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1 Introduction

Affirmative action, or more generally, preferences are ubiquitous in much of the world. The idea is often

put as “levelling the playing field”, or even tilting it in favor of certain groups so as to atone for past

injustices. In this paper we develop a rationale for affirmative action that is different from that offered so

far in the literature. We develop a simple model of contests with large numbers of agents (so that strategic

effects are removed) and objects. There are two groups: the disadvantaged and the rest of society and two

kinds of ability, native and acquired. The test, which determines placement, values acquired ability more

highly than does society. Effort is expended in order to do well in the test and is potentially wasteful.

Our rationale for affirmative action, or giving preferences to the disadvantaged, is based on modelling

the trade-off between wasteful effort and selection. On the one hand, conditional on getting in, the

disadvantaged tend to put in more effort just to get in, as they need to do so being disadvantaged.

Such effort is wasteful, which works against giving preferences to the disadvantaged. On the other hand,

conditional on winning, the disadvantaged have higher native ability than the advantaged. This factor

works in favor of having preferences. While there is no one size fits all answer, the results obtained

suggest when affirmative action is likely to be beneficial. The model would apply to the system in place

in India as its rules are very clear cut. It would also apply to the US setting in spirit, though the US

admission system is very nuanced. Our results suggest that in countries, like India, where education is

free and preferences are extreme, such reverse discrimination is very harmful to society. However, in the

US, where education is costly and preferences are marginal, such a policy may well be beneficial.

The examples and simulations provide a number of other interesting results. They suggest that even

when there are no differences between agents, without imposing any unreasonable conditions, it may be

welfare increasing to create them by allowing some agents access to education while denying it to others.

This could be done by having a lottery that allocates access, or by allowing access to one group and not

another. Such artificial differences may be optimal both when there is no difference between what society

values and what the test does, and when there is.

We will proceed as follows. In the rest of the introduction, we first provide some background on the

prevalence and rationale for preferences in the US and the world. Following this we relate our work to the

existing literature. Section 2 lays out the key elements of our model and the raison d’être behind them,

making it clear how our work differs from the literature. It also works through the properties of basic

model. Section 3 defines the “effort effect” and “selection effect” and shows formally that while the former

works against giving preferences, the latter works in favor of preferences. Section 4 uses an example and

develops some simulations to better understand the case for unequal treatment or preferences. Section 5

discusses extensions and Section 6 concludes.
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1.1 Background

As President Lyndon B. Johnson said in a speech at Howard University1 in 1965:

“Freedom is not enough. You do not take a person who for years has been hobbled by

chains .. bring him to the starting point of a race and then say “you’re free to compete” and

justly believe that you have been completely fair.”

In 1965 President Johnson issued executive order No. 11246 that required all federal contractors to

take affirmative action to promote the hiring of blacks and other minorities. Affirmative action was,

ironically, seen as way to ensure that “employees are treated ...without regard to their race, creed, color

or national origin.” In Philadelphia for example, specific quotas were set for each of the building and

construction trades for blacks, but by the mid seventies, opposition to quotas was growing. In Bakke vs.

the University of California, Davis, the Supreme court ruled that Allan Backke, a white medical school

applicant, was denied admission on the basis of his race as a quota was set aside for deprived minorities.

However, it upheld the use of race as a legitimate criteria in admissions.

Blacks and Hispanics are still given preferences in higher education. Nevertheless, the scope for giving

race based preferences has been considerably reduced over the years. While schools used to actively target

a given level of minority presence, i.e., meet quotas, such “quotas” are not acceptable today. In 2003,

the U.S. Supreme Court approved the use of “points” to promote a diverse student body. However, a

number of states, such as Texas, have moved away from using only race based preferences and added

other measures. Texas now gives the top 10% of students from public high schools in Texas automatic

admission to the state’s flagship public university, UT Austin, in addition to using points to help diversify

the student body as allowed by the 2003 supreme court ruling. The Supreme Court very recently ruled

on Fisher versus the University of Texas which challenged the current policy.2 The ruling seems to have

further reduced the space in which universities could give preferences.

In India, preferences are given in higher education and in public sector jobs to “scheduled castes and

tribes” and these preferences are quite extreme. Preferences reserve a fraction of seats, proportional

to their population share, for Scheduled Castes and Scheduled Tribes. The former were traditionally

relegated to unpleasant tasks as “untouchables”, while the latter were outside the traditional caste system

in India.3 India’s allocation system is based on performance in open competitive exams. The difference in

cutoff scores for admission between those given preferences and the general category is huge. Moreover,

India’s higher educational system is heavily subsidized. Brazil also approved an affirmative action bill in

2012 that reserves half the spots in federal universities for high school graduates of public schools, and

distributes the reserved spots among black, mixed race and indigenous students according to the racial

1A leading historically black institution.
2Abigail Noel Fisher was denied admission to UT Austin and is white.
3 See Frisancho and Krishna (2012) for more on this.

3



makeup of each state.

1.2 Related Literature

Much of the work in economics on the affects of preferences has focused on what is called models of

statistical discrimination. If ability is unobserved, but correlated with an observable like race, this line of

work argues that race based preferences may be counterproductive or even create inequality where none

existed. Another line of work has focused on affirmative action as a way of mitigating differential access

to education due to credit constraints. A third line has looked at the issue in the context of contests.

We discuss each of these below. While we focus on the theoretical work, we also discuss the relevant

empirical work as needed.

1.2.1 Statistical Discrimination

Models of statistical discrimination are the dominant line of research in this area. The key papers are

those of Arrow (1973), Phelps (1972) and Coate and Loury (1993). The reason is that preferences create

a “culture of dependence”. Intuitively, less effort is put in by the group given preferences, precisely

because preferences make it easy to get jobs even without effort. As a result, people expect the group

given preferences to be worse, and these expectations are validated in equilibrium. Even if there are no

differences between groups, quotas giving preferences to one group over the other can end up hurting

them through this channel. See Fang and Moro (2011) for a comprehensive survey of this literature.

On the empirical side, Ferman and Assuncao (2005) suggest that the effort expended by those offered

preferences falls. They exploit a natural experiment which arose when a racial admissions quota was

imposed on two of Rio De Janeiro’s top public universities. Using a difference -in-difference approach,

they found a 5.5% decrease in standardized test scores among the favored group. This constituted a 25%

widening of the achievement gap. Moro (2003) estimates a structural model of statistical discrimination

for the US and his work suggests that though wage inequality has declined in the US this is not because

of a switch in the equilibrium. A counterfactual exercise suggests that in a color-blind society blacks’

wage would have been on average more than 20% higher. Moro and Norman (2004) incorporate general

equilibrium effects in the labor market into a model with statistical discrimination. They find that while

affirmative action may increase the minority workers’ incentive to invest in learning while diminishing

the non minority’s.

In any case, it is far from clear that affirmative action on the basis of race is optimal. There is concern

that admitting students based on preferences creates “mismatch”. In extreme cases, this mismatch may

result in their being worse off than if they went to a school or program better suited to their preparation

level. See Rothstein and Yoon (2008) for work on Law Schools in the US and Frisancho-Robles and

Krishna (2012) for work on quotas in India. On the other hand, Alon and Tienda (2007) suggest that
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students admitted under the 10% rule in Texas had a higher graduation rate. Arcidiacano et. al (2012)

shows that this may be due to their choosing easier courses/majors. In addition, giving preferences on

the basis of income rather than race seems to be called for. Cestau, Epple and Sieg (2012) empirically

investigate the importance of using race as basis for affirmative action. They develop and estimate a

structural model of admission to a gifted and talented program for children entering the first grade

kindergarten program in a mid sized urban school district in the US. Their work suggests that once

admission to the program is allowed to depend on being part of the free lunch program or not4, further

conditioning on race gives little benefit to society.

1.2.2 Credit Constraints

The second line of work, distinct from statistical discrimination, looks at preferences in the presence of

credit constraints. The basic idea is that markets work well in allocating agents to seats. Monetary bids

are just transfers and as long as those with the most to gain from obtaining the seats are also those that

society wants to have the seats, i.e., there is no misalignment in social and private benefit, markets will

give the first best allocation at the lowest cost. Contests on the other hand involve wasted resources even

if they result in the same allocations. Thus, they are dominated by the market. However, if there are

credit constraints, then contests may give a better allocation and so be worth the wasted resources they

engender, see Fernandez and Gali (1999). Of course, to the extent that credit constraints are income

rather than race based, such arguments also favor income based preferences. Also, basic economics (in the

form of the principle of targeting which calls for policies to operate on the same margin as the distortion)

would suggest that preferences are not the first best solution if the distortion lies in access to credit.5

1.2.3 Contests

There is considerable recent work on the role of preferences in education couched in the contests setup,

both with small numbers of agents so that there is a strategic effect, and with large numbers where there

is not. Here the main issue is whether contests encourage effort or not and effort is seen as being good

per se.

Fu (2007) and Fain (2009) have a model with two agents, a minority one who is handicapped relative

to the non minority agent. They compete to get in to a school. Effort raises performance at some cost,

though performance has a random component. Affirmative action (giving more weight to the score of

minorities) can increase the effort expended by all agents, and if this is the objective, then affirmative

action may be desirable.

More recently, Chade, Lewis, and Smith (2011) model a duopoly setting where colleges set admission

standards and the ability of students is only partially observable. Students choose the portfolio of schools

4This is offered to poor students in the US.
5For a nice recent survey on the role of credit constraints in education, see Lochner and Monge-Naranjo (2012).
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to apply to and schools choose admission rules. They show a number of interesting asymmetries arise in

the comparative statics and argue that their model helps explain the observed fall in minority applicants

to top public universities after affirmative action was removed. Such schools were removed from the

portfolio of minority students who now had less of a chance of getting in.

These strategic models are less closely related to our work than those based on a competitive setting

like that in Fryer and Loury (2013). This paper looks at the least cost way of achieving a given diversity

goal. In their model there are a given number of slots that agents want to acquire. In the first period,

agents make investment decisions and these decisions result in a distribution of second period abilities.

The minority group is seen as having higher costs of such investments and as a result are on average

disadvantaged ex-post in terms of getting these slots. As there are no externalities or distortions, the

market allocation of slots is efficient. They ask, when should the intervention occur: Ex ante or ex post?

Should intervention should be sighted (based on race say) or blind (based on say being in the top 10%).

They show that if the policy can be sighted, then ex post intervention (a subsidy for the disadvantaged

group) is all that is needed to meet the target as this subsidy also raises the ex ante incentive to invest

by the minority group. In contrast to their work, we explicitly model a possible reason for affirmative

action: namely that native ability is more valuable to society than acquired ability and look for when a

case for unequal treatment can be made.

Chan and Eyster (2003) look at whether sighted or blind intervention is more efficient. They argue

that a ban on affirmative action is inefficient in practice. Universities with a wish for diversity will just

obtain it using an alternative criterion which is less efficient at identifying student quality. Fryer, Loury

and Yuret (2008) estimate these costs to be four to five times as high as color-conscious affirmative

action.6

Hickman (2011) compares quotas, admission preferences, and a color blind system and shows that they

differ in terms of their effects. He uses an all pay auction setting and then takes the limit of the auction

as the number of agents rises. In an auction setting, the distribution of costs (or valuations) of those

you are competing with plays an essential role in how you bid. With a quota system, minorities compete

for slots only with other minorities who have a worse distribution of costs than non minorities. With a

points system, where minorities are given some points and then compete with the general population,

competitors have better costs. With a color blind system, that does not give preferences there are no

points given to minorities. As a result, with quotas, the best minorities put in less effort than under a

system of preferences, while the worst minorities put in more effort. For non minorities, the effects are

6There is also the question of whether lower admission standards result in minority students being out of their depth

and so performing poorly. There is a literature on mismatch and catchup that relates to this question which we will not

say much about here. See Frisancho-Robles and Krishna (2012) for a literature review and some evidence on this topic

using Indian data. Loury and Garman (1993) show that for a given performance, blacks gain more in subsequent earnings

from attending selective colleges than whites. However, for many blacks and some whites at such institutions the gain from

attending a selective college may be offset by worse performance.
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reversed. Hickman focuses on both the effort elicited and on the gap in attainment and cutoffs. The

former is seen as a positive and the latter as a negative. It is worth noting that similar results, though

for different reasons, occur in the presence of uncertainty in performance. In this case, the effort profile

is hump shaped in ability. Agents that are very good need to put in little effort and those that are very

bad know that they have little chance of getting in and so choose to put in little effort. Agents who are in

between are highly motivated as their chances of getting in rise steeply with effort. Giving preferences to

the disadvantaged reduces their cutoff score. This reduces the effort of the more able in the disadvantaged

group but raises that of the less able and as the latter are predominant, tends to raise overall effort.

We focus on anonymous contests7 and the effect of preferences in such settings. While contests

play many roles8 , we abstract from most of these below and zoom in on their effort costs. Contests

encourage effort, and to the extent that such effort is under/over supplied, this directly raises/reduces

welfare. Examples of wasteful effort are manyfold: managers may undercut their competitors at the cost

of the company bottom line and salesmen may steal their rival’s customers. Effort itself tends to be

privately beneficial but socially wasteful when there are rents being competed for, or agents incentives

are misaligned with those of the principal or society. We focus only on the costs of effort and its social

versus private benefits in this paper, abstracting from other dimensions such as those above.

Although we use placement in educational institutions as the example, other applications are possible.

Our setting is non strategic with large numbers of applicants who understand they cannot affect the

equilibrium cutoffs by their actions. This environment makes it much easier to analyze the case for

preferences. A number of the insights in Siegel (2009) hold in our framework, albeit in a more transparent

manner. There is also recent related work on contests with head starts, see Siegel (2013). Our setup

differs from the work on contests with head starts both in terms of being non strategic, and in allowing

intrinsic differences between agents in their abilities. With head starts, all agents typically differ only in

terms of how far ahead they are, while we allow for interactions between native and acquired ability and

effort. We also explicitly focus on social welfare and how policies affect it.

