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1. Introduction 

Even though total electricity generation in the U.S. increased by less than 10% in the decade 

between 2001 and 2011, generation using solar power more than tripled, and generation using 

wind power increased almost 18-fold.
2
  That growth was driven in large part by a diverse set of 

subsidies and regulations at the federal, state, and local levels.
3
  In fiscal year 2010, for instance, 

federal subsidies for solar generation exceeded $1 billion, and subsidies for wind generation 

came to just under $5 billion.
4
  In addition, 29 states and the District of Columbia have 

Renewable Portfolio Standard (RPS) programs that require distribution utilities to purchase 

specified fractions of electricity from certified generators that use energy that has been defined as 

renewable,
5
 and 15 of these programs have provisions favoring or requiring solar generation. 

Together these two technologies accounted for only 3% of U.S. generation in 2011, with 

wind accounting for 98% of that total, but unless subsidies are cut sharply, most analysts expect 

their shares to increase significantly in the next several decades.
6
  In order to evaluate subsidies 

for these technologies, it would be useful to know how well the generating plants involved have 

performed.  This is not a simple question, since wind and solar facilities differ in two important 

ways from the  conventional fossil-fuel and nuclear generators that provided 87% of U.S. 

electricity in 2011.
7
   

First, the average performance of both wind and solar generators is importantly affected 

by the weather and thus by location.  Some places are of course sunnier than others and some are 

windier.  But other aspects of weather also matter.  For instance, as a number of authors have 

                                                 
2
 U.S. Energy Information Administration (2012b), Table 8.2a.  

3
 The definitive source on all these programs is the DSIRE web site maintained by North Carolina State University 

for the U.S. Department of Energy: http://www.dsireusa.org. 
4
 U.S. Energy Information Administration (2011), Table ES2. 

5
 Most utilities don’t actually have to purchase “green” electricity; instead they need to purchase Renewable Energy 

Credits (called RECs) produced in proportion to their output by certified generators that use renewable energy.  For 

an overview of RPS programs circa 2011, see Schmalensee (2012); for current, detailed descriptions see 

http://www.dsireusa.org/.  
6
 The share of wind and solar generation is already considerably higher in many European nations.  In 2011, wind 

alone accounted for 28% of generation in Denmark, for instance, and that nation has set a goal of 50% of electricity 

from wind by 2020.
6
 (The Official Website of Denmark, http://denmark.dk/en/green-living/wind-energy/, visited 

June 30, 2013.) And in Germany, solar power alone accounted for 3.2% of generation in 2011, more than 71 times 

its share of US generation. (Reuters, “German solar power output up 60 pct in 2011,” December 29, 2011, available 

at http://www.reuters.com/article/2011/12/29/germany-solar-idAFL6E7NT1WK20111229?sp=true, visited June 30, 

2013.) 
7
 Hydroelectric power accounts for most of the generation not provided by wind, solar, and conventional sources, 

and it is also differs in these two ways from the other conventional generation technologies. 

http://denmark.dk/en/green-living/wind-energy/
http://www.reuters.com/article/2011/12/29/germany-solar-idAFL6E7NT1WK20111229?sp=true
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recognized, both the social value and private profitability of wind and solar generators at 

particular sites relative to conventional sources are importantly affected by when the wind blows 

and when the sun shines at those sites.  It follows that discussions of “grid parity” based on 

comparisons of the levelized cost per kilowatt-hour (kwh) of electric energy (generally 

abbreviated LCOE) from wind or solar power with average wholesale prices have little economic 

or commercial meaning.
8
 

The second difference between wind and solar generators and those powered by nuclear 

energy or fossil fuel is that the outputs of wind and solar facilities are intermittent: variable over 

time and imperfectly predictable.  Thus the observed output of a solar or wind facility over time 

is a realization of a stochastic process, and the variability of that process matters.  If renewable 

generating facilities A and B have the same average output and the same correlation with 

variable load (electricity demand less other intermittent generation) but B’s output is more 

variable over time and/or is less easy to predict, integrating B into an electric power system will 

impose larger integration costs on the rest of the system than integrating A, all else equal.
9
 

Another reason why discussions of “grid parity” have little meaning is that they ignore this 

important fact.   In order to accommodate high levels of intermittent generation, a power system 

will generally need to alter its operations, perhaps by finding ways to make demand more 

responsive to system conditions, and/or to deploy a more flexible fossil-fueled generation fleet.
10

  

It may require more backup capacity to handle times when intermittent generators’ output is low 

or even zero if those times occur when system demand is high.   

When essentially all US generating units were owned by regulated public utilities, data on the 

performance of those units were publicly available and were employed in numerous empirical 

                                                 
8
 See Borenstein (2008), Fripp and Wiser (2008), and Lamont (2008) for early recognition of this point.  Joskow 

(2011) and Borenstein (2012) provide clear expositions of it, and Hirth (2013) provides a useful overview of the 

related literature 
9
 There is an extensive engineering/economic literature on the costs of integrating intermittent resources, much of it 

based on simulation of particular regional systems.  Recent contributions are provided and discussed by Baker et al 

(2013), Hirth (2013), Holttinen et al (2011), Kopsakangas-Savolainen and Svento (2012), Mills and Wiser (2013), 

Pérez-Arriaga (2010), and Ueckerdt et al (2013).  
10

 Increasing the frequency of spot price determination has been advanced as a means of facilitating the integration 

of intermittent generators and is being employed for that purpose in some regions.  An interesting research question, 

raised in personal communication by William Hogan, is whether in the long run very frequent scheduling and spot 

price determination (setting both every five minutes, say) would provide sufficient incentives for generator 

flexibility so as to eliminate the external costs of intermittency as a policy or market design problem. 
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studies.
11

  Many wind and solar facilities are now unregulated and operate in competitive 

markets, however, and data on the operation of those facilities are commonly treated as 

proprietary and confidential.  I was nonetheless able to obtain hourly output and nodal spot price 

data for a sample of 25 wind and 9 solar (photovoltaic) generating plants across the U.S. for 

2011 and up to 12 adjacent months, but in order to maintain confidentiality most characteristics 

of those facilities were not provided.  This essay presents an analysis of the performance of those 

34 plants.  The average value of the electricity generated by these plants and its correlates are 

examined, as well as the variability of output over time at the plant and regional levels and the 

variation among these plants and regions along important performance dimensions.  

Almost all previous studies of wind or solar power have used data on wind energy or 

insolation along with engineering information to infer electrical output.
12

  This often assumes 

ideal performance and always eliminates variation due to differences in the design and 

construction of individual facilities and in operations and maintenance practices.  Moreover, the 

data considered here relate to sites actually chosen and developed by profit-seeking enterprises, 

not the larger set of theoretically possible sites often analyzed.   

Section 2 provides a brief description of the data used in this study.  More detail is 

provided in the Data Appendix, along with summary statistics on output change distributions and 

on price distributions over time at individual nodes and across space within ISOs.  Output change 

distributions do not depart for from normality, particularly at the daily time-scale.  Nodal price 

distributions are generally right-skewed and have considerably fatter tails than normal 

distributions, and prices often differ substantially within some ISOs. 

Section 3 considers the value of output from the wind and solar generating facilities in 

our sample relative to the average spot prices they face and analyzes some correlates of cross-

section and inter-temporal differences in those relative values.  Having data on individual 

facilities, I am also able to explore their reaction to the negative spot prices that all units outside 

ISONE faced in 2011.  Differences in the timing of generators’ outputs imply that on average in 

our sample a kilowatt-hour from a solar generator is about 32% more valuable, relative to 

average wholesale spot prices, than a kilowatt-hour from a wind generator, broadly in line with 

                                                 
11

 E.g., Joskow and Schmalensee (1987). 
12

 The two exceptions of which I am aware use actual generation at the regional (Green and Vasilakos (2012)) or 

national (Hirth (2013)) level. 
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the results of earlier studies (see Hirth (2013)).  But in contrast to conventional fossil-fueled 

generators, the relative value of output from wind and solar facilities varies substantially among 

facilities and over time.  Because location is important and weather changes, the cross-section 

and intertemporal variation along the dimensions of wind and solar performance documented 

here is in principle as important as the corresponding averages.   

Section 4 presents evidence on two aspects of the intermittency of outputs from wind and 

solar plants: hour-to-hour and day-to-day variability in output and the incidence of low or zero 

generation.  The predictable diurnal changes in the output of solar facilities pose particular 

challenges, and measures of variability are proposed to deal with them.  In addition to analysis at 

the facility level, evidence is presented on the extent to which geographic averaging across 

facilities can serve to smooth wind and solar output and on the relation between the incidence of 

low or zero generation at the plant and regional levels.  As with the analysis of value, a complex 

pattern is revealed, with substantial cross-section variation.  

Section 5 provides some concluding observations.  An important policy implication of 

the results presented here is that the subsidy schemes used in the U.S. to encourage deployment 

of wind and solar power lead to economically inefficient generator behavior, particularly of wind 

generators.  Section 5 discusses alternative approaches. 

2. Data Employed 

As Joskow (2011), Borenstein (2012), and others have stressed, in the absence of identifiable 

externalities, the best measure of the marginal social value of the output of any particular 

generator is given by the location-specific spot prices that generator faces.  Absent contracting 

problems, those prices are also the best measure of the private value of the generator’s outputs as 

well.  Unfortunately, in the U.S. location-specific spot wholesale prices exist only in the regions 

served by the seven Independent System Operators (ISOs), which manage organized wholesale 

electricity markets and regional transmission systems.
13

  These systems meet around 2/3 of U.S. 

electricity demand and serve around 2/3 of U.S. electricity customers.   

                                                 
13

 Baker et al (2013) use system lambda, short-run marginal generating cost, to measure the value of (estimated) 

solar generation in areas without organized markets.  As they note, system lambda differs from the location-specific 

prices used here because it does not take into account transmission congestion or losses.  Unlike location-specific 

spot price, system lambda can never be negative. 
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The sample of wind and solar generation plants analyzed here is accordingly drawn from 

those systems, and data on their hourly outputs and the corresponding spot prices were kindly 

provided by all of the seven U.S. ISOs:
14

   

The Electric Reliability Council of Texas (ERCOT), which serves most of Texas. 

ISO-New England (ISONE), which serves the six New England States. 

The Midcontinent ISO (MISO), which serves North Dakota, Minnesota, and Iowa, as 

well as most of South Dakota, Illinois, and Indiana, and small parts of several adjacent 

states. 

The New York ISO (NYISO), which serves New York State 

The PJM Interconnection (PJM), which serves Pennsylvania, New Jersey, Maryland, 

Delaware, Virginia, West Virginia, and the District of Columbia, as well as most of Ohio 

and parts of Illinois, Indiana, and other adjacent states. 

The Southwest Power Pool (SPP), which serves Nebraska, Kansas, and Oklahoma, as 

well as parts of Texas, New Mexico, and other adjacent states. 

The California ISO (CAISO), which serves most of California. 

Note that the Southeast and much of the West are not served by ISOs and are thus not covered by 

this study.   

