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1 Introduction

Standard solutions of new-Keynesian models predict deep recessions and deflation in a liquidity
trap, when the “natural” rate of interest is negative and the nominal rate is stuck at zero. The
models assume that the level of future consumption and output will revert to trend, and today’s
consumption is that trend less the sum of all future growth rates, driven by the sum of all future
real interest rates. Too-high real rates then mean too-strong expected consumption and output
growth, which produce a level of consumption and output deeply below trend.

New-Keynesian models produce striking policy predictions at the zero bound. “Open-mouth
operations,” “forward guidance,” and commitments to keep interest rates low for long periods,
with no current action, lower expected future real interest rates, lower growth rates, and thus
stimulate the current level of consumption. Fully-expected future inflation is a good thing,
as it lowers real rates, lowers consumption growth and thus boosts the level of consumption.
Deliberate destruction of output, capital, and productivity raise output, because they raise such
inflation, and the models assume a reversion to an unchanged trend despite such destruction.
Government spending, even if financed by current taxation, and even if completely wasted, can
have huge output multipliers.

Even more puzzling, new-Keynesian models predict that deflation and depression during the
trap gets worse, and these topsy-turvy policy prescriptions become stronger, as prices become
more flexible, and they give no well-defined limit to the case of completely flexible prices. Thus,
although price stickiness is the central friction keeping the economy from achieving its optimal
output, policies that reduce price stickiness would make matters worse.

In short, all of economics seems to change sign at the zero bound.

New-Keynesian models have multiple equilibria. I show that these puzzling liquidity-trap
predictions result from particular equilibrium choices. Choosing a different equilibrium, despite
exactly the same interest-rate policies, the New-Keynesian model does not produce deep and
deflationary depressions; the model solutions approach the frictionless limit in a smooth way;
and the paradoxical (to some) or intoxicating (to others) policy predictions vanish.

Following Werning (2012), I suppose that the natural rate is negative up until period T, and
the interest rate is zero. After period T, people expect the interest rate to follow the natural rate.
I compute the range of equilibria allowed by this specification in a very simple continuous-time
new-Keynesian model.

Figure 5 shows the standard equilibrium choice, which Werning presents. This case features
a large recession, large deflation, and strong output growth. The thin lines show that the
predicted recession is worse as price stickiness gets better, approaching a cliff. I show below that
multipliers for useless government spending, promises of future inflation, and promises to delay
the rise in interest rates strongly raise output in this equilibrium.

Figure 4 shows a “local to frictionless” equilibrium. Here, there is small positive inflation
during the trap, matching the negative natural rate. Output is slightly above potential through-
out. The thin lines show equilibria for steadily lower price frictions. These equilibria smoothly
approach the frictionless case. I show below that the multiplier is small and negative in this
equilibrium, and policies have the normal sign.

The equilibria shown in these figures have exactly the same interest rate path. They are each
completely valid equilibria of the same model. They differ only by equilibrium choice.



At a minimum, this analysis shows that the choice of equilibrium matters enormously to
the new-Keynesian model’s predictions about what happens in a liquidity trap. One simply
cannot say that the new-Keynesian model predicts deep depressions and paradoxical policies
in a liquidity trap. Those predictions rely on one, arbitrary, equilibrium choice, and have no
greater foundation than the statement that the new-Keynesian model predicts mild inflation,
no reduction in output, and normal policy responses in a liquidity trap.

2 Literature

This paper owes an obvious debt to Werning (2012) whose structure I adopt. It is not a critique of
Werning. Many of my points are acknowledged in his footnotes, and I do not claim any mistakes
in his analysis. Kiley (2013) and Wieland (2013) nicely summarize the puzzling predictions of
new-Keynesian zero-bound analyses. Kiley contrasts sticky-price and sticky-information models
behavior with the policy paradoxes, and finds that sticky-information models also resolve some
paradoxes.

Eggertsson and Woodford (2003) study monetary policy in a liquidity trap, emphasizing the
dangers of the trap and the idea that the Fed commit to keep interest rates low after the trap
ends, which is the centerpiece of Werning (2012).

Christiano, Eichenbaum and Rebelo (2011), Eggertsson (2011) Woodford (2011) Carlstrom,
Fuerst, and Paustian (2012) all find large fiscal multipliers, and multipliers that increase with
the duration of fiscal expansion, in new-Keynesian zero-bound models.

