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1 Introduction

Asset pricing theorists have long been concerned with explaining stock market expected re-

turns, typically measured over monthly, quarterly or annual horizons. This is an important

line of study because variation in the stock market price-dividend ratio is driven almost

entirely by expected excess return fluctuation (i.e., forecastable movements in the equity

premium).1 Far less attention has been given to understanding the real (adjusted for in-

flation) level of the stock market, i.e., stock price variation, or the cumulation of ex-post

returns. To understand the latter, it is necessary to probe beyond the role of stationary risk

factors and short-run expected returns, to study the primitive economic shocks from which

all stock market (and return premia) fluctuations originate.

To illustrate why, note that some economic shocks have tiny innovations but permanent

or near-permanent effects on cash flows. Under rational expectations, permanent cash flow

shocks have no influence on expected returns or the price-dividend ratio, but they can have

a dramatic influence on real stock market wealth as the decades accumulate. On the other

hand, fluctuations in expected returns may be associated with movements in risk premia

and can persistently shift the real value of the stock market around its long-term trend. But

because these fluctuations are transitory, their impact eventually dies out. Stock market

wealth evolves over time in response to the cumulation of transitory expected return shocks

and both permanent and transitory cash flow shocks. The crucial unanswered questions are,

what are the economic sources of these shocks? And what have been their relative roles in

evolution of the stock market over time?

The objective of this paper is to address these questions. We begin by identifying three

mutually orthogonal observable economic disturbances that are associated with the vast

majority (over 85%) of fluctuations in real quarterly stock market wealth since the early

1950s. Econometrically, these shocks are measured as specific orthogonal movements in

consumption, labor income, and asset wealth (net worth), identified from a cointegrated

vector autoregression (VAR) and extracted using a recursive orthogonalization procedure.

1Expected dividend growth and expected short-term interest rates play little role empirically in price-

dividend ratio variation (Campbell (1991); Cochrane (1991); Cochrane (2005); Cochrane (2008)).
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We then address the question of what these observable VAR disturbances represent eco-

nomically. To do so, we provide a theoretical framework with two types of agents, share-

holders and workers, and three primitive shocks. We show that, if the model generated the

data, the observable VAR innovations under a specific recursive ordering would effectively

recover three latent primitive shocks. Specifically, the consumption innovation in the empir-

ical VAR would recover a total factor productivity (TFP) shock, the labor income innovation

would recover a factors share shock that reallocates the rewards of production without af-

fecting the size of rewards, and the wealth innovation would recover a shock to shareholder

risk aversion that moves the stochastic discount factor pricing assets independently of stock

market fundamentals or real activity such as consumption and labor earnings. We show that

the dynamic responses to these mutually orthogonal VAR innovations produced from model

generated data are remarkably similar to those obtained from historical data.

With this theoretical interpretation of the observable disturbances in hand, we turn to

the question of how these distinct shocks have affected stock market wealth over time. We

find that the vast majority of short- and medium-term stock market fluctuations in historical

data are driven by risk aversion shocks, revealed as movements in wealth that are orthogonal

to consumption and labor income both contemporaneously (an identifying assumption), and

at all subsequent horizons (a result). Although transitory, these shocks are quite persistent

and explain 75% of variation in the log difference of stock market wealth on a quarterly basis.

These facts are well explained by the model, in which the orthogonal wealth shocks originate

from independent shifts in investors’willingness to bear risk. At longer horizons, the relative

importance of the shocks changes. Although the factors share shock explains virtually none

of the variation in the real level of the stock market over cycles of a quarter or two, it explains

roughly 40% over cycles two to three decades long. These facts are well explained by the

model economy, which is subject to small but highly persistent innovations that shift the

allocation of rewards between shareholders and workers independently from the magnitude

of those rewards. By contrast, consumption shocks, both in the model and in the data, play

a small role in the stochastic fluctuations of the stock market at all horizons. The crucial

aspect of the model that makes it consistent with this finding is its heterogeneous agent

specification. This finding contradicts representative agent asset pricing models in which
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shocks that drive aggregate consumption play a central role in stock market fluctuations.

As an example of the magnitude of these forces for the long-run evolution of the stock

market, we decompose the percent change since 1980 in the deterministically detrended real

value of stock market wealth that is attributable to each shock. The period since 1980 is an

interesting one to consider, in which the cumulative effect of the factor shares shock persis-

tently redistributed rewards away from workers and toward shareholders. (The opposite was

true from the mid 1960s to mid 1980s.) After removing a deterministic trend, the cumulative

effects of the factors share shocks have resulted in a 65% increase in real stock market wealth

since 1980, an amount equal to 110% of the total increase in detrended stock market wealth

over this period. Indeed, without these shocks, today’s stock market would be roughly 10%

lower than it was in 1980. An additional 38% of the increase since 1980, or a rise of 22%, is

attributable to the cumulative effects of risk aversion shocks, while the cumulative effects of

TFP shocks have made a negative contribution, a direct consequence of the large negative

draws for consumption in the Great Recession. Together, the three mutually orthogonal

economic shocks we identify explain almost all of the increase in deterministically detrended

real stock market wealth since 1980. (Specifically, they account for 110% of the increase,

with the remaining -10% accounted for by a residual.)

Our findings are also informative about the origins of risk premia fluctuations. Share-

holders in the model are close to risk-neutral most of the time but subject to rare “crises”

in their willingness to bear risk, captured in the model by infrequent, large spikes in risk

aversion that generate a “flight to safety.”Even though these flights are rare and extreme,

a time-varying expectation that risk tolerance could crash in the future generates plausi-

ble variation in the price-dividend ratio and empirically reasonable predictability in excess

stock market returns. Time-variation in the risk premium, both in the model and the data,

is revealed by the wealth shocks, which are orthogonal to movements in consumption and

labor income. We find that these innovations also bear little relation to other traditional

macroeconomic fundamentals such as dividends, earnings, consumption volatility, or broad-

based macroeconomic uncertainty, and none of these other variables forecast equity premia.

These findings are hard to reconcile with models in which time-varying risk premia arise from

habits (which vary with innovations in consumption), stochastic consumption volatility, or
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consumption uncertainty.

These findings have important implications for macroeconomic modeling. The two big

empirical sources of variation that we find here are responsible for almost all of stock market

variation play virtually no role in contemporary macroeconomic theories.

The rest of this paper is organized as follows. The next section discusses related literature.

Section 3 describes the econometric procedure and data. Section 4 describes the theoretical

model. Section 5 presents our findings. Section 6 concludes.

2 Related Literature

The empirical part of this paper builds on Lettau and Ludvigson (2013). That paper provided

empirical evidence in a purely statistical model, studying a rotation of the three VAR inno-

vations described here and their relationship to different components of household wealth,

consumption and labor income. The contribution of this paper is to provide an economic

interpretation of these innovations and a detailed investigation of their implications for the

stock market. Our model is also related to the work of several recent papers that have

emphasized the weak empirical correlation between stock market behavior and innovations

to consumption growth or its second moments (Duffee (2005), Albuquerque, Eichenbaum,

and Rebelo (2012), Lettau and Ludvigson (2013)). An important earlier literature identified

and distinguished cash-flow from discount rate “shocks” (e.g., Campbell (1991); Cochrane

(1991)). This work was central to our understanding of how innovations in stock returns

are related to forecastable movements in returns as compared to dividend growth, but it is

silent on the underlying economic mechanisms that drive these forecastable changes. It is

precisely these primitive economic shocks that are the subject of this paper.

We build on an earlier literature that emphasizes the importance of limited stock market

participation for explaining stock return data (Mankiw and Zeldes (1991); Vissing-Jorgensen

(2002); Guvenen (2009); Lettau and Ludvigson (2009); Malloy, Moskowitz, and Vissing-

Jorgensen (2009)).

The factors share element of our paper is related to a separate macroeconomic literature

that examines the long-run variation in the labor share (e.g., Karabarbounis and Neiman
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(2013), and the recent theoretical study of Lansing (2014)). The factors share findings in

this paper echo those from previous studies that use very different methodologies but find

that returns to human capital are negatively correlated with those to stock market wealth

(Lustig and Van Nieuwerburgh (2008); Lettau and Ludvigson (2009); Chen, Favilukis, and

Ludvigson (2014))). Lettau, Ludvigson, and Ma (2014) focus on cross-sectional asset pricing

and find that value and momentum strategies exhibit strong opposite signed exposure to low

frequency fluctuations in the capital share, helping to explain why both strategies earn high

average returns but are negatively correlated.

Our findings on the forecastability of excess stock market returns imply that quantita-

tively large component of risk premia fluctuations is acyclical, contrasting with classic earlier

studies that emphasized the countercyclicality of risk premia (e.g., Fama and French (1989)).

But our findings on risk premia variation are potentially consistent with other theories in

which time-variation in the reward for bearing risk is largely divorced from fluctuations

in macroeconomic fundamentals. Examples include the ambiguity aversion framework of

Bianchi, Ilut, and Schneider (2013), models of rare events in which the probability of con-

sumption disaster is a random variable independent of normal-times consumption shocks

(e.g., Gourio (2012);Wachter (2013)), intermediary-based models in which intermediaries’

risk-bearing capacity varies independently of, or in a highly nonlinear way with, macro-

economic state variables (e.g., Brunnermeier and Sannikov (2012); Gabaix and Maggiori

(2013)); He and Krishnamurthy (2013); Muir (2014)). Each of these papers has a mech-

anism for generating acyclical fluctuations in risk premia that plays the same role as our

independent risk aversion shock. The econometric evidence presented here contributes to a

growing body that forms the basis of an empirical rationale for such mechanisms.

3 Econometric Analysis: Three Mutually Orthogonal Shocks

We study a cointegrated vector of variables in the data, denoted xt = (ct, yt, at)
′, where ct is

log of real, per capita aggregate consumption, yt is log of real, per-capita labor income, and

at is log of real, per-capita asset wealth. Throughout this paper we use lower case letters

to denote log variables, e.g., ln (At) ≡ at. Lettau and Ludvigson (2013) provide updated
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evidence of a single cointegrating relation among these variables, which can be motivated by

considering the long-run implications of a standard household budget constraint (see Lettau

and Ludvigson (2001) and Lettau and Ludvigson (2010)).

The Appendix contains a detailed description of the data used in this study. The log

of asset wealth, at, is a measure of real, per capita household net worth, which includes all

financial wealth, housing wealth, and consumer durables. It is compiled from the flow of

funds accounts by the Board of Governors of the Federal Reserve. Denote the log of real

stock market wealth st. Stock market wealth is a component of total asset wealth. Corporate

equity was 23% of total asset wealth in 2010, and 29% of net worth. For comparison, we

also study stock market variation using as a measure of stock market wealth the Center for

Research in Securities Prices (CRSP) value-weighted stock price index. We denote the log

of the CRSP value-weighted stock price index pt. Our data are quarterly and span the first

quarter of 1952 to the third quarter of 2012.

The model developed below is intended to focus on the implications of the empirical

shocks for stock market wealth. As such, it has just one form of risky capital (equity) and

a risk-free bond in zero net supply. Thus in the model, all wealth is stock market wealth,

which is identically equal to total wealth and net worth: at = st. A question arises as to how

best to connect the empirical wealth innovations in the data (which include nonstock forms

of wealth) to those that arise from the model. Our approach is to construct the empirical

VAR innovations using a system of variables that contains ct, yt and total asset wealth at,

and then subsequently relate these innovations to stock market wealth. We do not construct

the empirical innovations by restricting analysis to how consumption and labor income move

only with stock market wealth. We do this for two reasons. First, we wish to allow for

the possibility that a standard factor neutral productivity shock could affect the value of

the stock market. But such a shock should affect the value of all productive capital, not

just corporate equity, so a system that identifies such a shock from the data must include

total wealth. If TFP shocks affect non-stock wealth but these components are omitted from

the system, this could lead to spurious estimates of productivity and its dynamics, which

would also contaminate estimates of the remaining shocks. Second, consumption and labor

income are cointegrated with total wealth, as expected from theory (Lettau and Ludvigson

6



(2001)), but there is no implication that these variables should be (or are) cointegrated

with stock market wealth by itself, a component of total wealth. It is important to control

empirically for these long-run relationships, which requires estimating a cointegrated VAR

for (∆ct,∆at,∆yt). With these results in hand, the question of how closely related the

identified VAR shocks are to stock market wealth is then an empirical matter, which is the

subject of an extensive investigation below. Although ∆st may be related to these shocks,

there will be an unexplained residual that in principal could be quite important.

