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1 Introduction

Obesity is one of the largest prevailing public health concerns in the United States. National

obesity rates (defined as having a body mass index (BMI) greater than 30 kg/m2) have increased

dramatically among both children and adults over the past several decades. In the late 1970s,

the national obesity rate among adults was about 14.5%; it increased to 22.5% by the early

1990s (Flegal et al., 1998). Today, over 2/3 of Americans are overweight and over 36% are

obese.1 Estimates also suggest that about 30% of children are obese or overweight, although

the trend appears to have flattened somewhat in recent years (Ogden et al., 2010; Cawley,

2010). The increases in obesity have been more pronounced among those with lower income,

especially for women, as well as among non-Asian minorities.2 Obesity has been linked to

a higher prevalence of chronic diseases, such as arthritis, diabetes and cardiovascular disease

(Must et al., 1999; Pi-Suyner, 1991). The associated cost to the U.S. medical system has been

estimated at about $147 billion in 2006, with Medicare and Medicaid financing approximately

half such costs (Finkelstein, Fiebelkorn and Wang, 1998). The high and rising obesity rate

combined with the financial burden it places on the health care system have made it one of the

leading public health problems in the United States.

The rise in obesity can be ascribed mainly to the fact that physical exercise has not increased

over this time period but calories consumed have grown dramatically (Cutler, Glaeser and

Shapiro, 2003). The implication is that Americans are consuming an increasingly unhealthy

diet, both in terms of the total number as well as the composition of calories. With over 2/3

of household caloric intake occurring at home (Nestle, 2012), a question of central importance

is why households are purchasing large quantities of more unhealthy food and what public

policies could be used to support purchasing a more healthy nutritional bundle. The core

type of policies that have been discussed in the economics and public health communities are

price-based interventions, such as a sugar-sweetened beverage (SSB) tax or a fat tax. To date,

however, there is little robust evidence on how price policies will affect the products consumers

purchase and the resulting nutritional bundles of households.

The lack of understanding of how price-based policies will affect nutrition is surprising given

the pervasive policy discussions throughout the world on how to use the tax system to support

healthier eating. However, there are several data limitations and methodological complications

1The Economist. Special Report: Obesity. December 15, 2012.
2Non-Hispanic blacks have the highest rates of obesity (49.5%) compared to non-Hispanic whites (34.3%): http://www.cdc.

gov/obesity/data/adult.html
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prior work has faced that has limited our understanding of price-based nutritional policies. In

this paper, we combine structural demand techniques with a Big Data approach to this problem

that relies on linking several large, proprietary databases together to provide a comprehensive

view of consumer purchases, prices, nutritional characteristics of foods purchased, and pur-

chasing environments. Our analysis focuses on identifying the role of prices in driving the

type and nutritional content of foods households purchase for home consumption, which sheds

needed light on how consumption bundles and nutrition are shaped by prices consumers face

in order to inform the development of appropriate price-based policies to support nutritional

goals policymakers may have. The size and scope of our data allow us to partition the product

space into “nutritional clusters” that represent distinct groupings of product types within each

product group (e.g., diet and regular soda, less- and more-healthy packed meals). We then

estimate a structural Quadratic Almost Ideal Demand System (QAIDS) model over the joint

product-nutrient groups at the household-month level, accounting for the endogeneity of prices

with instruments based on marginal cost variation and the endogeneity of expenditures using

instruments based on local business cycle variation. Using the resulting price and expenditure

elasticities, we simulate the effect of various product (e.g., soda) and nutrient (e.g., sugar) taxes

on the distribution of consumer expenditures across groups and on the distribution of nutrients.

We also calculate the consumer welfare costs of each tax.

The unique and detailed data we employ combined with our methodological approach allows

us to advance the literature on consumer demand and expand our knowledge of the effects of

price-based interventions on nutrition along several dimensions. First, a major limitation that

prior research has faced is the lack of comprehensive data linking consumer purchases to prices

and nutrition. The dataset we assemble for this project is unique in its size and scope: no prior

work has used data that has the volume of information we possess as well as the long time-

frame over which we have it at the household level. Our purchasing data are from the Nielsen

Homescan Panel, which is comprised of a demographically-representative set of consumers that

provides, for each purchase transaction of a grocery item, the universal product code (UPC),

the price paid, and the date of purchase. Overall, we observe over 123 million transactions made

by consumers between 2002-2007. In addition, the data contain rich demographic information

for each household, including household composition, race, income, and the census tract in

which they live. Using the UPCs, we match each product with information from another

data set that contains all nutritional information included on the product nutritional label.

Finally, using the census tract identifiers, we construct precise measures of the food purchasing
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environment each household faces with data from a yearly census of US supermarkets, grocery

stores, and convenience stores. Together, these data provide extensive information on the

nutritive bundles households purchase, the prices paid for all goods, and the local purchasing

environments surrounding each household.

This data set is well-suited to examine the role of prices in household purchasing behavior

and nutrition and provides a significant advantage over earlier attempts at quantifying food

demand. Existing researchers using scanner data have typically had access to data that is more

limited in time or in the breadth of information used. For example, Dubois, Griffith and Nevo

(forthcoming) use a similar scanner dataset to construct international comparisons for the year

2005-06 only. They document and examine the reasons for nutritional differences across the US,

UK and France and find that price differences and product composition differences play some

role in driving cross-country food purchasing variation. These results suggest that price-based

manipulations could have important impacts on household nutrient intake, however they do not

examine how product and nutrient taxes would affect the distribution of consumer expenditures

and nutrition. Finkelstein et al. (2012) and Finkelstein et al. (2010) use similar data as well but

only for 2006, and their analysis data do not include a complete set of purchased products. 3

In their examination of purchasing patterns over the lifecycle, Aguiar and Hurst (2007) use

data only for Denver, covering the period January 1993 through March 1995, and do not have

nutritional information about the products purchased.4 The dataset we construct thus provides

the opportunity to measure a more detailed set of information over a longer period of time than

any existing demand study in the literature.

The second contribution we make is to partition the data into a joint product-nutrient

space over which the demand model can be estimated. A core difficulty in estimating food

demand models is that it is not possible to price the individual nutritional components of a

good. That is, one cannot determine what part of the price of a good is due to the fat content

and what part is due to the salt content. Prior research typically has addressed this issue

3Other researchers who have used scanner data to estimate demand models have focused on a specific category of products,
such as beverages (Dharmasena and Capps, 2012; Lin et al., 2011; Zhen et al., 2011), snack foods (Kuchler, Tegene and Harris,
2005), and dairy (Chouinard et al., 1998; Griffith, Nesheim and O’Connell, 2010). These analyses typically contain only one or
a few years of data, do not examine substitution across groups, and/or aggregate the data to the product-month level or to the
household-year level, which throws out a large amount of important demographic and price information. Aggregation also renders
the estimates subject to biases that might arise from local composition changes that are correlated with price changes. Another
strand of the demand literature uses household survey data combined with local price estimates from the American Chamber of
Commerce Research Association (ACCRA) or from respondent reports (Yen et al., 2004; Duffey et al., 2010). The prices used
in these analysis are likely to be far noisier than in our data, and respondent reports of foods purchased or consumed also are
measured with more error. Finally, although the specific methods used in all of these studies differ, there is little attention paid to
endogeneity issues with respect to prices. The use of endogenous price variation could introduce significant biases in the resulting
demand estimates.

4In a related study examining lifecycle expenditures, Aguiar and Hurst (forthcoming) use Consumer Expenditure Survey data
that provide information about a wider variety of goods consumed but that do not have the specificity about food products
purchased that characterize the Nielsen Homescan data.
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either by separating different products into different nutrition groupings in an ad-hoc manner

or by estimating models with the nutrients purchased from each product type as the outcome

of interest in the demand model (Finkelstein et al., 2012).5 Neither method is completely

satisfying, however, because the former relies on researcher judgements about how consumers

segment products and the latter does not account for the fact that nutrients are correlated

with each other within products, thus introducing a bias from omitted variables. We develop a

new method for partitioning the product space into relevant nutritional groupings using cluster

analysis. The motivation of this method is that nutrients tend to be correlated with each other

in specific ways that define a set of relevant goods for a consumer. For example, high-fat snack

foods also tend to be high-salt and high-sugar, while healthier snack foods have low amounts

of all of these nutrients.

This process amounts to partitioning each product type into clusters of nutrient groupings

that define a nutritionally-similar set of goods using the data, rather than making judgement

calls about what the relevant different food groupings are. It also is possible for there to be

several nutritional clusters for each product type. Clustering in this manner thus allows us to

generate a set of nutritionally-bundled goods within each product group that define consumers

choice sets in a parsimonious manner and that do not require us to assign a price to each

nutrient. Specifically, we categorize all purchases into 14 product categories, which are then

further partitioned into 33 different product-nutrient groups. We then estimate QAIDS models

at the household-month-group level, the result of which is a matrix of own- and cross-price

elasticities as well as expenditure effects for the different groups. These estimates subsequently

are used to simulate the effect of product- and nutrient-specific taxes on purchasing behavior

and nutritional bundles. This method is straightforward but data-intensive, which highlights

the value of our Big Data approach.6

Our analysis also contributes to a relatively large literature that focuses on estimating the

price elasticity of demand for particular foods.7 These studies can be split into two groups. The

first uses structural demand techniques to identify price elasticities of demand. As discussed

5Alternatively, Dubois, Griffith and Nevo (forthcoming) model the joint product-nutrient space in such a way that the char-
acteristics of products are fully subsumed into the nutrient space. While useful for the aggregate cross-country comparisons they
employ, this method imposes restriction on the cross-price elasticities and does not allow one to examine product-specific price
manipulations directly. Thus, it is less useful for our research questions.

6Another alternative would be to estimate a choice model over UPCs in the spirit of Berry, Levinsohn and Pakes (1995). Given
that we have 568,637 total UPCs spanning 123 million transactions, such a model is currently not tractable to estimate. The
QAIDS model estimated over the joint product-nutrient space has the benefit of being computationally feasible while still allowing
for a large degree of flexibility in consumer substitution across relevant food types.

7See Andreyeva, Long and Brownell (2010) for a review and meta-analysis of this literature. Most of the these studies use
aggregate time-series data, with a smaller percentage using household-level data. A small minority use household scanner data,
and these studies typically lack credible instruments for prices and do not allow for consumer substitution across products.
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above, data limitations and issues pertaining to price endogeneity have hampered these analyses.

The second group uses variation from imposition of excise or sales taxes as natural experiments

to examine how consumers respond to arguably exogenous price changes. While most states

exempt food purchased in grocery stores from sales taxes, as of 2011, 35 states either include

soda in the sales tax base and/or levy an excise tax on soda. The existing literature using

these tax changes as natural experiments to identify the effect on soda demand find that soda

is inelastic with respect to this tax variation (Powell et al., 2013; Fletcher, Frisvold and Tefft,

2010a,b).8 However, these taxes tend to be quite small and they are unlikely to be salient

to consumers because they usually are added onto the price at checkout (Chetty, Looney and

Kroft, 2009). In general, there is a lack of tax variation with which to identify the effect of taxing

most products or nutrients. The lack of such policy variation highlights the need to examine

how larger and more salient price changes might affect consumption using structural demand

models that incorporate methods to identify causal price parameters. We argue our estimates

are the most detailed and accurate set of price and expenditure elasticities for the US produced

to date, and thus they are of interest in their own right. Furthermore, our methodology allows

us to estimate the welfare costs of imposing different types of taxes, which typically is not

possible using reduced form methods surrounding tax changes.

Finally, our paper contributes to the literature on commodity taxation and nutrition by

examining taxes on different products and on nutrients themselves that incorporate both the

ability of consumers to substitute across different goods in response to price changes but also the

ability of consumers to reduce overall food consumption when prices rise. The inability to link

purchases and prices together with nutritional content of food has precluded an examination of

the effects of taxing specific nutrients, such as a sugar tax, in prior work, and existing studies

are limited to an examination of the effects of taxing a specific product, like soda, or a group

of products that have “undesirable” nutritional characteristics, like sugar-sweetened beverages.

However, in order to inform the development of food-based taxes to affect nutrition, it is

important to generate evidence on how consumer behavior will respond to taxing different types

of products, product groupings and nutrients more broadly. For example, what will be the effect

of taxing soda versus other highly-processed goods that previous work has argued contribute to

rising obesity (Cutler, Glaeser and Shapiro, 2003)? How does taxing products affect consumer

behavior differently than taxing nutrients? Does taxing sugar rather than taxing soda have a

8Another 13 states tax snack foods, such as chips and pretzels, but we are unaware of any studies that examine the effect of
these taxes. Some countries, such as Hungary, also tax foods high in sugar, fat, or salt. A recent meta-analysis of the international
evidence suggests that these taxes have generally affected consumption in the predicted direction, but that in order to have a
significant population health impact taxes in excess of 20% are required (Mytton, Clarke and Rayner, 2012).
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larger affect on nutrition, and how do fat taxes compare with sugar taxes in terms of changing

consumer behavior and in terms of welfare costs of these taxes? We examine these questions

directly by separately simulating the effects of a 20% tax on soda, sugar sweetened beverages

(SSBs), packaged meals, snacks/candy, fat, sugar and salt on budget shares for our 33 product

groups and on nutrient bundles purchased by households. By incorporating substitution effects

across goods as well as the income effects due to these taxes, these simulations yield a more

comprehensive picture of how these product- and nutrient-specific taxes affect nutrition than

has been possible in prior research.

Our main finding from the tax simulations is that nutrient-specific taxes have much larger

effects on nutrition than do product-specific taxes, without causing a larger decline in consumer

utility. The intuition for this result is that nutrient-based taxes have a much broader base, so it

is more difficult to substitute away from any one good in response to such taxes. For example, a

20% tax on soda decreases total purchased calories by 4.84% and decreases sugar consumption

by over 10%. However, a 20% sugar tax decreases total calories by over 18% and sugar by over

16%. The larger effect of a sugar tax on nutrition comes despite the fact that it has the same

effect on indirect utility as a soda tax. Due to their negative income elasticities and the patterns

of own- and cross-price elasticities we find, taxes on snacks and packaged meals have very small

effects on nutrition. Fat and salt taxes, on the other hand, have much larger effects, decreasing

calories by 19% and 10%, respectively. SSB taxes, which can be thought of as a hybrid price

policy that targets a set of products based on their nutritional content, also are quite effective,

reducing caloric intake by over 9%. However, these taxes are less-effective and only slightly less-

distortive than a broad-based sugar tax. Overall, our results point to large potential impacts

of nutrient-based taxes on nutrition that are driven by their broad base. Among these, sugar

taxes stand out as being particularly effective at supporting healthier purchasing behavior.

This paper is structured as follows. Section 2 introduces the different proprietary databases

and describes how the analysis dataset was constructed. We then explain how the data are used

to estimate the QAIDS model. Section 3 discusses the estimated parameters of the demand

system as well as the price and expenditure elasticities. Section 4 presents counterfactual

simulations of the impact of product taxes for soda, SSBs, packaged meals, and snacks/candy

and also nutrient taxes on fat, sugar, and salt on purchasing behavior and nutrition, and Section

5 concludes.
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2 Data and Empirical Model

2.1 Data

The data we use for this analysis is constructed from several different databases that, together,

provide the most detailed information on food purchases over a multi-year period by American

households to date. The core of the data set consists of records on over 123 million food purchase

transactions made at grocery stores. These data come from the Nielsen Homescan database. 9

The Nielsen Homescan data are collected from a demographically-representative panel of US

households who are provided with a small scanner similar to ones used at grocery stores. We

observe food purchases intended for at-home consumption made at a variety of stores, from

traditional grocery stores, supermarkets and convenience stores to supercenters and warehouse

clubs. Most purchases are identified using a unique Universal Product Code (UPC), a 12 digit

barcode scanned by the retailer at the point of purchase. Households are required to scan the

UPC barcode of each item purchased and record the price, date, and location of purchase as well

as the quantity of each item bought. Non-UPC label items, such as fresh fruits and vegetables,

are recorded manually by the households and also are included in our data and analysis. UPC-

labeled items are automatically matched by Nielsen to an additional database that contains

detailed product characteristics, such as brand, size, and price of the product. Prices are checked

against store data in order to account for discounts and coupons.10 At the end of the week,

households transmit their purchase data electronically to Nielsen. Participating households

are not paid in cash but earn a set number of points with each data upload. Households are

rewarded the longer they stay with the program, and those who already have been in the panel

for at least six months receive a substantially larger number of points for each transmission.