2 The Basic Model

We first lay out the rationale for the basic assumptions made. Then we setup the model and explain how

it works.

7Anonymous contests provide a non-strategic setting (analogous to that of monopolistic competition) as this makes more

sense in the education application we are interested in.
8For example, contests identify latent talent that might not otherwise be unearthed. The international Math Olympics

or the Putnam Exam in the US (administered by the Mathematical Association of America) for example allows students to

discover their math ability at an early age. See Kenderov (2006) for a discussion of the role of competitions on education

in mathematics.
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2.1 The Setup

Our basic setup makes a few assumptions. First, we posit that performance in the contest is related

to total ability which is seen as arising from native ability and acquired ability. This seems reasonable.

Both innate ability and training are needed for superior performance, though the extent to which one can

substitute for the other is an open question. In this context it is worth mentioning the super 30 program

in India which has attracted a lot of attention. Anand Kumar, an India Mathematician from humble

beginnings, started a program that tries to level the playing field for scheduled caste/tribe students in the

Indian State of Bihar. It trains them to take the JEE (joint entrance exam) for entry into elite engineering

schools in India like the IITs (Indian Institutes of Technology).9 From 2002 onwards, 30 disadvantaged

students were chosen on the basis of an aptitude/ability test by the program. What is amazing is that

the program has consistently placed over 90%, and often 100% of them these elite institutions.10

The results of the super 30 program suggest that natural ability, once combined with some training

(acquired ability), yields large improvements in performance, i.e., the cross partial derivatives of perfor-

mance with respect to native and acquired ability are positive. We assume that groups may differ in

terms of the distribution of acquired ability as differences in background create differences in acquired

ability so that even if native ability is similarly distributed between groups as posited, total ability may

not be.

Second, we assume that (i) total ability and effort give rise to performance in the exam, (ii) that

there is no randomness in outcomes, and (iii) that effort to improve exam performance has no innate

value. That higher ability and effort raise performance is uncontroversial. That there is no randomness

in exams is less so. After all, everyone has a bad day and this affects performance. Or one may get lucky

and get exactly what one studied in the exam and do better than someone who focused on topics that

were not tested! Though randomness in performance complicates matters, in many ways our basic results

remain unchanged as discussed in Section 5. Finally, the assumption that studying for the exam has no

innate value needs some discussion. The education literature distinguishes between assessments based on

exams which encourage rote learning, where studying may have no innate value,11 and those based on

“formative” and “authentic” assessments. Formative assessments allow students to both develop their

abilities and assess their progress. They tend to integrate teaching and learning with assessment. Often,

they do not require formal grading, but a demonstration of the ability to complete some task. Authentic

assessments involve demonstration of ability in a real-world context. Studying for such exams may indeed

be valuable in itself. We show that even if agents obtain private benefits from studying, what is critical

9The JEE is fiercely competitive and at a very high level. It is said that it is harder to qualify in this exam than to get

into Harvard, MIT or Caltech! Smart upper middle class students with all the advantages of their background and training

routinely fail this exam, despite tutoring and maniacal effort. There are preferences for backward castes and tribes that

make it much easier for them to get in.
10 See http://en.wikipedia.org/wiki/Super_30 for more on this.
11There is some evidence that high stakes testing does not improves student learning. See Amerein and Berliner (2002).
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to our arguments is that they study more than they would otherwise. This excessive effort is what is

wasteful.12

Third, we assume that society values native ability more than the contest does. The contest allocates

seats according to the total ability of the agent. However, society would prefer that seats be allocated

to those most likely to contribute to the social good. It is reasonable to expect that agents with high

native ability are more likely to make the major breakthroughs of use to society than less able, but highly

groomed candidates. In other words, society would want Albert Einstein to be educated even if he was

bad at exams. Moreover, agents cannot internalize their social contribution so that there is a mismatch

between who gets in and who should get in.

2.2 The Specification

There is a continuum of heterogeneous agents, with measure one, who decide whether to take an exam

that will be used as the basis for admission. An agent is admitted if his performance exceeds a cutoff

performance level denoted by ̃ . This cutoff is determined in equilibrium to fill the available seats. We

assume that there is no randomness in outcomes.13

As there is a continuum of agents, the environment is non strategic. Agents take a summary statistic

(the cutoff score) as given, and maximize their objective function. In equilibrium the cutoff score assumed

is validated. This is analogous to models of monopolistic competition where firms take the aggregate price

index as given and make their choices (on pricing, entry, etc.) to maximize their profits, and where, in

equilibrium, the price index that firms take as given is exactly the price index that emerges from the

profit maximizing behavior of firms.14 While the body of the paper looks at admission to a single school,

we explain why the results generalize in Section 5 and show this in an Appendix that is available on

request.

Agents differ according to their abilities. Specifically, we distinguish between two types of ability:

natural and acquired abilities. Natural ability is the ability an agent was born with, while acquired

ability is accumulated prior taking the exam (for instance, acquired in high school, or from tutoring).

The performance of an agent is denoted by  where:

 = ( +  ), (1)

where  and  are natural and acquired abilities respectively,  = + is total ability. For simplicity,

we assume that the two types of ability are perfect substitutes. Finally,  is the effort undertaken by the

12We ignore any social benefits of studying for the exam in this paper. Acemoglu and Angrist (2000) suggests that such

externalities are limited, at least for secondary school.
13The effects of dropping this assumption are discussed in Section 5.
14Formally, this is an anonymous game. The game is called anonymous because players’ preferences depend only on their

own actions and the distribution of all other agents’ actions, i.e. on the aggregate behavior of all other agents, not on who

plays what.
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agent to pass the test. We assume that ( ) is increasing in both its arguments and the returns to

effort in terms of performance are increasing in ability, i.e., (·) ≥ 0. Moreover, ( ) is concave in :

 ≤ 0. Effort has a private cost denoted by () with 0(·)  0 and 00(·) ≥ 0 and (0) = 0. As effort is

costly, this immediately implies that if an agent decides to take the exam, then the effort expended will

be the minimum needed to attain the cutoff denoted by ̃ If he does not take the exam then his effort

level is zero. Hence, the effort level for agents who decide to take the exam is implicitly defined by  in

equation (2):

( ) = ̃ (2)

Let this effort level be denoted by ∗( ̃ ).

Higher ability agents need to put in less effort to attain a given performance cutoff so that effort levels

are decreasing in ability. This follows from totally differentiating equation (2) to get

∗( ̃ )


= −(·)
(·)  0 (3)

Moreover, effort rises as the performance cutoff rises,

∗( ̃ )

̃
=

1

()
 0 (4)

2.3 Equilibrium

The private returns from education of an agent with ability  are given by ()− , where  is the tuition
level. Without loss of generality, the outside option is normalized to zero. In the text, we assume that

effort expended in studying for the exam has no intrinsic value as it does not affect the payoffs, (),

which depend only on . In the Appendix, we incorporate an intrinsic value of effort by letting payoffs

when educated depend on effort and show that the essence of our results remains. Though effort has two

roles in this augmented model; it raises payoffs when educated and it helps you get in, only the former

has social value. When there are rents to be appropriated from getting in, agents exert more effort than

socially optimal in order to be admitted which is wasteful.

An individual decides to take the exam if doing so is better than not doing so. That is, an agent with

total ability  takes the exam if and only if

()−  ≥ (∗( ̃ ))

We assume that () is increasing in : more able individuals gain more from education.

Define ∗ by:

(∗)−  = (∗(∗ ̃ )).

The marginal agent (the agent with ability ∗) is indifferent between getting into university or not. Agents

with ability below the cutoff ∗ choose not to put in the effort required to pass the exam while students
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above this cutoff choose to put in the required effort.15

We assume that the natural and acquired abilities are independently distributed across agents. The

distribution functions are given by  ( ) and () on [0 

max] and [0 


max], respectively. Then,

the distribution function for the total ability  is () on [0 max], where

() =

Z max

0

 (− )() (5)

and max = max + max.
16

The equilibrium in the model is determined by two conditions. First, the total mass of agents accepted

to the university equals the number of available seats. Second, the agent with ability ∗ is indifferent

between going to university and not. The former condition means

1−(∗) =  (6)

where  is the number of seats (which is exogenously given and strictly less then one). The latter

condition means that

(∗)−  = (∗(∗ ̃ )) (7)

Hence, we have two equations with two unknowns: ∗ and ̃ . In particular, we can solve (6) for ∗ and

then, given ∗(), solve (7) for ̃ .17 Since () is increasing in  and ∗( ̃ ) is decreasing, ()−  −
(∗( ̃ )) is increasing in  Note that the equilibrium value of ∗ depends solely on , while ̃ depends

not only on  but also on the tuition level  .

As depicted in Figure 1, in equilibrium, the effort level is zero till ability ∗. At this point it jumps to

∗(∗ ̃ ) the effort required to get in. Then, effort falls with ability and at some point may go to zero

as depicted if able enough agents can attain the performance cutoff with no effort.18

The next lemma shows what happens if the number of seats is increased or the tuition level rises.

Lemma 1 A greater number of available seats or a higher tuition level decreases the performance cutoff

̃ That is, ̃


 0 and ̃


 0. Moreover, a greater number of available seats reduces the ability cutoff

though a higher tuition has no effect on it. That is, ∗


 0 and ∗


= 0

15This corresponds to Siegel (2009) where the reach and power of an agent are critical in defining the equilibrium. In our

setup, the “reach” of an agent is the score at which his gain from admission is zero, the cutoff score or “threshold” is the

reach of the marginal agent, and the “power” of an agent is his surplus from choosing a score equal to the threshold score.

This is also his payoff in equilibrium.

16Note that Pr(+ ≤ ) =
=

max


=0

Pr(  −)Pr(). Replacing the sum with the integral gives the equation.

In other words, the area under the line  +  = , (), is the same as calculating the density of the population below

the line  +  =  at a given  ( (− )(
)) and then integrating over all .

17We assume that the number of seats is small enough that an interior equilibrium occurs.
18As the cost of this effort at ∗ is just compensated for by the increase in earnings from going to university, the payoffs

depicted in Figure 2 are continuous, though there may be a kink at ∗∗ the ability at which no effort is needed to be

admitted. They are also increasing in ability.
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Figure 1: Effort in Equilibrium
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Proof. In the Appendix.

A greater number of seats lets agents with lower ability in (
∗


 0) and as there are more seats,

the cutoff performance falls ̃


 0 In Figure 1, the effort curve shifts down and to the left with the

marginal agent being of lower ability and putting in less effort.

Similarly, a rise in the tuition level decreases the return from being educated of all agents at a given

effort level. In order to make the marginal agent indifferent between getting in and not, the effort need

to get in, and hence the performance cutoff, must fall as the tuition rises (̃


 0). As the performance

cutoff falls, all agents need to put in less effort to be admitted. In Figure 1, the effort curve would shift

down, with the identity of the marginal agent being unaffected (
∗


= 0), as the tuition rose.

Due to the lack of randomness in outcomes, agents are able to put in just the effort needed to ensure

they attain the cutoff performance, ̃ However, since effort does not improve ability, these efforts are

a social waste, even though they are privately valuable and are necessary to allocate seats.19 Effort

expended is then the maximum of the effort needed to get in and the effort chosen for other reasons.

Effort is excessive when the effort needed to get in exceeds that which would be chosen for other reasons.

As the effort needed to get in falls with ability, unless the effort chosen for other reasons falls even faster

(which is hard to motivate) lower ability agents are the ones who expend excessive effort and the essence

of our results goes through. See the Appendix for details.

2.4 Social Welfare

We postulate that natural ability is more important than acquired ability for society. To capture this we

assume that the social gains from education of an agent with abilities  and  are given by (+),

where  ∈ [0 1]. Here,  represents the relative importance of the acquired ability for the society. If 
is equal to zero, then the society cares only about natural ability. If  is equal to one, then natural and

acquired abilities are of the same importance for the society. Social welfare is obtained by integrating

social surplus over those with total ability over the cutoff level ∗.

 =

Z
+≥∗

³
( + )− (∗( +  ̃ ))− 

´
 ( )() (8)

where  is the social cost of education per student. As tuition is a lump-sum transfer,  does not directly

affect welfare. It only affects it via the effort put in by agents. In addition, as there is no uncertainty in

our setup, agents below the cutoff ability do not expend any effort.

Given the number of seats, there are two distortions in the economy. In the model, the effort expended

to pass the exam is determined by the tuition level: if the tuition is low, then getting in is very valuable

and the performance cutoff is high. To make the cutoff, much effort is needed. This effort is wasteful

19While assuming efforts have no effect on ability or payoffs might seem a bit extreme, it is not an unreasonable char-

acterization of many entrance exams which involve studying for the test and emphasize memorization rather than deep

understanding. In addition, relaxing this assumption does not change the flavor of the results as shown in the Appendix.
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which results in welfare losses. In (8), this loss is equal to (∗( +  ̃ )) for an agent with ability

 =  + .

The other distortion, given the number of seats, arises due to social benefit deviating from private

benefit. In particular, it is optimal for society that the agents with the highest social benefit get in.

However, in practice, those with the highest private gain enter. For example, if admission is on the basis

of exam performance, and the latter depends on the sum of natural and acquired ability, but social benefit

comes from a function that puts more weight on natural ability than acquired ability, then the wrong

people will be admitted. Note that, in the first best case, the number of seats should be set so that the

social cost of an additional seat equals the social benefit generated. If the number of seats differs from

this level there are welfare costs.

Next, we explore the effects of the tuition level and the number of seats on social welfare. In many

countries the best public education is much cheaper and often far better than private education. However,

it is rationed by strict performance cutoffs. In India, for example, until recently, all higher education

institutions were public, close to free, and seats were allocated by performance in a school leaving exam.

