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1 Introduction

Classical economists pointed out money’s various functions in society. Since
then, large literatures have rationalized the use of money as a store of value and
as a medium of exchange.1 In contrast, the use of money as a unit of account
for future payments has received little attention. This fact is surprising given the
widespread use of money-denominated long-term contracts (such as bonds and
mortgages) in modern economies. The use of money as a unit of account implies
that inflation has redistribution effects, which lie at the heart of Irving Fisher’s
debt-deflation theory of depressions (Fisher 1933) and which are just as relevant
today.

The goal of this paper is to explain the role of money as a unit of account for fu-
ture payments. At first sight, the use of money as a unit of account might appear
to be a matter of convenience only. If future payments will be settled in money
anyway (since it is the medium of exchange), isn’t it practical to specify the
value of the payments in terms of money as well (as the unit of account)? While
such an explanation may seem straightforward in modern economies where the
same money serves both functions (such as in the United States, where the dol-
lar is both the dominant medium of exchange and the dominant unit of account),
monetary history offers numerous examples where the medium-of-exchange and
unit-of-account functions do not coincide.

Indeed, in medieval Europe a separation of the different functions of money was
the rule rather than the exception (see Spufford 1988 and Kindleberger 1993 for
overviews of European monetary history). Even where a circulating coin was
used as unit of account, it served to specify value in contracts, but not necessar-
ily to settle those contracts. For example, Cipolla (1956, p. 5) writes: “. . . it was
tacitly assumed that the payment could be settled with any other commodity of
equivalent value. A debt stipulated in 20 solidi in a French document of Novem-
ber 1107 was, we know from a later document, settled with a horse.” At the same
time, it was common to denominate contracts in natural units (such as bushels of

1Two seminal contributions are Samuelson (1958) on money as a store of value in an
overlapping-generations model, and Kiyotaki and Wright (1989) on money as a medium of ex-
change in a model with search frictions.
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wheat) or even bundles (such as a combination of a natural unit and a monetary
unit).

There is also early evidence of accounting currencies distinct from any medium
of exchange. In France, for example, the livre tournois served as unit of account
for centuries during the medieval and early modern periods, even when the cor-
responding coin was no longer in circulation. The value of a coin used as an unit
of account could also be different from that of the same coin in circulation, a phe-
nomenon referred to as “ghost money” or “imaginary money” (Cipolla 1956; Ein-
audi 1937, 1953; Sargent and Velde 2002). As pure accounting currencies, those
monies were thus precursors of the ECU (European Currency Unit), a basket of
European currencies that served as a unit of account in European trade before the
introduction of the euro.

History suggests that units of account differed from the medium of exchange in
part because of a desire for coordination. In Germany, for example, specific coins
(such as the Vereinsthaler) were used as an accounting currency across large areas,
while different coins circulated as media of exchange in the various sovereign
states of Germany. A practice that is still common today is the use of foreign
currency as a unit of account, such as the use of Italian Florin in medieval Europe,
the modern use of the U.S. dollar in trade relationships not involving the United
States, and mortgage borrowing denominated in euros or Swiss francs in Eastern
Europe.

In light of these observations, we address two separate questions on the role of
money as a unit of account. First, why do economic agents often find it useful to
coordinate on a dominant unit of account? Second, what should a useful unit of
account look like? The answer to the first question should also address the lim-
its of coordination: why do different groups of people sometimes use different
units of account, for example by forming currency areas? The answer to the sec-
ond question should explain in particular the emergence of government-issued
money as a unit of account: Why is it often the dominant unit of account in mod-
ern times, but was less so in earlier times? And why are the different functions
of money not always linked (as in medieval Europe, and in modern countries
where private contracts are dollarized)?
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Our theory is based on four features shared by most economies. First, agents
enter into contracts that involve payment promises that are later costly to break
or renegotiate. Second, there are multiple widely traded goods or assets with
fluctuating prices (such as precious metals, currencies, or government paper) in
which promised payments can, in principle, be denominated. In this setting, a
contract between a lender and a borrower has to specify the unit of account, i.e.,
the good in which the value of future payments is specified. The cost of breaking
promises along with price risk implies that borrowers can gain from using the
same unit of account on both sides of the balance sheet. Specifically, if the price
realization of a good that denominates a large part of a borrower’s income is low,
the borrower may have difficulty meeting his own promises. This risk can be
hedged by denominating outgoing payments in the same good that denominates
borrower income.2

To give an example of the balance-sheet risk that we have in mind, consider an
economic agent (such as a household, a firm, or a bank) who holds assets that
are denominated in U.S. dollars. In other words, the agent expects to receive
future payments, the value of which is fixed in terms of dollars. Now suppose
that the agent wants also to incur liabilities, such as by borrowing in order to
invest in a business or buy a house. If these liabilities are denominated in a unit
of account other than the U.S. dollar (say, euros), the agent faces the risk that the
relative price of the units of account for assets and liabilities will change until
future payments are due. Here, the risk is that the price of euros will rise relative
to dollars. If there is a big change in the relative price, the value of the assets (the
future payments in terms of dollars) may be too low to repay the liabilities (in
terms of euros), resulting in costly default. By using the same unit of account for
both assets and liabilities, the agent can avoid this relative-price risk and thereby
lower the probability of default.

Hence, the first two elements of our theory, the cost of breaking promises and
price risk, explain the demand for specific units of account. The third element of

2We focus on the unit-of-account function of money for future payments precisely because the
delay between making the promise and the actual payment implies the possibility of relative-
price changes. In contrast, the unit-of-account function of money for quoting current prices is not
subject to the same price risk. However, the unit of account for current prices may still matter if
additional frictions are present, such as a cost of changing prices (from which we abstract here).
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our theory is that efficient production requires an entire network of borrowing
and lending relationships. As a result, a typical agent is both a borrower and a
lender—he is a member of a credit chain. Credit chains arise naturally in modern
economies not only in the organization of production (for example, raw materi-
als, intermediates, and final-goods producers), but also in commerce (producer,
wholesaler, retailer) and finance (borrower, intermediary, investor). The presence
of credit chains explains the propagation of units of account beyond bilateral re-
lationships. In a credit chain, what is a promise for one agent is income for the
next, thus leading to demand for a common unit of account in the entire chain.

The final element of our theory is that the formation of credit chains has a random-
matching component that is not contractible. When a borrower and a lender
meet, they typically cannot condition payment on the identity of their future
business partners, let alone those partners’ partners and so on. Balance sheet
risk therefore comes from two sources. In addition to variation in relative prices
there is matching uncertainty, as agents do not know which credit chain they will
ultimately be part of. It then becomes advantageous to adopt a unit of account
that is likely to be compatible with many future potential trading partners, lead-
ing to the optimality of an economywide dominant unit of account.

The nature of the efficiency gain from adopting a dominant unit of account de-
pends on how costly it is to break promises. In the main part of the analysis, we
consider the extreme where breaking promises is infinitely costly. In this setting,
contracts are written so that all parties are always able to meet their promises,
and default never occurs. To ensure that default can be avoided, borrowers lower
debt ex ante, which leads to inefficiently low production. Use of a dominant unit
allows more borrowing and thereby more production. In an appendix, we also
explain how our results generalize to the case where breaking promises carries
only a small cost. If default costs are sufficiently small, borrowers will produce
at the efficient scale and default if necessary. Use of a dominant unit of account
then lowers average ex-post default costs.

The argument we have outlined so far explains why agents coordinate on a com-
mon unit of account, but leaves open the question of exactly what should be the
unit of account. Given that in our theory a key role of the unit of account is
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to minimize balance-sheet risk, choosing a unit of account that already denom-
inates the income of major borrowers is often useful. This observation suggests
a tight link between the use of government-issued money as unit of account and
the issuance of government debt. Consider a government that issues money-
denominated (i.e., nominal) bonds to be held by households, firms, and banks.
The payments promised in the bonds are part of these agents’ future income. If
the same agents now incur future liabilities, they can reduce their balance-sheet
risk by denominating these liabilities in money also. Thus, the government’s
use of money for its own borrowing propagates to private contracts and leads to
money being the dominant unit of account.

Notice that our argument explaining the use of circulating money as the unit of
account relies solely on the role of money as denominating government debt, but
not on the medium-of-exchange role of money. Indeed, our theoretical model
features a centralized spot market in which there is no need for a specialized
medium of exchange. The implication of a link between government debt and
the unit of account is consistent with the observation that, historically, units of
account and media of exchange often used to be distinct, but became unified in
modern economies characterized by the widespread use of government-issued
nominal bonds.

In our theory, there are additional factors (other than the presence of government
debt) that determine the optimal unit of account. For example, it is useful for a
unit of account to be stable in value relative to other goods traded in the econ-
omy. This feature explains why if the value of money is too volatile (i.e., volatile
inflation), local currency may fail to be used as a unit of account even if nominal
government debt is present. Such a scenario is akin to the dollarization of pri-
vate contracts that is often observed in countries grappling with high inflation.
In addition, different regions or countries may have different dominant income
sources. This scenario leads to a tradeoff between a unified unit of account ver-
sus multiple units that may be better suited to local conditions i.e., a theory of
optimal currency areas.

The paper is structured as follows. In the following section, we relate our work to
the existing literature. In Section 3 we consider the optimal use of units of account
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in bilateral contracts. In Section 4, we introduce credit chains and random match-
ing to account for the use of a dominant unit of account throughout an entire
economy. In Section 5, we discuss conditions under which government-issued
paper (such as money) may arise as the optimal unit of account. In Section 6,
we apply the model to the issue of optimal currency areas. Section 7 concludes.
Proofs for propositions are provided in Appendix A, and extensions of the basic
model setup are discussed in an online appendix.

2 Related Literature

Our paper is related to existing work on balance sheet effects of price changes.
The basic idea that mismatched units of account on a balance sheet can create
problems is familiar from the banking literature, and currency mismatch has
played an important role in banking and financial crises (see for example Schnei-
der and Tornell 2004 and Burnside, Eichenbaum, and Rebelo 2006). In this pa-
per, we go beyond individual balance sheets and find conditions under which a
dominant unit of account will be adopted in an entire economy. Relative to the
banking literature, the key features that lead to this result are that production
takes place in chains of credit (modeled as in Kiyotaki and Moore 1997) and that
contracting is non-synchronized.

Our work is also related to a small literature on the optimality of nominal con-
tracts. Jovanovic and Ueda (1997) consider a static moral hazard problem in
which nominal output is observed before the price level (and therefore real out-
put) is revealed. In addition, contracts are not renegotiation-proof, so that princi-
pal and agent have an incentive to renegotiate after nominal output is observed.
In the optimal renegotiation-proof solution, the principal offers full insurance to
the agent once nominal output is known. This implies that the real wage de-
pends on nominal output, so that the contract can be interpreted as a nominal
contract. Meh, Quadrini, and Terajima (2010) integrate a similar mechanism in a
model with firm heterogeneity and financial constraints, and study how different
monetary regimes affect the degree of indexation. The mechanism in these pa-
pers operates within a relatively short time horizon, namely the lag between the
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realization of a nominal variable and the observation of the corresponding price
level. In contrast, the balance-sheet effects in our theory are equally relevant for
long-term assets such as bonds and mortgages, which account for the major part
of redistribution effects of inflation.

Freeman and Tabellini (1998) consider an overlapping-generations economy with
spatially separated agents in which fiat money serves as a medium of exchange.
They provide conditions for fiat money to serve also as a unit of account. In
contrast, in our theory exchange takes place in a frictionless centralized market,
without a need for a medium of exchange. Rather, in our theory the occasional
coincidence between the unit of account and the medium of exchange happens
only in the presence of government debt denominated in fiat currency. Our ap-
proach has the advantage that it can explain why, in modern economies with
widespread use of government debt, it is common for fiat money to serve both
functions, whereas in earlier times distinct monetary units were used as unit of
account and medium of exchange.

Cooper (1990) and Acemoglu (1995) also consider environments in which each
agent writes several contracts within a fixed network. They assume uncertainty
about the value of money and provide conditions for the coexistence of multiple
equilibria with indexed or nominal contracts. For example, both equilibria exist
if the network of contracts is such that coordination on a single unit of account
provides perfect hedging. Our setup has multiple goods (and hence multiple
sources of price risk), so that a fixed network does not give rise to a dominant
unit of account. Instead, random matching is critical both for making a dominant
unit of account optimal and for determining what that unit looks like.

Our model shares several features with the literature on microfoundations for
media of exchange that follows the seminal work of Kiyotaki and Wright (1989).
In particular, a key common element is that there are gains from coordinating
payment across many pairwise meetings. In the typical model of decentralized
exchange, there is no double coincidence of wants in individual meetings. Gains
from trade are realized by passing the medium of exchange along from one meet-
ing to the next. In our model, there are gains from making credit chains longer
by adding additional producers. Those gains are realized by choosing the unit
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of account so funds can be passed along the credit chain without default once
income risk is realized and credit contracts are settled.

Another prominent element in models of media of exchange is random matching.
Compared to our environment, however, the role of random matching in those
models is quite different. Models of media of exchange typically assume that
agents cannot enforce contracts written in past meetings. Random matching then
ensures that agents do not meet each other again. As a result, credit becomes
infeasible and money becomes essential (for example, Kocherlakota 1998). In
our setup, contracts can be enforced. The role of random matching is to make
borrowers’ income risk similar across many bilateral contracting relationships,
which implies the emergence of a dominant unit of account.