The points can be redeemed for products, so households have a strong incentive to upload

their purchase data. The reward program is similar to point programs offered by major credit

cards, where customers can redeem points for select merchandise from a product catalog, such

as tools, electronics, toys or to enter sweepstakes. To our knowledge the rewards are not food

related or likely to induce a significant income effect in the population. All households are in

the sample for at least 10 months, and most stay in for under 5 years.

Participating households are recruited across 52 large markets (roughly corresponding to

the largest Metropolitan Statistical Areas or MSAs in the US). As a result of the engaging

system, which generously rewards participation, the panel is oversubscribed with an up to two
9For additional information on the Nielsen Homescan data, see Todd et al. (2010).

10Einav, Leibtag and Nevo (2010) discuss some of the technical issues that arise as a result of the price recording process.
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year waiting list. Nielsen aims to maintain a nationally-representative panel, subject to addi-

tional weights. Thus, recruitment into the panel is ongoing, with observably similar refresher

households replacing those who leave the sample.

The Nielsen Homescan data do not contain any nutritional information about the products

purchased. From Gladson and FoodEssentials, we have obtained nutritional information at the

UPC level for all products tracked by these companies. These companies monitor and track the

various products sold in stores and record the nutritional panel and packaging characteristics for

products from a wide range of manufacturers. The data contain all nutritional information on

the product nutrition facts panel by UPC code, including the amount of each nutrient and the

entire ingredient list. While the nutrition data cover a large proportion of the total purchases

made by households in the panel, about 35% of the transactions in our data cannot be matched

directly to products in the nutrition database. The products that cannot be matched directly

typically consist of small, often generic, brands with a limited regional distribution network.

In order to ascribe nutritional characteristics to these products, we developed a matching algo-

rithm that assigns to each product the average per-serving characteristics within decreasingly

narrow bins of similar products. We first match unmatched Nielsen products to products with

nutritional information in the same “product module” with the same size, type, brand, product,

flavor, variety and formula.11 This produces matches for an additional 15% of the transactions.

We then alter the product characteristics used for matching to systematically broaden the set

of potential match products. Details of the matching strategy and the proportion of the sample

in each year matched using each set of characteristics are show in Table A-2. This algorithm

produces nutritional estimates for between 96 and 98 percent of the products recorded in the

Nielsen Homescan data, depending on the year.12 Furthermore, about 5% of the transactions

are “random weight” or bulk foods, such as fruits, vegetables, and fresh meats, that are not

tracked by Gladson or FoodEssentials. The nutritional content of these items were coded man-

ually by name and integrated with the database using information from the USDA National

Nutrient Database.

Although these data provide extremely detailed information about grocery purchases, there

are some limitations of using these data to study nutritional outcomes. First, they do not

include restaurant purchases (including fast food) or purchases made at vending machines, and

11Product modules are specific product designations that indicate small groups of similar products. For example, diet and regular
soda are two product modules, as are canned apples and pears. There are numerous product modules in the data, and thus products
within product modules are very similar to each other in terms of nutritional content.

12This algorithm is essentially the same as the one employed by Dubois, Griffith and Nevo (forthcoming) and resulted from a
joint collaboration with the USDA.
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any food consumed outside the home that is not purchased by the household at a store will

not be included. Second, because we are using purchase data, we cannot observe consumption

of the overall household or of different household members. Spoilage, wastage, and different

eating patterns among different household members complicate extrapolations from purchasing

behavior to individual consumption. Despite these limitations, we believe these data are appro-

priate to estimate a rich food demand model and study the effects of food taxes on nutrition. To

the extent that these factors influence purchasing behavior and nutritive bundles, it is unlikely

that changes in the food available within the household does not result in changes in nutrients

consumed by household members. This is particularly true because over 2/3 of calories are

consumed in the home (Nestle, 2012).

The data allow us to control for a rich set of observables that capture detailed information

on the household and the purchasing environment in which food purchase decisions are made.

Nielsen administers a yearly demographic survey to all participating households that records

their home address, household income, the education and race of the head of household, the

age and labor supply for both male and female heads of households, the household composition

and number of children. Our data do not include addresses, but we are given the census tract

in which each household resides in each year. The summary statistics for the demographic

variables are presented in Table A-1. Consistent with previous work using these data (e.g.,

Burda, Harding and Hausman (2012)), we find that certain sampling distortions remain relative

to national averages. For example, in the data 31.8% of the male heads and 36.8% of the female

heads are recorded as not employed. Similarly, we find that 28.5% of the sample reports a

household income above $70,000 compared to only 24.7% who report a household income of

below $30,000. These sample means reflect the relative attractiveness of participation in the

panel to households of different demographic compositions, but, especially since we control for

these demographic characteristics in our empirical models, it is unlikely any differences between

the Nielsen sample and a national sample will bias our estimates.

While the Nielsen database has some information about the stores at which purchases are

made, it does not contain information on the set of stores available to consumers. In order to

further characterize purchasing environments, we supplement our data with records from the

National Establishment Time-Series (NETS) Database, compiled by Walls and Associates using

data from the Dun and Bradstreet (D&B) archival national establishment data (DUNS Mar-

keting Information file, DMI). This database tracks over 40 million establishments nationwide,

with information on their industries and location. We obtained data on the location of all stores
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at which one can buy groceries (i.e., all non-prepared foods) in each county in which a Nielsen

respondent lives in the 52 markets. For each household, we construct the detailed distribution

of stores by geographic distance. For simplicity, we categorize stores as: supermarkets, grocery

stores and convenience stores and count the number of stores within 1/4 mile, 1/2 mile, 3/4

mile, 1 mile, 1 1/2 miles and 2 miles of the centroid of a household’s residence census tract. 13

2.2 Product Classification

One of the challenges involved in building a comprehensive food demand model consists in

choosing the level of product aggregation that leads to a realistic, yet computationally feasible

structural demand system. A central contribution of this paper is the use a joint product-

nutrient aggregation, which models households as making joint decisions over products and

nutrients. The need for such a process of aggregation is easy to see when considering the

impact of a sugar tax on soda. When modeling the impact of such a tax, it is not sufficient to

aggregate all soda products into one category, because people may substitute across different

soda types when sugared soda become more expensive. Changes to the price of sugar-sweetened

soda also could cause households to substitute towards other goods with more or less sugar in

them, depending on whether sugar soda is a complement or substitute with other high-sugar

goods. Furthermore, taxing sugar-sweetened soda could lead to a substitution towards other

unhealthy nutrients, such as fat. A realistic model that captures the manner in which consumers

choose over types of goods requires a joint product and nutrient demand system in order to

accurately model households substitution patterns. At the same time, expanding the choice set

too much leads to a computationally infeasible demand system, which highlights the need to

balance computational feasibility with allowing a sufficient choice set for consumers.

Our approach to this problem is to classify all products into 33 mutually exclusive product-

nutrient groups derived as follows. First, we categorize all UPCs into 14 product categories,

roughly corresponding to the major food areas a customer is likely to encounter in the store.

These are fruits/vegetables, cold beverages, warm beverages, soda, packaged meals, grains/pasta/bread,

canned food/sauce, cereal/breakfast items, other dairy (such as yogurt and cheese), meat, condi-

ments, snacks/candy, milk and baking goods. Second, we analyze the nutritional content of

each UPC in each of the 14 categories in terms of the most important and most salient nutri-

tional items recorded on the nutritional panel of each product: calories, calories from fat, total

fat, cholesterol, salt, carbohydrates, sugar and protein. Using these nutrients, we perform a

13All stores are counted in these measures, not just stores within the household’s county.
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k-median clustering at the UPC level separately for each of the 14 product categories. This

clustering separates the 14 initial product groups into 33 distinct product-nutritional clusters,

where the separation is a direct function of the nutrients recorded for those products.

K-median clustering is a variation of the more frequently encountered k-means clustering

algorithm. The k-median procedure partitions the UPCs within each of the 14 categories into

k additional distinct groups, where each group is characterized by a centroid corresponding to

the vector of median values of each nutrient for the UPCs in a given partition. The distance

between a product and the centroid of a group is evaluated in terms of the corresponding L1

distance between the nutrient values. We chose the k-median over the k-means procedure due

to its robustness to outliers in the nutrition distribution.

We provide a partial solution to the problem of choosing the optimal number k of clusters

corresponding to each of the major product categories by employing the following optimization.

For each of the 14 product categories, we sequentially partition all UPCs using the k-median

algorithm into k = 1 . . . 10 partitions. For each partition, we compute the silhouette value

corresponding to each UPC. The silhouette value is a metric that captures the distance between

a given UPC and the UPCs in the other partitions. Thus, a UPC with a silhouette value of

+1 indicates that a product is classified as being part of a group that is well-separated from

all other groups in the nutrition space. UPCs with silhouette values close to 0 are from a

nutrition composition point of view not distinguishable from UPCs in another cluster. For

each configuration, we compute the average silhouette value. Partitions with larger average

silhouette values are preferred, and we choose the number of partitions that maximize the

average silhouette value for each of the 14 product groups.

This clustering procedure provides a local solution to the optimal number of product clusters.

Due to the computational complexities of the estimating a large non-linear demand system, we

only evaluated a maximum of 10 partitions for each product group. However, the algorithm

partitioned each of the 14 product categories into 2 or 3 additional groups, which suggests using

more partitions would not have altered our results. The result is a total of 33 product groups

that are distinct both in terms of product type and nutritional content. Figure 1 plots the

silhouette values by UPCs for soda products computed for k = 2 partitions, which provides

an illustration of how this method works. It shows that the two partitions are well separated

in the nutrient space. Only a very small number of UPCs have (small) negative silhouette

values, indicating that their nutritional composition is shared by both groups and thus cannot
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be unambiguously allocated to either group.14 As Figure 1 illustrates, k = 2 is the optimal

partition for the soda group when considering partitions of 10 or fewer groups. In this case,

one of the groups is clearly distinguished in the nutrient space by having 0g of sugar and 0

calories per serving, compared to the other group where the median UPC has 960 calories and

256g of sugar per serving. Thus, the k-medians method ostensibly breaks soda into diet and

non-diet “clusters.” While soda is a fairly simple category to divide up along nutritional lines,

the success of this method in doing so suggests it also is reasonably dividing other types of

product groups that are more difficult to separate, such as packaged meals and cereal.

Figure 2 maps the average household budget in terms of the 14 major expenditure categories.

Additional details on budget shares and prices for each of the 33 groups is available in Table 1.

They demonstrate the comparatively large share of snacks and candy (15.6%), meat (12.8%),

soda (5.3%), and packaged meals (7.5%), relative to fruits and vegetables (9.1%). International

comparisons reveal these to be substantially larger than the shares consumed in other developed

countries, such as France or the UK, where fruits and vegetables account for close to 20% of

expenditure (Dubois, Griffith and Nevo, forthcoming). In Figure 2, darker rectangles correspond

to more expensive product categories as measured by the price per ounce. Products with a

higher share of the household food budget tend to also be more expensive. Meat/protein is

twice as expensive as fruits and vegetables per ounce, while while snacks and candy are over 2

1/2 times as expensive.

Table 2 lists the median nutrient quantity per serving for each of the 33 joint product-

nutrient cluster groups in the data. These values correspond to the group centroids in the

nutrition space. Packaged meals stand out relative to all other food categories as having the

most calories, calories from fat, total fat, salt, and protein, the second largest amount of

cholesterol after meat, and the third largest amount of carbohydrates after cereal, pasta and

bread. Compared to a serving of fruits and vegetables, a serving from a packaged meal has over

3 times the number of calories and 7 times the amount of fat and salt. Soda, which has almost

no nutritional value, dominates all other food items in terms of sugar per serving, with 3 times

the amount found in a serving of fruits and vegetables and twice the amount found in milk

products. The high sugar content of soda and of other beverages explains the intense policy

focus on sugar-sweetened beverage prices. However, several other categories, such as cereal and

canned foods, also have substantial sugar content that suggests a SSB tax would be imperfectly

14Note that the clustering algorithm still assigns these products to the “closest” group, but this small set of products has
characteristics that are similar to those in both groups.
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targeted at high-sugar goods. Snacks and candy, which correspond to the largest share of a

household’s at-home food budget, also are characterized by a large number of calories and a

significant amount of salt and sugar in spite of the limited nutritional value.

Table 2 also shows that within the 14 aggregate product categories there are substantial

differences across nutritional groups. This is a direct implication of the k-median clustering,

which partitions the product space into nutritionally-distinct clusters. Figure 3 present a bar

chart of the (median) calories per serving for each of the product groups. Each aggregate

category is also separately labeled and colored. While we do not label the individual product

groups for each aggregate category, we can think of most categories as being divided into low,

medium, and high calorie products, while some categories only have a low and a high calorie

group.

The mapping of these product groups across the multivariate nutritional space is rather more

complicated however, reflecting the non-linear relationships between the different nutrients

when combined in the different product formulations. The soda category, for example, can

easily be described as consisting of two groups of products: zero calorie / zero sugar soda (“diet-

soda”) and high calorie / high sugar soda (“classic” soda). The packed meals and snacks/candy

categories exhibit similar clustering, with there being a “healthy” and “unhealthy” grouping

of each. These results demonstrate that for these product categories, nutrients are highly

correlated with each other – high-sugar snack foods tend also to be high in fat. When one

taxes fat (sugar), it thus should affect sugar (fat) consumption from these groups as well. In

contrast, some groups exhibit clustering around certain nutrients. For example, the baking

goods category consists of a group of high-calorie but low-sugar products and another group of

products containing substantially fewer calories per serving but also containing a non-negligible

amount of sugar. Similarly for fruits and vegetables, there is a high-calorie and low-salt group,

a low-salt and high-calorie group, and a low-calorie, low-salt group. Taxing salt therefore could

lead to more calories being consumed from baking goods and fruits and vegetables. These

trade-offs are likely familiar to most households who are routinely facing the problem that

minimizing the amount of one nutrient (e.g. fat) requires them to consume much larger amounts

of another nutrient (e.g. salt or sugar). Ultimately, such trade-offs represent the chemical reality

of product formulation, where reducing one ingredient requires the manufacturer to increase

the amount of another in order to preserve the attractiveness of the product to the consumer.

Table 2 shows that this trade-off is important for some products but not for others, which is

an interesting finding. To the extent that prior work has attempted to split up product groups
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to allow for within-group substitution, they have done so in an ad-hoc manner that relies on

judgements made by individual researchers. The k-medians results show that nutrient clusters

vary considerably across product types, making such determinations very difficult. The ability

to model the joint product-nutrient space in a parsimonious manner that also reflects the actual

choices households face without having to rely on judgement calls about product classifications

we believe represents an important contribution to food demand modeling.

2.3 Empirical Methodology: QAIDS Model

A large number of different empirical strategies have been employed in the literature to estimate

food demand models. Since the aim of this paper is to evaluate counterfactual policy changes for

which few if any natural experiments exist, it is important to adopt a utility-derived structural

approach. A structural approach will allow us to use estimated price and income effects to

simulate the effect of product and nutrient taxes. In addition, this approach will permit us to

examine how variation in purchasing environments affect purchasing behavior.

A nonparametric analysis of the relationship between log expenditure and income, which is

available upon request from the authors, indicates that all product groups have either linear or

quadratic Engel curves. This result suggests a rank 3 demand model. Restricting attention to

the class of exactly aggregable demand systems, the maximum rank of such demand systems

is 3 (Deaton, 1981). Thus, following Banks, Blundell and Lewbel (1997), the quadratic nature

of the Engel curves argues for a demand model that is linear in log real expenditure and log

real expenditure squared. In particular, this class of models has the attractive feature that

it allows households at different points of the income distribution to have different marginal

consumption responses to the same tax.

