in which the decision maker is free to choose any attention strategy they wish,

with costs based on the Shannon mutual information between prior and posterior beliefs.

Our approach allows for all of the above costs functions. The costs of feasible attention

strategies can be captured by , while the cost of inadmissible strategies can be set to in-

finity. The NIAS and NIAC conditions therefore provide a test of the entire class of costly

information acquisition models currently in use.

A recent wave of literature shares our goal of capturing the observable implications of

optimal acquisition of costly information. Matejka and McKay [2011] analyze the impli-

cations of rational inattention with Shannon mutual information costs for state dependent

stochastic choice data. Ellis [2012] works with state dependent deterministic choice data

to characterize choice among available information partitions. Caplin and Dean [2011] and

Caplin et al. [2011] consider the case of optimal sequential information search, using an

extended data set to derive behavioral restrictions. Again our work nests all these models

as special cases. Furthermore, unlike Matejka and McKay [2011] we provide necessary and

sufficient conditions for our model, while unlike Ellis [2012] we provide conditions that are

necessary and sufficient in finite data sets, making them applicable in practice.

A second decision theoretic approach to identifying optimal behavior in the face of costly

attention is to examine choice over menus, in which attention costs are characterized by an

aversion to contingent planning. de Oliveira et al. [2013] consider a model similar to ours in

this setting.

Our work forms part of a broader effort to characterize choice behavior when the internal

information state of the agent is not directly observable. Caplin and Martin [2014] intro-

duce the NIAS condition to characterize subjective rationality in a single decision problem.

Manzini and Mariotti [2012] consider a model in which the decision maker has a stochastic
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consideration set, and makes choices to optimize preferences given what they have paid at-

tention to. Masatlioglu et al. [2012] characterize “revealed attention”, using the identifying

assumption that removing an unattended item from the choice set does not affect atten-

tion. Lu [2013] models the stochastic choice of a DM who has some unobserved (but fixed)

information structure. Dillenberger et al. [2012] consider a dynamic problem in which the

DM receives information in each period which is externally unobservable, characterizing the

resulting preference over menus. In a strategic setting, Bergemann and Morris [2013b] and

Bergemann and Morris [2013a] consider the related problem of identifying all patterns of

play that are consistent with some underlying information structure for all players.

In approach, our work is related to the recent resurgence in use of revealed preference

methods to understand the observable implications of models of behavior - examples include

sequential application of criteria (Manzini and Mariotti [2007]), habit formation (Crawford

[2010]), and collective consumption behavior (Cherchye et al. [2011]). See also de Clippel

and Rozen [2012] for the explicit application of some of these techniques to finite data.

In the psychology literature, theories to which we are close in spirit are signal detection

theory (Green and Swets [1966]) and categorization theory. A common feature is that the

DM receives a signal and must choose the optimal action at each resulting posterior. These

theories are connected to enormous experimental literatures in psychology that capture state

dependent stochastic choice data. Unlike our model, signal detection theory generally fixes

the attention strategy independent of incentives.

Despite the powerful psychological precedents, there is little experimental work on state

dependent stochastic choice data within economics. One related paper is Cheremukhin et al.

[2011], which uses a formulation similar to Matejka andMcKay [2011] to estimate a rationally

inattentive model of lottery choice. However they do not analyze state dependence in the

resulting stochastic choice data.

9 Conclusions

We show that a general model of costly information acquisition is characterized by two simple

and readily testable restrictions on state dependent stochastic choice data. We identify what

can be recovered about information costs from such data. We provide experimental evidence

that subjects do indeed adjust the information that they collect on the basis of the incentives

inherent in their environment. Models that do not take this into account (such as signal

detection theory and random utility models) fail to capture important aspects of the data.

We do not believe rational allocation of attention necessarily describes behavior in all

circumstances. Indeed, one of the strengths of our approach is that it helps to identify when
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and how standard assumptions on information acquisition need to be relaxed. In this vein,

we are currently exploring behavior of subjects facing important asymmetries in beliefs and

in the cost of mistakes. In contrast, when the model does apply, one can test additional

restrictions on the nature of costs. In this vein, we are currently exploring costs based on

Shannon mutual information and various generalizations (see Caplin and Dean [2013]).
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10 Appendix 1: Proofs

10.1 Lemma 1

Lemma 1 If  ∈ Π is consistent with  ∈ F and  ∈ Q, then it is sufficient for ̄
Proof. Let  ∈ Π be an attention strategy that is consistent with  ∈ Q in decision

problem  . First, we list in order all distinct posteriors  ∈ Γ() for 1 ≤  ≤  =

|Γ()|. Given that  is consistent with , there exists a corresponding optimal choice

strategy  : {1  }→ ∆(), with () denoting the probability of choosing action

 ∈  () with posterior , such that the attention and choice functions match the

data,

 =

X
=1

(
)()

We also list in order all possible posteriors  ∈ Γ̄ ≡ Γ(̄), 1 ≤  ≤ Γ̄, and identify all

chosen actions that are associated with posterior  as ̄ ,

̄  ≡ { ∈  |() = }

The garbling matrix  sets the probability of  ∈ Γ̄ given  ∈ Γ() as the probability

of all choices associated with actions  ∈ ̄ .

 =
X
∈̄ 

()

Note that this is indeed a |Γ()| × |Γ̄| stochastic matrix  ≥ 0 withP

=1 
 = 1 all .