Within the literature on media of exchange, Lagos and Wright (2005) introduced
a structure in which both decentralized and centralized markets play a role, as
in our setup. However, in Lagos and Wright (2005) exchange takes place in both
markets, and the centralized market mainly serves to offset the heterogeneity that
is generated by random matching. In contrast, in our theory random matching
affects only the contracting stage, and all contracts are ultimately settled in the
centralized market.

In most of the paper, we employ a normative approach that derives properties
of second best allocations, rather than spell out a particular game that describes
trade in the economy. A number of papers on media of exchange also follow this
strategy, for example Kocherlakota (1998, 2002), Cavalcanti and Wallace (1999),
Hu and Rocheteau (2013), and Hu, Kennan, and Wallace (2009). A difference in
approach is that those papers tend to make no a priori restrictions on contracts.
In contrast, a key friction in our setup is that contracts are noncontingent. In this
regard, our model is closer to the literature on general equilibrium with exoge-
nously incomplete markets that also studies welfare properties of a given asset
structure. An interesting question for future research is to study the unit of ac-
count in an economy in which incompleteness arises endogenously from limited
commitment or asymmetric information. Such an approach may also shed fur-
ther light on why the same asset often serves as the medium of exchange as well
as the unit of account.
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The literature on media of exchange also studies the government as a large player
(Aiyagari and Wallace 1997, Li and Wright 1998). Our results on government debt
as a unit of account are related to results on how the medium of exchange is af-
fected by what the government accepts in transactions. In both cases, the size of
government is a key parameter. What is different is how one would measure size
in each case. In models of media of exchange, what matters is the share of transac-
tions with the government, either due to government purchases or the collection
of taxes (Starr 1974 and Goldberg 2012 provide models of the “tax foundation”
theory of money as a medium of exchange). In our context, the appropriate mea-
sure of the size of government is the effect of government liabilities on borrowers’
ability to pay.

Another important theme in our setup is that the optimal unit of account should
not be subject to large price spikes. Models of media of exchange also point to sta-
bility in value as a property that may select the optimal medium among several
objects. For example, Banerjee and Maskin (1996) and Rocheteau (2011) study en-
vironments in which goods or assets are subject to asymmetric information about
quality. The object with the smallest conditional volatility in quality then emerges
as the medium of exchange. In contrast to these papers, information in our setup
is symmetric. The possibility of price spikes make a unit of account unattractive
only if they cannot be hedged due to the incompleteness of contracts.

Finally, our work relates to the literature on the redistribution effects of inflation.
Most of this literature focuses on a particular aspect of redistribution, namely the
revaluation of government debt (see for example Bohn 1988, 1990, Persson, Pers-
son, and Svensson 1998, Sims 2001). Government debt plays an important role
in our model also, in a mechanism that renders fiat money an attractive choice
for the unit of account. Redistribution effects among private agents were re-
cently considered by Adam and Zhu (2016), Auclert (2016), Coibion et al. (2012),
Doepke and Schneider (2006a), Doepke and Schneider (2006b), Doepke, Schnei-
der, and Selezneva (2016), Meh, Rı́os-Rull, and Terajima (2010), and Sterk and
Tenreyro (2014).
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3 Income Risk and the Optimal Unit of Account in

Bilateral Contracts

In this section, we analyze a bilateral contracting problem. The analysis shows
why the unit of account matters in contracting, and it isolates forces that deter-
mine the optimal unit of account. In the following section, we expand the analy-
sis to a general-equilibrium model with many contracting relationships, in order
to understand why we often observe coordination on a dominant unit of account
in an entire economy.

3.1 Environment: Dates, Goods, and Preferences

We consider a bilateral contracting problem between the supplier of a customized
good and his customer. There are three dates, 0, 1, and 2. At date 0, the supplier
and customer can write a contract, to be specified below. At date 1, the supplier
can expend x > 0 units of labor effort to make x units of the customized good,
available for consumption by the customer at date 2. Only the customer benefits
from the customized good—it cannot be consumed by the supplier and it cannot
be sold in a market.

Also at date 2, a spot market opens in which two goods A and B can be traded,
which may provide utility to the supplier and the customer. The price vector p

in the spot market is exogenous and random, with convex and compact support
P ⊂ R2

>0, where R>0 denotes the set of strictly positive reals. When the spot mar-
ket opens, the customer receives a random endowment vector y of these traded
goods, drawn from a distribution with compact support Y ⊂ R2

≥0, where R≥0

denotes the set of nonnegative reals. Both supplier and customer can access the
spot market.

Our assumption that the support of the endowment vector is unrelated to that of
prices simplifies the analysis. In principle, one could imagine that the support of
prices changes conditional on the realization of the endowment. Our assumption
is natural if endowment risk is primarily idiosyncratic. We emphasize that the
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assumption only restricts supports: for given support, we allow prices and en-
dowments to be correlated in arbitrary ways. Convexity of the support of prices
is helpful to establish uniqueness of the optimal unit of account below.

The utility function of a supplier who works x units of time and consumes a
vector c of tradable goods is:

v (c)− x,

where v(·) is homogeneous of degree one. The utility of a customer who receives
x units of the customized good and consumes a vector c of tradable goods is:

v (c) + (1 + λ)x.

We assume that λ > 0 so that there are gains from trade, i.e., both parties can be
made better off by a transfer of tradable goods from the customer to the supplier
in exchange for the customized good x produced using the supplier’s effort.

It is convenient to normalize prices of tradable goods and the units in which
goods are measured such that the utility derived from one unit of income in the
spot market is one, and such that the expected price of each good i ∈ {A,B} is
one.

Assumption 1 (Normalization of Prices). Let P̃ (p) be the expenditure function at a
utility level of one, that is:

P̃ (p) = min
c
{p′c}

subject to v(c) ≥ 1. Prices are normalized such that the price vector p satisfies:

P̃ (p) = 1 for all p ∈ P.

In addition, units are chosen such that the expected price of each good i ∈ {A,B} equals
one:

E(pi) = 1.

Setting P̃ (p) = 1 is without loss of generality, because only relative prices matter.
Starting from any initial price distribution p̃ with P̃ (p̃) ̸= 1, we can rescale prices
as p = p̃/P̃ (p̃) for each p̃ to meet the condition. The assumption that E(pi) = 1
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is not a simple normalization of the price vector. It is nevertheless innocuous: it
amounts to a choice of the units in which each tradable good is measured.3

Given that v is homogeneous of degree one, the normalization P̃ (p) = 1 implies
that the indirect utility (in terms of consuming market goods) of an agent who
owns tradable goods y at the beginning of date 2 is simply p′y.

3.2 Contracts

The timing of the environment implies that when supplier and customer meet at
date 0 to agree on a contract, a need for credit arises. The supplier must work
at date 1 if he is to deliver the customized good at date 2. However, at date 0
the customer does not have any tradable goods that could be used to pay for the
customized good up front. Rather, any payments have to take place at date 2,
after uncertainty regarding the customer’s endowment y and the price realiza-
tion p has been resolved. A contract specifies a quantity of the customized good
to be delivered from supplier to customer together with a payment in terms of
tradable goods from the customer to the supplier.

The key contracting friction that underlies our analysis is that contracts involve
simple, non-contingent payment promises. Specifically, a payment promise con-
sists of a bundle π ∈ R2

≥0 of of the market goods. The bundle is agreed on at date
0 before uncertainty is resolved. The payment promise cannot be made contin-
gent on the realization of the customer’s endowment y or the vector of tradable
goods prices p. In our main analysis, we assume that an agent who defaults on a
promise faces an arbitrarily large punishment, so that all payment promises that
are made are kept. In Appendix D, we show how our results can be general-
ized to a setting where the cost of breaking promises is positive but finite, so that
there is an incentive to choose contracts with a high likelihood that promises will
be kept. The contracting friction can be motivated by legal costs of interpreting
and enforcing complicated contracts, and fits well with the observation that most
real-world contracts indeed involve simple promises.

3For example, if for good A we have E(pA) = 2, we can divide the unit of measuring good i by
two (i.e., multiply endowments by two and modify the utility function by dividing consumption
of good i by two where it enters utility) to yield an expected price of one.
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The full contract between supplier and customer specifies the artisanal goods x

to be produced by the supplier at date 1 and to be delivered to the customer at
date 2, and the payment promise π. By promising π to the supplier, the customer
commits to delivering goods π at date 2. Since the promised goods can be freely
exchanged in the spot market, the commitment is effectively to the value p′π.
Since only the value of the payment matters, there is no need to settle the contract
in the goods in which it is specified.

In the second period, the customer must be able to make the promised payment
for all possible realizations of endowment and prices. A feasible payment thus
satisfies:

p′π ≤ p′y for all p ∈ P and y ∈ Y . (1)

Our focus on noncontingent contracts implies that the distribution of endow-
ments y and prices p matters for feasibility only via their supports P and Y .
Compactness of P and Y implies that the set of feasible payments π is compact.
A feasible contract (x,π) specifies production of artisanal goods x together with
a feasible payment.

3.3 The Unit of Account

The assumptions on contracting now allow us to discuss the use of units of ac-
count. In the customer-supplier relationship, the unit of account used in con-
tracting is given by the bundle of market goods that denominates the payment
promise π. For example, whenever in a given contract we have πA > 0 and
πB = 0, we say that good A serves as the unit of account. In this case, the value
of the promise is specified in terms of units of good A, just as in the U.S. econ-
omy most future payments are in terms of U.S. dollars. It is also possible that a
non-degenerate bundle serves as the unit of account. In the real world, this case
would correspond to a contract that specifies payments in two different curren-
cies or commodities, such as U.S. dollars and euros.

To formalize the notion of a unit of account, we can decompose any payment π
into a scalar scale of the payment q(π) and the unit of account of the payment u(π),
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where 0 ≤ ui ≤ 1 and
∑

i u
i = 1. Here i ∈ {A,B} denotes the goods included in

the payment. For a given payment π, q(π) and u(π) can be computed as:

q(π) =
∑
i

πi, (2)

u(π) = q(π)−1π, (3)

so that the payment is given by π = q(π)u(π).

We refer to the vector u(π) as the unit of account because it determines in which
goods the payment is denominated. The payment in terms of good i ∈ {A,B} is
given by q(π)ui. If we have uA = 1 and hence uB = 0, the payment is entirely in
terms of good A, so that good A serves as the unit of account. If uA = uB = 0.5,
the unit of account is an equally weighted bundle of goods A and B.

Recall from Section 3.1 that the indirect utility from consuming market goods of
a consumer who owns tradable goods π is given by p′π. Given Assumption 1
(i.e., E(pi) = 1), the expected indirect utility derived from owning π is

∑
i π

i =

q. That is, utility from consuming market goods depends only on the scale of
a payment received, but not on its composition (i.e., the unit of account). The
parties’ expected utility from a contract (x,π) can now be written as:

US (x,π) = q(π)− x, (4)

UC (x,π) = E(p′y)− q(π) + (1 + λ) x, (5)

where US is the utility of the supplier and UC the utility of the customer.

Our assumptions on technology and preferences imply that a higher scale of pay-
ment together with proportionally more production of customized goods always
results in a Pareto improvement. Indeed, if we increase x one-for-one with q,
supplier utility is unchanged, whereas customer utility increases by λx. Hence,
optimal contracts allow as much production of the customized good x as possi-
ble. The only limit to production is the scale of payment that the customer can
afford, as described by the payment feasibility constraint (1).
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3.4 Why the Unit of Account Matters

We would like to examine the implications of our contracting model for the op-
timal use of units of account. To see how choosing the wrong unit of account
may reduce the maximal feasible scale of payment and hence welfare, consider a
simple example.

Example 1. The customer has a certain endowment y of one unit of good A (and no
endowments of other goods).

If good A is chosen as unit of account—that is, uA = 1—then the maximal scale
of payment that satisfies constraint (1) is q = 1. In this case, the customer can
promise the supplier his entire endowment. Now suppose instead that the unit
of account is good B instead. With uA = 0 and uB = 1, constraint (1) can be
written as:

pBq ≤ pA for all pB, pA.

On the left-hand side is the value of the promised payment in the centralized
market, and on the right-hand side is the value of the endowment.

Since the constraint has to hold for all prices, the maximal feasible scale of pay-
ment q(π) is:

q = min
p

{
pA

pB

}
.

Given that E(pi) = 1 for all i ∈ {A,B}, the right-hand side cannot be bigger
than one. To the contrary, if the price of good A relative to good B is ever below
one, then the maximal feasible scale of payment is below one also. The maximal
payment will be especially low if good B is subject to large price spikes (high pB).

The example shows that the underlying problem is relative price risk: the pay-
ment is constrained by the possibility that the price of the goods that constitute
the promised payment is high, whereas the price of the goods that make up the
endowment is low. By choosing the unit of account judiciously, this relative price
risk can be hedged. In the example considered here with a certain endowment in
terms of a single good, the price risk can be hedged perfectly by promising the
same good that makes up the endowment.
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More generally, even if perfect hedging is not possible, the choice of unit of ac-
count still determines how much can be promised. Consider the following ex-
ample:

Example 2. The customer receives a certain endowment y of one unit of some good (A
or B), but the identity of the good is random.