We focus on rank 3 demand systems with indirect utility:

ln V (p,m) =

{[
ln m − ln a(p)

b(p)

]−1

+ λ(p)

}−1

, (1)

where p denotes the vector of product group prices (in dollars per ounce) for each of the

i = 1 . . . K product categories (with K = 33), and m denotes the total expenditure on grocery

purchases for at-home consumption for the household in the given time frame. Moreover, let
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wi denote the budget share of product group i. Then,

ln a(p) = α0 +
K∑

i=1

αi ln pi +
K∑

i=1

K∑

j=1

γij ln pi ln pj , (2)

is a price index (in translog form),

b(p) =
K∏

i=1

pβi

i , (3)

is the Cobb-Douglas price aggregator, and

λ(p) =
K∑

i=1

λi ln pi, (4)

is a function of prices p, with
∑K

i=1 λi = 0.

The system of budget share equations for the product groups is given by:

wi = αi +
K∑

j=1

γij ln pj + βi ln
m

a(p)
+

λi

b(p)

(

ln
m

a(p)

)2

. (5)

In order to estimate this model, we use data on over 123 million transactions for 162,974

household years. As a result of the expansion of the consumer panel over the years, the number

of participating households increases from 40,000 to over 60,000 over the sampling period. We

aggregate all of the data to the household-month-product-nutrition cluster group level. This

aggregation leads to 34,245,832 observations. Aggregating the data in this manner has several

advantages. First, using monthly budget shares minimizes problems associated with storage

that plague studies using high-frequency shopping data. Monthly data at the product-nutrition

cluster group level also decreases the prevalence of zeros, whereby households have no purchases

of the given group in the month. Finally, using monthly data rather than longer horizons, such

as quarterly data, makes it more likely that the average prices used reflect the prices faced by

the household in that time period.

Letting wi,h,t denote the budget share of group i for household h in month t, the model above

gives rise to the following structural system of estimating equations:

wi,h,t = αi,h,t +
K∑

j=1

γij ln pj,h,t + βi ln
mh,t

a(ph,t)
+

λi

b(ph,t)

(

ln
mh,t

a(ph,t)

)2

+ ui,h,t, (6)

where ui,h,t is an iid error term and ph,t denotes the vector of prices faced by household h in
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month t.

For computational simplicity, we approximate the term a(ph,t) by the Stone price index

(Decoster and Vermeulen, 1998):

a(ph,t) =
K∑

k=1

wk,h,t ln(pk,h,t), (7)

and as above, b(ph,t) =
∏K

i=1 pβi

i,h,t is a Cobb-Douglas price aggregator.

Household-level heterogeneity is introduced in the structural model through the group-

specific intercepts αi,h, which are allowed to depend linearly on both observable and unob-

servable household characteristics:

αi,h,t = α̃i + μh + πiZh + δt. (8)

In equation (8), α̃i is a product-nutrition cluster group intercept, μh is a market fixed effect,

and Zh is an extensive set of household-level demographics, including household income, male

and female head education, age, labor supply, race, household size, and family composition.

These variables are shown in Table A-1. We also include in Zh the purchasing environment

controls discussed in Section 2.1. Common macroeconomic fluctuations are controlled for with

the inclusion of month and year fixed effects δt.
15 Our aim in this paper is to use a flexible

model specification that accounts for individual heterogeneity but that is rich enough to eval-

uate the relative merits of the different food taxes under consideration. A full exploration of

heterogeneity in food demand is beyond the scope of this paper and would add little, since

we are primarily interested in the average/aggregate impacts of the taxes as opposed to their

distributional effects.16

Estimating this system of structural equations involves solving two econometric problems.

First, instruments are required to identify the parameters of interest, since in general

E(ui,h,t|pj,h,t,mh,t) 6= 0. The endogeneity of prices and expenditure comes from a straightfor-

ward simultaneous equations problem. If there is unobserved demand heterogeneity or local

demand shocks that are correlated with local prices or with household expenditure levels, then

prices and expenditures are endogeneous. The instruments used thus need to be correlated with

15We also have estimated models using month-by-year fixed effects and the estimates are virtually identical. These results are
available upon request.

16In an earlier version of this paper, we estimated different sets of parameters for different income levels. While this produces
insightful results on income gradients, it adds little to evaluating the relative merits of different types of food taxes. Furthermore,
we found little evidence of differential price responsiveness across the income distribution. We leave distributional questions and
more detailed investigations of heterogeneity in the demand system for future research.
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prices and expenditures but uncorrelated with unobserved demand heterogeneity and demand

shocks, conditional on the other controls in the model. Second, due to the large sample size, a

computationally efficient approach is required for solving the system of 33 structural equations.

Our choice of instruments is informed by the existing economic literature. Prices are typi-

cally set by stores at the market level. At the same time, stores purchase the majority of their

products from national manufacturers who typically charge a uniform wholesale price. Thus,

store level prices can be seen as the combination of market level factors and production cost

factors common across markets. If we assume that the market-level pricing factors are indepen-

dent across markets once the common production cost is accounted for, we can use the average

price of each product across other markets as instruments (Hausman, Leonard and Zona, 1994;

Nevo, 2003).17 These prices are unlikely to be influenced by factors affecting only local demand

variation, and it is important to emphasize that any national-level demand shifts are accounted

for by the year and month fixed effects. We construct price instruments by computing the

average price of a product identified at the UPC-level in the same month and year in all other

markets other than the one the consumer has made the purchase in. These prices are then

aggregated at the product-nutrition cluster group level.

Additionally, we use local macroeconomic variation to identify expenditure coefficients, which

assumes that expenditure is related to a non-linear function of market real income (Blundell

and Robin, 1999), an index of market housing prices (Campbell and Cocco, 2007), and market

unemployment(Attanasio et al., 2009). We approximate the relationship between log expendi-

ture and log monthly per-capita market income, log quarterly housing prices, and log monthly

unemployment by a second order polynomial expansion that includes squared terms and in-

teractions between all of these variables.18 For both prices and expenditures, the first stage

residuals are added as additional regressors to the estimating equations (Hausman, 1978).

The first stage price estimates are shown in Appendix Tables A-3, A-4, A-5, and the ex-

penditure first stage is shown in Appendix Table A-6. For all instruments, the first stages are

strong in the sense that the instruments are highly correlated with the endogeneous indepen-

dent variable. For prices, the own price instruments are universally close to 1 and are highly

statistically significant, even though standard errors are clustered at the census tract level. The

expenditure instruments also are strong, with a first-stage F-statistic of 24.92.

17Finkelstein et al. (2012) uses a weighted average of prices within each respondent’s market and month, where the weights
are the inverse distance from the respondent’s census tract. While this instrument addresses certain endogeneity issues related to
individual demand heterogeneity, it does not address endogeneity coming from market-level demand shocks as well as unobserved
heterogeneity correlated across space within a market.

18Monthly per-capita income come from the US Bureau of Economic Analysis, housing prices are from the Federal Housing
Finance Agency’s Home Price Index, and unemployment rates come from the US Bureau of Labor Statistics.
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Computationally, the estimation of the system of 33 structural equations is inherently dif-

ficult due to the non-linearity of the specification in conjunction with the large number of

observations and model parameters. However, the system of equations is conditionally linear

(Blundell and Robin, 1999; Lecocq and Robin, 2006). If we condition on b(ph,t), the system of

budget shares given in equation (6) is linear in the unobserved parameters α̃i, μh, πi, δt, γij , λi

(recall that in our specification a(ph,t) is approximated by the Stone price index and does not

depend on unknown parameters). This suggests a recursive estimation approach. Given an ini-

tial guess of the βi parameters, estimates of the α̃i, μh, πi, δt, γij , βi, λi parameters can be easily

obtained from a linear moment estimator. We then use the estimated βi parameters to update

the value of b(ph,t) until convergence is reached across iterations. The convergence threshold

we use is that the maximum change in each βi across iterations must be less than 0.0001 in

absolute value.

Because the budget shares must sum to one, the system of budget share equations imply the

following parameter restrictions:
∑14

i=1 β̂i = 0,
∑14

i=1 λ̂i = 0 and
∑14

i=1 γ̂i = 0 for all K products.

Without computational constraints, one could impose these parameter restrictions and estimate

the model by maximum likelihood. Given our sample size, this approach is not feasible in our

context. One also could omit one category from the estimation and use these restrictions to

solve for the parameters from the omitted product group. Alternatively, we estimate the model

using all of the product groups and then test the parameters restrictions. In all cases, our

estimates are consistent with these restrictions.19

Another identification concern arises when examining the role of purchasing environments

in consumer shopping behavior. Since stores do not locate randomly with respect to consumer

demand, it is very likely that the proximity of different store types is related to unobserved

aspects of consumer demand. To address this problem, we include in equation (6) census-tract-

level means of each of the purchasing environment measures. Thus, the purchasing environment

coefficients are identified off of changes in these environments from store entry and exit over

time. This approach is conceptually similar to controlling for census tract fixed effects (Lecocq

and Robin, 2006), but with thousands of census tracts, it is not possible to include them in the

model. Census-tract-level means control for any unobserved demand heterogeneity that is fixed

over time within tracts and that is correlated with store locations. The identifying assumption

is that store entry and exit are uncorrelated with unobserved aspects of household demand.

Given the myriad controls in our model and the fact that the households in our sample do not

19In particular, we find
∑14

i=1 β̂i = 0,
∑14

i=1 λ̂i = 0, and
∑14

i=1 γ̂i is between 0 and 2×10−7 in absolute value.
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move while they are in the panel, we believe this assumption is plausible.

The expenditure elasticities and the uncompensated price elasticities play a central role in

our structural demand model. For two products i and j, the procedure described above produces

estimates of β̂i, γ̂i,j , λ̂i. Let Σ̂ be the (partial) asymptotic covariance matrix corresponding to

these three coefficients. The expenditure elasticity for product i is given by:

εi,h,t = 1 +
βi

wi,h,t

+
2λi

wi,h,tb(ph,t)
log(m/a(ph,t)).

The estimated variance of the expenditure elasticity is then given by:

̂V ar(εi,h,t) =

(
1

wi,h,t

)2

̂V ar(βi) +

(
2 ln(m/ ̂a(ph,t))

wi,h,tb̂(ph,t)

)2

̂V ar(λi) +
4 ln(m/â(ph,t))

w2
i,h,tb̂(ph,t)

̂Cov(βi, λi)

The cross-price elasticities are given by:

εi,j,h,t = −
β̂iwj,h,t

wi,h,t

+
γ̂i,j

wi,h,t

− I(i = j) − λ̂i

(
2 ln(m/â(ph,t))

b̂(ph,t)

wi,h,t

wj,h,t

)

− λ̂iβ̂j
(ln(m/â(ph,t))

2

wi,h,tb̂(ph,t)
,

where I(i = j) = 1 if i = j and 0 otherwise.

Define the following 3 × 1 vector ĝ:

ĝ =









−wj,h,t

wi,h,t
− λ̂i

(ln(m/â(ph,t))
2

wi,h,t
̂b(ph,t)

1
wi

ln(m/â(ph,t))

wi,h,t
̂b(ph,t)

(−2wj,h,t − β̂j ln(m/â(ph,t))









By the Delta Method, the estimated variance of the cross-price elasticity is (approximately)

given by:

̂V ar(εi,j) ≈ ĝ′Σ̂ĝ

Below, we report average elasticities, which are computed over all households and time

periods. Average elasticities are accompanied by average standard errors that are calculated

using these variance formulas. Because the elasticities are functions of the parameters and of

the data, we need to calculate standard errors that incorporate the variability coming from both

of those sources. We do this by first calculating the standard error for each observation, using

the standard errors from the QAIDS model estimates that are clustered at the census tract

level. We then take the average of these standard errors across all households and time periods.

To our knowledge, this is the first analysis to provide standard errors for the average elasticities
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calculated from QAIDS model coefficients that also incorporate geographic clustering.

3 Estimation Results

3.1 Elasticities

Our structural model estimates a 33-equation demand system, which makes the discussion of

over 1000 estimated elasticities inherently difficult. The full set of elasticity point estimates is

available in Appendix Tables A-7, A-8, A-9, while the full set of standard errors is available

from the authors.

We now take a closer look at the average own-price and expenditure elasticities. Their

point estimates and standard errors are reported in Table 3. A bar chart of these elasticities

is presented in Figure 4. In general, the elasticities are estimated with a very high level of

precision, even though we cluster by census tract.

The own-price elasticities reveal that most products are fairly price inelastic. Soda, milk and

cold beverages provide the exception. The price elasticity of the two soda groups are -2.26 and

-2.20, and the elasticities for cold beverages range between -1.81 and -2.06. In a review of the

literature, Powell et al. (2013) report an elasticity for sugar-sweetened beverages of about -1.21.

Thus, our estimates show these products to be more elastic than has been found in previous

work. The studies reviewed by these authors estimate the price elasticity from changes in

state level taxes, which are very small and likely to suffer from salience issues. In contrast,

our estimates are identified off of much larger price variation. Table 3 also shows fruits and

vegetables to be rather elastic, with elasticities that range from -0.83 to -1.38.

At the other extreme, meat, snacks, cereal, and pasta are fairly inelastic. Fruits and vegeta-

bles are between 2-5 times more price elastic than meat, grain/pasta/bread or breakfast cereals.

It also is interesting to note that the elasticities vary substantially both between and within

aggregate categories. Two product groups in the cereal and meat categories (21, 23) have small

positive elasticities but are economically insignificant. One group of packaged meals (group 14)

has a larger own-price elasticity of 0.12, which still is small. As Figure 4 shows, this group also

has a negative expenditure elasticity, suggesting that at least some of the packaged meals can

be thought of as Giffen goods.

Table 3 reports average expenditure elasticities and standard errors as well, and the results

highlight the importance of including expenditure elasticities in simulating consumer responses

to different food-based taxes. For soda in particular, these elasticities are greater than 4.
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These expenditure elasticities indicate that large income effects will generate sizable reductions

in overall expenditures due to a tax on these products that would be missed by examining

substitution patterns alone. We also find that one of the packaged meal categories (14) and

one of the snacks/candy categories (23) are inferior goods, meaning that overall consumption

might increase if you tax these goods. Depending on the size of this response, taxing packaged

meals or snacks/candy could increase total purchases of different nutritional categories. All

other products are normal goods, with income elasticities that vary considerably both between

and within product categories.

The substantial variation in elasticities within product categories indicates that consumers

respond differently to prices changes for products within a category. While there are many

additional dimensions of the product space that are not explicitly accounted for here, in our

model product groups are distinguished by their location in the nutrition space. Consider the

packaged meals category. Within this category, the k-median algorithm partitions the products

into two groups. By looking at the nutritional characteristics of these groups (Table 2), we see

that these groups are very different. One of the groups has median calories per serving of 330

compared to 1518 in the other group. Similarly, the low-calorie group has substantially lower

amounts of salt, sugar, and fat. Thus, one of the groups can be thought of as the “healthy”

group of products while the other one consists of products which are substantially less healthy

along a number of different dimensions. Interestingly, it is the healthier group of packaged

meals products which is a Giffen good. The variation in elasticities appears to be related to

the underlying nutritional characteristics of the product groups. This begs the questions of

whether there may be a systematic relationship between nutrients and elasticities. We explored

this further in a series of multivariate correlation analyses: products higher in sugar and protein

are significantly more price elastic, while products higher in carbohydrates are less price elastic.

Though descriptive in nature, such correlations suggest that sugar taxes in particular might be

an effective method to alter consumer purchasing behavior.

In order to get a sense of the patterns of cross-price elasticties, Table 4 presents symmetric

matrices of own and cross-price elasticities for each aggregate category. The diagonals in each

panel show the own-price elasticities (and are identical to those in Table 3), and the off-diagonals

show the cross-price elasticities among all the nutrient clusters within product type. On the

whole, these estimates show little evidence of much within-product substitution behavior. Soda

exhibits the most within-category substitution, with cross-price elasticities of 0.18 to 0.2. The

cross-price elasticities for milk also are sizable, at 0.11 and 0.26. For the remainder of the
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products, consumers do not respond to price changes by purchasing more (or less) of the same

product with a different nutritional composition.

The estimates in Table 4 do not necessarily imply that cross-group substitution patterns are

low, as it could be that substitution is more likely across product types than within product

categories. Appendix Figure A-1 displays the full pattern of cross-price elasticities in a graphi-

cal format. The size of the rectangles corresponds to the magnitude of the cross-price elasticity,

while the color denotes the sign. We notice a broad dispersion of magnitudes and signs for

the off-diagonal elements of the cross-price elasticity matrix, suggesting that the substitution

patterns are indeed more likely to occur across product groups. A close investigation of the

standard errors revels that most of the elasticities also are statistically significant. This em-

phasizes the fact that it is important to model the full range of substitutions when examining

the effect of price-based policy manipulations.

