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Drive More Effective Data-Based Innovations:
Enhancing the Utility of Secure Databases

Databases play a central role in evidence-based innovations in business, economics, social, and health sci-

ences. In modern business and society, there are rapidly growing demands for constructing analytically valid

databases that also are secure and protect sensitive information in order to meet customer and public expec-

tations, to minimize financial losses, and to comply with privacy regulations and laws. We propose new data

perturbation and shuffling (DPS) procedures, named MORE, for this purpose. As compared with existing

DPS methods, MORE can substantially increase the utility of secure databases without increasing disclosure

risk. MORE is capable of preserving important nonmonotonic relationships among attributes, such as the

inverted-U relationship between competition and innovation. Maintaining such relationships is often the key

to determining optimal levels of policy and managerial interventions. MORE does not require data to be

of particular types or have particular distributional shapes. Instead, it provides unified, flexible, and robust

algorithms to mask general types of confidential variables with arbitrary distributions, thereby making it

suitable for general-purpose data masking. Since MORE nests the commonly used generalized linear models

as special cases, a much wider range of statistical analyses can be conducted using the secure databases with

results similar to those using the original databases. Unlike existing DPS approaches which typically require

a joint model for all variables, MORE requires no modeling of nonconfidential variables, and thus further

increases the robustness of secure databases. Evaluation of MORE through Monte Carlo simulation studies

and empirical applications demonstrates that it performs better than existing data masking methods.

Key words : Database; Digital Economy; Innovation; Nonparametric; Perturbation; Privacy; Shuffling.

“The digital age will be to the analog age what the iron age was to the stone age. ”—Joel Mokyr

1. Introduction

Data Privacy Problem

Data are key to innovations in many industries and are invaluable assets for many entities, includ-

ing government agencies, firms, nonprofit organizations, and academic institutions. Effective data

management and analytics play a central role in gaining insights on customers, patients, and prod-

uct and service providers, and in making critical policy and managerial decisions. A foundation to

fulfilling the benefits of such data-based activities is the procurement, construction, analysis, shar-

ing, and dissemination of relevant databases, which also raise data privacy concerns. Data privacy

concerns arise whenever a database contains sensitive attributes that if disclosed without control

to a third party, can lead to negative consequences. These privacy concerns can render these sensi-

tive key data elements unavailable to the third party who needs them for data-based innovations.

To ease the tensions between these data-based activities and privacy concerns, we propose a new
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methodology to provide analytically valid data that also protect privacy. Given the importance of

data, our methodology can have important impacts for driving data-based innovations in many

fields.

Data privacy is a very important issue in the new digital economy. For example, Blattberg et al.

(2008) devote an entire chapter to customer privacy, and describe the consequences of customer

privacy concerns for database marketing. Privacy has also emerged as a key concern for innovation

policy (Goldfarb and Tucker 2012). Confidential data are found not only in consumer databases,

but also in databases about firms or organizations (e.g., in business census or surveys). Data privacy

concerns occur in almost all stages of database-related activities, from data procurement, data

construction and analysis (e.g., merging data from multiple sources as noted in Mela 2011 and

Qian and Xie 2013) to data dissemination that fulfills the microdata release requirements from

funding agencies (e.g., NIH and NSF) or journals (Desai 2013). For respondents and the public to

trust that their private information is in good hands, they expect database owners to implement

adequate disclosure control.

Consistent with these expectations, privacy laws and regulations require database owners to

follow certain rules to protect private information. Examples of earlier laws regarding consumer

privacy are the Fair Credit Reporting Act of 1970, which established consumers’ rights regarding

their financial information, and the Health Insurance Portability and Accountability Act (HIPAA)

of 1996 in the healthcare industry. Privacy concerns have become increasingly important with

innovations in information technology and e-commerce (Kalvenes and Basu 2006). For example,

public concerns about Web privacy led to the halt of data sharing between a Web ad company,

DoubleClick, and a marketing database company, Abacus, in 1999 (Winer 2001). Insufficient data

privacy protection can also have dire consequences. A recent example is the withdrawal of Netflix

from its once very successful collaboration with academia because of a privacy breach (Mela 2011).

In that case, one was able to combine the Netflix database with the Internet Movie Database and

recover the identities of the customers and their rental histories. The privacy breach caught the

attention of the Federal Trade Commission and prompted a class action lawsuit against Netflix.

Losses in market value and consumer relationships can be large as well. As reviewed in Miller and

Tucker (2011), studies found that (1) negative publicity from privacy breaches causes affected firms

to lose on average 2.1 percent of their stock market values within two days of the announcement,

amounting to $1.65 billion average loss in market capitalization per incident and (2) 31 percent

of survey consumers say they would end their relationship with a firm as a a result of a privacy

breach.

In response to the high demand for confidential data protection, various solutions for creating

secure databases have been proposed. Prior studies demonstrate that an effective approach to

protecting data privacy is data masking through perturbation and shuffling (Willenborg and de
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Waal 2001, Muralidhar and Sarathy 2006). These data masking procedures replace the original

confidential data values in a database with modified values. The resulting masked dataset is secure

in the sense that the masked values, rather than the original values, of the confidential data ele-

ments are released to the third-party. In order for the secure database to be useful, these masked

values should be “realistic” so that queries based on the secure database are as close as possible

to those based on the original database. Formally, an ideal data masking procedure should have

the following two key properties (Muralidhar and Sarathy 2003): (1) high data utility: statistical

inferences using the masked confidential values in a secure database remain the same as those

using the original dataset; and (2) low disclosure risk: the release of the masked values does not

improve the ability of intruders to predict the original values of confidential attributes. The two

requirements are often in conflict. The trend in data masking is to develop methods that have data

utility as high as possible while maintaining a sufficiently low disclosure risk.

An Example: Competition and Innovation

Although much past research concerns consumer privacy, similar privacy concerns apply to firms

and organizations supplying confidential data. The insights gained from data-based studies often

have important implications for firms/organizations and market regulators, and are of broad inter-

est to the economics and management community, as well as policy makers. As with consumer

databases, collecting, analyzing, sharing, and disseminating data on firms or organizations also

raise data privacy issues. Data masking provides an attractive approach to harnessing the power

of data while minimizing the harm caused by privacy violations. When only masked datasets can

be released or shared, a key question is whether their users will be able to gain the same insights

as from the original databases on important questions such as “Does competition spur innovation,

and if so, how?”. Answers to such questions are of great interest in innovation policy. Clearly, being

able to provide secure databases with maximal utility is a crucial problem in data masking and has

important managerial and policy implications. As an example, we consider a dataset that provides

information about the relationship between competition and innovation (C&I) using a sample of

311 firms (Aghion et al. 2005). The study measures innovation by the citation weighted patent

count (patcw) and competition by a Competition index (Ci), which is 1 minus the Lerner Index.

Fig 1 plots the distributions of these two attributes. The data cover seventeen two-digit SIC code

industries over the period 1973-1994. Fig 2 shows an inverted-U relationship between competition

and innovation: when the competition level is low, more competition increases innovation activity;

but when the competition is fierce enough, it decreases innovation activity.

Privacy concerns can arise for various reasons in this context. For example, the C&I dataset

contains information on patent count, research and development investment, financial cost, profits,

and sales. Since the release of confidential data (e.g., patent count) can cause reidentification of

firms, other sensitive information about the firms, such as financial cost, profits, sales, and R&D
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investment, can be revealed to intruders (e.g., firms’ competitors), which in turn can compromise

the interests of respondent firms.1

In order for secure databases to provide accurate information while providing adequate disclosure

control, effective data masking procedures should preserve distributional properties of the masked

values as close as possible to those of the original sensitive values. The C&I dataset has several

interesting features that allow us to demonstrate the important benefits of our proposed data

masking procedures for enhancing the utility of secure databases. Due to the rich policy implications

of the inverted-U relationship, this is an ideal example to demonstrate the importance of preserving

nonmonotonic relationships in data masking. Moreover, the key variables in this dataset exhibit

several interesting features and require data masking procedures that can account for these features

properly. Fig 1 shows that the competition measure, Ci, and the innovation measure, patcw, are

bounded and semicontinuous: Ci takes values from 0 to 1, and patcw takes only nonnegative values

with a large probability at the boundary value of zero. One needs to take this into account so that

implausible masked values that are out of bound are not generated. There also exists skewness in

these two variables, with patcw being highly skewed. Our more complex analysis includes Industry

and Y ear, both of which are categorical discrete variables. In sum, the dataset contains various

types of variables with important nonmonotonic relationships among attributes, and we consider

this an ideal empirical example for comparing different data masking procedures.

These important data features are not limited to this dataset, but are frequently encountered

in business applications. Other examples with complex distributional features include sensitive

attributes that are continuous (home value, mortgage balance, net asset value), binomial (number

of occasions using protection measures among all occasions of drug use), count data (number of

times downloading pirated movies and music), and fractional and bounded (fraction of credit debts

repayed, share of wallet for counterfeit products). These types of variables are very informative, and

thus often exhibit complex distributional features, such as heavy tails, outliers, departure from the

nominal variance in the binomial and count outcomes, boundedness, skewness, multimodality, and

zero-inflation. Furthermore, the relationships among these sensitive attributes, as well as between

them and other attributes, can be complex and nonmonotonic. These important data features call

for general and flexible data masking procedures so that the resulting secure databases have high

utility for important managerial and policy decisions.

Contribution

Prior studies have shown that data perturbation and shuffling (DPS) are an important class of

data masking methods, and have a number of advantages as compared with alternative masking

1 The firms in this dataset are public firms traded in the London Stock Exchange. Therefore, most of this sensitive information
is publicly available. However, this is not the case for private businesses or organizations. Our use of this dataset is therefore
mainly for illustration purposes.
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methods (e.g., see reviews and comparisons provided in Muralidhar et al. 1995, and Muralidhar

and Sarathy 2006). However, as discussed in Section 3, there are a range of important limitations

of existing DPS methods, some of which are identified in this work. These issues limit the scopes of

distributional properties, as well as the types of attributes and the relationships among attributes

for which the existing DPS methods are applicable, which can affect the ability of users of secure

databases to make optimal managerial and policy decisions.

Our objective in this paper is to develop a new set of nonparametric DPS procedures that

simultaneously address all these limitations of existing procedures while retaining the nice

properties of DPS methods. Our approach is a conditional distribution approach and thus satisfies

the low disclosure risk requirement for an ideal data masking procedure (Muralidhar and Sarathy

2003). It provides secure databases with substantially higher data utility that have important

managerial and policy implications, and therefore represents a significant advance in the area.

More specifically, we develop new nonparametric DPS procedures with the following capabilities:

(1) they provide unified data masking algorithms that are not restricted by the types and

distributions of confidential variables;

(2) they maintain marginal distributions of confidential variables with arbitrary distributional

shapes;

(3) they maintain important and complex relationships among variables, including nonmonotonic

relationships (such as the inverted-U relationship between competition and innovation);

(4) they are applicable to continuous, discrete, and semicontinuous types of confidential

variables with which a much wider range of analyses can be conducted using the masked dataset

with results similar to those using the original one (in particular, they nest the commonly used

Generalized Linear Models for statistical data analysis as special cases);

(5) they preserve the set of the original values of confidential variables, which can lead to greater

acceptance of masked data among the common users;

(6) they further increase the robustness of masked datasets because they directly model the

conditional distribution of confidential variables, instead of modeling the joint distribution of all

variables; and

(7) they evaluate the risk of releasing masked datasets with closed-form disclosure risk measures

that are simple to calculate, regardless of the types and distributions of confidential variables.