The customer must now be able to make payment regardless of the identity of
the good he receives. To allow a scale q of one, the value of the unit of account
p′u always would have to be at least as high as every individual price pi. Since
E(pi) = 1 and prices fluctuate, this is impossible. It follows that the maximal scale
of payment is below one, and hence does not always exhaust the endowment.
The reduction in the scale of the payment is due to the contracting problem.

3.5 The Optimal Unit of Account

We now state the contracting problem formally and show that it reduces to find-
ing payments that maximize the scale of payment q(π) subject to feasibility (1).
Our approach is to characterize the Pareto frontier of contracts, subject to the
payment feasibility constraint and to individual rationality constraints stating
that each party is no worse off from entering the contract. By characterizing the
entire Pareto frontier, we do not have to take a stand on the details of bargaining
between the parties and on how potential surplus is distributed.

A contract (x,π) is individually rational if the contract makes both parties better
off than autarky. Left on his own, the supplier would get zero utility. The cus-
tomer would derive indirect utility from the endowment y, so that the individual
rationality constraints are:

US (x,π) ≥ 0, (6)

UC (x,π) ≥ E(p′y). (7)

We are now ready to provide a formal definition of the optimality of contracts.
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Definition 1 (Optimality of Bilateral Contracts). A contract (x,π) is (constrained
Pareto) optimal if for some vS ≥ 0 it maximizes UC (x,π) subject to (1) (i.e., the payment
π is feasible), (6) and (7) (i.e., the contract is individually rational), and US (x,π) = vS .

Lemma 1 (Optimal Contract Maximizes Scale). Any optimal contract (x,π) includes
a payment that maximizes the scale of payment q(π) subject to feasibility (1).

Proof: From (4), in order to promise the supplier utility US (x,π) = vS , produc-
tion of customized goods must be given by x = q(π) − vS . Substituting into the
customer’s utility (5), we obtain:

UC (x,π) = E(p′y) + λq(π)− (1 + λ) vS, (8)

which is strictly increasing in q(π). 2

Once we know the payment that maximizes q(π) subject to feasibility (1), we can
trace out the entire Pareto frontier. From the individual rationality constraint (7),
the customer’s utility at an optimal contract (8) must be at least E(p′y). It follows
that an optimal contract can promise the supplier any utility value between zero
and v̄S ≡ λq(π)/ (1 + λ). Along the Pareto frontier, the optimal payment π and
hence the unit of account is always the same—all that changes is the production
of customized goods. Building on Lemma 1, we now turn to characterizing the
optimal payment as a function of price risk and endowment risk.

Simple Income Risk

Choosing the payment is easy if there is no endowment risk, that is, if the set Y is
a singleton. The optimal payment is equal to the customer’s certain endowment.
Example 1 above considers the case a certain endowment of a single good. More
generally, if the customer has a certain endowment of both good A and good B,
the optimal payment is the bundle of these two endowments.

The presence of endowment risk may reduce scale for two reasons. First, the
scale of the endowment may be uncertain. Second, the interaction of endowment
and price risk may prevent the customer from promising any payment that ever
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exhausts the endowment. As Example 2 above illustrates, this problem can arise
even if the scale of the endowment is certain. We now formally separate the two
scenarios and derive their implications for the optimal payment.

We say that income risk is simple if there is an endowment realization y0 ∈ Y

such that for all p ∈ P and y ∈ Y we have p′y0 ≤ p′y. From the feasibility
constraint, it is then always possible and optimal to promise the worst income
realization y0 as payment:

Proposition 1 (Optimal Unit of Account with Simple Income Risk).

1. The optimal payment is an element of Y if and only if income risk is simple. In this
case, the optimal payment is given by the worst income endowment realization y0.
Consequently, the optimal scale and unit of account of the payment are:

q(π) =
∑
i

yi0,

u(π) = q(π)−1y0.

2. If, in addition, there is price risk for both goods (i.e., there are price realizations
pi < E(pi) = 1 and pi > 1 for all i), the optimal payment is unique.

Proof: Part 1: Suppose income risk is not simple and consider a candidate pay-
ment π ∈ Y . We then can find a joint price and endowment realization that
makes the candidate payment more expensive than the endowment, that is, p′π >

p′y. It follows that the candidate payment does not satisfy the feasibility con-
straint (1) and cannot be optimal.

Now suppose income risk is simple. Setting π = y0 meets the feasibility con-
straint (1). To show that y0 is the optimal payment, consider some alternative
payment π̃ ̸= y0 that yields strictly higher payoff, that is, E(p′π̃) > E(p′y0).
Such a payment is not feasible since it does not satisfy (1) for y = y0 and the
price E(p) ∈ P . It follows that π = y0 is optimal. 2

The proof of the uniqueness result in Part 2 of Proposition 1 is contained in Ap-
pendix A.
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Consider some examples of simple income risk. Generalizing the case of a cer-
tain endowment, income risk is simple if the set Y is a rectangle, that is, Y ={
(yA, yB)|yA ∈ [yA, yA], yB ∈ [yB, yB],

}
. The key property is that it is possible that

both lower bounds yi are realized together. The restriction is on the support only;
there are no assumptions on the correlation of the yi. With a rectangular endow-
ment set, the worst income realization is y0 = {yA, yB}. Since only the minimum
endowment of each good can be promised, the result implies that the unit of
account will place more weight on goods with less endowment risk.

Income risk can be simple even if the worst-case endowments of all goods can-
not be realized at the same time. For an alternative (non-rectangular) example,
consider:

Y =
{
yA, yB|yA/γ + yB = 1, yA, yB ≥ 0

}
.

The endowment set is a line, with the maximum endowment of good A given
by γ and the maximum endowment of good B given by one. Let pB denote the
largest possible relative price of good B:

pB = max
p∈P

{
pB

pA

}
.

If γ > pB, then income risk is simple. Indeed, even if the relative price of good B

is maximal, the value of one unit of good B is still lower than that of γ units of
good A. The endowment realization y0 = (0, 1) thus delivers the lowest income at
any price. In contrast to the rectangular case, the extent of price risk matters here
for whether income risk is simple. In particular, we need that relative price spikes
in good B are small compared to the relative quantity movements captured by γ.

General Income Risk

Consider now the general case when there is not necessarily a single worst in-
come realization that serves as the promised payment. The optimal payment is
governed by the endowment set Y and by the extremes of the distribution of the
relative price of A and B. Let p̄i denote the price vector that achieves the largest
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relative price of good i,

p̄i = argmax
p∈P

{
pi

pj

}
for j ̸= i,

and let
mi = min

y∈Y
pi′y

denote the lowest income when the relative price of good i is highest. Since P

and Y are compact, pi and mi exist for i = A,B. We can now characterize the
optimal unit of account in terms of pA, pB, mA and mB.

Proposition 2 (Optimal Unit of Account with General Income Risk). A payment
π that satisfies the conditions

pA′π = mA, (9)

pB′π = mB (10)

has the largest value p′π among all payments that satisfy the feasibility constraint (1)
for any p ∈ P . In particular, it maximizes q (π) and hence is an optimal payment. If, in
addition, there is price risk for both goods (i.e., there are price realizations pi < E(pi) = 1

and pi > 1 for all i), the optimal payment is unique.

A typical situation is displayed in Figure 1. Here the set Y consists of the two red
disks: the idea is that the customer has one of two technologies, both of which
are uncertain and have bounded supports. The upper and lower tangency points
represents those elements of Y that achieve minimal income at the lowest and
highest relative price of good B, respectively. The slopes of the tangent lines
reflect those extreme relative prices. The feasible region is shaded in yellow.

The optimal payment sits at the intersection of the two lines. The optimal pay-
ment maximizes the expected value of the payment. Since the expected prices are
all one, the isovalue lines slope downwards with a slope of one, while the lines
bounding the feasible set have slopes given by the two extreme prices. In fact,
any price vector that is not one of the two extreme prices gives rise to isovalue
lines with slopes in between the slopes of the two tangent lines. The optimal
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Figure 1: Determination of Optimal Unit of Account

payment thus maximizes not only value q (π) at the expected prices, but also
maximizes value at any other feasible price. This is a stronger result than what
is needed to characterize the optimal payment here. It will be useful when we
study general equilibrium below.

In the case of Example 1 (when the customer has a certain endowment of only
good A), the endowment set Y would be a single point on the horizontal axis.
This point is also where the two tangency lines intersect, and hence the optimal
payment is equal to the endowment. Figure 2 displays the case where Y is a
rectangle, which is a case of simple income risk as analyzed in Proposition 1.
Given that the slope of the tangent lines is negative, the intersection and hence
the optimal payment is at the lower-left corner of the rectangle, that is, the worst
income realization for both goods.

It is interesting to ask what changes with more than two goods. Proposition 1
readily generalizes to any finite number of goods. With simple income risk, it
is always best to promise the endowment realization that delivers the lowest in-
come for sure. Even if income risk is not simple, it remains optimal to maximize
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Figure 2: Determination of Optimal Unit of Account with Rectangular Endow-
ment Set Y

scale subject to feasibility, as in Lemma 1. However, the shape of the feasible set
in multiple dimensions is more complex. As long as the optimal payment lies on
the boundary of the feasible set, the support of the price set typically matters for
the unit of account.

Suppose for example that the convex support of the price distribution has a finite
number of extreme points. We can compute the lowest income for each extreme
price, analogously to the two good case. Maximizing scale then becomes a linear
programming problem with a finite number of inequality constraints. There is
an optimal payment that is a vertex of the feasible set, with positive components
pinned down by a subset of the hyperplanes defined by the extreme prices.
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4 Random Matching and the Optimal Unit of Account

in an Entire Economy

The bilateral contracting problem in the previous section shows why the choice
of unit of account matters and that the optimal unit of account depends on the
type of risk faced by the contracting parties. The results suggest that the distri-
bution of units of account across contracts observed in an economy depends on
the distribution of risk. For example, if risk differed a lot across relationships, we
might expect to observe a rich cross section of different units of account.

In actual economies, we observe that a dominant unit of account—often, local
fiat money—is used in the majority of contracts. In this section we thus explore
mechanisms that make risk similar across many contracting relationships. To
this end, we embed the bilateral contracting problem into a general equilibrium
environment with a large population of agents. We emphasize two features that
shape the (endogenous) cross section of risk: gains from forming credit chains
and random matching. We show how those features imply the emergence of a
dominant unit of account.

In a credit chain, in which agents are both suppliers and customers, bilateral
contracting relationships are linked in that one customer’s payment is another
customer’s income. As a result, the nature of income risk can propagate across
a chain. We show that this force tends to make the same unit of account optimal
throughout a chain. In addition, sequential random matching implies that con-
tracting parties may not know in advance who will join them in a credit chain. It
then makes sense to choose a unit of account that is robust to the arrival of many
different potential trading partners, and use that unit of account in the majority
of transactions.

4.1 Agents, Locations, and Matching

We consider a large population of agents of measure one who differ along two
dimensions. First, an agent’s location determines his role in the matching process
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and the potential gains from trade with others. There are three distinct locations
with an equal share of agents in each location. Every agent in locations 2 and
3 has a technology to make customized goods one-for-one from labor for a cus-
tomer he is matched with; we refer to those agents as artisans. Agents in location
1 cannot produce customized goods, but receive endowments of market goods;
we refer to them as farmers.

The geography of the model can be displayed as follows, where the arrow indi-
cates “can produce for:”

Type of Agent: Farmer
←−

Artisan
←−

Artisan

Location: 1 2 3

We can envision the locations to correspond to villages along a highway, with
the farmers located at the western end of the highway, and artisans further east
in villages 2 and 3, where each artisan in village i can produce for customers in
village i− 1.

The second dimension of heterogeneity is endowment risk. Every farmer re-
ceives a random endowment y at date 2, but the distribution can differ across
agents. There is a finite number of endowment types θ ∈ Θ. For a farmer of
type θ, the endowment is drawn from a distribution with compact support Y (θ)

and conditional mean E (y|θ). Artisans do not receive an endowment: all their
income comes from selling customized goods.

At date 0, every artisan is matched with exactly one customer with whom he
can engage in bilateral contracting. Matching occurs sequentially from east to
west in two stages. In the morning, artisans from locations 2 and 3 meet ran-
domly in pairs. A bilateral contract between these parties specifies a quantity of
customized goods x2 produced by the artisan from location 3 in exchange for a
payment of tradable goods π2 by the artisan from location 2. At night, agents
from locations 1 (farmers) and 2 (artisans) meet to write a contract (x1,π1).

As a result of the two-stage matching process, every individual ends up as part of
a chain of three agents each. At the head of each chain is a farmer from location 1
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who has been matched with an artisan from location 2. Each chain also contains
an artisan from location 3 who can produce customized goods for the artisan
from location 2. In terms of technology and gains from trade, chains only differ
in the farmer’s endowment type θ. We thus sometimes refer directly to a chain
as being of type θ.