For all but SPP, the spot price data are Locational Marginal Prices (LMPs) or nodal 

prices for the network nodes at which each generator in the sample is located. These LMPs are 

defined as the short-run marginal cost of meeting an additional Megawatt-hour (MWh) of 

demand at the node in the transmission system at which the generator is located, taking into 

account transmission losses, transmission line capacity constraints, and the (as-bid) costs of 

incremental generation.
15

   The SPP prices are not LMPs since they do not take into account 

transmission losses, but they are the spot prices each generator in fact faced.  (As this was 

written SPP was in the process of moving to a full LMP pricing system.) 

                                                 
14

 ISONE, MISO, PJM, and SPP have also been certified by the Federal Energy Regulatory Commission (FERC) as 

Regional Transmission Organizations (RTOs) and thus have somewhat greater responsibilities for system reliability 

than the other ISOs.  Figure 1.2 of MITEI (2011) shows the ISOs’ territories as of late 2011.  The boundaries of 

these territories change from time to time.  A current map has generally been available from the ISO/RTO Council: 

http://www.isorto.org. 
15

 See Hogan (1992) or Hsu (1997). 
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 I asked personnel of each of the ISOs for hourly price and output data for at least three 

representative wind facilities and three representative solar facilities, geographically dispersed 

within each system, covering a two-year (17,520-hour) period that included all of 2011.  As 

described in more detail in the Data Appendix, two years of data were provided for all wind 

plants except those in ERCOT and CAISO.   Both ERCOT and MISO provided data on five 

wind facilities, so the wind sample includes 25 facilities covering all seven U.S. ISOs. 

The solar sample is much less comprehensive.  Either because they had no grid-

connected solar units or because they had so few that providing data on any of them might 

compromise confidentiality, ERCOT, MISO, NYISO, and SPP were unable to provide any solar 

data.  ISONE, PJM, and CAISO provided data on three solar photovoltaic plants each, but in 

each case for fewer than the hoped-for 17,520 hours, as discussed in detail in the Data Appendix. 

The reason for requesting data covering a two year period was to enable examination of 

year-to-year changes in various quantities.  For facilities with shorter data series, Early/Late 

changes reported in various Tables were computed between 8760-hour early and late periods that 

overlapped, as described in the Data Appendix.  This procedure avoids contamination by 

seasonality but undoubtedly understates year-to-year variability. 

In order to preserve confidentiality, five of the ISOs provided no information on the 

locations of the facilities their data covered.  The two exceptions were ISONE, for which 

reported differences in location had no obvious relation to any performance measure and thus 

played no role in this study, and ERCOT, for which, as discussed below, locational differences 

were very important indeed. 

Finally, only CAISO provided nameplate capacities.  Instead of these missing figures, I 

used the largest observed hourly output in the data as the measure of capacity for all facilities.  

Thus the capacity factor (CF) for each plant was computed as the ratio of average hourly 

generation to the maximum hourly generation observed.  For the three CAISO wind facilities, 

maximum observed generation was 110.3%, 103.4%, and 102.0% of nameplate capacity.  For 

the three CAISO solar facilities these numbers are 99.8%, 93.0%, and 108.1%.  These data 

suggest that our CF statistics will be close to the true capacity factors and perhaps slightly below 

them on average.  Moreover, since in four of the six CAISO units output above nameplate 

capacity was observed, it is not obvious that CF is inferior to the conventional nameplate-based 
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measure of capacity utilization.  Finally, because the locations of the facilities in our sample 

were not randomly determined but were chosen by profit-seeking enterprises, it seems unlikely 

that any of the sites were so poorly chosen that generation at that site remained substantially 

below nameplate capacity for all of the more than 13,000 consecutive hours for which we have 

data. 

While this data set is superior in some ways to others that have been employed in related 

studies, particularly in providing an abundance of plant-specific hourly information in multiple 

regions, it has obvious weaknesses that should be kept in mind in interpreting the results below.  

We do not observe the vintages of these facilities nor any specific differences in the technologies 

they embody.  We do not have data on all the wind or solar plants in any ISO, nor do we know 

the locations of the plants we do observe.  Thus we do not know whether our sample of plants is 

a truly random sample in any sense. 

3. Output Value 

Section 3.1 discusses the measurement of the value of output from wind and solar plants, and 

section 3.2 presents data on output value and capacity utilization in our sample.  Sections 3.3 and 

3.4 consider output patterns and responses to negative prices that might be thought to affect 

output value. 

3.1. Measuring Relative Value 

Consider a generating facility that is too small to affect spot market prices.  Let C be that 

facility’s levelized cost of electric energy (LCOE), taking into account any available subsidies, 

let Ph be the nodal spot wholesale price it faces in hour h, and let Qh be its output during that 

hour.  Then neglecting within-year discounting and assuming all sales occur at spot prices, that 

facility will make a positive economic profit in any particular year if and only if 

(1)     
1

0,
H

h h

h

P C Q


      
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where the summation is over the H hours of the year considered.
16

  Not all power is sold at the 

spot price, of course, but with price uncertainty, negotiating a contract to sell at a certain, 

constant price is likely to reduce, not increase, the investment’s expected profitability, since the 

counterparty will generally need to be compensated for bearing price risk.   

 As noted above, discussions of renewable generation often assert or imply that if the 

subsidy-free LCOE of a wind or solar plant were less than the corresponding average spot price, 

that unit would be a profitable investment even without government support.  But, as many 

authors have noted, this is not in general correct.  It would be correct if price were constant, or, 

as in the case of baseload generators, it would be approximately correct if output were 

approximately constant.   

 But wind and solar generators do not face constant prices, and they do not produce even 

approximately constant output.  In this case, what matters is not the unweighted average spot 

price but the weighted average spot price, using facility-specific outputs as weights:  

(2)     
1

,
H

h

h

P C Q


       

where P  is the unweighted average spot price faced by this plant, and ψ is the ratio of the output-

weighted average of the spot prices it faced to the unweighted average of those prices: 

(3)     1

1

.

H

h h

h

H

h

h

P Q

P

Q

 







  

I will follow Hirth (2013) and call ψ  the value factor for the facility-year being considered.  It is 

an average relative price, with the average (or baseload) price as numeraire. 

If a facility’s ψ  is expected to be generally above one, it may be an attractive investment 

even if its LCOE is generally somewhat above the average wholesale price.  On the other hand, 

if its ψ is expected to be generally below one, its LCOE would need to be substantially below the 

average spot price for the facility to represent an attractive investment. 

                                                 
16

 To calculate the social value of the facility, one would need to use the subsidy-free LCOE and take all relevant 

externalities into account, including those associated with alternatives to the facility being considered. 
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 To get a more intuitive understanding of ψ , let 

(4)    / , / ,h h h hq Q Q and p P P    

where Q  is the (unweighted) average hourly output.  These quantities have unit means by 

construction.  A bit of tedious algebra then shows
17

 

(5)   1 cov( , ) 1 ( ) ( , ) ( ).h h h h h hp q p p q q         

That is, ψ is greater than or less than one depending on whether prices and quantities are 

positively or negatively correlated.  Given this correlation, the absolute value of the difference 

between ψ and one is greater the greater are the standard deviations of the price and quality 

relatives defined in (4).  If either standard deviation is zero, so that price or quantity is constant, 

ψ equals one, as (3) shows directly. 

 There is no reason to expect unit-specific values of ψ to be constant over time.  In 

particular, as Hirth (2013) has argued, if the outputs of different wind or solar facilities are 

positively correlated, one would expect spot prices during high-output periods to be decreased by 

increased wind or solar penetration.  Thus one would expect unit-specific ψs generally to decline 

over time, as wind and solar penetrations are generally increasing.  Hirth (2013) observed such a 

decline in aggregate wind and solar data for European systems over a multi-year period.   

We have at most a two-year sample, however, and changes in the weather between our 

early and late periods could easily lead to changes in the pattern of outputs that mask unfavorable 

changes in the pattern of prices.  In an attempt to control for such weather changes, I proceeded 

as follows.  Let P
t
 be the vector of prices in period t, and let Q

t
 be the corresponding vector of 

outputs.  We can then decompose the change in ψ between two periods, 1 and 2, of equal length 

as follows, using (3) to define the function  ,P Q : 

(6)             2 2 1 1 2 2 1 2 2 1 1 11
, , , , , ,

2
P Q P Q P Q P Q P Q P Q            

      

           2 2 2 1 1 2 1 11
, , , , .

2
p qP Q P Q P Q P Q              

      

                                                 
17

 This is closely related to the main result of Lamont (2008), though he works with system marginal costs instead of 

nodal spot prices. 
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The first term in the middle of (6), ,p  is the average of the changes in ψ caused by changes in 

prices between the two periods with the output vector held constant, computed using both 

periods’ output vectors.  One would expect Δψp to be a more sensitive measure of the adverse 

impact of increased renewable penetration on prices than the raw change in ψ. 

3.2 Capacity Factors and Value Factors 

Table 1 provides information on the capacity factor, as defined in Section 1, for the wind and 

solar facilities in our sample.  CF for any facility is equal to the product of two quantities also 

shown in Table 1: CF
+
, the average capacity factor in the periods when that facility’s generation 

is positive, and Pr(Q>0), the fraction of hours in which its generation is positive.  Taking logs of 

this identity and calculating sample variances and covariances for our sample of wind plants for 

2011, 80% of the variance in log(CF) is contributed by the variance in log(CF
+
), and the 

covariance between the two components adds another 12%.  For solar facilities, in contrast, the 

two variance terms are roughly equal, and the covariance subtracts 20%.  

  The average wind and solar CF values in Table 1 are in line with reported national 

averages.
18

  But except for the probability of positive generation for wind facilities, the 2011 

ranges of all three quantities just discussed seem impressive for both wind and solar, as do their 

2011 coefficients of variation.  And even though wind plants in our sample have roughly twice 

average the capacity factor of solar plants, the two distributions have a sizeable overlap: five of 

the wind plants had 2011 capacity factors below the highest CF among the solar plants, while all 

three CAISO solar facilities had capacity factors above the lowest wind plant CF.   

The early/late coefficients of variation shown in Table 1 were computed as the ratios of 

the standard deviations of changes between early and late 8760-hour periods (some of which 

overlatp, as the Data Appendix indicates) and the corresponding 2011 means.  The early/late 

coefficients of variation and the 2011 coefficients of variation are thus not strictly comparable.  

Nonetheless, Table 1 would seem imply that in this sample the cross-section differences in the 

first three quantities shown for both wind and solar plants are more important than the variation 

                                                 
18

 See, e.g., Joskow (2011) 
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between the two (adjacent or overlapping) years compared, much more important in most 

cases.
19

 

 Table 1 also provides information on the facilities’ value factors.  Perhaps the most 

striking result in Table 1 is the substantial difference between the average value factors for wind 

and solar units.  Table 1 indicates that on average, relative to unweighted average spot prices, a 

kwh from a solar facility was worth about 32% more than a kwh from a wind facility.  This result 

mainly reflects the strong, but not perfect, diurnal correlation between solar radiation and 

demand for electricity.  This result implies that, all else equal, solar generators could attain 

commercial viability (or “grid parity”) at a substantially higher LCOE than wind generators.   