Eggertsson (2010) and Wieland (2013) analyzes the “paradox of toil” that negative produc-
tivity can be expansionary. Wieland shows that several cases of endowment destruction did not
seem to have the predicted stimulative effects.

Braun, Kérber, and Waki (2012) find that the paradoxial properties of new-Keynesian models
are artifacts of linearization. Christiano and Eichenbaum (2012) argue that the criticism is not
“E-learnable” and does not apply for small enough deviations. I use the linearized system
entirely, so this controversy is not relevant to my points.

All the multiple equilibria in this paper are locally bounded as ¢ — oo. Cochrane (2011)
discusses that additional source of multiplicity. That is not the issue here — I play by standard
rules of the new-Keynesian game and simply rule out equilibria that explode as t — oc.

3 Model

I follow Werning (2012) and study the continuous-time specification of the standard new-
Keynesian model. Werning’s brilliantly simple framework clarifies the issues relative to possibly
more realistic but more complex environments. The model is

dz 1.

d—tt = o i — 1 — ) (1)
dm

d_tt = pTy — KTy (2)

Here, x; is the output gap, ¢; is the nominal rate of interest, r; is the “natural” real rate of
interest, and 7y is inflation. All variables are deviations from trend or steady state. I specialize



to 0 = 1 in what follows as variation in this parameter plays no role in the analysis. Equation
(1) is the “IS” curve, which ought to be renamed the “intertemporal substitution” curve. It is
derived from the first-order condition for allocation of consumption over time, and consumption
equals output with no capital. Equation (2) is the new-Keynesian forward-looking Phillips curve.
Solving it forwards, it expresses inflation in terms of expected future output gaps,

00
Tt = H/ 67p5$t+5d8
s=0

Like Werning, I suppose that the economy suffers from a temporarily negative natural rate
ry = —r < 0, which lasts until time 7" before returning to a positive value. After time 7', the Fed
follows the policy i; = r; > 0, setting the interest rate equal to the natural rate. Before time T,
however, the zero bound 4; > 0 is binding. Thus, interest-rate policy follows

t < T:5:=0
t > T:ip=1r:+>0
or, equivalently,
t < T:itg—rp=r (3)
t > T:ip—1r; =0
I treat the case that interest rates follow a Taylor rule for 7" > ¢ below.

Next, I find the equilibrium paths of the output gap and inflation consistent with this forcing
process, and I study how those equilibria behave as we vary the parameter x, and in particular
the limits as k — oo (price flexibility) and £ — 0 (constant inflation).

3.1 The flexible-price case

To understand the flexible-price limit, it is best to write the Phillips curve (2) as

oo L dm
=\ T )

As k rises, prices become flexible, as the output gap z; for any inflation path m; becomes smaller
and smaller. In the flexible-price limit, inflation can do whatever it wants, and the output gap
is zero. Thus, in the flexible-price limit point is K = oo, where we must have z; = 0.

Turning to the IS curve (1), if ; = 0 then dz;/dt = 0 and we must have
it — Tt = T¢.

This is just the linearized Fisher relationship, which is an arbitrage relationship in this perfect-
foresight continuous-time economy. When prices are flexible, the Fed loses its power to affect
real interest rates and the output gap. Since r; is given, by changing nominal rates i;, the Fed
changes (expected) inflation, period.

Thus, the flexible-price solution to our liquidity-trap scenario (3) is
t < T:mp=r, ;=0
t > T:m =0, 2, =0.

During the “liquidity trap” inflation is exactly equal to the negative “natural rate,” so that the
zero nominal rate of interest produces a real rate equal to the negative natural real rate.



3.2 The general case with price stickiness

Now, I solve the standard case x < co. The model (1)-(2) is

aln =5 L @

where iry = 4 —ry , with ¢ry =r >0fort <T and iry =0 fort > 7T.

The model is a standard first-order matrix differential equation. I solve it by finding the
eigenvalue decomposition of the square matrix, and pasting together the solutions in each of
t<Tandt>T. Ipresent the algebra in the Appendix. The answer is

%)t [ 5 )[R e [V
where, recall, ir; = ir for t < T and ir; = 0 for t > T, and
o= %(ﬁM)m (6)
xo= L (o VTR <0

2
The first term of (5) is the steady state. The second term describes mixed exponential
dynamics. The sum of first and second terms vanish as ¢t — 7. (You need the identity p = X"+ AP
to see that fact.) Because iry =0, ¢ > T, the first and second terms also vanish for ¢ > T leaving
only the third term.