The three mutually orthogonal empirical disturbances are obtained from cointegrated

VAR (or vector error correction mechanism—VECM) representation of xt taking the form

∆xt = υ + γα̂′xt−1 + Γ(L)∆xt−1 + ut, (1)

where ∆xt is the vector of log first differences, (∆ct,∆at,∆yt)
′, υ, and γ ≡ (γc, γa, γy)

′ are

(3×1) vectors, Γ(L) is a finite order distributed lag operator, and α̂ ≡ (1,−α̂a,−α̂y)′ is

the (3×1) vector of previously estimated cointegrating coeffi cients.2 The term α̂′xt−1 gives

last period’s equilibrium error, or cointegrating residual, a variable we denote with cayt ≡

α̂′xt−1. Throughout this paper, we use “hats”to denote the estimated values of parameters.

The results of estimating a first-order specification of (1) are presented in Lettau and

Ludvigson (2013), not reported here to conserve space. An important result is that, although

consumption and labor income are somewhat predictable by lagged consumption and wealth

growth, they are not predictable by the cointegrating residual α̂′xt−1. Estimates of γc and γy

are economically small and insignificantly different from zero. By contrast, the cointegrating

error cayt is an economically large and statistically significant determinant of next quarter’s

wealth growth: γa is estimated to be 0.20, with a t-statistic equal to 2.3. Thus, only wealth

exhibits error-correction behavior. Wealth is mean reverting and adapts over long-horizons

to match the smoothness in consumption and labor income.

The individual series involved in the cointegrating relation can be represented as a

2Standard errors do not need to be adjusted to account for the use of the “generated regressor,”α′xt in

(1) because estimates of the cointegrating parameters converge to their true values at rate T , rather than at

the usual rate
√
T (Stock (1987)) . We estimate α̂ = (1,−0.18,−0.70)′.
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reduced-form multivariate Wold representation:

∆xt = δ + Ω(L)ut, (2)

where ut is an n×1 vector of innovations, and where Ω(L) ≡ I+Ω1L+Ω2L+Ω3L+ · · ·. The

parameters α and γ, both of rank r, satisfy α′Ω(1) = 0 and Ω(1)γ = 0 (Engle and Granger,

1987). The “reduced form”disturbances ut are not necessarily mutually uncorrelated. To

specify shocks that are mutually uncorrelated, we employ a recursive orthogonalization.

Specifically, letH be a lower triangular matrix that accomplishes the Cholesky decomposition

of Cov(ut), and define

e≡H−1ut, C(L)≡ Ω(L)H.

We may re-write the decomposition of ∆xt = (∆ct,∆yt,∆at)
′ as

∆xt=δ+C(L)et, (3)

which is now a function of a vector of mutually uncorrelated innovations et. Denote the

individual consumption, labor income and wealth disturbances as ec,t, ey,t, and ea,t. Note

that these shocks are i.i.d. We study a particular orthogonalization by restricting the order-

ing of the variables as follows: ∆c is first, ∆y second, and ∆a last in ∆xt. These empirical

disturbances are (i) consumption shocks ec,t: unforecastable movements in ∆ct that may con-

temporaneously affect ∆y and ∆a (ii) labor income shocks ey,t: unforecastable movements in

∆yt holding fixed ∆ct contemporaneously, (iii) wealth shocks ea,t: unforecastable movements

in ∆at holding fixed both ∆ct and ∆yt contemporaneously.

We refer to the mutually orthogonal et shocks as “structural”disturbances. The ordering

of variables determines the specific orthogonalization, however, so providing a theoretical

interpretation of these disturbances requires a theoretical rationale for the ordering, as well

as a mapping between each empirical disturbance and a set of primitive economic shocks

implied by theory. We use the model of the next section to provide such a theoretical

rationale. We show there that, if the proposed model were true, the particular ordering

chosen would be the right one for uncovering the three primitive shocks of the model.

To relate stock market wealth to the structural disturbances ec,t, ey,t, and ea,t, we estimate
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empirical relationships taking the form

∆st = κ0 + κc (L) ec,t + κy (L) ey,t + κa (L) ea,t + ηt, (4)

where st represents the log level of the stock market wealth, κc (L) , κy (L) , and κa (L)

are polynomial lag operators, and ηt is a residual that represents the component of stock

wealth unexplained by the mutually orthogonal empirical disturbances ec,t, ey,t, and ea,t.

We estimate the same type of relationship for the CRSP value-weighted stock price index,

replacing st with pt on the left-hand-side. Since ec,t, ey,t and ea,t are mutually uncorrelated

and i.i.d., we estimate these equations separately by OLS with L = 16 quarters.

We also decompose the log levels of stock market wealth into components driven by each

structural disturbance. To do so, rewrite the decomposition of growth rates as

∆st = κ0 + κc (L) ec,t + κy (L) ey,t + κa (L) ea,t + ηt

≡ κ0 + ∆sct + ∆syt + ∆sat + ηt, (5)

where ∆sct ≡ κc (L) ec,t, and analogously for the other terms. The effect on the log levels of

stock wealth of each disturbance is obtained by summing up the effects on the log differences,

so that the log level of stock wealth may be decomposed into the following components:

st = s0 + κ0t+
t∑

k=1

∆sk

= s0 + κ0t+
t∑

k=1

∆sck +
t∑

k=1

∆syk +
t∑

k=1

∆sak +
t∑

k=1

ηk

≡ s0 + κ0t+ sct + syt + sat +

t∑
k=1

ηk, (6)

where s0 is the initial level of stock market wealth, sct , s
y
t , and s

a
t , are the components of the

level attributable to the (cumulation of) the consumption shock, the labor income shock,

and the wealth shock, respectively. The term
∑t

k=1 ηk is the component of st attributable to

the unexplained residual. Note that γ0t is the deterministic trend in stock market wealth,

which in the model below is attributable to steady state technological progress. Expressions

analogous to (5) and (6) are also computed for the log stock price index pt.
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This completes our description of the empirical disturbances. Before turning to the

theoretical model used to interpret these disturbances, Table 1 shows why they are good

ones to consider for investigating the origins of stock market fluctuations. Taken together,

these three observable disturbances explain 87% of the quarterly growth in stock market

wealth and 84% of quarterly stock price growth. Thus they account for almost all of the

variation. As we show below, they also explain the vast bulk of fluctuations in stock market

wealth at lower frequencies, but the relative importance of the shocks changes dramatically

with the horizon over which the growth in the market is measured. The next section provides

a parsimonious model with which to interpret these disturbances and empirical patterns.

4 The Model

Aggregate output Yt is assumed to be governed by a constant returns to scale process:

Yt = AtNα
t K

1−α
t , (7)

where At is a factor neutral TFP shock, and Nt and Kt are inputs of labor and capital,

respectively. We assume that labor supply is fixed and that there is no capital accumulation,

so that both Nt and Kt are constant over time and normalized to unity. Thus Yt = At is

driven entirely by technological change.

The economy is populated by two types of representative households, each of whom

consume an income stream. The first type, shareholders, own a claim to shares of the

dividend income stream (equity) generated from aggregate output Yt. There is no saving

and no new shares are issued. Shareholders consume the dividend stream. The second type,

workers, own no assets, inelastically supply labor to produce Yt, and consume their labor

income every period. Dividends, Dt, are equal to output minus a wage bill

Dt = Yt −WtNt, (8)

where Wt is the wage rate paid to workers. With labor supply fixed at Nt = 1, log labor

income, which equals ln (WtNt) = ln (Wt), is alternatively denoted yt, to be consistent with

the notation above. The total number of shares is normalized to unity.
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The wage rate Wt is given by marginal product of labor, multiplied by a time-varying

function f (Zt):

Wt =
[
αAtNα−1

t Kα−1
t

]
f (Zt) = αAtf (Zt) . (9)

The random variable Zt over which the function is defined is referred to as a factors share

shock. We specify f (Zt) to be a logistic function

f (Zt) =
1

1 + exp (−Zt)
+ ψ,

where ψ is a constant parameter. The calibration we choose insures that the real wage is

equal to its competitive value on average, but can be shifted away from this value by a

multiplicative scale factor f (Zt) with f (Zt) = 1 in the non-stochastic steady state. The

logistic function insures that the level labor income is never negative and bounded above

and below. A shock of this sort is required to explain the low frequency behavior of the

stock market, as show below.

Although not modeled explicitly as such, f (Zt) could be interpreted as the time-varying

bargaining parameter resulting from some underlying wage-bargaining problem that creates

deviations from competitive equilibrium. Possible sources for such a shift could include

changes in reliance on offshoring, outsourcing, part-time or temporary workers, or the preva-

lence of unionization. At a more basic level, it is a reduced-form way of capturing shifts in the

allocation of rewards between shareholders and workers while holding fixed the size of those

rewards that could occur for any number of reasons, including a change in competitiveness,

a change in how labor intensive production is, factor specific technological change.

With this specification for wages, log dividends are given by

dt = at + ln (1− αf (Zt)) ,

where at ≡ lnAt. Log dividends are a non-linear function of the factors share shock. Aggre-

gate consumption, Ct, is the sum of shareholder consumption (total dividends) and worker

consumption (total labor income), driven solely by the TFP shock:

Ct = Dt +Wt = Yt −Wt +Wt = At.
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The log difference in the TFP shock, ∆at, is assumed to follow a first-order autoregressive

(AR(1)) stochastic process given by

∆at − µa = φa (∆at−1 − µa) + σaεa,t, εa,t ∼ i.i.d. (0, 1) . (10)

The factors share shock Zt is assumed to follow a mean-zero AR(1) processes:

Zt = φzZt−1 + σzεz,t, εz,t ∼ i.i.d. (0, 1) . (11)

Note that in a non-stochastic steady state, Zt is identically zero, f (Zt) = 1, and dividends

are proportional to productivity: Dt = At (1− α). The above specification implies that the

economy grows non-stochastically in steady state at the gross rate of At, given by 1 + µa,

the deterministic rate of technological progress.

Worker preferences play no role in asset pricing since they hold no assets. We assume

that the economy is populated by a large number of identical shareholders, leading to a

representative shareholder model. This should be distinguished from the more common

approach of modeling a representative household in which aggregate consumption is the

source of systematic risk. The representative shareholder in this model is akin to a large

institutional investor or wealthy individual who earns income only from investments. For

this representative shareholder, dividends are the appropriate source of systematic risk.

Let Cs
it denote the consumption of an individual stockholder indexed by i at time t. Let

βt be a time-varying subjective discount factor. Identical shareholders maximize the function

U = E
∞∑
t=0

t∏
k=0

βku (Cs
it) (12)

with

u (Cs
it) =

(Cs
it)

1−xt−1

1− xt−1

, (13)

and where β0 = 1. An important aspect of these preferences is that the parameter xt is not

constant but instead varies stochastically over time. As we show below, this shifter must

have low (or zero) correlation with consumption and labor income fluctuations, in order

to match evidence that movements in risk premia are divorced from traditional economic

fundamentals such as consumption and wage income.
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Shareholder preferences are also subject to an externality in the subjective discount factor

βt, which is assumed to vary over time in a manner dependent on aggregate shareholder

consumption (which in equilibrium equal dividends) as follows:

βt ≡
exp (−rf )

Et

[
D
−xt
t+1

D
−xt−1
t

] , (14)

where rf is a parameter. Aggregate shareholder consumption, given by Dt, is taken as given

by individual shareholders and is therefore not internalized in the individual optimization

problem. The specification for the subjective time discount factor in (14) is essential for

obtaining a stable risk-free rate along with a volatile equity premium. If instead the subjec-

tive time discount factor were itself a constant (as is common), shocks to xt and dividend

growth would generate counterfactual volatility in the risk-free rate. The calibration above

makes the risk-free rate is constant, given by the exponentiation of the parameter rf .3 In

equilibrium, identical individuals choose the same level of consumption, equal to per capita

aggregate dividendsDt.We therefore drop the i subscript and simply denote the consumption

of a representative shareholder Cs
t = Dt from now on.