As Figure 1 indicates, only two of the wind facilities had value factors much above one in 

2011.
20

   These were the two coastal facilities in ERCOT.  At the other extreme, the lowest value 

factor was computed for one of the western ERCOT plants.  Overall, there is a weak negative 

relation between ψ and CF (ρ = -0.25), which is visible in Figure 1.  The relation is considerably 

stronger if the three ERCOT outliers just mentioned are removed (ρ = -0.53).  Table 1 shows that 

for wind generators the early/late variation in ψ, discussed in more detail below, is roughly 

comparable to the cross-section variation in 2011 and that ψ is somewhat less variable than CF  

in both time-series and cross-section dimensions.   

All of the solar facilities have ψ > 1, and there is considerably less cross-section variation 

than for wind generators.  There is a weak negative relation between ψ and CF (ρ = -0.45) among 

solar plants that is visible in Figure 2.  This reflects the existence of three distinct groups of 

facilities.  The upper-left group in Figure 2 all had high values of ψ and low values of CF in 

2011; three were in PJM and one was in ISONE.  The two plants with low values of ψ in the 

center of the Figure were both in ISONE.  Finally, the three facilities in the right-most cluster 

were, as one might have expected, all in CAISO.  They had slightly higher probabilities of 

generation than the other facilities and much higher values of CF
+
 than all but one other facility. 

                                                 
19

 These statistics are likely to understate the variation in wind facility capacity factors over longer periods, both 

because early and late periods overlap for 8 units and because wind energy apparently changes significantly over 

multi-year periods: see Gunturu and Schlosser (2011) for a discussion and references. 
20

 Another (in ISONE) had ψ = 1.003, and two others (one in ISONE and one in NYISO) had ψ > 0.98. 
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Discussions of the location of wind and solar generators typically focus on the average 

energy density of wind and the amount of insolation per unit area.
21

  Such discussions suggest 

the desirability of choosing locations to maximize total output per unit of capacity, measured 

here by CF.  But to maximize value per unit of capacity, one would want to choose a location 

that maximized the value-adjusted capacity factor: VCF ≡ ψ*CF.  Table 1 gives summary 

statistics for VCF for wind and solar units.  

For wind units, VCF has a slightly greater range and more variability than CF.  The 

generator with the greatest VCF in 2011 was the right-most of the two high-ψ facilities in Figure 

1, one of the Coastal ERCOT facilities, not one of the four generators that had higher CFs.   On 

the other hand, broadly consistent with the findings of Lewis (2010) for Michigan, only for 

CAISO did the facility with the highest capacity factor in the region not also have the highest 

value-adjusted capacity factor.
22

  Taking the logarithm of the identity defining VCF and 

decomposing the variance of log(VCF) for wind plants as above reveals that variations in 

log(CF) and log(ψ) are of roughly equal importance, with the substantial negative covariance 

reducing the variance of log(VCF) by 37%. 

 As Figure 2 might suggest, in our small sample of solar generators the variance of 

log(VCF) mainly reflects the variance of log(CF), with the covariance term reducing the variance 

of log(VCF) by 9%.  The three CAISO plants with the largest capacity factors also have the 

largest values of value-adjusted capacity factors, and within each of the three regions the plant 

with the highest CF also has the highest VCF.  For wind facilities the cross-section variation in 

VCF is somewhat more important than the early/late variation; for solar facilities it is much more 

important, reflecting the large differences between CAISO on the one hand and PJM and ISONE 

on the other. 

Table 2 shows substantial regional differences in the average capacity factors for 

facilities in each ISO.  In the sample of wind facilities, the SPP average is nearly twice the 

average in ISONE and NYISO.  The average CF of CAISO solar facilities was more than twice 

the average for ISONE and PJM.  Differences in value factors are less substantial, though the 

                                                 
21

 The National Renewable Energy Laboratory has compiled and makes available a great deal of location-specific 

information on wind and solar resources: http://www.nrel.gov/renewable_resources/ 
22

 Lewis (2010) used actual spot prices plus wind speed data to compare alternative sites in Michigan and concluded 

that the best sites were generally those with the best wind speed. 
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high ψ for wind facilities in ISONE does stand out.  The final row in Table 2 shows the fraction 

of the total sample variance for each measure accounted for by differences between ISO 

averages, as opposed to within-ISO differences.
23

  Almost all the variance in CF among plants in 

our small solar sample reflects the difference between performance in CAISO and elsewhere, 

and over two-thirds of the variance in ψ reflects regional differences.  Regional effects are less 

important on this measure for wind facilities, but more than two-thirds of the variance in CF 

reflects differences between rather than within ISOs.
24

  

Together, Table 1 and 2 raise an obvious question: why were some wind and solar 

facilities built on sites that produced much lower capacity factors than were attained elsewhere?  

Three reasons seem plausible.  First, most historical wind data were collected at ground level or 

slightly above, well below the hub height of wind turbines.
25

  It is thus possible that poor data led 

to poor siting decisions for some wind plants.  Second, wholesale electricity prices tend to be 

higher in ISONE and NYISO than in the Midwest or California,
26

 so that wind and solar 

facilities may be less uneconomic in the former regions than their capacity factors would 

suggest.  Finally, and probably most importantly, some states’ renewable portfolio standard 

(RPS) programs (notably, Texas’s) require the facilities to be located in-state; all except 

Colorado require them to be located relatively nearby.  The rationale is generally economic 

development, but the result is clearly sub-optimal generator locations from the point of view of 

the nation as a whole.   

 Table 3 decomposes the early/late changes in value factors per equation (6).  While only 

13 of the 25 wind-plant ψs fell, the average change was negative.  What is striking is that none of 

the Δψq terms were negative; the decline in the average value of ψ is entirely due to the 14 

negative values of  Δψp.  For our nine solar facilities, Δψ was positive on average and for most 

                                                 
23

 In a standard F-test of the null hypothesis of no differences among ISO means, the 5% critical values correspond 

to fractions of 0.47 for wind facilities and 0.95 for solar facilities.  The 1% critical value for wind corresponds to a 

between-ISO share of 0.57. 
24

 As the efficiency of wind turbines has improved over time, some of the variation in CF among wind facilities 

likely reflects unobservable vintage effects rather than locational differences.  (Vintage effects seem a priori less 

likely to be substantial for solar generators.)  On the other hand, Table 2 shows that inter-ISO variation exceeds 

intra-ISO variation, for which vintage effects seem likely to be more substantial.  This argues that the observed 

variation in CF is primarily due to locational differences.  The early/late variation in CF shown in Table 1 is clearly 

uncontaminated by vintage effects. 
25

 Gunturu and Schlosser (2011) discuss the available wind energy data.  Note that this (potential) problem does not 

arise for solar facilities. 
26

 The FERC provides information on average prices at selected points within the ISOs: 

http://www.ferc.gov/market-oversight/mkt-electric/overview.asp. 

http://www.ferc.gov/market-oversight/mkt-electric/overview.asp
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facilities.  Table 3 reveals, however, that this result was due to the 7 positive values of Δψq; the 

late periods were apparently a bit sunnier than the early ones.  Seven of nine values of  Δψp were 

negative, and the average of this quantity for these solar units was roughly equal to the average 

for wind generators.  In short, even though we have at most two years of data, a general 

movement of prices against wind and solar generators is visible.  As Hirth (2013) has argued, 

this is exactly what would be expected to occur as penetration of these non-dispatchable facilities 

with positively correlated outputs increases.
27

   

3.3 Some Possible Correlates of Value Factors 

Table 4 sheds some light on why output from some facilities is more valuable on average than 

output from others.  Solar generators do not produce at night, for instance, when prices are 

generally low.  In contrast, the first line of Table 4 reveals that wind generators on average 

produced 15% more per hour during the low-load night hours (defined here and below as 10:00 

pm through 6:00 am) than at other times.  While the ratio of generation at night to generation at 

other times appears stable over time for individual facilities, at least within our short sample 

period, there is considerable variation among facilities, and this ratio is highly negatively 

correlated with 2011 value factors.  All but three wind plants generated more on average at night 

than at other times; two of these were the coastal ERCOT facilities with the highest 2011 value 

factors in the sample.  At the other extreme, the plant with the highest ratio of generation at night 

to generation at other times was the western ERCOT facility with the lowest 2011 value of ψ. 

 In the U.S., system peak loads generally occur in the summer, so it is interesting to 

examine the ratio of generation in summer hours to generation in other hours.  Table 3 reveals 

that, as one would expect, all solar units had higher average generation in the summer (defined 

here as June through August) than in other months, while wind facilities on average produced 

about 20% less.  Four wind facilities were more productive in the summer than in other months: 

one in ISONE and all three in CAISO.
28

  Differences in the ratio of generation in the summer to 

generation at other times were essentially uncorrelated with differences in ψ among wind 

facilities or among solar facilities, however. 

                                                 
27

 See also Mills and Wiser (2013).  Correlation of generators’ outputs within ISOs is discussed in Section 3. 
28

 The CAISO result is consistent with Fripp and Wiser (2009), who find that winds in coastal passes in California 

are stronger in the summer that in other seasons. 
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 Wind or solar generators reduce the need for other capacity to the extent that they 

produce during periods when system-level demand is high.  Lacking system-level demand data, 

we can investigate generation at times of high spot prices.  While peak system-level demand will 

cause high spot prices, such prices can also occur with moderate loads and planned or unplanned 

outages of generation or transmission capacity.
29

  Nonetheless, whatever the cause of high spot 

prices, they signal a high social value of incremental generation.  To examine the contributions 

these wind and solar facilities made to system output in peak-price periods, I found a price level 

for each facility such that it was exceeded for about 100 hours in 2011 and considered generation 

during those hours.
30

    

Table 4 gives the ratio of average generation during these peak-price hours to average 

generation at other times.  The contrast between wind and solar plants is dramatic.  Wind 

facilities generated on average 28% less during peak hours than other hours during 2011, while 

solar facilities generated 58% more on average.  While all solar plants generated more during 

peak than off-peak hours in 2011, only four out of 25 wind plants did: the two coastal facilities in 

ERCOT, again, and two of the three ISONE generators.  Within the solar sample and, especially, 

the wind sample, the ratio of peak to off-peak generation was positively correlated with plant-

specific value factors in 2011.  For both technologies, this ratio exhibits substantial inter-

temporal variability, presumably in part because, as noted above, high prices can be produced by 

supply-side outages as well as high levels of system demand.
31

 

3.4 Negative Spot Prices 

All generators outside ISONE faced negative spot prices for at least 18 hours during 2011.
32

  

These prices often reflected transmission congestion, and it is well known that Texas has for 

some time lacked adequate transmission capacity between its wind generators in the west and its 

load centers in the east.
33

  Thus it is not surprising that one of the western ERCOT units had the 

highest incidence in this sample of negative prices in 2011: 1542 hours, or just under 18% of the 

                                                 
29

 A good deal of graphical information on ISO-level daily generation and average spot price is provided by the 

FERC: http://www.ferc.gov/market-oversight/mkt-electric/overview.asp.   See also Figure 7.1 in MITEI (2011). 
30

 The range was 95 to 104 hours.   
31

 If the peak-price periods in this sample were mainly peak load periods, one could imagine using peak-price-period 

capacity factors to assign capacity credits in some market designs.  But these capacity factors varied between 0.08 

(ERCOT West) and 0.46 (ERCOT Coast) for wind plants and between 0.12 (ISONE) and 0.30 (CAISO) for solar 

facilities in 2011.  These large differences suggest the danger in relying on averages instead of site-specific 

information in such contexts. 

http://www.ferc.gov/market-oversight/mkt-electric/overview.asp
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year.  The other two western ERCOT units faced negative prices in 857 and 529 hours during 

2011.  But other areas also experienced a high incidence of negative prices.  Nine other units in 

the sample, including all six CAISO wind and solar units, faced negative spot prices during more 

than 500 hours in 2011. 

