
NBER WORKING PAPER SERIES

LIQUIDITY AND GOVERNANCE

Kerry Back
Tao Li

Alexander Ljungqvist

Working Paper 19669
http://www.nber.org/papers/w19669

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
November 2013

We are grateful to Nick Gantchev for sharing his hedge fund activism data. The views expressed herein
are those of the authors and do not necessarily reflect the views of the National Bureau of Economic
Research.

NBER working papers are circulated for discussion and comment purposes. They have not been peer-
reviewed or been subject to the review by the NBER Board of Directors that accompanies official
NBER publications.

© 2013 by Kerry Back, Tao Li, and Alexander Ljungqvist. All rights reserved. Short sections of text,
not to exceed two paragraphs, may be quoted without explicit permission provided that full credit,
including © notice, is given to the source.



Liquidity and Governance
Kerry Back, Tao Li, and Alexander Ljungqvist
NBER Working Paper No. 19669
November 2013
JEL No. G23,G34

ABSTRACT

Is greater trading liquidity good or bad for corporate governance? We address this question both
theoretically and empirically. We solve a model consisting of an optimal IPO followed by a dynamic
Kyle market in which the large investor's private information concerns her own plans for taking an
active role in governance. We show that an increase in the liquidity of the firm's stock increases the
likelihood of the large investor 'taking the Wall Street walk.' Thus, higher liquidity is harmful for
governance. Empirical tests using three distinct sources of exogenous variation in liquidity confirm
the negative relation between liquidity and blockholder activism.

Kerry Back
Rice University
Kerry.E.Back@rice.edu

Tao Li
City University of Hong Kong
taoli3@cityu.edu.hk

Alexander Ljungqvist
Stern School of Business
New York University
44 West Fourth Street, #9-160
New York, NY 10012
and NBER
aljungqv@stern.nyu.edu



1. Introduction

A liquid secondary market in shares facilitates capital formation but may be deleterious for

corporate governance. Bhide (1993) argues that greater liquidity reduces the cost to a blockholder

of selling her stake in response to managerial problems (‘taking the Wall Street walk’), resulting in

too little monitoring by large shareholders. Bhide’s work has spawned an active literature on the

effects of liquidity on governance. The present paper makes two contributions to that literature: (i)

we solve a theoretical model consisting of an optimal IPO mechanism followed by a dynamic Kyle

(1985) market in which the large investor’s private information concerns her own plans for taking an

active role in governance and show that greater liquidity leads to lower blockholder activism, and

(ii) we verify the negative theoretical relation between liquidity and activism using three distinct

natural experiments.

Liquidity has opposing effects on governance because it facilitates both block acquisition and

block disposition (Maug, 1998). We show that this is true in a dynamic Kyle model: the prob-

ability of blockholder activism increases (decreases) with the amount of liquidity trading if the

blockholder’s initial block is smaller (larger) than a certain critical value. We assume that the

initial block is determined in an IPO. Following the analysis of IPO mechanisms in Stoughton and

Zechner (1998), we show that any optimal IPO mechanism leads to a block of sufficient size so that

liquidity is harmful for governance (a conclusion opposite to that of Maug). A novel aspect of the

dynamic Kyle model we study is that the realized sign and magnitude of liquidity trading affect

the blockholder’s choice about becoming active and so affect the ultimate value of the stock. If

liquidity traders happen to sell shares, the blockholder is likely to buy shares and become active;

conversely, if liquidity traders buy shares, the blockholder is likely to take the Wall Street walk.

Our empirical results support our theoretical results. Establishing the causal effect of liquidity

on governance is empirically challenging because, as Edmans, Fang, and Zur (2013) note, liquidity

and governance are likely jointly determined by a firm’s unobserved characteristics. To address

this challenge, we use three natural experiments: brokerage closures (Kelly and Ljungqvist, 2012),

market maker closures (Balakrishnan et al., 2013), and mergers of retail with institutional brokerage

firms (Kelly and Ljungqvist, 2012). Events of the first two types exogenously reduce liquidity and

events of the third type exogenously increase liquidity. For two of them, we can even sign the
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direction of the resulting change in liquidity trading: as Kelly and Ljungqvist show, liquidity traders

sell in response to brokerage-closure shocks and buy in response to retail brokerage-mergers.

In all three experiments, we find that blockholder activity, as measured by hedge fund activism

and the number of shareholder proposals submitted in opposition to management, increases when

liquidity decreases and vice versa. These findings suggest that for the average stock market-listed

firm in the U.S., greater trading liquidity is harmful for governance, in the sense of discouraging large

shareholders from engaging in the governance of the firm. They stand in contrast to prior empirical

work that treats the level of a firm’s trading liquidity as exogenous (for example, Norli et al. (2010))

or that uses decimalization as a shock to liquidity. A potential explanation for the difference in

results is that decimalization, which undoubtedly improved some aspects of liquidity, coincided

with some other aggregate shock that independently improved governance (such as Regulation Fair

Disclosure).1 The staggered nature of the 43 brokerage closures, the 50 market maker closures, and

the six retail brokerage-mergers we use makes it highly unlikely that our results are confounded in

a similar way.2

We are aware of only two other papers that study a dynamic market with a blockholder whose

actions affect corporate value. One is Collin-Dufresne and Fos (2013), who in contemporaneous

and independent work also solve a dynamic Kyle model with a blockholder who can expend costly

effort to increase firm value. For the most part, they address different issues, though with a similar

model.3 The major difference between our theoretical model and theirs is that we determine the

equilibrium initial block size in the Kyle market by analyzing optimal IPO mechanisms. This allows

us to answer the question whether liquidity is harmful for governance. On the empirical side, they

employ blockholder trade data to analyze predictions concerning the large trader’s strategy, whereas

we look at three distinct sources of exogenous variation in liquidity to confirm the negative relation

between liquidity and blockholder activism that our theoretical model predicts.

DeMarzo and Urošević (2006) also analyze a dynamic market with a blockholder whose actions

affect corporate value. A key distinction between their paper and ours is that they assume a fully

1See Cai et al. (2011) for evidence that Regulation FD had a positive effect on the intensity of board monitoring.
2We contrast our empirical approach to that used in decimalization studies in Section 5.2.
3Their version of the Kyle model differs from ours in some respects. For example, they assume continuous effort,

whereas we assume effort is all-or-none. And unlike us, they assume the large trader has private information about
the exogenous component of firm value.
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revealing rational expectations equilibrium. In contrast, we follow Grossman and Stiglitz (1976,

1980) and Kyle (1985) by assuming there is some additional uncertainty in the market (namely,

liquidity trading) that provides camouflage for the blockholder’s trading. This allows the market’s

forecast of the blockholder’s plans to sometimes deviate from what the blockholder herself regards

as most likely, producing profitable trading opportunities.

There is a sizable literature on the importance of blocks (called toeholds) in overcoming the

Grossman and Hart (1980) free-rider problem in corporate takeovers. A relatively small subset of

that literature studies toehold acquisition. Without exception, the papers in that literature assume

a single round of trading (see Shleifer and Vishny (1986), Kyle and Vila (1991), Ravid and Spiegel

(1999), Bris (2002), and Goldman and Qian (2005)). Assuming a single period makes it impossible

to study the decision of whether to unwind a toehold or to add to a toehold by trading in the

open market. It also makes it difficult to examine the extent to which market activity affects the

potential acquirer’s decision to complete the acquisition.4 Models of this kind can therefore not

tell whether liquidity is good or bad for governance.

The literature on monitoring by blockholders also includes a small subset of papers that study

trading by the blockholder, including Huddart (1993), Admati et al. (1994), Kahn and Winton

(1998), Maug (1998), Stoughton and Zechner (1998), and Noe (2002). However, each of these

papers assumes a single round of trading, which makes it impossible to study any feedback from

market prices to the trading and monitoring activities of blockholders. Within this literature, the

paper most closely related to ours is Maug (1998), who solves a one-period Kyle model in which

an investor can acquire a block of sufficient size to affect governance in the single round of trading.

We consider a set-up similar to that of Maug (1998) but allow trading to be continuous. Like

Maug, we show that the probability of block acquisition and monitoring by the large investor

increases with liquidity trading if the investor’s initial stake is small and decreases with liquidity

trading when the initial stake is large. However, unlike Maug, our analysis of IPO mechanisms

suggests that the blockholder’s initial stake will always be large in equilibrium.5 Moreover, recalling

4Kyle and Vila (1991) tackle the latter issue by assuming that the blockholder can observe liquidity trades before
submitting her own order. We derive some of the same results under the more plausible assumption that the
blockholder can infer past liquidity trades from market prices, adapting to liquidity trading in a dynamic market.

5We discuss this difference further in Section 4.
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a similar result in Kyle and Vila (1991), who study takeovers, we show that the probability of the

blockholder becoming active depends on the sign of liquidity trading. In states of the world in

which liquidity traders are net sellers, the blockholder is more likely to buy shares and become

active. In states of the world in which liquidity traders are net buyers, the blockholder is more

likely to exit by selling. Thus, whether or not the blockholder takes the Wall Street walk depends

not only on the ex ante magnitude of liquidity trading and the size of her initial stake, as in Maug,

but also on the realized sign of the liquidity trading.

Another strand of the literature on the Wall Street walk that is tangentially related to our paper

is the literature on “governance by exit,” which includes the papers by Admati and Pfleiderer (2009),

Edmans (2009), and Edmans and Manso (2011). The models in these papers all have a single round

of trading, so they cannot analyze feedback from prices to blockholder actions. Moreover, to the

extent that they allow blockholder actions to affect the value of the company, they assume the

actions take place before trading. By implication, they do not study the accumulation of a block

by an investor in anticipation of the investor becoming active. Their focus is instead on trading

by an insider who has private information about firm value that is exogenous to her trading. The

investor’s ability to trade on negative information and the manager’s concern with the short-term

stock price cause the manager to be more concerned than he otherwise would be about the impact

of his actions on firm value and thereby improves governance. In contrast, in our model, the

blockholder has no private information about exogenous elements of corporate value. Instead, the

private information is about the investor’s own intentions, which in turn impact corporate value.