Even now, the best colleges remain public. The alternative to a bad domestic placement is to go abroad,

where admission to comparable institutions is much easier, and to pay non-resident tuition. As a result,

those going abroad to study from India seem to fall into two categories: those admitted with funding

who tend go to the best places abroad, and those without funding who pay their own way, often at less

prestigious places as the best places fund whoever cannot pay. Turkey has a similar system. In fact, in

most continental European countries, higher education is public and free. In some countries, students

even get a government stipend to go to school. It is easy to see that this system encourages agents to

put in more effort than is socially optimal when the number of seats is small.

Next we build our understanding of the model by first considering what happens when  = 1 and

find the optimal tuition level given the number of seats and the optimal number of seats. Then we look

at the effect of  6= 1

2.4.1 Optimal Tuition and Seats with  = 1

We show that the following proposition holds.

Proposition 1 For any given number of seats, the welfare maximizing tuition elicits zero effort from the

marginal agent. When  = 1 that is the society values native and acquired ability equally, and conditional

on no preferences, the first best can be achieved by setting tuition at the full cost of education and setting

the number of seats so that all seats are demanded and the marginal agent puts in no effort.

Proof. In the Appendix.

The intuition behind the result is straightforward. An increase in  has no affect on the identity of

the marginal agent as long as the equilibrium effort level of the marginal agent is positive. In addition,
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as it is a transfer, it has no direct effect on welfare. Its welfare consequences arise through its effects on

agent’s actions. As an increase in  reduces the payoffs from admission, it reduces the effort expended by

the marginal agent (whose identity is unchanged by the tuition increase) and so reduces the performance

cutoff. This reduction in the performance cutoff in turn reduces the effort each agent choosing to become

educated needs to incur, which raises welfare. This is the case until  is such that zero effort is expended

by the marginal agent. In this way, the optimal tuition removes the distortion caused by wasted efforts.

The optimal tuition level,  , is given by

  = (∗) (9)

and the equilibrium performance cutoff is determined by

∗(∗ ̃ ) = 0 ⇐⇒ ̃ = (∗ 0)

It is worth noting that higher tuition does have a redistributive effect. The least able agents are

unaffected as the alternative to going to university is the same and they are indifferent between these

two options. The more able lose from an increase in tuition. When tuition rises, there are two effects on

the payoffs from education (given by () −  − (∗( ̃ ))). First, keeping effort fixed, the increase in

tuition shifts the surplus curve down in a parallel fashion. Second, less effort is expended by all agents in

order to get in (as ̃ falls) and this shifts the surplus curve up till the surplus of agent ∗ is again zero.

As the less able put in more effort, this fall in effort is more valuable to them, so that the shift up is

greater for less able agents and this flattens the surplus curve. As a result, individual welfare falls with

tuition increases, and more so for the more able. Figure 3 illustrates this reasoning. Of course, as wasted

effort is reduced, social welfare rises.

2.5 Bringing in Selection

As discussed above, the distortion caused by wasted effort can be eliminated by setting a sufficiently high

tuition level. However, the distortion caused by selection into education can not be completely removed.

Only the agents with the highest social gains from education should fill the available seats. Specifically,

given the number of seats to be filled, agents with abilities  and , such that ( + ) ≥ ∗,

should be accepted where ∗ is determined byZ
(+)≥∗

 ( )() = 

However, competition results in the acceptance condition  +  ≥ ∗. As a result, some agents, who

should not be accepted to the university, are accepted and vice versa, which in turn leads to welfare

losses.

Figure 4 illustrates the distortion for the case when −1(∗)  ∗  −1(∗). In Figure 4, agents
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Figure 3: Payoffs from Education: a Rise in T

6

-
0 

()−  − ∗( ̃ )

(1)(T rises)

(2)( ̃ falls)

∗

Figure 4: The Selection Distortion

6

-
0





@
@
@
@
@
@
@
@
@
@
@
@@

HHHHHHHHHHHHHHHH

∗

−1(∗)

−1(∗)∗



16



with abilities in the triangle ∗−1(∗) should be accepted to the university on the basis of maximizing

social welfare, but they do not apply, as their individual gains from education are less than their outside

option. Instead, agents with abilities in the triangle ∗ −1(∗) take the exam and get in, while the

social gains from their education are lower than those of the agents in the triangle ∗−1(∗). As the

cutoff ability ∗ is determined by the number of seats , the optimal choice of  can limit the welfare

losses caused by the selection distortion, but can not completely eliminate them.

Notice that if  is equal to one, private gains are equal to social gains, so that the first best outcome

can be achieved. Specifically, the number of seats should be such that only agents with ( + ) ≥ 

take the exam, which implies that the equilibrium value of ∗ must be equal to −1( ). In this case, the

optimal number of seats, , is such that the solution ∗() of

1−(∗) = 

is equal to −1( ). Finally, the optimal tuition   in this case is equal to the social cost of education,

 .

3 Reservations and Welfare

In this section, we ask if there is a case for treating groups of agents differently. We assume there are two

groups of agents indexed by  ∈ {1 2}, which have identical distributions of natural ability and potentially
different distributions of acquired ability. The latter is motivated by the fact that agents with different

social backgrounds have had different educational inputs prior to taking the exam, which in turn results

in different acquired abilities on their part. In particular, we assume that 1
 ( ) = 2

 ( ) ≡  ( ),

while 1
() º 2

() where º stands for the likelihood stochastic order. Hence,

1()

1()


2()

2()
for any   :   .

This means that group 1 is more favored in terms of acquired ability than group 2. In addition, we

assume that the distribution of natural ability has a log-concave density. This assumption is needed to

ensure the likelihood stochastic order of the distributions of total ability: i.e., 1() º 2().20

The share of each group in the total mass of agents (which is normalized to unity) is denoted by

, where 1 + 2 = 1. A share of available seats is reserved for each group of agents. We denote this

reservation quota by , where 1 + 2 = 1. If these quotas are binding, then the cutoffs for the two

groups will differ.

Rewriting the equilibrium conditions (6) and (7) to reflect this, let

() =

Z max

0

 (− )
()  = 1 2 (10)

20See Theorem 1.C.9 in Shaked and Shanthikumar (2007) for the proof. This assumption is not very restrictive, as a

number of commonly used distributions such as the normal, uniform, Gamma, and Beta distributions satisfy it.

17



where max is the upper bound of 

(). Then


¡
1−(∗ )

¢
=  (11)

(∗ )−  = (∗(∗  ̃)) where  = 1 2 (12)

Here, ∗ is the total ability of the marginal agent from group  and ̃ is the performance cutoff for agents

from group .

Having binding reservations is equivalent to setting different performance cutoffs across groups for

acceptance to the university. Social welfare in this case is given by

 () = 1

Z
+≥∗1

³
( + )− (∗( +  ̃1))− 

´
 ( )

1
()

+2

Z
+≥∗2

³
( + )− (∗( +  ̃2))− 

´
 ( )

2
()

Next, we explore how imposing reservations affects social welfare. To reduce notation, let 2 = , so

that 1 = 1− . The reservation quota  has two effects on the social welfare. First, changes in  have

an impact on the performance cutoffs ̃1 and ̃2 and, therefore, on the effort put in by the agents. For

example, a rise in  (i.e. more seats for the “underprivileged” second group) decreases ̃2 and increases

̃1. This in turn implies that agents from group 2 need to put in less effort, while agents from group 1

need to put in more effort to get in. We call this the effort effect on the social welfare. Second, there

is an impact on selection into education, as ∗1 and ∗2 are affected by  as well. Specifically, a rise in

 decreases ∗2 and increases 
∗
1. That is, more agents from group 2 and fewer agents from group 1 are

accepted. We call this the selection effect. Hence, we have the following:

 (∗1 
∗
2 ̃1 ̃2)


=

"
 (∗1 

∗
2 ̃1 ̃2)

̃1

̃1


+

 (∗1 
∗
2 ̃1 ̃2)

̃2

̃2



#

+

"
 (∗1 

∗
2 ̃1 ̃2)

∗1

∗1


+
 (∗1 

∗
2 ̃1 ̃2)

∗2

∗2


#
=  + 

where  and  stand for the effort (changes in  affect the performance cutoff and via it effort)

and selection effects (changes in  affect the total ability cutoff and affect selection) on the welfare,

respectively. In the Appendix, we derive exact expressions for  and 

3.1 Identical Groups

Before we proceed to the analysis of the general case, we first ask whether there is a case for slight

preferences if the groups of agents are the same: i.e., 1
() ≡ 2

() even if social and private

benefits from education differ. Not surprisingly, the answer is no. The intuition is that on the margin,

the gains of one group are exactly made up for by the losses of the other in this case.
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Let us define the non-discrimination quota as the quota which results from market clearing so that

̃1 = ̃2. Note that this immediately implies that 
∗
1 = ∗2. The following proposition holds.

Proposition 2 If 1
() ≡ 2

(), then whatever be  welfare is locally unchanged in response to

the quota when it is set at the non-discrimination level, i.e., such that  = .

Proof. In the Appendix.

The intuition behind this is straightforward. Given a change in , agents in one group have their

performance cutoff fall (the cutoff falls by more if the group is small so that asymmetry in the size of the

groups does not affect this result), which reduces the effort for all abilities and raises the welfare of this

group. The opposite happens for the other group. If the initial equilibrium is non discriminatory and the

groups have the same distributions, then the gains to one group exactly cancel the losses to the other so

that welfare is unchanged. In other words, the effort effect evaluated at the non-discrimination quota is

equal to zero. Similarly, there is no effect on the total welfare through selection. The welfare losses due

to the selection effect of one group are completely offset by the gains of the other group.

Even though welfare does not change when a “marginal quota” is imposed when groups are identical

in their acquired as well as native abilities, this does not mean that quotas are always welfare reducing

with identical groups. Strictly binding quotas may well raise welfare. The reason is that under certain

conditions, the non-discrimination quota gives a minimum, not a maximum of welfare! We explore this

result using simulations in the next section.

3.2 Non Identical Groups

When groups are not identical, even marginal quotas can affect welfare. That is, starting from a point

where the two groups have the same cutoff, but differ in terms of their ability distributions, discriminating

in favor of one group can raise the social welfare. To better understand when this can occur we evaluate

the effort and selection effects ( and ) when the initial equilibrium is non discriminatory. We show

that the effort effect is negative, which calls for discrimination against the weaker group, but that the

selection effect is positive which calls for discrimination in favor of the weaker group.

The following proposition holds.

Proposition 3 If 1
() º 2

(), and the distribution of natural ability has a log-concave density,

then the effort effect of discriminating in favor of the weaker group (group 2), evaluated at the non-

discrimination quota, is negative. That is,

=∗  0.

Proof. In the Appendix.
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Moving seats from group 1 to group 2 increases the performance cutoff for group 1 and decreases it

for group 2, implying that agents from group 1 put in more effort to get in, while agents from group 2

put in less effort. As the distribution of total ability in group 1 stochastically dominates that in group

2, in the non-discrimination equilibrium, agents from group 1 put in less effort on average than agents

from group 2. As a result, discriminating in favor of group 2 (a rise in ) raises total wasted effort and

decreases the social welfare compared to the non-discrimination equilibrium.

Next we examine the selection effect evaluated at the non-discrimination quota. Specifically, the

following proposition holds.

Proposition 4 If 1
() º 2

(), then the selection effect of discriminating in favor of the weaker

group (group 2) evaluated at the non-discrimination quota is positive. That is,

=∗  0.

Proof. In the Appendix.

The intuition is simple. When group 2 is more disadvantaged in terms of acquired ability, those agents

from group 2 who do get must on average have a higher average natural ability.21 In fact, we can show

that if 1
() º 2

(), then in the non-discrimination equilibrium, the distribution of natural

ability among agents from group 2 accepted to the university stochastically dominates (in the likelihood

ratio order) that among accepted agents from group 122 Since likelihood ratio dominance ensures first

order stochastic dominance, accepted agents from group 2 have a higher natural ability on average than

do accepted agents from group 1. As society cares more about the natural ability, than does the exam,

a quota in favor of group 2 increases welfare by raising the average natural ability of admitted students.

>From the above considerations, we can see that a quota in favor of the disadvantaged group can

decrease or increase welfare depending on the magnitudes of the effort and selection effects. Group 2 is

the disadvantaged group (because of a worse distribution of acquired ability), and reservations in favor

of this group make sense as they allow talented but poorly educated agents to get higher education (the

selection effect in the model). However, this comes at a cost, as agents from the disadvantaged group put

in on average more effort (the effort effect), which is socially useless. If the selection effect dominates, as

is likely when  is low so that acquired ability is worth little to society, then discriminating in favor of

the disadvantaged is socially optimal. If  is close to 1, so that acquired ability can easily compensate

for native ability in social welfare, then it is actually optimal to discriminate against the less advantaged!

In the next section we explore when discriminating in favor of the less advantages is welfare improving

using a parametric model as an example as well as simulations.

21This is the equivalent of saying in casual conversation that if someone from a bad High School got into Harvard, he/she

must be really good!
22The proof is available on request.
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4 Example and Simulations

In this section we look at an example and some simulations to better understand the model and its

implications for policy.

4.1 A Special Case

We parametrize the model to derive a closed-form solution and thereby compare the magnitudes of the

effort and selection effects. To simplify the analysis, we assume linearity so () = , ( ) =  + ,

and () = , where  and  are parameters. In this case, the effort put in is given by

∗( ̃ ) = max
³
̃ −  0

´


which implies that agents with total ability greater than ̃ do not put in any effort. The equilibrium

conditions under the non-discrimination quota are given by

1
¡
1−1(∗)

¢
+ 2

¡
1−2(∗)

¢
=  (13)

∗ −  − 
³
̃ − ∗

´
= 0 (14)

where the first equation determines the cutoff of total ability, ∗, while the second one determines the

performance cutoff:

̃ =
( + )∗ − 




We also assume that both types of ability are uniformly distributed across the agents. That is,

 () = 

max on

£
0 max

¤
and 

() = 

max on

£
0 max

¤
where max1 ≥ max2. Note

that under this assumption, 1
() ² 2

() (but 
1
() º1 2

()) so that our assumption

about the likelihood stochastic order does not hold anymore. However, as shown below, with uniform

distributions of abilities, first-order stochastic dominance is sufficient for all the results formulated in the

previous section to hold.