 During the period covered by our data, ISONE alone did not allow generators to bid 

negative prices.  While negative prices have nonetheless arisen in ISONE during episodes of 

severe congestion, such episodes have been rare, and there are no negative prices in any of our 

ISONE data.  During 2011, all six ISONE facilities faced spot prices that were exactly zero 

during 47 hours.  (One faced zero spot prices in two other hours.)  At the ISONE interior hub, 

day-ahead prices were positive in all those hours, and the spot prices were unaffected by 

congestion.  It thus appears that the spot market cleared at the lowest price bid, zero, because the 

system load was unexpectedly low, not because of congestion.  Thirty-three of the zero-price 

hours occurred between 2:00 am and 7:00 am, when loads are usually low.  Another 12 occurred 

during other times in the August 28 – 30 period, as Tropical Storm Irene was moving north 

through New England, causing outages and reducing air conditioning demand.  Because of 

ISONE’s unusual market structure during this period, the analysis in the remainder of this 

section excludes the facilities in that ISO. 

Table 5 shows that on average wind facilities outside ISONE had positive outputs during 

92% of the hours when the spot price they faced was negative.  Moreover, wind plants produced 

49% more on average during those hours than at other times.
 34

  As a mechanical matter, this 

explains the negative correlation in 2011 between the incidence of negative prices and units’ 

value factors: output was generally high when the spot price was negative, so the more frequent 

were negative prices, the lower the average spot price received.  Table 5 reveals that the 

incidence of negative prices varied considerably among the non-ISONE plants in our sample as 

well as between early and late periods. 

                                                                                                                                                             
32

 See Huntowski et al (2012) for a general discussion of negative spot prices in wholesale electricity markets and 

some historical data. 
33

 See, e.g., Weiss et al (2013, pp. 22-23). 
34

 All ISOs reported that they curtailed wind output under some conditions, though clearly not whenever spot prices 

turned negative.  The specific conditions and the frequency of curtailment seem to have varied substantially among 

the seven ISOs.  At any rate, it appears likely that wind generation during negative-price periods would have been 

somewhat greater in the absence of curtailments.  Information on curtailments in a few regions during 2011 is 

provided in U.S. Department of Energy (2012, pp. 42-43), which suggests that curtailments were particularly 

important in ERCOT.  See also the discussion of zero-output hours in Section 4.3, below.  
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Negative prices at wind plant nodes are sometimes described as a nightime phenomenon, 

since, as noted above, wind output is higher on average at night when demand is generally lower.  

It is indeed true that wind plants were more likely to face negative prices at night, but the 

difference is less than sometimes suggested.  The eight night-time hours between 10:00 pm and 

6:00 am accounted for 52% of the negative prices in the 2011 sample.  Since there are twice as 

many daytime as nighttime hours, nighttime hours were 2.2 [=.52/((1-.52)/2)] times as likely to 

have a negative price than daytime hours.   

Table 5 shows that the solar plants in our PJM and CAISO samples faced negative spot 

prices roughly as often on average sa wind plants in 2011.  But the average hides a large inter-

ISO difference: facilities in PJM averaged 37 hours with negative prices, while facilities in 

CAISO averaged 729 such hours – more than all but the three western ERCOT plants in our 22-

plant ISONE-excluded sample of wind facilities.  But solar facilities produced 62% less on 

average when prices were negative than at other times, thus accounting in part for their generally 

higher value factors than wind generators.   

A major reason for this difference is that, as just noted, negative prices are more likely to 

occur at night, when solar facilities don’t generate.  Negative prices were slightly more likely to 

occur at night for solar plants than for wind plants.  In 2011, 57% of the hours when solar plants 

faced negative prices occurred at night, so that solar plants were 2.7 [=.57/((1-.57)/2)] times 

more likely to face a negative price in a nighttime hour than in a daytime hour.  The last two 

lines in Table 5 present the incidence of negative prices in daytime hours for the solar facilities 

in our PJM and CAISO sample and the fraction of daytime hours with negative prices in which 

those facilities had positive generation.  It is clear that PJM and CAISO solar facilities generally 

continued to generate during the day even when facing negative prices.
35

   

Electricity generation in the face of negative prices is an unintended consequence of 

governments’ tax and subsidy policies.  The most important federal policy in support of wind 

generation is the production tax credit, which provides a reduction in corporate tax liability of 

$0.023 per kwh generated, regardless of when that output is produced.  Thus as long as the 

                                                 
35

 I also examined the incidence of negative prices during prime solar generating hours, taken to be from 9:00 am to 

3:00 pm.  One PJM facility experienced negative prices in 6 prime hours during 2011 and generated during all of 

them; another PJM plant generated in the single prime hour in which it faced a negative price; and the third PJM 

solar facility did not face a negative price during any prime hour in 2011.  In contrast, the three CAISO facilities saw 

negative prices in over 3% of all prime hours in 2011, and all generated in at least 97% of those hours.  
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production tax credit plus the spot price is positive, wind generation, which has essentially zero 

marginal cost, is definitely profitable at the margin.
36

  And as wind generation increases in 

importance, one can expect the incidence of negative spot prices to increase.
37

 

The major federal policy in support of solar generation, however, is an investment tax 

credit, which is proportional to initial investment cost and does not depend on output.  So why do 

solar facilities generally not shut down when the sun is shining but spot price of their output is 

negative?  The answer is most likely state RPS programs.  Solar units are everywhere classified 

as renewable, and 17 of the 30 RPS programs explicitly favor or require solar generation.  Thus 

solar generators often receive significant RPS-based compensation over and above the spot price.  

All U.S. RPS regimes treat all kilowatt-hours as equivalent, regardless of when they are 

generated, and one would expect RPS-based compensation to follow suit.  Thus state RPS 

systems provide solar facilities an incentive to generate even when the value of incremental 

electricity is negative, and they provide wind facilities an additional incentive to do so. 

4. Output Variability 

At low levels of penetration, wind and solar power simply reduce the net demand that must be 

met by dispatchable generators during some hours and, typically make that residual demand 

somewhat more variable.  At higher levels of penetration, significant changes in system 

operations and the composition of the dispatchable generation fleet may be required, and both 

storage facilities and measures to make demand more responsive to system conditions will likely 

become more attractive.   

Quantitative analyses of the latter changes and their costs have necessarily involved 

modeling an actual or hypothetical system in detail and examining how the presence of 

                                                 
36

 One might think that the occurrence of negative prices establishes that most facilities in this sample lack 

significant market power, since a monopoly generator could simply reduce output until the market price became 

positive.  Unfortunately, it is trivial to show that if a monopoly generator faces a linear demand curve for its output, 

a negative price will maximize its profit if the per-kWh subsidy exceeds the zero-output price. 
37

 Huntowski et al (2012) find that negative prices have become more common since 2006 at several locations, 

though their data do not show a 2009-11 trend despite large increases in wind capacity over that period.  In early-to-

late comparisons in our sample, the incidence of negative prices declined for 14 of 25 wind units, with major 

declines in western ERCOT and  CAISO and substantial increases in MISO.  Among solar units there were major 

declines in CAISO and small increases elsewhere.  Since negative prices often reflect transmission congestion, the 

most plausible explanation for substantial declines in their incidence is expansion of transmission capacity. 
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additional wind and/or solar capacity would alter optimal operating and investment decisions.
38

  

Such an analysis is clearly beyond the scope of this study.  There is nonetheless value in 

understanding how the outputs of wind and solar plants vary over time and how effectively 

geographic averaging (with adequate transmission, which is assumed here) across plants that 

resemble those in our sample can reduce system-level variability in various regions. 

This section considers two dimensions of variability.  Section 4.1 presents four standard-

deviation-based measures of hour-to-hour and day-to-day changes in output.  These measures 

should shed light on the implications of increased wind or solar penetration for the need for 

flexibility in the rest of the system (including the demand side).
39

  Section 4.2 develops a 

measure of the effectiveness of geographic averaging for reducing output variability and 

computes it for the plants in each ISO using the measures developed in Section 4.1.  Because 

there is generally some reduction in variability from geographic averaging, it is not appropriate 

to model the impact of adding incremental wind or solar capacity by simply scaling up current 

wind or solar output.
40

   

Section 4.3 considers the incidence of low or zero output, which should shed light on the 

requirements for backup generation.  Individual facilities are first considered in isolation, and the 

relation between low or zero output and the plant and ISO levels is then investigated.   

4.1 Changes in Output 

Perhaps the most natural measure of short-run output variability for wind generators is the 

standard deviation of hour-to-hour changes, scaled by each facility’s average hourly output to 

enable comparisons among facilities of different sizes:
41

 

(7a)     1 2011
,h hVh Q Q Q     

                                                 
38

 See the references cited in note 8, above. 
39

 I make no claim that these measures are in any sense optimal, but they do seem easy to interpret.  For alternative 

measures see, e.g., Ela and O’Malley (2012). 
40

 Gunturu and Schlosser (2011) provide a useful overview of the literature on geographic averaging of wind 

generation. 
41

 Using the standard deviation as a measure of variability would most obviously be appropriate if output changes 

were normally distributed. In Section A.3 of the Data Appendix it is argued that normality is a reasonable 

approximation. 
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Where σ(·) denotes the standard deviation of the quantity in parentheses, Qh is output in some 

hour h, and  
2011

Q  is average hourly generation in 2011.
42

  It is also of interest to consider day-

to-day variability by focusing on differences between output in the same hours in adjacent days: 

(7b)     24 2011
.h hVd Q Q Q     

These measures make little sense for solar plants, however, since solar generation is so 

strongly affected by predictable diurnal variations in insolation.  Knowing that output is stable at 

zero during the night is not very informative, and system operators can easily predict the 

substantial output variation during the day that follows from diurnal changes in insolation – 

though at high enough penetration even perfectly predictable output changes may be large 

enough to present significant operational challenges.  