Given  ∈ Γ() and  ∈ Ω, note that,

X
=1

(
) =

X
=1

(
)
X
∈̄ 

() =
X
∈̄ 



by the data matching property. It is definitional that ̄(
) is precisely equal to this,

as the observed probability of all actions associated with posterior  ∈ Γ̄. Hence,

̄(
) =

X
=1

(
)

as required for sufficiency.
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10.2 Theorem 1 and Corollary 1

Theorem 1 Data set () has a costly information acquisition representation if and only

if it satisfies NIAS and NIAC.

Proof of Necessity. Necessity of NIAS follows much as in CM14. Fix  ∈ , ̃ and

̃ : Γ(̃) → ∆() in a costly information acquisition representation, and possible  ∈ .

By definition of a costly information acquisition representation,

X
∈Γ(̃)

̃()

"X
∈Ω





#
≥

X
∈Γ(̃)

̃()

"X






#
all  ∈ 

Substituting,

 =
̃()X


̃()


cancelling the common denominator
X


̃() in the inequality, substituting () =X
∈Γ(̃)

̃()̃
(), and dividing all terms by

X


()

, we derive,

X


 (())

 =

X


⎡⎢⎢⎣ ()

X



()



⎤⎥⎥⎦
 ≥

X


⎡⎢⎢⎣ ()

X



()



⎤⎥⎥⎦ 
 =

X


 (())



establishing necessity of NIAS.

To confirm necessity of NIAC consider any sequence 1 2  ∈  with  = 1

and corresponding attention strategy ̃ for 1 ≤  ≤  . By optimality,

( ̃
)−(̃) ≥ ( 

+1)−(̃+1)∀  ∈ {1  }

so that,
−1X
=1

( ̃
)−(̃) ≥

−1X
=1

( 
+1)−(̃+1)

Given that (̃1) = (̃), note that,

−1X
=1

( ̃
)−( ̃

+1) ≥
−1X
=1

(̃)−(̃+1) = 0
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so that,
−1X
=1

( ̃
) ≥

−1X
=1

( ̃
+1)

To establish that this is inherited by the minimal attention strategies ̄ for 1 ≤  ≤  , note

from lemma 1 that with ̃ sufficient for ̄ , ( ̃) ≥ ( ̄) for all  ∈ F . For  = 

this is an equality since both strategies give rise to the same state dependent stochastic

demand,

( ̃
) = ( ̄

) =
X
∈

X


()






Hence,
−1X
=1

( ̄)) =

−1X
=1

( ̃
) ≥

−1X
=1

( ̃
+1) ≥

−1X
=1

( ̄
+1)

establishing NIAC.

Proof of Sufficiency. There are three steps in the proof that the NIAS and NIAC con-

ditions are sufficient for () to have a costly information acquisition representation. The

first step is to establish that the NIAC conditions ensures that there is no global reassignment

of the minimal attention strategies observed in the data to decision problems  ∈  that

raises total gross surplus. The second step is use this observation to define a candidate cost

function on attention strategies, ̄ : Π → R ∪∞. The key is to note that, as the solution
to the classical allocation problem of Koopmans and Beckmann [1957], this assignment is

supported by “prices” set in expected utility units. It is these prices that define the proposed

cost function. The final step is to apply the NIAS conditions to show that
¡
̄ ̄

¢
repre-

sents a costly information acquisition representation of (), where ̄ comprises minimal

attention strategies.

Enumerate decision problems in  as  for 1 ≤  ≤  . Define the corresponding min-

imal attention strategies ̄ for 1 ≤  ≤  as revealed in the corresponding data and let

Π̄ ≡ ∪∈̄ be the set of all such strategies across decision problems, with a slight enrich-
ment to ensure that there are precisely as many strategies as there are decision problems. If

all minimal attention strategies are different, the set as just defined will have cardinality  .

If there is repetition, then retain the decision problem index with which identical minimal

attention strategies are associated so as to make them distinct. This ensures that the result-

ing set Π has precisely  elements. Index elements ̄ ∈ Π̄ in order of the decision problem

 with which they are associated.

We now allow for arbitrary matchings of attention strategies to decision problems. First,

let  denote the gross utility of decision problem  combined with minimal attention strategy
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,

 = ( ̄
)

with  the corresponding matrix. Define M to be the set of all matching functions  :

{1  } → {1  } that are 1-1 and onto and identify the corresponding sum of gross

payoffs,

() =

X
=1

()

It is simple to see that the NIAC condition implies that the identify map () = 

maximizes the sum over all matching functions  ∈M. Suppose to the contrary that there

exists some alternative matching function that achieves a strictly higher sum, and denote this

match ∗ ∈M. In this case construct a first sub-cycle as follows: start with the lowest index

1 such that 
∗(1) 6= 1. Define 

∗(1) = 2 and now find (2), noting by construction that

(2) 6= 2. Given that the domain is finite, this process will terminate after some  ≤ 

steps with ∗() = 1. If it is the case that 
∗() =  outside of the set ∪=1 , then we

know the increase in the value of the sum is associated only with this cycle, hence,

−1X
=1

 

−1X
=1

+1 

directly in contradiction to NIAC. If this inequality does not hold strictly, then we know that

there exists some 0 outside of the set ∪=1  such that ∗(0) 6= 0. We can therefore iterate

the process, knowing that the above strict inequality must be true for at least one such cycle

to explain the strict increase in overall gross utility. Hence the identity map () =  indeed

maximizes () amongst all matching functions  ∈M.