In equilibrium, the marginal ability ∗ is pinned down by the number of seats  (see (13)). In our

analysis, we consider the case when ∗ ≥ max and ∗ ≥ max for  = 1 2. That is, the number of seats

is so low that an agent needs both types of ability to get in. Next, we derive explicit expressions for the

effort and selection effects evaluated at the non-discrimination quota.

Proposition 5 The effort and selection effects evaluated at the non-discrimination quota are given by

=∗ = − ( + )

2

⎛⎜⎝max1 − max2 +

³
max2 −min(̃ max2)

´2
max2 − ∗

−

³
max1 −min(̃ max1)

´2
max1 − ∗

⎞⎟⎠ ,
=∗ =

(1− )
¡
max1 − max2

¢
2

,
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where

max = max + max

Proof. In the Appendix.

As can be seen, the magnitude of the effort effect positively depends on the parameters describing the

returns from education and the cost of effort,  and . Moreover, it is straightforward to see that the

magnitude of the effort effect is increasing in the performance cutoff ̃ . Indeed, if ̃  max for  = 1 2,

so that some of both abilities get in, then

=∗ = − ( + )

2

³
̃ − ∗

´2 max1 − max2

(max2 − ∗) (max1 − ∗)
,

which is negative and decreasing in ̃ . If max2 ≤ ̃ ≤ max1, then

=∗ = − ( + )

2

⎛⎜⎝max1 − max2 −

³
max1 − ̃

´2
max1 − ∗

⎞⎟⎠ 

which is also decreasing in ̃ . Finally, if ̃  max1, then the effort effect is given by

=∗ = − ( + )

2

¡
max1 − max2

¢


and, therefore, does not depend on ̃ . Thus, all else equal, the effort effect is strictly decreasing in ̃ on

[∗ max1) and then is flat with respect to ̃ .

The selection effect depends only on  and the parameter  that describes the difference between the

social and private gains from education. Note that if ̃  max1, the overall effect on social welfare is

negative:



 =∗
= =∗ + =∗ = −


¡
max1 − max2

¢
2

( + ) 

In this case, the effort effect dominates over the selection effect. Hence, we can conclude that, for

sufficiently high values of the performance cutoff (which represents the level of competition for seats,

which in turn depends on tuition and the availability of seats), the effort effect is stronger than the

selection effect and, as a result, a quota in favor of disadvantaged results in welfare losses. Whereas, for

sufficiently low values of ̃ , the selection effect prevails over the effort effect and a reservation quota in

favor of disadvantaged can increase the social welfare. Note that the tuition fee  affects the effort and

selection effects only through ̃ . Moreover, a rise in  reduces the performance cutoff ̃ . Thus, we know:

Proposition 6 There exists a value of the tuition fee,  , such that an increase in the quota for the

disadvantaged group evaluated at the non-discrimination level, ∗ raises welfare if and only if    .

Intuitively, a higher tuition level reduces the magnitude of the effort effect and, as a result, a quota

in favor of the disadvantaged is more likely to be welfare improving. For this reason, the model suggests
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that affirmative action is likely to reduce welfare in a setting where education is subsidized. In India,

for example, backward castes and tribes have a share of seats (given by their population share) reserved

for them in publicly funded higher education. These reservations result in cutoff entrance exam scores

that are much lower for these groups than for the general category.23 As public higher education is

not only much cheaper than private, and as the very best institutions are public and seats are scarce,

competition to get in is extreme. In such a setting, reservations are likely to be welfare reducing. Higher

education is also subsidized in many European countries. However, supply is abundant, and as a result,

effort expended to get in is far less than in the Indian context. In the U.S., State Universities tend to be

cheaper than private ones of a similar quality. However, the emphasis on need blind admissions and the

availability of financial aid significantly reduces the difference in price.

In the next section we turn to some simulations that help us better understand the model. We continue

to use the linear setup used in the example in our simulations.

4.2 Simulations

In this subsection, we simulate the model for a number of different values of the parameters. In particular,

we assume that the production function ( ) and the payoff function () are again linear: ( ) =

+  and () = . In this case,

∗( ̃) = max(0 ̃ − )

In addition, we assume that the cost of effort is quadratic: () = 2. As a result, the equilibrium

conditions are given by


¡
1−(∗ )

¢
= 

∗ −  = 
³
max(0 ̃ − ∗ )

´2
for  = 1 2

The first condition gives the ability cutoff for each group, while the second equates the benefit from getting

in with its full cost for the marginal agent and defines the cutoff performance level for each group. Note

that the above implies that a proportional change in ,  , and  does not change either the cutoff ability

or the performance cutoff. Therefore, we set  and  to one and leave  to vary in the simulations. We

also assume that  = 1. In fact, the choice of  does not affect the qualitative implications of the model,

as changes in  only shift the welfare function downward or upward and do not affect the equilibrium.

In our simulations, we assume that the distributions of natural and acquired ability take a Gamma

form. A Gamma distribution has a density function:

(  ) =
1


1

Γ()
−1−

23 In the celebrated Indian Institutes of Technology, the entrance exam marks for the general category are in the high

nineties and while they are in the low fifties for the reserved category.
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It is characterized by the shape parameter  and the scale parameter . It has a mean of  and a variance

of 2 There are two advantages of using a Gamma distribution. First, a Gamma distribution has the

following property: if  has a Gamma distribution with  and , then
P


 has a Gamma distribution

with
P


 and . That is, if the distributions of natural and acquired ability are Gamma with the same

scale parameter, then the distribution of total ability is Gamma as well. The second advantage is that

if the shape parameter  is less than or equal to one, then the density function is decreasing, i.e., the

cumulative distribution function (c.d.f.) is concave. For  = 1, we have the exponential distribution as

a special case. Its c.d.f. is also concave. However, for   1 the density at zero is zero, and the density

function is first increasing and then decreasing. Thus, the cumulative density is locally convex and then

concave. This property is important, as the curvature of the c.d.f. of total ability seems to determine

the curvature of the welfare function (see the experiments below). We will assume that  = 1 for all

distributions. Then, the density functions are given by

( ) =
1

Γ( )
−1−

() =
1

Γ()



−1− and

() =
1

Γ( + )



+−1−

where  and  take on different values in the simulations. Table 1 summarizes the parametrization.

Parameters that are varied in the simulations are in italics.

It is useful to write welfare slightly differently as done below. Given the form we use, welfare is easily

broken down into its value when  = 1 plus an adjustment factor to account for the different weights

placed on acquired ability by society and by individual agents. Specifically,

 =
X




Z
+≥∗

³
( + )− (∗( +  ̃))− 

´
 ( )


()

=
X




Z max

∗

³
− (∗( ̃))− 

´
()

−(1− )
X




Z max

0

 (1− (
∗
 − ))


() +  ( −  ) 

Note that we use the fact that () is linear in the above. The first part in the expression above stands

for private welfare, which is the sum of the private payoffs from being educated. Let us call this  for

private welfare. The second term in the welfare function, which is given by

 = −(1− )
X




Z max

0

 (1− (
∗
 − ))


() +  ( −  ) ,

is the difference between social welfare and private welfare. For instance, if the private gains from

education are equal to the social gains (i.e.,  is equal to one), then the welfare is equal to private welfare
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Table 1: Parametrization

Variable Parametrization

Score Production Function: ( ) = + 

Cost of Effort: () = 2  = 1

Tuition:  = 1

Social Cost of Education:  = 1

Scale Parameter of Gamma:  = 1

Share of Population in Group  : 1 = 2 = 05

Shape Parameters of Gamma:   = 1 2  = 5

Payoff Function: () = 

Weight on Acquired Ability in Welfare: 

Share of Seats in Group  :   = 1 2

Seats Available: 
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if  =  We call this term the "selection" component of welfare and denote it by . Thus,

 =  + .

Next, we construct the welfare as a function of quota  for different values of
©
   

ª
=12

.

4.2.1 Simulations with only the Effort Effect

In this subsection, we consider the case when  is equal to one. In this case, social welfare is given by

 =  +  ( −  ) =
X




Z max

∗

³
− (∗( ̃))

´
()− 

We examine two subcases: when the groups have identical distributions of acquired ability (the symmetric

case) and when the groups are different in terms of the distributions of acquired ability (the asymmetric

case).24

The Symmetric Case When the groups are identical (1 = 2), our analytical results show that the

derivative of welfare with respect to the quota, evaluated at the non-discrimination quota, is equal to

zero (see Proposition 2). This implies that if the welfare function is concave (or single-peaked), then

the non-discrimination quota is optimal. Recall that the non-discrimination quota when the groups are

symmetric is equal to the size of each group (given by ). Simulations verify this result when +

 ≤ 1

which ensures that the c.d.f. of total ability is concave which seems to make the welfare function concave

as well.

When  +   1, interesting things happen. In the figures in this section, the horizontal axis is the

quota in favor of the disadvantaged group. In Figures 5 and 6, we consider the case when 1 = 2 = 1.

In this case, the shape parameter of the distribution of total ability is 15 and, therefore, the c.d.f. is not

concave, nor is welfare. The values of  are 110 and 130 in Figure 5 and 6, respectively. The welfare

function still has a zero derivative at the non-discrimination quota (as predicted), but this could deliver

a local minimum rather than a local maximum.

As can be seen from Figures 5 and 6, there are two global maxima so that it is optimal to discriminate

in favor of one group or the other as the two groups are of the same size. In Figure 5 it is optimal not to

give all seats to one group. As  rises, we move to Figure 6 and it becomes optimal to exclude one group

completely.

Why does this happen? Let us consider what happens, for example, when we move a seat from group

1 to group 2 when the density function is decreasing at the cutoff ability under the non-discrimination

quota. As a result of this, the cutoff score for group 2 falls and that for group 1 rises, and the ability of

the marginal agent rises in group 1 and falls in group 2. As the density function is decreasing in ability

at the cutoff ability, the cutoff for group 2 falls by a smaller amount than the cutoff for group 1 increases

24Note that only the distribution of total ability matters for welfare in this case.
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Figure 5: Social Welfare (no selection effect, the symmetric case)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
47.365

47.37

47.375

47.38

47.385

47.39

47.395

47.4

theta

so
ci

al
 w

el
fa

re

The parametrization:  = 1,  = 03, 1 = 2 = 1, and  = 110.

Figure 6: Social Welfare (no selection effect, the symmetric case)
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The parametrization:  = 1,  = 03, 1 = 2 = 1, and  = 130.

even when the two groups are of the same size (as illustrated in Figure 7). This happens because there

are fewer agents to the right of the cutoff (as the density is decreasing) than to the left. The more the

cutoff falls (rises) the more the effort expended falls (rises). As a result, the increase in effort by the

agents in group 1 (which reduces surplus and so welfare) is more than the decrease in effort by agents

in group 2 (which raises surplus and welfare). Consequently, welfare falls as this reallocation is made so

that non discrimination is optimal.

This is depicted in Figure 8. The surplus

()− (∗( ̃))− 
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Figure 7: Decreasing Density: Cutoff Effects

6

-
¾ -

0 ∗ ∗1∗2

Figure 8: Decreasing Density: Surplus Changes
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Figure 9: Increasing Density: Cutoff Effects
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is zero for the marginal agent and is increasing in ability. With the above reallocation the effort function

for group 2 shifts down while that for group 1 shifts up so that their surplus moves in the opposite

direction from their effort. As can be seen, the total losses of group 1 (the area ∗1
∗) are greater than

the total gains of group 2 (the area ∗2
∗).

However, if the density function is increasing in ability at the cutoff ability under the non-discrimination

quota, then the opposite happens (see Figure 9). The increase in effort by the agents in group 1 (which

reduces welfare) is less than the decrease in effort by agents in group 2 (which raises welfare), so that

welfare rises as this reallocation is made. Thus, non discrimination is a minimum of welfare not a max-

imum as depicted in Figures 5 and 6. To summarize, if the density function has a single peak (like the

normal distribution), then whether welfare locally rises or falls depends on what side of the peak the non

discrimination cutoff ability lies. Of course, this cutoff falls as the number of available seats rises.

Our argument also explains why greater discrimination is optimal when  rises (see Figures 5 and

6). As  rises, the effort expended to get in rises and this is increasingly costly due to the convex cost

of effort posited. As a result, the saving from reduced effort by discriminating in favor of one group is

higher and more discrimination is called for as  rises.

Armed with this understanding let us see what happens when  rises from being 03. At  = 03 we

have two peaks as in Figure 5. It may actually become optimal to exclude one group or the other as 

rises. The reason is that giving all the seats to one group reduces the effort of that group a lot. It also

makes the effort of the other group zero as that group has no seats. This is what is depicted in Figure 10

for  = 05 If  is even higher, then if all seats are given to one group, there may not be enough agents

in this group who wish to avail themselves of the seats (given the tuition level) so that some seats are

wasted. In this case, giving fewer seats to this group will raise welfare as depicted in Figure 11 where

 = 08.

More generally, the simulations suggest that even when there are no differences between agents, it

may be welfare increasing to create them by allowing some agents access to education while denying it

to others. By granting a smaller share of agents access, surplus per capita in the resulting competition is

higher, though of course, the number granted access is lower. What happens to total welfare depends on

how fast surplus per capita rises as access is restricted, i.e., its elasticity. This observation is interesting

in terms of policy. In practice, differential access to education is the norm and the welfare implications of

such differential access is poorly understood. Advantaged groups tend to have better access to education

than others. For example, the better off and better connected may have superior information about how

and where to apply. These simulations suggest a novel reason why (even when groups are identical ex

ante) differential access (perhaps via a lottery) may be welfare improving.

