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THE VALUATION OF SECURITY A1ALYSIS

I. Introduction

Active portfolio management is commonly partitioned into two types of

activities: market timing, which requires forecasts of broad-based market

movements, and security analysis, which requires the selection of individual

stocks that are perceived to be underpriced by the market. Merton (1981) has

provided an inciteful and easily-implemented means to place a value on market

timing skills. In contrast, while a normative theory of stock selection was

outlined long ago in Treynor and Black's (1973) work, no convenient means of

valuing potential selection ability has yet been devised.

The goal of this paper is to provide a framework in which stock selection

ability can be valued. One of the motivations for this research is to provide

a framework for efficient portfolio management. A management firm that

believes it has access to superior information or insight must allocate effort

across the two broad tasks of market timing and stock selection. Optimal

allocation of effort requires that the expected marginal value of each type of

analysis be evaluated.

We demonstrate that a constant-relative-risk-aversion client would desire

that a portfolio manager maximize the ex ante Sharpe measure of the managed

portfolio. The annual fee that such a client would be willing to pay for

management is proportional to the difference between the square of the Sharpe

measures of the managed portfolio and of the market, and is inversely

proportional to the client's risk aversion. The equilibrium fee for a given

level of investment ability would then depend on the risk aversion of the

marginal client.



One of the interesting implications of our model is that the value of

security selection is sensitive to the correlation structure of residual

returns from a market-model regression. Presumably, these residual

correlations are determined by nonpriced factors that affect various blocks of

stocks. Therefore, security analysts must be concerned with nonpriced as well

as priced factors. This insight provides a useful distinction between the

utility of the APT model of Ross (1976) and the intertemporal multifactor CAPM

of Merton (1973). While each model yields quite similar predictions about the

relationship between expected returns and expoure to systematic sources of

risk, the factor-analysis methodology commonly used in empirical applications

of the APT provides a natural means for determining the correlation structure

of residual returns.

We do not address in this paper the issue of how the client would assess

performance from ex post returns of the portfolio manager. Here, the client

would face the problems addressed by Dybvig and Ross (1985) and Admati and

Ross (1985). If the client can not overcome the statistical difficulties in

obtaining appropriate estimates of the ex ante Sharpe measure, then portfolio

managers will face the standard agency conflict.

The next section introduces a means for assigning a dollar value to

selection ability. Section III provides estimates of the value of what we

describe as an ex ante perfect security analyst. In Section IV, we place

Merton's (1981) market timer in our framework and use market timing as a

benchmark to which one may compare the potential value of stock selection. We

find that stock selection is potentially extremely valuable; even for modest

numbers of securities analyzed, selection can be far more valuable than

timing. However, these results are extremely sensitive to the ability of the
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fund manager to engage in short sales, or to borrow funds to lever up the

position in the active portfolio. Section V shows that if such activity is

not feasible, the potential value of analysis is far below that of market

timing. These results also are sensitive to the interval over which abnormal

security performance can be forecasted and to the correlation structure of

residual stock returns from a market-model regression. The expected value of

security selection is shown to be inversely related to the forecast interval,

and to decrease rapidly with the correlation among stock-return residuals.

Finally, Section VI shows how our analysis can be modified for the case of

unbiased but imperfect selection. Section VII concludes.

II. Valuation Framework

A. The Investor's Problem

We start with a common model of infinitely-lived individuals who maximize

lifetime utility by finding the optimal rules for consumption, c, and

portfolio weights (see Merton, 1969, 1971). The derived utility of wealth

function, J(W), is

J(Wt) = max
Et JeU(c5)ds (1)

where r is the rate of time preference and U(ct) is the utility of

consumption at time t. Individuals choose a portfolio from a menu of 4 risky

assets with covariance matrix C and one risk-free asset with rate of return

rf. If we let denote the vector of expected rates of return on the

risky assets and assign constant relative risk aversion to all investors with

an index of risk aversion equal to 5 > 1, then upon optimizing, investors will
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find that (Merton, 1971):

J(Wt) = q W/(1a) (2)

where

rq =

and where x is a number which summarizes and is determined by the parameters

of the investment opportunity set:

x=rf+ . (3)

Finally, i is an N-dimensional unit vector.

Equations (2) and (3) define the derived utility of an optimizing investor

freely choosing to hold some portfolio, which we will call P. Of course, the

investor's welfare would be unchanged if we were to replace the entire

investment opportunity set with the optimal portfolio P. Thusx may be written

= rf + (rprf)2I26a = rf + SI2 (4)

where is the Sharpe measure of the portfolio, the mean excess return

divided by the standard deviation. Because J(W) is increasing in x, equation

(4) demonstrates that the determination of optimal portfolio weights is

equivalent to the maximization of the Sharpe measure.

B. Treynor—Black Analysis

We assume that asset returns are generated according to the process
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= rf + B(r—r) + + (5)

where notation is standard except for which is the expected inferior or

superior rate of return of asset f that is forecast by security analysis.

Non-zero estimates of can arise from either expenditure of resources on

the discovery and processing of new information or from (perceived) superior

insight. In the absence of security evaluation, any investor would assign a

value of zero to . In this sense, all assets are fairly priced, and offer

expected rates of return commensurate with risk. Following Treynor and Black,

we initially assume a diagonal model, so that the residuals are uncorrelated.