Our contribution is twofold. First, we derive the conditions under which liquidity is harmful

for a firm’s corporate governance. This will be the case if the blockholder holds a sufficiently

large initial stake in the firm and if liquidity traders are net buyers (rather than net sellers) of

the stock. Since, in equilibrium, the initial stake will always be large enough, our model supports

Bhide’s (1993) concern that greater liquidity need not be desirable. This result contrasts with

the prevailing consensus in the literature, which views Bhide’s concern as misplaced because it

overlooks the beneficial effects of liquidity in enabling stakes to be assembled in the first place. Our

model shows that the conditions under which these beneficial effects obtain are unlikely to met.

Second, we use exogenous variation in liquidity (of a kind that maps closely into our model) to

estimate the causal effect of liquidity on blockholder activism. We find this effect to be strongly
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negative, consistent with the model but, again, in contrast to the prevailing consensus.

2. The Kyle Market

In this section, we describe the dynamic Kyle model and its equilibrium, taking the initial block

size as given. How the initial block size is determined is discussed in the next section.

2.1. Model

A corporate decision is to be made at date 1 + ε, for ε > 0. An investor owns a block A ≥ 0

of shares at date 0. If the investor owns at least B shares and takes a costly action at date

1 + ε, then she can influence the decision. If she does so, then the value of each share will be H.

Otherwise, the value will be L < H. The parameters A, B, L, and H are common knowledge. This

is a parsimonious way of modeling the fact that only blockholders can be effective in influencing

corporate decisions. A more realistic model would allow the probability of effective intervention to

increase continuously in the block size, rather than jumping from zero to one when the block size

reaches a constant B. Obviously, the two-point distribution for the asset value is also an extreme

simplifying assumption. Making this assumption allows us to focus on how the market activity

affects the blockholder’s decision to become actively involved in the governance of the corporation.

We assume the shares are traded continuously during the time interval [0, 1]. Let C denote the

cost of intervention by the blockholder, and define

ξ =
C

H − L
. (1)

The costly action is worthwhile for the blockholder if and only if she owns at least ξ shares at

date 1. We assume that ξ is private information of the blockholder and is normally distributed

with mean µξ and standard deviation σξ. Maug (1998) makes a similar assumption.6 Define

V (x, ξ) =


pLx if x < max(B, ξ) ,

Lx+ (H − L)(x− ξ) otherwise .

(2)

6Actually, Maug (1998) assumes the large investor plays a mixed strategy in the Kyle model in his main presen-
tation and states that the outcome is equivalent to the large investor having private information about the cost of
intervention. We do not investigate mixed strategies in the continuous-trading model.
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If the investor owns x shares before the costly action is taken at date 1 + ε, then they are worth

V (x, ξ) to her. The value of each share at date 1 + ε to any other investor is

ω(x, ξ) =


L if x < max(B, ξ) ,

H otherwise ,

(3)

where x again denotes the number of shares held by the blockholder.

We model the market for shares as a Kyle model, operating continuously during the time interval

[0, 1]. The blockholder’s holding at any date t is Xt (with X0 = A), and the liquidity trades are

a Brownian motion Z with zero drift and volatility σz. We interpret Z as the cumulative number

of shares purchased by liquidity traders, so Z0 = 0. Aggregate purchases by the blockholder and

liquidity traders are Y = X + Z −A. The process Y is observed by market makers.

We search for equilibria in which the price at date t is Pt = π(t, Yt) for some function π. Given

π, the blockholder seeks to maximize

E

[
V (X1, ξ)−

∫ 1

0
Pt− dXt −

∫ 1

0
(dPt)(dXt)

∣∣∣∣ ξ ] , (4)

subject to the constraint that Pt = π(t, Yt), where we use the standard notation at− = lims↑t as.

Formula (4) is based on the fact that each market order dXt is executed at price Pt− + dPt. Back

(1992) shows that trading strategies with nonzero quadratic variation are suboptimal. The same is

true here, except possibly at date 1, when the investor may submit a discrete buy order in order to

reach the threshold B required for intervention. Except for the possible discrete order at date 1,

we expect an equilibrium strategy to be absolutely continuous, meaning that there is an order rate

θt = dXt/dt. To simplify, we will only consider such strategies, so we take the investor’s objective

function to be

E

[
V (X1, ξ)−

∫ 1

0
Ptθt dt− P1∆X1

∣∣∣∣ ξ ] , (5)

where ∆X1 = X1 −X1−. This objective function is the same as assumed by Kyle (1985), except

that the value V is endogenous here and except that a discrete order ∆X1 is allowed at date 1. In

maximizing (5), the investor takes into account the dependence of P on her trades via the function

π. Note that the price P1 at which a discrete order trades at date 1 is π(1, Y1) and hence depends

on the order size, just as in a single-period Kyle model.
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An equilibrium is a triple (π, θ,∆X1) such that the trading strategy (θ,∆X1) maximizes (4)

given π and such that

π(t, Yt) = E[ω(X1, ξ) | (Ys)s≤t] (6)

for each t. This is the standard definition of equilibrium in a Kyle model.

To recap, the innovations here relative to the continuous-time model studied by Kyle (1985) are

the endogenous values V and ω and the possibility of a discrete order at the last trading date. The

endogenous values are the primary innovation. The values are endogenous because they depend on

whether the large investor accumulates a block of sufficient size to make intervention worthwhile.

The blockholder knows the value in advance only to the extent that she knows her own future

trading plans. As we show in the next section, those plans can change based on market activity.

2.2. Equilibrium

This section describes an equilibrium and some of its properties. All proofs are in Appendix A.

Let N denote the standard normal distribution function and n the standard normal density function.

The cost of intervention affects equilibrium outcomes to the extent that the cost deviates from

its expected value. Define ξ∗ = ξ − µξ. An important role is also played by the size of the initial

stake A compared to the expected cost of intervention µξ. When A > µξ, then the initial stake is

large enough to make intervention worthwhile on average in the absence of trading (and ignoring

the requirement that B shares are needed for intervention). The difference A − µξ appears in the

equilibrium price and trading strategy normalized for the amount of liquidity trading σz and the

uncertainty about the cost of intervention σξ. Define

δ =
σz√
σ2
ξ + σ2

z

, (7)

and set

A∗ =
δ(A− µξ)

1 + δ
. (8)

Define the investor’s value function as

J(t, x, y, ξ, A) = sup
θ,∆X1

E

[
V (X1, ξ)−

∫ 1

t
Ptθt dt− P1∆X1 | Xt = x, Yt = y, ξ

]
, (9)

where the maximization is subject to the constraint that Pu = π(u, Yu) for all u ≥ t. We include
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the initial stake A as an argument of the value function, because we consider endogenizing it in

Section 3.

Theorem 1. Define

π(1, y) =


L if y +A∗ < 0 ,

H otherwise

(10a)

and, for t < 1,

π(t, y) = L+ (H − L) N

(
y +A∗

σz
√

1− t

)
. (10b)

Define

θt =
−δ(ξ∗ + Zt)− Yt

(1− t)(1− δ)
, (11a)

∆X1 =


(B −X1−)+ if ξ∗ + Z1 ≤ A∗/δ ,

0 otherwise .

(11b)

Then, (π, θ,∆X1) is an equilibrium. In this equilibrium, the market converges to strong-form

efficiency as t→ 1 in the sense that

P1− = P1 = ω(X1, ξ) (12)

with probability one. Furthermore,

Y1− = −δ(ξ∗ + Z1) (13)

with probability one. The value function of the blockholder is

J(t, x, y, ξ, A) = xL+ (H − L)K(t, x, y, ξ, A) , (14a)

where

K(t, x, y, ξ, A) = σz
√

1− t
[
d1 N(d1)− d2 N(−d2) + n(d1) + n(−d2)

]

8



with

d1 =
y +A∗

σz
√

1− t
, (14b)

d2 =
y +A∗ + ξ − x
σz
√

1− t
. (14c)

To interpret (10), recall that the equilibrium condition (6) is that the price equal the expected

date–1 value ω(X1, ξ). From (3), that value is

L+ (H − L)1{X1≥max(B,ξ)} ,

where 1{·} denotes the zero-one indicator function. The blockholder becomes active if and only if

X1 ≥ max(B, ξ). Conditions (10a) and (12) imply that X1 ≥ max(B, ξ) if and only if Y1 ≥ −A∗.

The form (10b) of the equilibrium pricing rule implies that the market assigns probability

N

(
Yt +A∗

σz
√

1− t

)
(15)

at each date t < 1 to the blockholder becoming active.

The definition (11a) implies that the trading rate θt blows up near t = 1 unless δ(ξ∗+Zt)+Yt → 0

as t → 1. This is the reason that (13) holds. Condition (12) states that there is no jump in the

price at date 1, even if there is a discrete order from the blockholder. This fact and (10a) imply

that Y1 ≥ A∗ if and only if Y1− ≥ A∗. Thus, the blockholder becomes active if and only if

Y1− ≥ −A∗. Combining this with (13) implies that the blockholder becomes active if and only if

Z1 ≤ −ξ∗ + A∗/δ. Thus, the blockholder decides whether to become active based on the sign and

magnitude of realized liquidity trades. This is because the price depends on liquidity trades. If

liquidity traders buy shares, propping up the price, then the blockholder will surreptitiously sell

shares (take the Wall Street walk). If liquidity traders sell shares, driving the price down, then the

blockholder will surreptitiously buy shares and eventually make the costly intervention.

Condition (11b) states that the blockholder buys a discrete block at date 1 if and only if

X1− < B and Z1 ≤ −ξ∗+A∗/δ. When these conditions hold, the investor buys enough to raise her

holding to the threshold B. It would also be an equilibrium for the blockholder to buy more than

(B−X1−)+ shares when Z1 ≤ −ξ∗+A∗/δ, but buying the additional shares would be superfluous,

because nothing is gained or lost from buying shares at price H when the blockholder plans to
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become active.

Condition (13) implies that the blockholder’s cumulative purchases before the possible discrete

trade at date 1 are

X1− −X0 = Y1− − Z1 = −δξ∗ − (1 + δ)Z1 . (16)

Formula (16) shows that, as discussed above, the blockholder buys more when liquidity traders sell

more. In fact, she buys 1 + δ shares for each share that liquidity traders sell and sells 1 + δ shares

for each share that liquidity traders buy, other things equal. This “multiplier effect” is unusual in

Kyle models and is a result of the blockholder adjusting her plans for intervention based on market

activity.7 If liquidity traders sell, then the blockholder finds it profitable to buy, as is customary

in Kyle models, but here buying increases the expected value of intervention, raising the expected

asset value and stimulating additional buying. This is a consequence of the fact that there is a

fixed cost but no variable cost of intervention: by paying the cost C, the blockholder increases the

value of all of the shares she owns from L to H.