Furthermore, the complex pattern of complements and substitutes in this large demand

system indicates that policy interventions need to be implemented with care, since the potential

for unanticipated consequences resulting from a price intervention is inherent in the substitution

pattern. In Appendix Figure A-2, we explore the cross-price elasticities in more detail for

product groups 11-14, corresponding to soda and packaged meals. For example, soda is a

substitute good for most other products including fruits and vegetables, breakfast foods, meat

and packaged meals. But, it is a complement for snacks and candy. While packed meals are

own-price inelastic, they are complements for fruits and vegetables and grain/pasta/bread. The

opposing pattern of signs for soda and packaged meals indicates that price changes are likely

to have very different effects when applied to these two product groups. Soda is very own-price

elastic and an increase in the price of soda increases the demand for many other food items. In

contrast, packaged meals are own-price inelastic (and possibly a Giffen good), and an increase

in their price reduces the demand for many other food items.

It is important to highlight that our cross-price elasticity results do not imply that increasing

the price of goods perceived to be unhealthy, such as soda or packaged meals, necessarily leads

to consumers switching to more healthy options, such as fruits and vegetables. In the case

of soda and packaged meals, we see responses that are polar opposites. Higher soda prices

increase the demand for various other food items, while higher packaged meal prices decrease

the demand for a range of food items. The response to prices increases for all other food

categories is somewhere in between. If we think of the household food consumption bundle

before and after a price increase, we see that a price increase alters the composition of the
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bundle in a fairly complex fashion, typically increasing the demand for some product groups

and decreasing the demand for others. The overall impact on nutrients, however, is unclear and

needs to be simulated in a fashion similar to that in the next section of this paper. This also

emphasizes the fact that it is potentially misleading to estimate single product demand models

in order to infer the benefit of a nutrition policy on household nutrient consumption.

3.2 Demographic Heterogeneity and Store Density

Our model estimates also generate a large number of results relating demographic variables to

preferences for the different food groups. While detailed tables are available from the authors,

it is worth pointing out that we find a variety of demographic gradients for the different product

groups. For example, consider income gradients that reflect the extent to which consumption

of the different product groups varies over the income distribution. Our reference category con-

sists of households with income less than $30,000. We find that shares of fruits and vegetables,

packaged meals and snacks/candy increase with income, while soda, meat and milk purchases

decline with income. These gradients point to a complex relationship between the distribution

of nutrients and the distribution of income. Thus, wealthier households spend over 7% more of

their budget both on fresh fruits and vegetables as well as on packaged meals, potentially re-

flecting the presence of opposing forces: increased health awareness but also higher opportunity

cost of time.

Shares of fruit and vegetables increase with education, while the soda share is uncorrelated

with education, and snack/candy and meat purchases are negatively correlated with educational

attainment. The product shares in the household food budget vary with age as well, with

younger households consuming more fruits and vegetables. The share of consumption decreases

with age but then increases again after retirement. Overall, however, the fruit and vegetable

shares remains lower for households above 65 than for households below 35 years of age. The

shares of soda, packaged meals and snacks consumption increase with age but then decrease

again at retirement. The share of meat consumption increases with age throughout.

Expenditure shares are strongly associated with female labor supply, with large differences

between households with a working and a non-working female head.20 Households with a

non-employed female head purchase more soda, fewer packaged meals, and less meat and

snacks/candy. In contrast, non-employment of the male head of household does not have a

statistically significant impact on the budget shares of the different products consumed. The

20Note that households in our data can have both a male and a female head.
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presence of young children (under 12 years of age) indicates an increased share of consump-

tion spent on fruits/vegetables, cereals and milk and a lower share of expenditure allocated to

soda, packaged meals or canned foods. This pattern may reflect parental concerns to provide

healthier food options to their children. Note, however, that the higher share of consumption

allocated to cereal is implicitly associated with a higher sugar intake.

A byproduct of our analysis is the estimate of the role of purchase environments in driving

budget share allocations. The role of purchasing environments in explaining variation in food

purchasing behavior recently has been featured extensively in public policy discussions. While

this paper is not aiming to answer the question of the impact of food environments on nutrition,

it is interesting to note that our estimates do not support a systematic relationship between

store availability and purchased food bundles. Our model estimates the effect of one additional

store of the given type in the given distance from the census tract centroid on the budget

share, conditional on all of the other controls in the model. We find little relationship between

the distance to stores and the consumption shares of the different products. Despite the large

number of observations and the small standard errors, very few coefficients are even statistically

different from zero at conventional levels. Thus, our estimates can rule out even small effects

of purchasing environments on budget shares of these goods.

Since our estimates are capturing statistical averages for a large, nationally-representative,

mostly urban population with a certain degree of technical sophistication that is required to

participate in the sample, this indicates that the food purchasing environment, as measured by

the store density, is not a primary driver of food consumption and nutrition trends at this level of

aggregation and for these consumers. It is important to note that our paper does not directly

address the impact of “food deserts,” which have been documented in a number of focused

case studies, as they primarily impact low-income consumers.21 Quantifying the “food desert”

problem is substantially more complicated than measuring store density by different types of

stores, even though store density is one particular aspect of it. In particular, this study does not

capture more subtle aspects of product quality and food choice availability within store types,

which are likely to be an important component of the purchasing environment for low-income

consumers.
21An overview of the “food desert” literature that examines the relationship between purchasing environments and shopping

behavior can be found in Bitler and Haider (2011). They conclude that the lack of convincing data has precluded an understanding
of how food deserts affect consumer purchasing behavior and nutrition.
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4 Tax Simulations

Using the estimated structural demand model presented above, we construct a number of policy

counterfactuals that have received attention by policymakers. We consider the introduction of

three types of taxes aimed at changing the behavior of households and encouraging healthier

consumption. One type of tax is a product-specific tax, where a product group considered

to have negative health impacts is identified and all products that are part of that group are

taxed proportionally. Currently, legislatures in Hawaii, Oregon and Vermont are considering

bills aimed at taxing soda, and 35 states either have such taxes or include soda as part of the

sales tax base. Given the important role played by packaged meals and snacks in the American

diet and the low nutritional content of these goods, we evaluate the introduction of taxes on

these product groups as well. Similar taxes already exist in Europe.

We also examine the effect of introducing nutrient-specific taxes, specifically taxes on fat,

sugar, and salt. The taxable amount is directly proportional to the share of the specific ingre-

dient in the product formulation. Consider a 12 fl. oz. can of Coca-Cola. It has 39g of sugar,

45mg of sodium and 0g of fat. This also corresponds to 140 calories. Now consider a 12 fl. oz.

can of Diet Coke. It has 0g of sugar, 40mg of sodium, 0g of fat and 0 calories. A fat tax will

not affect the price of either product, a sugar tax will affect the price of the first product but

not the second product, while a salt tax will affect the price of both products in proportion to

their respective sodium contents. Nutrient-specific taxes have the potential benefit that they

target the harmful nutrients more directly than product-specific taxes, but they also have the

drawback that they might reduce consumption of healthier products due to substitution effects

or due to correlations among different nutrients in these products. The third type of tax we

consider is a tax on SSBs, which can be thought of as a hybrid that targets a subset of products

that contain large amounts of sugar. This tax has received considerable attention in prior work,

and we include it here in order to be able to compare our results with the existing literature.

Throughout, we simulate the effect of a 20% tax on products and nutrients. Because we

lack data that allow us to model the supply-side, we are not able to consider the incidence of

these taxes. Thus, when we are referring to a “20% tax on soda,” one can view this as a tax on

soda that generates a 20% price increase. While the incidence of any such taxes we simulate

are important in their own right, the existing literature on the incidence of commodity taxation

tends to find tax pass-through rates close to 1 (Harding, Leibtag and Lovenheim, 2012; Kenkel,

2005; Besley and Rosen, 1999). That the incidence of these taxes tends to fall on consumers

25



suggests that ignoring the supply-side is not a large drawback in the short-run. 22 We also

do not consider issues pertaining to the administration of these taxes. This paper is focused

on identifying the expenditure and nutritional effects of these taxes, but we acknowledge that

how such taxes are structured and their administration could be very important in driving any

impacts they may have (Chetty, Looney and Kroft, 2009; Slemrod and Kopczuk, 2002). For

the purposes of this analysis, we assume that taxes are remitted by wholesalers or on the raw

nutrients themselves (e.g., a tax on refined sugar or iodized salt). This would largely eliminate

salience issues because the tax amount would be reflected in the shelf price, but there still

could be complications with evasion and avoidance, particularly if the taxes are not national in

scope.23

Throughout, we use the estimated structural model to simulate the impact of the taxes

under consideration. We simulate the effect of product-specific taxes by calculating, for each

household month, the effect of a 20% increase in soda, packaged meals or snacks/candy on

expenditures on each product-nutrient cluster group, using the estimates from our demand

model. We then calculate new budget shares and, for each of the 8 nutrient groups, calculate

ΔNutrient = ΔExpenditure ∗
$

Nutrient
. (9)

That is, we multiply the estimated change in expenditure for the tax by the per-nutrient price of

the good, separately for each product group. The expenditure changes are adjusted for the fact

that the price of the taxed good is now higher, so we are not attributing increased expenditure

on a good from a price increase to higher consumption. For nutrient-specific taxes, we engage

in a similar exercise, but change the price of the products proportionally with respect to the

amount of the nutrient included in its formulation. For example, a 20% sugar tax will increase

the price of fruits and vegetables by 7.84%, the price of soda by 14.16%, and the price of cereal

by 15.76%.

Using the average amount of each nutrient in each product-nutrient cluster group, we first

find the average change in price for the group if the price of the given nutrient increased by

20%. We then estimate the effect on expenditures in each group from these price changes

22It also is possible that companies might reformulate their products in response to these taxes. We do not have the capability of
including such endogenous responses in our model. Our estimates thus ignore any effects on nutrition that would come from making
given products healthier. One can interpret our results as the effect of a small government or entity (such as a state) imposing a
tax that would be too small to induce producers to reformulate their products. We also note that the nutrients we consider are
very difficult to replace without altering the taste and desirability of most products. Any reformulation likely would increase the
effect of these taxes on nutrition, however.

23See Lovenheim (2008); Goolsbee, Lovenheim and Slemrod (2010); Baughman et al. (2001); Lovenheim and Slemrod (2010);
Harding, Leibtag and Lovenheim (2012) for estimates of the extent of cross-state tax avoidance with respect to cigarette and alcohol
regulations.
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and calculate equation (9). The net effect of a given nutrient-specific tax contains own- and

cross-price effects as well as expenditure effects from changes in several different product prices

at once. Without a structural model that allows estimation of these substitution and income

effects linked to nutrition data, simulating nutritional taxes would not be possible.

In Panel A of Table 5, we present the simulation results for a counterfactual 20% soda tax.

We calculate expenditure, price and nutritional changes for all 33 categories, but we aggregate

them to the original 14 product groups to present results for parsimony. Estimates for the full

set of 33 groups are available from the authors upon request. We report the percent changes

in expenditures and budget shares for each product as well as the overall effect on expenditure

after the imposition of the tax. We further show the changes in nutrients purchased for each

product group and for the overall shopping basket. In the panel titles, we report the average

indirect utility cost of the tax, which is calculated from equation (1) for every household under

both the original and new tax regimes. These indirect utility changes provide a measure of

the utility cost of the product substitutions and changes in expenditure from each tax. 24 All

changes shown are averages over all households and time periods, which are computed at the

individual level and use the full demand system. Thus, we would expect the simulations to

provide more information than is contained in the average price and expenditure elasticities,

as a result of both the aggregation process and the interactions between all products in the

demand system.

Because of the large expenditure elasticity for soda, a 20% soda tax reduces soda expenditure

by 3.92% and the share of soda in the household budget by 3.43%. This reduces caloric intake

by 2,231 calories and sugar intake by 675g. These changes translate to a reduction in caloric

intake from soda by the equivalent of about 16 cans of Coca-Cola per month. As suggested

by our results on the cross-price elasticities, soda taxes also induce a shift towards milk and

snacks/candy and away from packaged meals and meat. These changes, along with a 1.66%

reduction in total expenditures due to the soda tax, lead to declines in the purchase of each

nutrient group. In particular, calories decline by 4.84% (4,779 calories) and sugar purchases

decline by 10.35% (763.6g), the majority of which come from reductions in soda purchases. De-

clines in fat, salt, cholesterol, carbohydrates and protein also range from 2-4%. The expenditure

and price changes from this tax lead to an average decline in indirect utility of 2.5%.

In Panel B of Table 5, we compare these simulation results to those obtained from imposing

24Our welfare calculations implicitly use a social welfare function that weights each household equally. See Banks, Blundell and
Lewbel (1997) for a thorough treatment of welfare analysis with QAIDS models.
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a 20% tax on SSBs. We model this tax as a 20% price increase for all groups that include

sugar-sweetened beverages, as such taxes typically are modeled and levied as a per-product tax

rather than as a proportion of sugar in the product (Brownell et al., 2009; Finkelstein et al.,

2012; Kamerow, 2010). This also makes the SSB and soda taxes more directly comparable.

Because it impacts more products, the SSB tax has a larger impact on the types of products

consumers purchase and on nutrition. A 20% SSB tax reduces total calories purchased by

8.4%, most of which is occurring due to the almost 20% decline in sugar purchases. 25 This

price change also induces a small decline in the other nutrient categories, most of which is due

to income effects. Interestingly, despite the large impact of the SSB tax on consumer purchasing

behavior and nutrition, its effect on indirect utility compared to the soda tax is small, at 2%.

The reason for this result is that by increasing the prices of a broader set of goods, this tax

induces less distortionary substitution behavior that has high utility cost. Taxing the suite of

sugary beverages limits the ability to substitute across these similar products, which produces

larger changes in nutrition at a lower utility cost to consumers.

The effect of taxing another “unhealthy good,” packaged meal taxes, has a very different

effect than taxing soda. The simulated effect of a 20% packaged meal tax is shown in Panel A

of Table 6. Recall that packaged meal purchases are very own-price inelastic. Thus, households

end up spending 7.96% more on packaged meals, and the share of packaged meals in the overall

budget increases by 5.62%. Due to the patterns of substitution and the fact that our estimates

suggest packaged meals are inferior goods, packaged meal taxes have a small but positive effect

on both total expenditure and on nutritional intake of the household. They also reduce indirect

utility by 1.4%. Total calories increase by about 2.11% and sugar intake increases by 2.25%.

Note, however, that nutrients from packaged meals decline substantially. This reflects two

forces: first, the tax leads to less overall expenditure on packaged goods and second, there is

a sizable shift in expenditure within this category to the healthier group (as it has a positive

own-price elasticity). Thus, packaged meal taxes would reduce the nutrients purchased coming

from packaged meals. However, it would not support the purchase of more nutritious food

bundles overall, even though this product group is quite unhealthy.

In Panel B, we show the effect of a 20% snack and candy tax. Recall that snacks and candy

are also relatively price inelastic, although less so than packaged meals. A 20% tax on these

goods causes an overall increase in budget share and expenditure, but there is a decline in

25This estimate is substantially larger than the closest prior estimate in the literature. Finkelstein et al. (2012) estimates a 20%
SSB tax would decrease per-capita daily calories by 24. Our estimates translate into a daily per-capita reduction of 133 calories.
We believe much of the difference in our estimates can be accounted for by the fact that their model does not allow for income
effects of taxes, which we show are very important, especially for beverages.
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quantity of these items purchased. Calories, fat, sugar and salt, in particular, decline in this

product group due to the tax. One small 3.3g Reese’s Peanut Butter Cup
TM

package contains

693 calories, 42.9g of fat, and 495mg of sodium. This tax therefore is the equivalent of reducing

consumption of 1-2 of these products per month. There also is a small shift towards fruits and

vegetables and away from other dairy, canned food/sauces and soda. The overall impact of

the candy/snack tax is to slightly reduce calories by 1.21% (1194.5 calories), fat by 0.63%, and

salt by 1.12%. However, sugar and cholesterol consumption also increase slightly. The overall

effect of this tax on nutrition therefore is somewhat ambiguous in sign, but it is likely to be

small. As with packaged meal taxes, the indirect utility cost of this tax also is modest, at 2%.