A contract for the economy as a whole assigns a bilateral contract to every meet-
ing. Sequential matching restricts the information that bilateral contracts can
depend on. In particular, when two agents from locations 2 and 3 meet in the
morning, they do not know the endowment type of the farmer who will join
their chain at night. The bilateral contract (x2,π2) must respect agents’ informa-
tion and can therefore not condition on the identity of the farmer in the chain.

4.2 Contracts for the Entire Economy

We denote a contract for the entire economy by (X,Π), where X and Π collect
production of customized goods and payments in all meetings, respectively. In
particular, given our information structure, a contract consists of a pair (x2,π2)

that describes all bilateral contracts between artisans from locations 2 and 3 deter-
mined in the morning, as well as a bilateral contracts (x1 (θ) ,π1 (θ))θ∈Θ between
farmers with different endowment types and artisans from location 2 determined
at night.

A key feature of the chain structure is that the feasibility of a payment agreed on
between two artisans in the morning depends on a payment that the artisan in
location 2 will receive from a customer whom he has yet not met. For a given
economywide contract (X,Π), we denote by

Π1 (Π) = {π1 (θ) , θ ∈ Θ}

the set of possible payments that an artisan in location 2 can receive from farmer
customers in location 1, one of whom he will meet at night.
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A contract (X,Π) is feasible if every customer can make payments at every stage
along the chain, whatever the realization of the price and his income:

p′π1 (θ) ≤ p′y for all p ∈ P , and y ∈ Y (θ) , (11)

p′π2 ≤ p′π1 for all p ∈ P , and π1 ∈ Π1 (Π) . (12)

The first condition (11) says that the farmer’s payment is feasible—the constraint
is identical to (1) in the bilateral problem from Section 3. The second condition is
payment feasibility for the artisan in location 2. It takes the same form as for the
farmer, but with the endowment set Y replaced by the set of potential customer
payments Π1.

Utility from contracts is as in Section 3, but modified to accommodate that arti-
sans in location 2 can be customers and suppliers at the same time. After match-
ing is complete and the type of the chain θ has been realized, an artisan in location
2 expects utility:

U2(X,Π; θ) = (1 + λ)x2 + q (π1 (θ))− q (π2)− x1 (θ) . (13)

Here x1 (θ) is the artisan’s labor effort, and the difference in payment scales is
the indirect utility the artisan receives from tradable goods he keeps for himself
rather than pay to his supplier from location t+ 1.

Agents at the beginning and end of a chain engage in only one bilateral contract.
Their utilities are:

U1(X,Π; θ) = (1 + λ) x1(θ)− q (π1(θ)) + E(p′y|θ),

U3(X,Π) = q (π2)− x2. (14)

The utility of the farmer at location 1 is the same as that of the customer in the
bilateral contract of Section 3; we have only added the farmer type. The utility
of the artisan from location 3 is the same as that of the supplier from Section 3.
This artisan’s utility does not depend on the type of the chain, since the morning
contract cannot condition on that type.
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4.3 Optimal Payments and the Unit of Account

As in Section 3, we analyze the optimal use of units of account by characterizing
the Pareto frontier subject to payment feasibility constraints and individual ra-
tionality constraints. A contract is individually rational if every agent is happy
to participate in the bilateral contracts assigned to all his matches, conditional on
information at the stage of matching. In particular, farmers must be promised
utility at least as high as the value of their endowment:

U1(X,Π; θ) ≥ E(p′y|θ). (15)

At the same time, artisans in location 3 must be promised at least as much as their
outside option of not working and consuming nothing, that is:

U3(X,Π) ≥ 0. (16)

Artisans in location 2 must be encouraged to participate in two bilateral contracts.
Consider their options in the morning. Like artisans in location 3, they could
decide not to work and to consume nothing. In addition, they could also decide
to pass on the morning contract and only engage in a bilateral contract with the
farmer whom they meet at night. The individual rationality constraint in the
morning is therefore given by:

E (U2(X,Π; θ)) ≥ max {E (q (π1 (θ))− x1 (θ)) , 0} . (17)

We take expectations to condition on the artisan’s (lack of) information in the
morning, when the type of the chain is not yet known. The first term in braces is
the expected utility from trading only with the farmer at night.

Consider now the situation of an artisan from location 2 in a night meeting. If
he has made a promise in the morning, he has no way to make payment unless
he engages in trade with the farmer. In contrast, if he has not made any promise
in the morning, then he has the option to pass on the night contract, once he has
learned the farmer’s type. We thus require the additional individual rationality
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constraint:
q (π1 (θ))− x1 (θ) ≥ 0 if π2 = 0. (18)

We again solve a planner problem that characterizes constrained Pareto optimal
contracts.

Definition 2 (Optimality of Economywide Contracts). A contract for an entire econ-
omy (X,Π) is (constrained Pareto) optimal if for some utilities v1 (θ) ≥ E(p′y|θ) and
v3 ≥ 0 it maximizes E (U2(X,Π; θ)) subject to (11) and (12) (i.e., the payments Π are
feasible); (15)–(18) (i.e., the contract is individually rational); and U1(X,Π; θ) = v1 (θ)

for all θ ∈ Θ and U3(X,Π; θ) ≥ v3.

In the bilateral contracting problem of Section 3, the optimal payment maximizes
the scale of payment subject to feasibility (Lemma 1). Accordingly, we found that
the optimal unit of account tailors the payment to the set of potential customer
endowments (Propositions 1 and 2). We now show that in the general equilib-
rium environment here, it is still optimal to maximize scale in every individual
meeting. The new element is that the set of potential bundles of tradable goods
available to the customer depends on his trading partners. At every stage of
matching, the unit of account is thus tailored to the potential bundles, and this
determines how the optimal unit of account propagates through the economy.

For an arbitrary set of tradable goods bundles Π̃ ⊂ R2
≥0, we denote by π∗(Π̃)

the payment that maximizes the scale of payment q (π) subject to feasibility, that
is, the solution to the bilateral contracting problem set up in Definition 1 with
Y = Π̃.

Proposition 3 (Optimality of Payments in Economywide Contracts). A collection
of payments Π is part of an optimal contract (X,Π) if and only if it maximizes the scale
of payment within each individual meeting, i.e.:

1. Payments in meetings between farmers of type θ and artisans from location 2 are
π1 (θ) = π∗ (Y (θ)).

2. The payment in all meetings between artisans from locations 2 and 3 is given by
π2 = π∗ (Π1 (Π)).
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Intuitively, an optimal contract has to accomplish two tasks. First, it should max-
imize gains from trade between parties in every bilateral relationship. We know
from Section 3 that this task requires maximizing the scale of payment and the
production of customized goods in individual meetings. Second, in the general
equilibrium environment here, the contract should use payments and production
in any one meeting to facilitate gains from trade in other meetings to the east or
west.

The proposition shows that if a payment accomplishes the first task, then it also
accomplishes the second. In particular, the optimal payments to artisans in night
meetings should maximize scale in those meetings only. The payments should
not depend on promises made by those artisans in morning meetings—in fact,
they should be as they would be if no morning meetings had taken place. The
result builds on Proposition 2: since a payment that maximizes scale also maxi-
mizes value at any price, it optimally relaxes feasibility constraints also in meet-
ings further down the credit chain.

By maximizing scale in every meeting, the contract allows maximal transfer of
tradable goods through the chain from west to east. It thus allows larger pay-
ments for customized goods in the east, which incentivize more production of
customized goods there. At the same time, maximizing production of customized
goods creates more incentives to work towards the west, which in turn allows
larger payments there.

The proposition allows us to recursively trace the optimal unit of account across
the economy. In night meetings, we observe as many different units as farmer
types. Substituting for Π1 (Π) from our knowledge of the night payments, we
can write the morning payment as:

π2 = π∗ ({π∗ (Y (θ)) , θ ∈ Θ}) .

The unit of account in morning meetings results from applying the function π∗

twice: first to each farmer’s endowment support, and then again to the set of
optimal bundles that an artisan from location 2 will possibly receive in night
meetings. The dominant unit of account that is used in all morning meetings is
thus designed to be robust to all farmer types.
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We conclude this section by discussing three extensions. First, our definition of
optimal contracts requires only individual rationality. In an environment with
multiple bilateral meetings, it is also attractive to rule out joint deviations by a
pair of agents within a meeting. In Appendix B, we define a notion of coalition-
proofness for our environment and show that an optimal contract satisfies this
additional criterion.

Second, one could extend the model to allow for more locations (i.e., additional
artisans in location 4, 5, 6 and so on). Applying the logic of Proposition 3 recur-
sively, it would then be optimal to pass along the payment received by artisans
in location 2 towards the east along the chain. To accomplish this without fur-
ther reduction in scale, the same unit of account should be used in all artisan-
artisan matches. A dominant unit of account thus emerges from the combination
of credit chains (where optimal units of account are passed on) with random
matching (so that the same unit of account is used in different chains).

Finally, we have assumed that artisans receive no endowment. We describe an ex-
tended environment with risky endowment income for artisans in Appendix C.
The main effect is that additional idiosyncratic endowment income makes risk
less similar across bilateral contracting relationships. Much like with less ran-
domness in matching (i.e., certain artisans can only meet a a subset of farmers),
there is less coordination on a dominant unit of account throughout the econ-
omy. It remains the case that correlation in units of account in the economy is
increasing in the length of credit chains and the degree of random matching.

4.4 Examples with Specialized Farmers

We now illustrate our results with concrete examples. The simplest possibility is
that there is only one type of farmer who has a certain endowment.

Example 3. There is one type of farmer, θ = A, where farmer A has a certain endowment
of one unit of good A.

The example features simple income risk in the sense of Proposition 1. Given
the proposition, in meetings between a farmer and an artisan from location 2, the
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optimal payment is given by π1 = (1, 0); that is, the farmer promises the one unit
of good A that he is sure to receive, and no units of good B. As a result, good
A serves as the sole unit of account. Moreover, in morning meetings between
artisans from locations 2 and 3 the same payment π2 = (1, 0) is agreed on. The
artisans anticipate that the artisan at location 2 will receive this payment from
the contract with the farmer, and hence the scale is maximized by passing on the
same payment.

This simple example illustrates the role of credit chains: the same payment and
hence the same unit of account is passed on throughout the chain. Notice that
the artisans from locations 2 and 3 who meet in the morning neither have an
endowment of good A nor do they derive any special enjoyment from it, yet
nevertheless they use it as the sole unit of account, because they already know
that good A will emerge as the dominant unit of account in their credit chain.

Next, we consider an environment with two types of farmers in a symmetric
environment.

Example 4. There are two types of farmers, θ ∈ {A,B}, where farmer A has an endow-
ment of one unit of good A, and farmer B has an endowment of one unit of good B. Price
risk is symmetric in the sense that:

p ≡ max
p∈P

{
pA

pB

}
= max

p∈P

{
pB

pA

}
.

Given that each farmer has a certain income, the payment agreed on in meet-
ings between farmers and artisans is once again straightforward: it is given by
the farmer’s endowment of one unit of good A or B. The choice of payment in
morning meetings between artisans from location 2 and 3 is more complex. The
artisans know that 2 will meet a farmer at night, but they don’t know if it will be
a farmer of type A or B. Propositions 2 and 3 imply that the optimal payment π
should satisfy (9) and (10). In the example, the conditions simplify to:

pπA + πB = 1,

πA + pπB = 1,
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resulting in the optimal payment:

π2 =

(
1

1 + p
,

1

1 + p

)
.

Hence, artisan 2 promises an equally weighted bundle of goods A and B, imply-
ing that the unit of account is u = (0.5, 0.5). Intuitively, the worst that could hap-
pen is that artisan 2 meets farmer A, and then the highest relative price for good
B is realized. The optimal bundle is the largest equally weighted bundle that the
artisan could afford at this price after receiving a payment of one unit of good
A from the farmer. The proposition demonstrates another important feature of
optimal units of account: if there is uncertainty over future trading partners, the
chosen unit of account should be one that minimizes the variability of the value
of the promised payment relative to the income of the possible trading partners.

The next example introduces endowment risk for the two farmers.

Example 5. There are two types of farmers, θ ∈ {A,B}, where the support of the en-
dowment of type θ is given by an interval [yθ, yθ] of good θ, and zero units of the other
good. Price risk is symmetric as in Example 4 with a maximum price of p of each good
relative to the other.

The farmers’ income risk is once again simple, and Proposition 1 applies: the
worst-case income is given by y

θ
units of good θ regardless of price, and hence

farmer θ promises y
θ

units of good θ and zero units of the other good.

Now consider the morning contract between artisans 2 and 3. Artisan 2 knows
that later on, he will either meet A and receive a payment of at least yA of good
A, or he will meet B and receive a payment of at least yB of good B. Let yB ≤ yA.
From Propositions 2 and 3, the optimal payment π should satisfy:

pπA + πB = yB,

πA + pπB = min
{
yA, pyB

}
.

If pyB ≤ yA, the artisan at location 2 faces simple income risk given by y0 =

(0, yB). Hence, in this case the optimal payment is equal to this worst income
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realization:
π2 =

(
0, yB

)
,

and good B is the sole unit of account in these meetings. Given that the same
unit of account is used in evening meetings of artisan 2 with farmer B, good
B becomes the dominant unit of account: it is used in three out of every four
meetings in the economy. If instead we have pyB > yA, the optimal payment is
given by:

π2 =

(
pyB − yA

p2 − 1
,
pyA − yB

p2 − 1

)
.