The price Pt = π(t, Yt) evolves as

dPt = λ(Yt) dYt , (17a)

where Kyle’s lambda is given by

λ(y) = (H − L)
∂

∂y
N

(
y +A∗

σz
√

1− t

)
=

H − L
σz
√

1− t
n

(
y +A∗

σz
√

1− t

)
. (17b)

Formula (17) follows from (10) by Itô’s formula. To see that, note that (dY )2 = (dZ)2 = σ2
z dt and

πt + (1/2)σ2
zπyy = 0, where the subscripts denote partial derivatives. Thus, applying Itô’s formula

to Pt = π(t, Yt) yields dP = πy dY .

The equilibrium condition (6) implies that P must be a martingale relative to market makers’

information (the history of Y ). Because (17) implies dY = (1/λ) dP , it follows that Y is at least

a local martingale relative to market makers’ information. This means that the expected insider

trade is always zero, which is a standard feature of Kyle models. Because Y on the interval [0, 1)

is a continuous local martingale with (dY )2 = σ2
z dt, it must actually be a Brownian motion with

7In the basic continuous-time Kyle (1985) model, the equilibrium strategy of the informed trader has the property
that X1 = f(v) − Z1 for some function f of the asset value v. Thus, except for buying f(v) shares, the informed
trader offsets the trades of the liquidity traders one-for-one.
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volatility σz. This is Levy’s theorem (Rogers and Williams, 2000, IV.33). Thus, excluding the

possible discrete order at date 1, Y has the same distribution, given market makers’ information,

as does Z. This is again a standard feature of Kyle models (Back, 1992).

The fact that Y is a Brownian motion on [0, 1) and formula (13) account for the value of

the parameter δ in (7). Note that the unconditional variance of the right-hand side of (13) is

δ2(σ2
ξ + σ2

z) = σ2
z . Thus, the unconditional variance of Y1− is σ2

z , as it must be in order for Y to

have the same distribution as Z on [0, 1).

A possible equilibrium path is shown in Figure 1. In this example, there is a single share

outstanding and µξ = 0.1, which means that on average intervention is worthwhile if the blockholder

owns 10% of the outstanding shares. We have set σξ = 0.02, so the fraction of outstanding shares

required to make intervention worthwhile is between 6% and 14% with 95% probability. We have

also taken σz = 0.05, so that a 95% confidence interval for Z1 is ±10% of the outstanding shares.

With these parameter values, δ = 0.93. It follows from (16) that the blockholder buys 1.93 shares

for each share that liquidity traders sell, and sells 1.93 shares for each share that liquidity traders

buy.

The conditional probability of the blockholder intervening, given the market’s information, is

shown in (15). From the blockholder’s perspective, the conditional probability at date t is the

probability that Z1 ≤ −ξ∗ +A∗/δ, conditional on Zt and ξ∗. This probability is

N

(
A∗/δ − ξ∗ − Zt

σz
√

1− t

)
. (18)

In Figure 1, we have taken A = µξ, so the unconditional probability of intervention is 50%. We

have also taken ξ = µξ, so the blockholder also views the probability of intervention as 50% at date

0, conditional on ξ.

A random path of liquidity trading is shown in Figure 1. All other values are calculated from

the equilibrium, given the assumed parameter values. An uptick in liquidity buying between times

t = 0.10 and t = 0.18 leads to a divergence between the market and the blockholder’s conditional

probabilities of intervention. The blockholder can infer from the price that liquidity traders have

bought shares; consequently, her assessment of the probability of intervention declines. Accord-

ingly, she sells shares. This selling lowers Y and eventually aligns the conditional probabilities

of intervention. The opposite pattern – liquidity selling and blockholder buying – occurs around
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t = 0.40. The magnitude of the selling by liquidity traders causes the blockholder’s conditional

probability to reach 90% or more. The magnitude of the buying by the blockholder leads to the

same result for the market’s conditional probability. However, a late flurry of buying by liquidity

traders causes the blockholder to reverse course. The selling of shares between t = 0.60 and t = 0.92

by the blockholder is an example of the Wall Street walk. The selling causes the market to realize

that intervention is unlikely, though, as always, the change in the market’s conditional probability

lags the blockholder’s somewhat.
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Figure 1: A Simulation of the Equilibrium. The top panel shows a possible path of liquidity trading Z and the

corresponding paths of cumulative purchases X − A by the blockholder and aggregate purchases Y = Z + X − A,

given the parameter values described in the text. The bottom panel shows the conditional probabilities of the

blockholder becoming active, given the market’s information and the blockholder’s information, respectively.

2.3. Ex Ante Utility of the Blockholder

In this subsection, we calculate the blockholder’s expected utility as a function of the initial

block size prior to observing the cost of intervention ξ. The result is used in the next section to

determine the initial block size that would result from an optimal IPO. We consider the possibility

that the market may anticipate a block size that is different from the actual block size. Let A denote
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the block size anticipated by the market (which determines the pricing rule in the Kyle market)

and let x denote the actual block size. The blockholder’s expected utility prior to observing ξ is

G(x,A)
def
= E[J(0, x, 0, ξ, A)] . (19)

Of course, in any equilibrium, we will have rational expectations, but distinguishing between the

actual block and the anticipated block in this way is useful, because A being the argmax of x 7→

G(x,A) is potentially different from A being the argmax of x 7→ G(x, x), as Cournot is different

from Stackelberg.

Theorem 2. For any real a, define

f(a) =
δ(a− µξ)

1 + δ
. (20)

The blockholder’s ex ante expected utility function G is convex with derivatives

∂G(x,A)

∂x
= L+ (H − L) N

(
(1 + δ)f(x)− δf(A)

σz

)
, (21a)

∂G(x,A)

∂A
=

δ

1 + δ
(H − L)

[
N

(
f(A)

σz

)
−N

(
(1 + δ)f(x)− δf(A)

σz

)]
, (21b)

dG(x, x)

dx
= L+ (H − L) N

(
f(x)

σz

)
. (21c)

The convexity has important consequences for the behavior of the large trader in any mechanism

that might determine A – in particular, for the IPO mechanisms discussed in the next section. The

convexity is a consequence of the cost of intervention being a fixed cost, independent of the number

of shares owned (i.e., increasing returns to scale). Another point worth noting is that the derivatives

of the functions x 7→ G(x,A) and x 7→ G(x, x) each converge to H as x → ∞. This is due to the

fact that the blockholder is almost certain to intervene if her initial stake is very large, and the

fixed cost of intervention is negligible when amortized over a very large number of shares, so the

marginal value of an additional share is approximately H when x is large.

3. Initial Block Size

Stoughton and Zechner (1998) consider the problem of allocating shares in an IPO to maximize

the value of a firm when there is a potential blockholder who can undertake costly but value
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enhancing monitoring.8 They discuss five mechanisms, each of which we will consider here. Our

model is simpler than theirs in that our investors are risk neutral, so two of the mechanisms produce

the same outcome. The mechanisms are:

1. Take-it-or-leave-it offers.

2. Walrasian.

3. Discriminatory pricing.

4. Discriminatory pricing with a take-it-or-leave-it offer to the large investor.

5. Non-discriminatory pricing with a take-it-or-leave-it offer to the large investor and rationing

of small investors subject to the constraint that A ≤ Â, where Â is exogenously given.

Normalize so there is a single share outstanding. In the context of our model, we will show that

mechanism #2 is infeasible, mechanisms #1 and #4 produce A = 1 (which effectively means the

firm is sold privately rather than going public), mechanism #3 produces A = 0, and mechanism

#5 produces A = Â. The worst mechanism from the firm’s point of view is mechanism #3.

To abstract from signaling issues, assume the IPO takes place before the large investor observes

the cost of intervention ξ. In keeping with our previous notation, A denotes the allocation to the

large investor in the IPO, so 1−A is the allocation to small investors who do not monitor. Given

an allocation A, the expected value of the ultimate share price ω(X1, ξ) is the price π(0, 0), where

π is defined in (10). The expected share price is

P (A)
def
= π(0, 0) = L+ (H − L) N

(
f(A)

σz

)
, (22)

where f is defined in (20). Small investors in the IPO have zero demands if the price is p > P (A),

arbitrary demands if p = P (A), and infinite demands if p < P (A).9

The Walrasian mechanism #2 does not have an equilibrium. An equilibrium outcome would

be a pair (p,A) such that 1− A is an optimal demand of small investors at price p and such that

x = A maximizes either G(x, x)− px if we assume x is observed or maximizes G(x,A)− px if x is

8Stoughton and Zechner (1998) also consider secondary market trading, as we do, but they assume a single round
of trading with no liquidity shocks.

9The small investors could be the liquidity traders in the Kyle market. They could also be the risk-neutral
competitive market makers in the Kyle market. Because of the presence of such market makers in the Kyle market,
we assume the marginal small investor in the IPO is a risk-neutral investor who does not require an illiquidity
discount.
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not directly observed. Because of the convexity of G established in Theorem 2, the only possible

maxima for the large investor are A = 0 and A =∞, and, because the market must clear, the only

possible equilibrium is A = 0. Consequently, we must have p = P (0) to obtain a finite nonzero

demand for the small investors. But, at price p = P (0), the maxima of both G(x, 0) and G(x, x)

occur at x = ∞. In fact, at any price less than H, the maxima occur at x = ∞. Thus, the

Walrasian mechanism is infeasible.

In the price discrimination mechanism #3, the firm chooses (p, q, A) to maximize pA+ q(1−A)

subject to A being an optimal demand for the blockholder at price p and 1− A being an optimal

demand for small investors at price q. Again, we must have A = 0, which is optimal for the large

investor at any price p ≥ H. As in the Walrasian mechanism, the price for small investors must be

P (0). Thus, mechanism #3 produces P (0) in revenue.

In the other mechanisms, it is natural to assume the allocation to the blockholder is observed.