Compared with sizable nutritional effects of SSB and soda taxes, taxes on packaged meals and

candy/snacks produce much smaller changes at a similar utility cost.

One potential complication with our tax simulation approach is that if consumers switch

to lower-priced versions of the same goods, such as generic brands, in response to product or

nutrient taxes, expenditures could decline without affecting nutrition. However, we would be

attributing the resulting expenditure declines to changes in total purchases within each product

group rather than changes in the types of products consumers buy within each group. This

would cause us to over-state the effect of the taxes we study on nutrition. Additional robustness

checks (not reported here), which split the product categories by the median price suggest that

our results are not over-stating nutritional effects due to consumer substitution to cheaper

goods with the same nutritive content.

We now turn to simulation results from fat, sugar and salt taxes, which are shown in Table 7.

The overall findings shown in the table point to these taxes being much more effective at altering

nutritional bundles than are product-specific taxes, without generating a larger impact on total

expenditures or indirect utility. This is suggestive that these taxes have far more potential

to impact nutrition without causing much larger deadweight loss from distorting purchasing

behavior.

In Panel A of Table 7, we show the effect of a 20% tax on fat. The fat tax reduces caloric

intake by over 19% (18,984 calories), reduces fat purchases by 30.25% (1,424.5g), decreases

cholesterol by 10.83% (1,223.5g), and reduces sodium by 10.63% (19,913.5mg). Despite these

large changes, average indirect utility only declines by only 2%, which is comparable to the SSB,

soda and candy/snack tax welfare losses. Purchase of dairy and packaged meals are reduced

the most due to a fat tax. Households however increase their expenditure on soda by 3.16% and

on other cold beverages by 1.76%. Such substitution patterns lead fat taxes to only decrease

29



sugar intake by 6%. Expenditure on fruits and vegetables decrease as well by 0.7%, which

together with the substitution to soda suggests fat taxes do not unambiguously support better

nutrition. Again, this result highlights the value of considering substitution effects across goods

in response to food-based taxes.

Unlike a tax on fat, a 20% sugar tax has a very strong and unambiguously positive effect

on nutrition at a small increase in utility cost of 2.6%. It also has a very small overall effect

on expenditure of -0.64%. Compared to the soda tax, a sugar tax has a large impact on

nutrients purchased. Our estimates show that monthly sugar consumption would drop by

16.41% (1,211.1g), with a 18.54% (18,302.4) decline in total calories. The effect on fat and salt

also are sizable, at 12% and 9.63% respectively. Total consumption of cholesterol and protein

declines significantly as well. As Panel B illustrates, only about 14% of the reduction in sugar

purchases comes from soda, which underscores the limits of taxing only this product. Instead,

households reduce their sugar intake from all product groups. This broad-based reduction

reflects both income and substitution effects: consumers purchase less overall and they also

purchase healthier products. Recall that many goods high in sugar also have sizable amounts

of other nutrients, such as fat and salt. We find that sugar taxes cause households to substitute

both to healthier product groups and to healthier versions of the same product (e.g., diet versus

regular soda).

The reason that sugar taxes are so effective is the same reason why the nutritional taxes in

general are much more effective at altering nutritive bundles without causing a larger utility

decline: they are very broad based. The vast majority of product groups and of products in

general contain sugar, fat and salt. Sugar in particular is highly prevalent in American foods.

Taxing these nutrients does not allow consumers to substitute to other goods that also contain

these nutrients. Rather, they shift to healthier products and decrease overall consumption.

Despite the fact that these taxes are predicted to cause changes in purchasing behavior that

lead to large nutritional gains, their broad-based nature requires there to be much less of a

behavioral response for a given amount of change in the nutritional bundle than for product-

specific taxes. Thus, they are able to exert a large influence on nutrition at a similar welfare

cost to the product-specific taxes we consider.

In the last panel of Table 7, we investigate the counterfactual of imposing a 20% salt tax.

Similar to the other nutrient taxes, the overall impact on nutrition is sizable: total salt pur-

chased by the household decreases by 10.0% (18,792mg) per month, which is equivalent to about

8 teaspoons of salt. While the biggest share of the reduction comes from condiments and spices
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(including salt products), substantial savings also are achieved from baking goods, snacks, and

grains and pasta. This tax reduces total calories and fat by over 10% as well. However, soda

expenditures increase by 8.3%, which significantly reduces the effect of a salt tax on sugar.

Again, this result underscores the importance of considering substitution behavior in assessing

the effects of a given food-based tax. The cost of this tax in terms of indirect utility also is

low, at 1.2%, suggesting that substantial nutritional gains in many areas could be achieved at

minimal cost with a salt tax.

The discussion above suggests that when considering the choice between product- and

nutrient-specific taxes, policy makers can achieve substantially larger improvements in nutrition

by implementing nutrition taxes, rather than product taxes. Both sets of taxes alter indirect

utility similarly. But, nutrient taxes have far larger impacts on nutrition, which is the ultimate

goal of these taxes. While there are some unintended consequences of some of these nutrient

taxes, such as higher soda consumption and decreased fruit and vegetable consumption, on the

whole they lead to large reductions in purchases of most nutrient categories. One tax simulation

stands out, however, which is the sugar tax. Not only is the indirect utility cost modest, it

also leads to substantial reductions in the purchased amount of calories, sugar, fat, salt and

cholesterol.

5 Conclusions

This paper investigates the degree to which food taxes can be used to support better nutritional

choices among US households. The last few decades have seen a sharp rise in obesity and

overweight in the US, which is now being referred to as the “obesity epidemic.” With a large

proportion of calories being consumed in the home, there has been a surprising lack of empirical

examination of policy tools that can be used to induce consumers to purchase more nutritious

food.

One reason for this gap in the literature is the need for detailed data on food purchases,

prices, demographics, local store availability and nutrition as well as a parsimonious way to

model the joint product-nutrient space. We construct the first data set of which we are aware

that contains all of these components over a longer time horizon. We use 7 years of Nielsen

Homescan data, merged with the nutritional content of foods purchased and with store density

information that allows us to examine these policy issues with a level of detail and technical

sophistication that previously were not feasible. One of the central contributions of this paper
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is to use the UPC-level nutritional information to find distinct nutrient clusters of goods within

each product group that define the types of goods over which consumers can substitute. We

then estimate a large utility-derived demand system, which identifies the price and expenditure

elasticities across 33 product groups at the household-month level. Using our structural demand

estimates, we simulate the effect of 20% product taxes on soda, SSBs, packaged meals, and

candy/snacks and 20% nutrient taxes on fat, salt, and sugar.

Our main finding is that nutrient-specific taxes have much larger effects on nutrition than

do the product-specific taxes we study. However, they do not cost more in terms of consumer

utility. While a 20% soda tax reduces sugar purchases by 10.35%, it only reduces overall caloric

intake by 4.84%. Taxing packaged meals actually increases slightly overall caloric intake, even

though this product group is the unhealthiest per serving. Taxing snacks/candy also has at

most small impacts on the purchased nutritive bundle.

In contrast, taxing nutrients has large impacts on nutrition without producing larger welfare

losses than product-specific taxes, largely because of the broad-based nature of these taxes.

Among the three nutrient-specific taxes, sugar taxes stand out as particularly effective. A 20%

sugar tax reduces sugar consumption by 16.41% while also reducing caloric intake by 18.54%

and salt consumption by 9.63%. Consumer indirect utility declines by 2.6% as a result, which

is very similar to the utility cost of a soda tax and SSB tax.

Overall, our estimates suggest that the use of nutrient-specific taxes could have an important

effect in inducing healthier purchasing behavior among consumers. The results we present are

consistent with theoretical arguments of the value of having broad-based taxes that are harder

to avoid. Nutrients provide such a broad base, and our findings indicate that taxes on nutrients

would do much more to support healthier nutritional choices than would taxes on products.

The focus among public health officials and policy makers on the product-specific taxes (such

as soda taxes) and even on nutrient-specific taxes on a small set of goods (such as an SSB

tax) may be misplaced; broadening the tax base would achieve larger nutritional gains without

causing larger overall distortions in household utility.
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Table 1: Budget Shares and Prices

Budget Price Per Aggregate Budget
Group Share Ounce Category Share

1 0.025 0.107
Fruits & Vegetables 0.0912 0.043 0.101

3 0.023 0.078
4 0.016 0.029

Cold Beverages 0.062
5 0.025 0.047
6 0.009 0.035
7 0.012 0.055
8 0.002 0.091

Warm Beverages 0.0349 0.021 0.308
10 0.011 0.181
11 0.031 0.029

Soda 0.053
12 0.022 0.021
13 0.020 0.170

Packaged Meals 0.075
14 0.055 0.211
15 0.037 0.107

Grain, Pasta, Bread 0.08516 0.015 0.130
17 0.033 0.150
18 0.008 0.130

Canned Food, Sauce 0.040
19 0.032 0.170
20 0.034 0.161

Cereal, Breakfast 0.053
21 0.019 0.221
22 0.107 0.171 Other Dairy 0.107
23 0.064 0.198

Meat, Protein 0.12724 0.014 0.159
25 0.050 0.191
26 0.020 0.481

Condiments, Spices 0.040
27 0.019 0.210
28 0.061 0.317

Snacks, Candy 0.155
29 0.095 0.193
30 0.029 0.024

Milk 0.047
31 0.018 0.043
32 0.006 0.064

Baking Goods 0.032
33 0.027 0.206

Source: Nielsen Homescan data from 2002-2007. Tabulations include
only those in the 52 identified Nielsen markets.
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Table 2: Median Nutritional Content (per Serving) of Product-Nutrition Cluster Groups

Aggregate Total Salt Sugar Cholest- Protein Calories from Carbs
Group Category Calories Fat (g) (mg) (g) erol (g) (g) Fat (g) (g)

1 Fruits & Vegetables 660 0 50 111 0 8 0 160
2 Fruits & Vegetables 140 0 35 12 0 4 0 30
3 Fruits & Vegetables 210 0 1260 10 0 7 0 42
4 Cold Beverages 0 0 5 0 0 0 0 0
5 Cold Beverages 880 0 120 192 0 3 0 219
6 Cold Beverages 1528 0 995 352 0 0 0 405
7 Cold Beverages 240 0 298 56 0 0 0 60
8 Warm Beverages 5000 43 36 684 0 0 656 896
9 Warm Beverages 200 0 79 23 0 0 0 24
10 Warm Beverages 1280 33 400 160 0 7 299 224
11 Soda 0 0 135 0 6 0 0 0
12 Soda 960 0 287 254 25 0 0 272
13 Packaged Meals 1518 78 4070 16 193 79 713 122
14 Packaged Meals 330 10 750 7 33 16 90 40
15 Grain, Pasta, Bread 1540 23 3240 36 0 52 207 288
16 Grain, Pasta, Bread 1360 10 138 18 0 40 96 267
17 Grain, Pasta, Bread 960 16 1788 20 0 29 150 176
18 Canned Food, Sauce 600 0 7564 100 0 0 0 150
19 Canned Food, Sauce 225 5 1869 5 2 8 50 36
20 Cereal, Breakfast 1760 20 2450 130 0 45 200 372
21 Cereal, Breakfast 1080 21 720 54 0 21 189 180
22 Other Dairy 760 48 600 16 75 16 420 25
23 Meat, Protein 480 21 920 3 100 38 182 7
24 Meat, Protein 3077 1333 851 0 1227 357 11995 0
25 Meat, Protein 1040 80 3700 8 240 54 724 14
26 Condiments, Spices 540 0 1120 23 0 0 2 64
27 Condiments, Spices 1040 72 5250 23 0 0 657 32
28 Snacks, Candy 433 11 180 28 0 5 100 72
29 Snacks, Candy 1727 80 1950 18 0 27 720 216
30 Milk 2052 80 2056 192 320 129 720 201
31 Milk 874 24 1000 96 101 64 209 98
32 Baking Goods 11520 1344 0 0 0 0 11520 0
33 Baking Goods 1800 23 937 100 0 12 210 308

Source: Nielsen Homescan data combined with Gladson and FoodEssentials food label information. Tabulations include only those
in the 52 identified Nielsen markets.
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Table 3: Mean Own Price Elasticities of Demand and Expenditure Elas-
ticities

Aggregate Own Price Standard Expenditure Standard
Group Category Elasticity Error Elasticity Error
1 Fruits & Vegetables -1.128 0.004 1.425 0.014
2 Fruits & Vegetables -0.830 0.004 1.191 0.015
3 Fruits & Vegetables -1.379 0.004 1.491 0.012
4 Cold Beverages -1.835 0.004 3.096 0.032
5 Cold Beverages -1.895 0.004 2.151 0.018
6 Cold Beverages -1.812 0.004 1.719 0.012
7 Cold Beverages -2.055 0.006 1.902 0.018
8 Warm Beverages -1.521 0.014 1.210 0.010
9 Warm Beverages -0.518 0.005 0.322 0.017
10 Warm Beverages -0.665 0.010 0.564 0.017
11 Soda -2.260 0.006 4.485 0.044
12 Soda -2.197 0.005 4.122 0.041
13 Packaged Meals -0.332 0.004 0.582 0.008
14 Packaged Meals 0.120 0.005 -0.756 0.018
15 Grain, Pasta, Bread -0.845 0.004 1.363 0.010
16 Grain, Pasta, Bread -0.647 0.006 0.849 0.013
17 Grain, Pasta, Bread -0.292 0.004 0.716 0.010
18 Canned Food, Sauce -1.083 0.004 1.158 0.009
19 Canned Food, Sauce -0.907 0.003 0.953 0.011
20 Cereal, Breakfast -0.244 0.004 0.883 0.011
21 Cereal, Breakfast 0.022 0.005 0.135 0.013
22 Other Dairy -0.731 0.003 0.728 0.008
23 Meat, Protein 0.011 0.005 0.155 0.015
24 Meat, Protein -0.696 0.005 0.846 0.006
25 Meat, Protein -0.253 0.004 0.692 0.011
26 Condiments, Spices -0.431 0.002 0.269 0.013
27 Condiments, Spices -0.669 0.002 0.877 0.010
28 Snacks, Candy -0.270 0.004 -0.876 0.015
29 Snacks, Candy -0.295 0.004 0.404 0.009
30 Milk -1.793 0.003 2.296 0.015
31 Milk -1.972 0.004 1.693 0.017
32 Baking Goods -1.631 0.004 1.253 0.006
33 Baking Goods -0.575 0.003 0.634 0.012

Source: Authors’ calculations from 2002-2007 Nielsen Homescan data. The sample includes only
consumers in the 52 identified Nielsen markets. The table shows average elasticities of demand
and standard errors that are calculated from the QAIDS model parameter estimates.
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Table 5: Tax Simulations – Product Taxes on Soda and Sugar-Sweetened Beverages

Panel A: 20% Soda Tax (Indirect Utility Cost = 2.5%)
% Δ % Δ % Δ Calories Total Carbo- Pro- Chole-

Category Expend. Share Price Calories from Fat Fat hydrates Sugar tein sterol Salt
Fruits & Vegetables -1.15 1.13 0.00 -41.6 0.0 0.0 -9.4 -4.3 -0.8 0.0 -10.2
Cold Beverages -0.72 0.95 0.00 -38.4 0.0 0.0 -11.2 -9.5 -0.1 0.0 -29.9
Warm Beverages -1.69 -1.47 0.00 -270.5 -53.6 -3.2 -36.5 -25.9 -0.3 0.0 -29.2
Soda -3.92 -3.43 20.00 -2231.1 0.0 0.0 -634.6 -674.7 0.0 -66.5 -869.3
Packaged Meals -2.98 -1.84 0.00 -180.3 -66.9 -7.3 -17.6 -3.0 -9.2 -22.4 -472.0
Grain, Pasta, Bread -1.09 0.81 0.00 -154.4 -27.2 -2.9 -28.4 -3.6 -4.7 0.0 -331.0
Canned Food, Sauce -1.02 -0.15 0.00 -28.7 -3.3 -0.4 -5.3 -2.1 -0.6 -0.2 -336.7
Cereal, Breakfast -2.92 -1.36 0.00 -330.9 -37.6 -4.1 -64.0 -20.5 -7.5 0.0 -399.4
Other Dairy -0.94 0.53 0.00 -76.0 -35.7 -4.0 -5.0 -3.3 -2.5 -7.4 -59.1
Meat, Protein -1.36 -1.39 0.00 -902.7 -3019.4 -335.7 -3.4 -1.6 -94.3 -301.6 -896.4
Condiments, Spices -0.99 0.48 0.00 -43.8 -15.4 -1.7 -3.1 -1.5 0.0 0.0 -179.6
Snacks, Candy -0.88 0.89 0.00 -92.3 -34.9 -3.9 -11.9 -2.5 -1.5 0.0 -93.5
Milk -0.26 1.41 0.00 -12.4 -2.7 -0.3 -1.5 -1.1 -0.9 -1.6 -11.9
Baking Goods -1.61 0.24 0.00 -376.6 -213.2 -24.4 -29.3 -10.1 -1.2 0.0 -81.3