The intertemporal marginal rate of substitution of stockholder consumption is the sto-

chastic discount factor (SDF) given by:

Mt+1 =
exp (−rf )

(
Dt+1
Dt

)−xt
Et

[(
Dt+1
Dt

)−xt] . (15)

This can be written

Mt+1 = exp [−rf − lnEt exp (−xt∆dt+1)− xt∆dt+1] . (16)

The return on a risk-free asset whose value is known with certainty at time t is given by

Rf,t+1 ≡ (Et [Mt+1])−1 .

We specify the stochastic risk aversion variable xt so that it is always non-negative and

bounded from above. Specifically, let xt be specified as a logistic function of a stochastic
3While this adjustment to the time-discount factor β may seem unusual, it is in fact a generalization to

non-lognormal functions of a familiar compensating Jensen’s term that appears in lognormal models of the

stochastic discount factor (e.g., Campbell and Cochrane (1999)) and (Lettau and Wachter (2007)).
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variable x̃ that itself can take unbounded values:

xt = θ +
θ − θ

1 + exp (−x̃t)
,

x̃t − µx̃ = φx̃ (x̃t−1 − µx̃) + σx̃εx̃,t, εx̃,t ∼ i.i.d. (0, 1) . (17)

In the above, θ and θ are parameters that controls the maximum and minimum values,

respectively, of xt. The autoregressive parameter is restricted to 0 < φx̃ < 1.

As a benchmark, we specify the three shocks in the model εa,t, εz,t, and εx̃,t to be uncor-

related. We show below that this specification allows the model to closely correspond with

the empirical evidence.

We use the dividend claim to model the stock market claim. Let Pt denote the ex-dividend

price of a claim to the dividend stream measured at the end of time t. The gross return from

the end of period t to the end of t+1 is defined Rt+1 = (Pt+1 +Dt+1) /Pt.We denote the log

return on equity as ln (Rt+1) ≡ rt+1, and the log excess return ln (Rt+1/Rf,t+1) ≡ rext+1. From

the shareholder’s first-order condition for optimal consumption choice, the price-dividend

ratio satisfies

Pt
Dt

(st) = Et exp

(
mt+1 + ∆dt+1 + ln

(
Pt+1

Dt+1

(st+1) + 1

))
, (18)

where st is a vector of state variables, st ≡ (∆at, Zt, xt)
′ . There is no closed-form solution

to the functional equation (18). We therefore solve the Pt
Dt

(st) function numerically on an

n × n × n dimensional grid of values for the state variables, replacing the continuous time

processes with a discrete Markov approximation following the approach in Rouwenhorst

(1995). Further details are given in the Appendix.

The computation of risk aversion in the full stochastic model is quite complicated nu-

merically. However, it is straightforward to calculate risk aversion along a non-stochastic

balanced growth path. Define the coeffi cient of relative risk aversion RRAt ≡ −AtEtV ′′(At+1)
EtV ′(At+1)

,

where V (At+1) is the representative shareholder’s value function associated with optimal

consumption choice, and At is this shareholder’s asset wealth. Following the derivation

in Swanson (2012), we show in the Appendix that risk aversion along the non-stochastic

balanced growth path, RRA, is equal to

RRA =
−Cs.

t u
′′ (Cs.

t+1

)
u′
(
Cs
t+1

) = E (xt) / (1 + µa) ,
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where E (xt) is the unconditional mean of xt and 1 + µa is the non-stochastic gross growth

rate of the economy driven by steady state technological progress At. We refer to xt as a

risk aversion shock.

4.1 Calibration

The Appendix contains a table that lists all parameters and their calibrated values. The

parameter α is set to 0.667, a value that is standard in real business cycle modeling. The

constant value for the quarterly log risk-free rate is set to match the mean of the quarterly

log 3-month Treasury bill rate. We set φa = 0 so that the log level of TFP, at, follows a

unit root stochastic process with drift. The mean and standard deviation of productivity

∆at is set to roughly match the mean and standard deviation of the quarterly log difference

of consumption in the data. The factor share shock Zt is set to be very persistent yet

stationary, with φz = 0.995, in order to match the extreme persistence of the empirical labor

income shock found in the data. The parameter ψ in f (Zt) is set to ψ = 0.5 so f (Zt) lies

in the interval [0.5, 1.5] and equals unity in the non-stochastic steady state. The symmetry

of the (normal) distribution for Zt insures that the mean of the factor’s share shifter is

also unity E (f (Zt)) = 1. This calibration, along with the calibration of the volatility of

Zt, allow the model to roughly match the standard deviation of dividend growth, which

is over ten times that of aggregate consumption growth. Matching evidence for a volatile

dividend growth process also has important implications for the model’s ability to match the

frequency decomposition of stock price changes. The parameters of the risk aversion process

σx̃, φx̃, and θ, are set so as to come as close as possible to simultaneously matching (i) the

mean equity premium, (ii) the forecastability of the equity premium and the average level of

the price-dividend ratio. An interesting result is that, matching (i) and (ii) simultaneously

requires a risk-aversion process that is very low most of the time but highly skewed to the

right, characterized by the expectation of rare states in which the market’s risk tolerance

implodes, leading to a “flight to safety”and a market crash.

To understand why, observe that shareholders who consume out of dividends are exposed

to much greater systematic risk than would be the case for one who consumes the stable
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aggregate consumption stream. With dividend growth this volatile, shareholder risk aversion

must be close to zero in most states or the model generates a counterfactually high equity

premium. But matching evidence for a time-varying equity premium requires risk aversion

to fluctuate. With risk aversion bounded below at zero, fluctuations must be skewed upward.

If the upper bound on risk aversion is too restrictive, however, the model generates too little

variation in risk premia and overshoots the mean price-dividend ratio. The density of our

risk aversion process therefore has most of its mass close to zero, with the median and mode

equal to unity. The mean of 30 is reached far more infrequently and there is a small amount

of mass near the maximum value for risk-aversion, set to 450.4

The risk aversion process in the model should be thought of as an externality—the market’s

willingness to bear risk. One interpretation of such independent variation is that it is driven

by intangible information. Changing expectations of an rare spike in risk aversion generate

fluctuations in the price-dividend ratio that are far less non-linear in the state than are the

risk aversion dynamics itself (though fluctuations in pt − dt are naturally largest in crisis

times).

5 Results

Table 2 presents summary asset pricing statistics of the model and compares them to those

in post-war data. The model closely matches the mean and standard deviation of the eq-

uity premium and price-dividend ratio. By construction, the model exactly matches the

mean risk-free rate. The model also does a good job of matching the volatility of dividend

growth. Because dividends are subject to the factors share shock, they are more volatile

than aggregate consumption. While the model is broadly consistent with these benchmark

asset pricing moments, it is limited in matching the data in one way. Although the model

correctly implies that labor income growth is more volatile than consumption growth, the

standard deviation is too high: 5% annually compared to 2% in the data. In the simplified

4This highly skewed distribution for risk aversion is not an artifact of the logistic function chosen for

f (Z). A truncated Normal distribution of Z that generates similar equilibrium allocations also requires low

risk aversion most of the time with infrequent extreme values.
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model environment here, it not possible to simultaneously match evidence for both a volatile

dividend growth process and a stable labor income growth process, since the two are tied

together by the volatility of the factor shares shock. Future work could explore extensions

of the model to incorporate wage smoothing or stickiness (e.g., Favilukis and Lin (2013)).

Table 3 reports the model’s implications for the dynamic relationship between the log

price dividend ratio, pt − dt, and future long horizon excess equity returns,
∑h

j=0 r
ex
t+j+1,

consumption growth,
∑h

j=0 ∆ct+j+1, and dividend growth,
∑h

j=0 ∆dt+j+1. The log price-

dividend ratio predicts future excess returns with statistically significant negative coeffi cients

in the model, while the coeffi cients for consumption and dividend growth are statistically

indistinguishable from zero. These implications are consistent with the data. The adjusted

R2 statistics for forecasting excess returns are comparable between model and data. Thus the

model is consistent with the well known “excess volatility”property of stock market returns,

namely that fluctuations in stock market valuation ratios are informative about future equity

risk premia, but not about future fundamentals on the stock market (i.e., dividend or earnings

growth, LeRoy and Porter (1981), Shiller (1981)), or future consumption growth (Lettau and

Ludvigson (2001); Lettau and Ludvigson (2004)).

We next investigate the connection in the model between the observable VAR shocks

and the latent primitive shocks. To do so, we take model simulated data, compute the VAR

disturbances implied by the model, and compare them to the primitive shocks. Figure 1

shows two sets of cumulative dynamic responses of∆ct, ∆at, and∆yt. The left column shows

the cumulative responses of these variables to the three primitive shocks in the model. These

responses are calculated by applying, for each shock one at a time, a one standard deviation

change in the direction that increases ∆at at time t = 0, and then simulating forward using

the solved policy functions. Thus we plot the responses to a one standard deviation increase

in εa,t, and decrease in εz,t and εx̃,t. The right column uses model simulated data to calculate

the mutually orthogonal VAR innovations et (3) and plots dynamic responses to one standard

deviation change in each et shock, again in the direction that increases ∆at.5

5For this plot we rid the VAR responses of small sample estimation biases by computing them from a

single simulation of the model with very long length (238,000 quarters). The size of the primitive shocks are

normalized so that they are the same as the empirical shocks in the right column.
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The key result shown in Figure 1 is that the dynamic responses of aggregate consumption,

labor earnings, and asset wealth to the VAR innovations in the right column are almost

identical to the theoretical responses of the same variables to the productivity, factors share,

and risk aversion shocks, respectively, in the left column. The small deviations that do exist

from perfect correlation for some responses are attributable to nonlinearities in the model

not captured by the linear VAR. But these deviations are small. The responses of ∆ct, ∆yt

and ∆at to the consumption shock, ec,t, are all perfectly correlated with the responses of

these variables to the TFP shock εa,t; the response of ∆ct to the labor income shock ey,t is

perfectly correlated with the response of∆ct to the factors share shock εz,t, and the responses

of ∆ct, ∆yt, and ∆at to the wealth shock ea,t are all perfectly correlated with the responses

of ∆ct, ∆yt, and ∆at to the risk aversion shock εx̃,t.6 We verify, from a long simulation of the

model, that the correlation between the consumption shock ec,t and the productivity shock

εa,t is unity, the correlation between labor income shock ey,t and first difference of the factors

share shifter ∆ ln f (Zt) is unity, and the correlation between the wealth shock ea,t and the

innovation in ∆at attributable only to risk aversion shocks εx̃,t is 0.97.7

In presenting the above, we do not claim that the mutually uncorrelated VAR shocks

(ec,t, ey,t, ea,t) exactly equal the primitive shocks (εa,t, εz,t, εx̃,t), respectively. Exact equality

is impossible because the endogenous variables in the model are nonlinear functions of the

primitive shocks, while the VAR imposes a linear relation between these variables and the

VAR shocks. Moreover the comparable innovations are in different units so a rescaling

is necessary. What the above does show is that, if the model generated the data, the

VAR disturbances would, to a very close approximation, serve as the observable empirical

counterparts to the innovations originated from the latent primitive shocks.

5.1 Origins of Quarterly Stock Market Fluctuations

With this theoretical interpretation of the VAR disturbances in hand, we now study the role

of the empirical disturbances for historical stock market data, beginning with their role in

6These correlations are sample correlations over the paths of IRFs of length 20Q. Perfect correlation is

equivalent to the IRFs being identical up to a normalization.
7The innovation in ∆at attributable to risk aversion shocks is computed as ∆at − E [∆at|st−1, Zt,∆at] .
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quarterly fluctuations.