We will explore the consequences of correlated residuals below.

Treynor-Black analysis recognizes that it is not feasible to analyze all

securities, which would allow the analyst to obtain estimates of , a,
and for all i, and then to construct a mean-variance efficient

frontier. Instead, a two-tier strategy is suggested in which the portfolio

manager maintains a core market-index portfolio, to which he adds incremental

positions in a limited set of analyzed securities based on analysts'

recommendations. The resultant portfolio is optimal given the constraints on

the feasible extent of security analysis. The security analysts cover n

securities and provide n estimation triplets (a, , ,). Based on these

estimates an active portfolio, A, is constructed, and the active portfolio is

mixed with the index fund.

A detailed analysis of the construction of the active fund is deferred to

the Appendix. The major results, due originally to Treynor and Black (1973),

can be sketched, however. The allocation of funds between the active fund, A,

and the market index, M, is chosen to maximize the portfolio's Sharpe measure,
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S, or equivalently, the square of that measure. Call WA the fraction of

funds allocated to the active fund. Then the goal is to

-r

max(

WA
P

where is the expected return on the entire managed portfolio (which

includes the passive core plus the incremental active position).

The optimal ity condition (see Appendix) is that

WA=
' (6)

where B is the beta of the actively management portion of the portfolio, and

2
a

WA= 2 2
r La + a IaMM Ae

The interpretation of equations (6) and (7) is that WA is the weight that

would be attached to the active portfolio if it turned out to have zero beta.

The actual weight, given in (6), adjusts for the correlation of the active

portfolio with the indexed core. The greater the beta, the greater is the

weight given the active portfolio. When the active portfolio more closely

follows the market, the investor will shift more funds out of the index fund

into the active portfolio, since the diversification potential offered by the

market is smaller and the costs of plunging into the active portfolio are

correspondingly smaller. When the optimal strategy is followed, the managed

portfolio will satisfy [see Appendix, equation (A.7)]
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., )S = S + (—). (8)P M

Equation (8) shows that the squared Sharpe measure of the managed

portfolio is decomposable into the square of the market's Sharpe measure plus

the square of the Jensen (1969) measure of the active portfolio, ctlc7.'

Thus, the active part of the managed portfolio should be chosen to maximize

its squared Jensen measure. This equation links the Sharpe and Jensen

measures of the managed portfolio. This relationship is valid, however, only

for optimized portfolios; it will not hold for arbitrary portfolio weights.

Moreover, under the assumption of the diagonal model , when the squared

Jensen measure of the active portfolio is maximized, it will satisfy the

relationship [see Appendix, equation (A.1O)1

n

JM = C JM (9)

1=1
1

Equation (9) establishes a second decomposition property of the managed

portfolio, since it states that the active portfolio's squared Jensen measure

equals the sum of those values for each component security.

C. The Valuation of Security Analysis

A passive investment strategy would simply mix bills with the market-index

fund. In this case, the derived utility of wealth would be, from (2),

where denotes the value that q would attain if the risky

portfolio were placed in the market-index fund. For this passive strategy,
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AM = rf + S/2 , (10)

analogously to equation (4). S is the Sharpe measure of the market-index

portfolio; equivalently, it is the slope of the capital market line.

If an analyst can indeed identify non-zero aiphas, a fund with a larger

Sharpe measure than SM can be constructed and so will be more attractive to

investors. Presumably, then, Treynor-Black managers can charge investors for

their services. This charge may be a one-time up-front load to buy into the

fund, or it may be an ongoing annual management fee.

To derive the one-time charge that investors would be willing to pay to

buy into the fund, define L as that load charge per dollar invested, and

equate the derived utility of wealth with and without access to the managed

fund.

= q[(1-L)W]/(1-)

which implies, using the definition of q from equation (2), that

L 1
'= - tXM/Ap

2 s
2orgS,,1 —'i-

= 1 — (
' ) (11)

2orf+Sp

The value of superior management, L, is a present value, reflecting the

contribution to the derived utility of wealth.
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The annual management fee that investors would be willing to pay for

active management can be derived similarly. Call the annual fee as a percent

of assets under management f. Then equation (4) immediately implies that the

fee would reduce the value of x for the managed portfolio to

= rf - f + S/2 , (12)

and equating Ap with to obtain investor indifference we obtain

f=(S-S)I2 (13)

Therefore, the difference in squared Sharpe measures is directly proportional

to the periodic fee investors are willing to offer for active management. In

a full-fledged equilibriummodel, with a specification of the distributions of

risk aversion parameters and wealth across the population, equation (13) could

be used to determine the equilibrium market price of management services.

Now consider a security firm that regularly analyzes n securities, each of

which follows the process of equation (5). Our goal is to derive an

expression for the difference in squared Sharpe measures for a fund managed by

such a firm and the market-index fund. This expression can be evaluated to

obtain an estimate of the value of analysts via equations (11) or (13).

We start our analysis with the case of what may be called °ex ante perfect

foresight,'t deferring the issue of estimation risk to Section V. We define

perfect foresight as the knowledge, at the beginning of each period, of the

set of n triplets (ct. , at). This definition comprises only limited

foresight, since it does not imply advanced knowledge of c. The analyst
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discovers only the ex ante value of alpha. This definition is somewhat

analogous to Merton's (1981) definition of a perfect market timer as an

individual who can forecast only whether the market will outperform bills.