Total 1.66 -4779.8 -3510.0 -387.9 -861.3 -763.6 -123.6 -399.7 -3799.5
Percent -4.84 -7.37 -7.31 -5.67 -10.35 -3.70 -3.54 -2.03

Panel B: 20% Tax on SSBs (Indirect Utility Cost = 2.0%)
% Δ % Δ % Δ Calories Total Carbo- Pro- Chole-

Category Expend. Share Price Calories from Fat Fat hydrates Sugar tein sterol Salt
Fruits & Vegetables -0.49 0.92 0.00 -17.6 0.0 0.0 -4.0 -1.9 -0.3 0.0 -1.4
Cold Beverages -0.76 0.03 14.90 -1602.3 0.0 0.0 -422.7 -368.5 -2.6 0.0 -1224.6
Warm Beverages -0.57 -1.22 20.00 -3258.5 -652.9 -40.1 -442.4 -313.2 -4.1 0.0 -365.0
Soda -7.26 -7.60 8.34 -2832.2 0.0 0.0 -797.5 -750.5 0.0 -73.3 -790.7
Packaged Meals -0.62 -0.33 0.00 -39.8 -15.1 -1.7 -3.8 -0.6 -2.0 -5.0 -104.9
Grain, Pasta, Bread -0.33 0.71 0.00 -44.4 -8.0 -0.9 -8.2 -1.1 -1.4 0.0 -105.0
Canned Food, Sauce -0.36 -0.36 0.00 -10.7 -1.1 -0.1 -2.0 -0.9 -0.2 -0.1 -131.4
Cereal, Breakfast -0.70 0.02 0.00 -78.6 -8.6 -0.9 -15.2 -4.9 -1.8 0.0 -97.6
Other Dairy -0.23 0.37 0.00 -18.8 -8.8 -1.0 -1.2 -0.8 -0.6 -1.8 -14.6
Meat, Protein -0.28 0.11 0.00 -239.6 -845.6 -94.0 -0.8 -0.4 -25.4 -81.5 -212.9
Condiments, Spices -0.21 0.39 0.00 -10.1 -4.3 -0.5 -0.6 -0.3 0.0 0.0 -45.7
Snacks, Candy -0.13 0.76 0.00 -16.4 -6.4 -0.7 -2.1 -0.4 -0.3 0.0 -17.5
Milk -0.06 0.72 0.00 6.6 2.9 0.3 0.6 0.8 0.4 1.1 8.4
Baking Goods -0.51 0.47 0.00 -174.5 -121.5 -14.0 -8.4 -2.9 -0.3 0.0 -23.2

Total 1.66 -8337.0 -1669.3 -153.4 -1708.2 -1445.4 -38.7 -160.6 -3126.2
Percent -8.44 -3.50 -2.89 -11.25 -19.59 -1.16 -1.42 -1.67

Source: Nielsen Homescan data. Indirect utility costs are calculated using equation (1). We calculate V for each household under the old and
new price regimes; percent change in average indirect utility over all households and time periods are shown.

42



Table 6: Tax Simulations – Product Taxes on Packaged Meals and Snacks

Panel A: 20% Packaged Meal Tax (Indirect Utility Cost = 1.4%)
% Δ % Δ % Δ Calories Total Carbo- Pro- Chole-

Category Expend. Share Price Calories from Fat Fat hydrates Sugar tein sterol Salt
Fruits & Vegetables 3.61 2.51 0.00 171.6 0.0 0.0 38.1 15.8 3.7 0.0 412.0
Cold Beverages 1.61 -0.09 0.00 122.8 0.0 0.0 34.2 29.2 0.2 0.0 98.8
Warm Beverages 0.56 -2.54 0.00 214.1 40.0 1.8 28.2 18.7 0.1 0.0 10.3
Soda 2.74 -0.14 0.00 212.2 0.0 0.0 60.6 66.9 0.0 6.6 90.8
Packaged Meals 7.96 5.62 20.00 -897.8 -347.6 -38.0 -82.3 -13.4 -45.1 -113.1 -2381.7
Grain, Pasta, Bread 1.87 0.41 0.00 363.9 48.0 5.1 66.3 7.3 10.3 0.0 430.3
Canned Food, Sauce 0.25 -2.21 0.00 10.9 0.4 0.0 2.2 1.2 0.1 0.0 155.7
Cereal, Breakfast 2.10 0.32 0.00 220.2 26.5 2.9 42.3 13.4 5.0 0.0 252.5
Other Dairy -0.42 -2.27 0.00 -33.7 -15.9 -1.8 -2.2 -1.5 -1.1 -3.3 -26.2
Meat, Protein 0.76 -0.46 0.00 308.4 1058.6 117.7 1.1 0.5 33.6 105.4 248.3
Condiments, Spices -0.62 -2.47 0.00 -17.9 4.4 0.5 -2.7 -1.1 0.0 0.0 -8.9
Snacks, Candy -0.11 -1.68 0.00 -37.0 -15.7 -1.8 -4.5 -0.2 -0.7 0.0 -46.4
Milk 2.38 0.66 0.00 222.3 65.5 7.3 25.1 22.6 14.9 30.4 237.8
Baking Goods 1.80 0.29 0.00 1220.7 1022.3 118.3 18.8 6.5 0.8 0.0 52.2

Total -1.70 2080.5 1886.5 212.2 225.1 166.0 21.9 26.0 -474.4
Percent 2.11 3.96 4.00 1.48 2.25 0.65 0.23 -0.25

Panel B: 20% Snack, Candy Tax (Indirect Utility Cost = 2.0%)
% Δ % Δ % Δ Calories Total Carbo- Pro- Chole-

Category Expend. Share Price Calories from Fat Fat hydrates Sugar tein sterol Salt
Fruits & Vegetables 0.79 0.67 0.00 69.9 0.0 0.0 16.0 7.0 1.2 0.0 177.9
Cold Beverages 1.00 0.25 0.00 68.4 0.0 0.0 18.7 16.2 0.2 0.0 34.2
Warm Beverages 0.41 -1.76 0.00 278.2 51.5 2.2 36.5 23.7 0.1 0.0 9.6
Soda 0.34 -1.55 0.00 7.7 0.0 0.0 2.4 4.3 0.0 0.4 8.8
Packaged Meals -0.28 -1.52 0.00 22.7 12.2 1.3 0.9 0.0 1.0 3.3 67.7
Grain, Pasta, Bread -0.24 -0.73 0.00 -11.6 -5.3 -0.6 -2.4 -0.6 -0.6 0.0 -110.8
Canned Food, Sauce 0.37 -1.16 0.00 10.3 1.2 0.1 1.9 0.7 0.2 0.1 120.5
Cereal, Breakfast 0.39 -0.42 0.00 42.8 4.8 0.5 8.3 2.7 1.0 0.0 52.0
Other Dairy -1.00 -1.92 0.00 -81.0 -38.1 -4.2 -5.4 -3.5 -2.7 -7.9 -63.0
Meat, Protein -0.95 -1.31 0.00 115.2 789.3 87.7 -1.1 -0.4 14.6 50.1 -73.2
Condiments, Spices -0.64 -1.56 0.00 -23.2 -2.5 -0.3 -2.4 -1.1 0.0 0.0 -61.1
Snacks, Candy 4.71 4.04 20.00 -2149.3 -847.0 -94.7 -271.6 -42.9 -35.8 -0.2 -2359.1
Milk 1.28 0.52 0.00 104.3 29.5 3.3 11.9 10.4 7.0 14.1 109.8
Baking Goods 0.11 -0.44 0.00 351.0 330.6 38.4 -3.0 -1.0 -0.1 0.0 -8.4

Total -0.74 -1194.5 326.3 33.6 -189.5 15.6 -14.0 60.0 -2095.1
Percent -1.21 0.68 0.63 -1.25 0.21 -0.42 0.53 -1.12

Source: Nielsen Homescan data. Indirect utility costs are calculated using equation (1). We calculate V for each household under the old and
new price regimes; percent change in average indirect utility over all households and time periods are shown.
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Table 7: Tax Simulations – Nutrient Specific Taxes

Panel A: 20% Fat Tax (Indirect Utility Cost = 2.0%)
% Δ % Δ % Δ Calories Total Carbo- Pro- Chole-

Category Expend. Share Price Calories from Fat Fat hydrates Sugar tein sterol Salt
Fruits & Vegetables -0.70 -0.29 8.37 -284.9 0.0 0.0 -61.1 -24.4 -7.4 0.0 -521.9
Cold Beverages 1.76 1.56 0.10 132.5 0.0 0.0 36.7 31.4 0.2 0.0 117.9
Warm Beverages 0.34 -1.30 4.90 -1921.4 -382.4 -20.9 -260.2 -173.4 -1.8 0.0 -138.6
Soda 3.16 1.77 0.00 207.7 0.0 0.0 59.5 69.0 0.0 6.8 99.2
Packaged Meals -0.23 -0.93 6.59 -581.3 -233.0 -25.4 -50.5 -7.9 -28.8 -74.2 -1559.4
Grain, Pasta, Bread 0.00 0.04 12.14 -2061.9 -308.3 -32.9 -378.2 -44.1 -60.7 0.0 -3315.2
Canned Food, Sauce 0.37 -0.63 2.79 -68.2 -7.7 -0.8 -12.7 -5.0 -1.3 -0.5 -805.4
Cereal, Breakfast -0.03 -0.29 6.72 -723.0 -87.4 -9.6 -138.9 -44.0 -16.5 0.0 -826.4
Other Dairy -0.67 -1.06 18.76 -1561.6 -734.0 -81.5 -103.1 -67.2 -52.4 -152.3 -1214.0
Meat, Protein -0.35 -0.45 16.07 -2903.5 -6691.1 -744.5 -21.4 -10.3 -266.5 -860.5 -4940.0
Condiments, Spices 0.56 0.17 14.93 -648.8 -248.8 -27.6 -43.3 -21.9 0.0 0.0 -2788.5
Snacks, Candy -0.06 -0.16 11.77 -2375.8 -972.2 -108.9 -294.3 -30.8 -40.7 -0.1 -2800.2
Milk 0.42 0.20 11.91 -1046.8 -304.2 -33.9 -118.6 -105.8 -70.5 -142.7 -1114.0
Baking Goods 1.74 1.73 7.10 -5147.6 -4487.8 -519.8 -38.6 -13.3 -1.6 0.0 -107.0

Total -0.20 -18984.4 -14456.9 -1605.9 -1424.5 -447.6 -548.0 -1223.5 -19913.5
Percent -19.23 -30.35 -30.25 -9.38 -6.07 -16.38 -10.83 -10.63

Panel B: 20% Sugar Tax (Indirect Utility Cost = 2.6%)
% Δ % Δ % Δ Calories Total Carbo- Pro- Chole-

Category Expend. Share Price Calories from Fat Fat hydrates Sugar tein sterol Salt
Fruits & Vegetables -2.53 -2.55 7.84 -745.7 0.0 0.0 -174.1 -82.2 -10.9 0.0 -864.2
Cold Beverages 6.44 5.75 14.06 -1326.3 0.0 0.0 -349.5 -302.6 -1.5 0.0 -1319.5
Warm Beverages 1.24 -0.86 13.90 -2041.9 -462.7 -35.9 -294.2 -209.8 -4.4 0.0 -339.8
Soda 11.52 9.53 14.16 -606.2 0.0 0.0 -170.8 -162.0 0.0 -15.8 -173.2
Packaged Meals -0.81 -1.94 1.84 -135.3 -48.2 -5.3 -13.9 -2.4 -7.0 -16.5 -349.9
Grain, Pasta, Bread 0.00 -0.40 7.98 -1479.5 -206.1 -21.9 -269.4 -30.1 -42.1 0.0 -1910.4
Canned Food, Sauce 1.34 -0.11 5.84 -220.2 -5.7 -0.6 -45.5 -25.8 -1.0 -0.4 -3248.8
Cereal, Breakfast -0.09 -0.80 15.76 -1749.8 -196.1 -21.3 -338.7 -108.5 -39.9 0.0 -2133.1
Other Dairy -2.43 -3.24 5.24 -620.4 -291.6 -32.4 -41.0 -26.7 -20.8 -60.5 -482.3
Meat, Protein -1.25 -1.71 5.00 -317.8 936.4 103.7 -8.6 -3.7 -18.5 -45.8 -1321.9
Condiments, Spices 2.05 1.20 12.63 -426.2 -106.6 -11.8 -36.1 -16.8 0.0 0.0 -1488.1
Snacks, Candy -0.86 -1.40 10.47 -1979.3 -800.2 -89.6 -246.8 -30.2 -33.6 -0.1 -2280.3
Milk 1.52 0.86 20.29 -1748.4 -511.0 -57.0 -197.7 -177.2 -117.6 -238.8 -1865.0
Baking Goods 6.57 6.09 13.18 -4905.4 -4018.5 -464.9 -96.2 -33.2 -4.0 0.0 -266.7

Total -0.64 -18302.4 -5710.3 -636.9 -2282.5 -1211.1 -301.2 -378.0 -18043.3
Percent -18.54 -11.99 -12.00 -15.03 -16.41 -9.00 -3.34 -9.63

Panel C: 20% Salt Tax (Indirect Utility Cost = 1.2%)
% Δ % Δ % Δ Calories Total Carbo- Pro- Chole-

Category Expend. Share Price Calories from Fat Fat hydrates Sugar tein sterol Salt
Fruits & Vegetables -1.83 -1.67 3.64 -294.5 0.0 0.0 -61.2 -18.4 -9.4 0.0 -1714.0
Cold Beverages 4.63 4.15 1.60 121.3 0.0 0.0 35.7 30.3 0.3 0.0 47.2
Warm Beverages 0.89 -1.02 1.75 3.9 -15.8 -3.6 -4.7 -5.2 -0.6 0.0 -43.1
Soda 8.29 6.55 1.19 400.2 0.0 0.0 115.1 137.3 0.0 13.6 204.0
Packaged Meals -0.58 -1.54 6.64 -568.7 -224.9 -24.5 -50.5 -8.0 -28.4 -72.2 -1518.9
Grain, Pasta, Bread -0.01 -0.23 6.16 -1186.7 -160.2 -17.0 -214.0 -23.1 -32.6 0.0 -1229.8
Canned Food, Sauce 0.96 -0.30 13.87 -379.4 -39.7 -4.2 -71.2 -29.4 -6.7 -2.8 -4591.1
Cereal, Breakfast -0.07 -0.59 9.69 -1102.0 -116.3 -12.5 -214.5 -69.3 -25.0 0.0 -1405.7
Other Dairy -1.75 -2.39 5.85 -613.2 -288.2 -32.0 -40.5 -26.4 -20.6 -59.8 -476.7
Meat, Protein -0.90 -1.21 8.70 -1002.8 -164.0 -19.0 -14.4 -7.2 -61.3 -213.6 -3331.0
Condiments, Spices 1.48 0.82 9.56 -405.3 -197.1 -21.9 -21.4 -11.9 0.0 0.0 -1994.7
Snacks, Candy -0.62 -0.98 7.17 -1755.8 -724.7 -81.2 -216.5 -19.9 -30.3 0.0 -2102.6
Milk 1.09 0.62 7.12 -562.6 -164.5 -18.3 -63.6 -57.0 -37.8 -76.9 -600.2
Baking Goods 4.66 4.38 6.77 -3149.9 -2793.2 -323.7 -12.8 -4.4 -0.5 0.0 -35.5

Total -0.46 -10495.5 -4888.7 -558.0 -834.5 -112.7 -252.9 -411.7 -18792.1
Percent -10.63 -10.26 -10.51 -5.49 -1.53 -7.56 -3.64 -10.03

Source: Nielsen Homescan data. Indirect utility costs are calculated using equation (1). We calculate V for each household under the old and
new price regimes; percent change in average indirect utility over all households and time periods are shown.44



Figure 1: Silhouette values for soda products by UPC for k = 2 clusters.