Figure 2 shows two sets of cumulative dynamic responses of ∆ct, ∆at, and ∆yt. The

Appendix shows 90% error bands for these responses using a bootstrap procedure. The

left column uses model simulated data to calculate model-based responses to the mutually

orthogonal VAR innovations (3). These are the same responses that are shown in the right

panel of Figure 1, except that the responses in Figure 2 are averages across 1000 samples

of size 238 quarters, rather than over one very long sample. The right column of Figure 2

shows the cumulative dynamic responses of ∆ct, ∆at, and ∆yt in historical data to the VAR

innovations (3) estimated from historical data. A positive innovation in the consumption ec

shock leads to an immediate increase in ct, at, and yt, both in the data and the model. The

model responses of c, y, and a, to the consumption shock lie on top of each other because

the levels of these variables are all proportional to TFP, so the log responses are the same.

Because the TFP shock in the model is the innovation to a random walk, in simulated data

all three variables move immediately to a new, permanently higher level. In historical data,

full adjustment does not happen entirely within one quarter, but it is still relatively fast and

occurs within 3 quarters or less, close to what would occur as the result of an innovation

to a random walk. Cochrane (1994) makes the same observation when studying a bivariate

cointegrated VAR for consumption and GNP and argues that consumption is suffi ciently

close to a random walk so as to effectively define the stochastic trend in GNP.

The second rows of Figure 2 displays the dynamic responses of ct, at, and yt to the labor

income shock ey,t. Observe that, in both the model and the data, the response of consumption

to this shock is economically negligible at all horizons. The zero response on impact occurs

by construction as a result of our identifying assumption. But it is also true in all subsequent

periods, a key finding that is not part of our identifying assumption. Instead, this shock

is purely redistributive and drives at and yt in opposite directions. The effect on labor

earnings is large and immediate: labor income jumps to a new lower level within the quarter.

The affect on wealth is also large but takes time to adjust. This sluggishness is puzzling

because it suggests that the information revealed in the innovation is incorporated slowly

into asset prices. Composition effects could play a role in this if, for example, an increasing

fraction of firms going public over the sample employ labor-saving technologies. It could
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also reflect imperfect observability of factors share shocks by shareholders who own shares

in many independently managed firms and have to learn over time about the pervasiveness

and persistence across the broader economy of the ultimate sources of such shocks. These

possibilities are outside of the scope of the model. Future research is needed to formally

investigate these and other possibilities.8

The third row of Figure 2 shows the effects of a positive wealth shock, ea,t, driven in the

model by a decline in risk aversion. In both the data and the model, this shock leads to a

sharp increase in asset wealth, but has no impact on consumption and labor earnings at any

future horizon. The zero responses of ct and yt on impact are the result of our identifying

assumptions, but the finding that this shock has no subsequent influence on consumption or

labor income at any future horizon is a result that is central to understanding why the risk

aversion shock must be modeled as independent of consumption and labor earnings shocks.

Although transitory, this disturbances’s influence on at has a half-life of over four years in

historical data.

Figure 3 shows the cumulative dynamic responses of stock market wealth∆st in historical

data to a one-standard deviation innovation in each VAR disturbance, along with 90% error

bands computed from the bootstrap procedure described in the Appendix. The responses

are constructed using the OLS estimates of (4) for stock wealth. It is clear that the responses

of stock wealth to the wealth and labor income shocks mimic those of asset wealth to these

same shocks, indicating that they are primarily shocks to shareholder wealth, not other forms

of wealth. This is consistent with the evidence in Lettau and Ludvigson (2013) which finds

that other forms of wealth are not closely related to these two disturbances.

Returning to Table A.1, we see that the wealth shock ea explains the largest fraction of

quarterly stock wealth growth ∆st and accounts for 76% of its quarterly variation (75% of

8The left column of Figure 2 shows that, even in the model, there is slight sluggish response of stock

market wealth to the factors share shock, although it is less pronounced than in the data. This is a finite

sample effect: the responses in Figure 2 for the model are averages over 1000 simulations of size 238 quarters

(the same size as our historical dataset). In many samples of this size, the estimated response is sluggish,

even though the population response displays no sluggishness. This can be seen via a comparison with Figure

1, which, unlike the response in Figure 2, is computed from one very long simulation of the model, rather

than from averages over many short ones.
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the quarterly variation in ∆pt). The two other shocks account for very small amounts, 4%

and 6% for the labor income and consumption shocks, respectively. The model implications

in the third row are broadly comparable with the data along these lines: the vast bulk

of quarterly fluctuations in stock wealth in the model are attributable to the wealth/risk

aversion shock, with much smaller roles for the consumption/TFP and labor income/factors

share shocks. By construction, there is no “residual” in the model version of equation (4),

since the productivity, factors share, and risk aversion shocks explain 100% of the variability

in stock market wealth. But note that, both in the model and in the data, aggregate

consumption shocks play a very small role in quarterly stock market fluctuations. In the

model, this occurs because labor’s greater average role in the production process (steady

state labor share is two-thirds) means that most gains and losses from TFP shocks accrue to

workers rather than shareholders, so these shocks are less important for asset pricing than

are the other two. This finding is diffi cult to reconcile with representative agent models

where aggregate consumption shocks play the key role in asset price fluctuations. As an

illustration, the last row of Table 1 gives the corresponding variance decomposition numbers

for the Campbell and Cochrane (1999) habit model (with no labor income), in which 84%

of quarterly stock price growth is driven by consumption shocks.9

5.2 Origins of Long-Run Stock Market Wealth

We now turn to the question of how the sources of stock market fluctuation vary with the time

horizon. To do so we first decompose the variance of the stock wealth by frequency, using

a spectral decomposition. This decomposition tells us what proportion of sample variance

in ∆st is attributable to cycles of different lengths. We estimate the population spectrum

for the deterministically detrended log difference in stock wealth ∆st − κ0 (5). Noting that

∆st − κ0 in (5) is a function of three components, ∆sct , ∆syt , ∆sat , plus an i.i.d. residual ηt,

and using the fact that the spectrum of the sum is the sum of the spectra, we estimate the

fraction of the total variance in stock market wealth that is attributable to each component

9The fraction of variance explained by consumption shocks is less than 100% only because the Campbell

Cochrane model is non-linear, while the variance decomposition is computed from a linear VAR.
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at cycles of different lengths, in quarters. The Appendix provides additional details.

Figure 4 exhibits these decompositions for the model (top panel), and for the data using

stock market wealth (bottom panel). The horizontal axis shows the length of the cycle in

quarters. The vertical axis gives the frequency decomposition of variance. Consider the line

marked “a”in the middle panel for historical stock market wealth. This line shows that, for

short cycles (i.e., periods of a few quarters), the fraction of variance in stock wealth that is

attributable to the wealth shocks is very high, close to 80%. As these cycles become longer,

the fraction of variance in stock wealth explained by this shock declines and asymptotes to

roughly 40%. Note that the high frequency, short horizon, variability of the stock market

in post-war data is virtually unrelated to the labor income/factors share shocks. But as the

cycle become longer, the fraction of variance in stock wealth explained by the factors share

shock steadily rises and asymptotes to roughly 40%, equal in importance to the risk aversion

shocks. By contrast, both in the model and the data, no matter what the length of the cycle,

the fraction of variance in stock wealth that is attributable to the TFP/consumption shock

is very low, close to zero. The line marked “residual”shows the contribution of component of

stock market fluctuations that is unexplained by these three mutually orthogonal innovations

is less than 20% of the variability in the stock market at all frequencies, and asymptotes to

around 10% as the horizon extends. The model captures this frequency decomposition well.

Next, we study the role each disturbance has played in driving stock market wealth at

specific points in our sample using the levels decomposition of stock market wealth (6). To

do so, we remove the deterministic trend and normalize the initial observation s0 to zero

in the quarter before the start of our sample. Figure 5 plots the levels decomposition for

stock wealth (left column) and stock price (right column) over our sample, which are very

similar. The top panels of each column shows the sum of all components, which equals the

log level of the variable (stock wealth or stock price) after removing the deterministic trend.

The panels below show to the component attributable to the cumulation of each shock and

the residual.

It is immediately clear from Figure 5 that the TFP component contributes relatively little

to the variation in stock market wealth consistently throughout the sample. This component

does take a noticeable drop at the end of the sample during and after the recession of 2007-
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2009, but it is still quite modest compared to the variation in other components. The bottom

panel shows that the variation attributable to the unexplained residual is also small. Instead,

the big movers of stock market wealth are the factors share shock and the risk aversion shock.

The low frequency movements in the level of stock market wealth are well tracked by the

cumulative swings in the factor shares component, while shorter-lived peaks and troughs in

the stock market accord well with spikes up or down in the risk aversion component.

Figure 5 also shows that the cumulative effect of the factors share shock has persistently

boosted stock market wealth over the last twenty five years. By contrast, from the mid 1960s

to the mid 1980s, the cumulative effect of this shock persistently boosted labor earnings and

lowered stock market wealth. Figure 6 shows that there is a stark inverse relationship

over time between labor earnings and the stock market that is the result of the cumulative

reallocative outcomes of the factors share shock.

As an example of the quantitative importance of such shocks over long-horizons, we use

this levels decomposition to calculate the percentage change since 1980 in the deterministi-

cally detrended real value of stock market wealth that is attributable to each shock. The

cumulative affects of the factors share shock have resulted in a 65% increase in the deter-

ministically detrended real value of the stock market since 1980, an amount that exceeds

100% of the total increase. (Precisely, these shocks account for 110.5% of the increase.) An

additional 38% of the increase since 1980, or a rise of 22%, is attributable to the cumula-

tive effects of risk aversion shocks. The TFP shocks have made a negative contribution to

change in stock market wealth since 1980, a direct consequence of the string of unusually

large negative draws for the consumption/productivity shock in the Great Recession years

from 2007-2009. These shocks accounted for -38% of the total increase since 1980. The

residual accounts for the remaining -10.5% of the increase. These findings underscore the

extent to which the long-term value of the stock market has been far more influenced by

forces that redistribute the rewards of production, rather than raise or lower all of them.

The calculations above removed a deterministic trend. As for any series that determinis-

tically trends upward over time (stock market, GDP, consumption, etc.,) most of the increase

over long periods is attributable to a deterministic trend. We can assess the quantitative

importance of stochastic shocks for long-term growth inclusive of the deterministic trend by

23



“shutting off”the shock and studying where the level of the stock market would be today

under that counterfactual that the shocks had been zero over some period. Doing so for the

period since 1980, we find that the stock market would be 47% lower today than it currently

is at the end of our sample had the factors share shock been set to zero.

5.3 Origins of Stock Market Predictability

Our last subject is stock market predictability. A large and well known body of evidence

finds that excess stock returns are forecastable over longer horizons, suggesting that the

reward for bearing risk changes over time.10 Several theories have been put forth to explain

this forecastability, including habit formation (Campbell and Cochrane (1999)), or stochastic

consumption volatility (Bansal and Yaron (2004)). This section provides evidence on the

question of why excess returns are predictable by investigating sources of variation in common

predictor variables such as the price-dividend ratio or the consumption-wealth variable cayt

(Lettau and Ludvigson (2001)). The results are presented in Table 4, with the top half

showing results from historical data, and the bottom half showing results from the model.

Table 4 has several panels. The left panel reports regression results of one through three

year log excess equity returns on the lagged price-dividend ratio alone. Moving rightward,

the next panel reports regression results of one through three year log excess equity returns

on lagged cayt alone. We will also discuss the predictability of equity premia by measures of

stochastic consumption volatility and uncertainty—the next panel reports regression results

of log excess returns on a measure of stochastic consumption volatility. The panel to the

right of this one, headed “ea only,”reports regression results of one through three year log

excess equity returns on multiple lags of the i.i.d. wealth disturbances ea,t and its lags. The

table reports the sum of the coeffi cients on all lags. The next two columns show results when

returns are predicted either by the component of the price-dividend ratio that is unrelated

to the wealth shocks, pdorth, (movements in pd that are orthogonal to ea,t and its lags), or

by the component of cayt that is driven only by the wealth shocks, denoted caya.