Hence, the optimal payment is a bundle, but the bundle places higher weight
on the good with the lower minimum endowment, so as to hedge against the
possibility of meeting a farmer who produces this good. The scale of the payment
is declining in price risk, i.e., the maximum relative price p.

Finally, we consider an example with asymmetric price risk.

Example 6. There are two types of farmers, θ ∈ {A,B}, where the support of the en-
dowment of each type θ is given by the same interval [y, y] of good θ, and zero units of
the other good. Price risk is asymmetric with a maximum relative price pθ of each good
relative to the other, with pA ̸= pB.

Given that the relationship of farmer and artisan is still characterized by simple
income risk, we proceed directly to the optimal payment between artisans 2 and
3. The conditions for optimality are:

pAπA + πB = y,

πA + pBπB = y,

and the optimal payment is:

π2 =

((
pB − 1

)
y

pApB − 1
,

(
pA − 1

)
y

pApB − 1

)
.

Hence, the optimal bundle places more weight on the good with the lower price
risk (lower pθ). The example shows that for given endowment risk, the optimal
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unit of account will place more weight on goods that are more stable in value,
and hence lead to less uncertainty about the value of promised payments.

4.5 Optimal Production and the Pareto Frontier

The optimal payment and hence the optimal unit of account are independent of
where on the Pareto frontier the optimal contract is located: it is always beneficial
to maximize the scale of payments in meetings. The weight placed by a social
planner on different agent types only affects the customized goods that those
agents receive or produce. The next proposition shows which utility promises to
farmers and artisans in location 3 are feasible and how the optimal production of
customized goods depends on those promises.

Proposition 4 (Optimality of Production in Economywide Contracts). An optimal
contract can promise farmers and artisans in location 3 any utilities v1 (θ) and v3 that
satisfy:

λ

1 + λ
q2 (π2) ≥ v3, (19)

λ

1 + λ
q2 (π2) +

λ

(1 + λ)2
E (q (π1 (θ))) ≥ v3 +

1

(1 + λ)2
E(v1 (θ)− p′y). (20)

The optimal production of customized goods is:

x1 (θ) = (1 + λ)−1 (q (π1 (θ)) + v1 (θ)− E(p′y|θ)) , (21)

x2 = q2 (π2)− v3. (22)

Condition (20) is equivalent to the requirement that E (U2(X,π; θ)) ≥ 0. The
condition allows us to trace out the entire Pareto frontier by relating the utility of
artisans in location 2 to the utility promised to other types. Up to a scale factor,
the utility of artisans in location 2 is equal to the weighted surplus generated
by production of customized goods (the left-hand side) less the weighted utility
promises to farmers and artisans in location 3 (the right hand side).

The weights multiplying q1 and q2 on the left-hand side indicate the marginal
value of payment capacity in night and morning meetings, respectively. They
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answer the question: how much would total surplus increase, if customers in a
given meeting were able to pay one unit more (say, because of a change in the
environment). The marginal value of payment capacity is λ: if the customer (the
farmer) can pay one more unit, then the supplier (the artisan from location 2) can
produce 1 + λ more units of the customized good.

In contrast, the marginal value of payment capacity in a morning meeting is λ +

λ2. There are λ units of surplus realized in the morning meeting itself: as above,
if the customer can pay one more unit, then the supplier (the artisan in location
3) can produce 1 + λ more units of the customized good. The additional λ2 units
of surplus are due to the fact that surplus in morning meetings helps generate
surplus in night meetings.

The key effect here is that the customized good arranged in the morning meeting
serves as payment to the artisan in location 2. This is valuable, since payment
capacity in night meetings is limited. Specifically, since we have seen that the
marginal value of payment capacity in night meetings is λ, a unit of payment
capacity in a morning meeting contributes λ2 units of surplus generated in night
meetings.

By a similar argument, promising one unit of utility to a farmer is cheaper for
the social planner than promising that unit to an artisan in location 3. Any rents
obtained by the latter artisan require shifting resources through the chain for
payment without having the artisan work. To reflect the lower cost, the farmer’s
utility promise—net of the farmer’s outside option of eating his endowment—
receives lower weight (1 + λ)−2.

Condition (19) resembles the bound for the supplier’s maximal utility in Sec-
tion 3. The promise to an artisan in location 3 is limited by the ability to pay of
the customer who must consume the artisan’s production, measured by q2 (π2).
Artisans in location 3 cannot receive more rents than if they were in a bilateral re-
lationship with the farmer who receives the highest income. It is important here
that we allow artisans in location 2 to choose not to enter the morning contract. If
this was prohibited (i.e., the right hand side of constraint (17) was zero), promises
only would have to satisfy (20).
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4.6 Decentralizing the Optimal Contract

So far, we have focused on constrained Pareto optimal allocations. We have char-
acterized those allocations as solutions to a social planner problem. Implicitly,
the outcome can be thought of as the planner making a contract proposal to all
agents who meet, with the agents being able to either accept or reject the pro-
posal. In this section, we show that optimal economywide contracts arise as equi-
libria of another game that involves decentralized interactions between agents in
the economy.

The game respects the trading constraints and information structure of the envi-
ronment. For strategies and payoffs to be well defined, we need to take a stand
on two issues. The first is negotiation within individual meetings. Here we as-
sume that agents engage in Nash bargaining with a particular set of weights. In
particular, we show below how to select bargaining weights in different types of
meetings in order to decentralize different points on the Pareto frontier.

The second issue is how contracts are enforced, especially when negotiation in
individual meetings results in infeasible chains of payment. We make two as-
sumptions. First, agents have access to a court system that grants limited liabil-
ity: if an agent has promised a payment that he cannot make, then he can declare
bankruptcy. An agent who declares bankruptcy does not work or consume and
hence receives a payoff of zero. This option is relevant for artisans in location 2
who take part in two meetings.

The assumption of limited liability is useful because it implies a simple formula-
tion for the outside options that underlie the Nash bargaining between pairs of
agents. Without limited liability, we would have to make further assumptions on
what happens to agents who have made a promise, and then encounter an agent
who is unwilling to provide them with a payment needed to meet this promise.
Limited liability, however, leads to an additional issue that needs to be dealt with,
namely the possibility that it could lead to strategic default by artisans. Our sec-
ond assumption is that there is a regulatory agency which monitors promises
and sets an upper limit on payment promises. In particular, we bound the value
of the payment promise at the price vector that minimizes that value—a kind of
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stress test on borrowers. For simplicity, we impose this bound only on artisans in
location 2. While these assumptions are special, they deliver a concept of equi-
librium such that all constrained Pareto optima can be implemented as equilibria
of the game.

Limited liability also implies that that the decentralization result does not follow
directly from the Pareto-efficiency property of Nash bargaining together with the
fact that the optimal contract is coalition proof (see Appendix B). In the analysis
of coalition proofness, we assume that agents can only deviate to feasible con-
tracts, which amounts to allowing the planner to inflict arbitrarily large default
costs on agents who promise something infeasible. Here we consider a decentral-
ization under weaker and more appealing assumptions on contract enforcement
that lead to a simple formulation of the outside options underlying Nash bar-
gaining.

Definition 3 (Equilibrium with Bargaining). An equilibrium of an economy with bar-
gaining weights µ3 and (µ1 (θ)) and a bound m̄2 on the value promised by artisan 2 con-
sists of a bilateral contract in morning meetings (x2,π2) as well as a bilateral contracts
in night meetings (x1 (θ) ,π1 (θ)) for every history of bilateral contracts determined in
morning meetings such that:

i) Bilateral contracts in morning meetings are determined by Nash bargaining with
weight µ3 on the artisan from location 3.

ii) Bilateral contracts in night meetings with farmer type θ are determined by Nash
bargaining with weight µ1 (θ) on the farmer.

iii) If payments negotiated along a chain are infeasible for some price, the artisan in
location 2 neither works nor consumes.

We can now establish our decentralization result.

Proposition 5 (Decentralization of Optimal Economywide Contracts). For every
collection of possible utility promises v3 and (v1 (θ))θ∈Θ , there is a collection of bargain-
ing weights µ3 and (µ1 (θ))θ∈Θ and a bound m̄2 such that the optimal contract given the
utility promises is an equilibrium of the economy with those bargaining weights.
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The two assumptions on enforcement ensure that Nash bargaining can be used to
apportion the overall surplus across the three types of agents for all constrained-
optimal economywide contracts. Limited liability implies that the farmer and the
artisan from location 2 can split surplus generated by production x1 (θ) as well
as surplus generated by production x2. The regulatory agency ensures that the
artisan in location 2 cannot game the system given that limited liability is in place.
Suppose, for example, that there are two farmer types, one of whom produces at
much higher scale than the other. It might then make sense for the artisans in a
morning meeting to negotiate high production and a payment that can only be
met if the high-scale farmer joins their chain at night. They would then default
on the low-scale farmer who cannot share in surplus.

5 Government Debt and the Choice of an Optimal

Unit of Account

The preceding analysis has shown how a dominant unit of account leads to better
allocations in economies characterized by relative price risk, credit chains, and
uncertainty about future trading partners. However, the optimal unit of account
generally turns out to be a bundle of goods. In actual economies, in contrast,
the dominant unit of account usually consists of government-issued money, such
as euros or dollars. In this section, we explore how our theory can be extended
to account for the prominent role of government paper in real-world units of
account.

Our explanation for the use of government-issued money as a common unit of
account builds on the results in Sections 3 and 4: the unit of account should re-
flect the income risk of borrowers. Government money enters balance sheets
through money-denominated (i.e., nominal) assets. The most important example
of such an asset is nominal government debt. Issuing debt in nominal terms has
clear advantages for the government; nominal debt is implicitly state-contingent
(through the government’s control of inflation) and can therefore provide insur-
ance for future government spending shocks (this role of nominal government
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debt in a stochastic macroeconomic environment was first pointed out by Bohn
1988). If a lot of government debt is in circulation, private agents derive more of
their income in nominal terms (through interest payments and principal repay-
ment on government bonds), which makes money more attractive as a unit of
account for private transactions, too.

To articulate this mechanism within the framework of our model, we build on the
symmetric Example 4 above. Hence, there are two types of farmers, θ ∈ {A,B},
where farmer A has an endowment of one unit of good A, and farmer B has an
endowment of one unit of good B. Price risk is symmetric with the maximum
price of each good relative to the other given by p > 0. Let p = 1/p denote
the minimum relative price of each good. Into this environment we introduce a
new actor, the government. To focus on government debt as the optimal unit of
account, the only role of the government is to issue IOUs (government debt in
the form of pieces of paper) and to repay them later on. Specifically, at date 0
(i.e., before price uncertainty has been realized) the government acquires a claim
on g units of each farmer’s output, and in exchange issues g units of government
IOUs to each farmer. A unit of IOU is defined as a claim on one unit of (stochastic)
government revenue T , where the expected value of revenue T in the spot market
is E0(T ) = 1. Government IOUs are traded in the centralized spot market, and
can thus serve as a unit of account.

The price of government IOUs is volatile. Specifically, in period 1, after contracts
are written but before the spot market opens, news about government revenue
arrives. Since agents are risk neutral, the expected value of revenue E1(T ) pins
down the price of IOUs in the spot market: pIOU = E1(T ). To ensure that IOU
prices are symmetric with regards to goods A and B, we maintain the following
assumption:

Assumption 2 (Symmetric IOU prices relative to goods A and B). The support of
the price distribution for IOUs is given by:

pIOU ∈
[
p̂(p) pIOU , p̂(p) pIOU

]
,
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where:

p̂(p) =

((
pA/pB − p

p− p

)
pA +

(
p− pA/pB

p− p

)
pB

)
and:

pIOU ≤
p+ 1

2
. (23)

Here pIOU and pIOU give the lower and upper bound of the price of IOUs relative
to the expensive farm good at the two extremes of the relative price of good A

and good B. In addition, condition (23) states that IOU prices are sufficiently
variable such that the relative price of IOUs can be lower than that of a equally
weighted bundle of the farm goods.

In terms of choosing units of account, the central new feature is that a farmer of
type i, rather than deriving all income from farm good i, now derives income
partially from the farm good and partially from the government IOU. Since the
expected tax revenue (and hence the expected value of an IOU) equals one, this
does not change the farmer’s expected income. However, the presence of govern-
ment IOUs does change the optimal unit of account in the economy. As before,
in meetings between farmers and artisans and location 2 the optimal payment
consists of the entire endowment of the farmer, in this case a combination of the
farm good and government IOUs. The question is what should serve as unit
of account in morning meetings between artisans from locations 2 and 3. The
following proposition characterizes the optimal unit of account in the economy
with circulating government paper.