Mechanisms #1 and #4 have the same outcome. In mechanism #1, the firm chooses an allocation

A and transfers R and S to maximize R+ S subject to the blockholder being willing to take A at

cost R and small investors being willing to take 1−A at cost S. Given A, the firm can charge the

blockholder G(A,A)−G(0, 0), and it can charge small investors P (A)(1−A), so the total revenue

is G(A,A) − G(0, 0) + P (A)(1 − A). The derivative of this is P ′(A)(1 − A) > 0, so the optimum

is A = 1, and the revenue achieved is G(1, 1) − G(0, 0). However, A = 1 implies that the firm is

effectively sold privately rather than going public.

In mechanism #4, the firm chooses (p, q, A) to maximize pA+q(1−A) subject to G(A,A)−pA ≥

G(0, 0) (the blockholder agrees to take the take-it-or-leave-it offer) and subject to 1 − A being an

optimal demand for small investors at price q. Given A, the firm sets p = [G(A,A) − G(0, 0)]/A

and q = P (A), so the revenue is the same as in mechanism # 1, and the optimum is again A = 1,

with revenue G(1, 1)−G(0, 0). Again, this outcome effectively precludes an IPO.

In mechanism #5, the firm chooses (p,A) to maximize p subject to G(A,A) − pA ≥ G(0, 0)

(the take-it-or-leave-it offer is acceptable to the blockholder) and subject to the optimal demand

for small investors at price p being at least 1 − A. In this mechanism, we assume the firm is

constrained to choose A ≤ Â for some fixed Â ≤ 1. This constraint reflects real-world listing

standards that require the firm to have a minimum number of shareholders before it is allowed to

list. For our purposes, this prevents small investors from being rationed to zero. Given A, the
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incentive compatibility conditions are that p ≤ [G(A,A) − G(0, 0)]/A and p ≤ P (A). Because

G is convex, we always have [G(A,A) − G(0, 0)]/A < P (A), so the optimal price, given A, is

p = [G(A,A) − G(0, 0)]/A. Because of convexity again, this is an increasing function of A, so the

optimal allocation is A = Â with revenue [G(Â, Â) − G(0, 0)]/Â. In the absence of the constraint

A ≤ Â, the outcome would be A = 1 and small investors would be rationed to zero, with the

revenue being the same as in mechanisms #1 and #4.

As Stoughton and Zechner (1998) explain, mechanism #5 can explain the puzzling coincidence

of rationing and underpricing as an optimal outcome for the firm. This is true with or without the

constraint A ≤ Â. The rationing is simply more extreme without the constraint. In either case,

there is underpricing in the sense that the initial price of the Kyle market P (A) is larger than the

issue price [G(A,A)−G(0, 0)]/A. Note that the blockholder is also rationed, because his demand

at price [G(A,A)−G(0, 0)]/A < H is infinite.

4. The Effect of Liquidity on Governance

From (15), the unconditional probability that the costly action is taken and the shares are worth

H is

N

(
A∗

σz

)
= N

 A− µξ
σz +

√
σ2
ξ + σ2

z

 . (23)

Hence, the costly action is more likely when the investor holds a larger initial position or when the

expected cost of the action is lower. The probability is greater than 1/2 when A > µξ, which means

that the expected net gain from the costly action is positive given the investor’s initial position A.

The probability (23) is increasing in σz if and only if A < µξ.

The expected number of shares required to make intervention worthwhile should be less than

100% of the outstanding shares, so assume µξ < 1. It also seems sensible to assume µξ < Â in

mechanism #5 from the previous section. Then we have A > µξ in each of the feasible mechanisms

discussed in the previous section except for price discrimination. If the firm can legally distinguish

between the two investor classes in the offering terms, as price discrimination assumes, then surely

it should be able to simply negotiate a separate arrangement with the blockholder before issuing

shares to small investors. Since the other mechanisms all raise higher revenue, it seems very unlikely

that the firm would choose the price discrimination mechanism. Our conclusion is that the initial
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allocation A should exceed µξ. Consequently, an increase in liquidity will reduce the probability of

blockholder activism.

Maug (1998) reaches the opposite conclusion because he has a different model of how the initial

block is determined. He assumes that the large investor starts out with a block of zero shares and

that the size of the block that she holds at the start of the Kyle model is determined in a market in

which liquidity traders are price-taking marginal investors and in which the large investor behaves

as a monopsonist. Thus, Maug’s model is really a two-period model with a transparent market in

the first period and a Kyle market in the second period. The initial block – meaning the block at

the beginning of this two-period model – is assumed to be zero. Because the large trader prefers to

trade in a Kyle market rather than in a transparent market, her trade in the transparent market

is small; consequently, the block at the beginning of the Kyle market is small.10

Rather than assuming a zero initial block, we have followed Stoughton and Zechner (1998) in

assuming that the initial block is determined by way of an optimal IPO mechanism.

5. Testing the Model

5.1. Empirical Implications and Strategy

The model has the following empirical implications.

Implication 1: When the blockholder’s initial stake is sufficiently large, an increase in the amount

of liquidity trading σz reduces the probability of intervention and vice versa.

This implication follows immediately from the analysis in the previous section. It is the central

implication of our model: greater liquidity has the potential to be harmful for corporate governance.

Implication 2: When the blockholder’s initial stake is sufficiently large, the blockholder’s choice

between intervening and taking the Wall Street walk depends on the direction of liquidity trading.

The blockholder will sell (intervene) when liquidity traders buy (sell), which in turn increases the

probability of walking (intervening).

This implication follows from Theorem 1. It adds nuance to Implication 1 by showing that an

increase in liquidity trading is necessary but not sufficient to reduce the likelihood of intervention:

10The large trader would actually choose to trade zero in the first period in Maug’s model except that there is
presumed to be an illiquidity discount in that period. The basis for the illiquidity discount is Maug’s assumption that
the market makers from the second-period Kyle market cannot participate in the first-period market. See footnote 9
for additional discussion.
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the direction of the change in liquidity trading also matters. This nuance allows us to distinguish

our model from that of Maug (1998) which generates a version of our Implication 1 as a special

(and in his view, implausible) case.

Implication 3: The blockholder’s buying amplifies the liquidity traders’ selling, such that the

blockholder buys 1 + δ shares for each share the liquidity traders sell, with δ > 0.

This implication follows immediately from formula (16).

Testing the model’s empirical implications requires an exogenous shock to a stock’s liquidity

trading and knowledge of the resulting direction in liquidity trading. Given such an exogenous

shock, we can test whether blockholders respond by becoming more or less prone to intervening

when liquidity traders buy or sell (Implications 1 and 2).11 To this end, we exploit three distinct

natural experiments.

5.2. Experiment #1: Exogenous Brokerage Closures

We borrow our first experiment from Kelly and Ljungqvist (2012), who exploit closures of

research departments at 43 securities brokerage firms in the U.S. over the period 2000 to 2008

to test asymmetric-information asset pricing models. The 43 closures led to 4,429 U.S. firms

losing some or all analyst coverage and so represent shocks to the affected firms’ information

environment. Kelly and Ljungqvist demonstrate that the closures were unrelated to the affected

firms’ future prospects and so are plausibly exogenous at the level of the individual stocks.12 Using

this experiment, Balakrishnan et al. (2013) show that affected stocks lose a substantial amount of

liquidity, so brokerage closures are a promising candidate for testing Implication 1. Moreover, Kelly

and Ljungqvist find that when a stock loses analyst coverage in the wake of a closure, information

asymmetry among investors increases and retail investors as a group sell while institutional investors

as a group buy. To the extent that retail investors are liquidity traders, this finding implies that

we know the resulting direction in liquidity trading as well, allowing us to test Implication 2.

11The difficulty of empirically distinguishing trades involving liquidity traders and blockholders from other trades
precludes us from testing Implication 3.

12The closures were the result of adverse changes in the economics of sell-side research. See Kelly and Ljungqvist
(2012) for further details.
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5.2.1. Relation to Prior Literature

Using brokerage closures as a source of exogenous variation in liquidity is new in the literature

on liquidity and governance. It departs from recent empirical work on blockholder activism such

as Gerken (2009), Bharath et al. (2013), Fang et al. (2009), and Edmans et al. (2012), all of whom

use decimalization as a shock to liquidity. While we agree that the move to quoting spreads in

1¢ increments likely improves some aspects of liquidity, we prefer the brokerage closures for three

reasons:

� Unlike decimalization, which affects all traded firms without exception, only some stocks in

the economy are shocked when a brokerage firm closes its research department. This fact

yields a set of quasi-randomly selected firms that receive a shock to their liquidity when a

brokerage firm closes down (‘treated firms’) and a set of quasi-randomly selected firms that

do not (‘control firms’). Armed with these, we can estimate a causal treatment effect using

standard diff-in-diff estimators in a way that is not possible with the decimalization shock.

� Unlike decimalization, which affected all traded firms over a brief period of time between

August 2000 and February 2001, the brokerage closures are staggered over a period of nine

years. Given the way they cluster in time, the effects of decimalization-induced liquidity

shocks on corporate governance are hard to disentangle from other shocks to corporate gov-

ernance occurring at the same time (such as Regulation FD, which came into effect in late

2000). The staggered nature of the brokerage closures, on the other hand, minimizes the risk

that the estimated treatment effect is confounded by unobserved contemporaneous events.

� Unlike brokerage closures, which represent a shock to the information environment that the-

ory suggests hurts liquidity traders, inducing them to sell, it is unclear a priori whether

decimalization should result in liquidity traders buying or selling a stock. So whether or

not decimalization can help shed light on Implication 1, it can for sure not be used to test

Implication 2.

5.2.2. Sample and Data

The test compares the evolution of liquidity and of activism among firms that suffer exogenous

coverage terminations at time t to a control sample composed of matched firms that do not suffer
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exogenous shocks to their analyst coverage at that time. This difference-in-differences approach

allows us to difference away secular trends and swings in liquidity and activism that occur for

unrelated reasons.

The implementation of the test follows Balakrishnan et al. (2013) closely.13 Balakrishnan et al.

construct panels of treated and control firms at the fiscal-quarterly level around brokerage closures.

Because treated firms are larger, have more analysts, are more volatile, and enjoy greater liquidity

than the average CRSP firm, Balakrishnan et al. use a nearest-neighbor propensity-score match

to identify controls that match treated firms most closely on these four dimensions (each measured

in the fiscal quarter before the treated firm’s coverage termination). Following their approach, we

obtain a sample of 2,983 treated firms and the same number of matched controls. We observe

each firm for (up to) four quarters before and (up to) four quarters after each of the 2,983 coverage

terminations. In total, the estimation sample used in our tests consists of 24,653 firm-fiscal quarters

for treated firms and 24,496 firm-fiscal quarters for their controls.