With this, we have established that the identity map solves an allocation problem of

precisely the form analyzed by Koopmans and Beckmann [1957]. They characterize those

matching functions  : {1 } → {1 } that maximize the sum of payoffs defined by

a square payoff matrix such as  that identifies the reward to matching objects of one set

(decision problems in our case) to a corresponding number of objects in a second set (minimal

attention strategies in our case). They show that the solution is the same as that of the

linear program obtained by ignoring integer constraints,

max
≥0

X


 s.t.

X
=1

 =

X
=1

 = 1

Standard duality theory implies that the optimal assignment () =  is associated with a
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system of prices on minimal attention strategies such that the increment in net payoff from

any move of any decision problem is not more than the increment in the cost of the attention

strategy.

Defining these prices as ̄, their result implies that,

 −  = ( ̄
)−( ̄

) ≤ ̄ − ̄;

or,

( ̄
)− ̄ ≥ ( ̄

)− ̄

The result of Koopmans and Beckmann therefore implies existence of a function ̄ :

Π −→ R that decentralizes the problem from the viewpoint of the owner of the decision

problems, seeking to identify surplus maximizing attention strategies to match to their par-

ticular problems. Note that if there are two distinct decision problems with the same revealed

posterior, the result directly implies that they must have the same cost, so that one can in

fact ignore the reference to the decision problem and retain only the posterior in the do-

main. Set () = ∞ if  6= ̄. We have now completed construction of a qualifying cost

function ̄ : Π → R ∪∞ that satisfies ̄() ∈ R for some  ∈ Π. The entire construction

was aimed at ensuring that the observed attention strategy choices were always maximal,

̄ ∈ Π̂() for all  ∈ . It remains to prove that ̄ is consistent with () for all

 ∈ . This requires us to show that, for all  ∈ , the choice rule that associates with

each  ∈ Γ(̄) the certainty of choosing the associated action  ∈  () as observed in the

data is both optimal and matches the data. That it is optimal is the precise content of the

NIAS constraint, X


 (())

 ≥

X


 (())



for all  ∈ . That this choice rule and the corresponding minimal attention function match

the data holds by construction.

Corollary 1 Data set () has an SRI representation if and only if it satisfies NIAS and

NIAC.

Proof. Sufficiency is implied by theorem 1 applied to the special case with  = 1. To

prove necessity, we first construct a mapping from sequential to static attention strategies

 : Σ() −→ Π(). Given  ∈ Σ() and  ∈ Γ we specify the corresponding state dependent

probabilities as,

() =
X

{∈|=, 1≤≤}
(

)
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We also define a mapping from sequential to static attention cost functions,  : E −→ K.
Given  ∈ E and  ∈ Π(),

() =

(
inf(∈Σ()|=}() =

P

=0

P
∈

()( +1(
));

∞ if @ ∈ Σ() s.t.  = 

Given (̃ ̃) that define an SCI representation, we show that (̃ ̃) with ̃ ≡ ̃(̃)

and ̃
 ≡ ̃() = (̃()) define a costly information acquisition representation, whereupon

application of the necessity aspect of theorem 1 implies that the data satisfy NIAS and NIAC.

By definition of an SCI representation, we know that for all  ∈ , ̃() is consistent with

() and satisfies ̃() ∈ Σ̂(̃ ). Hence there exists ̃ : Γ→ ∆() such that act choices

are utility maximizing for all 1 ≤  ≤  ,  ∈  such that  = , and  ∈  with ̃()  0,

and such that the attention and choice functions match the data,

() =

X
=0

X
∈

̃() ()̃()

Direct substitution using this fixed choice function shows that ̃
 ∈ Π() is consistent

with (). Furthermore, given that (̃ ̃) is an SRI representation, we know that,

̃ ∈ arg max
∈Σ()

X
=0

⎡⎣X
∈

()( )−
X
∈

()( +1(
))

⎤⎦ 
Substitution shows that this implies that the corresponding property holds for ̃


in relation

to ̃

̃
 ∈ arg max

∈Π()

X
∈Γ

X
̃



 ()()− ̃()

so that ̃
 ∈ Π̂((̃) ), completing the proof.

10.3 Theorem 2

Theorem 2 Data set () satisfies NIAS and NIAC if and only if it has a costly infor-

mation acquisition representation with conditions K1 to K3 satisfied.

Proof. The proof of necessity is immediate from theorem 1. The proof of sufficiency

proceeds in four steps, starting with a costly information acquisition representation
¡
̄ ̄

¢
of () of the form produced in theorem 1 based on satisfaction of the NIAS and NIAC
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conditions. A key feature of this function is that the function ̄ is real-valued only on the

minimal information strategies Π̄ ≡ {̄| ∈ } associated with all corresponding decision
problems, otherwise being infinite. The first step is the proof is to construct a larger domain

Π̊ ⊃ Π̄ to satisfy three additional properties: to include the inattentive strategy,  ∈ Π̊; to

be closed under mixtures so that   ∈ Π̊ and  ∈ (0 1) implies  ◦ +(1−) ◦  ∈ Π̊; and

to be “closed under garbling,” so that if  ∈ Π̊ is sufficient for attention strategy  ∈ Π, then

 ∈ Π̊. The second step is to define a new function ̊ that preserves the essential elements

of ̄ while being real-valued on the larger domain Π̊ ⊃ Π̄, and thereby to construct the full

candidate cost function ̊ : Π→ R ∪∞. The third step is to confirm that ̊ ∈ K and that
̊ satisfies the required conditions K1 through K3. The final step is to confirm that

³
̊ ̄

´
forms a costly information acquisition representation of ().