10For extensive reviews of this evidence see Campbell, Lo, and MacKinlay (1997), Cochrane (2005), Lettau

and Van Nieuwerburgh (2008), and Lettau and Ludvigson (2010).
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In both the model and the data, the log price-dividend ratio and cayt predict future

excess returns with statistically significant coeffi cients and sizable adjusted R2 statistics. By

contrast, time-varying stochastic consumption volatility has no predictive power for equity

premia at any horizon.11 These results provide no evidence that stock return predictability

is driven by time-varying second moments of consumption growth or broad-based macroeco-

nomic uncertainty.

By comparison with pd or cay, lags of the ea,t wealth shocks exhibit greater forecasting

power than either of these variables. A Wald test strongly rejects the hypothesis that the

sum of squared coeffi cients on the lags of these shocks is zero.12 There is no horizon at which

the wealth shocks are not strongly statistically marginally significant. A positive innovation

for the wealth shock increases asset wealth, so the negative coeffi cients in this forecasting

regression imply that increases in wealth holding fixed consumption and labor income are

transitory and forecast lower future returns.

But the next columns show that the predictive content for long horizon excess stock

market returns contained in the pdt and cayt is subsumed by the information in lags of the

wealth shocks. The pd residual components pdorth that are orthogonal to the wealth shocks

have no statistically significant forecasting power for equity premia. Similarly, the component

of cayt that is driven solely by the orthogonal wealth shocks, ea,t, is responsible for all the

forecasting power of cayt. The adjusted R2 statistic is, if anything, higher when using caya,t

rather than cayt as a predictor variable to forecast equity premia. This evidence is diffi cult

to reconcile with models in which risk premia vary with consumption shocks (e.g., Campbell

11A stochastic volatility model is used to estimate Et
(

[∆ lnCt+h − Et [∆ lnCt+h]]
2
)
, for different horizons

h. The estimate is taken from Jurado, Ludvigson, and Ng (2014). These results are robust to using additional

lags of the stochastic volatility measure, to using first differences of the stochastic volatility measure, to

using GARCH measures of consumption growth volatility, and to using measures of stochastic consumption

growth volatility looking out over horizons greater than one quarter. In addition, broad-based measures

of macroeconomic uncertainty developed in Jurado, Ludvigson, and Ng (2014) also exhibit no forecasting

power for equity premia at any horizon. These results are omitted to conserve space but are available upon

request.
12Wald tests similarly reject the hypothesis that the coeffi cients are jointly zero, and that the sum of

coeffi cients is zero.
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and Cochrane (1999)), since the wealth shocks that “explain”most of the forecastability of

excess returns are orthogonal to movements in consumption. The opposite would be true in

models with habit formation.

We have also computed the correlation between the wealth/risk aversion shocks we iden-

tify and stock market dividend growth in our sample. We find that they are contemporane-

ously unrelated, with a close-to-zero correlation of 0.06. The contemporaneous correlation

with earnings growth is only slightly higher, 0.127. These results provide little evidence that

the wealth/risk aversion shocks we identify that are, by construction, uncorrelated with con-

sumption and labor income instead originate from shocks to measures of fundamental stock

market value such as dividends or earnings. In summary, changes in the reward for bearing

stock market risk are found to be attributable to sources that are unrelated to traditional

macroeconomic fundamentals, including aggregate consumption, labor income, measures of

uncertainty or stochastic consumption volatility, dividend growth, or earnings growth.

6 Conclusion

No comprehension of stock market behavior can be complete without understanding the

origins of its fluctuations. Surprisingly little research has been devoted to this question. As

a consequence, we have only a dimly lit view of why the real value of stock market wealth

has evolved to its current level compared to five, or ten, or thirty years ago.

The starting point of this paper is to decompose real stock market fluctuations into

components attributable to three mutually orthogonal observable economic disturbances that

explain the vast majority of fluctuations since the early 1950s. We then propose a model to

interpret these disturbances and show that they are the observable empirical counterparts

to three latent primitive shocks: a total factor productivity shock that benefits both workers

and shareholders, a factors share shock that shifts the rewards of production between workers

and shareholders without affecting the size of those rewards, and an independent risk aversion

shock that shifts the stochastic discount factor pricing equities but is unrelated to aggregate

consumption, labor earnings, or measures of fundamental value in the stock market.

The results show that there are two big drivers of stock market wealth over time. One
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is a discount rate shock driven by fluctuations in investors’willingness to bear risk that

is unrelated to real economic activity, including consumption, labor income, stock market

dividends and earnings.13 The other is a cash-flow innovation that redistributes the rewards

of production between shareholders and workers with no change in aggregate consumption.

The independent discount rate shock dominates stock market volatility over periods of several

quarters and a few years, while the factors share shock plays an increasingly important

role as the time horizon extends. Technological progress that raises aggregate consumption

and benefits both workers and shareholders plays a small role in historical stock market

fluctuations at all horizons.

A particularly striking example of the long-run implications of these economic shocks is

provided by examining the period since 1980. After removing a deterministic trend, we find

that factors share shocks have resulted in a 65% increase in real stock market wealth since

1980, an amount that exceeds 100% of the total increase in stock market wealth over this

period. Indeed, without these shocks, today’s stock market would be about 10% lower than

it was in 1980. The shocks responsible for big historical movements in stock market wealth

are not those that raise or lower aggregate rewards, but are instead ones that redistribute a

given level of rewards between workers and shareholders. We also show that predictability of

excess stock market returns must be understood as originating from sources largely unrelated

to aggregate consumption, labor income, stock market earnings or dividends, measures of

stochastic consumption volatility, or broad-based macroeconomic uncertainty. We argue

that these findings have important implications for macroeconomic modeling: the two big

sources of variation that we find here are responsible for almost all of stock market fluctuation

presently play virtually no role in contemporary macroeconomic theory.

The model presented here is deliberately stylized on the quantity side of the economy,

abstracting from capital accumulation and fluctuations in employment. We have taken

this approach in order to embed our analysis into an empirically plausible stock market

13One real variable that in the data is related to the wealth shock is investment (Lettau and Ludvigson

(2013)). But this is theoretically consistent with a discount rate shock, which should affect the present

discounted value of marginal profits and therefore the optimal rate of investment (e.g., Abel (1983); Cochrane

(1996)).
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environment. In future work, we plan to examine a richer model of the production side, with

close attention to how important changes in the labor market over the last 30 years may

have contributed to our findings on factors share shifts. Our results in this paper imply that

these forces for redistribution between shareholders and workers—whatever their cause—have

had a profound effect on stock market wealth over longer periods of time.
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Figures and Tables

Variance Decomposition of Quarterly Log Difference in Stock Wealth
c Shock y Shock a Shock Residual

Data (Stock Wealth) 0.062 0.044 0.759 0.134
(0.042, 0.135) (0.024, 0.101) (0.690, 0.815)

Data (Stock Price) 0.060 0.042 0.743 0.155
(0.043, 0.129) (0.025, 0.101) (0.678, 0.803)

Model 0.018 0.038 0.942 0.002
(0.002, 0.052) (0.006, 0.098) (0.865, 0.985)

Campbell-Cochrane Habit 0.86 – 0.14 0.000

Table 1: Variance Decomposition of Quarterly Log Difference in Stock Wealth. See Table 2.
This table reports a variance decomposition of the quarterly log difference in stock market wealth using.
The numbers reported represent the fraction of the h =∞ step-ahead forecast error in the log difference of
stock wealth that is attributable to the shock named in the column heading. Model results are calculated
as averages over 1,000 simulations of 238 observations each. The numbers in parentheses represent the 5th
and 95th percentiles of these statistics from bootstrapped samples using the procedure described in the
Appendix. The historical sample spans the period 1952:Q2 - 2012:Q4.

Simulated and Data Moments
Variable Data Mean Data St. Dev. Model Mean Model St. Dev.

∆ct 0.018 0.014 0.023 0.018
∆yt 0.021 0.021 0.023 0.053
∆dt 0.019 0.120 0.022 0.123
ret 0.064 0.169 0.066 0.169
rft 0.015 0.022 0.015 0.000
rext 0.049 0.165 0.051 0.169

pt − dt 3.564 0.382 3.239 0.301

Table 2: Simulated and Data Moments. ∆ct and ∆dt are log differences of real consumption and
dividends; ret is the cum-dividend value-weighted CRSP return; r

f
t is the constant-maturity 1-year T-bill

rate. rext ≡ ret − r
f
t . Data for pt − dt are obtained from CRSP. All variables are at annual frequency. The

sample is 1953:4 - 2012:6.



Long Horizon Predictability Regressions: Yt,t+h = a+ b(pt − dt) + et,t+h

DATA
Yt,t+h:

∑h
j=1 ∆ct+j

∑h
j=1 ∆dt+j

∑h
j=1 r

ex
t+j

h pdt R̄2 pdt R̄2 pdt R̄2

4 −0.125 -0.003 −0.012 0.001 −0.130 0.068
(−0.248) (−0.502) (−2.856)

8 −0.875 0.013 −0.034 0.010 −0.226 0.120
(−0.776) (−0.780) (−2.777)

12 −1.423 0.022 −0.055 0.019 −0.272 0.144
(−0.849) (−0.857) (−3.043)

MODEL
Yt,t+h:

∑h
j=1 ∆ct+j

∑h
j=1 ∆dt+j

∑h
j=1 r

ex
t+j

h pdt R̄2 pdt R̄2 pdt R̄2

4 0.006 0.011 0.076 0.034 −0.266 0.139
(0.007) (1.545) (−3.600)

8 0.028 0.024 0.144 0.067 −0.369 0.195
(0.026) (1.699) (−3.953)

12 0.024 0.036 0.206 0.096 −0.422 0.223
(0.035) (2.146) (−4.145)

Table 3: Long Horizon Predictability Regressions. Regressions from actual and simulated data of the
variable Yt,t+h on pt−dt (the log price-dividend ratio at time t) and a constant: Yt,t+h = a+b(pt−dt)+et,t+h.
The variable Yt,t+h is alternately equal to h-quarter consumption growth

∑h
j=1 ∆ct+j , h-quarter dividend

growth
∑h

j=1 ∆dt+j , or h-quarter excess stock market returns,
∑h

j=1 r
ex
t+j . The regression coeffi cient b is

reported along with its t -statistic, obtained as averages over 1,000 simulated regressions of 238 observations
each. The t-statistics are calculated using Newey-West standard errors, with number of lags equal to the
regression horizon, and the R2 statistic is adjusted for the number of explanatory variables. Coeffi cients that
are statistically significant at 5% level appear in bold.