Perfect foresight as to the actual market return is not required. Our

definition of perfect forecasting is more severe than Merton's since it

requires quantitative estimates of mispricing.2 However, we still require

only ex ante perfection, in that the forecaster would not need to predict the

ultimate realization of returns in order to be deemed perfect.

Note first from equation (8) that the difference in squared Sharpe

measures of the managed and indexed portfolios equals the square of the Jensen

measure of the actively managed position, (cz/)2. Because the

analyst can not know in advance the values of the aiphas and sigmas that he

will uncover, the ex ante value of analysis will depend on the distribution of

these parameters across all securities. To get a feel for the actual

empirical distribution of these parameters, we observed 500 randomly selected

stocks on the CRSP tape for the two five-year periods ending in 1978 and

1984. Using 60 monthly observations, we computed estimates of and

for each stock by estimating equation (5). Because the value of

analysis depends on the squared Jensen measure, we computed the frequency

2distribution of (ct./cj .).
1 1

Before presenting these results, we note that the squared Jensen measure

of each stock depends on the time horizon of the investment and the average

measured JM across the population of stocks depends on the length of the time

series used in the regression. If securities are priced fairly with respect

to the uninformed investor's information set, then the alpha uncovered by the

analyst for any small time period is equally likely to be positive or

-10-



negative, and the alpha over any investment period will be the "average" of

the alphas for each subperiod. With an expected alpha of zero, the expected

squared alpha equals the variance. Therefore, because the full-period alpha

is the average of the independent subperiod aiphas, the expected value of the

full-period squared alpha will be inversely proportional to the length of the

investment horizon, according to the usual relationship between the variance

of an average of i.i.d. random variables and the variance of each of those

variables.

Essentially, by measuring alpha over a long period, we fail to see

possible episodes of major under and overpricing of the stock during

subperiods. Over the long haul, these episodes partially offset each other,

and result in average alphas per month that appear small. The analyst,

however, could exploit these episodes if he were to rebalance the active

portfolio more frequently than the measurement interval. Of course, this

issue is present for any analysis of subperiod performance. It always is

better to be able to predict abnormal performance on a more frequent basis.

For example, Merton's (1981) market timer is far more valuable as a (perfect)

monthly timer than as an annual timer.

Our estimates of equation (5) generate the average alphas (per month) over

5-year sample periods. Therefore, the expected squared alpha for a randomly

selected stock for a posited investment horizon other than five years should

equal the average of the estimated alphas across the population of stocks,

multiplied by the ratio of five years to the length of that investment horizon.

In contrast, the regression estimates of are unaffected by the

length of the time series used to estimate equation (5). We observe a

residual each month, and use that monthly residual to calculate
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Longer time series simply generate more observations. Thus, under the quite

reasonable assumption that the distributions of and across

the population of stocks are independent, the expected value of their ratio,

i.e., of the squared Jensen measure, should be inversely proportional to the

length of the time period considered.

These theoretical arguments are borne out by the data. For each of the

five-year periods we examined, we computed regression equation (5) using only

the first 40 months of data from the period. Our considerations suggest that

the average of the squared Jensen measures should have increased by a factor

of 1.5. In fact, it rose by a factor of 1.44 in the earlier period and 1.77

in the latter period.

We have presented the histogram of squared Jensen measures for the

500-stock sample in Figure 1. We normalized our regression estimates to a

posited investment interval of one-quarter year. This hoHzon is motivated by

the quarterly evaluations of performance to which analysts are subjected.

Dividend and earnings announcement also are made quarterly, and so provide a

natural interval over which to predict stock performance. For this interval,

the mean of the distribution using the 1979-83 regressions was .244 and was

taken as an estimate of E(JM) for the analysis to follow below. The

mean of the distribution for the 1974-78 period was .324.

These values are typical squared Jensen measures for individual stocks.

When n securities are combined into an active portfolio, the squared Jensen

measure can be derived from equation (9), which implies that

E(JM) = nE(JM) = .244n (14)
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The economic value of this potential-performance measure is presented in the

next section.

This analysis assumes that securities with negative a estimates may be

sold short. If short sales are prohibited, securities with negative alphas

simply will be dropped from the active portfolio. Even if the firm runs an

in-house passive portfolio, the position in each security will be so small

that dropping the negative alpha security from the passive portfolio would not

be a sufficient substitute for a short sale. Therefore, short sale

restrictions mean that the fund will have to drop, on average, one half of

covered securities from the active portfolio. Consequently, if short sales

were to be disallowed, the number of analyzed securities to achieve any

particular value from analysis would need to be doubled. We will assume that

short sales of individual securities are not feasible. Therefore, the number

of analyzed securities, n, henceforth must be interpreted as net of negative

alpha stocks on which no action is taken. On average, 2n stocks must be

analyzed to obtain positions in n of them.

D. Correlated Residuals and t'Jonpriced Factors

When residuals are correlated, active management will be less valuable.