An hour-to-hour measure that does not suffer from the diurnal change problem, at least 

during daylight hours, is the standard deviation of differences between output in each hour and 

the average of the outputs in the preceding and following hours, normalized by average hourly 

output during 2011 as above:
43

   

(7c)   1 1
2011

.
2

h h
h

Q Q
Vht Q Q   

  
 

  

A comparison of Vh and Vht for wind facilities provides some information on the extent to which 

hour-to-hour changes reflect short-term trends.  The day-to-day analog of Vht is 

(7d)   24 24
2011

/ .
2

h h
h

Q Q
Vdt Q Q   

  
 

  

                                                 
42

 The obvious alternative would be to scale by maximum observed output, our proxy for capacity.  But maximum 

observed output is by definition an outlier, and average output seems a better measure of facility importance.  All of 

the measures developed here are negatively correlated with capacity factors; when scaled by maximum observed 

output the correlations are positive.  To see how this can arise mechanically, suppose a facility’s output is M with 

probability A/M and zero otherwise, so that mean output is A.  Then it is easy to show that the standard deviation of 

the difference between independent draws from this distribution is 2 ( )A M A .  Dividing by A yields an 

expression that is decreasing in the capacity factor A/M, while dividing by M yields an expression that is increasing 

in A/M. 
43

 While hourly data may be adequate to capture most variability in wind power, the output of photovoltaic facilities 

can change from minute to minute as clouds pass over, and these changes can pose serious operational challenges; 

see Pérez-Arriaga (2010).   
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Vdt should be free any problems posed by predictable seasonal changes in the case of solar 

plants, and a comparison of Vdt with Vd sheds some light on the importance of multi-day trends 

for wind plants.    

In order to eliminate the influence of the predictable night-time stability of solar output at 

zero, the samples used to compute Vht and Vdt for solar facilities were limited to hours in which 

either the facility’s generation was positive or its generation in both comparison hours was 

positive.  This effectively treats other instances of zero generation as predictable.  Statistics for 

wind plants were computed using data for all hours. 

 This difference in sample selection may have something to do with the somewhat 

surprising finding, presented in Table 6, that solar facilities showed higher average values of Vht 

and Vdt than wind facilities in 2011.  But there are only nine facilities in the solar sample, and 

the corresponding coefficients of variation were much larger for solar plants than for wind 

plants, which themselves showed substantial variation in cross-section and between early and 

late periods.
44

  Once again, averages do not have much information regarding the performance of 

any particular generator in any particular year. 

 Across all wind plants, all pairwise correlations between these measures exceeded 0.72, 

and the correlations between Vh and Vht and between Vd and Vdt exceeded 0.99.  Not only are 

some locations windier than others on average, it would seem that some have more variable wind 

than others, using almost any measure of variability.  The correlation between Vht and Vdt across 

the small sample of solar plants was 0.99; sunshine is similarly more variable at both hourly and 

daily time-scales at some locations than at others.  Locations with less variability are clearly 

more desirable, all else equal, but I am unaware of collections of historical data on wind energy 

variability that could be used to help select them.  Moreover, the early/late coefficients of 

variation in Table 6 indicate that site-specific variabilities change over time, particularly for solar 

plants, so there is little reason to expect the relative variability of different sites to remain 

constant.   

Excluding two outliers on each side, all values of Vht for wind plants were between 31% 

and 41% below the corresponding Vh values.  Thus a substantial fraction of facility-specific 

                                                 
44

 All the Early/Late comparisons in Table 6 involve 8760-hour periods, but since computation of all these quantities 

involves losing observations at the beginning of the sample (Vh and Vd) or at both the beginning and the end of the 

sample (Vht and Vdt), these periods overlap somewhat in all cases. 
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hour-to-hour variability was generally associated with short-term trends or “ramping” episodes.  

But the variability around those trends was still substantial.  For 21 of the 25 plants in this 

sample, Vht exceeded 0.15 in 2011.  Trend episodes extending over multiple days seem to have 

been considerably less important than shorter multi-hour trends: again dropping four outliers, all 

values of Vdt for wind plants were between 14% and 19% below the corresponding Vd values.  

For all plants, Vd is substantially larger than Vh, and Vdt is substantially larger than Vht.  

Day-ahead forecasting is more difficult than hour-ahead forecasting, so that the difference 

between the hourly and daily measures in Table 6 is likely to under-state the difference in the 

importance of unforecastable changes between these two time-scales.  On the other hand, given 

output changes of equal magnitude, it is easier to adjust to a day-ahead than an hour-ahead 

change. 

Table 7 gives the average values of our output variability measures for the wind and solar 

plants in each ISO.  Since each of the numbers in Table 7 reflects at most five facilities, one 

should not read too much into differences among them.  Still, this Table does demonstrate that an 

important reason for the pronounced wind/solar differences in Table 6 is the very high variability 

of the output from solar plants in ISONE as compared to plants in PJM or CAISO.  Focusing on 

wind plants, ISONE and NYISO stand out as having plants with high variability, while ERCOT 

and CAISO’s wind plants tend to have low average variability.   The last line of Table 7, like the 

last line of Table 2, gives the percentage of the total sample variance of each measure associated 

with differences between ISO means, as opposed to differences within the ISOs.  It seems clear 

that ISO-level differences are important in all cases and account for the bulk of the total sample 

variance except for Vh and Vht for wind plants, where most of the variation is within ISOs.
45

 

4.2 Geographic Averaging 

The goal of this section is to use the sample of plants in each ISO to investigate the potential of 

geographic averaging to reduce the variability of system-level total output, using the four 

measures introduced above.  In order to eliminate the effects of differences in the size 

distributions in our within-ISO samples, we first re-scale each facility’s output so that all in each 

ISO have the same average size and then compare the variability of the sum of these re-scaled 

                                                 
45

 But see note 23, above: the usual F-test would reject the null hypothesis of no differences among ISOs only for Vd 

and Vdt for wind plants. 
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outputs to what it would have been under two polar case assumptions about the relations between 

the individual plants.  

All the within-ISO pairwise correlations among wind plant outputs are positive, 

suggesting the likelihood of higher aggregate variability than if those outputs were statistically 

independent.
46

  The average correlations for each ISO are shown in the first column of Table 8, 

and the ISOs are listed in decreasing order of those averages.  The individual correlations 

differed more than the averages shown might suggest: eight of the 10 correlations between the 

outputs of the five ERCOT wind facilities in this sample were below 0.2, for instance, while all 

three of the SPP correlations were above 0.5, as were all three of the NYISO correlations.  These 

differences among ISOs likely reflect differences in plants’ geographic dispersion within each 

ISO, of course, as well as any differences in the coherence of regional weather patterns. 

The variability of the total output of all the wind or solar plants in any ISO will depend 

on the number of plants involved and their relative scales, as well as the properties of the 

stochastic process that generates their outputs.  As noted above, to focus on the last of these it is 

necessary first to adjust for differences in facility scale.  In an ISO with N plants, let i

hQ be the 

output of plant i in hour h, and let A
i
 be that plant’s average output in 2011.  Let 

TQ be a 

synthetic total output series computed by rescaling all plants’ outputs to have the same 2011 

average value as plant number one and adding the results: 

(8)   1 1

2

( / ) , .
N

T i i

h hh

i

Q Q A A Q for all h


    

One can then compute each of the four variability measures defined by equations (7) for 

each ISO’s ,TQ using NA
1
 as the scaling factor, and compare it to the values it would have 

attained had all the Q
i
 been statistically independent or if they had been perfectly correlated.  

Consider any statistic Z
i
 that, like the quantities for which standard deviations are computed in 

equations (7), is a linear function of elements of the Q
i
.  Then the corresponding statistic based 

on , ,T TQ Z  will be the function of the Z
i
 given by equation (8).  That is,  

                                                 
46

 Solar plant outputs within each ISO are of course highly correlated because of the diurnal cycle. 
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(9)   1 1

2

( / ) , .
N

T i i

h h h

i

Z Z A A Z for all h


   

If the Z
i
 were uncorrelated, the variance of TZ would be the sum of the variances of the terms on 

the right of (9).  It follows that in this first polar case the aggregate variability measure based on 

TZ would be given by 
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The quantities in square brackets on the right are just the plant-level variability measures based 

on the Z
i
.  The fraction on the right of (10a) is the root-mean-square of these plant-level statistics, 

divided by the square root of N.  In the other polar case of perfect pairwise correlation, it is only 

slightly more complicated to show that the aggregate variability measure is simply the arithmetic 

mean of the plant-level measures: 
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A natural measure of the potential value of geographic averaging for the variability 

measure based on TZ is the location of the actual statistic based on that measure on the interval 

defined by the two polar cases just described: 
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With positive correlations among plants outputs, one expects R generally to be between zero and 

one, with higher values indicating greater gain from geographic averaging.  With plants of 

roughly equal size, when R=1 aggregate variability using the measures presented here should fall 

roughly as the square root of the number of plants, while when R=0 aggregate variability should 

remain roughly constant when new plants come on line. 
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Table 8 presents these ratios and their averages for the variability measures in Table 7, 

where Rh corresponds to Vh and so on.
47

  Given the high correlations among the plant-level 

variability measures noted above, one might expect high correlations among the ratios shown for 

wind plants in Table 8, and correlations across ISOs in fact range from 0.62 (Rht and Rdt) and 

0.99 (Rd and Rdt).  Looking across ratios for wind plants, ISONE would seem generally to have 

less to gain from geographic averaging than the other ISOs, particularly the four appearing below 

it in the Table.  Looking at solar plants, PJM stands out as seeming to have less to gain from 

geographic averaging than the other two ISOs.  The tiny within-ISO sample sizes and our lack of 

knowledge about the geographic dispersion of the plants in those samples counsel against taking 

these difference too seriously, of course.  

One might also expect that higher average output correlations, shown in column 1, would 

generally lead to lower gains from averaging and thus lower values of the ratios shown in 

columns 2 – 5.  While all but Rht are in fact negatively correlated with the average correlations 

in column 1, these correlations are substantial only for Rd (-0.66) and Rdt -(0.68).  It appears that 

one cannot reliability infer potential gains from geographic averaging from correlations among 

plants’ outputs, particularly at the hourly timescale.     

Finally, except for the CAISO solar plants, the gains from geographic averaging are 

substantially lower in all cases at the day-ahead than at the hour-ahead time-scale.  This suggests 

that intra-ISO changes in wind and solar energy from day to day are more highly correlated than 

changes from hour to hour.  In fact, the assumption of statistical independence seems a good 

approximation for Vht except for ISONE and for Vh except for SPP, ISONE and CAISO. 
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 The statistics shown were computed using all available data for each ISO, not just data for 2011. I initially 

computed the ISO-level variability measures for solar generation used in Table 8 by restricting the sample to hours 

when either actual total ISO generation was positive or total ISO generation was positive in both comparison hours 

and compared it with plant-level measures computed similarly.  This yielded anomalous results for ISONE, 

however.  Two ISONE solar plants had positive outputs for many fewer hours than the third, so that the sample used 

to measure ISO-level variability had many hours in which output from those two plants were zero and aggregate 

variability was accordingly low.  (These two facilities had positive output for fewer than 20% of the hours in 2011, 

while the third ISONE plant and all other plants in the sample had positive output for at least 45% of those same 

hours.)  To remove the effect of these differences, I recomputed all plant-specific measures used in the solar 

comparisons in Table 8 using the same set of hours as for the ISO measures.  ISO and plant samples of hours were 

somewhat different for the other two ISOs as well, but the same recomputation produced only tiny changes in their 

numbers.   
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4.3 No or Low Generation 

 One measure of the need to provide backup capacity for wind or solar facilities is the 

frequency with which these intermittent generators unexpectedly produce little or no output at 

the regional level.  These two technologies have quite different behaviors on this dimension: 

wind generators fairly often (as quantified below) produce zero output, while solar facilities 

rarely produce zero except at night.  I deal first with wind and then with solar. 