We construct the domain Π̊ in two stages. First, we define all attention strategies for

which some minimal attention strategy ̄ ∈ Π is sufficient;

Π̄ = { ∈ Π|∃ ∈ Π̄ sufficient for }

Note that this is a superset of Π̄ and that it contains . The second step is to identify Π̊

as the smallest mixture set containing Π̄: this is itself a mixture set since the arbitrary

intersection of mixture sets is itself a mixture set.

By construction, Π̊ has three of the four desired properties: it is closed under mixing;

it contains Π̄, and it contains the inattentive strategy. The only condition that needs to be

checked is that it retains the property of being closed under garbling:

 ∈ Π̊ sufficient for  ∈ Π =⇒  ∈ Π̊ .

To establish this, it is useful first to establish certain properties of Π̄ and of Π̊. The first is

that Π̄ is closed under garbling:

 ∈ Π̄ sufficient for  ∈ Π =⇒  ∈ Π̄.

Intuitively, this is because the garbling of a garbling is a garbling. In technical terms, the

product of the corresponding garbling matrices is itself a garbling matrix. The second is

that one can explicitly express Π̊ as the set of all finite mixtures of elements of Π̄,

Π̊ =

(
 =

X
=1

 ◦ | ∈ N (1 ) ∈ −1  ∈ Π̄

)
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where −1 is the unit simplex in R To make this identification, note that the set as

defined on the RHS certainly contains Π̄ and is a mixture set, hence is a superset of Π̊.

Note moreover that all elements in the RHS set are necessarily contained in any mixture set

containing Π̄ by a process of iteration, making is also a subset of Π̊, hence finally one and

the same set.

We now establish that if  ∈ Π is a garbling of some  ∈ Π̊, then indeed  ∈ Π̊. The first

step is to express  ∈ Π̊ as an appropriate convex combination of elements of Π̄ as we now

know we can,

 =

X
=1

 ◦ 

with all weights strictly positive,   0 all . Lemma 2 below establishes that in this case

there exist garblings  of  ∈ Π̄ such that,

 =

X
=1

 ◦ 

establishing that indeed  ∈ Π̊ since, with Π̄ closed under garbling, 
 ∈ Π̄ and  a

garbling of  implies  ∈ Π̄.

We define the function ̊ on Π̊ in three stages. First we define the function ̄ on

the domain Π̄ by identifying for any  ∈ Π̄ the corresponding set of minimal attention

strategies ̄ ∈ Π̄ of which  is a garbling, and assigning to it the lowest such cost. Formally,

given  ∈ Π̄,

̄() ≡ min
{∈Π̄| sufficient for }

̄()

Note that ̄() = ̄() all  ∈ Π̄. To see this, consider 0 ∈  with ̄
0
sufficient

for ̄. By the Blackwell property, expected utility is at least as high using ̄
0
as using ̄

for which it is sufficient,

( ̄
0
) ≥ ( ̄)

At the same time, since
¡
̄ ̄

¢
is a rational attention representation of (), we know

that ̄ ∈ Π̂(), so that,

( ̄)−(̄) ≥ ( ̄
0
)−(̄

0
)

Together these imply that (̄) ≤ (̄
0
), which in turn implies that ̄() = ̄() all

 ∈ Π̄.

Note that ̄() also satisfies weak monotonicity on this domain, since if we are given
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  ∈ Π̄ with  sufficient for , then we know that any strategy  ∈ Π̄ that is sufficient

for  is also sufficient for , so that the minimum defining ̄() can be no lower than that

defining ̄().

The second stage in the construction is extend the domain of the cost function from Π̄

to Π̊. As noted above, this set comprises all finite mixtures of elements of Π̄,

Π̊ =

(
 =

X
=1

 ∗ | ∈ N (1 ) ∈ −1 and  ∈ Π̄

)


Given  ∈ Π̊, we take the set of all such mixtures that generate it and define ̊() to be the

corresponding infimum,

̊() = inf∈N∈−1{}=1∈Π̄ |=
X
=1

∗


X
=1

̄(
)

Note that this function is well defined since ̄ is bounded below by the cost of inattentive

strategies and the feasible set is non-empty by definition of Π̊. We establish in Lemma 3 that

the infimum is achieved. Hence, given  ∈ Π̊, there exists  ∈ N  ∈ −1 and elements

 ∈ Π̄ with  =

X
=1

 ◦  such that,

̊() =

X
=1

̄(
)

We show now that ̊ satisfies K2, mixture feasibility. Consider distinct strategies  6=
 ∈ Π̊. We know by Lemma 3 that we can find  ∈ N corresponding probability weights
 ∈  and elements   ∈ Π̄ with  =

X
=1

 ◦ ,  =
X
=1

 ∗ , and such that,

̊() =

X
=1



 ̄(

);

̊() =

X
=1

 ̄(
)

Given  ∈ (0 1), consider now the mixture strategy defined by taking each strategy 

with probability  and each strategy 
 with probability (1− )


 . By construction, this
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mixture strategy generates  = [ ∗  + (1− ) ∗ ] ∈ Π and hence we know by the infimum

feature of ̊() that,

̊() ≤
X
=1

 ̄(
) +

X
=1

(1− )

 ̄(

) = ̊() + (1− )̊()

confirming mixture feasibility.