2. Existing Data Masking Methods

A number of approaches to optimally preserve the confidentiality of sensitive information in a

database have been proposed, including aggregation, coarsening, imputation, swapping, and per-

turbation (Willenborg and de Waal 2001). Past research suggests perturbation is a superior class
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of data masking methods for maximizing data utility and minimizing data disclosure risk (Sarathy

et al. 2002). This approach creates perturbed values, which replace the original confidential values.

Releasing the perturbed version of the datasets makes it much harder for data intruders to recover

the original values of those confidential variables, thereby maintaining data privacy.

There is significant past research on data perturbation methods. Muralidhar et al. (1999) intro-

duce the general additive data perturbation method (GADP), and demonstrate its superior per-

formance in terms of both data utility and security over previous data perturbation methods and

thus also over a range of alternative non-perturbation masking methods (Muralidhar et al. 1995).

When modeling assumptions are satisfied, GADP has optimal performance. For example, it can be

tuned to maintain the linear relationship exactly (Muralidhar and Sarathy 2001). A key assumption

in GADP is that the attributes in a database can be modeled by a multivariate normal (MVN)

distribution. When this assumption is violated, bias can be introduced into the analysis based on

the perturbed dataset, which reduces the utility of secure databases.

Efforts to relax this restrictive assumption have been made recently. There are two main strate-

gies. The first is to apply different, preferably more general and flexible, fully parametric multi-

variate distributions than the MVN models to perform data perturbation. Muralidhar et al. (1995)

propose using a log-normal distribution to model one skewed confidential attribute. Lee et al.

(2010) propose a more general data perturbation method, STDP. This method is based on a richer

family of parametric multivariate skew-t (MVST) distribution that allows database managers to

model skewness and heavy tails in the data and can better answer higher-level questions. Another

strategy is to use nonparametric models for the joint distribution of all variables in a database.

Sarathy et al. (2002) propose a MVN copula-based GADP (C-GADP) method, which relaxes the

strong parametric distributional assumptions in those fully parametric data perturbation methods

by using the empirical marginal distributions. As a result, for a much broader range of applica-

tions, C-GADP can preserve the marginal distributions of confidential variables. In addition, unlike

GADP, C-GADP is capable of preserving monotonic nonlinear relationships among attributes.

Another approach whose performance is on par with perturbation methods is the data shuf-

fling method (DSP) (Muralidhar and Sarathy 2006). Its idea is akin to data swapping (Dalenius

and Reiss 1982), which exchanges confidential values among observations. Consequently, DSP fully

preserves the marginal distributions of confidential variables. It also helps overcome the reserva-

tions about using modified confidential data (Wall Street Journal 2001), and can lead to greater

acceptance of masked data in practice. DSP outperforms its predecessor, data swapping, by having

higher data utility and lower disclosure risk.

Another very powerful class of masking approach is the multiple imputation synthetic data

approach (MI, Rubin 1993, Raghunathan et al. 2003, Reiter 2005, Reiter and Raghunathan 2007).
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Unlike the above DPS methods, which view the original data as the population, MI views the origi-

nal data as a sample drawn from a population, and draws multiply imputed synthetic datasets from

this population. In its most radical form, no unit in the released data is in the original dataset. This

approach has a number of merits, including its ability to assess the inferential uncertainty intro-

duced in the masking process. Raghunathan et al. (2003) and Reiter (2005) discuss the advantages

and disadvantages of MI.

There is also active research on other types of privacy-preserving methods that do not rely

on explicit statistical models. For example, Xiao and Tao (2006) develop a new data generaliza-

tion framework for personalized privacy. Menon and Sarkar (2007) formulate the frequent itemset

hiding problem as a mathematical integer programming problem, and develop an effective two-

phase approach to solving the problem. Li and Sarkar (2011) combine recursive partitioning with

bounded swapping to prevent record linkage disclosure. Bertino et al. (2005) outline the issues and

approaches for privacy preserving from the perspective of computer scientists.

3. Need for More Effective Data Perturbation and Shuffling Methods

We view the research presented here as advancing data perturbation and shuffling (DPS) procedures

based on statistical models. One benefit of such model-based methods is that their performance is

theoretically more predictable and they are supported by statistical theory. By making the modeling

assumptions explicit, the users know better when these methods perform optimally and when there

is a substantial room to improve. For example, a database may contain sensitive attributes of mixed

discrete and continuous types, and various types of statistical analyses can be performed on these

variables. Especially important is the family of Generalized Linear Models (GLMs) (McCullagh and

Nelder 1989), which include normal, binomial, Poisson, Gamma, and inverse Gaussian regression

models as special cases. It is important that data perturbation methods are general and flexible

to ensure that the masked dataset can generate results for this wide range of types of analyses

similar to those using the original database. A trend is therefore to develop effective procedures that

provide high data utility in broader applications with sufficiently low disclosure risk. Although the

existing model-based DPS methods are enlightening and powerful, there exist unresolved problems

which reduce the utility of the resulting secure databases. To motivate the need for new data

perturbation and shuffling methods that can better address these important issues, we describe

these issues below.2

(1) The existing methods may not maintain the marginal distributional properties of confiden-

tial variables in general situations. The parametric MVN or MVST distributions rely on strong

distributional assumptions that may not hold for all the variables in a database. Many distribu-

tional features, such as boundedness, semicontinuity and discreteness (e.g., those features occurring

2 To be fair to the developers of existing methods, some of these problems are reported in the literature (Muralidhar and Sarathy
2006, Lee et al. 2010) and the authors made clear that their methods are not designed to address these problems.
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in the patent count and competition index data), multimodality, outliers, and heterogeneous tail

behaviors, can occur in databases but cannot be accommodated by these parametric models. Con-

sequently, the data masking procedures based on these parametric distributions cannot preserve

the distributional properties of confidential variables in general cases. Similar concerns exist for

copula-based methods that use parametric models for marginals. There is generally a lack of guide-

lines for choosing suitable marginals, and misspecification of these marginal functions can lead to

similar problems (Kim et al. 2007). This is why a generally preferred approach for copula appli-

cations is to use empirical distributions for these marginals. However, such nonparametric copula

modeling is at best fraught with caution for discrete data. As will be shown in a later section,

substantial bias arises when applying such nonparametric copula-based masking procedures for

discrete confidential variables.

(2) The existing methods cannot preserve nonmonotonic relationships. Nonmonotonic relation-

ships, such as an inverted-U relationship, are of great importance for policy and management

decision makers (Aghion et al. 2005, Qian 2007). Such relationships are key to determining opti-

mal policy and managerial intervention. Despite this importance, existing DPS methods lack the

ability to preserve these relationships. The correlation parameters in the MVN model are Pearson

product-moment correlation coefficients, which are only suitable for measuring linear relationships.

The copula-based methods (C-GADP and DSP) are more general. These methods capture the

dependence among attributes by rank order correlation and are able to preserve monotonic nonlin-

ear relationships. However, nonmonotonic relationships are not preserved. For example, when these

masking methods are applied to the C&I dataset, users cannot recover the important nonmonotonic

inverted-U relationship between competition and innovation (Fig 2). Consequently, suboptimal

policy and managerial decisions will be made. One may consider creating subsets of the original

dataset so that within each subset the relationship is monotonic. This may work well in some sit-

uations. However, this requires nonrandom subsetting of the dataset and so requires considerably

more prior knowledge about relationships among attributes. Furthermore, this strategy may lead

to small sample sizes in some subsets. What is needed are more flexible DPS methods that can

preserve important nonmonotonic relationships and increase the utility of secure databases so that

opportunities to inform optimal decision making are not missed.

(3) The existing methods lack the ability to handle discrete and semicontinuous confidential vari-

ables. Discrete and semicontinuous data occur frequently in the real world. Semicontinuity arises

when an attribute is bounded by a lower and/or upper bound but otherwise is distributed contin-

uously. Typically such variables have a non-zero probability occurring at the bound(s). Examples

of semicontinuous variables are the competition index in our C&I example, respondents’ incomes,

or the amount of expenditures on a product or service in marketing surveys or consumer data-

bases (because many respondents may have no income or no expenditure on certain products or
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services). Despite the abundance of discrete and semicontinuous variables in databases, existing

DPS methods are not designed for masking these types of attributes. Both GADP and STDP

are based on multivariate distributions for continuous data. When applied to discrete and semi-

continuous variables, these methods can lead to bias in the masked datasets. Furthermore, both

MVN and MVST have the entire real line as the support, and thus can create masked datasets

with meaningless masked values. One also needs to take extra care when applying C-GADP and

DSP to mask discrete and semicontinuous variables because, as discussed above and as will be

shown later, a nonparametric copula model can lead to biased results in data masking for these

types of confidential variables. Therefore, new DPS masking methods are needed that can handle

these different types of variables and construct secure databases on which a much wider range of

statistical analysis, such as the widely used GLMs, yield results similar to those using the original

data.

(4) The existing methods typically require modeling nonconfidential variables, even though these

variables remain unchanged before and after data masking. Prior DPS methods (GADP, C-GADP,

STDP, and DSP) require a joint model for both confidential and nonconfidential variables. Among

the existing DPS methods, DSP requires minimal modeling of the nonconfidential variables. How-

ever, it still requires modeling the relationships among the nonconfidential variables, and imposes

monotonic relationships among them. Intuitively, the modeling of nonconfidential variables can

be avoided because they remain unchanged before and after data masking. The extra modeling

of the nonconfidential variables creates two difficulties. First, it makes it harder to find a suit-

able joint model that can simultaneously model all the variables in a database reasonably well.

As noted in Muralidhar et al. (1999), the challenge in constructing new data masking procedures

for nonnormal data is the lack of multivariate distributions amenable to model manipulation and

random number generation. The extra modeling of nonconfidential variables further complicates

the issue. Furthermore, misspecified models for nonconfidential variables can have adverse effects

on masked confidential variables. One example is noted in Lee et al. (2010), who indicate that

their STDP procedure has difficulty dealing with heterogeneous tail behaviors. This is because the

MVST used in STDP has only one degree of freedom parameter governing the tail behaviors of

all variables. If nonconfidential variables have different tail behaviors than confidential variables,

the single degree of freedom parameter has to provide a compromise between those differential tail

behaviors, which can introduce bias on the tail behavior estimation of confidential variables.3 As

another example, some nonconfidential variables (e.g., the Y ear dummies) in the C&I data are a

group of binary variables for which some combinations of values cannot occur (e.g., any pair of

3 The alternative approach that uses more general multivariate t distributions with multiple degrees of freedom parameters is
unrealistic due to its unappealing parametric form and difficulty in random number generation (Lee et al. 2010).
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Y ear dummies cannot take the value of one simultaneously). A joint MVN or MVN copula model

is highly questionable for modeling such nonconfidential variables.