The Asymmetric Case If groups have different distributions of acquired ability and  is equal to

one, then, by Propositions 3 and 4, the derivative of the social welfare function at the non-discrimination
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Figure 10: Social Welfare (no selection effect, the symmetric case)
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The parametrization:  = 1,  = 05, 1 = 2 = 1, and  = 110.

Figure 11: Social Welfare (no selection effect, the symmetric case)
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The parametrization:  = 1,  = 08, 1 = 2 = 1, and  = 110.

quota is negative. If the welfare function is concave, this means that the optimal quota should be smaller

than the non discrimination quota25, i.e., it should discriminate in favor of the advantaged group. Thus,

in this case,  should be less than non discrimination level.

Under our parametrization, 1
() º 2

() if 
1
  2. In our experiments, we assume that

1 = 05 
2
 = 02, and  = 05 Thus, 


 +   1 implying that the density functions of total ability

for both groups are decreasing. We also assume that the groups are of the same size: 1 = 2 = 05.

25Recall that  is the quota in favor of the disadvantaged group.
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Then, the non-discrimination quota solves the following system of equations:⎧⎨⎩  = 1− 1
1(∗)− 2

2(∗)

∗ = 2(1−2(∗))

The first equation sets demand for seats under non discrimination equal to the supply to obtain the

common cutoff. The second equation sets the fraction of seats that go to the less privileged group at this

common cutoff equal, by definition, to the non-discrimination quota. Given the values of the parameters,

the non-discrimination quota is equal to 03932.

Figures 12 and 13 depict the welfare function for different values of . In Figure 12,  = 10 and in

Figure 13,  = 100. As expected, the optimal quota is always less than the non-discrimination quota (as

suggested by the theory). Moreover, as can be seen in 12 and 13, the higher is , the lower the optimal

quota. This is explained by the fact that a higher  implies higher performance cutoffs and, thereby,

more effort put in by the agents. This in turn increases the welfare losses due to wasted effort. As a

result, a larger quota for the advantaged group (which on average put in less effort) is optimal as  rises.

Figure 12: Social Welfare (no selection effect, the asymmetric case)
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The parametrization:  = 1,  = 03, 1 = 05, 
2
 = 02, and  = 10.

Note that if the distributions of total ability were not concave, then, similar to the symmetric case,

the welfare function could be not concave as well. However, in this case, imposing a quota in favor of the

advantaged group is still optimal, though the optimal quota is very likely to be equal to zero, i.e., it is

optimal to ban the disadvantaged group.

4.2.2 Simulations with the Selection Effect

In this subsection, we assume that  is strictly less than one. In this case, the selection component of

the welfare is not zero and, as a result, the optimal quota comes from the interplay of the effort and
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Figure 13: Social Welfare (no selection effect, the asymmetric case)
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The parametrization:  = 1,  = 03, 1 = 05, 
2
 = 02, and  = 100.

selection effects. In particular, the selection effect provides a rationale to discriminate in favor of the less

advantaged group. We will first consider the symmetric case.

The Symmetric Case When the distribution of acquired ability is the same in both groups, the

selection effect evaluated at the non-discrimination quota is equal to zero. This implies that if the total

welfare function is concave, then the non-discrimination quota is optimal. Figure 14 illustrates this

idea. It depicts the welfare function for the following set of parameters: 1 = 2 = 04,  = 05,

1 = 2 = 05,  = 10,  = 03, and  = 05. As can be seen, the non-discrimination quota maximizes

the welfare.

Figure 14: Social Welfare (with the selection effect, the symmetric case)
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The parametrization:  = 05,  = 03, 1 = 2 = 04, and  = 10.
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However, in this case it is not enough for the density function to be decreasing for total welfare to be

concave. The selection part of the welfare is an additional source of non-concavity of the welfare function

(besides the non-concavity of the distributions of total ability). Even though, the distributions of total

ability are concave (as in this example), the presence of the selection part of the welfare can make the

welfare function non-concave. The idea behind this is as follows. The selection part of welfare is given by

 = −(1− )
X




Z max

0

 (1− (
∗
 − ))


() +  ( −  ) ,

which according to our experiments is usually convex in . Thus, the welfare function is the sum of a

concave (the private component of welfare) and convex (the selection component of welfare) function.

As a result, the curvature of the social welfare function is not pinned down when   1 even if private

welfare is concave. Moreover, the lower is the value of , the more likely it is that the convex component

dominates, so that the social welfare function is not concave.

Figure 15 depicts the private part of the welfare (the upper curve) and the negative of the selection

components of welfare taken (− ) for  = 0. As can be inferred, both of these curves are concave with

a maximum at the non-discrimination quota. However, the welfare function is the difference between

these two curves and, therefore, could be convex or concave. Figure 16 depicts the resulting total welfare

function which, as can be seen, is maximized at the corners.

Figure 15: Private and Selection Components of Welfare (the symmetric case)
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The parametrization:  = 0,  = 03, 1 = 2 = 04, and  = 10.

Thus, if agents are symmetric, the density of ability is decreasing, and  is close to unity, then (by

continuity arguments) no discrimination will be optimal as depicted in Figure 14. If  is very small, so

that acquired ability does not matter, then giving all the seats to one group or the other could be optimal.

When is such a policy optimal? Intuitively, if there is a lot of wasted effort (wasted effort is large
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Figure 16: Social Welfare (with the selection effect, the symmetric case)
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The parametrization:  = 0,  = 03, 1 = 2 = 04, and  = 10.

when  is high and/or the number of seats is low), then the private component of welfare is relatively

flat. Once it is flat enough, and  is small enough, then the selection component dominates so that giving

all seats to one group or the other increases welfare. Figures 17 and 18 illustrate this intuition. In Figure

17 we only increase  from 03 to 05, in Figure 18 we only decrease  from 10 to 5. As can be seen, in

both cases the welfare function is concave and, as a result, the non-discrimination quota is optimal.

Figure 17: Social Welfare (with the selection effect, the symmetric case)
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The parametrization:  = 0,  = 05, 1 = 2 = 04, and  = 10.

The Asymmetric Case When the groups are different in terms of their acquired ability distribution

and   1, then both forces are at play. The presence of the selection effect shifts the optimal quota
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Figure 18: Social Welfare (with the selection effect, the symmetric case)
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The parametrization:  = 0,  = 03, 1 = 2 = 04, and  = 5.

towards the disadvantaged group. However, the effort effect shifts the quota in favor of the advantaged

group. Figure 19 depicts the social welfare function for different values of . The upper curve is the

welfare function when  = 08. As can be seen, in this case the optimal quota is in favor of the advantaged

group (optimal  is lower than the non-discrimination quota given by 03932). That is, the effort effect

is stronger than the selection effect. When  is equal to 05 (the middle curve), the two effects are of

the same magnitude and, therefore, the optimal quota is close to the non-discrimination quota. Finally,

when  = 02, one can see that the optimal quota is in favor of the disadvantaged group as the selection

effect prevails over the effort effect.

Figure 19: Social Welfare (with the selection effect, the asymmetric case)
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The parametrization:  = {08 05 02},  = 03, 1 = 05, 2 = 02, and  = 5.
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5 Extensions

In our model, we make several assumptions and it is important to understand the extent to which our

results depend on them. First, we assume no uncertainty in terms of the performance in the exam. As a

result, agents expend just enough effort to get in, so that more able agents exert less effort, and all agents

above an ability threshold get in. Those agents with abilities below this threshold do not get in, nor do

they exert any effort. The effort effect follows basically from this: reallocating seats to the advantaged

group reduces total effort as this group has higher average total ability and, therefore, tends to expend

less (wasteful) effort. This intuition goes through for small enough levels of randomness in performance.

In general, with randomness the effort function becomes hump shaped over ability. The least able

put in little or no effort and rely on luck to get in, while the most able need to put in little effort to get

in. Those in between need to work to get in. As a result, the disadvantaged could put in more or less

effort than the advantaged on average so that the results depend on the position of the hump and the

distribution of abilities. If the less advantaged put in more effort, then discriminating against them helps

and vice versa.

The selection effect is more general. The exam selects on the basis of total ability which is on average

higher in the advantaged group. Society values native ability more than the exam does. Conditional

on getting in, the native ability of those from the disadvantaged group is higher and this is true with

or without uncertainty. Consequently, in general, the selection effect makes it welfare increasing to

discriminate in favor of the less advantaged.

Second, we assume that there is only one school. It is relatively straightforward to show that the

intuition remains valid with more schools. When one discriminates in favor of the less advantaged, their

cutoffs fall in each school. As a result, they put in less effort. The opposite occurs in the more advantaged

group. As the more advantaged on average put in less effort, welfare falls due to the effort effect. The

selection effect of course generalizes (these results are available in the Appendix).

6 Conclusion

Most of the work on preferences and affirmative action has focused on statistical discrimination. Given

preferences, blacks may work less hard and so on average be worse than whites precisely because of

preferences. Employers then prefer to hire whites as race is observable. However, if the basis on which

preferences are given is not observable, then this model is less valid. In India for example, it is not always

easy to tell caste, especially in the cities, as caste based last names are not always used. If preferences

are based on background, or parental income, as has been proposed, then again those given preferences
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may not be easily identifiable.26 In such settings we show that while there is no one size fits all policy,

we can provide some guidance on when affirmative action might be welfare improving.

We identify two distortions: an effort distortion that arises from wasteful effort, and a selection

distortion that arises from society placing a greater weight on native ability than does the placement

system. How these two play off against each other and interact results in a one size does not fit all

answer. Preferences may be good for one society and bad for another. The disadvantaged group puts

in more effort to get in on average than the advantaged one. Given the number of seats, preferences

in favor of the disadvantaged group raise the average effort level and this reduces welfare. This effect

is large when tuition is low and potential surplus is dissipated via effort. However, if society puts more

weight on natural ability than does the placement algorithm, then there is an additional selection effect

that operates. The disadvantaged group, that gets in, on average has greater natural ability. This makes

preferences in their favor desirable. The former effect dominates when tuition is low and the latter when

it is high. As a result, our work suggests that while preferences may be a good idea in the US where

tuition tends to be high, it may be a very bad idea in India where tuition is very low.

26After all, after going through a university education a native accent is often shed in favor of a one that blends in more

easily.
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Appendix A

This Appendix contains the proofs of the results in the body of the paper.

Proof of Lemma 1. Follows from performing comparative statics on equations

1−(∗) = 

(∗)−  = (∗(∗ ̃ ))

Totally differentiating them gives

−(∗)∗ = 

{0(∗)− 0(∗(∗ ̃ ))∗(
∗ ̃ )}∗ − 0(∗(∗ ̃ ))∗

̃
(∗ ̃ )̃ = 

where 0(∗)− 0(∗(∗ ̃ ))∗(
∗ ̃ )  0 as ∗(

∗ ̃ )  0 and ∗
̃
(∗ ̃ )  0 Thus,⎡⎣ −(∗) 0

0(∗)− 0(∗(∗ ̃ ))∗(
∗ ̃ ) −0(∗(∗ ̃ ))∗

̃
(∗ ̃ )

⎤⎦⎡⎣ ∗

̃

⎤⎦ =
⎡⎣ 1 0

0 1

⎤⎦⎡⎣ 



⎤⎦
so that ⎡⎣ ∗


∗


̃


̃


⎤⎦ =
⎡⎣ − 1

(∗) 0

− 0()−0(∗())∗()
(∗)0(∗())∗

̃
()
− 1

0(∗())∗
̃
()

⎤⎦ 
Proof of Proposition 1. 1. Basics

Recall that social welfare is given by

 =

Z
+≥∗

³
( + )− (∗( +  ̃ ))− 

´
 ( )()

As the cutoff ability ∗ does not depend on  , the derivative of the welfare function with respect to  is




= −̃



Z
+≥∗

0(∗( +  ̃ ))
∗( +  ̃ )

̃
 ()()

>From Lemma 1 in the paper, ̃  0. In addition, ∗( ̃ )̃  0. This immediately implies

that   0. Thus, increasing  , as long as this leaves the ability cutoff unaffected, raises welfare.

Once tuition is such that

(∗)−  = 0

that is, if tuition is so high that with zero effort needed to get in and the number of seats is just filled,

further increases in tuition will result in an excess supply of seats. The optimal tuition, given the share

of seats going to each group, is therefore equal to (∗). If the tuition is set at this level, then the

equilibrium is determined by the following equations:

1−(∗) = 

∗(∗ ̃ ) = 0 ⇐⇒ ̃ = (∗ 0)
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The first line gives the identity of the marginal agent, ∗. The second line defines the performance cutoff

̃ .

2. The Optimal Number of Seats

Given the optimal choice of  , social welfare is given by

 =

Z
+≥∗

(( + )−  )  ( )()

The latter can be rewritten in the following way:

 =

Z max

0

ÃZ max

∗−
(( + )−  )  ( )

!
()

This implies that the derivative of the social welfare with respect to  is given by




= −

∗



Z max

0

 (
∗ − ) ((

∗ − (1− ))−  ) ()

As −∗


is positive, the optimal (if it is interior)  solvesZ max

0

 (
∗ − ) ((

∗ − (1− ))−  ) () = 0,

where ∗ is −1(1 − ). We assume that the functions are such that the second order condition is

satisfied.

Note that if  = 1, thenZ max

0

 (
∗ − ) ((

∗ − (1− ))−  ) () = 0 ⇐⇒
(∗) = 

That is, the optimal  is such that

(−1(1− )) = 

In other words, the optimal number of seats is such that, when tuition is set at the full cost of education,

all seats are demanded and no one puts in any effort. It is straightforward to check that the second order

condition is satisfied in this case.