Proposition 6. Let the distributions of farm-good and IOU prices satisfy Assumption 2.
Government IOUs in circulation can serve as a unit of account, so that payment promises
from artisans at location 2 to artisans at location 3 are given by:

π2 = (πIOU , πA, πB)′ = q (uIOU , uA, uB)′

with uIOU + uA + uB = 1, uIOU , uA, uB ≥ 0. We then have:
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1. If pIOU >
p+1

2
, the optimal unit of account in all artisan-artisan matches is given

by:

uIOU =
g

g + (1− g)
2p

p+1

≡ ũIOU , (24)

uA = uB =
1− uIOU

2
. (25)

2. If pIOU ≤ p+1

2
, the optimal unit of account in all artisan-artisan matches is given

by government IOUs, i.e., we have uIOU = 1 and payments can be written as:

π2 = q (1, 0, 0).′

That is, if the price of IOUs is volatile, the optimal unit of account is a combination
of IOUs and an equally-weighted bundle of farm goods, with the weight on IOUs
increasing in the amount g of IOUs in circulation. If the price of government
paper is relatively stable, IOUs are the sole unit of account.

To gain intuition, consider the first case in the proposition, which applies when
the price bounds for IOUs are relatively wide, i.e., the value of government debt
is volatile. In this case it is optimal to hedge against the exposure to IOUs by
making the weight of IOUs in the unit of account increasing in the quantity g

of IOUs in circulation. The intuition for using a bundle of both farm goods and
IOUs is as in Example 4 above; the objective is to choose a unit of account for
making promises that has a low value in the “worst case” price realization; by
including all goods in the bundle, the “cheap” good is always included, which
moderates variation in the value of the promise relative to income received. The
weight of IOUs in the optimal bundle is increasing in g to align the value of the
unit of account with the value of income received. In farmer-artisan matches, the
farmer promises g units of IOUs and 1− g units of farm goods, so that the share
of IOUs in artisans’ income is increasing in g also.

The second case of the proposition shows conditions under which the optimal
unit of account consists solely of IOUs rather than a bundle of goods. Consider
the risk that arises from receiving either farm good A or B as in Example 4 above.
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The optimal unit of account should be chosen to have the lowest possible value
at the extremes of the price distribution. An equally weighted bundle of A and B

has value (p + 1)/2 relative to the expensive good when the cheap good is at its
lowest relative price. What would be better is to use a unit of account that has an
even lower value when either one of the farm goods reaches its lowest relative
price. If the condition in the second case of Proposition 6 is satisfied, IOUs are
such a good, and are therefore used as the sole unit of account. Intuitively, the
condition can be understood in terms of the volatility of the price of IOUs. If
the upper bound for the relative price of IOUs pIOU is low, the value of IOUs
is relatively stable, which makes IOUs a better unit of account than a bundle of
goods with more volatile value.

It might be the case that condition (23) does not hold, in which case it is possible
that IOUs will not enter the optimal unit of account. However, if we general-
ize the model to allow for many farm goods, it is plausible that (23) will hold.
The issue here is the value of an equally-weighted bundle of farm goods in the
worst-case scenario in terms of meeting the payment feasibility constraint. In the
worst-case scenario, the relative price of the farm good received will be at the
minimum while the relative price of all other farm goods will be at the maxi-
mum, suggesting that the relative price of an equally weighted bundle of farm
goods will be high.

To translate these results into more familiar terms, we can refer to an IOU as
a “euro.” If the euro is the unit of account, the consumer price index is CPI =

(pIOU)−1. A high volatility of the price of euros then translates into a volatile
CPI, i.e., volatile inflation. The worst-case scenario that drives the choice of the
optimal unit of account is one of a high pIOU and hence a low CPI. Intuitively,
when the euro is the unit of account, artisan 2 promises a fixed number of euros
to artisan 3. If now realized inflation is low or negative (deflation), the real value
of that euro-denominated promise is high, possibly leading to a binding payment
feasibility constraint (as in Fisher’s debt-deflation theory). If inflation becomes
too volatile, the euro ultimately is no longer the optimal unit of account. This is
akin to the dollarization of an economy when the local currency becomes overly
volatile, and alternative units of account (such as foreign currency) start to be
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used.4 A sudden spike in pIOU could also be generated by government-mandated
changes in the value of the unit of account, as in the historical sudden deflation
episodes analyzed by Velde (2009).

The analysis provides a rationale for why government-issued money often, but
not always, arises as the dominant unit of account in an economy. In addition
to the formal arguments provided by Proposition 6, another force that favors
using government paper as the unit of account is that using bundles as a unit
of account is more complicated that using a single unit of account. Hence, if
there are contracting frictions that favor making promises in terms of a single
unit, using government paper may be optimal even under the conditions where
Proposition 6 would dictate using a bundle of IOUs and farm goods.

6 Optimal Currency Areas

An important practical issue regarding the use of units of account is the ques-
tion of optimal currency areas, i.e., under what conditions do multiple regions or
countries have an incentive to adopt a common unit of account? To address this
question, we now modify our model to allow for variation in the intensity of link-
ages between regions. So far, we have assumed that matching at each link is en-
tirely random; meetings between an artisan from location 2 and any given farmer
are equally likely. We now add a second dimension of geography: agents live in
two different regions, and are more likely to be matched to people within their
region than to those outside. In this setting, a tension arises between adopting a
“global” unit versus adopting several “regional” units of account that are more
suited to local conditions.5 The analysis therefore leads to a theory of optimal
currency areas, where the optimality of a common unit of account depends on
the degree of specialization across countries and on the intensity of cross-border
links.

4See Neumeyer (1998) for a general-equilibrium analysis of the breakdown of trade in nominal
assets when inflation risk becomes too high.

5Related issues arise in the search-theoretic models of Matsuyama, Kiyotaki, and Matsui (1993)
and Wright and Trejos (2001), in which money is used as a medium of exchange.
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We once again build on the symmetric Example 4 with two types of farmers,
θ ∈ {A,B}, where farmer A has an endowment of one unit of good A, and farmer
B has an endowment of one unit of good B. Price risk is symmetric with the
maximum price of each good relative to the other given by p > 1. Different from
Example 4, assume that artisans are located in two regions, A and B, correspond-
ing to farmers of type A and B. In the morning, artisans at locations 2 and 3 meet
within their region, i.e., location-2 artisans in region A meet location-3 artisans
in region A, and the same for region B. At night, an artisan from location 2 in
region A meets a farmer from region A with probability 1−α, where 0 ≤ α ≤ 0.5.
With probability α he meets a farmer from region B. Similarly, an artisan from
location 2 in region B meets a farmer from his own region with probability 1−α.

Without further assumptions, as long as α > 0 the optimal unit of account is
still as characterized in the discussion of Example 4, because only the possibility
(rather than the probability) of meeting a “foreigner” matters. Here we enrich the
setting by adding the possibility that an artisan who is mismatched can pay a “re-
matching cost” τ > 0 (in utils) to switch to the other region. Hence, in contracting
there is now a choice between writing contracts so that they are compatible with
meeting trading partners from either region, or to write contracts tailored to trad-
ing partners from a particular region, which includes the necessity of paying the
rematching cost if initially mismatched.

We can now show that the optimality of adopting a common unit of account for
both regions depends on the intensity of cross-border trade α. We state the result
for a specific distribution of welfare weights/bargaining power across agents;
other welfare weights would affect the threshold for α above which a unified
currency area is optimal, but not change the basic result.

Proposition 7. Consider the allocation where all bargaining power rests with artisans
in location 2, i.e., µ1(θ) = µ3 = 0. If 0 < α ≤ α̃, where

α̃ =
(1 + λ)(p− 1)

τ(1 + p)
, (26)

optimal contracts are as in Example 3 (separate units of account in regions A and B), and
mismatched artisans pay the cost τ to match with someone in their own region. If α > α̃,
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the solution to the planning problem is as characterized in the discussion of Example 4,
that is, an equally weighted bundle of goods A and B serves as common unit of account
in all morning meetings in both regions, and all agents contract with their initial match
rather than paying the transport cost (that is, the economy has a common unit of account
or a “currency union”).

Hence, we find that the benefits of a currency union increase in the intensity of
cross-border trade α. Moreover, the benefits of a union are also higher (i.e., the
threshold for α is lower) if there is less relative price risk across the regions, i.e.,
if p is closer to one. This result mirrors findings in traditional analyses of optimal
currency areas (e.g., Alesina and Barro 2002) that the benefits of a currency union
are higher if the members experience correlated shocks. Notice, however, that the
mechanism is entirely different: whereas traditional models emphasize the po-
tential benefits of independent macroeconomic policy, in our theory the tradeoff
in adopting a currency union involves risk exposures in contracts among private
parties. Another distinct implication of our theory is that the benefits of a cur-
rency union are increasing also in the length of credit chains. Consider a simple
extension of the setup in which the probability α of meeting someone from the
other region applies, separately, to each level of the chain of artisans. This im-
plies that as the number of locations increases, for a given α there is an increase
in the probability that each credit chain contains at least one agent from the other
region. Thus, for fixed α the benefits of a currency union are increasing in the
number of locations.

7 Conclusions

The theoretical framework described in this paper provides a basic rationale for
why adopting a dominant unit of account can be optimal. We have shown why
circulating government paper (such as money) can arise as an optimal unit of ac-
count. We have also demonstrated that when the value of government paper is
overly volatile (i.e., volatile inflation), agents may be better off adopting a differ-
ent unit of account, as is often observed when people in countries with unstable
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monetary policy adopt foreign currency as a unit of account. Our analysis, then,
provides a new channel for the costs of monetary instability. In future work,
we plan to examine quantitatively the implications of our theory for the welfare
implications of different policy regimes.

In another application, we examined the implications of our theory for optimal
currency areas, i.e., we have derived conditions under which two regions are bet-
ter off under a common unit of account. Unlike baseline models of optimal cur-
rency areas that take as exogenously given the economic benefits of a unified cur-
rency in terms of reducing trade costs (see for example Alesina and Barro 2002),
our theory provides an explicit mechanism for how unification affects trade.

One could extend the theoretical framework described here in a number of direc-
tions. For example, some agents might have access to collateral that allows them
to bear additional risk. The design of a unit of account could then be used to help
allocate risk to those who can bear it, and to help economize on the overall need
for collateral. Also, in real-world economies the balance-sheet risks that are cen-
tral to our theory are highly concentrated among specific economic actors, such
as banks. Extending the model to make the role of banks and other financial in-
termediaries explicit would be a promising avenue for future research on money
as a unit of account.

A Proofs for Propositions

Proof of Proposition 1: The proof for Part 1 is contained in the main text. Now
consider Part 2 regarding uniqueness. Suppose there is a payment π̃ ̸= y0 that
yields the same payoff, E(p′π̃) = E(p′y0). Given that the promised payment is
different from y0 yet yields the same utility, there must be one good i for which π̃
promises strictly more than yi0, whereas for the other good j, π̃ promises strictly
less than yj0. Now consider a price vector p̃ that has p̃i = E(pi) − ϵ1 = 1 − ϵ1
and p̃j = E(pi) + ϵ1 = 1 + ϵ2, with ϵ1, ϵ2 > 0 and p̃′y0 = E(p′y0). Such a price
vector exists in P for small enough ϵ1, ϵ2 because of the assumed price risk in both
goods and the convexity of P . Now if p̃ and y0 are realized, we have p̃′π̃ > p̃′y0.
Hence, any such π̃ violates feasibility (1), implying that setting π = y0 is the
unique optimum. 2
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Proof of Proposition 2: We show first that a bundle is feasible if and only if it
satisfies p̄i′π ≤ mi for i ∈ {A,B}, The inequalities are necessary for feasibility,
because there exist y ∈ Y that attain incomes mA and mB, and the optimal pay-
ment π has to satisfy (1) for any y ∈ Y , p ∈ P .

We also need to show that the inequalities are sufficient for feasibility. Consider a
bundle that satisfies the inequalities and consider any other endowment y ∈ Y .
From the definition of mA and mB, we know that p̄A′π ≤ p̄A′y and p̄B′π ≤ p̄B′y.

Consider any other price p ∈ P . Suppose πA ≥ yA. Since p̄A maximizes the
relative price of good A and p̄A′π ≤ p̄A′y, we must have p′π ≤ p′y. Now suppose
instead that πA < yA. Since p̄B minimizes the relative price of good A and p̄B′π ≤
p̄B′y, we must have p′π ≤ p′y.

Now consider the equations (9) and (10). If there is price risk as stated in the
proposition, the matrix on the left hand side is nonsingular, so there is a unique
solution π0. The solution is feasible since it satisfies the inequalities. To show
that it is optimal, consider any other feasible π ̸= π0. By construction of π0, we
know that p̄A′π ≤ p̄A′π0 and p̄B′π ≤ p̄B′π0.

Consider any other price p ∈ P with p ̸= p̄A and p ̸= p̄B. Suppose πA ≥ πA
0 .

Since p̄A is the unique maximizer of the relative price of good A, we must have
p′π < p′π0. Suppose instead πA < yA. Since p̄B is the unique minimizer of
the relative price of good A and p̄B′π ≤ p̄B′π0, we must have p′π < p′π0. We
conclude that the bundle π0 is the the unique bundle that maximizes the value
p′π subject to (1). 2

Proof of Proposition 3: (Necessity) We show first than an optimal contract maxi-
mizes the scale of payment within each individual meeting. If there is no optimal
contract for given v1 (θ) and v3, then there is nothing to show. Suppose then that
an optimal contract exists.