Figure 2: Graphical representation of food expenditures on the 14 major product categories in the sample.
The size of the squares is proportional to the budget share of the corresponding product. The
budget share is given in % under each product category name. The color shading of each rectangle
corresponds to the price per ounce of products in each of the categories. The price per ounce in $ is
also reported under the budget share for each category.
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Figure 3: Number of calories per serving for each of the 33 product groups resulting from the partition of
14 major food categories into nutrition based groups. Colors and labels denote the 14 product
categories. For example, groups 11 and 12 correspond to the 2 partitions of the soda category. The
groups within each product category are distinguished by their nutritional composition and are not
separately named.
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Figure 4: Own Price and Expenditure Elasticities by Product Groups and Aggregate Categories. For each
group we report both elasticities. The top bar in each group corresponds to the own price elasticity.
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Table A-1: Descriptive Statistics of Analysis
Variables

Variable Mean SD
Household Income
<$30,000 0.247 0.431
$30,000-$45,000 0.207 0.405
$45,000-$70,000 0.261 0.439
≥$70,000 0.285 0.451
Head Education
Less Than HS 0.033 0.178
HS Graduate 0.254 0.436
Some College 0.320 0.466
BA+ 0.393 0.488
Female Head Age
<35 0.073 0.260
35-49 0.323 0.268
50-64 0.371 0.483
≥65 0.233 0.423
Male Head Age
<35 0.062 0.242
35-49 0.325 0.469
50-64 0.366 0.481
≥65 0.246 0.431
Race
White 0.811 0.391
Hispanic 0.062 0.240
Black 0.103 0.304
Asian 0.025 0.155
Kids Over 12? 0.153 0.360
Kids Under 12? 0.167 0.373
Married 0.579 0.494
Female Labor Supply
Part Time 0.163 0.370
Full Time 0.424 0.494
Not Employed 0.368 0.482
Male Labor Supply
Part Time 0.068 0.252
Full Time 0.614 0.487
Not Employed 0.318 0.466
Male Household Head 0.278 0.448
Female Household Head 0.107 0.309
Number of Household Members
1 0.268 0.443
2 0.394 0.489
3 0.144 0.351
4 0.120 0.325
5 0.049 0.215
6+ 0.025 0.157
Number of Transactions 89,627,027
Number of Household-Years 162,195
Number of Aggregate Obs. 21,145,678

2002-2007 Nielsen Homescan data. Head Education refers
to female household head if a female household head is
present. In the cases in which no female household head
is present, this variable refers to the male household head.
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Table A-2: Transaction-nutrition Matching Statistics by Year

Year Direct Match 1 Match 2 Match 3 Match 4 Match 5 Unmatched
2002 68.04% 13.92% 11.15% 4.05% 1.33% 1.53% 4.49%
2003 68.92% 13.42% 10.60% 4.24% 1.24% 1.59% 4.34%
2004 64.02% 15.67% 12.32% 4.97% 1.27% 1.76% 2.28%
2005 64.79% 15.42% 11.56% 5.18% 1.26% 1.78% 2.19%
2006 65.77% 15.41% 10.70% 5.14% 1.18% 1.80% 3.05%
2007 64.97% 15.83% 10.85% 5.24% 1.29% 1.81% 2.33%

The table shows the percent of the transaction sample that is matched to the nutrition data under
each of the matching sets.
Direct matches are products that are matched directly based on UPC or based on product name
for “random weight” products such as fruits, vegetables and meats.
Match 1 = Assign Nielsen products the average per-serving nutrient characteristics among products
with exact matches based on “product module,” size, type, brand, product, flavor, variety and
formula.
Match 2 = Assign Nielsen products the average per-serving nutrient characteristics among products
with exact matches based on “product module,” size, type, and product.
Match 3 = Assign Nielsen products the average per-serving nutrient characteristics among products
with exact matches based on “product module” and size.
Match 4 = Assign Nielsen products the average per-serving nutrient characteristics among products
with exact matches based on “product module,” type, brand, flavor, product, formula, and variety.
Match 5 = Assign Nielsen products the average per-serving nutrient characteristics among products
with exact matches based on “product module,” type, product, and formula.
Unmatched = Percent of transactions from raw data within the 52 markets that cannot be matched
to nutritional information.
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Table A-3: First Stage Log Price Estimates

Ind. Var. Dependent Variable Group
Group 1 2 3 4 5 6 7 8 9 10 11

1 0.999 0.006 0.004 0.001 0.002 0.000 0.000 0.000 0.002 0.001 0.002
2 0.008 0.998 0.009 0.003 0.005 0.002 0.003 0.000 0.007 0.004 0.004
3 0.006 0.007 0.994 0.002 0.002 0.001 0.002 0.001 0.003 0.003 0.001
4 -0.001 -0.001 0.000 1.015 0.000 0.000 0.000 0.000 -0.001 0.000 -0.001
5 0.001 0.002 0.002 0.002 1.013 0.001 0.003 0.000 0.002 0.002 0.002
6 0.001 0.001 0.003 0.001 0.001 1.014 0.001 0.001 0.001 0.002 0.000
7 0.000 0.000 0.001 -0.001 0.001 0.000 1.008 0.000 0.001 0.001 0.000
8 -0.003 -0.006 -0.004 -0.004 -0.005 -0.006 -0.005 1.001 -0.004 -0.001 -0.004
9 -0.001 -0.002 -0.001 0.000 0.000 0.000 0.000 0.000 0.996 0.000 0.000
10 0.001 0.000 0.000 -0.001 0.000 0.000 0.001 0.000 0.004 0.994 0.000
11 0.001 0.000 0.002 0.001 0.001 0.000 0.001 0.000 0.002 0.001 1.015
12 -0.001 -0.001 -0.001 0.000 0.000 0.001 0.000 0.000 0.001 0.001 0.002
13 -0.001 -0.002 -0.003 -0.002 -0.002 -0.002 -0.002 0.000 -0.003 -0.001 -0.002
14 0.009 0.011 0.007 0.002 0.003 0.002 0.001 0.000 0.004 0.002 0.003
15 0.007 0.009 0.005 0.001 0.003 0.002 0.002 0.000 0.005 0.002 0.003
16 0.001 0.001 0.003 0.000 0.001 0.000 0.001 0.000 0.000 0.001 0.001
17 0.006 0.007 0.003 0.000 0.002 0.001 0.001 0.000 0.002 0.001 0.000
18 0.000 -0.001 0.001 -0.001 0.000 0.000 0.000 0.000 0.000 0.000 -0.001
19 0.002 0.003 0.003 0.000 0.001 0.000 0.000 0.000 0.002 0.001 0.000
20 0.002 0.002 -0.001 -0.001 -0.002 -0.001 -0.001 0.000 -0.001 -0.001 -0.001
21 0.000 0.000 -0.002 0.000 -0.001 0.000 -0.002 0.000 -0.001 -0.002 0.000
22 0.011 0.017 0.010 0.003 0.008 0.003 0.004 0.000 0.009 0.004 0.005
23 0.000 0.005 0.004 0.001 0.002 0.001 0.001 0.000 0.002 0.001 0.002
24 -0.009 -0.008 -0.007 -0.004 -0.006 -0.004 -0.004 0.000 -0.008 -0.003 -0.004
25 0.001 0.003 0.002 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.000
26 0.002 0.003 0.002 0.000 0.001 0.000 0.001 0.000 0.002 0.001 0.000
27 0.002 0.003 0.002 0.000 0.001 0.000 0.000 0.000 0.001 0.000 0.001
28 0.000 0.000 -0.001 0.000 -0.001 0.000 0.000 0.000 0.000 0.000 0.000
29 0.016 0.020 0.011 0.003 0.008 0.004 0.004 0.001 0.009 0.004 0.006
30 0.003 0.004 0.005 0.002 0.004 0.001 0.002 0.000 0.003 0.002 0.002
31 -0.001 -0.001 -0.001 0.001 0.000 0.000 -0.001 0.000 0.001 0.001 0.001
32 0.000 -0.001 0.001 0.000 -0.001 0.000 0.001 0.001 0.001 0.002 -0.001
33 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.001

Source: Nielsen Homescan data. Each column represents a separate regression with the log price
of the product category as the dependent variable. All estimates include month, year and market
fixed effects. Standard errors are available upon request.
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Table A-4: First Stage Log Price Estimates (continued)

Ind. Var. Dependent Variable Group
Group 12 13 14 15 16 17 18 19 20 21 22 23

1 0.001 0.001 0.003 0.003 0.002 0.003 0.001 0.003 0.003 0.002 0.003 0.004
2 0.003 0.003 0.008 0.010 0.008 0.011 0.005 0.011 0.007 0.006 0.010 0.010
3 0.001 0.002 0.004 0.006 0.005 0.006 0.003 0.006 0.003 0.003 0.003 0.005
4 0.000 0.000 -0.001 -0.001 0.000 -0.001 0.001 0.000 -0.001 0.000 -0.001 -0.001
5 0.002 0.001 0.003 0.002 0.003 0.002 0.001 0.003 0.003 0.003 0.002 0.001
6 0.001 0.001 0.000 0.003 0.002 0.002 0.003 0.002 0.001 0.001 0.002 0.002
7 0.000 0.001 0.001 0.000 0.001 0.000 0.001 0.001 0.001 0.001 0.000 -0.001
8 -0.004 0.002 -0.004 -0.007 -0.005 -0.006 -0.002 -0.005 -0.002 -0.001 -0.005 -0.008
9 0.000 0.000 -0.001 0.000 -0.001 0.000 -0.001 -0.001 0.000 0.000 -0.001 0.000
10 0.000 0.000 0.000 0.000 0.000 0.000 -0.001 0.000 -0.001 0.000 0.000 0.001
11 0.002 0.002 0.002 0.001 0.001 0.000 0.002 0.002 0.002 0.002 0.001 0.001
12 1.013 0.000 -0.001 0.000 0.001 0.000 0.000 -0.001 -0.002 -0.001 0.000 -0.001
13 -0.002 0.984 0.000 -0.002 -0.003 -0.001 -0.003 -0.003 -0.002 -0.001 -0.003 -0.004
14 0.003 0.003 0.986 0.011 0.007 0.011 0.004 0.008 0.005 0.004 0.009 0.013
15 0.003 0.003 0.006 0.978 0.004 0.006 0.003 0.006 0.005 0.004 0.007 0.008
16 0.000 0.001 0.003 0.000 0.994 0.002 0.001 0.003 0.002 0.002 0.001 0.002
17 0.001 0.001 0.005 0.006 0.004 0.975 0.002 0.004 0.005 0.003 0.005 0.006
18 -0.001 0.001 0.000 0.000 0.000 0.000 0.998 0.002 0.000 0.000 0.000 0.001
19 0.001 0.001 0.002 0.003 0.002 0.004 0.001 0.991 0.003 0.002 0.003 0.003
20 -0.002 0.001 0.000 0.001 -0.001 0.001 -0.001 -0.002 0.983 0.001 -0.001 0.000
21 0.000 0.000 0.000 -0.001 -0.001 0.000 -0.001 -0.002 0.000 0.983 -0.001 0.001
22 0.006 0.003 0.012 0.017 0.011 0.018 0.005 0.013 0.012 0.008 0.997 0.021
23 0.002 0.001 0.005 0.007 0.005 0.007 0.003 0.006 0.004 0.003 0.007 0.979
24 -0.005 -0.001 -0.007 -0.007 -0.007 -0.008 -0.006 -0.009 -0.005 -0.004 -0.008 -0.007
25 0.001 0.002 0.002 0.006 0.001 0.005 0.001 0.002 0.003 0.001 0.003 0.007
26 0.001 0.001 0.001 0.003 0.002 0.003 0.001 0.002 0.002 0.002 0.003 0.003
27 0.001 0.001 0.001 0.003 0.002 0.002 0.002 0.002 0.001 0.001 0.002 0.002
28 0.001 -0.001 0.000 0.000 0.002 0.001 0.000 0.000 -0.001 0.000 0.002 0.002
29 0.005 0.005 0.014 0.021 0.013 0.020 0.006 0.013 0.013 0.010 0.017 0.019
30 0.002 0.002 0.006 0.005 0.006 0.006 0.004 0.006 0.007 0.006 0.006 0.006
31 0.000 0.000 0.001 -0.002 -0.002 -0.002 -0.001 -0.001 0.000 0.001 -0.002 -0.004
32 -0.001 0.001 -0.001 -0.001 0.001 0.000 0.003 0.000 -0.001 0.000 -0.001 0.001
33 0.000 0.000 0.000 0.001 0.001 0.001 0.000 0.001 0.000 0.000 0.001 0.002

Source: Nielsen Homescan data. Each column represents a separate regression with the log price
of the product category as the dependent variable. All estimates include month, year and market
fixed effects. Standard errors are available upon request.
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Table A-5: First Stage Log Price Estimates (continued)

Ind. Var. Dependent Variable Group
Group 24 25 26 27 28 29 30 31 32 33

1 0.003 0.003 0.002 0.003 0.003 0.003 0.002 0.001 0.000 0.002
2 0.000 0.007 0.012 0.009 0.010 0.008 0.002 0.005 0.002 0.009
3 0.003 0.005 0.007 0.006 0.004 0.004 0.000 0.002 0.001 0.005
4 0.000 0.000 0.000 0.000 -0.001 -0.001 0.000 -0.001 0.000 0.000
5 0.001 0.001 0.003 0.003 0.003 0.002 0.001 0.002 0.000 0.003
6 0.002 0.003 0.004 0.003 0.001 0.001 0.002 0.001 0.001 0.001
7 0.000 0.000 0.002 0.001 0.000 0.000 0.001 0.000 0.000 0.001
8 0.005 -0.006 -0.005 -0.004 -0.005 -0.004 0.000 -0.005 -0.001 -0.003
9 0.000 -0.001 0.000 -0.001 0.000 -0.001 0.000 -0.001 0.000 0.000
10 0.001 0.001 0.002 0.000 0.001 0.000 0.000 -0.001 0.000 0.000
11 0.001 0.001 0.001 0.001 0.001 0.000 0.001 0.001 0.000 0.001
12 0.001 0.000 0.001 0.001 0.000 -0.001 -0.001 0.000 0.000 0.000
13 -0.001 -0.001 -0.003 -0.002 -0.003 -0.002 -0.002 -0.002 -0.001 -0.003
14 0.006 0.009 0.009 0.007 0.008 0.008 0.003 0.003 0.001 0.005
15 0.002 0.008 0.007 0.007 0.005 0.007 0.002 0.001 0.001 0.005
16 0.001 0.001 0.003 0.002 0.003 0.002 0.001 0.000 0.000 0.003
17 0.002 0.006 0.006 0.004 0.005 0.005 0.001 0.001 0.000 0.003
18 0.001 0.002 0.004 0.003 0.000 0.000 -0.001 0.000 0.000 0.001
19 0.001 0.003 0.003 0.002 0.002 0.002 0.001 0.001 0.000 0.002
20 0.000 0.001 0.000 -0.001 0.000 0.000 0.001 -0.002 -0.001 -0.001
21 0.002 0.000 -0.001 -0.001 0.000 -0.001 0.000 -0.002 0.000 -0.002
22 0.007 0.016 0.016 0.012 0.017 0.016 0.006 0.007 0.002 0.010
23 0.001 0.008 0.007 0.004 0.007 0.005 0.002 0.003 0.001 0.004
24 0.980 -0.005 -0.008 -0.008 -0.007 -0.008 -0.002 -0.005 -0.001 -0.008
25 0.001 0.977 0.004 0.003 0.002 0.004 0.001 0.000 0.000 0.002
26 0.001 0.002 0.955 0.002 0.003 0.002 0.001 0.001 0.000 0.002
27 0.001 0.002 0.003 0.976 0.002 0.002 0.000 0.001 0.001 0.002
28 0.001 0.000 0.002 -0.001 0.986 0.004 0.000 0.000 0.000 0.001
29 0.007 0.018 0.017 0.013 0.020 0.995 0.004 0.006 0.002 0.010
30 0.002 0.003 0.005 0.004 0.005 0.005 1.003 0.008 0.001 0.005
31 -0.002 -0.003 -0.002 -0.001 -0.001 -0.002 -0.002 1.014 0.000 -0.001
32 0.004 0.001 0.003 0.003 -0.001 -0.001 -0.001 -0.001 1.003 0.001
33 0.001 0.001 0.003 0.002 0.001 0.001 0.000 0.000 0.000 0.985