The within-ISO averages for hours with zero generation from the wind plants in our 

sample in 2011 are shown in the first column in Table 9.  Every plant had at least 100 hours with 

zero output, and all but two (one in CAISO and one on the Gulf coast in ERCOT) had at least 

300.  The average across all units was 948 hours, just under 11% of the year.  It would be 

interesting to know how many of these zero-output hours were the result of ISO curtailment 

orders.  We cannot observe this directly but the available evidence suggests that most zero-

output hours occurred either because there was simply not enough wind.  Curtailment orders 

would seem extremely unlikely when the spot price is positive, since with marginal cost of wind 

generation effectively zero, a positive price signals that it is in both the generator’s and the 

system’s interest for output to be positive.  In 2011, for all but 4 facilities (2 western ERCOT 

plants, and one each in MISO and CAISO), more than 97% of hours with zero generation 

occurred when the spot price was positive.  The average of this percentage across all units in the 

sample was 96.3%.  Thus the vast majority of zero-output hours were very unlikely to have been 

the result of curtailment orders.
48

  

The fourth column in Table 9 shows that on average across facilities within each ISO, 

most hours with zero generation were part of spells of zero generation lasting at least three hours.  

The corresponding percentage averaged 83% across all plants and was above 70% for all but one 

plant (in CAISO). 
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 Since the production tax credit for wind power in 2011 was $23/MWh, as long as the spot price a generator faced 

exceeded -$23, it was in the generator’s interest for its output to be positive. (Many facilities received additional 

compensation under state RPS and other programs and so would find production profitable at even lower prices.) 

For all but one of the four facilities just mentioned in the text, at least 97% of zero-output hours had a spot price 

above -$23.  The remaining unit, in MISO, faced such a price during 93% of the hours when it produced no output. 
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The rest of Table 9 is concerned with episodes of zero output at all sample plants in each 

ISO.
49

  The third column shows that in 2011 only ERCOT had no hours in which none of the 

wind plants in the sample were generating, and only it and CAISO had fewer than 40 such hours.  

Because we have only a small sample of the wind facilities in each ISO, it is not necessarily the 

case that no wind plants in the ISO had positive output in such hours.  But if the plants in this 

sample are reasonably dispersed within each ISO, as I had requested them to be, periods when 

none of them are generating are likely to be periods in which total wind generation in the ISO is 

at least low and perhaps close to zero.  Except for ISONE, the overwhelming majority of ISO-

wide zero generation hours occurred in the daytime (defined as above as 6:00 am to 10:00 pm), 

when wind generation tends to be somewhat lower on average than at night.
50

 

Apart from CAISO, a large fraction of the hours of ISO-wide zero generation from wind 

facilities in this sample in 2011 were parts of spells lasting at least three hours, though the 

importance of such spells was substantially lower at the ISO level than at the plant level in all 

cases.  The three northeastern ISOs – NYISO, ISONE, and PJM – stand out not only in terms of 

the incidence of hours with zero output from all sample plants but also in terms of the length of 

zero-output spells.  All had spells of at least 13 consecutive hours of zero output from all sample 

plants, while the maximum spell length in the other ISOs was 6 hours.
51

  

Geographic averaging will be more effective in reducing or eliminating periods of ISO-

wide zero or low generation if instances of zero generation at the plant level are independent 

events than if they are positively related.  The figures in the last two columns in Table 9 shed 

light on this matter.  If hours with zero generation at the plant level were independent events, the 

probability of an hour with zero generation at the ISO level would simply be the product of the 
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 See Gunturu and Schlosser (2011) for one study of regional calm periods with little or no wind generation 

possible and a discussion of others. 
50

 In 2011 wind plants in ISONE produced only 7% more per hour at night than at other hours, a smaller difference 

than in any other ISO, and well below the 15% average difference shown in Table 4. 
51

 Some of the difference in the incidence of ISO-wide zero-output hours between MISO and ERCOT on the one 

hand and the northeastern ISOs on the others necessarily reflects the fact that these two ISOs contributed 5 plants 

each to our sample, while the others contributed only three each.  To get a rough sense of how much of the measured 

ISO-level performance difference reflected this sample size difference, I examined sub-samples of three facilities 

from MISO and ERCOT.  The MISO sub-sample, chosen at random, had 28 zero-output hours in 2011, 57% of 

zero-output hours in spells of at least three hours, and a maximum zero-output spell in all the data lasting 8 hours.  

The ERCOT sub-sample, consisting of two plants in the west and one on the coast, had only 2 zero-output hours in 

all the data, neither of which occurred in 2011.  Thus it does not seem that the difference between the number of 

units sampled in MISO and ERCOT on the one hand and NYISO, ISONE, and PJM on the other is the main source 

of the substantial performance differences shown in Table 9. 
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corresponding plants’ probabilities.  The last column in Table 9 reports the ratio of the actual 

frequency of zero-generation hours at the ISO level to the product of the plant-specific 

frequencies, using all available data for each ISO because of the rarity of ISO-level zeros.  All 

ratios are substantially above one.  The second-last column uses the normal approximation to the 

binomial distribution to construct a test statistic that would have a standard normal distribution 

under the null hypothesis of independence.  All the resulting Z-statistics are large enough to 

reject that null hypothesis at any conceivable significance level.   For ERCOT, which 

experienced only one hour of zero wind generation in the entire sample, the exact probability that 

no such hours would occur under independence was 0.9956, so that the probability of observing 

one or more hours under that null hypothesis is well under 0.01.
52

   

Thus the last two columns of Table 9 show that there is a statistically significant and 

quantitatively important regional low-wind effect, so that geographic averaging of wind output is 

generally likely to be noticeably less effective at reducing this dimension of variability than if 

plant-level zero-generation hours occurred independently.  Moreover, some regional low-wind 

events, a large fraction in some regions, will last more than an hour or two.  Based on 30 years of 

wind energy data, Gunturu and Schlosser (2011) find that geographic averaging among wind 

plants should be less valuable in the center of the country (SPP and MISO) than near the coasts 

(NYISO, ISONE, CAISO, and PJM), with ERCOT in between these two groups.  Except for 

ERCOT, the statistics in the last column of Table 9 seem broadly consistent with this finding. 

Let us now turn to solar plants.  They of course have long periods with zero region-wide 

generation every day, but these periods are almost completely predictable.  It might be a 

troublesome surprise if a solar facility produced nothing in some hour despite having produced 

positive output in the hour before and the hour after, but such events are extremely rare, 

accounting for less than 0.3% of the relevant hours for the average plant.  Zero generation was 

more frequent when generation was positive in the same hour in the two adjacent days, but even 

these events only occurred in 3.4% of the relevant hours for the average plant.  Rather than 

devote attention to events that are so rare at the plant level, it seemed more useful to focus on 

hours of low, though generally positive, generation relative to the two adjacent hours or to the 
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 As mentioned above, data in U.S. Department of Energy (2012) suggests that curtailment was particularly 

frequent in ERCOT, and a significant fraction of the zero-output hours in two of the five ERCOT units occurred 

when the spot price was negative, suggesting the possibility of frequent curtailments.  Thus the low incidence of 

ERCOT-wide zero output hours is somewhat surprising.  
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same hour in the two adjacent days, defining “low generation” as an output less than half the 

mean of the two comparison hours.   The results of this inquiry are summarized in Table 10. 

The first column indicates that incidents of low generation relative to adjacent hours are 

not common even at the plant level – the plant-level average in 2011 was 133 hours, 1.5% of the 

hours in the year.  The second column shows that such events are even less common at the ISO 

level.  Still, the statistics in the third and fourth columns, which are computed as in Table 9, 

indicate that plant-level hour-to-hour low-generation events, which one can think of as reflecting 

hours that are much cloudier than adjacent hours, are not statistically independent.   

The right-hand half of Table 10 shows that hours with low generation relative to the same 

hour in adjacent days were much more common at both plant and ISO levels, particularly in 

PJM.  Independence is again strongly rejected, and probability ratios are substantial.  One can 

think of these events as reflecting days that are much cloudier than adjacent days, and it is no 

surprise that the probability that such days occur for any one plant has an apparently important 

regional component. 

At least in this small sample of solar facilities, low hourly generation relative to adjacent 

hours would not appear to be a concern at the ISO level – not because plant-level episodes of low 

generation are statistically independent, since they do not seem to be, but simply because they 

are so rare.  Low generation relative to the same hour in adjacent days, likely reflecting cloudy 

days rather than cloudy hours, is a more serious matter.  The last two columns in Table 10 

suggest that the scope for geographic averaging to reduce this measure of variability is limited.  

On the other hand, cloudy days may be easier to forecast than cloudy hours and, again, we have a 

very small sample.  

5. Concluding Remarks 

This study has used a unique dataset to produce a large number of results on the performance of 

individual wind and solar generators across the US – some new results and some that confirm the 

prior literature.  In interpreting these results, it should be kept in mind that, as noted in the 

introduction, these data are incomplete on important dimensions.  And they can shed no direct 

light on performance of wind and solar generators in regions that still lack organized wholesale 
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electricity markets.  But they do have some clear implications for the design of policies to 

support use of wind and solar energy. 

 Perhaps the most striking result regarding the value of generation from wind and solar 

energy was that in this sample in 2011, a kilowatt-hour produced by a solar facility was on 

average worth about 32% more than a kilowatt-hour from a wind plant.  The average value of 

wind and solar output relative to baseload output may have declined during the sample period as 

more of both non-dispatchable technologies were deployed. Wind capacity factors were 

generally, but not always, above solar capacity factors, and in both cases regional differences 

accounted for most of the dramatic within-technology differences in capacity factors. 

True to stereotype, wind plants tended to generate more at night than in the day and less 

in the summer that in other seasons, but there were exceptions to both generalizations, and the 

average differences were not dramatic.  Solar plants all generated more on average during peak-

price periods than at other times, while wind plants generally produced less.  Outside ISONE, 

which alone barred negative bids, all of the plants in the sample faced negative spot prices during 

2011, and 12 faced negative prices for more than 500 hours.  Both wind and (during the day) 

solar plants generally produced positive outputs during hours with negative prices – they paid the 

market to take their electricity. 

Two dimensions of the variability of output from wind and solar facilities were studied: 

hour-to-hour and day-to-day variation in generation and the incidence of low or zero output.  

Different measures of variability are generally highly correlated across plants and show 

substantial variation.  On average, short-term trends or ramping events accounted for over a third 

of the hour-to-hour changes in wind plant output.  Both wind and solar plants showed more day-

to-day than hour-to-hour changes, and for wind plants differences among ISOs were 

considerably more important for day-to-day changes than for hour-to-hour changes.  On the other 

hand the potential gain from geographic averaging seems greater for hour-to-hour variability, at 

least for wind plants.   

Wind plants in this sample averaged 948 hours a year with zero generation, mainly in 

episodes of three or more hours.  While hours with zero generation in all sample plants in an ISO 

were considerably rarer, such hours occurred much more frequently than if plant-level zeros 

were statistically independent.  If generation was positive in the adjacent hours, solar plants 
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rarely produced less than half the mean output of those hours, and instances of zero generation in 

such cases were very rare indeed. 