While the general case does not yield any easily-implemented solutions, we may

assess the impact of such correlation by examining a simple correlation

structure. Imagine for simplicity that there are two nonpriced Factors in the

economy that affect distinguishable sectors of stocks (for example, industry

effects). To keep the algebra tractable, suppose that one block of stocks is

affected by the flrst factor only, while another equal—sized block is affected

by the second factor. The two blocks are uncorrelated with each other, so

that the covariance matrix of residual stock returns is block diagonal.
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Consider a symmetric example in which for p > 0,

I =j

cov(c1, ) (15)

pa ij;iandj
in same
block

0 ij andi,j
in different
blocks

and in which the magnitude of
a1 for, all securities is some common value,

. Given the symmetry of this framework, it is clear that the active

portfolio must be equally weighted with one half of the active portfolio

invested in each block. It then follows that

2

cA = ri. ÷

More generally, for k blocks, we would find that3

2

= jj-. 1 +

and

nE(JM)
E(JM2)

i .244n
(16)A 1(p/k)(n-k) 1 ÷ (p/k)(-k)

For p = 0, equation (16) reduces to (14). For p = 1, n drops out of (16):

analysis of many securities is no more valuable than analysis of only one,

since the residuals of all securities in any block are perfectly correlated.

Correlation among residuals hurts the investor because it prevents the
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variance of the active portfolio from falling rapidly as stocks are combined

into the active position. Recall that the Jensen measure for each stock is

the ratio of the stock's alpha to the standard deviation of the residual

return. This residual standard deviation measures the diversifiable risk the

investor willingly assumes in order to obtain superior risk-adjusted expected

returns. When the residuals are correlated, the active position is worth less

because it imposes greater diversifiable risk on the investor.

This analysis demonstrates the importance of nonpriced factors to the

value of selection. To the extent that such factors result in correlated

security residuals, security analysis is devalued. The portfolio manager

faces a tradeoff between economies of information-gathering for related firms

and the loss of value suffered by specializing in related securities.

Therefore, an analysis of the factor structure of stock residuals emerges as a

potentially critical component of the portfolio selection process.

Consequently, the exclusive focus of the empirical arbitrage pricing

debate [Roll and Ross (1980, 1984), Dhrymes, Friend, and Gultekin (1984)] on

priced factors is overly limited since it seems to imply that only priced

factors are of economic interest. While priced factors determine fair

(equilibrium) rates of return, any attempt to exploit security mispricing must

account for the covariance structure of residual returns. This structure is

determined by nonpriced factors.

III. umerica1 Estimates of the Value of Selection

The monthly fee that a managed fund could charge its clients is given by

equation (14) while the one-time load that could be charged is given by (11).
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Using our estimate of E(JM), these fees can be calculated for any value

of risk aversion and number of analyzed securities. Table 1 presents the

results of such calculations. This table is computed under the assumption of

the diagonal model: the disturbance terms in (5) are taken to be mutually

uncorrel ated.

Column (1) of Panel A is the individual's risk aversion, column (2) is

the monthly fee that an investor would pay to a perfect market timer (see

Section IV); the remaining columns are the monthly fees than an ex ante

perfect analyst could charge clients as a function of the numbers of

securities analyzed. The value of selection rises rapidly with securities

included in the active position, and falls with risk aversion. As n

increases, firm-specific risk is diversified away, and the analyst's abnormal

expected return becomes increasingly less risky. By the time n = 20, the fee

that can be charged is huge. For example, with = 4, the monthly fee

(expressed at a continuously compounded rate4) is 61 percent. This value is

much larger than the typical (absolute) magnitude of stock alphas. The

immense value arises from the ability to safely borrow and lever up the

portfolio alpha when firm-specific risk is eliminated through diversification.

The values in Table 1 therefore correspond to portfolios with weights of

greater than 1.0 in the active portfolio. These positions would be

accompanied by short positions in the passive index fund or by short positions

in index futures plus borrowing positions, either of which simultaneously

would hedge out market risk and lever up the stake in the active portfolio.

The ability to acquire short positions in the market or to borrow is crucial

to the potential value of security analysis. We will see later that a limit

on short-sales of the index fund or on the ability to borrow to finance

positions in the active fund drastically reduces the value of analysis.
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Note also that these values are calculated for ex ante perfect analysts.

When analysts' predictions contain noise, the value of their forecasts will be

diminished and estimated values of ability will appear more reasonable.

Section VI pursues this issue in greater detafl.

For greater risk aversion, it is more difficult to coax the investor out

of Treasury bills. With a smaller position in the risky portfolio, the value

of analysis is diminished. Table 1 bears this out: the value of analysis

falls with . One also should remember that the values in Table 1 depend on

the horizon over which alpha can be predicted. For longer horizons,

corresponding perhaps to long-run fundamental analysis, the value of analysis

would be diminished.

Panel B of Table 1 presents the one-time load that the analyst could

charge for his services. The figures in Panel B are percentages of gross

assets invested that could be taken as a fee by the portfolio manager.

Corresponding to the large monthly fees, the one-time loads also are

fantastic. For example, an individual with s = 4 would be willing to pay an

analyst of only five securities a load of 99.35 cents per dollar invested,

leaving net assets of only 0.65 cents per dollar to be invested in his name.