Proof of Proposition 2

Recall that the social welfare is given by

 = 1

Z
+≥∗1

³
( + )− (∗( +  ̃1))− 

´
 ( )

1
()

+2

Z
+≥∗2

³
( + )− (∗( +  ̃2))− 

´
 ( )

2
()
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This can be rewritten in the following way (by adding and subtracting  for each agent):

 = 1

Z max1

0

ÃZ max

∗1−

³
( + )− (∗( +  ̃1))− 

´
 ( )

!
1

()

+2

Z max2

0

ÃZ max

∗2−

³
( + )− (∗( +  ̃2))− 

´
 ( )

!
2

()

+( −  )

Then, adding and subtracting ( + ) to each of the above terms under the integral gives

 = 1

Z max1

0

⎛⎝Z max

∗1−

⎛⎝ ( + )− ( + )

+( + )− (∗( +  ̃1))− 

⎞⎠ ( )

⎞⎠ 1
()

+2

Z max2

0

⎛⎝Z max

∗2−

⎛⎝ ( + )− ( + )

+( + )− (∗( +  ̃2))− 

⎞⎠  ( )

⎞⎠ 2
()

+( −  )

Noting that



∗

Z max

∗−

³
( + )− ( + ) + ( + )− (∗( +  ̃))− 

´
 ()

= −
³
(∗ − (1− ))− (∗ ) + (∗ )− (∗(∗  ̃))− 

´
(

∗
 − )

and that at the cutoff for total ability, the marginal agent is indifferent between paying tuition and getting

in and not, so that (∗(∗  ̃)) = (∗ )−  it follows that




=

(
−1

̃1



Z max1

0

ÃZ max

∗1−
0(∗( +  ̃1))

∗( +  ̃1)

̃
 ( )

!
1

()

−2
̃2



Z max2

0

ÃZ max

∗2−
0(∗( +  ̃2))

∗( +  ̃2)

̃
 ()

!
2

()

)
(
+1

∗1


Z max1

0

((∗1)− (∗1 − (1− ) )) (
∗
1 − )

1
()

+2
∗2


Z max2

0

((∗2)− (∗2 − (1− ) )) (
∗
2 − )

2
()

)


Hence,



=  + 

where , the effort effect, is the first term in curly brackets and , the selection effect is the second.

Let us define ∗ as the non-discrimination quota. Under the non-discrimination quota, ̃1 = ̃2 ≡ ̃

and ∗1 = ∗2 ≡ ∗. Moreover, if 1
() ≡ 2

(), then 1() ≡ 2(). Then, from the equilibrium

conditions given by


¡
1−(∗ )

¢
=  (15)

(∗ )−  = (∗(∗  ̃)) where  = 1 2 (16)
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we obtain that
1
2
=

1

2
⇔  = .

That is, the non-discrimination quota is equal to the share of the group in the total mass of agents. This

makes sense as if the two groups are identical then their non discriminating quota share will be the same

as their population weight.

Next, we assume that 1
() ≡ 2

() and evaluate



at the non-discrimination quota. >From

(15), it is straightforward to show that

∗1
 =∗

=


1
1(∗)

 0 and (17)

∗2
 =∗

= − 

2
2(∗)

 0. (18)

Hence, if 1() ≡ 2(),

1
∗1
 =∗

= −2
∗2
 =∗

.

This implies that  evaluated at  = ∗ is equal to zero. From (16), it is also possible to show that

̃1

 =∗
=

0(∗)− 0(∗(∗ ̃ ))
∗(∗̃ )


0(∗(∗ ̃ ))
∗(∗̃ )
̃

∗1
 =∗

 0, and (19)

̃2

 =∗
=

0(∗)− 0(∗(∗ ̃ ))
∗(∗̃ )


0(∗(∗ ̃ ))
∗(∗̃ )
̃

∗2
 =∗

 0. (20)

This then implies that

1
̃1

 =∗
= −2

̃2

 =∗


As a result,  is also equal to zero. To summarize, if 1
() ≡ 2

(), then for all 

 ()

 =∗
= 0.

Thus, if  is well-behaved, i.e., it has a single peak as a function of  social welfare is maximized at

 = ∗. However, this could also be a minimum, not a maximum as explored in the simulations.

The Proof of Proposition 3

Using the results derived in Proposition 2, the effort effect evaluated at the non-discrimination quota ∗

is given by

=∗ = −1
̃1



Z max1

0

ÃZ max

∗−
0(∗( +  ̃ ))

∗( +  ̃ )

̃
 ( )

!
1

()

−2
̃2



Z max2

0

ÃZ max

∗−
0(∗( +  ̃ ))

∗( +  ̃ )

̃
 ( )

!
2

()
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as when  is non discriminatory, ∗1 = ∗2 = ∗ and ̃1 = ̃2 = ̃ . Note that27Z max

0

ÃZ max

∗−
0(∗( +  ̃ ))

∗( +  ̃ )

̃
 ( )

!


()

=

Z
+≥∗

0(∗( +  ̃ ))
∗( +  ̃ )

̃
 ( )


()

=

Z max

∗
0(∗( ̃ ))

∗( ̃ )

̃
()

where () is the distribution of the total ability (on [0 max]) in group .

Thus, the effort effect can be written as:

=∗ = −1
̃1



Z max1

∗
0(∗( ̃ ))

∗( ̃ )

̃
1()− 2

̃2



Z max2

∗
0(∗( ̃ ))

∗( ̃ )

̃
2()

Substituting the expressions for ̃


(see (19), (20) and (17), (18)), we obtain that

=∗ = −
⎡⎣0(∗)− 0(∗(∗ ̃ ))

∗(∗̃ )


0(∗(∗ ̃ ))
∗(∗̃ )
̃

⎤⎦ {1 ∙ 

1
1(∗)

¸Z max1

∗
0(∗( ̃ ))

∗( ̃ )

̃
1()

−2
∙



2
2(∗)

¸ Z max2

∗
0(∗( ̃ ))

∗( ̃ )

̃
2()}

Thus,

=∗ = 

⎛⎝R max2∗ 0(∗( ̃ ))
∗(̃ )
̃

2()

2(∗)
−
R max1
∗ 0(∗( ̃ ))

∗(̃ )
̃

1()

1(∗)

⎞⎠ (21)

= 

ÃR max2
∗ ( ̃ )2()

2(∗)
−
R max1
∗ ( ̃ )1()

1(∗)

!
 (22)

27By definition,

1−() =

 max



()

=

 max



 max

0

 (− )

()




=

 max

0

()

 max



 (− )




=

 max

0

() [ (max − )− (− )] 

As max −  ≥ max for any ,  (max − ) = 1. Hence, max



() =

 max

0

() [1− (− )] 

=

 max

0

()

 max

−
 ( )




=

 max

0

 max

−
() ( )

Thus, when we integrate the change in effort over all agents whose effort changes, there is more than one way to do so: as

above or alternatively, we could integrate () over all  above ∗.
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where recall ( ̃ ) = 0(∗( ̃ ))
∗(̃ )
̃

is positive (as
∗(̃ )

̃
= 1

()
 0) and

 = 
0(∗)− 0(∗(∗ ̃ ))

∗(∗̃ )


0(∗(∗ ̃ ))
∗(∗̃ )
̃

 0

Recall that, as 1
() º 2

() and the distribution of the natural ability is log-concave, we

know that 1() º 2() so that

1()

1(∗)


2()

2(∗)
for any  ∗ :   ∗.

Moreover, as max = max + max and 1
() º 2

(), max1 ≥ max2. Hence, we have thatR max1
∗ ( ̃ )1()

1(∗)
≥

R max2
∗ ( ̃ )1()

1(∗)

=

Z max2

∗
( ̃ )

1()

1(∗)




Z max2

∗
( ̃ )

2()

2(∗)


=

R max2
∗ ( ̃ )2()

2(∗)


This implies that =∗  0.

The Proof of Proposition 4

>From previous sections, the selection effect evaluated at the non-discrimination quota (which ensures

∗1 = ∗2 = ∗) is given by

=∗ = 1
∗1


Z max1

0

((∗)− (∗ − (1− ) )) (
∗ − )

1
()

+2
∗2


Z max2

0

((∗)− (∗ − (1− ) )) (
∗ − )

2
()

Substituting the expressions for
∗


(see (17) and (18)), we obtain that

=∗ =


1(∗)

Z max1

0

((∗)− (∗ − (1− ) )) (
∗ − )

1
() (23)

− 

2(∗)

Z max2

0

((∗)− (∗2 − (1− ) )) (
∗ − )

2
()

Taking into account that

(∗) =
Z max

0

 (
∗ − )() (24)

the selection effect can be written as follows:

=∗ = 

Z max1

0

((∗)− (∗ − (1− ) ))
1() (

∗ − )R max1
0  (∗ − )1()



−
Z max2

0

((∗)− (∗ − (1− ) ))
2() (

∗ − )R max2
0  (∗ − )2()
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Next, we define

̃( 
∗) ≡ () (

∗ − )R max
0  (∗ − )()



Suppressing ∗ in the notation, we replace ̃( 
∗) with ̃() Notice that ̃


() is a density

function. Let ̃
() be its associated distribution function. As 

1
() º 2

(),

̃1()

̃1()
=

1() (
∗ − )

1() (
∗ − )

≥ 2() (
∗ − )

2() (
∗ − )

=
̃2()

̃2()
for any ,  :  ≥ 

That is, ̃1
() º ̃2

() implying ̃
1
() º1 ̃2

().

Then, the selection effect can be rewritten in the following way:

=∗ = 

Z max1

0

((∗)− (∗ − (1− ) )) ̃
1
()

−
Z max2

0

((∗)− (∗ − (1− ) )) ̃
2
()

Equivalently, as 1
() º 2

() implies 

max1 ≥ max2

=∗ = 

Z max1

max2

((∗)− (∗ − (1− ) )) ̃
1
()

+

Z max2

0

((∗)− (∗ − (1− ) )) 
³
̃1
()− ̃2

()
´


Integrating the second term above by parts implies that

=∗ = 

Z max1

max2

((∗)− (∗ − (1− ) )) ̃
1
()

− ¡(∗)− (∗ − (1− ) max2)
¢ ³
1− ̃1

(

max2)

´
+ (1− )

Z max2

0

³
̃2
()− ̃1

()
´
0(∗ − (1− ) )

 0

Why? The third term is positive as 0(·) is positive and ̃2
() ≥ ̃1

() for any  (recall that

̃1
() º1 ̃2

()).

The sum of the first two terms is also positive as shown next. As (·) is increasing, we know that

() ≡ (∗)− (∗ − (1− ) )  0

and () is increasing in . Thus, the average area under the curve (),Z max1

max2

((∗)− (∗ − (1− ) ))
̃1()³

1− ̃1
(


max2)

´  (∗)− (∗ − (1− ) max2)

which is its value at the lowest point. Thus, we have that



Z max1

max2

((∗)− (∗ − (1− ) )) ̃
1
() ≥ 

¡
(∗)− (∗ − (1− ) max2)

¢
(1− ̃1

(

max2))

Thus, it is straightforward to see that =∗  0. Notice that if  = 1, then =∗ = 0.
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The Proof of Proposition 5 (Example)

>From (21), the effort effect evaluated at the non-discrimination quota is given by

=∗ = 

⎛⎝R max2∗ 0(∗( ̃ ))
∗(̃ )
̃

2()

2(∗)
−
R max1
∗ 0(∗( ̃ ))

∗(̃ )
̃

1()

1(∗)

⎞⎠ 

where

 = 
0(∗)− 0(∗(∗ ̃ ))

∗(∗̃ )


0(∗(∗ ̃ ))
∗(∗̃ )
̃

.

Given the assumptions, the effort effect can be written as follows (recall that agents with total ability

higher than ̃ put in zero effort and, therefore, the upper bound of the integrals is min(̃ max)) :

=∗ =  ( + )

⎛⎝Rmin(̃max2)∗ 2()

2(∗)
−
Rmin(̃max1)
∗ 1()

1(∗)

⎞⎠ 

Recall that

() =

Z max

0

 (− )
()

implying that

() =

Z max

0

 (− )()

Since  (·) and 
(·) are uniform,

() =
1

max

max

Z min(max)

max(0−max)
 =

min(max )−max(0 − max)

max

max



This implies that if  ≥ ∗ ≥ max £max1 max2 max¤ (as assumed), then
() =

max + max − 

max

max

=
max − 

max

max



where max = max + max. Hence,

Z min(̃max)

∗
() =

(max − ∗)2 −
³
max −min(̃ max)

´2
2max


max



Substituting the latter in the expression for the effort effect, we derive that

=∗ = − ( + )

2

(max1 − ∗)2 −
³
max1 −min(̃ max1)

´2
max1 − ∗

+
 ( + )

2

(max2 − ∗)2 −
³
max2 −min(̃ max2)

´2
max2 − ∗

= − ( + )

2

⎛⎜⎝max1 − max2 +

³
max2 −min(̃ max2)

´2
max2 − ∗

−

³
max1 −min(̃ max1)

´2
max1 − ∗

⎞⎟⎠ 
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>From (23), the selection effect is given by

=∗ =


1(∗)

Z max1

0

((∗)− (∗ − (1− ) )) (
∗ − )

1
()

− 

2(∗)

Z max2

0

((∗)− (∗ − (1− ) )) (
∗ − )

2
()

Taking into account the assumptions about the functional forms, the latter can be written as follows:

=∗ = (1− )

⎛⎝R max10
 (

∗ − )
1
()

1(∗)
−
R max2
0

(
∗ − )

2
()

2(∗)

⎞⎠ 

We have that (recall ∗  max)

R max
0

 (
∗ − )


()

(∗)
=

R max
∗−max 

max + max − ∗

=
max + ∗ − max

2


Therefore,

=∗ = (1− )

Ã
max1 + ∗ − max

2
− max2 + ∗ − max

2

!

=
(1− )

¡
max1 − max2

¢
2



When Effort Affects the Payoffs from Education

In this section, we modify the model so that the effort put in is not fully wasted. We assume that the

private gains from education are given by () −  + ( ), where ( ) represents additional payoffs

from effort.28 We assume that ( ) is increasing in both  and , concave in  (( )  0), and the

cross derivative ( ) is positive (which means that more able agents gain more from putting in more

effort).