All but one of the tables discussed above provide information on the cross-section 

variation of various dimensions of individual generating plant or ISO average performance, and 

half the tables provide information on variation between early and late periods.  Figures 1 and 2 

depict the cross-section variation in value and capacity factors, and Table 2 demonstrates that 

regional differences drive the striking variation in value factors.  Variation on some other 

dimensions of performance is also substantial among plants in 2011, between early and late 

periods, and, in some cases, between ISOs.  Most wind plants generate less in the summer than 

other seasons, for instance, but not those in CAISO.  Most wind value factors are less than those 

of constant-output baseload plants, but not those of the two coastal plants in ERCOT.  For other 

technologies, historical averages may be good predictors of the performance of new facilities, 

but that is clearly not true for wind or solar generation.  Site selection is important, regions differ, 

and performance varies over time. 

Two of the patterns noted above that seem particularly robust have clear implications for 

public policy.  First, when spot prices are negative and they can generate, wind and solar plants 

generally do so.  One can debate whether it is desirable to subsidize renewable generation at all, 

since doing so is clearly more costly than taxing emissions of carbon dioxide as a means of 

slowing climate change and is a similarly inefficient approach to reducing local air pollution.  

But there can be no doubt that encouraging renewable generation when its marginal value to the 

electric grid is negative raises costs to society, but that is what both the federal production tax 

credit (for wind) and state RPS programs (for both wind and solar) do – along with most of the 

feed-in-tariff schemes in widespread use outside the US.
53

  In regions with organized wholesale 

markets and nodal pricing, it would be more efficient to pay output subsidies only when the spot 

price is positive or even to make them proportional to the spot price.  In regions that have not yet 

adopted this modern design, however, there is no obvious way to provide incentives for wind or 

solar generators to reduce their output when it has negative social value. 
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 See Schmalensee (2012) and the references there cited. It should also be noted that the efficiency of the 

production and investment tax credits are further reduced because firms without substantial taxable income must 

engage in tax equity financing in thin markets with high transactions costs (Bipartisan Policy Center, 2011).  But, of 

course, tax expenditures don’t look like spending at first glance, and their costs are generally well hidden. 
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A second robust pattern is the huge regional differences in facility performance – most 

clearly the capacity factor differences presented in Table 2 and depicted in Figures 1 and 2.  One 

important reason why plants are sometimes built on sites that will produce poor performance is 

that site choice is constrained by state RPS programs that limit the locations of facilities that can 

be used to satisfy utilities’ renewable energy requirements, often because of a desire to create in-

state jobs.  Since wind and solar generation are very capital-intensive technologies, it is not clear 

that these limits can ever in fact have much impact on any state’s employment.  But it is clear 

that for the nation as a whole it would be more efficient to generate electricity from solar power 

in CAISO than in ISONE, and it would be more efficient to generate electricity from wind in 

SPP than in NYISO.  If there is a national interest in subsidizing the generation of electricity 

from wind and solar power, a national RPS program or feed-in-tariff would give a much higher 

return per dollar spent than a collection of state plans that restrict generator siting.
54
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Data Appendix 

A.1. Wind Generators 

Two full years of data (17,520 hours) were provided for the following, enabling examination of 

changes between two adjacent 8760-hour periods: 

ISONE: 3 wind facilities, 5/26/2010 – 5/24/2012.
55

 

MISO: 5 wind facilities, 5/1/2010 – 4/29/2012. 

NYISO: 3 wind facilities, 6/1/2010 – 5/30/2012. 

PJM: 3 wind facilities, 6/2/2010 – 5/31/2012. 

SPP: 3 wind facilities, 5/1/2010 – 4/29/2012. 

 Data for the five ERCOT facilities began on 12/1/2010, when ERCOT switched to LMP 

pricing, and ran through 6/4/2012, for 13,247 hours.  (This is not a multiple of 24 because this 

period includes two transitions to daylight savings time and only one transition from that 

regime.)  This means that 4,273 hours are included in both the early and late 8,760-hour samples 
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 Recall that 2012 was a leap year. 

http://www1.eere.energy.gov/wind/pdfs/2011_wind_technologies_market_report.pdf
http://www.eia.gov/totalenergy/data/annual/index.cfm
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used to examine year-to-year changes.  Three of the five ERCOT units were identified as being 

in the West; the remaining two were identified as being on the Gulf Coast. 

 Data for the three CAISO wind units ran from 8/1/2010 through 6/30/2012.  One hour 

was missing in 2011 and two were missing in 2012, for a total of 16,797 hours.  The early and 

late periods used to examine year-to-year changes thus had 723 hours in common. 

A.2. Solar Generators 

Data for two of the ISONE solar units ran from 4/2/2010 through 3/31/2012, a total of 17,520 

hours.  Data for the third unit also ran through 3/31/2012 but did not begin until 10/2/2010, for a 

total of 13,128 hours and an early/late overlap of 4,392 hours.  The calculations reported in 

Tables 8 and 10 in the text employed this shorter sample period for all ISONE solar units. 

  Data on one of the PJM solar units ran from 10/1/2010 through 9/29/2012, for a total of 

17,520 hours.  Data for the other two ran from 8/10/2010 through 5/31/2012, a total of 15,864 

hours and an early/late period overlap of 1,656 hours.  The calculations reported in tables 8 and 

10 in the text employed the 10/1/2010 – 5/31/2012 period common to all these units, covering 

14,616 hours. 

 The CAISO solar data covered the period 8/3/2010 – 6/30/2012, with three hours 

missing, for a total of 16,749 hours and an early/late period overlap of 771 hours.  A close 

inspection of these data revealed a number of obvious errors.  (1) One facility showed identical 

small, positive outputs for all night hours.  Setting all these to zero decreased 2011 generation by 

0.545%.  (2) Another facility had many nights with small, identical, negative generation shown 

for all hours.  Setting all negative reported outputs to zero for this facility increased 2011 

generation by 0.467%.  (3) The third CAISO solar facility had 29 instances of negative reported 

generation.  These were set to zero.  In addition, the raw data showed generation equal to 88% of 

the maximum observed generation for one stretch of 66 consecutive hours.  Rather than lose 

these days, I replaced the apparently erroneous numbers with actual generation in the 

corresponding hours of adjacent days.  The net effect was to reduce 2011 generation by 2.33%. 

A.3. Price Distributions 

While the main focus of this study is on the variation of generation plant output and its relation 

to nodal spot price, our data set provides considerable new information on nodal spot prices in 



 

38 

 

U.S. ISOs.  Table A.1 provides summary information on those prices in 2011.  Average prices 

(across all nodes within an ISO) varied by almost a factor of two across the ISOs.  More 

surprising, perhaps, are the differences in variability, as measured by the average of node-

specific coefficients of variation.  Some of this no doubt reflects substantial regional differences 

in caps on energy prices: the maximum prices observed in ERCOT ($3510) and CAISO ($2297) 

in 2011 were well above those in the other ISOs.  But this is not the whole story: the maximum 

observed price in MISO ($591) was among the lower ones, but the corresponding coefficient of 

variation was substantially above all except those for ERCOT and CAISO.   

 All but one of the nodal price distributions (a wind plant in PJM) were right-skewed 

according to the standard scaled-third-moment measure, and the mean exceeded the median for 

all 34 distributions.  Because these distributions are heavy-tailed (as discussed below), it seemed 

useful to present a measure of skewness involving the tails.  Letting μ be the sample mean of a 

nodal price distribution and F
-1

 its empirical inverse distribution function, the rskew statistics 

summarized in Table A.1 are defined as follows: 

(A.1)     1 1.975 .025 .rskew F F             

Qualitatively, rskew gives the ratio of the length of the right-hand tail to the length of the left-

hand tail.  The rskew statistic exceeded one for all but one of the facilities in this sample (the 

exception was a wind plant in MISO).  The differences in rskew among ISOs in Table A.1 may 

reflect real ISO-level differences in market behavior: rskew was less than 2.0 for all of the 16 

nodes in the first four ISOs listed in Table A.1 and above 2.0 for 16 of the 18 nodes in the last 

three ISOs.
56

   

 Visual inspection of time-series plots at individual nodes gives the impression of many 

small deviations from the mean, coupled with a few quite large deviations.  The standard scaled-

fourth-moment measure of kurtosis confirms this impression; all 34 price distributions are 

leptokurtic, with heavier-than-gaussian tails.  In an attempt to provide a more intuitive measure 

of tail heaviness, Table A.1 presents ISO-specific averages of ckurt, defined as follows: 

                                                 
56

 Different measures of skewness give different results, however.  According to the standard scaled-third-moment 

measure, the distributions in NYISO and ERCOT were, on average, much more skewed than those in the other 

ISOs.  And according to the (mean-median)/σ measure, the distributions in SPP, ISONE, and PJM stand out as more 

skewed on average than the others. 
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(A.2)  
   1 1 ,
.8413 .1587

2

ckurt
F F


 


  

where σ is the sample standard deviation, and F
-1

 is as above.  For a normal distribution, the 

difference in the denominator in this equation would be two standard deviations, so one can think 

of the ratio in the denominator as an estimator of the standard deviation based on the center of 

the data and the assumption of normality.   If the distribution has heavier-than-gaussian tails, 

however, the sample standard deviation, based on all the data, will be larger than this ratio.  Thus 

differences between ckurt and one gives an indication of the extent to which tail heaviness 

affects that standard deviation.  Table A.1 indicates that the price distributions in ERCOT, 

NYISO, and CAISO depart substantially more from normality than those in the other ISOs, a 

result consistent with that obtained using the standard scaled-fourth-moment measure.
57

 

 The next two columns in Table A.1 provide average serial correlation coefficients for 

each ISO.  The first-order serial correlation coefficients provide a measure of the smoothness of 

the price series over time.  Differences among ISOs are substantial, with ISONE and CAISO 

being the extreme cases.  Correlations between the prices in hours h and h-24 reflect the day-to-

day variability in prices, taking out diurnal effects.  These correlations are all lower than the first-

order correlations, with the day-to-day correlation in CAISO lower by more than a factor of two 

than that in any other ISO.  These statistics indicate that time-of-day pricing is not a good 

approximation to true dynamic pricing. 

The final three columns in Table A.1 give an indication of variability of prices over space 

in the various ISOs, reflecting differences in the ISO’s geographic scope, in the detailed 

topography of their transmission systems, load centers, and generator locations, as well as a host 

of other factors..  If there were no transmission losses or capacity constraints, prices would 

generally be equal at all nodes within each ISO.  Table A.1 shows clearly that this was not even 

approximately true.  While prices are on average highly correlated within ISONE, they are not at 

all highly correlated within MISO.  Similarly, only in ERCOT was the range of prices less than 

$1.00/MWh close to half the time, while in PJM the price range exceeded $10.00/MWh more 

                                                 
57

 It is worth noting the difference between the maximum and minimum prices faced by generators in 2011 was 

more than twice as large in ERCOT and CAISO than in any other ISO.  NYISO did not stand out on this measure. 
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than half the time.  In general, if retail prices were to reflect marginal costs, they would need to 

vary substantially over space, as well as over time. 