We show also that ̊ satisfies K1, weak monotonicity in information. Consider   ∈ Π̊

with  sufficient for . We know by Lemma 3 that we can find  ∈ N  ∈ −1 and

corresponding elements {}=1 ∈ Π̄ such that  =

X
=1

 ∗  and such that,

̊() =

X
=1

̄(
)

We know also from Lemma 2 that we can construct {}=1 ∈ Π̄ such that  =

X
=1

 ◦ 

and such that each  is a garbling of the corresponding . Given that ̄ satisfies weak

monotonicity on its domain Π̄, we conclude that,

̄(
) ≥ ̄(

)

By the infimum feature of ̊() we therefore know that,

̊() ≤
X

=1

̄(
) ≤

X
=1

̄(
) = ̊()

confirming weak monotonicity.

We show now that we have retained the properties that made
¡
̄ ̄

¢
a costly information

acquisition representation of (). Given  ∈ , it is immediate that ̄ and the choice

function that involves picking action  ∈  () for sure in revealed posterior () is consis-

tent with the data, since this was part of the initial definition. What needs to be confirmed

is only that the revealed minimal attention strategies are optimal. Suppose to the contrary

that there exists  ∈  such that,

( )− ̊()  ( ̄)− ̊(̄)

for some  ∈ Π̊. By Lemma 3 we can find  ∈ N a strictly positive vector  ∈ −1 and
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corresponding elements {}=1 ∈ Π̄, such that  =

X
=1

 ∗  and such that,

̊() =

X
=1

̄(
)

By the fact that  =

X
=1

 ∗  and by construction of the mixture strategy,

( ) =

X
=1

( 
)

so that,
X

=1


£
( )− ̄(

)
¤
 ( ̄)− ̊(̄)

We conclude that there exists  such that,

( )− ̄(
)  ( ̄)− ̊(̄)

Note that each  ∈ Π̄ inherits its cost ̄(
) from an element ̄ ∈ Π̄ that is the

lowest cost minimal attention strategy according to ̄ on set Π̄ that is sufficient for ,

̄(
) = ̄(̄)

where the last equality stems from the fact (established above) that ̄() = ̄() on ̄ ∈ Π̄.

Note by the Blackwell property that each strategy ̄ ∈ Π̄ offers at least as high gross value

as the strategy  ∈ Π̄ for which it is sufficient, so that overall,

( ̄)− ̄(̄) ≥ ( )− ̄(
)  ( ̄)− ̊(̄)

To complete the proof it is sufficient to show that,

̊() = ̄()

on  ∈ Π̄ With this we derive the contradiction that,

( ̄)− ̄(̄)  ( ̄)− ̄(̄)
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in contradiction to the assumption that
¡
̄ ̄

¢
formed a costly information acquisition rep-

resentation of ().

To establish that ̊() = ̄() on  ∈ Π̄, note that we know already that ̄() = ̄()

on ̄ ∈ Π̄. If this did not extend to ̊(), then we would be able to identify a mixture strategy

 ∈ Π̄ sufficient for ̄ with strictly lower expected costs, ̊()  ̊(). To see that this

is not possible, note first from Lemma 1 that all strategies that are consistent with  and

() are sufficient for ̄. Weak monotonicity of ̊ on Π̊ then implies that the cost ̊()

of any mixture strategy sufficient for ̄ satisfies ̊() ≥ ̊(), as required.

The final and most trivial stage of the proof is to ensure that normalization (K3) holds.

Note that  ∈ Π̄, so that ̊() ∈ R according to the rule immediately above. If we

renormalize this function by subtracting ̊() from the cost function for all attention strate-

gies then we impact on no margin of choice and do not interfere with mixture feasibility,

weak monotonicity, or whether or not we have a costly information acquisition represen-

tation. Hence we can avoid pointless complication by assuming that ̊() = 0 from the

outset so that this normalization is vacuous. In full, we define the candidate cost function

̊ : Π̊→ R ∪∞ by,

̊() =

(
̊() if  ∈ Π̊

∞ if  ∈ Π̊

Note that weak monotonicity implies that the function is non-negative on its entire domain.

It is immediate that ̊ ∈ K, since ̊() = ∞ for  ∈ Π̊ and the domain contains the

corresponding inattentive strategy  on which ̊() is real-valued. It is also immediate that

̊ satisfies K3, since ̊() = 0 by construction. It also satisfies K1 and K2, and represents

a costly information acquisition representation, completing the proof.