In Table 2 we examine the impact of correlation across residuals using the

symmetric-security case laid out in equation (15), and the modified formula

for the portfolio's squared Jensen measure, equation (16). We take k=2 in

this table, so that the value of rho may be loosely interpreted as twice the

average correlation coefficient among the residual stock returns in the

market. Because there are two blocks of stocks, we restrict the number of

securities in the active portfolio to be even, with half the securities

allocated to each block. Table 2, like Table 1, is calculated for a

one—quarter year investment horizon; o is fixed at 4. Adjustments for other
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horizons are similar to those in the uncorrelated-residual case: the expected

value of security selection is inversely proportional to the horizon over

which alphas can be forecasted.

Table 2 documents the large impact of residual correlation on the value of

security analysis. The monthly fee investors would pay for analysis falls

from 91.5 percent for 30 uncorrelated securities to only 17.6 percent when the

residual correlation is .30. Likewise, the one-time load falls from 99.94

cents per dollar to 99.46 cents, increasing the client's initial net claim per

dollar invested from .06 cents to .54 cents, a nine-fold increase.
-

The rows of particular interest in Table 2 are those for p = .12. We

calculated the average correlation coefficient among 40 randomly selected

stocks (which gives a sample of 780 correlation coefficients) and found that

the average was .06, and reasonably symmetrically distributed around this

value. With two uncorrelated blocks, a value of p=.12 would lead to an

average correlation between randomly selected securities of .06. Figure 2 is

a histogram of those correlation coefficients.

IV. Comparison to the Value of Market Timing

Merton (1981) valued the ability of a market timer who could predict

whether the market index would outperform Treasury bills in any period.
-

Merton showed that this ability has a payoff equivalent to that of a

particular call option, and thus must have the sanie value as that option. For

illustration, Merton reported the following results based on the 52 years

ending 1978. While 1,000 invested in the NYSE index would have grown to

67,527, the month-by-month perfect foresight market timer would have amassed

5.36 billion.
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To place Merton's results in our framework, note that the average monthly

excess returns of the timed portfolio were r - rf = 2.37 percent, with a

standard deviation of 3.82 percent. In contrast, during this period monthly

rM averaged .85 percent, with standard deviation 5.89 percent, and rf

averaged .21 percent. Therefore, the squared Sharpe measures of the active

and market portfolios were, respectively, .385 and .012. Thus, from equation

(11) we obtain the value of the perfect foresight fund as

1 (.0042s + .012J:TL = -
.0042 + .385'

which for o = 4 yields a value of L = .9705, a 97 percent one-time load fee.

An investor would be willing to pay Z1 for a Z.03 share in the perfect-

foresight (monthly) market timing fund. Using the alternative

periodic-management-fee formula, equation (13), we have for = 4,

.385 - .012
2x4 —.04

which means that an investor with o 4 would be willing to pay a management

fee of 4.66 percent per month to obtain perfect market timing. Notice that

the perfect timer earns a mean rate in excess of the market index of "only'1

1.73 percent per month, but in so doing, also obtains a lower standard

deviation (3.82 percent versus 5.89 percent per month).

In a similar manner, one may obtain the value of market timing for other

relative risk aversion coefficients; these values, expressed as monthly fees

or one-time loads, are given in column 2, Panels A and B, of Table 1 and may

be compared to the values for security selection. An interesting means to
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compare the values of market timing versus stock selection abilities is to

consider the number of securities that must be analyzed in order to obtain

equal performance as a perfect market timer. For the case of uncorrelated

residuals, we can set n E(JM) equal to the value of (S - S)
for the market timer. Given the values earlier calculated for these

parameters, we find that the critical value is n = 1.53 when s = 4. Given

the volatility of individual stocks relative to that of the (diversified)

market index, it is not too surprising that an ex ante perfect analyst of only

one or two securities could capture the same fee as a perfect market timer.

We will see below that this result is quite sensitive to any extraneous noise

in the analyst's forecast.

When residuals are correlated, the value of security analysis is

determined by (16) so that equating the value of selection to that of perfect

timing, we obtain (allowing short sales)

-p S0 - S
I, 17

E(JM) - .(Sp_SM)

which depends on the correlation coefficient, p, and the number of blocks, k.

As p/k approaches E(JM)/(S-S), * approaches infinity. The

intuition here derives from equation (16) which shows that even for large n,

the squared Jensen measure of the active portfolio is bounded by

kE(JM)/p.

In our sample, the average value of JM was .244 and the average

correlation, p, was .06. For these values, * is finite. In fact, for the

parameter values we have estimated, * always will equal two for the two—block
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case. In this case, the two stocks are uncorrelated by virtue of being

selected from the different blocks, and the problem reduces trivially to the

earlier—analyzed diagonal model for which n is only 1.53. Thus, with more

than one block, our parameters indicate that analysis of one stock in each

block will be sufficient to dominate market timing, at least for the ex ante

perfect analyst. However, when the value of security analysis is limited,

either by short-sale constraints or by noise in the analyst's forecasts, the

critical value, n*, will exceed the number of blocks; in that event, the

correlation among the stocks in each block will affect the value of analysis

and the value of *

V. Short-Sale Restrictions

With even modest perceived values of Jensen measures, the optimal weight

in the active component of the managed portfolio quickly exceeds 1.0. As

noted, this occurs because firm-specific risk may be easily eliminated through

diversification when many securities are analyzed, and market risk may be

eliminated by shorting either the index fund or an index futures contract. If

short positions and borrowing are disallowed, the ability to lever up superior

returns is eliminated and the value of security analysis is correspondingly

reduced.