A.4. Output Change Distributions 

In a study of changes in aggregate wind output in ERCOT, PJM, and NYISO using high 

frequency data (output measured at 4 to 6 second intervals), Coughlin and Eto (2010) found 

evidence of substantial departures from normality in the direction of heavy tails for ERCOT and 

PJM at time intervals ranging from a few seconds to just under an hour.  To see if output changes 

in our plant-level data also departed substantially from normality, I computed the standard 

measures of skewness and kurtosis as well as rskew and ckurt for hour-to-hour output changes 

(“hourly changes”) and (as in equation (7b)) changes from the same hour in the preceding day 

(“daily changes”) using output data for 2011. 

 For hourly changes, 22 of the 25 distributions were right-skewed, but the largest value of 

rskew was 1.13, and all the others were less than 1.11.  At the ISO level, the highest average was 

1.06 (CAISO), well below all the corresponding statistics in Table A.1.  For daily changes, 15 of 

the 25 distributions were left-skewed, but, again, departures from symmetry seem small.  Values 

of rskew ranged from 0.93 to 1.10, and ISO-level averages ranged only from 0.98 to 1.04. 

 Departures from normality in the direction of heavy tails seem only a little bit more 

important, particularly at the hourly time-scale.  All hourly output change distributions were 

leptokurtic according to the standard measure, and ckurt ranged from 1.32 to 1.79.  ISO-level 

averages ranged from 1.41 to 1.60 (MISO).  While 20 of the 25 daily change distributions were 

also leptokurtic, the largest value of ckurt was 1.28, and the largest ISO-level average was 1.25 

(CAISO).    

In short, at both time-scales, but particularly at the daily scale, normality seems a fairly 

good approximation for wind output change distributions – certainly a better approximation than 

for price distributions.  
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Table 1.   Summary Measures of Generator Performance

Mean Range In 2011 Early/Late*

Wind Generators

CF 31.2 18.8 - 42.9 0.22 0.13

CF
+

34.9 22.4 - 46.8 0.20 0.11

Pr(Q>0) 0.89 0.79 - 0.99 0.06 0.03

ψ 0.88 0.39 - 1.14 0.17 0.10

VCF ≡ ψ*CF 27.2 14.3 - 44.0 0.26 0.15

Solar Generators

CF 14.1 6.91 - 25.0 0.52 0.18

CF
+

34.6 17.6 - 49.8 0.39 0.28

Pr(Q>0) 0.42 0.19 - 0.52 0.31 0.04

ψ 1.16 1.08 - 1.23 0.04 0.07

VCF ≡ ψ*CF 16.1 8.16 - 28.2 0.51 0.17

*Computed as the standard deviation of early-period to late-period changes, divided by

  the corresponding 2011 mean.

In 2011 Coefficient of Variation

 

 

Table 2. Average Capacity and Value Factors, 2011

Region CF ψ CF ψ

ISONE 0.23 0.99 0.11 1.12

NYISO 0.24 0.92

PJM 0.31 0.86 0.09 1.21

MISO 0.33 0.85

SPP 0.42 0.87

ERCOT 0.35 0.86

CAISO 0.27 0.84 0.24 1.13

between 

% of  σ
2 

68.8 10.9 93.1 67.5

Wind Plant Average Solar Plant Average

 

 



 

42 

 

 

 

 

 

Table 3.  Decomposing Changes in ψ* 

Number < 0 Mean Change Number < 0 Mean Change

Δψ 13/25 -0.022 3/9 0.030

Δψ p 14/25 -0.024 7/9 -0.019

Δψ q 0/25 0.002 2/9 0.050

*Decomposition of changes between early and late periods follows (6) in the text.

Wind Facilities Solar Facilities

 

 

 

 

 

 

Table 4.  Some Possible Correlates of Value Factors: Output Ratios

Correlation

Mean Range In 2011 Early/Late
#

with ψ, 2011

Wind

Night/ 1.15 0.69 - 1.54 0.16 0.05 -0.73

  Other

Summer/ 0.81 0.38 - 2.08 0.51 0.16** -0.15

   Other

Peak/ 0.73 0.21 - 1.33 0.34 0.30 0.78

  Other

Solar

Summer/ 1.68 1.13 - 4.37 0.61 0.17 0.18

  Other

Peak/ 1.58 1.10 - 2.29 0.25 0.50 0.58

  Other

**Excludes ERCOT units, for which we have only three summer months.

#Computed as the standard deviation of early-period to late-period changes, divided by the 2011

   mean of the corresponding variable.

In 2011 Coefficient of Variation
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Correlation

Mean Range In 2011 Early/Late
#

with ψ, 2011

Output Ratios

Wind: P < 0/ 1.49 0.29 - 2.76 0.34 0.21 -0.51

  Other

Solar: P < 0/ 0.38 0.12 - 0.59 0.57 0.35 -0.84

  Other

Frequencies

Wind:

P < 0 0.04 0.002 - 0.18 1.08 0.73 -0.72

Q > 0 when 0.92 0.60 - 1.00 0.11 0.12 -0.06

   P < 0

Solar:

 P< 0 0.04 0.004 - 0.08 0.99 0.43 0.95

Q > 0 when 0.32 0.16 - 0.43 0.34 0.39 -0.77

  P < 0

P < 0 / Day
†

0.03 0.001 - 0.06 1.02 0.56 -0.94

Q > 0 when 0.83 0.71 - 0.93 0.13 0.18 -0.92

  P < 0 /Day
†

*Computed excluding all ISONE plants, which never faced negative prices
†
Computed excluding observations between 10:00 pm and 6:00 am.

#
Computed as the ratio of the standard deviation of early-period to late-period changes, divided by the 

  2011 mean of the corresponding variable.

Coefficient of VariationIn 2011

Table 5. Negative Prices and Value Factors*
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Table 6. Meaures of Plant-Level Ouput Variability

Measure Mean Range In 2011 Early/Late*

Wind Plants

Vh 0.32 0.16 - 0.48 0.22 0.11

Vd 1.12 0.79 - 1.52 0.17 0.12

Vht 0.21  0.09 - 0.33 0.27 0.13

Vdt 0.94 0.60 - 1.30 0.18 0.13

Solar plants

Vht 0.68 0.25 - 1.64 0.68 0.25

Vdt 1.61 0.43 - 3.96 0.71 0.23

*Computed as the standard deviation of early-period to late-period changes, 

  divided by the corresponding 2011 mean.

In 2011 Coefficient of Variation

 

 

Table 7. ISO Averages of Plant-Level Output Variability 

              Measures, 2011

Region Vh Vd Vht Vdt Vht Vdt

ISONE 0.38 1.35 0.26 1.14 1.15 2.85

NYISO 0.33 1.36 0.22 1.34

PJM 0.32 1.17 0.21 0.98 0.59 1.40

MISO 0.34 1.13 0.21 0.97

SPP 0.31 1.05 0.20 0.89

ERCOT 0.31 0.93 0.19 0.77

CAISO 0.22 0.97 0.13 0.78 0.30 0.59

between 

% of σ
2

37.3 70.6 42.5 68.9 65.5 74.6

Solar FacilitiesWind Facilities
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Table 8. Potential Gains from Geographic Averaging,  All Data

Region mean ρ* Rh Rd Rht Rdt Rht Rdt

NYISO 0.61 0.88 0.39 0.97 0.41

SPP 0.59 0.83 0.39 0.96 0.40

ISONE 0.42 0.61 0.17 0.67 0.18 0.86 0.68

CAISO 0.41 0.82 0.72 0.92 0.77 0.63 0.80

PJM 0.35 0.96 0.79 0.99 0.81 0.47 0.28

MISO 0.27 0.91 0.77 0.94 0.80

ERCOT 0.20 0.92 0.74 0.91 0.80

Average** 0.41 0.85 0.57 0.91 0.60 0.66 0.59

*Average of pairwise correlations of hourly outputs of wind plants in the ISO.

**Averages of correlations are across all plants in the sample; other averages are across ISOs.

Solar FacilitiesWind Facilities

 

 

 

 

Table 9.  Hours with No Wind Generation, 2011

Longest

ISO (# plants) Hours

% in 

Day

Plant 

Average

All 

Plants

Q=0 Spell, 

All Plants**

NYISO (3) 1136 178 80 87 76 19 56.6 11.3

ISONE (3) 1424 173 76 90 71 15 27.9 4.0

PJM (3) 1267 106 89 86 68 13 19.9 4.2

SPP (3) 616 74 92 80 47 6 51.0 19.3

CAISO (3) 744 16 100 79 21 4 13.4 11.3

MISO (5) 1096 11 100 85 45 4 29.8 42.4

ERCOT (5) 532 0 – 80  *  1 *  226.4

*One hour without wind generation was observed in the entire sample: May 11, 2012, 12:00 - 1:00 pm.

Under independence the probability of one or more such  hours would be .0044.

**Statistics in the columns below were computed using all available data, not just 2011 data.

 Z- 

Statistic

Hours with Zero

% Q=0 Hours

All Plants

Plant 

Average

Generation, 2011 Are Plant Zeros

 in 3+ Hour Spells

Probability 

Ratio

Independent**
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Table 10.   Hours with Low Solar Generation, 2011 

Plant All Z- Probability Plant All Z- Probability

ISO Average Plants Statistic ratio Average Plants Statistic Ratio

ISONE 97 1 * 145 530 82 82 74

PJM 188 14 60 186 870 473 199 54

CAISO 114 0 ** 41 349 18 55 56

*One low hour was observed in the entire sample: November 13, 2011, 11:00am - 12:00pm.  Under  

  independence the probability of one or more low hours would be 0.0069.

**One low hour was observed in the entire sample: June 27, 2012, 6:00am - 7:00am.  Under independence 

    the probability of one or more low hours would be 0.024.

#
Statistics in the columns below were computed using all available data, not just 2011 data.

Plants Independent?
#

Hours in 2011

      Relative to Adjacent Hours Relative to Same Hours in Adjacent Days

Plants Independent?
#

Hours in 2011

 

 

 

Table A.1. Summary Statistics of 2011 Hourly Nodal Prices

rskew* ckurt* P
i
(h-1) P

i
(h-24) P

j
(h) < $1 > $10

NYISO (3) 38.51 0.80 1.74 3.40 0.56 0.22 0.86 25.5 7.5

SPP (3) 28.72 0.55 1.41 1.36 0.67 0.46 0.88 34.7 12.8

MISO (5) 26.45 1.06 1.23 2.25 0.55 0.26 0.59 0.9 48.2

ERCOT (5) 41.26 3.94 1.25 12.0 0.73 0.40 0.90 49.7 37.3

ISONE (6) 45.57 0.54 2.83 1.96 0.82 0.50 0.99 3.2 4.7

PJM (6) 42.17 0.81 3.17 2.72 0.73 0.42 0.70 0.4 55.4

CAISO (6) 31.10 1.58 2.15 3.51 0.29 0.09 0.84 22.8 5.7

*See text for definitions.

ISO (# of 

Nodes)

Price, 

$/MWh

 Coeff. of 

Variation

Percentage of 

Hours with 

Price RangeCorrelation of P
i
(h)  with

Average Across Nodes Within Each ISO
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Figure 1. Value Factor (ψ) v. Capacity Factor (CF): Wind, 2011
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Figure 2.  Value Factor (ψ) v. Capacity Factor (CF): Solar, 2011

 