We want to show that an optimal contract (X,Π) satisfies π1 (θ) = π∗ (Y (θ)) for
all θ ∈ Θ. Suppose that π1 (θ) ̸= π∗ (Y (θ)) for some θ. Since π∗ (Y (θ)) max-
imizes scale for the endowment set Y (θ), we know that ∆q = q (π∗ (Y (θ))) −
q (π1 (θ)) > 0. Consider an alternative contract that makes farmer θ pay π∗ (Y (θ))
and leaves all other payments unchanged.

From (14), we can reduce x1 (θ) by ∆q (1 + λ)−1 and leave the utility of farmer
θ unchanged. At the same time, we strictly increase the expected utility of the
artisan in location 2, which is our objective function.

The alternative contract is feasible. Indeed, it satisfies farmer feasibility con-
straints by construction. Moreover, Proposition 2 says that the payment π∗ (Y (θ))
maximizes the value p′π among all feasible bundles for any price p ∈ P . It
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follows that the feasibility constraint of the artisan in location 2 still allows the
original payment π2.

Since the alternative contract does not change the payment of artisan 2, we can
retain the same production x2 and leave the individual rationality constraint of
artisan 3 unchanged.

Given the original production x2, the alternative contract also satisfies the indi-
vidual rationality constraints of artisan 2. Indeed, From (13), a contract satis-
fies the individual rationality constraint (17) of artisan 2 if and only if we have
E (U2(X,Π; θ)) ≥ 0 and (1 + λ) x2 − q (π2) ≥ 0.The expected utility of artisan 2
strictly increases so E (U2(X,Π; θ)) > 0. The second condition continues to hold
since π2 and x2 are unchanged from the original contract which was optimal.
Finally, since the alternative contract changes the component of artisan 2 utility
that is due to trade with the farmer, (18) also continues to hold.

We can also retain production x1(θ̃) for all farmers θ̃ ̸= θ and leave those farmers’
constraints unchanged. In sum, we have constructed an alternative contract that
satisfies all constraints and achieves a strictly higher objective than the original
optimal contract, a contradiction. We conclude that an optimal contract satisfies
π1 (θ) = π∗ (Y (θ)).

We now show that an optimal contract satisfies π2 = π∗ (Π1 (Π)). Suppose that
π2 ̸= Π1 (Π). Since π∗ (Π1 (Π)) maximizes scale for the endowment set Π1 (Π),
we know that ∆q = q (π∗(Π1 (Π)))− q (π2) > 0. Consider an alternative contract
that makes artisan 2 pay π∗ (Π1 (θ)) and leaves all other payments unchanged.

From (14), we can increase x2 by ∆q (1 + λ)−1 and leave the utility of artisan 3
unchanged. At the same time, we strictly increase the expected utility of the
artisan in location 2 and in particular its component (1 + λ) x2−q (π2) . From (13)
and (17), the alternative contract satisfies the individual rationality constraint of
the artisan in location 2. It also strictly increases the objective function.

The alternative contract is feasible since the payment of artisan 2 is feasible by
construction and changes to the contract assigned to morning meetings do not
affect any feasibility constraints for night meetings. We again have a contradic-
tion and conclude that an optimal contract satisfies π2 = π∗ (Π1 (Π)) .

(Sufficiency) We now show that every collection of payments that maximizes the
scale of payment within each individual meeting is part of a contract (X,Π) that
is optimal for some promised utilities v3 and v1 (θ).

Consider a candidate contract that maximizes the scale of payments in individual
meetings. We first show that we can find a production X and promised utilities
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such that the candidate contract satisfies all constraints of the optimization prob-
lem. We then show that there is no other contract that satisfies all constraints and
yields higher payoff.

The payments from Part 1 satisfy the feasibility constraints (12). Fix v3 and v1 (θ)
and use (14) to choose production of customized goods X :

x1 (θ) = (1 + λ)−1 (v1 (θ) + q (π1 (θ))− E(p′y|θ)) ,
x2 = q (π2)− v3.

Expected utility for an artisan in location 2 from the candidate contract is there-
fore:

E (U2(X,Π; θ)) =

λEq (π2)− (1 + λ) v3 +
λ

1 + λ
E [q (π1 (θ))]− (1 + λ)−1E(v1 (θ)− p′y).

From (13), a contract (X,Π) satisfies the individual rationality constraint (17) if
and only if E (U2(X,Π; θ)) ≥ 0 and (1 + λ)x2 − q (π2) ≥ 0. Substituting, we
obtain:

λ

1 + λ
q (π2) ≥ v3

λ

1 + λ
q (π2) +

λ

(1 + λ)2
E (q (π1 (θ))) ≥ v3 +

1

(1 + λ)2
E(v1 (θ)− p′y). (27)

The conditions are satisfied for example for v3 = 0 and v1 (θ) = E(p′y|θ). More-
over, the candidate contract has π2 = 0 only in the degenerate case where all
endowments are zero for sure, in which case q (π1 (θ)) = x1 (θ) = 0. The candi-
date contract thus satisfies the individual rationality constraint (18).

We have shown that the contract satisfies all constraints for some v1 (θ) and v3.
To show that it is optimal, suppose that there is some alternative feasible and
individually rational contract (X̃, Π̃) that yields strictly higher expected utility
for the artisan in location 2 while keeping all other agents’ utility levels the same.
Suppose that alternative contract assigns different bilateral contracts to meetings
between artisans from location 2 and farmers of types θ ∈ Θ̃ ⊂ Θ.

The payment π∗ (Y (θ)) is part of any constrained Pareto optimal contract in any
such meetings. Since farmer utility is held fixed, it must be that expected utility
of an artisan 2 from trade with farmers E (q (π̃1 (θ))− x̃1 (θ)) is less or equal than
under the candidate contract.
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It follows that expected utility from trade with artisan 3, (1 + λ)x2 − q (π2) is
strictly higher under the alternative contract. However from (14) this is impos-
sible, since we have assumed that artisan 3 utility is the same for both contracts.
We conclude that the candidate contract is indeed optimal. 2

Proof of Proposition 4: The previous proposition states that any optimal con-
tract maximizes the scale of payment in each individual meeting. The proof of
that implication (labeled “sufficiency” in the proof above) shows that any con-
tract that maximizes the scale of payment in each individual meeting and also
delivers utility promises v3 and v1 (θ) must prescribe production (21)–(22) and
must satisfy conditions (19)–(20). 2

Proof of Proposition 5: We proceed by backward induction. Consider first night
meetings between farmers of type θ and artisans from location 2 for a given con-
tract (x̃2, π̃2) negotiated in the morning meeting. We restrict attention to histories
such that π̃2 = 0 implies x̃2 = 0. Any other history would have the artisan in
location 3 work for free, which cannot happen in equilibrium.

Consider utilities if the outcome of night bargaining is (x̃1, π̃1). If the chain of
payments is infeasible (that is, p′π̃1 < p′π̃2), then the artisan receives zero and
the farmer receives E (p′y|θ). Otherwise, the utilities of the farmer and artisan
are (1 + λ) x̃1 − q (π̃1) + E (p′y|θ) and:

(1 + λ) x̃2 + q (π̃1)− q (π̃2)− x̃1,

respectively. The outside option of the farmer is E (p′y) whereas the outside
option of the artisan is zero. To maximize joint surplus, the farmer and artisan
want to maximize scale q (π̃1) subject to feasibility, that is, they want to choose
π̃1 = π1 (θ), the payment prescribed by any optimal contract.

We now choose the weights µ1 (θ) so that farmer θ’s share of surplus at the opti-
mal payments π2 and π1 (θ) is exactly v1 (θ):

µ1 (θ) =
v1 (θ)− E (p′y|θ)

λq (π2) +
λ

1+λ
q (π1 (θ)) + v1 (θ)− E (p′y|θ)

.

It follows that artisans’ equilibrium production given morning contract (x̃2, π̃2)
is:

x∗
1 (x̃2, π̃2, θ) =

1

1 + λ
µ1 (θ) ((1 + λ)x̃2 − q (π̃2)) + (1 + µ1 (θ)λ) q (π1 (θ)) .

Consider, next, bargaining in morning meetings. If the outcome of morning bar-
gaining is (x̃2, π̃2) , the utilities of the artisans from locations 3 and 2 are q (π̃2)−x̃2
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and:

(1 + λ) x̃2 + E(q (π1 (θ)))− q (π̃2)− E (x∗
1 (x̃2, π̃2, θ))

=

(
1− E (µ1 (θ))

1 + λ

)
((1 + λ)x̃2 − q (π̃2)) +

λ

1 + λ
E ((1− µ1 (θ))q (π1 (θ))) ,

respectively. The outside option of artisan 3 is zero, and the outside option of
artisan 2 is:

λ

1 + λ
E ((1− µ1 (θ))q (π1 (θ))) .

Since an optimal contract maximizes scale and allows promises v1 (θ), joint sur-
plus in a morning meeting with π̃2 = π2 is positive.

If we further set m̄2 = minp∈P {p′π2}, then there is no other bilateral contract
(x̃2, π̃2) that delivers more surplus. Indeed, promising a larger payment π̃2 is
precluded by the bound. Promising lower payment reduces beneficial produc-
tion of customized goods.

It follows that the optimal scale of payment in morning meetings is π2 . We can
select the weight µ3 so the share of surplus going to the artisan in location 3 at
the optimal payment π2 is v3:

µ3 =
v3

v3 +
(
1− E(µ1(θ))

1+λ

)
(λq (π2)− v3) +

λ
1+λ

E ((1− µ1 (θ))q (π1 (θ)))
.

The production of customized goods follows as x2 = q (π2)− v3. 2

Proof of Proposition 6: Following the same reasoning as in the proof of Propo-
sition 1, in matches between farmers and artisans at location 2 it is optimal to
choose the unit of account such that the entire income of the farmer can be passed
on to 2. Thus, if an artisan meets farmer i ∈ {A,B}, the artisan will receive a pay-
ment consisting of g units of government IOUs and 1 − g units of farm good i.
For the reasons articulated in Section 4, it will also be optimal to use a common
unit of account in all artisan-artisan matches. As in the proof of Proposition 2,
this dominant unit of account should be chosen to maximize the payment that
can be passed on from location-2 artisans to other artisans. Proposition 2 is not
directly applicable here, because there are now three goods that can serve as unit
of account. We can state the problem of choosing the optimal unit of account as:

{uIOU , uA, uB} = argmax
uA, uB , uIOU

{
min

i,p,pIOU

{
gpIOU + (1− g)pi

uIOUpIOU + uApA + uBpB

}}
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subject to uIOU + uA + uB = 1 and uIOU , uA, uB ≥ 0. What is being maximized
is the minimum of the value of the income of an artisan at location 2 (numera-
tor) relative to the value of the unit of account (denominator), where the index
i ∈ {A,B} denotes the identity of the farmer that the artisan meets. Given the
symmetric price distribution for goods A and B, it is optimal to set:

uA = uB =
1− uIOU

2
.

The worst-case price realization for p is that the relative price of good i is at the
minimum. We therefore have:

min
i,p,pIOU

{
gpIOU + (1− g)pi

uIOUpIOU + uApA + uBpB

}
= min

pIOU

{
gpIOU/max{pA, pB}+ (1− g)p

uIOUpIOU/max{pA, pB}+ (1− uIOU)
p+1

2

}

=


gpIOU+(1−g)p

uIOUpIOU+(1−uIOU )
p+1

2

if uIOU > ũIOU

g + (1− g)
2p

p+1
if uIOU = ũIOU

gpIOU+(1−g)p

uIOUpIOU+(1−uIOU )
p+1

2

if uIOU < ũIOU ,

where ũIOU is defined in (24), and in the second line we divide both numerator
and denominator by the price of the more expensive farm good.

Now notice that for pIOU fixed, the expression on the right-hand side is mono-
tonic in uIOU . Hence, if it is optimal to set uIOU > ũIOU , the best choice is
uIOU = 1, and similarly if uIOU < ũIOU is optimal the best choice is uIOU = 0.
Setting uIOU = 0 would be better than uIOU = ũIOU if the inequality:

gpIOU + (1− g)p
p+1

2

> g + (1− g)
2p

p+ 1

held, which can be simplified to:

pIOU ≥
p+ 1

2
,
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which is ruled out by condition (23). Similarly, uIOU = 1 is better than uIOU =
ũIOU if the inequality:

gpIOU + (1− g)p

pIOU
≥ g + (1− g)

2p

p+ 1

holds, which can be solved for:

pIOU ≤
p+ 1

2
,

which is the condition stated in the proposition. 2

Proof of Proposition 7: Given the symmetric environment, in the optimal allo-
cation either all mismatched agents pay the rematching cost, or none of them do.
The resulting environments (after potentially paying the rematching cost) are as
characterized in the discussion of Example 3 if the cost is paid (i.e., matching only
within regions, or “separate currencies”) or in the discussion of Example 4 if not
(matching across regions, or “currency union”). Comparing the optimal alloca-
tions, we see that (apart from the rematching cost) the only difference in terms of
overall welfare is the consumption of the artisanal good by artisans at location 2.
This is because given assumed welfare weights farmers and artisans at location
3 at at reservation utility, the production of location-2 artisans is independent of
the regime, and location-2 artisans only consume artisanal goods in the optimal
allocation. If the transport cost is paid and all agents match within their region
(separate currencies), the optimal payment from artisan 2 to 3 in region θ is the
one unit of the farm good θ that 2 receives from the farmer. The individual ratio-
nality constraint of artisan 3 then implies that we have

xSEPARATE
2 = 1.