Table 3 examines the fees that = 4 investors would pay for security

analysis when the maximum allowed weight in the active position is 1.0. The

fees are dramatically lower than in Table 2, never exceeding 0.5 percent per

month even for 30 securities analyzed. In this case, n is infinite: the

upper bound on the value of the ex ante perfect analyst is exceeded by the

value of the perfect monthly market timer.

-21-



1evertheless, on an absolute scale, the value of analysis is still large.

A fee of one half percent per month is far greater than anything observed in

the capital market. Correspondingly, the one-time loads in the neighborhood

of 50 percent are unheard of.

VI. Estimation Risk

In practice, we do not expect managers to exhibit perfect foresight, even

in an ex ante sense. However, imperfect forecasting ability also can be

valued in the framework established above.

Suppose that an analyst's estimate of a is imperfect, but unbiased.

Calling ri the prediction error in a, the process generating asset returns

would be modified to

r = rf +
af(rM

- rf) + + +
ci (18)

where a' is the analyst's forecast of alpha. However, comparing the

asset-return generating equations (18) and (5), it is clear that the two are

identical except for the error term. Under the quite reasonable assumption

that is independent of c, the entire analysis would go through with

the simple modification that var(n + .) = . + would

replace in all equations.

The value of an unbiased analyst is easily compared to a perfect foresight

analyst. Equations (8) and (9) show that the analyst's contribution to the

squared Sharpe measure of the passive strategy is the sum of the squared

Jensen measures of the analyzed securities. When forecast error is present,
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each Jensen measure decreases from (ct./a •)2 to ct/(a2. +

a proportional decrease of

o = 22 + 2) (19)
£1 £1 111

Therefore, this ratio is a natural metric of the value of an unbiased

forecaster relative to an ex ante perfect forecaster. Notice that the ratio

ranges from one, when a1 = 0, to zero when a1 becomes large. The

relative value of unbiased forecasts therefore depends in a straightforward

manner on the noise embodied in the forecast.

In a similar manner the number of securities needed to be analyzed to

achieve any level of superior performance would vary directly with the metric

of relative value. For example, in the symmetric-security case, the noisy

analyst would need to analyze lID securities for every security analyzed by a

perfect-foresight analyst in order to realize the same expected performance

level.

Table 4 investigates the value of security analysis for 0 = .05, for

various correlations among residuals, and for = 4. The values here are far

lower than in Table 2, although even here, the value of analysis is

potentially extremely large when many securities can be evaluated. Column 2,

Panel A, of Table 4 presents the critical values n for correlation

coefficients 0 through .30. As p increases, the number of analyzed stocks

necessary to attain any given level of performance increases. One implication

of these results is that there is a tradeoff between economies of

specialization realized by studying several firms in the same or related

industries, and the potential reduction of the value of the active portfolio
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due to correlation among residuals. Note also that the effect of correlation

among residuals is greatly attenuated in this case, because the noise in

analysts' forecasts is assumed to be independent across securities. This has

the effect of decreasing p by a factor of D, since the relevant correlation

coefficient for portfolio performance is between (÷,1.) and

For larger values of 0, * would be more sensitive to p.

The foregoing analysis suggests that the estimation of a and a might

be necessary for the evaluation and compensation of analysts. This estimation

is not difficult, however. Letting R denote excess returns, and adding

time subscripts to (18) gives

Rt = iMt + + i + (20)

A time series regression of on RMt and a constant would yield estimates of

(the intercept) and (the standard error of the regression). A time

series regression of R1t - on and a constant would yield estimates

of T1 (the intercept) and (the standard error of the regression). To

obtain the variance of one would need many observations of Ti1. These

could be obtained in principle by observing the analyst's predictions over

many non-overlapping time periods. A simpler procedure could be followed if

the analyst covers many securities, so that the recent history of each would

yield its own estimate of r. Then, on the assumption that the variance of

the forecast errors is equal across securities, the observations of could

be used to compute a, and the value of the unbiased analyst could be

calculated via (19).
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VII. Conclusion

We have presented a framework in which the value of a security analyst can

be computed. We also are able to treat market timing ability in this

framework, and therefore can compare the relative values of each type of

investment analysis. We find that stock selection is potentially extremely

valuable. However, this potential is sensitive to several factors. First, it

depends on the ability of the portfolio manager to lever up the position in

the actively analyzed stocks and to hedge out market risk by shorting the

market index. If the leverage is unavailable, the value of analysis is

drastically reduced, although by conventional standards, the potential value

of analysis is still quite large. Second, the value of analysis depends

critically on the forecast interval over which returns are projected. The

periodic fee that can be charged for analysis is inversely proportional to the

length of the forecast interval. In addition, thecorrelation structure of

residual returns has a potentially great impact on the value of analysis.