These important limitations of existing DPS methods call for more effective data perturbation

and shuffling procedures. The objective of this paper is to propose a new set of procedures, devel-

oped below, that can better address the above issues.

4. The MORE Approach to Enhancing the Utility of Secure Databases

In this section we describe our approach to data Masking by an Odds Ratio Expression (MORE)

of the conditional distribution of confidential variables. We first provide an overview of our overall

approach.

4.1. Overview

Let S = (S1, · · · , SLS
) be a vector of length LS containing nonconfidential variables, X =

(X1, · · · ,XLC
) be a vector of length LC containing confidential variables, and Y = (Y1, · · · , YLC

) be

a vector of the same length containing masked confidential variables. The joint distribution of the

three sets of variables can be written in the following form:

f(S,X,Y) = f(S)f(X|S)f(Y|S,X).

Our overall approach for constructing a secure database consists of the following steps:

• Condition on the nonconfidential variables in S. That is, our approach does not require mod-

eling f(S) because S remains unchanged before and after data masking.

• Estimate an odds ratio model for f(X|S).

• Generate masked data values using f(Y|S,X). In order to achieve high security of Y, we

set f(Y|S,X) = f(Y|S). In order to maintain the distributional characteristics of confidential

variables, we further set f(Y|S) = f(X|S).

It is important to note that the above data masking approach is a conditional distribution approach.

That is, the masked values are generated from the conditional distribution f(X|S). As discussed

in Muralidhar and Sarathy (2003), a conditional distribution data masking approach has good

properties. It satisfies the following two requirements for ideal data masking methods. (1) Data

utility requirement. Because we set f(Y|S) = f(X|S), the relationship between Y and S remains

the same as that between X and S. Because f(Y) =
∫

f(Y|S)f(S)dS =
∫

f(X|S)f(S)dS = f(X),

it is readily seen that the marginal distribution of Y remains the same as that of X. (2) Disclo-

sure risk requirement. The conditional approach sets f(Y|S,X) = f(Y|S). Therefore, given the

nonconfidential variable S, X and Y are independent of each other, meaning that knowing the

masked values Y provides no additional information about the original values of X, thereby effec-

tively controlling for the disclosure risk. Of course, these requirements may not be met when the

modeling assumptions in a conditional distributional data masking approach are violated by the
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data. As will be seen below, because our modeling approach is very general, the proposed approach

provides high data utility in much broader applications than existing data masking procedures,

while still effectively controlling for the disclosure risk. Furthermore, unlike prior approaches that

derive f(X|S) from a joint model for f(S,X), we directly model f(X|S) and bypass modeling f(S).

This further increases the robustness of masked data.

4.2. Representing a Conditional Distribution Using Odds Ratio Models

Key components for the data masking approach include the modeling and estimation of f(X|S),

and the generation of masked values from f(Y|S). Our approach utilizes odds ratio models and

provides a unified, flexible, and robust framework for modeling, estimation, and secure value gen-

eration for a wide variety of types of confidential variables. Therefore, the proposed methods are

particularly attractive as general-purpose data masking techniques. The odds ratio model was first

proposed in Chen (2004), and a Bayesian approach was first proposed in Qian and Xie (2011)

that outperforms Chen (2004) for high-dimensional missing covariate problems frequently seen in

business applications. These methods employ odds ratio models for regression covariates, and are

designed for correcting selection bias in parametric regression model estimates due to missingness

in covariates. We adopt the odds ratio models for solving data privacy problems, and study various

issues specific to data privacy problems, including developing and assessing efficient data masking

algorithms that can effectively address the utility issues of secure datasets as described in Section

3, developing disclosure risk measures for evaluating the risk of releasing masked datasets, and

evaluating the utility of masked databases. 4

Before moving to technical details, we first provide some intuitions behind the mathematics so

that users can capture the basic idea of the approach. Consider a simple case where all variables in

a dataset are independent of each other. In this situation a simple robust approach to masking a

confidential variable is to generate perturbed values from its empirical distribution. Our masking

approaches are akin to this idea, except that they allow for and preserve the complex relationships

among variables through flexible odds ratio functions. In fact, by setting all odds ratio functions

to be one, our masking approaches reduce to the simple masking approach using the empirical

distributions. The odds ratio model represents the conditional distribution f(X|S) as follows:

f(X1, · · · ,XLC
|S) =

LC∏

l=1

f(Xl|S, X̃l), (1)

4 Because a missing data problem does not have privacy issues, these missing data methods in Chen (2004) and Qian
and Xie (2011) do not consider measuring and controlling for disclosure risk. Furthermore, they do not consider issues
regarding the generation and utility of masked secure datasets.
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where X̃l = (X1, · · · ,Xl−1) when l > 1, and X̃l reduces to a null set when l = 1. As shown above, a

separate model is posited for each confidential variable. It thus offers the flexibility to model distri-

butional characteristics that are different among attributes, such as heterogeneous tail behaviors.

We then model each conditional distribution f(Xl|S, X̃l) as follows:

f(Xl|S, X̃l) =
η(Xl,Xl0;S, X̃l,S0, X̃l0)f(Xl|S0, X̃l0)∫

η(Xl,Xl0;S, X̃l,S0, X̃l0)f(Xl|S0, X̃l0)dXl

, (2)

where the conditional distribution is expressed as a function of two component functions that can

be modeled separately. The first component function, η(Xl,Xl0;S, X̃l,S0, X̃l0), is the odds ratio

function as defined below:

η(Xl,Xl0;S, X̃l,S0, X̃l0) =
f(Xl|S, X̃l)f(Xl0|S0, X̃l0)

f(Xl0|S, X̃l)f(Xl|S0, X̃l0)
, (3)

and S0, X̃l0,Xl0 are fixed and prespecified reference points for the odds ratio function in the sample

space of S, X̃l, and Xl, respectively. Theoretically, it does not matter how these reference points

are chosen. However, if a reference point is absurdly chosen to be extremely remote from the center

of a distribution, it may cause numerical instability in the likelihood evaluation. Thus, for the

purpose of computational stability we recommend using the mean of each variable as the reference

point. Note that from the definition of the odds ratio function given in Equation (3), we have

f(Xl|S, X̃l) =
η(Xl,Xl0;S, X̃l,S0, X̃l0)f(Xl|S0, X̃l0)

f(Xl0|S0, X̃l0)/f(Xl0|S, X̃l)
,

and integrating both sides of the above equation with respect to Xl we see that the denominator of

the righthand side in the equation above is
∫

η(Xl,Xl0;S, X̃l,S0, X̃l0)f(Xl|S0, X̃l0)dXl. Replacing

the denominator with this integral immediately leads to Equation (2).

The odds ratio function, η(Xl,Xl0;S, X̃l,S0, X̃l0), captures the dependence of Xl on S and X̃l.

It reduces to the case of independence between Xl and (S, X̃l) when the odds ratio function

η(Xl,Xl0;S, X̃l,S0, X̃l0) is one for all possible values of Xl, X̃l, and S. The odds ratio function can

be modeled in a generalized log-bilinear form (Chen 2004) as follows:

lnηγ(Xl,Xl0;S, X̃l,S0, X̃l0) =

LS∑

v=1

Mv∑

m=1

γlvm(Xl −Xl0)(Sv −Sv0)
m +

l−1∑

w=1

Mw∑

m=1

γlwm(Xl −Xl0)(Xw −Xw0)
m.(4)

As shown below, the choice of the log-bilinear odds ratio function makes clear that odds ratio

models nest GLMs as special cases. The above odds ratio function includes higher-order terms up

to the order of M . By increasing the value of M , this form of odds ratio function can approximate

any odds ratio function arbitrarily smooth. In particular, it allows for both monotonic and non-

monotonic relationships. With this added flexibility, one would need to determine optimal value(s)

of M that adequately capture the relationships among attributes in a parsimonious manner. The

selection of values for M can be formulated as a model selection problem. Because our approach is



Qian and Xie

Forthcoming in Management Science; 13

based on statistical models, a set of model selection methods developed in the statistical field can

be applied for this purpose, such as the one based on the likelihood ratio test (Chen 2007). There

is a close connection between the log-bilinear form of odds ratio function with the GLMs that are

frequently used in practical database analyses. To see this, let Xl follow a GLM, and its mean, µl,

is g(µl) = α0 +α1S1 + · · ·+αLS
SLS

+αLS+1X1 + · · ·+αLS+l−1Xl−1, where g(·) is the canonical link.

The corresponding odds ratio function can be derived to be

lnη(Xl,Xl0;S, X̃l,S0, X̃l0) =

LS∑

v=1

αv

a(τ)
(Xl −Xl0)(Sv −Sv0)+

LS+l−1∑

v=LS+1

αv

a(τ)
(Xl −Xl0)(Xv−LS

−X(v−LS)0),

where a(τ) is the dispersion function in GLMs. This is a reduced form of the generalized log-

bilinear odds ratio function in Equation (4), where M = 1. Sometimes it can be useful to consider

a transformed log-bilinear odds ratio model as follows:

lnη(Xl,Xl0;S, X̃l,S0, X̃l0) =

LS∑

v=1

γlv(Gl(Xl)−Gl(Xl0))(Hv(Sv)−Hv(Sv0))

+
l−1∑

w=1

γlw(Gl(Xl)−Gl(Xl0))(Gw(Xw)−Gw(Xw0)), (5)

where G(·) and H(·) are monotone transformation functions. For example, Gl(·) and Hv(·) can be

the distribution functions for Xl and Sv that are related to rank-order-based models and procedures.

We next move to modeling the second component function, f(Xl|S0, X̃l0), the density function of

Xl at the reference point (S0, X̃l0). The odds ratio model models this function nonparametrically.

Let (xl1, · · · , xlKl
) be the unique values of Xl observed in the dataset. A nonparametric model for

f(Xl|S0, X̃l0) assigns point mass (pl1, · · · , plKl
) on these unique values, such that

∑Kl

k=1 plk = 1, and

plk > 0 ∀k = 1, · · · ,Kl. To remove the model constraint, we can reparametrize the parameters in

fλ(Xl|S0, X̃l0) such that λlk = ln plk

plKl

, ∀k = 1, · · · ,Kl. On the other hand, in GLMs the density

function f(Xl|S0, X̃l0) follows a parametric distributional model. Therefore, it is readily seen that

the odds ratio model nests the commonly used parametric GLMs as special cases. It is also impor-

tant to note that, because a MVN model is equivalent to a product of conditional normal models,

it follows that the odds ratio model nests the MVN as a special case.

4.3. The MORE Procedures

We develop two data masking procedures using the odds ratio modeling approach. The first (sec-

ond) procedure generates perturbed (shuffled) values for confidential variables. We describe these

procedures below. In order to help understand these materials and the MORE procedures in gen-

eral, we also provide a small example that demonstrates numerically how the MORE procedures

perform data masking in the Appendix.



Qian and Xie

14 Forthcoming in Management Science;

4.3.1. MORE-P Procedure

The first procedure creates perturbed values and uses them to replace the original values of

confidential attributes. This procedure is termed as MORE-P and is described below.