Columns 1 through 3 in Table 1 show that treated and control firms are matched quite tightly:

there are no significant differences in liquidity, analyst coverage, market capitalization, or volatility

in the quarter before a coverage termination. The same is true for the number of market-makers,

even though this variable is not included in the propensity match.

We use two proxies for intervention. The first looks at hedge fund activism and is borrowed

from Gantchev (2013). Gantchev uses data from 13D filings, proxies, and SharkRepellent.net to

track the evolution of activist campaigns instigated by a large set of activist hedge funds between

2000 and 2008. An activist campaign can involve demands that management negotiate strategic

changes with the hedge fund, attempts by the hedge fund to instal new directors on the firm’s

board, proxy contests, and other forms of intervention. We use Gantchev’s data to code, for each

firm-fiscal quarter, whether a firm in our estimation sample was the subject of such a campaign.

Our second proxy for intervention is the number of shareholder proposals submitted in oppo-

sition to management. Activist investors use shareholder proposals to advocate that a company

take a specific course of action or change a policy. Shareholder proposals can only be submitted

13The only departure from Balakrishnan et al. is that we do not filter out firms without a history of providing
earnings guidance. This filter is necessary in Balakrishnan et al.’s study given its focus on firms’ guidance responses
to coverage terminations. It is the reason why Balakrishnan et al. end up with fewer treated firms than we do.
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by holders of at least 1% of a company’s shares. Thus, such proposals map nicely into our notion

of costly intervention by a large investor. We obtain data on all shareholder proposals submitted

in the U.S. from RiskMetrics. The data cover both those proposals that came to a vote and those

that were subsequently withdrawn by the proponent. Our variable of interest counts the number

of proposals submitted in a given fiscal quarter.

5.2.3. Effect of Coverage Shocks on Liquidity Trading

For exogenous coverage terminations to be a useful experiment in our setting, they have to

result in a reduction in liquidity. Column 4 of Table 1 shows that this is indeed the case. Losing an

analyst results in a sizeable and significant increase in log AIM (which measures il liquidity), net

of the contemporaneous change in log AIM among matched controls. The point estimate of 0.008

matches that of Balakrishnan et al. (2013) exactly. Column 5 provides further nuance by letting

the effect of coverage shocks on liquidity depend on the number of analysts who continue to cover

the company. The estimates show that AIM increases by significantly more, the fewer analysts the

company is left with (p=0.029).

5.2.4. Reduced-form Effect of Coverage Shocks on the Likelihood of Intervention

Given that coverage terminations result in a sizeable reduction in liquidity, and given Kelly

and Ljungqvist’s (2012) finding that retail investors sell in response to an exogenous coverage

termination, Implications 1 and 2 imply an increase in the likelihood of intervention as long as

the blockholder’s initial stake is sufficiently large. Because the model is necessarily silent on what

constitutes a stake that is “sufficiently large”, it is not possible to sort treated firms into those

for which we expect a response and those for which we expect no change. Instead, we proceed by

considering all treated firms. This will attenuate the estimated effect of reductions in liquidity on

the likelihood of intervention and so bias us against finding support for the model.

We first present reduced-form estimates, relating our two proxies for shareholder intervention

directly to the coverage shocks. Column 6 of Table 1 shows that the probability of a firm being

subject to an activist campaign increases significantly when the firm exogenously loses analyst

coverage (p=0.029). The point estimate suggests that the probability increases by 30 basis points

(relative to untreated controls) from the unconditional probability of 1.4%, an increase of 21%

(=0.3/1.4). Looking at the raw data, we see that the number of firms subject to an activist
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campaign increases from 34 to 49 following a brokerage closure, while control firms see little change

(43 vs. 45). These magnitudes suggest that the regression estimates are economically meaningful.

We find similar patterns when we use shareholder proposals. Column 8 shows that the log

number of proposals large shareholders submit to management increases (relative to untreated

controls) when the firm loses coverage (p=0.002). The point estimate suggests that the number of

proposals increases by 26.1% from the unconditional mean of 0.041 per firm-quarter.

5.2.5. Causal Effect of Liquidity Trading on the Likelihood of Intervention

The reduced-form findings in columns 6 and 8 of Table 1 are consistent with Implication 2

(and hence Implication 1) of the model: exogenous brokerage closures—which we know lead to a

reduction in liquidity and in liquidity trading—are followed by an increase in shareholder activism.

This is reassuring: as Angrist and Krueger (2001) note, if we do not see the proposed causal relation

of interest in the reduced form, it is probably not there.

In the next step, we use the brokerage closures as an instrument for liquidity to estimate the

causal effect of liquidity on shareholder activism. This involves using predicted values of AIM ob-

tained from the first-stage regression of AIM on the instrument (and other firm characteristics) in

place of actual liquidity in a second-stage regression of shareholder activism. The results are shown

in columns 7 (for hedge fund activism) and 9 (for shareholder proposals). In both specifications,

we find a negative and significant effect of liquidity (i.e., a positive effect of Amihud’s illiquidity

measure) on shareholder activism. This is consistent with our model. The effects are large econom-

ically. A one-standard-deviation reduction in liquidity leads to a 12.6 percentage-point increase in

the likelihood that the firm becomes the target of an activist hedge fund campaign and a 60.1%

increase in the number of proposals shareholders submit to management.

5.3. Experiment #2: Exogenous Reductions in Market Making

The identifying assumption central to a causal interpretation of the estimates in columns 7 and

9 of Table 1 is that brokerage closures only affect shareholder intervention through the liquidity

channel and not directly (the exclusion restriction). While this assumption is inherently untestable,

it would be violated if the adverse changes in the distribution of information brought about by

brokerage closures directly induced blockholders to intervene. While it is not obvious why this

might happen, we next consider a different exogenous source of variation in liquidity which, unlike
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brokerage closures, does not affect a firm’s information environment: closures of market-making

operations.

We use the 50 market-maker closures uncovered by Balakrishnan et al. (2013) for the period

from 2000 to 2008, identify all affected firms using data from Nastraq and Thomson-Reuters, and

screen out any firms that happened to suffer an exogenous analyst coverage termination in the same

fiscal quarter. We then create a matched sample of 4,121 treated firms and the same number of

controls, using the same approach as in the brokerage-closure experiment described in the previous

section (except that we also match on the pre-shock number of market makers).

Table 2 reports summary statistics. The match between treated and control firms is again very

tight. Interestingly, firms that lose a market maker are considerably smaller, more volatile, less

liquid, and covered by fewer analysts than are the firms in our first experiment (cf. column 1 in

Tables 1 and 2). The reason for this is simple: as Kelly and Ljungqvist (2012) show, analysts are

more likely to cover larger companies.

The first-stage results in column 4 of Table 2 confirm our expectation that liquidity suffers when

a market maker ceases operations (p < 0.001). The point estimate is five times larger than in the

brokerage-closure experiment, reflecting the fact that many more small (and hence already-illiquid)

firms end up being treated in the market-maker experiment. Column 5 lets the effect of the shock

depend on the number of firms that continue to make markets in the stock. The results show that

liquidity falls by significantly more, the fewer market makers a stock is left with (p < 0.001)

The reduced-form results in columns 6 and 8 mirror those of our first experiment: shareholder

activism increases significantly after a firm exogenously loses a market maker.

The causal effects of liquidity on our two proxies for shareholder intervention, estimated this

time using reductions in market making as an instrument, are reported in columns 7 and 9. As in the

brokerage-closure experiment, the effects are negative: a reduction in liquidity leads to an increase

both in hedge fund activism (p=0.023) and in the number of shareholder proposals (p=0.004).

The effects are smaller economically than in the brokerage-closure experiment. A one-standard-

deviation reduction in liquidity leads to a 1.8 percentage-point increase in the likelihood that the

firm becomes the target of an activist hedge fund campaign and a 4.8% increase in the number

of shareholder proposals. These smaller economic magnitudes reflect three differences between the

two experiments:
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1. As noted earlier, it is possible that the brokerage closures have a direct effect on shareholder

activism. This would lead us to overestimate the causal effect of liquidity on activism in the

brokerage-closure experiment.

2. Unlike in the brokerage-closure experiment, we cannot sign the effect of loss of market making

on liquidity trading a priori: liquidity traders could reasonably respond to the liquidity shock

by either buying or selling. This means that our set of treated firms likely consists of a mixture

of the two cases, which leads us to underestimate the causal effect of liquidity on activism

in the market-maker experiment. In this sense, we view the estimates in Tables 1 and 2 as

upper and lower bounds on the causal relation between liquidity and activism, respectively.

3. The samples are not directly comparable, as firms that lose a market maker are systematically

smaller and less liquid than firms that lose an analyst. This affects the economic magnitudes;

for example, smaller companies attract far fewer shareholder proposals than larger compa-

nies. Heterogeneous treatment effects are therefore to be expected. More generally speaking,

each set of estimates is sample-specific, so the external validity of the magnitudes cannot be

guaranteed.

5.4. Experiment #3: Exogenous Reductions in Information Asymmetry

While brokerage and market-maker closures result in less liquidity trading, our final natural

experiment achieves the opposite. Kelly and Ljungqvist (2012) identify a set of firms that experience

an exogenous reduction in information asymmetry as a result of a particular type of brokerage

merger: the acquisition by a brokerage firm that serves retail clients of a brokerage firm that

exclusively caters to institutions. Before such a merger, the acquirer’s retail clients would not have

had access to the target’s institutional research. After the merger, retail clients gain access to the

research output of the acquired (institutional) research department. In other words, previously

private signals (available only to institutional clients) now become public signals (available to all

clients). As a result, information asymmetry is reduced, liquidity trading should increase, and

liquidity traders should buy the stock.14 This allows us to test Implication 2 from the other

14This natural experiment is quite distinct from Hong and Kacperczyk’s (2010), who focus on cases where both
brokers covered a stock before the merger, regardless of their client base. In other words, in their experiment, the
total number of public signals in the economy falls as one of the analysts is made redundant. By contrast, Kelly
and Ljungqvist’s (2012) experiment keeps the number of analysts covering the stock (and hence the total number of
signals) constant, by focusing on cases where only the institutional broker covered the stock before the merger.
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direction: as liquidity traders buy, blockholders should intervene less.