Lemma 2 If  =

X
1

 ◦ with  ∈ N  ∈ −1 with   0 all , and {}=1 ∈ Π, then

for any garbling  of , there exist garblings  of  ∈ Π such that,

 =

X
=1

 ∗ 

Proof. By assumption, there exists a |Γ()| × |Γ()| matrix  with
P

 
 = 1 all  and

such that, for all  ∈ Γ(),

(
) =

X
∈Γ()

(
)

Since  =

X
1

 ◦ , we know that Γ() ⊂ Γ(). Now define compressed matrix  as
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the unique submatrix of  obtained by first deleting all rows corresponding to posteriors

 ∈ Γ()\Γ(), and then deleting all columns corresponding to posteriors  such that
 = 0 all  ∈ Γ()\Γ(). Define  ∈ Π to be the strategy that has as its support the set

of all posteriors that are possible given the garbling  of ,

Γ() = { ∈ Γ()|  0 some  ∈ Γ()}

and in which state dependent probabilities of all posteriors are generated by the compressed

matrix ,

(
) =

X
∈Γ()

(
)

for all  ∈ Γ().

Note by construction that each attention strategy  is a garbling of the corresponding

 ∈ Π, since each  is itself a garbing matrix for which
P

 
 = 1 for all  ∈ Γ(). It

remains only to verify that  =

X
=1

 ∗ . This follows since,

(
) =

X
∈Γ()

(
) =

X
∈Γ()


X
=1



(

) =

X
=1


X

∈Γ()
(

) =

X
=1



(

)

Lemma 3 Given  ∈ Π̊, there exists  ∈ N  ∈ −1, and elements  ∈ Π̄ with

 =

X
=1

 ◦  such that,

̊() =

X
=1

̄(
)

Proof. By definition ̊() is the infimum of

X
=1

̄(
) over all lists {}=1 ∈ Π̄ such

that  =

X
=1

 ∗ . We now consider a sequence of such lists, indicating the order in this

sequence in parentheses, {()}()=1 , such that in all cases there are corresponding weights

() ∈ ()−1 with  =

()X
=1

() ∗ () and that achieve a value that is heading in the
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limit to the infimum,

lim
−→∞

()X
=1

()̄(
()) = ̊().

A first issue that we wish to avoid is limitless growth in the cardinality (). The

first key observation is that, by Charateodory’s theorem, we can reduce the number of

strictly positive weights in a convex combination  =

∗()X
=1

∗() ∗ () to have cardinality

∗() ≤  + 1. We confirm now that we can do this without raising the corresponding

costs,

∗()X
=1

∗()̄(
()). Suppose that there is some integer  such that the original set

of attention strategies has strictly higher cardinality ()   + 1. Suppose further that

the first selection of 1() ≤ + 1 such posteriors for which there exists a strictly positive

probability weights 1() such that  =

1()X
=1

1()∗() has higher such costs (note WLOG

that we are treating these as the first 1() attention strategies in the original list). It is

convenient to define 1() = 0 for 
1()+1 ≤  ≤ () so that we can express this inequality

in the simplest terms,

()X
=1

1()̄(
()) 

()X
=1

()̄(
())

This inequality sets up an iteration. We first take the smallest scalar 1 ∈ (0 1) such
that,

11() = ()

That such a scalar exists follows from the fact that

1()X
=1

1() =

()X
=1

() = 1, with all

components in both sums strictly positive and with ()  1(). We now define a second

set of probability weights 2(),

2() =
()− 11()

1− 1


for 1 ≤  ≤ (). Note that these weights have the property that  =

()X
=1

2() ∗ () and
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that,

()X
=1

2()̄(
()) =

()X
=1

"
()− 11()

1− 1

#
̄(

()) 

()X
=1

()̄(
()

By construction, note that we have reduced the number of strictly positive weights 2()

by at least one to ()−1 or less. Iterating the process establishes that indeed there exists a
set of no more than +1 posteriors such that a mixture produces that first strategy  and

in which this mixture has no higher weighted average costs than the original strategy. Given

this, there is no loss of generality in assuming that () ≤ + 1 in our original sequence.

With this bound on cardinality, we know that we can find a subsequence of attention

strategies () which all have precisely the same cardinality () =  ≤+1 all . Going

further, we can impose properties on all of the  corresponding sequences {()}∞=1. First,
we can select subsequences in which the ranges of all corresponding attention functions have

the same cardinality independent of ,

¯̄
Γ(())

¯̄
= 

for 1 ≤  ≤  . Note we can do this because, for all  and , the number of posteriors in

the attention strategy () is bounded above by the number of posteriors in the strategy

, which is finite.

With this, we can index the possible posteriors () ∈ Γ(()) in order, 1 ≤  ≤ 

and then select further subsequences in which these posteriors themselves converge to limit

posteriors,

() = lim
→∞

() ∈ Γ

which is possible posteriors lie in a compact set, and so have a convergent subsequence.

We ensure also that both the associated state dependent probabilities themselves and the

weights () in the expression  =

()X
=1

() ∗ () converge,

lim
→∞


¡
()

¢
=  ();

lim
→∞

() = ()

Again, this is possible because the state dependent probabilities and weights lie in compact

sets.

The final selection of a subsequence ensures that, given 1 ≤  ≤  , each () ∈ Π̄
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has its value defined by precisely the same minimal attention strategy ̄ ∈ Π̄ as the least

expensive among those that were sufficient for it and hence whose cost it was assigned in

function ̄. Technically, for each 1 ≤  ≤  ,

̄(
()) = ̄(̄)

for 1 ≤  ≤ ∞: this is possible because the data set and hence the number of minimal
attention strategies is finite.