• Step 1: Estimate the odds ratio model parameters θ = (λ,γ) in fθ(X = x|S = s) using the

observed data (s,x), where γ and λ can be considered the location and scale parameters, respec-

tively. Because the model likelihood factorizes as in Equation (1), the estimation can proceed for

each set of parameters, θl, l = 1, · · · ,Lc, separately by the method of maximum likelihood estima-

tion (MLE) as follows:

θ̂l = (λ̂l, γ̂l) = argmaxλl,γl

N∑

i=1

lnLi(λl, γl|Xil = xil;Si = si, X̃il = x̃il),

where i = 1, · · · ,N is the index for independent observations, and N denotes the sample size. The

likelihood from the ith observation, Li(λl,γl|Xil = xil;Si = si, X̃il = x̃il), is

Li(λl,γl)∝ fθl
(Xil = xil|Si = si, X̃il = x̃il) =

∑Kl

k=1 1{xil=xlk}ηγl
(xlk, xl0; si, x̃il, s0, x̃l0) exp(λlk)∑Kl

k=1 ηγl
(xlk, xl0; si, x̃il, s0, x̃l0) exp(λlk)

.(6)

There is generally no closed-form MLE solution so an iterative optimization algorithm is required

for finding the MLEs. We find that the Quasi-Newton (QN) algorithm performs well for obtaining

the MLEs of model parameters. The QN algorithm requires evaluating the derivatives of the log-

likelihood function, which are derived as follows:

∂ lnLi(λl,γl)

∂λlk

= 1(xil=xlk) −
ηγl

(xlk, xl0; si, x̃il, s0, x̃l0) exp(λlk)∑Nl

k′=1 ηγl
(xlk′ , xl0; si, x̃il, s0, x̃l0) exp(λlk′)

∂ lnLi(λl,γl)

∂γlvm

= (xil−xl0)(siv−sv0)
m−

∑Nl

k′=1 ηγl
(xlk′ , xl0; si, x̃il, s0, x̃l0) exp(λlk′)(xlk′ −xl0)(siv − sv0)

m

∑Nl

k′=1 ηγl
(xlk′ , xl0; si, x̃il, s0, x̃l0) exp(λlk′)

∂ lnLi(λl,γl)

∂γlwm

= (xil −xl0)(xiw −xw0)
m−

∑Nl

k′=1 ηγl
(xlk′ , xl0; si, x̃il, s0, x̃l0) exp(λlk′)(xlk′ −xl0)(xiw −xw0)

m

∑Nl

k′=1 ηγl
(xlk′ , xl0; si, x̃il, s0, x̃l0) exp(λlk′)

.

As shown above, these derivatives are given in closed form containing no integrals. Only a sum-

mation over a finite number of points is required, and can be evaluated straightforwardly. The

evaluation of the model likelihood and derivatives is fed to the IMSL Fortran library routine

UMING to perform the functional optimization.

• Step 2: Simulate the perturbed values of confidential variables from fθ(Y|S). To ensure a high

utility for the secure database, we set θ to be θ̂ estimated in Step 1 above. One could simulate

the perturbed values for all the confidential variables altogether, which may involve evaluating

the probabilities over a large number of combinatorial terms. A computationally much simplified
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approach is to generate perturbed values for one confidential variable at a time. For the ith observa-

tion of the lth confidential variable, Yil, we generate yil from the following multinomial distribution

on the set of values (xl1, · · · , xlKl
) uniquely observed in the original dataset:

Yil|(Si = si, Ỹil = ỹil) ∼ multinomial([Pil1, · · · ,PilKl
]),

where Ỹil = (Yi1, · · · , Yi,l−1) if l > 1 and it reduces to a null set if l = 1 and the kth component in

the multinomial probability vector [Pil1, · · · ,PilKl
], for k = 1, · · · ,Kl, is given as

Pilk =
ηγ̂l

(xlk, xl0; si, ỹil, s0, x̃l0) exp(λ̂lk)∑Kl

k′=1 ηγ̂l
(xlk′ , xl0; si, ỹil, s0, x̃l0) exp(λ̂lk′)

. (7)

It is important to note that the simulated values are in the set of the values observed in the dataset,

and therefore can lead to greater acceptance of data perturbation methods in practical users.

• Step 3: Report Y as the perturbed values of confidential attributes in the released database.

4.3.2. MORE-S Procedure

MORE-P is only able to preserve the marginal distributions asymptotically. If one needs to pre-

serve the marginal distributions exactly, a useful idea is data shuffling (Muralidhar and Sarathy

2006) based on which we develop a shuffling procedure, named as MORE-S. Its algorithm is

described below.

• Step 1: Apply MORE-P to generate perturbed confidential values, named as Yp = (Y p
1 , · · · , Y p

lc
).

• Step 2: Rank the values of the lth perturbed variable Y p
l , l = 1, · · · , lc, and denote the vector of

ranks for Y p
l as Rp

l . Then replace the perturbed value for the ith observation, Y P
il , with the original

value having the same rank, X(R
p
l
),l. When ties occur in computing ranks, the values in each set

of ties are assigned rank values randomly from a set of consecutive ranks such that the assigned

ranks for all observations go from 1 to N (the number of observations), and there are no ties in

ranks. Denote the resulting values as Yl, l = 1, · · · , lc.

• Step 3: Release Y = (Y1, · · · , Ylc) as the shuffled values in the secure database.

4.3.3. Security Measures Provided by MORE

In this section we develop a disclosure risk measure based on the distance/closeness between the

original value and the masked value that can be useful for quantifying the security level provided

by MORE. We define the expected mean perturbation distance (EMPD) for the lth confidential

variable as

EMPD = E

[∑N

i=1 D(Yil, xil)

N

]
=

∑N

i=1

∑Kl

k=1 D(yilk, xil)Pilk

N
, (8)

where Pilk is given in Equation (7) and D denotes a perturbation distance function. The quantity

inside the bracket is the mean perturbation distance between the perturbed and original values,
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and the expectation is taken with respect to the distribution of perturbed values. This security

measure is consistent with the concept of data perturbation that considers the original data as

the population. An intuitive choice for the perturbation distance function D(a, b) is the absolute

difference, i.e., |a − b|, which is used in later sections. As seen in Equations (7) and (8), one

advantage of MORE is that this disclosure risk measure can be computed simply as a by-product

of masking, and has a closed-form expression regardless of the types and distributions of masked

values.

The security measure is very useful for quantifying and diagnosing the expected prediction dis-

closure risk of releasing a secure database under a specific data masking setting. For example, a

very low value of EMPD means a high prediction power, implying a high predictive disclosure

risk. This is likely because there is a nonconfidential variable or a combination of several noncon-

fidential variables that predict well the confidential attribute. In extreme cases, the confidential

attribute may collinear with the nonconfidential variables or close to be a deterministic function

of the nonconfidential variables. In practice, database owners make judgments on a suitable cut-

off value for disclosure risk. When the EMPD is less than this cutoff value, the secure data may

not satisfy the disclosure risk requirement and the data masking setting may need to be changed,

e.g., by considering highly predictive nonconfidential variables to be also sensitive attributes. The

security measure can thus provide very useful information for quantifying the disclosure risk and

for diagnosing what actions need to be taken to increase the security level.

4.3.4. Computational Cost and Simple Strategies to Manage It

We conclude the description of the MORE procedures with an analysis of computational cost

and a discussion of recommended strategies to manage it. In the analysis, we will evaluate the

impact of various elements, including the numbers of variables, of distinct values, and of estimation

iteration steps, on the computational costs of MORE procedures. First, because MORE masks

sensitive attributes one by one, the computational cost is the sum of that for masking each sensitive

attribute. Thus, the computational cost increases additively, rather than multiplicatively, with

the number of confidential variables that need to be masked. Second, when masking a generic

lth confidential variable, the computational cost-determining step is the model estimation step

(i.e., Step 1 of MORE-P procedure as described in Section 4.3.1) because this step requires an

iterative optimization process. Note that the number of parameters involved in masking the lth

sensitive attribute is nl = nλl
+ nγl

, where nλl
(nγl

) is the number of parameters in λl(γl). Thus,

the bottlenecks of computational time are those sensitive attributes that are continuous and have

many unique values.5 For any such bottlenecking sensitive attribute, nλl
, which equals the number

5 It is also important to note that these bottleneck variables exclude nonconfidential variables because they are not modeled in
MORE. Furthermore, confidential variables that have only a limited number of unique values (e.g., count data) in a massive
dataset are also not bottlenecking variables.
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of unique values of this attribute, is much larger than nγl
in big data and is the main factor

affecting computational time. The well-established limited-memory Quasi-Newton method is often

the choice for large-scale optimization problems. It has an acceptable linear convergence rate, and

at each iteration step has a low storage and computation cost that is on the order of O(mnl)

where m is typically fixed at a number between 3 and 20 (Nocedal and Wright 1999, chap. 9).

More specifically, the algorithm does not need to store or compute the nl × nl Hessian matrix.

Instead it stores only the first derivatives of size nl from the most recent m iterations, which are

used for updating parameter estimates via an inexpensive two-loop recursion scheme that requires

approximately 4mnl multiplications (Nocedal and Wright 1999, chap. 9).

We recommend the following strategies to manage the computational cost when using MORE

to mask these bottlenecking sensitive variables in big data. One convenient way to reduce the

number of the unique values and thus the number of model parameters is rounding. The analysis in

Section 5.6 shows that rounding can sufficiently control computational time without affecting the

utility of secure datasets. Another simple strategy to further reduce computation time, if desired,

is splitting data into random subsets. Although all our computations in this paper are executed on

a single processor, data masking for each random subset can be executed on different processors

simultaneously using parallel computing. These recommended strategies are simple and flexible to

implement and can be easily tailored to the available computational power.

5. Performance of MORE Procedures

In this section we first conduct Monte Carlo simulation studies to evaluate and compare the

performance of the proposed MORE procedures with existing DPS approaches for solving data

security problems, and then apply MORE to two applications. These evaluations and comparisons

demonstrate the capabilities of the MORE procedures to overcome the limitations of the existing

DPS methods. We first describe simulation setup.

5.1. Simulation Setup

Our setup emulates a database marketing example. We simulate data consisting of five variables

for consumer data from a retail store with the following distributions. The first three variables,

S1, S2,X1, representing income, age, and log expenses of a consumer in the store, are simulated from

a trivariate normal with a zero mean vector and a variance-covariance matrix in which the diagonal

elements are 1 and the off-diagonal elements are 0.5. The fourth variable, X2, representing the

dollar amount of coupons redeemed by the consumer, is generated from the following distribution,

X2|S1 ∼N(β41S1+β42S
2
1 ,1), where β41 and β42 are set to be 0 and 1, respectively. The fifth variable,

X3, representing the number of transactions made by the consumer in the store, is generated

from a Poisson distribution with its rate parameter λ = exp(β51S1), where β51 is set to be 1. In

the simulation study, the first two variables (S1, S2) are nonconfidential and remain unchanged
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after data masking. The other three variables (X1,X2,X3) are confidential variables whose original

values need to be masked. The above simulation setup aims to emulate the following situations

under which we can study and compare the performances of different data masking procedures:

(1) the classical case of a multivariate normal setting using the confidential variable X1; (2) a

confidential variable X2 having a nonmonotonic nonlinear relationship with the other variables;

and (3) a discrete and nonnormal confidential variable X3.