The sequence of actions is the same as in the benchmark model. An agent decides whether to take

the exam or not and how much effort to put in (if she takes the exam). Let ∗( ̃ ) be the effort required

to get in. It is defined as the solution of

̃ = ( ).

As can be seen, it is decreasing in .

Let ̂() be the effort chosen if admission was ensured, i.e., effort independent of any considerations

of admission. It is the solution of

max

{()−  + ( )− ()} ,

28This setup is equivalent to that where the function (·) depends not only on , but also on .
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Figure 20: Effort in the Model with Additional Payoffs from Effort
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∗

which is defined by

( ̂)− 0(̂) = 0

Also, ( ) − 00()  0 so that ( ) − 0()  0 for   ̂() Also, as ( ) is positive, ̂() is

increasing in . Since ∗( ̃ ) is decreasing in , there exists a unique ability where the two are equal.

This cutoff ability is implicitly defined by

∗( ̃ ) = ̂()

and denoted by ̂(̃ ).

The equilibrium effort function is a composite one made up of ∗( ̃ ) and ̂() Agents with ability

above ̂(̃ ) want to put in more effort than they need to to get in and so choose to put in what they want

to independent of admission considerations. Agents with ability below ̂(̃ ) want to put in less effort

than they need to to get in and are forced to put in what is needed to be admitted. Hence, the agent

with total ability  expends effort

( ̃ ) = max{∗( ̃ ) ̂()} (25)

=

⎧⎨⎩ ∗( ̃ ) if  ≤ ̂(̃ )

̂() if   ̂(̃ )
 (26)

As depicted in Figure 20, ( ̃ ) is decreasing in  till ̂(̃ ) and then increasing. A higher cutoff

performance shifts the decreasing part of the curve upwards and to the right and does not effect the

increasing part.

What about surplus? The surplus of an agent with ability  who decides to take the exam is given by

 ( ̃ ) = ()−  + ( ( ̃ ))− (( ̃ ))

49



Figure 21: The Surplus Function in the Model with Additional Payoffs from Effort
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∗

Taking into account the expression for ( ̃ ),

 ( ̃ ) =

⎧⎨⎩ ()−  + ( ∗( ̃ ))− (∗( ̃ )) if  ≤ ̂(̃ )

()−  + ( ̂())− (̂()) if   ̂(̃ )


It is straightforward to show that if   ̂(̃ ),  ( ̃ ) is increasing in . Indeed, by the envelope theorem,

for   ̂(̃ )

( ̃ ) = 0() + ( ̂())  0

Next we show that  ( ̃ ) is increasing in  for  ≤ ̂(̃ ) as well. For  ≤ ̂(̃ ),

( ̃ ) = 0() + ( 
∗( ̃ )) + (()− 0()) ∗( ̃ )

Note that for  ≤ ̂(̃ ), ( ̃ )) = ∗( ̃ )  ̂(). That is, in this region effort is excessive so that

(()− 0())  0. Since ∗( ̃ )  0 (()− 0()) ∗( ̃ )  0 As a result, it follows that for  ≤ ̂(̃ ),

̂( ̃ )  0 Thus, we have shown that  ( ̃ ) is increasing in . Notice that a rise in ̃ raises the

effort needed to get in and shifts  ( ̃ ) downwards (for  ≤ ̂(̃ )) and ̂(̃ ) up. This is depicted in

Figure 21.

Finally, an agent with total ability  takes the exam if and only if her surplus from doing so is positive.

Since this surplus is increasing in , all agents with ability more that a some level take the exam. The

cutoff ability, ∗, satisfies

 (∗ ̃ ) = (∗)−  + (∗ (∗ ̃ ))− ((∗ ̃ )) = 0, (27)

as the outside option has been set at 0.

Hence, in the model when effort can be useful, there is still some wasted effort (when ∗  ̂(̃ )

in equilibrium). This occurs among the lower ability agents taking the exam. As a result, the effort
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distortion will again suggest that one discriminates in favor of the advantaged as they put in less wasteful

effort. Hence, our results regarding the effort effect on welfare derived in the benchmark model can be

derived in this modification of the model as well.

Appendix B

In this Appendix, we consider the extension of the benchmark model with two universities of different

quality.

The Model

We assume that the universities are different in that they offer education of different qualities, which

affects the payoffs from being educated. As a result, in equilibrium, the performance cutoff for a better

university is higher so that it takes more effort to be accepted to the higher quality university. The payoffs

from being educated at university  are given by (), where  is the measure of quality of university

 (as before,  is the total ability). Here,  ∈ {}. The net payoffs are given by

()−  − (∗( ̃ ))

where  is the tuition fee and ̃  is the performance cutoff at university  (̃ is assumed to be higher

than ̃ (see the discussion below)), ∗( ̃ ) is the effort level put in to be accepted. () is weakly

convex.

Lemma 2 below shows that the difference between the net payoffs from studying in the better university

is increasing in ability. As a result, more able agents are matched with better universities.

Lemma 2 For any given performance cutoffs,

(; ̃  ̃) = ()−  − (∗( ̃))−
³
()−  − (∗( ̃))

´
= 4()−4 − (∗( ̃)) + (∗( ̃))

where 4 =  −   0 and 4 =  − . Then,

(; ̃  ̃)


= 40() +

"
−0(∗( ̃))

∗( ̃)


−
Ã
−0(∗( ̃))

∗( ̃)



!#
(28)

= 40()−
h
0(∗( ̃))− 0(∗( ̃))

i ∗( ̃)


(29)

+0(∗( ̃))

Ã
∗( ̃)


− ∗( ̃)



!
(30)

 0 (31)
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Proof. Using the fact that

( ∗( ̃ )) = ̃

it is easy to see that

∗
̃
( ̃ ) =

1

( ∗( ̃ ))
 0

That is, meeting a higher cutoff requires greater effort from any agent. Thus, as (·) is convex, 0(∗( ̃)) 

0(∗( ̃)) In addition,

∗( ̃ ) = −
( 

∗( ̃ ))

( ∗( ̃ ))
 0

This implies that

−
h
0(∗( ̃))− 0(∗( ̃))

i ∗( ̃)


 0

Finally,

∗
̃
( ̃ ) = −( 

∗( ̃ )) + ( 
∗( ̃ ))∗( ̃ )³

( ∗( ̃ ))
´2  0,

as   0, 
∗
( ̃ )  0, and   0. This in turn means that 

∗
( ̃

)  ∗( ̃
), implying that

0(∗( ̃))

Ã
∗( ̃)


− ∗( ̃)



!
 0.

Summarizing the above findings, it follows that

(; ̃  ̃)


 0

It is probably easiest to see what we have in a picture like Figure 22. We have that () is steeper

than (), as    and () is increasing in ability so that more able individuals earn more at any

given education level, and this is more so at better institutions. In order to get in to school  (or ),

each agent must put in ∗( ̃) (or ∗( ̃)) and this means costs of (∗( ̃)) (and (∗( ̃)))

be incurred. These costs are decreasing in ability as the more able need to put in less effort to meet any

given performance cutoff. Moreover, they decrease faster in ability when the cutoff is higher (as shown in

Lemma 2). This happens because the higher performance cutoff requires more effort from all individuals,

but due to the complementarity between ability and effort in creating performance, more able agents

need to put in less effort to attain the higher cutoff. As they are putting in less effort to get the lower

performance cutoff anyway, this increased effort to meet a higher cutoff is also less costly for them.

Thus, the net surplus (the benefit less the cost) from going to school is increasing in ability, and more

so for the better school as depicted in Figure 22. This means that when we add tuition cost which are

independent of ability, the net benefit of going to the better school rises faster than that of the worse

school so that these curves can cross at most once and better students must select into the better school.
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Figure 22: Payoffs from Education: Two Schools

6

-

0



()−  − (∗( ̃))

()−  − (∗( ̃))

∗∗

Note this is independent of tuition, though too high a tuition could make the payoff from that school lie

entirely below that of the other so no one goes there.

Next we consider the equilibrium and comparative statics of the model. In the equilibrium, there

are two total ability cutoffs: ∗ and ∗. Agents with ability lower than ∗ choose the outside option.

The cutoffs are determined by taking the number of seats in the better school and finding ∗ such that

these seats are filled. ∗ is then defined by its seats being filled by lower ability agents. This gives the

equilibrium conditions:

1−(∗) =   (32)

(∗)−(∗) = , (33)

where  is the number of seats in university  and () is the distribution of total ability. As before,

we assume that the natural and acquired abilities are independently distributed across the agents. The

distribution functions are given by  ( ) and () on [0 

max] and [0 


max], respectively. Then,

the distribution function for the total ability  is () on [0 max], where

() =

Z max

0

 (− )()

and max = max + max.

The agent at ∗ must be indifferent between the worse school and the outside option of zero which

pins down (∗(∗ ̃
)) and defines ̃ The agent at ∗ must be indifferent between the two schools
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which pins down (∗(∗  ̃
)) and defines ̃ . Thus

(∗)−  − (∗(∗ ̃
)) = 0 (34)

4(∗)−4 − (∗(∗  ̃
)) + (∗(∗  ̃

)) = 0 (35)

Thus, we have four unknowns: ∗ , 
∗
, ̃

 , ̃; and four equilibrium equations. Note that the condition,

̃  ̃, is equivalent to (∗(∗  ̃
))−(∗(∗  ̃))  0. Therefore, from the equilibrium conditions,

we can infer that ̃  ̃ if and only if 4(∗)−4  0. In other words, that the difference in the

tuition levels is not set too high relative to the difference in quality.

Next, we explore how changes in  affect the equilibrium outcome. The following lemma holds.

Lemma 3 1) The cutoffs, ∗ and ∗, do not depend on the tuition fees,  and .

2) A rise in  does not affect ̃ and decreases ̃ .

3) A rise in  decreases ̃
 and increases ̃ .

4) A rise in  and  (such that 4 does not change) decreases ̃ and ̃ .

Proof. 1)-2) and 4) directly follow from the equilibrium equations. Let us prove the third statement in

the lemma. From the equilibrium, we have that

̃


= − 1

0
³
∗(∗ ̃)

´
∗(∗


̃)

̃

 0

In addition,

̃


= −
−0

³
∗(∗  ̃

)
´
∗(∗ ̃

)

̃

̃


− 1

0
³
∗(∗  ̃)

´
∗(∗


̃)

̃

=
0
³
∗(∗  ̃

)
´
∗(∗ ̃

)

̃

̃


+ 1

0
³
∗(∗  ̃)

´
∗(∗


̃)

̃



Hence, the sign of the derivative is the same as the sign of the numerator (as the denominator is positive).

The numerator is in turn equal to

0
³
∗(∗  ̃

)
´ ∗(∗  ̃

)

̃

̃


+ 1 = 1−

0
³
∗(∗  ̃

)
´
∗(∗ ̃

)

̃

0
³
∗(∗ ̃)

´
∗(∗


̃)

̃



Note that as ∗  ∗ , 
∗(∗  ̃

)  ∗(∗ ̃
) implying that 0

³
∗(∗  ̃

)
´

 0
³
∗(∗ ̃

)
´
.

Moreover, since
∗(̃ )

̃
= 1

³
 ∗( ̃ )

´
,

∗(∗ ̃
)

̃

∗(∗

̃)

̃

=


³
∗ 

∗(∗ ̃
)
´



³
∗  ∗(

∗
  ̃

)
´  1,

as   0 and   0. That is, the sign of the numerator is positive. This proves the statement.

The intuition behind 1) and 2) in the lemma is straightforward. The idea behind 3) is as follows.

Keep the performance cutoffs fixed. An increase in  shifts the payoff curve for  down and reduces 
∗
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while raising ∗. As a result, more agents apply for the seats in the high-quality university and fewer for

the low quality one. As the number of seats remains the same, ̃ must rise and ̃ fall.

The intuition behind 4 is simple. Suppose we increase tuition fees by the same amount. At given

performance cutoffs, this change does not affect the intersection of the two curves as both sift down by

the same amount, but raises ∗ This reduces the demand for school  below its capacity which reduces

the performance cutoff of  This fall in ’s performance cutoff must shift the payoff for  back up so

that it goes through the original level of ∗ However, the fall in ’s performance cutoff has a smaller

impact on the payoff for higher ability agents and so makes it flatter. This reduces ∗ from its original

level, requiring a fall in ’s performance cutoff as well.29

Next, we explore the effects of changes in the number of available seats on the equilibrium outcomes.

Using the equilibrium equations we see that a rise in  does not change 
∗
 (as it is pinned down by

) and decreases 
∗
. This in turn means that ̃

 and ̃ fall. Intuitively, more available seats in

the low-quality university reduces the performance cutoff in that university, making it more attractable

compared to the high-quality university. As the number of seats in the high-quality university does not

change, the performance cutoff, ̃ , must fall to compensate for the decrease in ̃.

A rise in  in turn decreases both the ability cutoffs, ∗ and 
∗
 . The decrease in 

∗
 in turn results

in lower ̃. The low-quality university has to reduce its performance cutoff in order to fill in the all

available seats. The impact on ̃ is also straightforward. The direct effect of a rise in  decreases

∗ , reducing ̃
 . In addition, the rise in  decreases ̃, which further reduces ̃ (see (34)). As can

be seen, both effects work in the same direction. As a result, ̃ falls. The following lemma summarizes

the above reasoning.

Lemma 4 1) A rise in  does not change 
∗
 and decreases ∗, ̃

, and ̃ .

2) A rise in  decreases ∗ and ∗ and ̃
 and ̃ .

Next, we examine the welfare implications of changes in the parameters in the model.

Social Welfare

As before, we allow the private gains from education to differ from the social gains. Specifically, for an

individual, natural and acquired abilities are of the same importance but for the society natural ability

is more important than acquired ability.

Social welfare is given by (the outside option is normalized to zero)

 =

Z
+≥∗

³
( + )− (∗( +  ̃

))− 
´
 ( )() (36)

+

Z
∗

≤+∗

³
( + )− (∗( +  ̃

))− 
´
( )()

29Formally, this result comes from the impact of  on ̃ being stronger than that of .
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where  is the social cost of education per student. Note that as the tuition is a lump-sum transfer, 

does not directly affect the welfare. It only affects it via the effort put in by agents.