We first use these limit properties to construct a list of limit attention strategies () ∈

Π̄ with  =

X
=1

 ◦  for 1 ≤  ≤  . Strategy () has range,

Γ(()) = ∪

=1
()

with state dependent probabilities,

£
()

¤


¡
()

¢
=  ()

Note that the construction ensures that  =

X
=1

()◦(). To complete the proof we

must establish only that,

̊() =

X
=1

()̄(
())

We know from the construction that, for each 

X
=1

()̄(
()) =

X
=1

()̄(̄
)

Hence the result is established provided only,

̄(
()) ≤ ̄(̄)

which is true provided ̄ being sufficient for all () implies that ̄ is sufficient for the

corresponding limit vector (). That this is so follows by defining () = [()] to be

the limit of any subsequence of the |Γ(̄)| × stochastic matrices () = [()] which
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have the defining property of sufficiency,

£
()

¤

(()) =

X
̄∈Γ(̄)

[()] ∗ ̄(̄)

for all () ∈ Γ(()) and  ∈ Ω. It is immediate that the equality holds up in the limit,

establishing that indeed ̄ is sufficient for each corresponding limit vector (), confirming

finally that ̄(
()) ≤ ̄(̄) and with it establishing the Lemma.

11 Appendix 2: No Strong Blackwell

A simple example with data on one decision problem with two equally likely states illustrates

that one cannot further strengthen the result in this dimension. Suppose that there are three

available actions  = {  } with corresponding utilities,

(
1  


2 ) = (10 0) ; (


1  


2) = (0 10) ; (


1  


2) = (75 75) 

Consider the following state dependent stochastic choice data in which the only two chosen

actions are  and ,


1 = 

2 =
3

4
= 1−

1 = 1−
2

Note that this data satisfies NIAS; given posterior beliefs when  is chosen,  is superior to

 and indifferent to , and when  is chosen it is superior to  and indifferent to . It trivially

satisfies NIAC since there is only one decision problem observed. We know from theorem

2 that is has a costly information acquisition representation with the cost of the minimal

attention strategy  (̄) ≥ 0 and that of the inattentive strategy being zero, () = 0.

Note that ̄ is sufficient for  but not vice versa, hence any strictly monotone cost function

would have to satisfy  (̄)  0. In fact it is not possible to find a representation with this

property. To see this, note that both strategies have the same gross utility,

( ) =
1

2
∗ 3
4
∗ 10 + 1

2
∗ 3
4
∗ 10 = 1 ∗ 75 = ( )

where we use the fact that the inattentive strategy involves picking action  for sure. In

order to rationalize selection of the inattentive strategy, it must therefore be that ̄ is no

more expensive than , contradicting strict monotonicity.
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12 Appendix 3: Further Details of NIAS and NIAC

Tests

Tables s1 and s2 show the subject level distribution of losses due to NIAC and NIAS violations

in dollar terms, compared to a benchmark simulated distribution of random choice. Losses

due to NIAC are calculated assuming that the point estimate of posterior beliefs upon

the the choice of each act are the subject’s true posterior beliefs, and then comparing the

expected value of the chosen act to that of the optimal act at each posterior. Losses below

are summed across all chosen acts in all decision problems. NIAS losses are calculated by

treating each subject’s estimated choice probabilites in each decision problem as their true

choice probabilities, and calculating the maximal surplus that could be obtained by correctly

assigning strategies to decision problems. This is compared to the surplus obtained from the

subject’s actual assignment, assuming NIAS to be satisfied.

In all 6 cases, the distributions of actual and simulated subjects are significantly different

at the 0.001% level (Kolmogorov-Smirnov test).
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Experiment 1 Experiment 2

Experiment 3

Figure s1: $ losses due to NIAS violations - actual and simulated subjects
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Experiment 1 Experiment 2

Experiment 3

Figure s2: $ losses due to NIAC violations - actual and simulated subjects

Table s1: NIAS conditions for Experiment 3

Decision Problem 
1 (


1 − 2) + 

3 (

3 − 4)

9 1.8

10 2.6

11 0.3

12 3.9

Table s1 describes the NIAS test for experiment 3. As discussed in the text, NIAS is

satisfied in each decision problem if 
1 (


1 − 2) + 

3 (

3 − 4) is greater than zero. Table

s2 shows the value of this expression in the aggregate data. For each decision problem the

condition is satisfied.
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1/27/2014 Instructions

http://samuel-brown.com/infoexp12/instructions.php?p=1 1/1

← Home Next →

Individual Decision-Making Experiment
Instructions
This experiment is designed to study decision making, and consists of 4 sections. Each section will
consist of 50 questions. At the end of the experiment, one question will be selected at random from
those you answered. The amount of money that you get at the end of the experiment will depend
on your answer to this question. Anything you earn from this part of this experiment will be added
to your show-up fee of $10.

Please turn off cellular phones now.

The entire session will take place through your computer terminal. Please do not talk or in any way
communicate with other participants during the session.

Please do NOT use the forward and back buttons in your browser to navigate. Only use the
links at the bottom of each page to move forward or back.

We will start with a brief instruction period. During this instruction period, you will be given a
description of the main features of the session and will be shown how to use the program. If you
have any questions during this period, please raise your hand.