Source: Nielsen Homescan data. Each column represents a separate regression with the log price
of the product category as the dependent variable. All estimates include month, year and market
fixed effects. Standard errors are available upon request.
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Table A-6: First Stage Expenditure Esti-
mates

Dep. Var: Ln(Expenditure)
Independent Variable Estimates

Ln(Market Income)
13.394∗∗

(0.203)

Ln(Market Income)2
-0.541∗∗

(0.012)

Ln(Market HPI)
0.584∗∗

(0.101)

Ln(Market HPI)2
0.178∗∗

(0.004)

Ln(Market Unemployment)
4.665∗∗

(0.075)

Ln(Market Unemployment)2
0.020∗∗

(0.003)

Ln(Income)*Ln(HPI)
-0.239∗∗

(0.011)

Ln(Unemployment)*Ln(HPI)
-0.038
(0.005)

Ln(Unemployment)*Ln(Income)
-0.427∗∗

(0.007)

F-Statistic of Instruments: 24.92

“Market Income” is MSA-by-year real income per
capita, “HPI” is the MSA-by-quarter housing price
index from the Federal Housing Finance Agency Re-
peat Sales Index, and “Market Unemployment” is
the MSA-by-month unemployment rate. All esti-
mates include market, month and year fixed effects as
well as the demographic controls included in the de-
mand model. Standard errors clustered at the Cen-
sus tract level are in parentheses: ** indicates sig-
nificance at the 5% level and * indicates significance
at the 10% level. The F-statistic shows the test for
joint significance of the instruments.
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Table A-7: Own and Cross-Price Elasticities of Demand (εij)

i
j 1 2 3 4 5 6 7 8 9 10 11
1 -1.128 -0.149 -0.058 0.046 0.049 0.012 0.041 0.001 0.016 0.016 0.033
2 0.023 -0.830 -0.025 0.059 0.036 0.008 0.061 -0.014 0.013 0.031 -0.014
3 -0.035 -0.105 -1.379 0.072 0.042 0.034 0.053 0.004 0.026 0.026 0.081
4 0.029 0.032 0.030 -1.835 0.037 0.027 0.019 0.016 0.005 0.000 0.071
5 0.004 0.023 0.037 0.048 -1.895 0.031 0.031 0.017 0.057 0.023 0.125
6 0.013 0.051 0.012 0.079 0.046 -1.812 0.032 0.017 0.034 -0.002 0.135
7 0.022 0.046 0.035 -0.035 0.023 0.027 -2.055 0.032 0.021 0.007 0.031
8 -0.082 -0.091 -0.013 -0.085 -0.033 0.139 0.146 -1.521 -0.057 -0.092 -0.125
9 -0.002 0.010 -0.004 -0.011 -0.021 -0.006 -0.016 0.019 -0.518 0.010 -0.048
10 0.000 -0.005 -0.002 -0.005 0.002 0.017 0.016 0.043 -0.097 -0.665 -0.015
11 0.091 0.076 0.049 0.083 0.113 0.057 0.087 0.029 0.054 0.037 -2.260
12 0.094 0.122 0.040 0.109 0.036 0.049 0.065 0.013 0.046 0.002 0.201
13 -0.056 -0.104 -0.003 -0.080 -0.063 0.030 -0.006 0.060 -0.010 -0.012 -0.153
14 -0.079 -0.021 -0.025 -0.035 0.009 -0.044 0.008 -0.016 -0.028 -0.013 -0.123
15 -0.030 -0.011 0.071 -0.015 0.013 -0.006 -0.004 -0.015 0.012 0.015 -0.088
16 -0.046 -0.119 -0.085 0.035 -0.015 -0.001 0.030 0.005 0.004 -0.009 0.061
17 -0.055 -0.052 0.041 -0.080 -0.005 -0.033 -0.043 -0.012 0.005 0.013 -0.170
18 0.031 0.044 -0.005 0.007 0.016 0.030 0.031 0.025 0.022 0.017 -0.037
19 -0.034 0.009 0.057 -0.044 -0.019 -0.008 -0.018 -0.003 0.005 0.002 -0.045
20 -0.065 -0.092 -0.061 -0.133 0.044 -0.011 -0.038 0.004 0.011 -0.002 -0.283
21 -0.042 -0.085 -0.057 0.033 0.018 -0.014 0.044 0.017 -0.021 -0.016 -0.054
22 -0.105 0.017 0.004 0.050 -0.012 -0.006 0.010 -0.029 -0.033 -0.013 0.009
23 -0.002 0.126 -0.058 -0.024 -0.020 -0.032 -0.013 -0.030 -0.048 -0.029 -0.130
24 0.010 0.032 -0.054 -0.176 -0.095 0.039 -0.009 0.208 0.004 -0.044 -0.288
25 -0.057 -0.022 -0.051 -0.127 -0.052 -0.016 -0.083 -0.014 -0.040 -0.018 -0.178
26 0.027 0.086 0.052 -0.007 0.011 0.002 0.003 0.002 -0.006 -0.002 -0.044
27 -0.001 0.017 0.036 -0.015 0.000 0.005 -0.004 0.005 -0.005 0.006 -0.032
28 -0.032 0.011 -0.065 0.024 -0.079 -0.046 0.016 -0.014 0.001 -0.022 0.066
29 -0.104 -0.103 -0.081 0.045 0.000 -0.007 0.025 -0.034 -0.060 -0.017 0.036
30 0.011 0.066 0.066 0.127 0.023 0.036 0.100 0.022 0.058 0.025 0.191
31 0.027 -0.021 0.032 0.009 -0.043 0.026 0.059 0.041 0.011 0.015 0.016
32 0.006 0.004 -0.033 0.074 0.047 0.059 0.075 0.055 -0.023 -0.017 0.042
33 -0.005 0.018 0.006 0.012 -0.023 -0.003 -0.006 -0.001 -0.011 0.007 0.004

Source: Authors’ calculations from 2002-2007 Nielsen Homescan data. The sample includes only consumers in the
52 identified Nielsen markets. The table shows average own and cross-price elasticities of demand. The i good
represents the quantity good and the j good is the price good.
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Table A-8: Own and Cross-Price Elasticities of Demand (εij) - continued

i
j 12 13 14 15 16 17 18 19 20 21
1 0.030 0.003 0.074 -0.018 -0.011 0.000 -0.020 -0.006 0.049 0.049
2 -0.093 0.010 0.159 -0.087 -0.030 -0.056 -0.020 0.009 -0.003 0.050
3 0.062 0.037 0.160 -0.007 -0.117 -0.031 -0.039 -0.114 0.030 0.011
4 0.050 0.004 -0.004 0.018 0.007 0.003 0.015 0.022 0.005 -0.017
5 0.070 0.037 0.004 0.003 -0.003 -0.033 0.041 -0.012 -0.031 -0.026
6 0.087 -0.039 0.021 0.004 0.011 0.013 -0.017 0.016 -0.016 0.007
7 0.050 -0.001 -0.018 0.036 0.010 0.011 0.026 0.016 0.000 -0.045
8 -0.049 -0.129 0.007 0.023 0.043 0.074 0.039 0.013 -0.033 -0.116
9 -0.053 -0.030 -0.058 -0.008 -0.008 -0.018 0.002 0.001 -0.003 -0.002
10 -0.028 -0.028 -0.046 -0.002 -0.011 -0.021 0.010 0.001 0.004 -0.025
11 0.171 0.010 -0.006 0.049 0.031 0.008 0.018 0.042 0.044 0.017
12 -2.197 -0.001 0.020 -0.017 -0.028 -0.050 0.003 0.015 0.049 0.073
13 -0.098 -0.332 0.031 -0.011 -0.038 -0.028 0.011 -0.034 -0.026 -0.057
14 -0.114 -0.020 0.120 -0.071 -0.023 -0.012 -0.069 0.015 -0.044 0.001
15 -0.033 0.012 0.068 -0.845 -0.001 0.110 0.021 0.118 -0.015 0.052
16 0.065 0.015 0.152 -0.019 -0.647 0.055 -0.062 -0.139 -0.016 0.004
17 -0.080 -0.002 0.013 0.111 0.094 -0.292 -0.005 0.090 -0.031 -0.001
18 -0.022 -0.041 -0.002 -0.017 0.008 -0.033 -1.083 0.024 -0.004 -0.001
19 -0.009 -0.008 -0.047 0.018 0.002 0.021 0.064 -0.907 -0.042 -0.029
20 -0.179 -0.039 0.031 -0.024 -0.026 -0.018 -0.034 -0.002 -0.244 -0.017
21 -0.120 -0.046 0.061 -0.057 -0.021 -0.007 -0.057 -0.022 0.017 0.022
22 0.000 -0.046 -0.085 -0.031 0.059 0.026 -0.001 0.054 -0.164 -0.090
23 -0.102 -0.069 -0.013 -0.067 -0.041 -0.028 -0.077 -0.073 -0.083 0.017
24 -0.177 -0.064 -0.082 -0.029 -0.035 -0.017 0.003 -0.059 -0.052 -0.087
25 -0.098 -0.043 -0.067 0.000 -0.052 -0.009 -0.039 -0.054 -0.064 -0.036
26 -0.029 -0.059 -0.132 -0.035 0.017 -0.033 0.041 0.045 -0.073 -0.044
27 -0.019 -0.023 -0.027 -0.020 -0.002 -0.012 0.023 0.041 -0.017 -0.008
28 -0.028 -0.087 -0.073 -0.107 -0.013 -0.045 -0.038 -0.051 -0.079 0.012
29 0.066 -0.074 -0.094 -0.117 -0.114 -0.077 -0.057 -0.061 -0.122 -0.024
30 0.130 0.009 0.075 -0.037 0.035 -0.009 0.037 0.060 -0.194 -0.042
31 -0.007 0.056 0.002 -0.015 -0.013 -0.060 0.058 0.016 -0.020 -0.025
32 0.022 0.008 0.177 -0.016 -0.019 0.026 -0.056 0.030 0.048 0.053
33 -0.069 -0.005 0.004 -0.032 -0.031 -0.020 0.003 0.012 -0.024 0.008

Source: Authors’ calculations from 2002-2007 Nielsen Homescan data. The sample includes only consumers
in the 52 identified Nielsen markets. The table shows average own and cross-price elasticities of demand.
The i good represents the quantity good and the j good is the price good.
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Table A-9: Own and Cross-Price Elasticities of Demand (εij) - continued

i
j 22 23 24 25 26 27 28 29 30 31 32 33
1 -0.006 -0.074 -0.043 -0.050 0.001 -0.029 0.116 0.059 -0.006 0.013 -0.004 -0.009
2 0.013 -0.049 -0.004 -0.084 0.030 -0.034 0.027 -0.031 -0.029 0.055 -0.013 -0.085
3 0.025 -0.112 -0.010 -0.047 -0.038 -0.021 0.095 0.065 0.013 0.025 0.009 -0.076
4 0.023 0.028 0.008 0.026 0.014 0.018 -0.032 0.012 0.031 0.018 0.015 0.009
5 0.026 0.049 0.017 0.084 0.003 0.055 0.036 0.040 0.014 -0.031 0.036 0.035
6 0.032 0.015 0.004 -0.028 0.015 -0.005 0.017 -0.007 0.031 0.039 0.018 0.035
7 0.037 0.052 0.013 0.060 0.023 0.036 -0.035 0.016 0.029 0.038 0.040 0.058
8 0.033 0.068 -0.116 0.106 0.044 0.025 0.165 0.082 0.003 0.047 0.188 0.111
9 -0.008 -0.017 -0.013 -0.010 0.012 0.003 -0.027 -0.028 -0.005 0.024 0.011 0.027
10 0.001 -0.016 -0.015 -0.007 -0.002 0.000 -0.010 -0.004 0.018 0.042 0.028 -0.016
11 0.012 0.069 0.012 0.016 0.034 0.004 -0.024 -0.011 0.059 0.065 0.047 0.054
12 0.050 0.035 -0.003 -0.004 0.047 0.032 -0.026 -0.028 0.031 0.035 0.031 0.025
13 -0.029 -0.029 -0.034 -0.018 -0.012 -0.004 0.014 0.027 -0.036 -0.088 0.022 -0.001
14 -0.032 -0.075 -0.051 -0.137 -0.002 -0.093 -0.038 -0.093 -0.074 0.036 -0.057 -0.088
15 0.000 -0.050 -0.008 -0.115 -0.007 -0.020 0.020 -0.038 -0.045 -0.024 -0.010 0.010
16 -0.029 -0.072 -0.022 -0.048 -0.040 -0.071 0.156 0.027 -0.001 0.011 -0.021 -0.080
17 -0.018 -0.077 -0.017 -0.135 0.001 -0.020 0.025 -0.044 -0.060 -0.007 -0.018 0.010
18 0.017 -0.014 -0.004 -0.059 -0.012 -0.055 0.027 0.003 0.008 0.000 0.034 0.020
19 0.003 0.019 0.011 0.023 0.014 0.035 -0.011 -0.003 -0.021 -0.016 0.003 0.029
20 -0.021 -0.047 -0.018 -0.062 -0.002 -0.031 0.053 -0.005 0.048 -0.018 -0.019 0.003
21 -0.029 -0.093 -0.044 -0.098 -0.033 -0.062 0.099 -0.013 -0.027 0.010 -0.033 -0.065
22 -0.731 0.023 0.016 0.006 0.006 0.007 -0.069 -0.076 -0.055 0.019 -0.013 -0.112
23 -0.041 0.011 0.079 -0.149 -0.029 -0.073 -0.062 -0.126 -0.042 0.018 -0.036 -0.129
24 -0.029 0.175 -0.696 0.044 -0.006 -0.012 0.036 0.004 -0.115 -0.027 0.098 0.055
25 0.011 0.028 0.019 -0.253 -0.019 -0.023 -0.041 -0.023 -0.037 -0.070 -0.005 -0.042
26 0.011 -0.008 -0.007 -0.026 -0.431 0.073 -0.090 -0.075 -0.007 0.022 0.037 0.140
27 -0.009 -0.017 -0.001 -0.024 0.030 -0.669 -0.021 -0.024 -0.011 -0.014 0.018 0.036
28 -0.012 -0.070 -0.030 -0.093 0.004 -0.036 -0.270 -0.060 -0.038 0.013 -0.028 0.028
29 -0.044 -0.186 -0.045 -0.163 -0.036 -0.061 0.080 -0.295 -0.080 -0.006 -0.035 -0.101
30 -0.007 0.077 0.014 0.032 0.036 0.037 0.077 0.030 -1.793 0.255 0.036 -0.005
31 -0.012 0.051 0.010 0.090 0.011 0.062 0.059 0.071 0.107 -1.972 0.040 0.009
32 0.020 -0.027 -0.034 -0.070 -0.021 -0.057 0.079 0.049 0.016 0.024 -1.631 -0.268
33 -0.001 -0.026 -0.013 -0.033 0.003 0.015 -0.008 -0.032 -0.013 -0.009 -0.003 -0.575

Source: Authors’ calculations from 2002-2007 Nielsen Homescan data. The sample includes only consumers in the 52 identified
Nielsen markets. The table shows average own and cross-price elasticities of demand. The i good represents the quantity good
and the j good is the price good.
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Figure A-1: Pattern of cross price elasticities. Rows correspond to product groups i and columns correspond
to groups j. The size of the rectangles corresponds to the magnitude of the elasticity. The color
corresponds to the sign. Own price elasticities are excluded from the plot.
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Figure A-2: Pattern of cross price elasticities for product groups 11-14, corresponding to soda and packaged
meals. Rows correspond to product groups i and columns correspond to groups j. The size of
the rectangles corresponds to the magnitude of the elasticity. The color corresponds to the sign.
Own price elasticities are excluded from the plot.
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