For each simulated original dataset, we create datasets that mask the three confidential variables

using five methods: GADP, C-GADP, DSP, MORE-P, and MORE-S.6 Both C-GADP and DSP

utilize a nonparametric MVN copula model for the joint distribution of all the variables. We then

conduct a range of analyses on the masked datasets and compare the results with those based

on the original dataset. In this way we can investigate the performance of different data masking

procedures to maintain statistical properties of the original dataset. Using the distributional char-

acteristics of the original data as the true value, we calculate the biases of those of the masked

datasets. The bias measures the closeness of the masked datasets to the original dataset and is

a sensible measure of the utility of a secure database. Note that the confidential variable X3 is a

type of count data taking only non-negative integer values. However, both GADP and C-GADP

can generate masked values that are negative or non-integer. To improve the performance of these

two methods for X3, we postprocess the masked data values of X3 from these two methods and

round the masked values of X3 to the nearest integer values. Any negative values are reassigned a

value of zero. We repeat the simulation 500 times and calculate the average and standard deviation

(SD) of the biases. The sample size is varied at the values of 100, 500, and 1000. We summarize

and discuss the Monte Carlo simulation results below, which reveal that only the proposed MORE

approaches perform well in all these situations.

5.2. Preserving Distributional Characteristics of Confidential Variables

We first study the ability of different approaches to maintain marginal distributions of confidential

variables. We apply the nonparametric Komogorov-Smirnov (KS) tests to measure the overall

closeness of marginal distributions of masked confidential values to those of original values. Because

the simulated original dataset is considered the underlying finite population, we apply a KS test

that considers the empirical distribution of the original values as the reference distribution. The KS

test measures the distance between the empirical distribution of masked values and this reference

distribution. The smaller value of the KS test statistic, the closeness of the distribution of the

masked values to that of the original values and thus the more faithful preservation of marginal

distribution of confidential variables. Therefore, the KS statistic serves as a measure of bias in the

6 The more recent STDP approach (Lee et al. 2010) performs better for heavy tails and highly skewed data than GADP.
However, as a parametric approach for continuous data, STDP shares some important limitations with GADP. Thus, for the
sake of relative ease in implementation, we use GADP as the benchmark model to compare with.
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overall distribution of masked values. We calculate the average and SD of the KS test statistics over

all 500 simulated datasets for each data masking procedure. We also perform similar analyses for

some other important but less comprehensive distributional summaries, including moments (Mean,

Variance, Skewness, Kurtosis), and quantiles at 5%(Q05), 25% (Q25), 50% (Q50), 75% (Q75), and

95% (Q95). The results are summarized in Table 1. DSP and MORE-S are not included in this

table because these two methods shuffle the original values among records, and as a result the

marginal distributions of confidential variables are preserved exactly. We also exclude GADP from

the table because it can generate biased masked data when the assumption of MVN is violated.

As expected, we do find significant bias when GADP is used for masking variables X2 and X3.

Therefore, in Table 1 we summarize the results for the two nonparametric perturbation procedures,

C-GADP and MORE-P.

(1) For confidential variable X1, which follows a multivariate normal with the two nonconfidential

variables, the results in Table 1 show that both C-GADP and MORE-P perform well. The KS

test statistics are small and decrease as the sample size increases, implying that as data become

richer, the marginal distribution of a confidential variable can be estimated more accurately and

all methods can preserve this marginal distribution arbitrarily well. We observe the same pattern

for moments and quantiles. Although the results for GADP are not presented here for reasons

given above, they show that both C-GADP and MORE-P perform somewhat better than the

parametric GADP, even though the data are simulated from a MVN. The reason is that the observed

original values are considered as the finite population in data masking. The two nonparametric

procedures, C-GADP and MORE-P, can adapt better to the shape of the empirical distribution

of the observed original values than GADP. Therefore, these two methods can better preserve the

marginal distributions of the observed original confidential data.

(2) For confidential variable X2, which has a nonlinear relationship with the nonconfidential

variables, the results show that both C-GADP and MORE-P perform well in preserving the mar-

ginal distributions, although MORE-P performs noticeably better. GADP performs worse than

C-GADP and MORE-P because of the restrictive linear dependence structure of the MVN model,

the modeling approach adopted in GADP. Because the correlation parameters in a MVN are Pear-

son product-moment correlation coefficients, GADP allows only for linear relationships between

attributes. Because marginals and the dependence structure are jointly estimated in the MVN

model, the misspecification of the dependence structure can have adverse effects on the estimation

of marginal distributions. Unlike GADP, MORE is capable of allowing for nonlinear relationships

and thus preserving the marginal distributions in the presence of nonlinear relationships. It is

interesting to note that the preservation of marginal distribution in C-GADP is more robust than

GADP, even though the dependence structure is still of a multivariate normal nature. The rea-

son is that C-GADP uses the nonparametric empirical distributions for marginals and therefore
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forces the preservation of marginal distributions. However, as will be seen later, the nonmonotonic

relationship will not be preserved in C-GADP.

(3) For confidential variable X3, the results in Table 1 show that MORE-P performs best. In this

case, we find that the KS statistics for both GADP and C-GADP remain large even when the sample

size increases. Similar patterns are found for moments and quantiles. Note that the confidential

variable X3 is a count variable, which is nonnormal and discrete and takes no negative values. In

this case, because the normality assumption is violated, it is not surprising that GADP performs

poorly as GADP is designed for MVN data. What is less obvious is the suboptimal performance of

C-GADP. There are two reasons. First, C-GADP invokes a MVN model for dependence structure.

Such dependence structure can become incompatible with the nonlinear relationships that involve

nonnormal data. Another important reason is that the copula model can have difficulty handling

discrete data. Below we discuss more about the latter reason, an issue that is less known in the

literature.

Copula modeling has been very popular recently for modeling multivariate distributions. Var-

ious parametric approaches to copula estimation have been proposed (see Qu et al. 2009 for a

discussion). In practice, a nonparametric copula that uses empirical marginal distributions may

be preferred because they rely less on the correct specification of marginal distributions. Copula

modeling proves to be very successful for modeling multivariate continuous data. In fact, all pre-

vious applications of copula-based data masking procedures (C-GADP and DSP) have focused on

continuous variables. On the other hand, the literature on copula-based data masking has been

scarce for discrete data, despite the abundance of discrete variables in business fields. One diffi-

culty is that many key properties in the copula theory for continuous data do not hold for discrete

data. Genest and Neslehova (2007) review various facts about copula modeling for discrete data,

and provide both theoretical derivations and empirical examples demonstrating how discreteness

in a probability distribution invalidates various familiar properties that are fundamental to copula

theory in the continuous case. The cause of difficulties in discrete data cases lies in the fact that the

inverse of a discrete distribution function has plateaus. Therefore, for the discrete data, although

the existence of a copula representation is guaranteed, a copula representation compatible with

the data is not unique. This nonuniqueness creates an identifiability issue. Consequently, copula

inference (and particularly nonparametric rank-based inference) from discrete data is fraught with

identification difficulties. Although the estimation through a parametric copula remains possible in

some situations, it is unclear under what conditions identifiability is achieved. Furthermore, such

a fully parametric copula is computationally more intensive (Qu et al. 2009), and does not have

the same level of robustness as its nonparametric counterpart.

Because of the identifiability issue, our simulation results show significant bias in the distributions

of masked values. The moments and quantiles of the distributions are also substantially different
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from those of the original values. These biases do not reduce with larger sample size. In contrast,

our approach does not have this problem because no inverse mapping from a discrete distribution

function is required.

5.3. Preserving Nonmonotonic Relationships

We next study the performance of different data masking procedures in their ability to preserve

various types of relationships among attributes. For the confidential variable X1, we compute its

Pearson correlation coefficients with S1 (i.e., ρ31) and with S2 (i.e., ρ32). For the confidential variable

X2, we fit a quadratic regression model that regresses X2 on S1 and S2
1 , and obtain the estimates

for the corresponding regression parameters β41 and β42. For the confidential variable X3, we fit

a Poisson regression model with a log link that regresses X3 on S1, and obtain the estimate for

the corresponding regression parameter β51. These analyses are performed on both the original

simulated datasets and those masked datasets for each data masking procedure. We then compute

the average and SD of the biases over all 500 simulated datasets.

Because the confidential variable X1 and the nonconfidential variables S1 and S2 are jointly

distributed as a MVN, the Pearson correlation coefficients ρ31 and ρ32 fully capture the linear

relationships between X1 and S1 and S2, respectively. In this linear relationship case, we expect

and do find that all data masking procedures perform well. Although a linear relationship is

a simple and parsimonious way to describe relationships among variables, it is by no means a

universally applicable one. As discussed in an earlier section, nonmonotonic relationships are critical

for making optimal policy and management decisions. Such nonlinear relationships can occur for the

confidential variable X2, with which S1 has a U-shaped relationship. In this case, GADP, C-GADP,

and DSP all lead to significant bias in the estimates of regression parameters (β41 and β42) because

these methods are not designed to maintain the nonmonotonic relationship. Instead of identifying

a U-shaped relationship, these methods assert there is no relationship between X2 and S1. This

is not surprising because the MVN model, the basis of these masking procedures, cannot model

nonmonotonic relationships. In contrast, the MORE procedures allow for general nonmonotonic

relationships, and thus can preserve the potentially complex but important relationships of variables

in the masked datasets. A nonlinear relationship could also arise in a nonlinear regression model,

as for the case of confidential variable X3. The methods GADP, C-GADP, and DSP all have sizable

biases for the parameter β51 that remains when the sample size increases. These biases arise for

two reasons. First, as discussed above, these methods cannot handle the discrete confidential data.

Second, they have a restrictive dependence structure that cannot adequately capture the nonlinear

relationship in a Poisson regression model. In contrast, the results in Table 2 show that MORE-P

and MORE-S perform well in preserving these different relationships. Because GADP, C-GADP,

and DSP are not designed for preserving these more complex relationships, we omit results for

them in the table.
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5.4. Disclosure Risk

While as shown above MORE can substantially enhance the utility of secure databases, a remaining

important point is to ensure that these utility improvements do not compromise the security of

resulting databases. As explained in Section 4.1, MORE ensures that the masked values in Y are

independent of X given S, thereby causing no increase in disclosure risk, given that the released

data preserve statistical properties of the original data. As described in Section 4.3, MORE has

two equivalent ways to generate the masked values Y . The first is to generate the perturbed values

for all the confidential variables together, and the other is to generate perturbed values one at a

time using a sequence of conditional distributions. Both ways satisfy the conditional independence

requirement and are just different approaches to generating values from the same distribution. 7

To validate the above theoretical justification, we perform simulation studies to evaluate the

value disclosure risk of MORE that uses the conditional simulation approach. We simulate datasets

of sample size n(= 100,500,1000) from a bivariate normal distribution with a specified correlation

coefficient (ρ = 0.0,0.2,0.4,0.6,0.8,0.95). Both variables were to be masked. We then compute

the proportion of variability in a confidential variable explained by the corresponding masked

variable. In this case, since S is null, the confidential and masked variables should be independent

of each other if the conditional independence assumption is satisfied, and therefore we expect that

the masked variable should have no power to explain the confidential variable. Table 3 reports

the average proportion of explained variability for each combination of correlation coefficient and

sample size for DSP, MORE-P, and MORE-S. It is evident that all three methods provide essentially

the same level of excellent protection from the value disclosure risk. In all cases, the proportion of

variability explained in the confidential variable using the masked variable is essentially zero.