After you have completed the experiment, please remain quietly seated until ev eryone has
completed the experiment.

http://samuel-brown.com/infoexp12/login-home.php
http://samuel-brown.com/infoexp12/instructions.php?p=2


1/27/2014 Instructions

http://samuel-brown.com/infoexp12/instructions.php?p=2 1/1

← Previous Next →

Individual Decision-Making Experiment
Instructions
For each question you will be shown 100 dots on a screen. Some of these dots will be red, while
some will be blue. Here is an example of such a screen:

The number of red dots will be determined at random. You will be told how likely each number of
red dots is. So, for example you might be told that there is a 75% chance of there being 49 red
dots and a 25% chance of there being 51 red dots. In this case there is a 3/4 chance that there will
be 49 red dots on the screen, and a 1/4 chance that there will be 51 red dots. There will never be
any other number of red dots on the screen. The number of red dots in each question is
determined independently of the number of red dots that have appeared in previous questions.

http://samuel-brown.com/infoexp12/instructions.php?p=1
http://samuel-brown.com/infoexp12/instructions.php?p=3


1/27/2014 Instructions

http://samuel-brown.com/infoexp12/instructions.php?p=3 1/1

← Previous Next →

Individual Decision-Making Experiment
Instructions
You will be asked to make a choice between two or more options. Each of these options will pay
out different amounts of money, depending on how many red dots are on the screen.

Option Pay if there are 49 red dots Pay if there are 51 red dots

A 10 0

B 0 10

C 5 5

In this case, if you chose option A (and this question was the one selected for payment) then you
would get $10 if there were 49 red dots on the screen and $0 if there were 51 red dots. If you
chose option B you would get $10 if there were 51 red dots on the screen and $0 if there were 49
red dots. If you chose option C you would receive $5 regardless of the number of red dots on the
screen.

You will now have the chance to try an example question. You will not be paid depending on your
answer to this question - it is just for practice.

http://samuel-brown.com/infoexp12/instructions.php?p=2
http://samuel-brown.com/infoexp12/instructions.php?p=4


1/27/2014 Instructions

http://samuel-brown.com/infoexp12/instructions.php?p=4 1/1

← Previous Next →

Individual Decision-Making Experiment
Instructions
Example Question

You are about to see a screen with 100 dots on it. These dots will be either red or blue. The
likelihood of the number of red dots is as follows:

With 50% probability there will be 49 red dots

With 50% probability there will be 51 red dots

You will then be asked to choose between a number of alternatives. These alternatives will pay
money depending on the number of dots on the screen.

http://samuel-brown.com/infoexp12/instructions.php?p=3
http://samuel-brown.com/infoexp12/instructions.php?p=5


1/27/2014 Instructions

http://samuel-brown.com/infoexp12/instructions.php?p=5 1/1

← Previous Next →

Individual Decision-Making Experiment
Instructions
Example Question

Remember:

With 50% probability there will be 49 red dots

With 50% probability there will be 51 red dots

Please select from the following options:

Option Pay if there are 49 red dots Pay if there are 51 red dots

A 10 0

B 0 10

C 5 5

http://samuel-brown.com/infoexp12/instructions.php?p=4
javascript:submitform()


1/27/2014 Instructions

http://samuel-brown.com/infoexp12/instructions.php?p=6 1/1

← Previous Next →

Individual Decision-Making Experiment
Instructions
Payment

For this question, you chose the following option:

Option Pay if there are 49 red dots Pay if there are 51 red dots

A 10 0

There were 49 red dots on the screen.

If this were the question that had been selected for payment, you would have received $10 in
addition to your show up fee.

http://samuel-brown.com/infoexp12/instructions.php?p=5
http://samuel-brown.com/infoexp12/instructions.php?p=7


1/27/2014 Instructions

http://samuel-brown.com/infoexp12/instructions.php?p=7 1/2

Individual Decision-Making Experiment
Instructions
Here is a description of the questions that you will face in each of the 4 sections of the experiment.

Block 1

With 50% probability there will be 49 red dots

With 50% probability there will be 51 red dots

You will be asked to choose between the following options:

Option Pay if there are 49 red dots Pay if there are 51 red dots

A 23 23

B 21 25

C 40 0

Block 2

With 50% probability there will be 49 red dots

With 50% probability there will be 51 red dots

You will be asked to choose between the following options:

Option Pay if there are 49 red dots Pay if there are 51 red dots

A 23 23

B 21 25

Block 3

With 50% probability there will be 49 red dots

With 50% probability there will be 51 red dots

You will be asked to choose between the following options:



1/27/2014 Instructions

http://samuel-brown.com/infoexp12/instructions.php?p=7 2/2

← Previous Home →

Option Pay if there are 49 red dots Pay if there are 51 red dots

A 23 23

B 21 25

C 35 5

Block 4

With 50% probability there will be 49 red dots

With 50% probability there will be 51 red dots

You will be asked to choose between the following options:

Option Pay if there are 49 red dots Pay if there are 51 red dots

A 23 23

B 21 25

C 30 10

REMEMBER: Each section consists of 50 questions, each with the same probabilit ies and
av ailable options. You will be reminded in each question what the probabilit ies and
av ailable options are for that question.

Again, please do NOT use the forward and back buttons in your browser to navigate. Only
use the links at the bottom of each page to move forward or back.

If you have any questions, please raise your hand now, otherwise click to the lower right to return
to the Home Page and begin the experiment.

http://samuel-brown.com/infoexp12/instructions.php?p=6
http://samuel-brown.com/infoexp12/login-home.php
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