Using data from Kelly and Ljungqvist (2012), we identify 761 treated firms that experience

an exogenous reduction in information asymmetry during our sample period. We match these to

761 controls using the same criteria as before. Table 3 describes the resulting sample. The match

between treated and control firms is again tight. Firms subject to the merger treatment look similar

to those subject to the brokerage-closure treatment. They are substantially larger, more liquid,

and so on than those subject to the market-maker treatment.

Columns 4 and 5 of Table 3 show that liquidity increases significantly as a result of the merger

treatment, the more so the fewer analysts covered the stock to begin with. Columns 6 and 8 show

the reduced-form estimates, which (as expected) are opposite in sign to the other two treatments:

reductions in information asymmetry lead to significant reductions in shareholder intervention.

The causal effects of liquidity on intervention are shown in columns 7 and 9. Consistent with

the previous two experiments, we again find a negative relation between liquidity and both hedge

fund activism (p=0.141) and the number of shareholder proposals (p=0.005). While only the

latter is statistically significant, the implied economic magnitudes are similar to those we found in

the brokerage-closure experiment: a one-standard-deviation reduction in liquidity leads to a 16.1

percentage-point increase in the likelihood that the firm becomes the target of an activist hedge

fund campaign and a 61.3% increase in the number of shareholder proposals.15

6. Conclusion

We ask whether greater trading liquidity harms governance, by making it easier for a blockholder

to vote with her feet and sell her stock when the firm’s managers fail to maximize firm value (Bhide,

1993), or whether it improves governance, by reducing the cost of assembling large blocks in the

first place (Maug, 1998).

We approach this question both theoretically and empirically. Theoretically, we solve a continu-

ous-time Kyle model in which a large investor trades on private information about her own plans

for taking an active role in corporate governance. Becoming active increases firm value to the

15At the same time, this treatment is subject to the same limitation as the brokerage-closure experiment: we cannot
rule out that blockholders react to the shock to the information environment independently of the resulting shock to
liquidity trading.
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benefit of all shareholders but is privately costly for the blockholder. The model shows that greater

liquidity is harmful for governance when the blockholder holds a sufficiently large initial stake in

the firm and when liquidity traders are net buyers of the stock. Based on an analysis of optimal

IPO mechanisms, we argue that the first condition is likely to hold in equilibrium.

We find strong empirical support for the model. We use three distinct exogenous shocks (two

that reduce and one that increases liquidity and liquidity trading) to estimate the causal effects of

liquidity on two measures of shareholder activism: the likelihood that a firm becomes the target of

an activist hedge fund campaign and the number of shareholder proposals filed against the firm’s

management. We find strong causal effects consistent with the model: greater trading liquidity

harms governance.
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Appendix A. Proofs

We will establish a series of propositions, of which Theorem 1 is a corollary. Proposition 4 shows

that the strategy (11) is optimal for the blockholder, given the pricing rule (10). Proposition 5

shows that the pricing rule (10) satisfies the equilibrium condition (6), given the trading strategy

(11). Thus, collectively, Propositions 4 and 5 show that the trading strategy and pricing rule

constitute an equilibrium. Part (c) of Proposition 1 establishes (13). Proposition 2 establishes

(12). Proposition 3 shows that the function (14) satisfies the Hamilton-Jacobi-Bellman equation,

and the proof of Proposition 4 verifies that it is indeed the value function. The last item in the

appendix is the proof of Theorem 2.

Observe that the pricing rule (10) satisfies

π(t, y) = E[π(1, Z1) | Zt = y] , (A.1)

Also, by the continuity of π in t, P1− = π(1, Y1−). The Hamilton-Jacobi-Bellman (HJB) equation

is

sup
θ

{
− Pθ + Jt + Jxθ + Jyθ +

σ2
z

2
Jyy

}
= 0 . (A.2)

Because the maximand is linear in the control θ, the HJB equation is equivalent to the pair of

equations:

Jx + Jy = P , (A.3a)

Jt +
σ2
z

2
Jyy = 0 . (A.3b)

Set φt = −δ(ξ∗ + Zt). The strategy (11a) implies that

dYt =
φt − Yt

(1− t)(1− δ)
dt+ dZt

for t < 1. Let Σt denote the conditional variance of φt given the market makers’ information at

date t.

Proposition 1. When the blockholder uses the trading strategy (11a), then

(a) Σt = (1− t)(1− δ2)σ2
z for all t.

(b) The process Y is a Brownian motion with volatility σz on the time interval [0, 1), given the
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market makers’ information.

(c) Y1− = −δ(ξ∗ + Z1) with probability one.

(d) If ξ∗ + Z1 ≤ A∗/δ, then Y1 ≥ Y1− ≥ −A∗.

(e) If ξ∗ + Z1 > A∗/δ, then Y1 = Y1− < −A∗.

(f) With probability one, either

X1 ≥ B and X1 − ξ ≥ Y1 +A∗ ≥ 0 , (A.4)

or

0 > Y1 +A∗ > X1 − ξ . (A.5)

Proof. First, we want to compute φ̂t, where, for any stochastic process U , Ût denotes the conditional

expectation of Ut given the market makers’ information at date t. The innovation process for the

market makers’ filtering is W defined by W0 = 0 and

dW = dY − θ̂t dt . (A.6a)

It is a Brownian motion with volatility σz on the market makers’ filtration (sometimes, the innova-

tion process is scaled to have unit volatility, but we follow Kallianpur, 1980). The filtering equation

for φ̂ is

dφ̂t =

(
Σt

(1− t)(1− δ)σ2
z

− δ
)

dW . (A.6b)

The conditional variance has initial value

Σ0 = δ2σ2
ξ = (1− δ2)σ2

z (A.6c)

and satisfies the differential equation

dΣt

dt
= δ2σ2

z −
(

Σt

(1− t)(1− δ)σz
− δσz

)2

. (A.6d)

See Kallianpur (1980, p. 269).

It is straightforward to check that Σ defined in part (a) of the proposition satisfies the initial
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condition (A.6c) and differential equation (A.6d), so it is the conditional variance. Substituting it

into (A.6b) reduces that equation to

dφ̂t = dW = dY − θ̂ dt

= dY − φ̂t − Yt
(1− t)(1− δ)

dt . (A.7)

We have φ̂0 = Y0 = 0. Therefore, (A.7) is solved by φ̂ = Y . Hence, θ̂ = 0, and Y = W . This

verifies (b).

Because Yt = φ̂t,

E[(φ1 − Yt)2] = E[(φ1 − φ̂t)2]

= E[(φ1 − φt + φt − φ̂t)2]

= E[(φ1 − φt)2] + E[(φt − φ̂t)2] + 2E[(φt − φ̂t)Et[(φ1 − φt)]]

= E[(φ1 − φt)2] + E[(φt − φ̂t)2]

= δ2E[(Z1 − Zt)2] + E[Σ2
t ]

= (1− t)σ2
z ,

where we used iterated expectations conditioning on the large investor’s information for the third

equality. Therefore, Yt converges in the L2 norm to φ1 as t→ 1. However, it follows from part (b)

that Yt converges in the L2 norm to Y1−. Therefore, Y1− = φ1. This verifies (c).

To verify (d), assume ξ∗ + Z1 ≤ A∗/δ. Then

Y1 ≥ Y1− = −δ(ξ∗ + Z1) ≥ −A∗ .

On the other hand, if ξ∗ + Z1 > A∗/δ as assumed in (e), then (11b) implies ∆Y1 = 0, and we have

Y1− = −δ(ξ∗ + Z1) < −A∗ .

It remains to verify (f). Consider two cases. Suppose first that ξ∗ + Z1 ≤ A∗/δ. Because
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Y = X + Z −A, we have

Y1 ≤ X1 +A∗/δ − ξ∗ −A = X1 −A∗ − ξ .

Therefore, (A.4) holds if X1 ≥ B and Y1 ≥ −A∗. We have X1 ≥ B from the fact that ∆X1 =

(B −X1−)+, and we have Y1 ≥ −A∗ from part (d). Now, assume that ξ∗ + Z1 > A∗/δ. Then,

Y1 > X1 +A∗/δ − ξ∗ −A = X1 −A∗ − ξ .

Therefore, (A.5) holds if Y1 < −A∗. This is part (e).

Proposition 2. The pricing rule (10) and trading strategy (11) imply (12).

Proof. Part (f) of Proposition 1 shows that

ω(X1, ξ) =


L if Y1− +A∗ < 0 ,

H otherwise .

(A.8)

Thus, ω(X1, ξ) = π(1, Y1−) = P1−. Parts (d) and (e) of Proposition 1 show that Y1 + A∗ < 0 ⇔

Y1− +A∗ < 0. Therefore, P1 = π(1, Y1) = π(1, Y1−).

Lemma 1. The function J defined in (14) satisfies

J(t, x, y, ξ, A) = E[J(1, x, Z1, ξ, A) | ξ, Zt = y] , (A.9a)

where

J(1, x, y, ξ, A) = Lx+ (H − L) max
{
x− ξ, x− ξ −A∗ − y, y +A∗, 0

}
. (A.9b)

Proof. Define ε = Z1 − Zt. We want to evaluate

E
[
max

{
x− ξ, x− ξ −A∗ − y − ε, y +A∗ + ε, 0

}]
. (A.10)
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We can write the maximum as

(x− ξ)1{x−ξ>y+A∗+ε>0}

+ (x− ξ −A∗ − y − ε)1{−A∗−y−ε>(ξ−x)+} + (y +A∗ + ε)1{y+A∗+ε>(x−ξ)+} .

Notice that the first term is zero unless x−ξ > 0, and we can write it as (x−ξ)1{0<y+A∗+ε<(x−ξ)+}.

The maximum equals

(x− ξ)
[
1{−A∗−y<ε<−A∗−y+(x−ξ)+} + 1{−A∗−y−(ξ−x)+>ε}

]
− (A∗ + y)

[
1{−A∗−y−(ξ−x)+>ε} − 1{ε>−A∗−y+(x−ξ)+}

]
− ε
[
1{−A∗−y−(ξ−x)+>ε} − 1{ε>−A∗−y+(x−ξ)+}

]

Now, we use the facts that

E

[
1{ε<a}

]
= N

(
a

σz
√

1− t

)
,

E

[
1{ε>a}

]
= N

(
−a

σz
√

1− t

)
,

E

[
ε1{ε<a}

]
= −σz

√
1− tn

(
a

σz
√

1− t

)
,

E

[
ε1{ε>a}

]
= σz

√
1− t n

(
a

σz
√

1− t

)
.