Finally, when analyst's forecasts are subject to error, the signal-to-noise

ratio will be a crucial determinant of the analyst's value.
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APPENDIX

In this appendix we derive equations (6)-(9) which appear originally in

Treynor and Black (1983). The investor's goal is to maximize the portfolio's

Sharpe measure. This is to be done by optimally mixing the active portfolio,

A, with the index fund, M, and by optimally choosing the weights of the stocks

evaluated in the active portfolio. We start with the problem of the

active/index-fund mix, and progress to the composition of the active fund.

Denote excess expected returns by R, so that = E(r1)
- rf. Note

that

=
WARA

+
(l_wA)RM WA(RARM) + RM

(A.1)

2 22 2
=

8AaM
+

°EA (A.2)

cov(RA,RM) = 8AM (A.3)

= WA[A
+ (1aA)2] - 2wA(1A) + (A.4)

The investor's goal is to

R2

max = 4 (A.5)
ap

which has first order condition

2

a —=R
r awA
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Solving (A.5) using the above relationship and the relationships in (A.1)

through (A.4) leads directly to equations (6) and (7). To obtain equation

(8), note that the squared Sharpe measure of the portfolio is RIa. Use

the right-hand side of (A.1) for the numerator, and (A.4) for the denominator.

Then substitute from equations (6) and (7) for WA. Multiplying numerator and

denominator through by ERM/a + aA/A] yields

2 2
R a

a aM €A

which is equation (8). Because the optimal value for w was used in obtaining

(A.7), the relationship (A.7) will be satisfied only by portfolios utilizing

the optimal weights for the indexed and managed component portfolios. From

(A.7), it follows that maximization of S is accomplished by the maximi.zation

of ctA/cJA. Hence, we need to choose weights for the active portfolio,

x1, in order to

n

2 ( x.a.)2
max -4—- = (A.8)

x a2.
i=1 1 €1

which has first order condition

2

Since x is proportional to ct1/a, and the sum of all x must equal

1.0, we obtain
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2./cr.
x. = (A.9)
3

Substituting (A.9) into (A.8) yields

= t(J)2 =UJM (A.1O)
A j j

which is equation (9).
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Footnotes

1. This might be a bit of a misnomer. Jensen actually refers to alpha alone

as the performance measure. The ratio a/a is sometimes called the

appraisal ratio.

2. We note, however, that Merton's model envisions plunging into the market

in response to a forecast that the market will outperform bills. If

Merton's market timer were not perfect, then an optimal use of his

services would result in interior solutions, and in this more general

application, the market timing portfolio manager also would need to

provide quantitative forecasts.

3. These equations also embody the fact that only long positions are allowed

in stocks. The presence of a short position would reverse the signs of

the correlations coefficient between that security position and others in

the portfolio.

4. The interpretation of the monthly fee as a continuously compounded rate is

important since otherwise, fees in excess of 100 percent would appear to

be logically nonsensical.
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TABLE 1: FEES CHARGED FOR PORTFOLIO MANAGEMENT
(EX ANTE PERFECT ANALYSIS)

PANEL A: MONTHLY FEES

PANEL B: ONE-TIME LOADS

VAL OF
DELTA TIMING

- VALUE OF
N=1 N=2

SELECTION FOR
N=5 N=10

GIVEN N
N=20 N=30

2. 9.3 6.1 12.2 30.5 61.0 122.0 183.0

3. 6.2 4.1 8.1 20.3 40.7 81.3 122.0

4. 4.7 3.0 6.1 15.2 30 5 61.0 91.5

5. 3.7 2.4 4.9 12.2 24.4 48.8 73.2

6. 3.1 2.0 4.1 10.2 20 3 40.7 61.0

VAL OF
DELTA TIMING

VALUE OF
N=I N=2

SELECTION FOR
N=5 N=1O

GIVEN N
N=20 N30

2. 99.74 99.42 99.84 99.97 99 99 100.00 100.00

3. 98.48 97.26 98.96 99.73 99.90 99.96 99.98
.

4. 97.05 95.05 97.89 99.35 9974 99.90 99.94

5. 95.69 93.05 96.84 98.95 99.15 99.81 99.88

6. 94.42 91.22 95.85 98.55 99:3



TABLE 2: FEES CHARGED FOR PORTFOLIO MANAGEMENT
(EX ANTE PERFECT ANALYSIS)