Long Horizon Return Regressions:
∑h

j=0 r
ex
t+j+1 = β′Xt + ωt+1,t+h

DATA
Xt: pd cay UC3 ea pdorth caya
h pdt R̄2 cayt R̄2 UC3,t R̄2 ea,t R̄2 pdortht R̄2 caya,t R̄2

4 −0.130 0.068 2.722 0.074 −0.037 0.003 −0.401 0.137 −0.083 0.023 7.357 0.128
(−2.856) (2.936) (−1.030) (7.739) (−1.571) (3.684)

8 −0.226 0.120 4.864 0.133 −0.018 -0.004 −0.673 0.262 −0.118 0.029 13.736 0.261
(−2.777) (3.326) (−0.299) (12.686) (−1.363) (5.575)

12 −0.272 0.144 6.667 0.197 0.014 -0.005 −0.678 0.314 −0.135 0.031 16.423 0.310
(−3.043) (4.098) (0.169) (8.419) (−1.276) (7.052)

MODEL
Xt: pd cay ea pdorth caya
h pdt R̄2 cayt R̄2 ea,t R̄2 pdortht R̄2 caya,t R̄2

4 −0.266 0.139 0.693 0.084 −0.283 0.273 −0.070 0.015 1.459 0.274
(−3.600) (3.593) (13.363) (−0.164) (6.279)

8 −0.369 0.195 0.984 0.119 −0.399 0.351 −0.111 0.026 2.026 0.358
(−3.953) (3.643) (16.236) (−0.252) (7.185)

12 −0.422 0.223 1.114 0.129 −0.445 0.372 −0.143 0.034 2.277 0.383
(−4.097) (3.526) (17.649) (−0.337) (7.365)

Table 4: Long Horizon Return Regressions. Regressions from actual and simulated data of the variable
∑h

j=0 r
ex
t+j+1 on Xt and a constant:

∑h
j=0 r

ex
t+j+1 =

β′Xt + ωt+1,t+h. The variable Xt is alternately pd, cay, UC3 , ea, pdorth, and caya. pd is the log price-dividend ratio (source: CRSP). cay is the consumption-wealth
variable from Lettau and Ludvigson (2001), while caya is the component of cay driven by shocks to ea,t. UC3,t is the square root of the conditional expectation of the
squared consumption innovation ∆ct+1−Et∆ct+1, one quarter ahead, computed using a stochastic volatility model in Jurado, Ludvigson, and Ng (2013). The VAR
innovation ea,t is a shock that raises ∆at, holding fixed ∆ct and ∆yt. The variable pdortht is the fitted residual from a regression of pd on contemporaneous and 19
lagged values of ea,t. For ea,t = (ea,t, ..., ea,t−19), the coeffi cient reported is the sum of the individual regression coeffi cients

∑19
j=0 βea,j , where βea,j is the coeffi cient

on ea,t−j , and the statistic reported in parentheses is a Wald statistic for the null hypothesis that the squared coeffi cients sum to zero:
∑23

j=0 β
2
ea,j = 0. For the

variables pdt and cayt, the statistics reported in parentheses are t-statistics for the null hypothesis that the regression coeffi cient is zero. A constant is included in
each regression even though it is not reported in the table. Bolded coeffi cients indicate significance at the 5 percent or better level. Test statistics are corrected for
serial autocorrelation and heteroskedasticity using a Newey-West estimator with 24 lags. R̄2 is the adjusted R2 statistic. For the UC3,t regression, the sample spans
1960:Q4 : 2012:Q1. For all other regressions, the sample spans 1952:Q4 - 2012:Q3.
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Student Version of MATLABFigure 1: Model-Based Responses: Primitive vs. VAR Shocks. The left column plots the cumulated
model impulse responses of the log differences of c, y, and a to the primitive shock named in the sub-graph
title. The right column plots the cumulative impulse responses implied by the model from a VAR in the
log differences of c, y , and a to the orthogonalized VAR shocks using data simulated from the model (right
column). Impulse responses to primitive shocks are obtained by applying at t = 0 a one-standard deviation
change in the direction that increases ∆at, and simulating the model forward with all other shocks set to
zero. Impulse responses to the VAR shocks are obtained by simulating the model over one very long sample
(equal to 238,000 observations), estimating a cointegrated VAR in the log differenced data, inverting to
Wold representation and computing the responses to orthogonalized c, y, and a shocks equal to one standard
deviation changes in the direction that increases ∆at with that ordering in the VAR. The size of the shocks
are normalized so that the initial response of a variable to its own shock in the right panel is the same as
the response of that variable to the corresponding primitive shock in the left panel.
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Figure 2: VAR Impulse Responses (Model vs. Data). The figure plots impulse response functions
to the VAR shocks in both the model (left column) and data (right column). true structural shocks to
the orthogonalized shocks obtained from the VECM regression using data simulated from the model (left
column), and actual data (right column). In both cases, impulse responses are obtained by estimating a
cointegrated VAR in the log differenced data, inverting to Wold representation and computing the responses
to orthogonalized c, y, and a shocks equal to one standard deviation changes in the direction that increases
∆at with that ordering in the VAR. Model results are calculated as averages over 1,000 simulations of 238
observations each. The historical sample spans the period 1952:Q2 - 2012:Q4.
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Figure 3: Stock Market Impulse Responses. The figure plots impulse responses of stock wealth to the
shocks obtained from the VECM regression. Dotted lines are 90% error bands obtained using the bootstrap
procedure described in the Appendix. The historical sample spans the period 1952:Q2 - 2012:Q4.
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Figure 4: Decomposition of Spectrum (Model vs. Data). The figure shows the decomposition of
spectra at different frequencies into components driven by each of the orthogonalized shocks of the consump-
tion, labor income and wealth VAR. Results for the model are computed from averages over 1,000 simulations
of 238 observations. Results from historical data appear in the two bottom panels. The historical sample
spans the period 1952:Q2 - 2012:Q4.
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Figure 5: Level Decomposition (Data). See Table 2. The figure shows the decomposition of the log
level of stock wealth into components driven by the orthogonalized c, y, and a shocks obtained from the
VECM regression. A deterministic trend is removed from the log level of stock wealth by removing the mean
in log differences before cumulating. The components plus the residual sum to the log level of detrended
stock wealth and detrended stock price in the left and right panels, respectively. Each component and the
sum are normalized so that the value in 1952:Q1 is zero. The sample spans the period 1952:Q2 - 2012:Q4.
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Figure 6: Decomposition of Labor Income and Stock Market Wealth. The figure shows the
component of the log levels of stock market wealth and labor income that is attributable to the factor shares
shock over time. The effect of the factors share shock ey,t on the log level of each series is obtained by
summing up the estimated effects of ey,t on the log differences over time. Both series are demeaned and
divided by their standard deviations. The sample spans the period 1952:Q2 - 2012:Q4.



Appendix: For Online Publication

Data Description

CONSUMPTION

Consumption is measured as either total personal consumption expenditure or expen-

diture on nondurables and services, excluding shoes and clothing. The quarterly data are

seasonally adjusted at annual rates, in billions of chain-weighted 2005 dollars. The com-

ponents are chain-weighted together, and this series is scaled up so that the sample mean

matches the sample mean of total personal consumption expenditures. Our source is the

U.S. Department of Commerce, Bureau of Economic Analysis.

LABOR INCOME

Labor income is defined as wages and salaries + transfer payments + employer contri-

butions for employee pensions and insurance - employee contributions for social insurance -

taxes. Taxes are defined as [ wages and salaries/(wages and salaries + proprietors’income

with IVA and CCADJ + rental income + personal dividends + personal interest income)]

times personal current taxes, where IVA is inventory valuation and CCADJ is capital con-

sumption adjustments. The quarterly data are in current dollars. Our source is the Bureau

of Economic Analysis.

POPULATION

A measure of population is created by dividing real total disposable income by real per

capita disposable income. Our source is the Bureau of Economic Analysis.

WEALTH

Total wealth is household net worth in billions of current dollars, measured at the end of

the period. A break-down of net worth into its major components is given in the table below.

Stock market wealth includes direct household holdings, mutual fund holdings, holdings

of private and public pension plans, personal trusts, and insurance companies. Nonstock

wealth includes tangible/real estate wealth, nonstock financial assets (all deposits, open

market paper, U.S. Treasuries and Agency securities, municipal securities, corporate and

foreign bonds and mortgages), and also includes ownership of privately traded companies

in noncorporate equity, and other. Subtracted off are liabilities, including mortgage loans



and loans made under home equity lines of credit and secured by junior liens, installment

consumer debt and other. Wealth is measured at the end of the period. A timing convention

for wealth is needed because the level of consumption is a flow during the quarter rather

than a point-in-time estimate as is wealth (consumption data are time-averaged). If we

think of a given quarter’s consumption data as measuring spending at the beginning of the

quarter, then wealth for the quarter should be measured at the beginning of the period.

If we think of the consumption data as measuring spending at the end of the quarter,

then wealth for the quarter should be measured at the end of the period. None of our

main findings discussed below (estimates of the cointegrating parameters, error-correction

specification, or permanent-transitory decomposition) are sensitive to this timing convention.

Given our finding that most of the variation in wealth is not associated with consumption,

this timing convention is conservative in that the use of end-of-period wealth produces a

higher contemporaneous correlation between consumption growth and wealth growth. Our

source is the Board of Governors of the Federal Reserve System. A complete description of

these data may be found at http://www.federalreserve.gov/releases/Z1/Current/.

STOCK PRICE, RETURN, DIVIDENDS

The stock price is measured using the Center for Research on Securities Pricing (CRSP)

value-weighted stock market index covering stocks on the NASDAQ, AMEX, and NYSE.

The data are monthly. The stock market price is the price of a portfolio that does not

reinvest dividends. The CRSP dataset consists of vwretx(t) = (Pt/Pt−1)− 1, the return on

a portfolio that doesn’t pay dividends, and vwretdt = (Pt +Dt) /Pt − 1, the return on a

portfolio that does pay dividends. The stock price index we use is the price P x
t of a portfolio

that does not reinvest dividends, which can be computed iteratively as

P x
t+1 = P x

t (1 + vwretxt+1) ,

where P x
0 = 1. Dividends on this portfolio that does not reinvest are computed as

Dt = P x
t−1 (vwretdt − vwretxt) .

The above give monthly returns, dividends and prices. The annual log return is the sum of

the 12 monthly log returns over the year. We create annual log dividend growth rates by



summing the log differences over the 12 months in the year: dt+12 − dt = dt+12 − dt+11 +

dt+11 − dt+10 + · · · + dt+1 − dt. The annual log price-dividend ratio is created by summing

dividends in levels over the year to obtain an annual dividend in levels, DA
t , where t denotes

a year hear. The annual observation on P x
t is taken to be the last monthly price observation

of the year, PAx
t . The annual log price-dividend ratio is ln

(
PAx
t /DA

t

)
. The variables ∆dt,

rft , r
e
t , and r

ex
t are adjusted for inflation by subtracting the log difference of realized CPI (all

urban consumers) obtained from FRED.

PRICE DEFLATOR

The nominal after-tax labor income and wealth data are deflated by the personal con-

sumption expenditure chain-type deflator (2005=100), seasonally adjusted. In principle, one

would like a measure of the price deflator for total flow consumption here. Since this variable

is unobservable, we use the total expenditure deflator as a proxy. Our source is the Bureau

of Economic Analysis.

ANNUALIZATION

For ∆ct and ∆yt, annual observations are created by summing log differences at quar-

terly frequency over the year. For ∆dt, annual observations are obtained by summing log

differences at monthly frequency over the year. For ret , r
f
t , and r

ex
t , annual observations are

obtained by summing log levels at monthly frequency over the year. For the ratio pt − dt,

annual observations are created by first summing dividends in levels over the year to obtain

an annual dividend in levels. dt is then taken to be the log of the annual dividend. pt is taken

to be the last price observation of the year (at monthly frequency). Annual observations are

defined over years ending in June so that the most recent data can be included.

Risk Aversion Along a Balanced Growth Path

The budget constraint for the representative shareholder can be written

At = θt (Pt +Dt) +Bt (19)

Cs
t +Bt+1qt + θt+1Pt ≤ At, (20)

where At are period t assets, θt are shares held in equity, Pt is the ex-dividend price of these

shares, Bt is the beginning of period value of bonds held, and qt = 1/ (1 +Rf ) is the risk-free



rate paid on bonds. Along the non-stochastic balanced growth path, the equity return is

equal to the risk-free bond rate. Rewrite (19) as

At+1 = Ptθt+1

(
Pt+1 +Dt+1

Pt

)
+Bt+1

= Ptθt+1Rt+1 +Bt+1 =>

Ptθt+1 =
At+1

Rt+1

− Bt+1

Rt+1

. (21)

Plugging (21) into (20) and evaluating (20) at the equilibrium value of equality, we obtain

At = Cs
t +Bt+1qt +

At+1

Rt+1

− Bt+1

Rt+1

= Cs
t +

At+1

Rt+1

= Cs
t +

At+1

Rf

where the last equality follows because qt = 1/Rf = 1/Rt+1 along the equilibrium balanced

growth path. Thus we have a beginning of period assets:

At+1 = Rf (At − Cs
t )

or solving forward

At =
∞∑
i=0

(
1

Rf

)i
Cs
t+i. (22)

The value function is defined

V (At) = max
Cst
{u (Cs

t ) + βtEtV (At+1)}

or using (20)

V (At) = max
Bt+1,θt+1

{u (At −Bt+1qt + θt+1Pt) + βtEtV (At+1)} .