These imply that (A.10) equals

(x− ξ)[N(−d3) + N(−d4)−N(−d1)]

− (A∗ + y)[N(−d4)−N(d3)] + σz
√

1− t [n(−d3) + n(−d4)] ,

where

d3 =
y +A∗ − (x− ξ)+

σz
√

1− t
,

d4 =
y +A∗ + (ξ − x)+

σz
√

1− t
.
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Now, by considering the separate cases x > ξ and ξ > x, we see that N(−d3) + N(−d4) −

N(−d1) = N(−d2). Also, N(−d4)−N(d3) = N(−d2)−N(d1). Finally, n(−d3) + n(−d4) = n(−d1) +

n(−d2) = n(d1) + n(−d2).

Proposition 3. Given the pricing rule (10), the function J defined in (14) satisfies the HJB

equation (A.2).

Proof. We will use the representation (A.9) of the function J . First, we observe that

Jx(1, x, y, ξ, A) + Jy(1, x, y, ξ, A) = π(1, y) (A.11)

almost everywhere in (x, y), for each value of ξ. To see this, note that there are four possibilities

for the maximum in (A.9b), excluding the set of zero measure on which J has a kink: (1) If the

maximum is x − ξ, then Jx + Jy = H. (2) If the maximum is x − ξ − A∗ − y, then Jx + Jy = L.

(3) If the maximum is y + A∗, then Jx + Jy = H. (4) If the maximum is 0, then Jx + Jy = L. In

cases (1) and (3), we must have y + A∗ ≥ 0, so π(1, y) = H. In cases (2) and (3), we must have

y +A∗ < 0, so π(1, y) = L.

J is sufficiently regular to allow the interchange of differentiation and expectation, so we have

Jx(t, x, y, ξ, A)+Jy(t, x, y, ξ, A)

= E[Jx(1, x, Z1, ξ, A) + Jy(1, x, Z1, ξ, A) | ξ, Zt = y]

= E[π(1, Z1) | Zt = y]

= π(t, y) .

Thus, (A.3a) is satisfied. The formula (A.9) implies that J(t, x, Zt, ξ) is a martingale for each fixed

value of (x, ξ), so (A.3b) is also satisfied.

Lemma 2. J(1, x, y, ξ) ≥ V (x, ξ) for all (x, y, ξ). When the blockholder follows the trading strategy

(11), then J(1, X1, Y1, ξ, A) = V (X1, ξ) with probability one.
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Proof. The claim that J ≥ V is equivalent to

max
{
x− ξ, x− ξ −A∗ − y, y +A∗, 0

}
≥


0 if x < max(B, ξ) ,

(x− ξ) otherwise .

(A.12)

The left-hand side of (A.12) is at least as large as (x − ξ)+, so the weak inequality always holds.

Now, observe that there is equality in (A.12) if either

x ≥ B and 0 ≤ y +A∗ ≤ x− ξ , (A.13a)

or

x− ξ < y +A∗ < 0 . (A.13b)

If (A.13a) holds, then both sides of (A.12) equal x− ξ. If (A.13b) holds, then both sides of (A.12)

equal 0. Part (f) of Lemma 1 shows that (X1, Y1) satisfies either (A.13a) or (A.13b) with probability

one, so J(1, X1, Y1, ξ, A) = V (X1, ξ) with probability one.

Proposition 4. Given the pricing rule (10), the trading strategy (11) is optimal for the blockholder.

Proof. Consider an arbitrary strategy. For each value of ξ, we can substitute the HJB equation

into Itô’s formula for dJ to obtain

J(1, X1, Y1, ξ, A) = J(0, X0, Y0, ξ, A) +

∫ 1

0
dJ

= J(0, X0, Y0, ξ) +

∫ 1

0
Pθ dt+

∫ 1

0
Jy dZ + ∆J1 .

Taking expectations, using the fact that J(1, X1, Y1, ξ, A) ≥ V (X1, ξ), and substituting X0 = A

and Y0 = 0 yields

J(0, A, 0, ξ, A) ≥ E

[
V (X1, ξ)−

∫ 1

0
Pθ dt−∆J1

]
.

By definition, J(1, x, y, ξ) is the largest of four affine functions of (x, y). It is therefore convex in
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(x, y). This implies

∆J1 ≤ Jx(1, X1, Y1, ξ) ∆X1 + Jy(1, X1, Y1, ξ) ∆Y1

= P1 ∆X1 ,

where we use (A.11) and ∆X1 = ∆Y1 to obtain the equality. It follows that

J(0, A, 0, ξ, A) ≥ E

[
V (X1, ξ)−

∫ 1

0
Pθ dt− P1 ∆X1

]
.

This shows that J(0, A, 0, ξ, A) is an upper bound on the investor’s expected utility. The bound

is achieved by a strategy if and only if the strategy implies J(1, X1, Y1, ξ, A) = V (X1, ξ) with

probability one and ∆J1 = P1 ∆X1. Given the previous lemma, it remains only to show that

∆J1 = P1 ∆X1 when the large investor uses the strategy (11).

We can assume Z1 ≤ A∗/∆ − ξ∗, because ∆X1 = 0 otherwise. From part (d) of Lemma 1, we

have Y1 ≥ Y1− > −A∗. Therefore, from the definition (A.9b), we have

J(1, X1−, Y1−, ξ, A) = LX1− + (H − L) max{X1− − ξ, Y1− +A∗} ,

and

J(1, X1, Y1, ξ, A) = LX1 + (H − L) max{X1 − ξ, Y1 +A∗}

= L
[
X1− + ∆X1

]
+ (H − L)

[
∆X1 + max{X1− − ξ, Y1− +A∗}

]
= J(1, X1−, Y1−, ξ, A) +H∆X1 .

Hence, ∆J1 = H∆X1. Because Y1 ≥ −A∗, we have P1 = H; consequently, ∆J1 = P1∆X1.

Proposition 5. Given the trading strategy (11) and pricing rule (10), we have

π(t, Yt) = L probt
(
X1 < max(B, ξ)

)
+H probt

(
X1 ≥ max(B, ξ)

)
(A.14)

for all t with probability one, where the probability is conditional on the market makers’ information
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at date t.

Proof. First, observe that

X1 ≥ max(B, ξ) ⇒ π(1, Y1) = H , (A.15a)

X1 < max(B, ξ) ⇒ π(1, Y1) = L . (A.15b)

This is a consequence of the fact that either (A.4) or (A.5) holds when the investor uses the trading

strategy (11). To derive (A.15), assume first that X1 ≥ max(B, ξ). Then (A.4) must hold, which

implies Y1 + A∗ ≥ 0. From the definition (10a), this implies π(1, Y1, A) = H. Now, suppose that

X1 < max(B, ξ). If X1 < ξ, then (A.5) must hold. On the other hand, if X1 < B, then, given the

definition (11b) of ∆X1, we must have Z1 > A∗/δ − ξ∗. This implies

Y1 = X1 + Z1 −A > X1 +A∗/δ − ξ∗ −A = X1 −A∗ − ξ ,

so (A.5) must hold in this case also. Thus, X1 < max(B, ξ) implies (A.5), which implies π(1, Y1) =

L.

Part (b) of Proposition 1 states that Y1 is a Brownian motion with volatility σz on the time

interval [0, 1), given the market makers’ information. Therefore, Yt is a sufficient statistic at date

t for computing the conditional expectation of any function of Y1−. Moreover, the distribution of

Y1− conditional on Yt = y is the same as the distribution of Z1 conditional on Zt = y. Therefore,

(A.1) implies that

π(t, Yt) = E [π(1, Y1−) | (Ys)s≤t] .

Proposition 2 shows that P1 = P1−, so π(1, Y1−) = π(1, Y1). Hence, we have

π(t, Yt) = E [π(1, Y1) | (Ys)s≤t] .

Now, the proposition follows from (A.15).

Proof of Theorem 2. From the definition (14) of J , we can verify the formulas for the partial deriva-
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tives by showing that

∂E[K(0, x, 0, ξ, A)]

∂x
= N

(
(1 + δ)f(x)− δf(A)

σz

)
, (A.16a)

∂E[K(0, x, 0, ξ, A)]

∂A
=

δ

1 + δ

[
N

(
f(A)

σz

)
−N

(
(1 + δ)f(x)− δf(A)

σz

)]
. (A.16b)

where

K(0, x, 0, ξ, A) = σz

[
d1 N(d1)− d2 N(−d2) + n(d1) + n(−d2)

]
,

with

d1 =
f(A)

σz
,

d2 =
f(A) + ξ − x

σz
.

Note that

d

dy
[yN(y) + n(y)] = N(y) + y n(y)− y n(y) = N(y) .

Applying this fact yields

∂K(0, x, 0, ξ, A)

∂x
= −σz N(−d2)

∂d2

∂x

= N(−d2) ,

∂K(0, x, 0, ξ, A)

∂A
= σz N(d1)

∂d1

∂A
− σz N(−d2)

∂d2

∂A

=
δ

1 + δ
[N(d1)−N(−d2)]

To establish (A.16), it suffices to show that

E[N(−d2)] = N

(
(1 + δ)f(x)− δf(A)

σz

)
(A.17)

Let z be a standard normal variable that is independent of ξ. Then,

E [N (−d2)] = E [prob (z ≤ −d2 | ξ)]

= prob (z + d2 ≤ 0) .
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Because z + d2 is normal with mean (f(A) + µξ − x)/σz and variance 1 + σ2
ξ/σ

2
z = 1/δ2, the

probability prob (z + d2 ≤ 0) equals

prob

(
δ(z + d2)−

δ(f(A) + µξ − x)

σz
≤ −

δ(f(A) + µξ − x)

σz

)
,

which is the same as the right-hand side of (A.17).