PANEL A: MONTHLY FEES

18.30

1 7 . 26

16 . 34

15.51

14.76

14 .08

13 46

12 .89

1 2 . 36

11 . 88

II .44

30.50

27.23

24 .60

22 .43

20.61

19.06

17.73

16.58

15.56

14.66

13.86

61 .00

48 .03

39. 61

33 . 70

29.33

25 . 96

23. 28

21.11

19.30

17.78

16.49

91 . 50

64.44

49.73

40.49

34.14

29.52

25.99

23.22

20. 99

19. 14

17.60

RHO
FEE CHARGED FOR
N=2 N=4

SECURITY SELECTION FOR
1=6 N=10 N=20

GIVEN
N=30

N

0.0 6.10 12.20

0.03 6.10 11.84

0.06 6.10 11.51

0.09 6.10 11.19

0.12 6.10 10.89

0.15 6.10 10.61

0.18 6.10 10.34

0.21 6.10 10.08

0.24 6.10 9.84

0.27 6.10 9.61

0.30 6.10 9.38

PANEL B: ONE-TIME LOADS

RHO
FEE CHARGED FOR
N=2 N=4

SECURITY SELECTION FOR
Ni=6 N1O N20 GIVEN

N30
N

0.0 97.89 99.13 99.49 99.74 99.90 99.94

0.03 97.89 99.10 99.45 99.70 99.86 99.90

0.06 97.89 99.06 99.41 99.65 99.81 99.86

0.09 97.89 99.03 99.36 99.61 99.77 99.82

0.12 97.89 98.99 99.32 99.56 99.72 99.77

0.15 97.89 98.96 99.28 99.51 99.68 99.73

0.18 97.89 98.92 99.23 99.47 99.63 99.68

0.21 97.89 98.89 99.19 99.42 99.57 99.62

0.24 97.89 98.85 99.15 99.37 99.52 99.57

0.27 97.89 98.82 99.10 99.32 99.47 99.52

0.30 97.89 98.78 99.05 99.26 99.41 99.46



TABLE 3: FEES CHARGED FOR PORTFOLIO MANAGEMENT
NO LEVERAGE ALLOWED

PANEL A: MONTHLY FEES

PANEL B: ONE-TIME LOADS

FEE CHARGED FOR
N=2 N=4RHO

SECURITY
'1=6

SELECTION FOR
N=I0 N=20

GIVEN
N=30

N

0.0 0.18 0.29 0.35 0.41 0.46 . 0.48

0.03 0.18 0.29 0.34 0.39 0.44 0.46

0.06 0.18 028 0.33 0.38 0.43 0.45

0.09 0.18 0.28 0.33 0.37 0.42 0.43

0.12 0.18 0.27 0.32 0.36 0.40 0.42

0.15 0.18 0.27 0.31 0.35 0.39 0.40

0.18 0.18 0.26 0.30 0.34 0.38 0.39

0.21 0.18 0.26 0.30 0.33 0.37 0.38

0.24 0.18 0.26 0.29 0.33 0.35 0.36

0.27 0.18 0.25 0.29 0.32 0.34 0.35

0.30 0.18 0.25 0.28 0.31 0.33 0.34

SECURITY
0=6

SELECTION FOR
N=l0 N=20

GIVEN
N30

N
RHO

FEE FOR
TIMING

FEE CHARGED FOR
N=2 N=4

0.0 97.05 41.51 54.70 50.56 63.61 66.75 67.81

0.03 97.05 41.51 54.28 50.96 62.87 65.89 66.92

0.06 97.05 41.51 53.86 58.37 62.13 65.04 66.03

0.09 97.05 41.51 53.43 57.78 61.40 64.20 65.15

0.12 97.05
•

41.51 53.02 57.20 60.68 63.36 64.27

0.15 97.05 41.51 52.60 50.62 59.96 62.53 63.40

0.18 97.05 . 41.51 52.18 56.04 59.24 61.71 62.54

0.21 97.05 41.51 51.77 55.47 58.53 60.89 61.69

0:24 97.05 41.51 51.36 54.89 57.82 60.08 60.84

0.27 97.05 41.51 50.94 54.33 57.12 59.27 60.00

0.30 97.05 41.51 50.54 53.76 56.42 58.47 59.16



PANEL B: ONE-TIME LOADS

TABLE 4: FEES CHARGED FOR PORTFOLIO MANAGEMENT
(NOISY FORECASTS)

PANEL A: MONTHLY FEES

0.30

0.30

0.30

0. 30

0.30

0.30

0.30

0.30

0.30

0.30

0.61

0.61

0.61

0.61

0.61

0.61

0.60

0.60

0.60

0.60

0.91

0.91

0.91

0.91

0.90

0 90

0.90

0.90

0 . 89

0.89

1 .52

52

1.51

1 .50

.49

48

I . 47

1 .46

• 46

1 .45

3.05

3.01

2 .97

2.93

2.89

2 .86

2.82

2.79

2 . 75

2.72

4.57

4 .48

4 . 39

4.30

4.22

4.14

4.06

3.99

3 .92

3.85

RHO N* N=2 N=4 N=6 N=l0 N20
GIVEN
N=30

0.0 30.58

0.03 31.25

0.06 31.96

0.09 32.70

0.12 33.47

0.15 34.29

0.18 35.14

0.21 36.05

0.24 37.01

0.27 38.02

0.30 39.09 0.60 0.89 1.44 2.69 3.78

RHO
FEE CHARGED FOR
N=2 N=4

SECURITY
N6

SELECTION FOR
N=10 N=20

GIVEN
N30

N

0.0 56.06 73.48 81.60

0.03 56.06 73.45 81.54

0.06 56.06 73.41 81.49
0.09 56.06 73.38 8L44
0.12

'
56.06 73.35 81.38

0:18 56.06 73.28 81.28
0.21 56.06 73.25 81.23

0.24 56.06 73.21 81.17

0.27 56.06 73.18 81.12

0.30 1 56.06 73.15

89.01

88 . 94

88.87

88 .80

88 .66

88.59

88.52

95.05

94.97

94 .89

94 .81

94.73

94.57

94 . 49

94 .41

94 . 33

96 . 98

96 .90

96.82

96. 74

96 .66

96. 50

96.42

96 . 34

96.26