Next, we explore the effects of the tuition fees on the social welfare. First, we examine how changes

in  and  affect the welfare. Then, we find the values of  and  that maximize the social welfare

function. It is straightforward to see that




=

Z
+≥∗


³
( + )− (∗( +  ̃

))− 
´


 ( )()

+

Z
∗

≤+∗


³
( + )− (∗( +  ̃

))− 
´


 ( )()

Here, we take into account that the ability cutoffs do not depend on the tuition fees (see Lemma 2)).

>From the results stated in Lemma 2, we can conclude that (recall that ̃


= 0)




= −̃





Z
+≥∗

0(∗( +  ̃
))

∗( +  ̃
)

̃
 ( )()  0

while




= −̃





Z
+≥∗

0(∗( +  ̃
))

∗( +  ̃
)

̃
 ( )()

−̃




Z
∗

≤+∗

0(∗( +  ̃
))

∗( +  ̃
)

̃
 ( )()

The sign of the latter expression is ambiguous, as ̃


 0 and ̃


 0.

As can be seen, the impact of  on welfare is similar to that in the model with one university:




 0. The intuition is similar as well. A rise in  reduces the effort put in the agents who decide

to apply for the high-quality university and does not change the effort of the agents who apply for the

low-quality university. As a result, welfare rises. The impact of  is ambiguous in general. A rise in

 reduces the effort put in by the agents applying for the low-quality university and increases the effort

put in by the agents applying for the high-quality university. As a result, given  , there exists a certain

optimal level of  such that



= 0 (unless the condition 


= 0 delivers the minimum).

However, if the goal is to describe the value of the pair (  ) that delivers the maximum, the

outcome will be exactly the same as in the case with one university. In other words, the social welfare

as a function of  and  is maximized when the effort put in by the marginal agents is equal to zero.

That is, ∗(∗  ̃
) = 0 and ∗(∗ ̃

) = 0. This can be obviously seen from the expression for the

social welfare (36), which is maximized when there is no wasted effort. The conditions of having zero

effort put in by the marginal agents can be written as follows:

(∗) =
 − 

4
 (37)

(∗) = 
 (38)
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Since the ability cutoffs are determined by the number of seats in the universities, from the above equations

we can find the optimal values of the tuition levels.

Note that if we assume that  =  =  , then the welfare function will be increasing in  . However,

the optimal value of  does not elicit the zero effort put in by all agents. Indeed, a rise in  reduces ̃

and, thereby, ̃ (recall that 4 = 0). In this case, it is straightforward to show that the social welfare

is increasing in  . Therefore, we keep increasing  till the effort put in by the marginal agent ∗ (a

further increase in  does not affect welfare, as ̃ is not affected anymore). The equilibrium conditions

in this case are

4(∗)− (∗(∗  ̃
)) + (∗(∗  ̃

)) = 0

(∗)−  = 0

As (∗(∗ ̃
) is equal to zero, (∗(∗  ̃

)) is equal to zero as well. Therefore, the equilibrium

conditions can be written as follows:

4(∗)− (∗(∗  ̃
)) = 0

(∗)−  = 0

As can be seen, ∗(∗  ̃
) is strictly positive in the equilibrium. That is, the agents applying for the

high-quality university put in some positive effort. The corresponding value of ̃ can be found from

the first equation in the latter system of equations.

Finally, similar to the benchmark case with one university, the distortion caused by selection into

education can not be completely removed, as the social gains from education are different from the

private gains.

The Case with Quotas

In this section, we introduce educational quotas in the above framework. We assume there are two groups

of agents indexed by  ∈ {1 2}, which have identical distributions of natural ability and potentially
different distributions of acquired ability. The latter is motivated by the fact that agents with different

social backgrounds have had different educational inputs prior to taking the exam, which in turn results

in different acquired abilities on their part. In particular, we assume that 1
 ( ) = 2

 ( ) ≡  ( ),

while 1
() º 2

() where º stands for the likelihood stochastic order. Hence,

1()

1()


2()

2()
for any   :   .

This means that group 1 is more favored in terms of acquired ability than group 2. In addition, we

assume that the distribution of natural ability has a log-concave density. This assumption is needed to

ensure the likelihood stochastic order of the distributions of total ability: i.e., 1() º 2().
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The share of each group in the total mass of agents (which is normalized to unity) is denoted by ,

where 1 + 2 = 1. We then define  as a share of available seats reserved for group  in university :

1 + 2 = 1 for  ∈ {}. If these quotas are binding, then the cutoffs for the two groups will differ.
Note that the quota given to a certain group can be in general different in different universities. The

equilibrium conditions can be then written as follows:


¡
1−(∗)

¢
=  


¡
(∗)−(∗)

¢
= 

(∗)−  − (∗(∗ ̃
)) = 0

4(∗)−4 − (∗(∗  ̃
)) + (∗(∗  ̃

)) = 0

where  ∈ {1 2}.
We define by a non-discrimination quota in university , ∗ (the quota in favor of group 1, the

corresponding quota in favor of group 2 is 1 − ∗), such that the quota leads to ̃ 1 = ̃ 2: i.e., the

performance cutoffs are the same for both groups. If both universities set the non-discrimination quotas,

then it is straightforward to see that

∗1 = ∗2 

∗1 = ∗2

If in addition 1() ≡ 2() = (), then

∗ = ∗ = 1

This is similar to the case with one university.

Next, we write down the social welfare under the presence of two groups of agents. In particular, we

have the following expression:

 =
X




Z
+≥∗

³
( + )− (∗( +  ̃

))− 
´
 ( )


() (39)

+
X




Z
∗

≤+∗

³
( + )− (∗( +  ̃

))− 
´
 ( )


()

=
X




Z
+≥∗

³
( + )− (∗( +  ̃

))− 

´
 ( )


()

+
X




Z
∗

≤+∗

³
( + )− (∗( +  ̃

))− 

´
 ( )


()

+( −  ) + ( −  )

In the next sections, we explore the behavior of social welfare (as a function of the quotas) around the

non-discrimination quotas.
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Symmetric Groups with no Selection Effect

In this subsection, we assume that the groups are symmetric: 1() ≡ 2() = (); and examine how

uniform changes in the quotas set by the universities locally affect the social welfare in the case of no

selection effect. In particular, we assume that

1 = ∗, implying that

2 = 1− ∗.

This specification allows us consider uniform changes in the quotas set by the universities. Moreover, if

 = 1, then both universities set the non-discrimination quotas ∗. If  = 0, then in both universities all

seats are given to the second group. Finally, if  = 11  1, then all seats in both universities are given

to the first group (recall that if 1() ≡ 2(), ∗ = ∗ = 1). Next, we consider the social welfare as

a function of  in the case of no selection effect:  = 1.

Taking into account (39), the derivative of the social welfare function with respect to  can be written

as follows. Note that  = (̃   ̃  ∗  
∗
) Thus:

 ()


=

 ()

̃ 

̃ 


+

 ()

̃ 

̃ 



+
 ()

∗

∗


+
 ()

∗

̃ 




 ()


= −

X



̃ 



Z
≥∗



0(∗( ̃ ))
∗( ̃ )

̃
()

−
X



̃ 



Z
∗

≤∗



0(∗( ̃ ))
∗( ̃ )

̃
()

−
X



∗


³
(∗)− (∗(∗  ̃

))− 

´
(∗)

+
X



∗


³
(∗)− (∗(∗  ̃

))− 

´
(∗)

−
X



∗


³
(∗)− (∗(∗ ̃

))− 

´
(∗)
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Taking into account the equilibrium conditions for the marginal agents, these can be written as follows:

 ()


= −

X



̃ 



Z
≥∗



0(∗( ̃ ))
∗( ̃ )

̃
()

−
X



̃ 



Z
∗

≤∗



0(∗( ̃ ))
∗( ̃ )

̃
()

−
X



∗


³
(∗)− (∗(∗  ̃

))− 

´
(∗)

+
X



∗


³
(∗)− (∗(∗  ̃

))− 

´
(∗)

−
X



∗


(0)(∗)

(as agent ∗ is indifferent between schools) so that




= −

X



̃ 



Z
≥∗



0(∗( ̃ ))
∗( ̃ )

̃
()

−
X



̃ 



Z
∗

≤∗



0(∗( ̃ ))
∗( ̃ )

̃
()

Let us then find the derivative of ̃  with respect to . >From the equilibrium conditions, we have

̃ 


=


0(∗)− 0(∗(∗ ̃

))
∗(∗̃

)



0(∗(∗ ̃ ))
∗(∗


̃ )

̃

∗




Taking into account that

 +  = 
¡
1−(∗)

¢


we derive that

∗1


= −
∗
 + ∗
1(

∗
1)

 0

∗2


=
∗ + ∗

2(
∗
2)

 0

This implies that

̃ 1


= −

0(∗1)− 0(∗(∗1 ̃
1))

∗(∗1̃
1)



0(∗(∗1 ̃ 1))
∗(∗

1
̃ 1)

̃

∗ + ∗
1(

∗
1)

 0

̃ 2


=


0(∗2)− 0(∗(∗2 ̃

2))
∗(∗2̃

2)



0(∗(∗2 ̃ 2))
∗(∗

2
̃2)

̃

∗ + ∗
2(

∗
2)

 0.

As can be seen, at the non-discrimination quotas (when  = 1),

1
̃ 1


= −2

̃ 2
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implying that (recall that 1() ≡ 2())

X



̃ 



Z
∗

≤∗



0(∗( ̃ ))
∗( ̃ )

̃
() = 0

Next, we consider the derivative of ̃  with respect to . >From the equilibrium conditions, we

have that

̃ 


=

h
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+ 0(∗(∗  ̃
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∗(∗ ̃
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In addition, we have that

∗1


= − ∗
1(

∗
1)

 0
∗2


=
∗

2(
∗
2)

 0

Summarizing all the previous results, we can see that

̃ 1


 0 and

̃ 2


 0

The latter follows from the fact that ̃ 1


 0, ̃

2


 0, and

40(∗)− 0(∗(∗  ̃
))

∗(∗  ̃
)


+ 0(∗(∗  ̃

))
∗(∗  ̃

)


 0.

Moreover, if  = 1, it is straightforward to see that

1
̃ 1


= −2

̃ 2




implying that X



̃ 



Z
≥∗



0(∗( ̃ ))
∗( ̃ )

̃
() = 0

Thus, we have that



|=1 = 0.

That is, non-discrimination delivers a local extremum. In the case of concave welfare social welfare,

non-discrimination is globally optimal. Next, we explore the case when the groups are asymmetric in

terms of the distribution of total ability.

Intuitively the logic is exactly the same. When the two groups are the same, the losses of one group

exactly make up for the gains of the other for slight changes. Thus, if welfare is concave, this is a local

maximum.
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Asymmetric Groups with no Selection Effect

Assume now that 1() º 2(). Using the results derived in the above section, the derivative of

welfare with respect to  is given by




= −

X



̃ 



Z
≥∗



0(∗( ̃ ))
∗( ̃ )

̃
()

−
X



̃ 



Z
∗

≤∗



0(∗( ̃ ))
∗( ̃ )

̃
()

Consider the second component of the derivative:
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At the non-discrimination quota, ∗2 = ∗1 and ̃ 2 = ̃ 1. This implies that
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when evaluated at the non-discrimination quota ( = 1).

Consider then the first component of the derivative, which is given by
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>From the previous section, we have that

̃ 


=

h
40(∗)− 0(∗(∗  ̃

))
∗(∗ ̃

)


+ 0(∗(∗  ̃

))
∗(∗ ̃

)



i
∗


0(∗(∗  ̃ ))
∗(∗


̃ )

̃

+
0(∗(∗  ̃

))
∗(∗ ̃

)

̃

̃ 



0(∗(∗  ̃ ))
∗(∗


̃ )

̃



62



This means that at the non-discrimination quotas,
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Note that at the non-discrimination quota:
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Taking into account the stochastic order of the distributions of total ability, it is straightforward to

see that
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In other words, at the non-discrimination quota:
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To sum up, we have shown that the derivative of social welfare with respect to  evaluated at the

non-discrimination quota is positive. This means that discriminating in favor of group 1 locally increases

the social welfare. This results is the same as that in the case of one university. That is, the effort effect

works in favor of the advantaged group.

=1  0.

This makes sense as weaker students need to put in more effort to get in and this effort is wasteful. So

discriminating against the less advantaged group raises welfare. Next, we explore the role of the selection

effect.

The Selection Effect

Recall that the social welfare when   1 is given by
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The latter can be written as follows:
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When we explore the selection effect only, by definition we look at the effect via the cutoffs directly

and not via the performance cutoffs. Thus, the selection effect is as follows:
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Taking into account the equilibrium conditions, we know that
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Note that in the case of one university we have only the second component of the above expression.

However, we can apply the technique developed for the case with one university to both components, as

they have similar functional forms.

Consider, for instance, the first term in the above expression given by:

1 = −4 
X



∗


Z max

0

((∗ −  + )− (∗)) (
∗
 − )


()

Recall that
∗1


= − ∗
1(

∗
1)

 0
∗2


=
∗

2(
∗
2)

 0

65



Hence, 1 (evaluated at the non-discrimination quota) can be written as follows:
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As in the benchmark case, we consider the following density functions:
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Then, 1 can be rewritten in the following way:
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Integrating the second term above by parts implies that
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Similarly, we can show that the second term in (40) evaluated at the non-discrimination quota:
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is negative as well (the proof is exactly the same as that for 1). As a result, we can show that the

selection effect evaluated at the non-discrimination quotas is negative, suggesting that we need to give

quotas to the disadvantaged group. Moreover, if the groups are symmetric, then the selection effect is

equal to zero at the non-discrimination quotas.
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