Under the alternative of a currency union, as in Example 4 the optimal payment
from 2 to 3 is π2 =

(
1

1+p
, 1

1+p

)
. The individual rationality constraint of artisan 3

then gives:

xUNION
2 =

2

1 + p
.

That is, in the currency union the scale of production is reduced to ensure that
payments can be made even if matching outside the home region. Taking into
account that under separate currencies avoiding matching with the other region
involves paying the transport cost τ with probability α, welfare is higher when
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there is matching across regions (and, hence, there is a currency union) if:

(1 + λ)xUNION
2 ≥ (1 + λ)xSEPARATE

2 − ατ

or:
α ≥ (1 + λ)(p− 1)

τ(1 + p)
≡ α̃,

which is the condition given in the proposition. 2

References

Acemoglu, Daron. 1995. “Hedging, Multiple Equilibria and Nominal Con-
tracts.” Chapter 13 of The New Macroeconomics: Imperfect Markets and Pol-
icy Effectiveness, edited by Huw David Dixon and Neil Rankin. Cambridge:
Cambridge University Press.

Adam, Klaus, and Junyi Zhu. 2016. “Price Level Changes and the Redistribution
of Nominal Wealth Across the Euro Area.” Journal of the European Economic
Association 14 (4): 871–906.

Aiyagari, S.Rao, and Neil Wallace. 1997. “Government Transaction Policy, the
Medium of Exchange, and Welfare.” Journal of Economic Theory 74 (1): 1–18.

Alesina, Alberto, and Robert J. Barro. 2002. “Currency Unions.” Quarterly
Journal of Economics 107 (2): 409–36.

Auclert, Adrien. 2016. “Monetary Policy and the Redistribution Channel.” Un-
published Manuscript, Stanford University.

Banerjee, Abhijit V., and Eric S. Maskin. 1996. “A Walrasian Theory of Money
and Barter.” Quarterly Journal of Economics 111 (4): 955–1005.

Bohn, Henning. 1988. “Why Do We Have Nominal Government Debt?” Journal
of Monetary Economics 21 (1): 127–40.

. 1990. “A Positive Theory of Foreign Currency Debt.” Journal of Interna-
tional Economics 29 (3–4): 273–92.

Burnside, Craig, Martin Eichenbaum, and Sergio Rebelo. 2006. “Government
Finance in the Wake of Currency Crises.” Journal of Monetary Economics 53
(3): 401–40.

Cavalcanti, Ricardo De O., and Neil Wallace. 1999. “Inside and Outside Money
as Alternative Media of Exchange.” Journal of Money, Credit and Banking 31
(3): 443–57.

54



Cipolla, Carlo M. 1956. Money, Prices, and Civilization in the Mediterranean World:
Fifth to Seventeenth Century. Princeton: Princeton University Press.

Coibion, Olivier, Yuriy Gorodnichenko, Lorenz Kueng, and John Silvia. 2012.
“Innocent Bystanders? Monetary Policy and Inequality in the U.S.” NBER
Working Paper 18170.

Cooper, Russell. 1990. “Predetermined Wages and Prices and the Impact of
Expansionary Government Policy.” Review of Economic Studies 57 (2): 205–
14.

Doepke, Matthias, and Martin Schneider. 2006a. “Aggregate Implications of
Wealth Redistribution: The Case of Inflation.” Journal of the European Eco-
nomic Association 4 (2–3): 493–502.

. 2006b. “Inflation and the Redistribution of Nominal Wealth.” Journal of
Political Economy 114 (6): 1069–97.

. 2013. “Money as a Unit of Account.” CEPR Discussion Paper 9700.

Doepke, Matthias, Martin Schneider, and Veronika Selezneva. 2016. “Distribu-
tional Effects of Monetary Policy.” Unpublished Manuscript, Northwestern
University.

Einaudi, Luigi. 1937. “The Medieval Practice of Managed Currency.” In The
Lessons of Monetary Experience: Essays in Honor of Irving Fisher, edited by
Arthur D. Gayer, 259–68. New York: Farrar and Reinehart.

. 1953. “The Theory of Imaginary Money from Charlemagne to the
French Revolution.” Chapter 14 of Enterprise and Secular Change: Readings in
Economic History, edited by Frederic C. Lane and Jelle C. Riemersma. Home-
wood: Richard D. Irwin.

Fisher, Irving. 1933. “The Debt-Deflation Theory of Great Depressions.” Econo-
metrica 1 (4): 337–357.

Freeman, Scott, and Guido Tabellini. 1998. “The Optimality of Nominal Con-
tracts.” Economic Theory 11:545–62.

Goldberg, Dror. 2012. “The Tax-Foundation Theory of Fiat Money.” Economic
Theory 50 (2): 489–97.

Hu, Tai-Wei, John Kennan, and Neil Wallace. 2009. “Coalition-Proof Trade and
the Friedman Rule in the Lagos-Wright Model.” Journal of Political Economy
117 (1): 116–37.

Hu, Tai-Wei, and Guillaume Rocheteau. 2013. “On the Coexistence of Money
and Higher-return Assets and its Social Role.” Journal of Economic Theory 148
(6): 2520–60.

55



Jovanovic, Boyan, and Masako Ueda. 1997. “Contracts and Money.” Journal of
Political Economy 105 (4): 700–708.

Kindleberger, Charles P. 1993. A Financial History of Western Europe. 2d ed.
Oxford: Oxford University Press.

Kiyotaki, Nobuhiro, and John Moore. 1997. “Credit Chains.” Unpublished
Manuscript, Princeton University.

Kiyotaki, Nobuhiro, and Randall Wright. 1989. “On Money as a Medium of
Exchange.” Journal of Political Economy 97 (4): 927–54.

Kocherlakota, Narayana R. 1998. “Money Is Memory.” Journal of Economic
Theory 81 (2): 232–51.

. 2002. “The Two-money Theorem.” International Economic Review 43 (2):
333–46.

Lagos, Ricardo, and Randall Wright. 2005. “A Unified Framework for Monetary
Theory and Policy Analysis.” Journal of Political Economy 113 (3): 463–84.

Li, Yiting, and Randall Wright. 1998. “Government Transaction Policy, Media
of Exchange, and Prices.” Journal of Economic Theory 81 (2): 290–313.

Matsuyama, Kiminori, Nobuhiro Kiyotaki, and Akihiko Matsui. 1993. “Toward
a Theory of International Currency.” The Review of Economic Studies 60 (2):
283–307.

Meh, Césaire, Vincenz Quadrini, and Yaz Terajima. 2010. “Limited Nominal
Indexation of Optimal Financial Contracts.” Unpublished Manuscript, Uni-
versity of Southern California.
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B Coalition-Proof Contracts

When defining optimal contracts, we have required only individual rationality.
In an environment with multiple bilateral meetings, it is also attractive to rule out
joint deviations by a pair of agents within a meeting. We now define coalition-
proof contracts and point out that the optimal contract characterized by Proposi-
tion 3 is coalition proof.

Consider first morning meetings. We require that for all alternative bilateral con-
tracts (x̃2, π̃2) that are feasible—that is, π̃2 ∈ Π1 (Π)—agents are no better off
than under the economywide contract:

E (U2(X,Π; θ)) ≥ (1 + λ) x̃2 − q (π̃2) + E (q (π1 (θ))− x (θ)) ,

U3(X,Π) ≥ q (π̃2)− x̃2. (28)

Proposition 3 shows that any optimal contract maximizes the scale of payment in
meetings between artisans 2 and 3. As a result, there cannot be any fruitful joint
deviation and the contract satisfies satisfies (28).

Consider now joint deviations by a farmer of type θ and an artisan from location
2 in a night meeting. For all alternative bilateral contracts (x̃1, π̃1) that allow
the artisan to make his already promised payment—that is, p′π̃1 ≥ p′π2 for all
p ∈ P—we require:

E (U2(X,Π; θ)) ≥ (1 + λ)x2 − q (π2) + E (q (π̃1))− x̃1,

U1(X,Π; θ) ≥ (1 + λ) x̃1 − q (π̃1) + E(p′y|θ).

Again an optimal contract does not allow such a deviation since Proposition 3
says the optimal contract maximizes scale within meetings between farmers and
artisans from location 2.

1



C Endowment Income for Artisans

Proposition 3 assumes that artisans in locations 2 and 3 do not receive their own
endowment of tradable goods. Instead, they rely for payment on the endowment
of the farmer at the head of their chain. Here we consider an extension where
artisans can receive endowment income as well. Suppose that at the beginning
every agent learns an endowment type θ ∈ Θ. Every chain is then characterized
by an endowment vector (θ1, θ2, θ3), where θi indicates the type of the agent in
location i.

It enough to consider an economy with one endowment type in locations 2 and 3.
Since types θ2 and θ3 are realized before morning meetings where the first actions
in the economy are taken, the overall economy divides into many independent
subeconomies according to the realization (θ2, θ3). Moreover, the effect of an en-
dowment for the artisan in location 3 affects only that agent’s outside option, but
does not alter any feasibility constraints.

Consider thus a modified environment in which artisans in location 2 receive an
endowment with support Y 2. The optimal payment satisfies the recursion in
Proposition 3 if we define:

Π1 (Π) = (π1 (θ) + y2 : θ ∈ Θ,y2 ∈ Y 2) .

Indeed, an optimal payment in morning meetings maximizes scale given the set
Π1 (Π); adding Y 2 only changes the initial set of available bundles. Moreover, an
optimal bundle must still maximize scale in night meetings also: the key prop-
erty exploited in the proof of Proposition 3 is that π1 (θ) maximizes the value
of production for any price vector. Higher scale in night meetings thus allows
higher scale in morning meetings with or without an extra endowment.

While the recursion remains unchanged with an artisan endowment, the evolu-
tion of the optimal unit of account is different. In particular, the optimal unit of
account will be tailored more closely to the endowment of artisan 2. Like farmer
endowments, artisan endowments are thus a force that can makes the unit of ac-
count different across transactions. Of course, if the artisan endowment risk is
similar in nature to the risk from meeting farmers, say, because it arises from a
second meeting with another farmer, then it will have no effect on the unit of
account and only increase the scale.

2



D Setup with Small Default Costs

In the main text, our results were derived for an economy in which default costs
are large, so that only non-contingent contracts can be used. In this appendix,
we outline how the framework can be extended to allow for small default costs,
in the sense that the cost of breaking promises is sufficiently small for breaking
promises to be optimal in some cases. Even so, the unit of account still matters,
because an appropriately chosen unit of account is necessary to minimize the cost
of settling contracts in the economy.

Most of the results for the large-cost case carry over unchanged to the small-cost
setting. The key differences arise when we consider what the optimal unit of ac-
count should look like. In the small-default-cost setting, the objective is to mini-
mize the probability of default, but not to avoid default entirely. This implies that
the probability of meeting different types of agents becomes an important deter-
minant of the optimal unit of account. Parallel to our analysis in Section 6, this
feature can be developed into a model of optimal currency areas, even without
relying on the ability (as assumed in Section 6) to switch trading partners ex-post
at a cost.

We develop the small-default cost setting more fully in the working paper ver-
sion of this paper, Doepke and Schneider (2013). Here, we describe the basic
setup in the context of the partial-equilibrium environment described in Sec-
tion 3. To allow for a small default cost, we introduce a distinction between a
a promised payment and an actual payment. The future payment from customer
to supplier is specified in two parts. The first component is a non-contingent
promised payment, namely a vector of farm-good quantities π = (πA, πB)′ (as
before). By promising π to the supplier, the customer commits to delivering
goods π at date 2. Unlike in the large-cost case, we now allow for the possi-
bility that a customer may not always be able to deliver on a payment promise
π. To deal with this possibility, the second component of the contracted pay-
ment consists of a fully contingent payment h(y,p), where h(y,p) ≤ p′π, i.e.,
the value of the alternative payment is no greater than the original promise. The
actual payment that the customer has to make in state (y,p) is the smaller of the
promised and the alternative payment:

min {p′π, h(y,p)} .

Given that h(y,p) ≤ p′π, the actual payment is in fact always equal to h(y,p).
This actual payment is fully enforced. The full contract between customer and
supplier specifies the customized artisanal good x to be produced by the supplier
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at date 1 and delivered to the customer at date 2, the payment promise π, and
the actual payment h(y,p).

Given that the actual payment is fully contingent, the two-part payment specifi-
cation as such does not constitute a deviation from complete markets. However,
we assume that making a payment that is different from the initial promise is
costly. If the promise is met, the customer’s cost for settling the contract is zero,
s = 0. In contrast, whenever we have h(y,p) < p′π, the customer faces a fixed
cost s = κ ≥ 0 in terms of time at date 2. The interpretation is that enforc-
ing the contract and executing the alternative payment in the case of a broken
promise involves a legal cost. For different values of κ, this setup captures the
usual complete-market setting (κ = 0), fully non-contingent contracts (κ = ∞)
as in the main analysis above, and settings where the contracting friction affects
outcomes, but is not sufficiently strong to reduce to the non-contingent case.
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