Following the derivation in Swanson (2012), the coeffi cient of relative risk aversion RRAt is

RRAt =
−AtEtV ′′ (At+1)

EtV ′ (At+1)
. (23)

It can be shown (see below) that

V ′ (At+1) = u′
(
Cs
t+1

)
⇒ (24)

V ′′ (At+1) = u′′
(
Cs
t+1

) ∂Cs∗
t+1

∂At+1

, (25)



where the notation “*”denotes the shareholder’s optimal choice of Cs
t+1.

Swanson (2012) derives a relative risk aversion coeffi cient for dynamic models at a non-

stochastic steady state or along a balanced growth path. We use G = 1 + µa to denote

steady state growth. Along a balanced growth path where for z ∈ {A,Cs, D,C, Y } we have

zt+k = Gkzt,where G ∈ (0, Rf ) we have the following derivation in this setting. Note that

the steady state value of βt ≡
exp(−rf)

Et

[
D
−xt
t+1

D
−xt−1
t

] is given by

β =
exp (−rf )

Gx
,

where the mean of xt is denoted x. Using the first order condition for optimal consumption

choice in steady state:

u′ (Cs∗
t ) = βRfu

′′ (Cs∗
t+1

)
=>

u′′ (Cs∗
t )

∂Cs
t

∂At
= βRfu

′′ (Cs∗
t+1

) ∂Cs∗
t+1

∂At
=>

−x (Cs
t )
−x−1 ∂C

s∗
t

∂At
=

exp (−rf )
Gx

Rf

[
−x (GCs∗

t )−x−1
] ∂Cs∗

t+1

∂At
=>

∂Cs∗
t

∂At
= G−1∂C

s∗
t+1

∂At
. (26)

Applying the same transformation to the first order condition at time t+ 1 we have

u′′
(
Cs∗
t+1

) ∂Cs
t+1

∂At
= βRfu

′′ (Cs∗
t+2

) ∂Cs∗
t+2

∂At
=>

∂Cs∗
t+1

∂At
= G−1∂C

s∗
t+2

∂At
(27)

and combining (26) and (27) we obtain

∂Cs∗
t

∂At
= G−2∂C

s∗
t+2

∂At
=>

∂Cs∗
t+2

∂At
= G2∂C

s∗
t

∂At
,

and iterating obtain
∂Cs∗

t+i

∂At
= Gi∂C

s∗
t

∂At
.



Now differentiate (22) evaluated along the balanced growth path with respect to At:

1 =

∞∑
i=0

(
1

Rf

)i ∂Cs∗
t+i

∂At

1 =
∂Cs∗

t

∂At

[
1 +

G

Rf

+

(
G

Rf

)2

+

(
G

Rf

)3

+ · · ·
]

=
∂Cs∗

t

∂At

(
Rf

Rf −G

)
,

implying
∂Cs∗

t

At
=
Rf −G
Rf

. (28)

Assets At along a non-stochastic balanced growth path are

At ≡
∞∑
i=0

(
1

Rf

)i
Cs∗
t+i

=
∞∑
i=0

(
G

Rf

)i
Cs∗
t

=
RfC

s∗
t

(Rf −G)
. (29)

Plugging (24), (25), (28), and (29) into (23), we obtain a value for risk aversion along a

balanced growth path equal to

RRAt =
−Cs

t u
′′ (Cs

t+1

)
u′
(
Cs
t+1

) = x/G.

Derivation of (24). First-order condition for Bt+1:

−u′ (Cs
t ) qt + βtV

′ (At+1)
∂At+1

∂Bt+1︸ ︷︷ ︸
=1 from (19)

= 0. (30)

First-order condition for θt+1:

−u′ (Cs
t )Pt + βtV

′ (At+1) (Pt+1 +Dt+1) = 0. (31)

Differentiate the value function

V (At) = max
Bt+1,θt+1

{u (At −Bt+1qt + θt+1Pt) + βtEtV (At+1)}



with respect to At, keeping in mind

Cs
t = At −Bt+1qt + θt+1Pt

and

At+1 = θt+1 (Pt+1 +Dt+1) +Bt+1.

We have

V ′ (At) = u′ (Cs
t ) +

−u′ (Cs
t ) qt + βtV

′ (At+1)
∂At+1

∂Bt+1︸ ︷︷ ︸
=1

 ∂Bt+1

∂At

+ [−u′ (Cs
t )Pt + βtV

′ (At+1) (Pt+1 +Dt+1)]
∂θt+1

∂At
.

Evaluating at the optimum using (30) and (31), the terms in brackets are zero, leaving

V ′ (At) = u′ (Cs
t ) .

Economic Inequality

The causes and consequences of the upward trend in economic inequality over the last 30

years are hotly debated (see for example, Heathcote, Perri, and Violante (2010)). The model

above has strong implications for this debate and indicates that fluctuations in economic

inequality should be closely related to movements in the factors share shock. Figure A.4

provides suggestive evidence that the cumulative effects of the factors share shock since 1980

may be associated with the observed rise in consumption inequality over this period. Figure

A.4 plots the consumption Gini coeffi cient from Heathcote, Perri, and Violante (2010), which

uses data from the Consumer Expenditure Survey (CEX) over the period 1980 to 2006. Along

with this series, we plot the cumulated factors share shock from the empirical VAR, and the

model-implied consumption Gini obtained by feeding the observed sequence of factors share

shocks from 1980 to 2006 into the model. (The Appendix gives the mapping between the

consumption Gini and the cumulated factors share shocks in the model.) In the model, the

consumption Gini is almost perfectly correlated with the cumulated factors share shocks,

both of which rise over the 1980-2006 period as rewards shifted away from workers and



toward shareholders.14 This is not surprising since, in the model, all inequality is between

group inequality across shareholders and workers, which is driven by the factors share shock.

But there is also a striking low frequency correlation shown in Figure A.4 between the rise

in consumption inequality in the CEX data and the observed cumulated factors share shock,

suggesting that the shift in rewards away from workers and toward shareholders over the

last thirty years could be a driving force behind the rise in consumption inequality.

Numerical Solution

The price-dividend ratio satisfies

Pt
Dt

(st) = Et

[
Mt+1

(
Pt+1

Dt+1

(st+1) + 1

)
Dt+1

Dt

]
= Et exp

(
mt+1 + ∆dt+1 + ln

(
Pt+1

Dt+1

(st+1) + 1

))
,

where st is a vector of state variables, st ≡ (∆ ln at, Zt, xt)
′ . We therefore solve the function

numerically on an n × n × n dimensional grid of values for the state variables, replacing

the continuous time processes with a discrete Markov approximation following the approach

in Rouwenhorst (1995). The continuous function Pt
Dt

(st) is then replaced by the n × n × n

functions Pt
Dt

(i, j, k) , i, j, k = 1, ..., N, each representing the price-dividend ratio in state

∆ ln ai, Zj, and xk, where the functions are defined recursively by

P

D
(i, j, k) =

n∑
l=1

n∑
m=1

n∑
n=1

πi,lπk,nπj,m exp

(
m (l,m, n) + ∆d (l,m, n) + ln

(
P

D
(l,m, n) + 1

))
,

where m (l,m, n) refers to the values mt+1can take on in each of the states, and analogously

for the other terms. We set N = 35.

Estimating Population Spectrum for the Level of Stock Market
Wealth

Here we discuss the level decomposition of variance based on a spectral decomposition. The

reference for this procedure is Hamilton (1994), chapter 6. The procedure may be summa-

rized as follows. First, we estimate (4) and plug the estimated parameters into formulas

14This calculation makes the (empirically relevant) assumption that equity holders’ share of aggregate
consumption is greater than their share in the population so that a shift in rewards toward shareholders
increases rather than decreases consumption inequality.



for the population spectrum for each component in (5) ∆sct , ∆syt , ∆sat , and i.i.d. residual

ηt. Since ∆st − κ0 = ∆sct + ∆syt + ∆sat + ηt, the sum of the estimated spectra for each

component gives the estimated spectrum for ∆st − κ0, denoted S∆s (ω) as a function of

cycles of frequency ω. Notice that we remove the deterministic trend from the log level

of stock market wealth by subtracting κ0 from ∆st on the right-hand-side. Thus we have

S∆s (ω) = S∆sc (ω)+S∆sy (ω)+S∆sa (ω)+Sη (ω), where these right hand terms are the spec-

tra for the individual components of ∆st − κ0. Roughly speaking, the proportion of sample

variance in ∆st − κ0 attributable to cycles with frequency near ω is given by S∆s (ω) 4π/T ,

where T is the sample size. The fraction of the variance in the ∆st − κ0 at cycles with

frequency near ω that is attributable to the consumption shock is

S∆sc (ω)

S∆s (ω)
, (32)

and fraction of the variance in the ∆st−κ0 at cycles with frequency ω that is attributable to

the other components are defined analogously. Recalling that, if the frequency of the cycle

is ω, the period of the cycle is 2π/ω. Thus we plot (32), which is a function of frequencies

ωj = 2πj/T , against periods 2π/ωj = T/j (here in units of quarters), where T is the sample

size.

Bootstrap Procedure for Error Bands

Confidence intervals for parameters of interest are generated from a bootstrap following

Gonzalo and Ng (2001). The procedure is as follows. First, the cointegrating vector is

estimated, and conditional on this estimate, the remaining parameters of the VECM and

subsequent regressions are estimated. The fitted residuals from the system

∆xt = ν̂ + γ̂α̂′xt−1 + Γ̂(L)∆xt−1 + Ĥet

∆st = κ̂0 + κ̂c(L)ec,t + κ̂y(L)ey,t + κ̂a(L)ea,t + ηt,
(33)

denoted (êc,t, êy,t, êa,t, η̂t) are obtained and a new sample of data is constructed (conditional

on our initial observations x−1,x0 and s0,) using the initial VECM and stock wealth OLS

parameter estimates by random sampling of (êc,t, êy,t, êa,t, η̂t) with replacement. Denote the

new randomly sampled (via block bootstrap) values for the residuals (ẽc,t, ẽy,t, ẽa,t, η̃t) for



t = 1, . . . , T . The new bootstrapped sample of observable data, (x̃t, s̃t), is constructed from

∆x̃t = ν̂ + γ̂α̂′xt−1 + Γ̂(L)∆xt−1 + Ĥẽt

∆s̃t = κ̂0 + κ̂c(L)ẽc,t + κ̂y(L)ẽy,t + κ̂a(L)ẽa,t + η̃t.

Given this new sample of data, all parameters in (33) (as well as the cointegrating coeffi cients)

are re-estimated, and the impulse responses, variance decompositions, and other statistics

of interest stored. This is repeated 5,000 times. The empirical 90% confidence intervals

are evaluated from these 5,000 samples of the bootstrapped parameters. The bands for the

impulse responses in Figure 2 are reported in Figure A.2. The bands are reasonably tight for

most responses except for the response of at to a labor income shock ey,t. However, Figure

2 shows that the response of stock wealth st (rather than net worth) to an ey,t shock is

estimated much more precisely, reflecting the fact that the factors share shock affects the

stock wealth component of net worth almost exclusively, but shows little relation to other

forms of wealth included in net worth.

Consumption Gini

We explain how the model-implied consumption Gini coeffi cient is computed over the same

sample period as in the empirical consumption Gini series of Heathcote, Perri, and Violante

(2010). In the model, inequality is entirely attributable to the division of consumption

between shareholders and workers (agents in each group are identical, so there is no within-

group inequality). The level of inequality in the model is measured, as in the data, using

the Gini coeffi cient for consumption. To calculate inequality in the model, we assume that

the fraction of shareholders is smaller than their share of aggregate consumption, so that

shareholders consume a disproportionately large fraction of aggregate consumption. This

assumption ensures that a shift of income away from workers toward shareholders (i.e., a

negative εz shock) has the effect of increasing consumption inequality. The share of aggregate

consumption that accrues to workers is αf (Zt). If we denote q to be the fraction of the

population in the shareholder group, then we assume q < 1− αf(z) for all z.