Table 1 also compares the disclosure risk level between two nonparametric perturbation methods,

C-GADP and MORE-P. Both approaches are conditional, and have similar EMPD for X1.
8 On

the other hand, for X2 and X3 C-GADP has a larger EMPD. This is expected because C-GADP

does not preserve statistical properties of these two confidential variables and thus can have a

lower disclosure risk. As explained in Section 4.3, the EMPD can be very useful for quantifying the

disclosure risk and informing data owners when actions are needed to increase the security level, e.g.,

by masking nonconfidential variables that are highly predictive of the confidential variables. With

suitable adjustment of the security level, MORE can provide maximal utility for legitimate users

and adequate disclosure control for intruders, thereby achieving optimal user-intruder information

equilibrium (Muralidhar and Sarathy 2003).

7 Scheuer and Stoller (1962) show that to generate a vector of random variables, one approach is to generate values for a
sequence of conditional distributions one at a time in the same way as used in the conditional simulation approach of MORE.
We choose the conditional simulation approach purely because of its computational simplicity, although it will generate secure
values from the same distribution as the joint simulation approach.

8 There is no close-form expression of EMPD for C-GADP. We therefore generate a large number (e.g., 100) of perturbed
datasets using C-GADP and use the sample mean of the mean perturbation distance as an estimate of EMPD.
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5.5. Application of MORE to the Competition and Innovation Data

We next apply the MORE procedures to the competition and innovation dataset. As shown below,

the proposed data masking procedures can properly account for important features in this dataset.

The methods are flexible to preserve the nonmonotonic relationship between innovation and com-

petition in the original dataset. Because masked values are in the set of the observed values, the

bound requirement is automatically satisfied, which ensures no out-of-bound values are generated.

Because of the nonparametric distributional modeling, features such as skewness are also preserved.

For our illustrative purpose, in our data masking analysis we will consider the masking of the

confidential variable X = ptcw and the nonconfidential variables S = (Y ear, Industry,Ci). We first

consider a simplified analysis that includes only Ci in S. Figure 3 presents the PP-plots that

compare the distributions of masked values of patcw from GADP, C-GADP, and MORE-P with

the distribution of the original values of patcw. Both GADP and C-GADP can generate negative

perturbed values of patcw that are not meaningful. We thus reassign any negative values to a

value of zero. The shuffling methods, DSP and MORE-S, are not reported because they preserve

the marginal distribution exactly. A PP-plot compares the cumulative distribution functions from

two datasets and provides a graphical evaluation of whether two datasets agree closely. When the

masked data resemble the original data, the points in the plot should be close to the straight

diagonal dotted line. Figure 3 shows a large discrepancy between the distribution of the masked

values using GADP and that of the original values. C-GADP performs much better in preserving

the marginal distribution of patcw but there is still a noticeable discrepancy for small values of

patcw. MORE-P performs best because the curve formed by the points is almost indistinguishable

from the diagonal line, indicating the excellent preservation of the marginal distribution.

We also perform KS tests to formally evaluate the ability of these methods to preserve the

marginal distribution of patcw. Table 4 summarizes the results, which show the KS test rejects

the null hypothesis that the perturbed values generated using GADP come from the distribution

of the original values with a p-value of < .0001. There are also substantial biases in the moments

and quantiles compared with those calculated from the original values. As a comparison, C-GADP

performs much better with a substantially smaller KS statistic and a borderline significant p-value

(0.0418). The moments and quantiles of the C-GADP are also much closer to those of the original

values as compared with GADP, indicating that the nonparametric marginal method is performing

better. MORE-P performs best with much smaller KS statistics and a highly nonsignificant p-value

of 0.9989, indicating the masked values preserve the marginal distribution very well.

As a test to verify whether the masked values can preserve the important inverted-U relationship,

we run a Poisson regression model on the original values and the masked values of patcw for

each data masking procedure.9 The Poisson regression model regresses patcw on Ci and Ci2. This

9 Note that patcw is a citation weighted patent count and therefore can take noninteger positive values. The Poisson regression
routines in many software packages (e.g., R and Stata) are extended to handle noninteger response values, even though the
classical Poisson regression requires integer values.
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mimics a scenario to assess the ability of different data masking procedures to allow a user of a

secure database to discover the inverted-U relationship between competition and innovation using

the masked values of patcw. The regression results using the original data and masked data are

reported in Table 5. The prior data masking procedures, GADP, C-GADP, and DSP, are all based

on a joint MVN-type model and are not designed for maintaining a nonmonotonic inverted-U

relationship. Therefore, using the masked values based on these methods will not preserve the

inverted-U relationship. In fact, the analyses from these methods assert no relationship between

competition and innovation, as seen from the nonsignificance of regression parameters for Ci and

Ci2. In contrast, MORE-P produces the regression parameters that are closest to those based on

the original values and that can preserve the inverted-U relationship. Figure 2 compares the fitted

regression curves using each data masking procedure with that using the original data. The figure

shows that only MORE-P and MORE-S are able to maintain the inverted-U relationship existing

in the original dataset.

We next consider a refined analysis that includes (Y ear, Industry,Ci) in S. Note that Y ear

and Industry are categorical variables, which are typically incorporated into analyses as a set

of dummy variables. This would create additional 21 (for Y ear) + 16 (for Industry) dummy

variables. This substantially enlarges the modeling work for a joint data masking approach that

models these variables, even though these variables remain unchanged after data masking. On the

other hand, MORE procedures condition on these variables. Table 6 reports the analysis results. As

compared with the simpler analysis that excludes Y ear and Industry, the performance of all data

masking procedures improves, although the order of different data masking procedures on their

performance remains the same. The KS statistics reduce in size and the corresponding p-values

increase, indicating better preservation of the distribution of the original values. The preservation

of moments and quantiles also improves for all methods. The results based on Poisson regressions

on the original and masked values are summarized in Table 7. In addition to Ci and Ci2, the

Poisson regressions control for year and industry dummies. The parameter estimates in the column

of “Original” are the same as those reported in Aghion et al. (2005) and show a strong inverted-U

pattern between competition and innovation. As in the simplified analysis, prior methods (GADP,

C-GADP, and DSP) cannot preserve the nonmonotonic inverted-U relationship and essentially

conclude no relationship between these two variables. In contrast, MORE-P and MORE-S maintain

this important relationship. Consistent with our simulation results, because MORE-P preserves

statistical distributional properties better, it has a somewhat smaller EMPD than GADP and C-

GADP for the simplified analyses, as shown in Table 4. The difference in EMPD among different

methods is reduced for the refined analyses, as reported in Table 6, likely because of a much

improved fit for all methods in the refined analyses.
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We further compare MORE with the multiple imputation synthetic data (MI) approach to data

masking, as described in Raghunathan et al. (2003) and Reiter (2005). In order to maintain com-

plex relationships among attributes, we use their parametric MI procedure in which data owners

need to specify different types of parametric imputation models for masking mixed types of con-

fidential variables, and then employ different algorithms tailored for generating synthetic data for

different types of variables. This is in contrast with MORE, which provides a single nonparamet-

ric masking model and algorithm applicable for mixed types of confidential attributes, which is

important for general purpose automatic data masking. When generating synthetic datasets, we

set the imputation models to be the same as the analysis models, i.e., to be the Poisson regression

models for patcw conditional on S as specified for fitting data in Tables 5 and 7. This mimics a

scenario in which data owners know the types of analyses to be performed on masked datasets.

Notice that our odds ratio perturbation models nest the Poisson imputation models as special

cases. As shown next, this benefit has important consequences in preserving a much wider range

of statistical properties of sensitive attributes.

One hundred synthetic datasets are drawn from the posterior predictive distribution of the sen-

sitive attribute patcw using flat priors on the Poisson imputation model parameters. The results

from these synthetic datasets are combined using the rules developed by Raghunathan et al. (2003).

Because the MI uses the same imputation models as the analysis models, we expect the synthetic

datasets to preserve the inverted-U relationship between competition and innovation. This is con-

firmed by the results under columns “MI” in Tables 5 and 7, which show comparable performance of

MORE-P/S and MI, and both are capable of preserving this relationship. The parameter estimates

from MI are somewhat closer to the estimates from fitting the original data than MORE. This is

because MI takes the average of the 100 estimates from synthetic datasets and thus eliminates the

variability of the estimates, which can be appreciable unless sample size is very large. The standard

errors from MI are somewhat larger than from MORE, reflecting this added variability. On the

other hand, Tables 4 and 6 report the means of the marginal distribution characteristics over 100

synthetic datasets, showing that these synthetic datasets do not preserve the marginal distribu-

tions of the confidential variable patcw. In both tables, the average KS test statistics and P-values

under the columns “MI” show high statistical significance, suggesting a large discrepancy between

overall distributions of synthetic datasets and that of the original data. Many summary measures,

except mean, show substantial differences from the original ones, which can affect inferences based

on these measures. Overall, these synthetic datasets do not preserve the marginal distribution of

patcw as well as MORE does. This analysis demonstrates the value of the robustness of MORE in

preserving a much wider range of statistical properties of sensitive attributes.

The primary advantage of MI over MORE-P/S methods proposed here is its ability to incorpo-

rate the added variability that results from the data masking process into statistical inference of
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secure datasets. A disadvantage of MI is the increased analytical complexity and the need to store

and process multiple synthetic datasets (Raghunathan et al. 2003). For instance, simple masking

algorithms in DPS may need to be replaced with computationally more expensive algorithms in

MI. Avoiding negative standard error estimates in MI would require generating a large number of

synthetic datasets or using more a complicated formula involving numerical integrations. Storing

and processing a large number of synthetic datasets for masking massive datasets may not always

be desirable for data users. Thus, the choice of which class of methods to use in practice will depend

on a number of factors, and it is helpful to offer users both types of methods. For situations in

which the variability added from data masking and its impact on statistical inference are relatively

small (e.g., with a large sample size), one may favor MORE-P/S for its relative analytical simplicity

and low cost, robustness, and ability to nest GLMs as special cases. In situations in which the vari-

ability introduced in data masking must be properly incorporated, it is desirable to overcome this

limitation of MORE-P/S by developing an MI version of MORE. Because of substantial conceptual

and implementation differences between the two classes of methods, we leave this development for

future research.