The formula for the total derivative follows immediately from the formulas for the partial

derivatives. Furthermore, given the formulas for the partial derivatives, simple calculus shows that

the matrix of second partials is positive definite, so G is convex.
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Table 1. The Effect of Exogenous Analyst Coverage Terminations on Liquidity and Shareholder Activism. 
This table uses Kelly and Ljungqvist’s (2012) exogenous analyst coverage terminations (‘shock’) to estimate the causal effect of liquidity on shareholder 
intervention. The terminations occurred as a result of 43 brokerage closures between 2000 and 2008. The sample consists of 2,983 treated firms and 2,983 control 
firms. Following Balakrishnan et al. (2013), treated and control firms are matched on market capitalization, volatility, the number of analysts providing coverage, 
and liquidity, all measured as of the fiscal quarter before the coverage termination. The unit of observation is a firm-fiscal-quarter. We observe each firm for (up 
to) four fiscal quarters before and after a termination quarter. All specifications are estimated using OLS with firm and year fixed effects. We measure liquidity 
using the log of one plus Amihud’s Illiquidity Measure (AIM). We measure shareholder interventions using hedge fund activist campaigns (using data borrowed 
from Gantchev (2013)) and the log of one plus the number of shareholder proposals (using data obtained from RiskMetrics). Summary statistics (in the form of 
means and, in italics, standard deviations) are presented in columns 1-3. Note that the number of analysts, the number of market makers, and the firm’s market 
capitalization enter the regressions in logs. Standard errors, clustered at the firm level, are shown in italics underneath the coefficient estimates in columns 4-9. 
***, **, and * denote significance at the 1%, 5%, and 10% level (two-sided), respectively. The critical value for the weak-instruments test is 10. 
 
  Summary statistics   log AIM   Prob. of activism   log no. of proposals 

 
treated 
firms 

matched 
controls 

difference 
in means  first stage first stage  

reduced 
form 

second 
stage  

reduced 
form 

second 
stage 

  (1) (2) (3)   (4) (5)   (6) (7)   (8) (9) 
             
shock    0.008*** 0.026** 0.003**  0.011***  
    0.003 0.010 0.001  0.003  
log AIM 0.052 0.060 -0.008    0.377*  1.402** 
 0.244 0.341     0.211  0.598 
Firm characteristics at t = –1          
# analysts providing coverage 6.3 6.3 0 -0.004*** -0.003** -0.001 0.000 -0.017*** -0.011*** 
 5.5 5.8  0.001 0.001 0.001 0.001 0.002 0.003 
   x shock     -0.010**     
     0.005     
# market makers 19.6 17.0 2.6 -0.022*** -0.022*** 0.002 0.010* -0.001 0.029* 
 23.0 20.6  0.007 0.007 0.003 0.006 0.002 0.015 
market capitalization ($m) 7,110 7,554 -444 -0.115*** -0.115*** -0.003** 0.040* -0.001 0.160** 
 19,700 22,400  0.007 0.007 0.002 0.024 0.001 0.068 
monthly std. dev. of returns 0.033 0.034 -0.001 0.366** 0.366** 0.021 -0.117 -0.014 -0.527 
 0.027 0.034  0.153 0.153 0.028 0.107 0.015 0.333 
Diagnostics          
Within-firm R2 n.a. n.a.  10.1% 10.2% 50.0% n.a. 11.7% n.a. 
Weak instrument test (F) n.a. n.a.  n.a. n.a. n.a. 10.0*** n.a. 10.0*** 
Number of firms (treated+controls) n.a. n.a.   5,966 5,966  5,966 5,966  5,966 5,966 
Number of observations 2,983 2,983   49,149 49,149  49,149 49,149  49,149 49,149 
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Table 2. The Effect of Exogenous Reductions in Market Making on Liquidity and Shareholder Activism. 
This table uses Balakrishnan et al.’s (2013) exogenous reductions in market making (‘shock’) to estimate the causal effect of liquidity on shareholder intervention. 
These reductions occurred as a result of 50 market makers closing down between 2000 and 2008. Firms that suffer simultaneous reductions in analyst coverage 
and market making are excluded. The sample consists of 4,121 treated firms and 4,121 control firms. Following Balakrishnan et al., treated and control firms are 
matched on market capitalization, volatility, the number of analysts providing coverage, the number of market makers, and liquidity, all measured as of the fiscal 
quarter before the coverage termination. The unit of observation is a firm-fiscal-quarter. We observe each firm for (up to) four fiscal quarters before and after a 
closure quarter. All specifications are estimated using OLS with firm and year fixed effects. We measure liquidity using the log of one plus Amihud’s Illiquidity 
Measure (AIM). We measure shareholder interventions using hedge fund activist campaigns (using data borrowed from Gantchev (2013)) and the log of one plus 
the number of shareholder proposals (using data obtained from RiskMetrics). Summary statistics (in the form of means and, in italics, standard deviations) are 
presented in columns 1-3. Note that the number of analysts, the number of market makers, and the firm’s market capitalization enter the regressions in logs. 
Standard errors, clustered at the firm level, are shown in italics underneath the coefficient estimates in columns 4-9. ***, **, and * denote significance at the 1%, 
5%, and 10% level (two-sided), respectively. The critical value for the weak-instruments test is 10. 
 
  Summary statistics   log AIM   Prob. of activism   log no. of proposals 

 
treated 
firms 

matched 
controls 

difference 
in means  first stage first stage  

reduced 
form 

second 
stage  

reduced 
form 

second 
stage 

  (1) (2) (3)   (4) (5)   (6) (7)   (8) (9) 
             
shock    0.042*** 0.551*** 0.003*  0.002***  
    0.006 0.044 0.001  0.001  
log AIM 0.668 0.739 -0.071    0.016**  0.040*** 
 1.040 1.156     0.007  0.014 
Firm characteristics at t = –1          
# analysts providing coverage 1.6 1.6 0 0.006* 0.008** -0.001 -0.001 -0.003*** -0.003*** 
 3.2 3.3  0.004 0.004 0.001 0.001 0.001 0.001 
# market makers 21.2 21.3 -0.1 -0.174*** -0.168*** 0.003 0.006** 0.000 0.007*** 
 12.5 13.3  0.017 0.017 0.002 0.002 0.001 0.003 
   x shock     -0.163***     
     0.013     
market capitalization ($m) 573 652 -79 -0.401*** -0.403*** -0.002 0.005 0.000 0.016*** 
 5,702 3,272  0.011 0.011 0.002 0.004 0.000 0.006 
monthly std. dev. of returns 0.043 0.042 0.1 0.536*** 0.547*** -0.044*** -0.055*** 0.001 -0.021** 
 0.039 0.037  0.164 0.164 0.014 0.015 0.002 0.010 
Diagnostics          
Within-firm R2 n.a. n.a.  23.1% 23.3% 58.8% n.a. 6.6% n.a. 
Weak instrument test (F) n.a. n.a.  n.a. n.a. n.a. 69.1*** n.a. 69.1*** 
Number of firms (treated+controls) n.a. n.a.   8,242 8,242  8,242 8,242  8,242 8,242 
Number of observations 4,121 4,121   68,780 68,780  68,780 68,780  68,780 68,780 
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Table 3. The Effect of Exogenous Analyst Coverage Re-Initiations on Liquidity and Shareholder Activism. 
This table uses Kelly and Ljungqvist’s (2012) exogenous analyst coverage re-initiations (‘shock’) to estimate the causal effect of liquidity on shareholder 
intervention. The re-initiations occurred in the wake of mergers involving a retail broker with an institutional broker, as a result of which previously private analyst 
signals available only to institutional clients became available to the merged broker’s retail clients, thereby reducing information asymmetry in the marketplace. 
The sample consists of 761 treated firms and 761 control firms. Following Balakrishnan et al. (2013), treated and control firms are matched on market 
capitalization, volatility, the number of analysts providing coverage, and liquidity, all measured as of the fiscal quarter before the coverage termination. The unit 
of observation is a firm-fiscal-quarter. We observe each firm for (up to) four fiscal quarters before and after a re-initiation quarter. All specifications are 
estimated using OLS with firm and year fixed effects. We measure liquidity using the log of one plus Amihud’s Illiquidity Measure (AIM). We measure 
shareholder interventions using hedge fund activist campaigns (using data borrowed from Gantchev (2013)) and the log of one plus the number of shareholder 
proposals (using data obtained from RiskMetrics). Summary statistics (in the form of means and, in italics, standard deviations) are presented in columns 1-3. 
Note that the number of analysts, the number of market makers, and the firm’s market capitalization enter the regressions in logs. Standard errors, clustered at the 
firm level, are shown in italics underneath the coefficient estimates in columns 4-9. ***, **, and * denote significance at the 1%, 5%, and 10% level (two-sided), 
respectively. The critical value for the weak-instruments test is 10. 
 
  Summary statistics   log AIM   Prob. of activism   log no. of proposals 

 
treated 
firms 

matched 
controls 

difference 
in means  first stage first stage  

reduced 
form 

second 
stage  

reduced 
form 

second 
stage 

  (1) (2) (3)   (4) (5)   (6) (7)   (8) (9) 
             
shock    -0.012*** -0.047*** -0.006*  -0.027***  
    0.004 0.013 0.003  0.005  
log AIM 0.026 0.030 -0.004    0.729  2.157*** 
 0.111 0.215     0.495  0.773 
Firm characteristics at t = –1          
# analysts providing coverage 6.8 6.7 0.1 -0.003 -0.005* -0.001 0.001 -0.026*** -0.019*** 
 5.7 6.0  0.002 0.003 0.002 0.003 0.004 0.006 
   x shock     0.020***     
     0.006     
# market makers 26.1 27.2 -1.1 -0.002 -0.002 -0.002 -0.005 0.003 0.007 
 23.4 23.3  0.009 0.009 0.003 0.008 0.003 0.019 
market capitalization ($m) 6,675 5,745 930 -0.116*** -0.116*** 0.012** 0.101* 0.003 0.255*** 
 20,400 19,200  0.014 0.014 0.005 0.061 0.003 0.087 
monthly std. dev. of returns 0.028 0.026 0.002 0.026 0.027 -0.096* -0.204 -0.037 -0.093 
 0.033 0.030  0.176 0.176 0.057 0.168 0.034 0.384 
Diagnostics          
Within-firm R2 n.a. n.a.  11.0% 11.1% 50.7% n.a. 8.1% n.a. 
Weak instrument test (F) n.a. n.a.  n.a. n.a. n.a. 11.1*** n.a. 11.1*** 
Number of firms (treated+controls) n.a. n.a.   1,522 1,522  1,522 1,522  1,522 1,522 
Number of observations 761 761   13,102 13,102  13,102 13,102  13,102 13,102 
                          
 