Under these assumptions, the Gini coeffi cient takes the simple form

G = 1− q − αf(z). (34)



To see this, it is helpful to consider Figure A.4, which shows the consumption distribution

in the model. The Gini coeffi cient is defined to be the ratio A/(A+B), where A and B are

the areas of the relevant labeled areas in Figure A.4. The area B is the sum of the areas of

a triangle with base 1− q and height αf(z), a rectangle with base q and height αf(z), and

a triangle with base q and height 1− αf(z). Basic geometry then implies that

B =
1

2
(q + αf(z)).

A+B is a triangle with base 1 and height 1, so A+B = 1/2. Combining results, we obtain

that

A =
1

2
(1− q − αf(z)).

Since G = A/(A+B), this completes the derivation of (34).

Given this form for the Gini coeffi cient, it is clear that in the model, the Gini coeffi cient

can be determined up to the constant q given values for f(z). In the model, the ey shock is

nearly perfectly correlated with ∆ ln f(Zt), so that

∆ ln f(Zt) ' b1ey,t (35)

for some constant b1. The constant is estimated by running the relevant regression using

long time series simulated from the model.

Using our estimates êy,t from the empirical VAR, we can now construct an implied series

for the Gini coeffi cient in the model. Note from (35), we have

ln f (Zt) = ln f (Z0) + b1

t∑
i=1

ey,i. (36)

The consumption Gini data from Heathcote, Perri, and Violante (2010) are annual and run

from 1980 to 2006. We therefore set t = 1 to 1980 and normalize ln f (Z0) to zero. We take

the average quarterly value of ey,t within a year as the annual observation for ey,t. Iterating

forward on (36) and applying the exponential function to the left-hand-side yields an implied

series for f(zt). Finally, plugging this value into (34) yields a model-implied series for G.

Because we normalize the Gini series in the plot to have zero mean, the parameter q doesn’t

play a role in the plotted series.



Decomposition of cay

This section describes how to decompose the cayt series obtained from a VECM regression

into components attributable to each of the three orthogonalized shocks. The cay series is

defined by

cayt ≡ α′xt − κ

where xt = (ct, at, yt)
′, α = (1,−αa,−αy)′ is the cointegrating vector, and κ is a constant.

Assume that the stochastic process for xt has a VECM representation

∆xt = ν + γα′xt−1 + Γ∆xt−1 +Het (37)

where et = (ec,t, ea,t, ey,t)
′ are the orthogonalized shocks. Inverting the VECM, we obtain

the Wold decomposition

∆xt = δ +D(L)et (38)

where D(L) is an infinite-order lag polynomial.

Theoretical Decomposition

If we let Dc(L) be the column of D(L) relating to the ec shock, then we obtain the decom-

position

∆xt = δ +Dc(L)ec,t +Da(L)ea,t +Dy(L)ey,t. (39)

If we define

∆xc,t ≡ Dc(L)ec,t

∆xa,t ≡ Da(L)ea,t

∆xy,t ≡ Dy(L)ey,t

(40)

then, cumulating up, we obtain an additive decomposition for xt

xt = δt+ xc,t + xa,t + xy,t. (41)

Premultiplying (41) by α′, and subtracting κ, we obtain a decomposition for cayt:

cayt = α′xt − κ = α′δt+ α′xc,t + α′xa,t + α′xy,t − κ (42)



If we define

cayc,t ≡ α′xc,t

caya,t ≡ α′xa,t

cayy,t ≡ α′xy,t

then (42) becomes

cayt = α′δt+ cayc,t + caya,t + cayy,t − κ. (43)

Note that unlike cayt, the components (e.g., cayc,t) are detrended and demeaned.

Practical Decomposition

Unfortunately, we cannot fully implement (43) in practice. From our estimation procedure,

we obtain estimates α̂, and D̂. We also obtain estimates êt, but only for t = 1, . . . , T . If we

had estimates of all êt for t = T, T − 1, . . . ,−∞, then we could evaluate estimates of each

xc, xa and xy term using (40) and form an additive decomposition. However, we do not,

so if we estimate these terms using only the shocks from 1, . . . , T , then the decomposition

will no longer hold exactly, as we cannot decompose what shocks were responsible for the

initial conditions ∆x0 and x0, which will have a persistent effect on the series xt through

(37). However, since the effect of initial conditions becomes smaller as time goes on, the

approximate decomposition using only shocks from t = 1 forward may still be of interest.

Our approximate decomposition begins with the quantities

∆x̃c,t ≡
t−1∑
j=0

Dc,j êc,t−j

∆x̃a,t ≡
t−1∑
j=0

Da,j êa,t−j

∆x̃y,t ≡
t−1∑
j=0

Dy,j êy,t−j

where êt represents the estimates of the orthogonalized shocks. This decomposes the influence

of the orthogonalized shocks from t = 1 on the various states. Cumulating these series leads



to the series x̃c, x̃a, x̃y. In practice, these series can be calculated by running the VECM (37)

forward (without the constant term) starting from initial condition ∆x0 = x0 = (0, 0, 0)′ and

applying shocks that include only the relevant entry of the estimated shocks.

An example will clarify these instructions. To evaluate ∆x̃c,t, begin by setting ∆x̃c,0 =

x̃c,0 = (0, 0, 0)′. Given ∆x̃t−1 and x̃t−1 for t ≥ 0, we can obtain ∆x̃c,t by applying (37)

without the constant term ν, and allowing only the ec,t shock to be nonzero, so that we

obtain

∆x̃c,t = γ̂α̂′x̃c,t−1 + Γ̂∆x̃c,t−1 +H


ec,t

0

0

 . (44)

Proceeding in this fashion, we can compute the entire series for x̃c,t.

To decompose the effect of the shocks on cayt, we can simply apply the cointegrating

vector to the cumulated x̃ series to obtain

c̃ayc,t ≡ α′x̃c,t

c̃aya,t ≡ α′x̃a,t

c̃ayy,t ≡ α′x̃y,t

Because this decomposition cannot account for shocks prior to t = 1, (42) will not hold, and

we will instead end up with a “residual”term cay∗t , such that

cayt = c̃ayc,t + c̃aya,t + c̃ayy,t + cay∗t (45)

This completes the instructions for generating the decomposition. A full derivation of the

decomposition, including instructions for calculating the residual term, can be found below.

Full Derivation

In order to derive (45), an additive decomposition without estimates of e0, e−1, . . ., we can

take advantage of the fact that the influence of e0, e−1, . . . is contained in the initial conditions

∆x0 and x0. The first step is to define a series that represents only the effects of these



unobserved shocks. To this end, define

e∗t ≡

et for t ≤ 0

0 for t > 0

so that e∗t is equivalent to et for t ≤ 0, but is zero for t > 0. Next, define

∆x∗t ≡ δ +D(L)e∗t = δ +

∞∑
j=t

Djet−j.

In other words, ∆x∗t is what ∆xt would be had all shocks from time t = 1 on been equal to

zero. For examples, we have

∆x∗1 = δ +D1e0 +D2e1 + . . .

∆x∗2 = δ +D2e0 +D3e1 + . . . .

To compute these series, we can easily obtain this series by running the VECM forward with

all shocks from t = 1 onward set to zero. Specifically, use the initial conditions ∆x∗0 = ∆x0

and x∗0 = x0, as in the standard VECM. Then, given ∆x∗t−1 and x
∗
t−1, we can compute ∆x∗t

using

∆x∗t = ν + γα′x∗t−1 + Γ∆x∗t−1

which is just the standard VECM (including the constant term nu) but with the shocks et

set to zero. In practice of course the coeffi cients of the VECM will be the estimated “hat”

versions.

Next, define

∆x̃c,t ≡
t−1∑
j=0

Dc,jec,t−j

∆x̃a,t ≡
t−1∑
j=0

Da,jea,t−j

∆x̃y,t ≡
t−1∑
j=0

Dy,jey,t−j

so that each series corresponds to the cumulated effects of the different shocks from time

t = 1 onward. Note that these series can be obtained by running the VECM forward (without



adding the constant δ) starting from initial condition x̃0 = ∆x̃0 = (0, 0, 0)′ and applying the

relevant shock components one at a time, as in (44) of the previous section.

Under this definition, we have

∆x̃c,t + ∆x̃a,t + ∆x̃y,t =

t−1∑
j=0

Djet−j

and since

∆x∗t = δ +
∞∑
j=t

Djet−j

we obtain

∆x̃c,t + ∆x̃a,t + ∆x̃y,t + ∆x∗t = δ +

∞∑
j=0

Djet−j = xt.

Since all of these components depend only on the estimated coeffi cients, the initial condition

x0, and the estimated shocks ê1, . . . , êT , we can calculate this decomposition using only the

output from the VECM regression.

Cumulating, and applying the α vector, we obtain

cayt = δtα′ + α′x̃c,t + α′x̃a,t + α′x̃y,t + α′x∗t − κ

= c̃ayc,t + c̃aya,t + c̃ayy,t + cay∗t

for

c̃ayc,t ≡ α′x̃c,t

c̃aya,t ≡ α′x̃a,t

c̃ayy,t ≡ α′x̃y,t

cay∗t ≡ α′x∗t − κ

which is the desired additive decomposition.

A few final notes are in order. First, since we want an additive decomposition, it is

important not to triple-count various constants. This means not including the δ constant

when calculating the various x̃ series, as well as not normalizing the various c̃ay series by κ

(although these constant terms should be used when calculating cay∗t ).



Additional Figures and Tables

Parameter List and Calibration
No. Parameter Description Calibration
1 α exponent on labor in production function 0.667
2 ψ constant term in f(Zt) 0.5
3 rf log risk-free rate 0.0038
3 θ minimum value xt 1
4 θ̄ maximum value xt 455
5 ā mean (quarterly) ∆at 0.0057
6 ¯f(Z) mean f(Zt) 1
7 φa autocorrelation ∆at 0
8 φz autocorrelation Zt 0.995
9 φx̃ autocorrelation x̃t 0.85
10 σa standard deviation εa,t 0.0091
11 σz standard deviation εz,t 0.12
12 σx̃ standard deviation εx̃,t 6.01

Table A.1: Parameter List and Calibration. This table lists the parameters of the model and their
baseline calibrated values.



Figure A.1: Consumption Shocks and TFP. The TFP shock series is differenced Business Sector TFP
(source: Fernald). The consumption shock series is taken from the VECM. The sample spans the period
1947:Q2 - 2013:Q3.
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Figure A.2: 16Q Moving Averages of Labor Share and TFP. The series are 16Q moving averages
of each series in log differences. TFP is Business Sector TFP (source: Fernald). LS is Nonfarm Business
Sector Labor Share (source: BLS). The sample spans the period 1947:Q2 - 2013:Q3.
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Figure A.3: VAR Impulse Responses with Error Bands. The figure plots impulse response functions
to the VAR shocks obtained from the VECM regression using data. Impulse responses are obtained by esti-
mating a cointegrated VAR, inverting to Wold representation and computing the responses to orthogonalized
c, y, and a shocks with that ordering in the VAR. The dotted lines are 90% error bands obtained using the
bootstrap procedure described in the Appendix. The historical sample spans the period 1952:Q2 - 2012:Q4.
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Figure A.4: Gini Coeffi cient and Cumulated ey Shock. The consumption Gini (data) series is the Gini
coeffi cient of inequality for nondurable consumption (source: Heathcote, Perri and Violante (2010)). The
cumulated y shock series is the running total of all the ey shocks to date:

∑t
j=1 ej . The implied consumption

Gini (model) series uses the model to calculate the implied Gini coeffi cient for consumption based on the
observed sequence of y shocks (see appendix for details). All series are presented at annual frequency. For
the cumulated y shock and model-implied Gini series, annual observations are averages over the calendar
year. All three series are normalized to have zero mean and unit standard deviation in the sample.
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Figure A.5: Model Gini Coeffi cient. This diagram plots the distribution of consumption in the model.
q is the proportion of shareholders. The Gini coeffi cient of consumption is defined by G = A/(A+B), where
A and B are the areas of the relevant regions.