5.6. An Additional Application: An Organizational Data Warehouse Example

Our second application is on an organization data warehouse example described in Muralidhar and

Sarathy (2006). This dataset contains six variables with three nonconfidential ones (Gender, Marital

Status, and Age) and three confidential (Home Value, Mortgage Balance, and Total Net Asset

Value). A large dataset with 50,000 observations was generated using the procedure described in

Muralidhar and Sarathy (2006). The authors use the dataset to illustrate the applicability of DSP to

large datasets and the capability of DSP to maintain the monotonic relationships among variables

in this dataset. Unlike the prior application, the relationships between variables have nonlinear but

monotonic relationships. One approach is to use the polynomial odds ratio functions to approximate

these nonlinear relationships. Another approach is to model the relationships using the transformed

log-bilinear form as specified in Equation (5). We adopt this simpler second approach here and

use the distribution functions as the transformation functions. After using MORE-P to generate

the perturbed values on the transformed variables, we perform data shuffling to obtain the masked

dataset. In this dataset, each of the three confidential variables has a large number (> 10,000)

of unique values. To speed up the computation, we create five random subsets with equal sample

sizes (i.e., 10,000 observations per random subset). For each subset, we round the transformed

variables to the third decimal place to further reduce the number of unique values. Table 8 reports

the analysis result as was done in Muralidhar and Sarathy (2006). As we see, both DSP and

MORE-S perform similarly well and both can maintain the rank-order correlations accurately. We

also consider the cases where only Home Value (MORE-S1), Mortgage (MORE-S2), or Total Net

Asset Value (MORE-S3) is confidential and needs to be masked. As we see from Table 8, MORE
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performs well in all these cases where different variables are selected for masking. Computationally,

DSP requires no iterative optimization of model parameters, but MORE does. Therefore, unlike

the C&I dataset, when the requirements for using DSP are satisfied (such as in this data warehouse

example), DSP offers a computationally simpler approach, is as effective as MORE-P or MORE-S

in maintaining security and utility, and needs not be replaced.

To investigate the effectiveness of the rounding strategy as recommended in Section 4.3.4, we

conduct an alternative analysis that rounds the transformed variables to the first decimal place.

As seen in Table 8, the different levels of rounding produce very similar results.10 For this large

dataset, on a desktop computer with a 2.7GHZ Intel Xeon Processor and 4GB memory, rounding

to the first decimal place reduces computational time from about 3 minutes to only 22 seconds,

which approaches the computation time of DSP (12 seconds). This analysis demonstrates that the

simple rounding strategy can very effectively reduce computational time with negligible effects on

the utility of secure datasets.

6. Discussion

Modern evidence-based research and practice in many areas, such as database marketing, strategy,

business census, and public health, depend heavily on the construction, sharing, and dissemina-

tion of effective databases. There are rapidly increasing demands for secure database construction

methods that can protect sensitive information while maintaining the high utility of databases

shared with third parties. In this article we have developed new data perturbation and shuffling

procedures for building secure databases more effectively. As compared with existing ones, our

procedures substantially enhance the utility of secure databases while maintaining low disclosure

risk. The proposed methods have a number of features particularly attractive for general-purpose

data masking. The modeling, estimation, and generation of masked sensitive values in MORE do

not rely on the distributional properties of any variables in the dataset, and are applicable to mixed

continuous, semicontinuous, and discrete confidential variables. An important benefit of MORE is

that the data masking models nest GLMs, a large family of statistical models widely used in busi-

ness, economics, social science, and health database analyses, as special cases. Therefore, a much

wider range of statistical analysis can be conducted on the resulting secure databases with results

similar to those using the original ones. Furthermore, MORE is capable of preserving nonmonotonic

relationships among attributes, addressing an important issue unresolved from prior research in

model-based data perturbation and shuffling methods. MORE directly models the conditional dis-

tribution of those confidential data elements, and therefore can further increase the robustness of

secure databases.

10 Because the results for MORE-S1, MORE-S2,and MORE-S3 with different levels of rounding are also very similar,
we omit results when rounding to the first decimal place in Table 8.
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These benefits of the proposed methods have rich managerial and policy implications. As shown

in our empirical application regarding an inverted-U relationship between competition and inno-

vation, the flexibility of the odds ratio function allows one to reproduce this nonmonotonic rela-

tionship. Because of the robust nonparametric distribution modeling ability, MORE is capable of

preserving the distributional characteristics of confidential variables and can automatically account

for important data features, such as bounded support, discreteness, outliers, skewness, and heavy

tails. As a result of these benefits, MORE preserves the inverted-U relationship between compe-

tition and innovation while the existing DPS methods create masked datasets that lead to the

conclusion of no relationship between competition and innovation, a difference with huge manage-

rial and policy implications. As indicated in Aghion et al. (2005), such an inverted-U relationship

provides crucial insights into the impact of competition and closeness in technology space on inno-

vation. For market regulators, such effects would be critical for antitrust and competition policy

applications and potential reforms. For the manager of a firm who plans to enter a market, the

inverted-U relationship can be very important to predict the responses of incumbent firms in the

market and to formulate entry strategies. As demonstrated in our application, secure databases

using different methods can lead to different estimated competition-innovation relationships and

substantively different or even opposite predictions of incumbent firms’ response behavior after

entry. In the application, MORE substantially enhances the utility of secure databases and provides

opportunities to make optimal policy and managerial decisions for the users of these databases.
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Appendix. Illustration of the MORE Methods in a Small Dataset

We illustrate the steps in applying MORE procedures for data masking using a small simulated dataset

that has one nonconfidential variable S and one confidential variable X. For ease of illustration, a random

sample of 10 observations is generated from a bivariate normal distribution with mean zero and a variance-

covariance matrix in which the diagonal elements are one and off-diagonal elements are 0.5. The purpose is

to use this small dataset to demonstrate numerically the steps involved in applying MORE procedures.

• A.1: Estimate the odds ratio model parameters θ = (λ,γ) in fθ(X|S). The reference point (X0, S0) in the

odds ratio model is chosen to be the mean of (X,S). In this dataset, the unique values of X are

[
−1.306 −0.415 −0.196 0.055 0.160 0.314 0.457 0.778 1.226 1.617

]

In our model estimation, we have the estimates of parameters in fλ(X|S0) assigned to this set of unique

values as

λ̂ =
[
−0.077 0.165 0.199 0.224 0.230 0.233 0.231 0.205 0.120 0.000

]
,

and the estimate of the parameter γ in the log odds ratio function: lnη(X,X0, S,S0) = γ(X −X0)(S − S0)

is γ̂ = 0.954.

• A.2: Evaluate the security level of the current data masking setting. The EMPD is computed to be 0.821,

which is larger than 50% of the standard deviation of the sensitive variable X. The EMPD value is useful for

database owners to determine whether the current data masking setting has sufficient control of disclosure

risk by comparing this EMPD value with a prechosen cutoff value. Our example assumes that this EMPD

value is larger than the cutoff value, indicating the current data masking setting has sufficient control for

disclosure risk. If EMPD is less than this cutoff value indicating insufficient disclosure control, the data

masking setting needs to be revised. For example, database owners may consider masking the nonconfidential

attribute S, too, which will increase the EMPD value and further reduce the disclosure risk.

• A.3: Generate the perturbed values of the confidential variable X. For the first observation, [S, X] =

[-0.787, -1.306], we generate the masked value of X from a multinomial distribution on the set of the values

shown in A.1, and the probability vector in the multinomial distribution is computed as

P1 =
[
0.201 0.141 0.126 0.109 0.103 0.093 0.084 0.066 0.045 0.031

]
.

The random number generated from the above multinomial distribution represents the perturbation value

for the sensitive attribute X of the first observation, which is -0.196, and is used to replace the original

value of -1.306. The random number generation is then repeated for every observation, leading to the final

perturbed dataset.

• A.4: For MORE-S, we perform the data shuffling step. For the first observation, we replace its perturbed

X value with the value of X in the original dataset that has the same rank as that of this perturbed value in

the perturbed dataset. This shuffling step replaces the perturbed X value (-0.196) for the first observation

with the shuffled X value of 0.055. The shuffling operation is repeated for every observation, leading to the

final shuffled dataset.
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Table 1 Simulation Study Results on the Performance of Perturbation Methods to Preserve the Marginal

Distributions of the Confidential Variables.

X1 X2 X3

Criteria N C-GADP MORE-P C-GADP MORE-P C-GADP MORE-P

KS 100 0.0807 (0.0229) 0.0734 (0.0222) 0.0845 (0.0236) 0.0702 (0.0236) 0.2293 (0.0405) 0.0475 (0.0205)
500 0.0374 (0.0104) 0.0349 (0.0106) 0.0395 (0.0119) 0.0332 (0.0096) 0.2241 (0.0175) 0.0215 (0.0090)
1000 0.0269 (0.0075) 0.0251 (0.0072) 0.0281 (0.0083) 0.0237 (0.0074) 0.2240 (0.0128) 0.0160 (0.0065)

Mean 100 0.0044 (0.0765) -0.0031 (0.0755) -0.0140 (0.1561) 0.0002 (0.0966) 0.3569 (0.1725) -0.0008 (0.1215)
500 0.0033 (0.0366) 0.0001 (0.0386) 0.0014 (0.0736) 0.0034 (0.0484) 0.3892 (0.0700) 0.0091 (0.0577)
1000 0.0050 (0.0247) 0.0002 (0.0269) 0.0053 (0.0535) 0.0087 (0.0341) 0.4036 (0.0490) 0.0121 (0.0433)

Var 100 -0.0765 (0.1160) -0.0043 (0.1362) -0.2742 (0.7066) 0.0160 (0.2915) -2.8628 (4.2329) 0.0564 (1.3124)
500 -0.0217 (0.0571) -0.0003 (0.0590) -0.0691 (0.3414) 0.0208 (0.1679) -2.8060(2.2193) 0.1472 (0.7497)
1000 -0.0109 (0.0403) 0.0043 (0.0425) -0.0414 (0.2525) 0.0683 (0.1360) -2.6266 (1.2602) 0.2528 (0.7049)

Skewness 100 -0.0053 (0.2258) 0.0095 (0.2074) -0.1218 (0.4899) 0.0030 (0.2239) -1.1302 (1.1871) -0.0435 (0.3991)
500 0.0048 (0.1058) -0.0136 (0.1071) -0.0577 (0.3453) 0.0010 (0.1505) -1.6904 (1.7420) -0.0386 (0.3646)
1000 -0.0010 (0.0709) -0.0048 (0.0722) -0.0209 (0.2755) 0.0148 (0.1128) -1.9032 (1.8016) 0.0516 (0.4020)

Kurtosis 100 -0.0141 (0.4156) -0.0002 (0.4202) -0.5334 (2.7035) 0.0031 (0.9473) -6.7014 (10.8616) -0.4007 (3.4543)
500 -0.0190 (0.2041) -0.0003 (0.2029) -0.4323 (2.9978) -0.0291 (0.9852) -17.6801 (33.3058) -0.7367 (5.4429)
1000 -0.0190 (0.1499) -0.0079 (0.1501) -0.1797 (2.3016) -0.0235 (0.7853) -23.5202 (43.1230) 0.0634 (7.3234)

Q05 100 0.0633 (0.2084) 0.0024 (0.2216) 0.0792 (0.2510) -0.0055 (0.2537) 0.0019 (0.0425) 0.0000 (0.0000)
500 0.0192 (0.0931) -0.0088 (0.1018) 0.0222 (0.1068) 0.0056 (0.1074) 0.0000 (0.0000) 0.0000 (0.0000)
1000 0.0119 (0.0631) -0.0080 (0.0659) 0.0196 (0.0738) 0.0022 (0.0753) 0.0000 (0.0000) 0.0000 (0.0000)

Q25 100 0.0256 (0.1217) 0.0009 (0.1251) 0.0292 (0.1645) -0.0055 (0.1660) 0.9925 (0.0842) 0.0095 (0.1063)
500 0.0077 (0.0561) 0.0014 (0.0577) 0.0098 (0.0732) 0.0000 (0.0717) 1.0000 (0.0000) 0.0000 (0.0000)
1000 0.0085 (0.0387) -0.0033 (0.0381) 0.0118 (0.0548) -0.0018 (0.0510) 1.0000 (0.0000) 0.0000 (0.0000)

Q50 100 0.0086 (0.1134) -0.0078 (0.1040) 0.0057 (0.1578) -0.0003 (0.1465) 0.6250 (0.4778) -0.0170 (0.2175)
500 0.0036 (0.0517) 0.0015 (0.0545) 0.0067 (0.0788) 0.0015 (0.0639) 0.8180 (0.3784) 0.0000 (0.0000)
1000 0.0035 (0.0369) 0.0008 (0.0382) 0.0072 (0.0533) -0.0004 (0.0475) 0.9200 (0.2678) 0.0000 (0.0000)

Q75 100 -0.0229 (0.1207 -0.0081 (0.1269) -0.0299 (0.2300) -0.0056 (0.1710) 0.5325 (0.5144) 0.0235 (0.3989)
500 -0.0011 (0.0580) -0.0010 (0.0612) -0.0032 (0.1150) 0.0017 (0.0836) 0.8910 (0.3071) 0.0395 (0.2354)
1000 0.0034 (0.0384) 0.0017 (0.0425) 0.0037 (0.0759) 0.0094 (0.0579) 0.9810 (0.1339) 0.0160 (0.1195)

Q95 100 -0.0778 (0.2157) 0.0004 (0.2079) -0.1500 (0.7898) 0.0278 (0.4471) -0.5749 (0.9834) 0.0505 (1.0712)
500 -0.0133 (0.963) -0.0052 (0.0881) -0.0398 (0.3470) 0.0284 (0.2232) -0.4443 (0.5724) 0.0701 (0.5464)
1000 -0.0031 (0.0662) 0.0017 (0.0651) -0.0196 (0.2267) 0.0608 (0.1566) -0.4380 (0.5086) 0.0323 (0.4550)

EMPD 100 0.8726(0.0884) 0.8801 (0.0883) 1.7414 (0.2264) 1.0762 (0.1099) 1.4071 (0.2133) 1.0833 (0.1645)
500 0.9125 (0.0415) 0.9160 (0.0383) 1.7953 (0.1030) 1.1336 (0.0505) 1.4298 (0.0970) 1.1670 (0.0756)
1000 0.9147 (0.0274) 0.9191 (0.0272) 1.7999 (0.0687) 1.1529 (0.0384) 1.4327 (0.0657) 1.1839 (0.0512)

Table 2 Simulation Study Results on the Performance of MORE to Preserve Relationships Among Attributes.

Criteria N MORE-P MORE-S
ρ31 = 0.5 100 0.0040 (0.0654) 0.0002 (0.0660)

500 -0.0017 (0.0318) -0.0027 (0.0318)
1000 -0.0064 (0.0220) -0.0067 (0.0220)

ρ32 = 0.5 100 -0.0015 (0.0681) -0.0057 (0.0697)
500 -0.0016 (0.0317) -0.0024 (0.0318)
1000 -0.0062 (0.0220) -0.0066 (0.0220)

β41 = 0 100 0.0014 (0.1031) 0.0046 (0.1024)
500 -0.0016 (0.0518) -0.0027 (0.0537)
1000 -0.0003 (0.0384) -0.0006 (0.0385)

β42 = 1 100 -0.0094 (0.0767) -0.0098 (0.0476)
500 -0.0253 (0.0443) -0.0294 (0.0305)
1000 -0.0368 (0.0329) -0.0489 (0.0256)

β51 = 1 100 0.0001 (0.0872) -0.0207 (0.0523)
500 -0.0038 (0.0381) -0.0146 (0.0253)
1000 -0.0090 (0.0285) -0.0200 (0.0233)
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Table 3 Value Disclosure Risk.

N ρ DSP MORE-P MORE-S
Proportion of Variability Explained

X1|Y1 X2|Y2 X1|Y1 X2|Y2 X1|Y1 X2|Y2

100 0.0 0.000116 0.000111 0.000091 0.000100 0.000092 0.000102
0.2 0.000101 0.000113 0.000109 0.000110 0.000107 0.000111
0.4 0.000097 0.000093 0.000105 0.000113 0.000106 0.000113
0.6 0.000109 0.000103 0.000096 0.000095 0.000096 0.000094
0.8 0.000099 0.000094 0.000111 0.000097 0.000113 0.000096
0.95 0.000088 0.000083 0.000094 0.000103 0.000093 0.000103

500 0.0 0.000004 0.000003 0.000004 0.000003 0.000004 0.000003
0.2 0.000004 0.000004 0.000003 0.000004 0.000004 0.000004
0.4 0.000004 0.000004 0.000004 0.000005 0.000004 0.000005
0.6 0.000004 0.000004 0.000004 0.000004 0.000004 0.000004
0.8 0.000004 0.000004 0.000004 0.000004 0.000004 0.000004
0.95 0.000006 0.000006 0.000004 0.000004 0.000004 0.000005

1000 0.0 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001
0.2 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001
0.4 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001
0.6 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001
0.8 0.000001 0.000002 0.000001 0.000001 0.000001 0.000001
0.95 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001

Table 4 Marginal Distributions of ptcw with Original and Perturbed Values When S = (Ci).

Criteria Original GADP C-GADP MORE-P MI

KS 0.1836 (< .0001) 0.1045 (0.0418) 0.0282 (0.9989) 0.4375 (0.0000)
Mean 6.6554 7.3322 6.7049 6.9243 6.7513
Var 71.1421 48.0904 61.3625 80.2012 7.0243
Skewness 1.6354 0.7864 1.5200 1.7185 0.3809
Kurtosis 5.2310 2.9131 4.6862 5.5888 3.1173
Q05 0.0000 0.0000 0.0000 0.0000 2.7450
Q25 0.4453 0.1282 1.0789 0.4551 4.9425
Q50 3.3498 6.0219 3.8915 3.2436 6.5350
Q75 9.3848 11.9146 9.5400 9.6585 8.2450
Q95 25.0600 20.4321 23.5460 26.8393 11.2510
EMPD — 8.34 8.05 6.45 6.70

Table 5 Estimates of Relationship Between Innovation and Competition When S = (Ci).

Criteria Original GADP C-GADP DSP MORE-P MORE-S MI

Competition (Ci) 165.12∗∗ -64.36 33.29 41.06 199.70∗∗ 175.29∗∗ 169.53∗∗

(54.77) (47.77) (51.44) (55.09) (52.11) (52.65) (70.08)
Competition2 (Ci2) -88.55∗∗ 34.51 -18.28 -19.36 -109.53∗∗ -96.43∗∗ -90.94∗∗

(29.08) (25.36) (27.32) (29.16) (27.73) (28.02) (37.09)
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Table 6 Marginal Distributions of ptcw with Original and Masked Values When S = (Industry,Y ear,Ci).

Criteria Original GADP C-GADP MORE-P MI

KS 0.1186 (0.0137) 0.1017 (0.0514) 0.0254 (0.9998) 0.1151 (0.0292)
Mean 6.6554 7.1618 6.5441 6.4748 6.7370
Var 71.1421 57.3740 62.9778 65.7977 65.0568
Skewness 1.6354 1.2019 1.5614 1.5507 1.5874
Kurtosis 5.2310 3.6744 4.6564 4.7391 5.7508
Q05 0.0000 0.0000 0.0000 0.0000 0.0000
Q25 0.4453 1.0212 0.6715 0.3764 0.9850
Q50 3.3498 4.8538 3.5306 3.4114 4.0650
Q75 9.3848 10.6395 9.3014 9.3850 10.4000
Q95 25.0600 22.4616 24.9842 24.4802 23.7090
EMPD — 3.5459 3.2766 3.2263 3.1820

Table 7 Estimates of Relationship Between Innovation and Competition When S = (Industry,Y ear,Ci) .

Criteria Original GADP C-GADP DSP MORE-P MORE-S MI

Competition (Ci) 387.46∗∗∗ -67.42 6.54 -125.95∗ 411.50∗∗∗ 430.31∗∗∗ 395.05∗∗∗

(67.74) (59.31) (62.52) (59.59) (71.26) (70.30) (74.44)
Competition2 (Ci2) -204.55∗∗∗ 38.25 -2.09 66.96∗ -215.13∗∗∗ -225.47∗∗∗ -194.72∗∗∗

(36.17) (31.71) (33.44) (31.89) (38.01) (37.49) (39.41)

Table 8 Rank Order Correlation

Correlation Original DSP MORE-Sa MORE-Sb MORE-S1a MORE-S2a MORE-S3a

Home Value and
Gender -0.00373 -0.00701 -0.00402 -0.00313 -0.00657
Marital Status -0.00187 -0.00060 -0.00621 -0.00753 0.00307
Age 0.57146 0.60600 0.57029 0.56050 0.56977
Mortgage Balance 0.58229 0.59072 0.58574 0.58327 0.57843 0.57820
Total Net Asset Value 0.68129 0.68126 0.68866 0.68745 0.67873 0.68076

Mortgage balance and
Gender -0.00409 -0.00491 -0.00574 -0.000895 -0.00758
Marital Status -0.00093 0.00001 -0.00469 -0.00743 -0.00243
Age 0.28334 0.29953 0.28344 0.29004 0.27983
Total Net Asset Value 0.78156 0.78341 0.77916 0.78088 0.77841 0.78046

Total Net Asset Value and
Gender -0.00510 -0.00696 -0.00737 -0.00987 -0.00658
Marital Status 0.07426 0.07639 0.07858 0.06200 0.07410
Age 0.37367 0.38865 0.37754 0.37890 0.37487

Note: a and b denote rounding to the third and first decimal places, respectively.
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Figure 1 Histograms of Ci and Patcw in the Original Dataset.
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Figure 2 Comparison of the Relationships Between Competition and Innovation Estimated with the Original

Dataset and Masked Datasets. The solid curve represents the inverted-U relationship estimated using the original

dataset. The dotted curve represents the relationship estimated using the masked dataset generated by the data

masking method given on the top of the plot. The points in the plots represent the original data values and only

observations with patcw < 20 are plotted.
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Figure 3 PP Plots for the Masked Values of patcw for GADP, C-GADP, and MORE-P.