In this perfect-foresight model, the parameter 77 in the third term of (5), inflation at the
end of the liquidity trap, indexes all the possible multiple equilibria that are locally bounded
as t — oo. The third term shows that such multiple equilibria add exponentially decaying
dynamics.

There are in general two free constants. I impose the standard new-Keynesian assumption
that equilibria must not explode as ¢ — 0o to eliminate one of them, setting to zero the forward-
explosive eigenvalue in the t > T region. One could equivalently index the alternative equilibria
by expectations about the output gap at 1T', zp, but I follow tradition in specifying them as
a function of inflation expectations. The resulting discussion follows the tradition of implying
causality from inflation to output expectations that is not present in the equations.

As pricing frictions decrease and x increases, both eigenvalues AP and \™ increase in absolute
value. Dynamics happen faster and faster as prices become more flexible.

3.3 The standard equilibrium

Werning (2012), like the rest of the literature, chooses the equilibrium 77 = 0. In this equilibrium,
the economy is in the steady state as soon as the liquidity trap is lifted, and

t>T: xp=m =0 (7)
Before T', during the liquidity trap episode, (5) then becomes

KT o1, 1 AP2 M2 e (t=T) )
t§T|: t:|_|:1:|27’—w|: )\p _)\m e/\p(tiT) r (8)
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The t < T solution loads on both eigenvalues, including A™ < 0. These solutions explode
backward in time, giving very strong deflation and output gaps early in a long liquidity-trap
episode, and strong liquidity-trap dynamics.

As Werning shows, and I verify below, these solutions also explode as prices become less
sticky, K — oo. Both eigenvalues rise without limit, so the backwards explosions of (8) happen
faster and faster. Thus, we are in the strange position that for prices very near frictionless, the
model predicts huge deflation and output gaps, while for the frictionless limit point, it instead
predicts steady inflation and no output gap.

3.4 The local-to-frictionless equilibrium

Another interesting choice of equilibrium, via 77, is the one in which the economy approaches
the steady state as t goes backwards in time. This is a natural counterpart to the criterion we
used in the ¢ > T region, that the economy should converge to the steady state as t goes forward
in time.

This equilibrium produces the frictionless solution in the limit as frictions disappear. The
frictionless solution says that we are at the steady state m; = r, x; = 0 for the entire period
t < T. The backwards-stable equilibrium will approach this steady state. We could use that
fact as a criterion to select this equilibrium: price-stickiness can only have finitely lived effects.

To impose this “two-sided boundedness” or “near-to-frictionless” criterion, we pick 7 so
that the loading of the ¢ < T solution on the backwards-explosive eigenvalue A" is zero. Writing
(5) for t < T in the form

Kry | | p|. X0 1 AP2 _\m2 ] A" (t=T)
Tt 1 e+ 1 0 T‘-T_)\]D_Am AP ™ i AT |

we see that the choice N
T = ——————1r

AP — \T
puts no loading on the backwards-explosive root A™ for t < T'. Imposing that equilibrium choice,
the solution (5) becomes

kx| [ p . AT AT =Ty s
t<T'[wt}[l}W+—/\p—)\m[ L le ir (9)
X RT¢ . )\p )\p )\m(t—T) .
t>T'[7rt}_)\p—)\m[l e ir (10)
3.5 Pictures
A picture is worth a thousand equations.
Figure 1 presents the frictionless solution k = co. I specify a —r = —5% natural rate that

lasts until 7= 5. As the figure shows, the frictionless solution gives steady 5% inflation during
the zero-bound period, and 0% inflation thereafter. There is no output gap.

Figure 2 presents the local-to-frictionless solution (9)-(10). I use p = 0.05 and x = 1. The
solution is well-behaved in both directions. The economy starts with 5% inflation and a small
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Figure 1: Solution to the liquidity-trap scenario in the frictionless case k = oo.
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Figure 2: The local-to-frictionless equilibrum of the new-Keynesian model in a liquidity trap.
p=0.05, k =1, 0 = 1. The 5% negative natural rate lasts until t =T = 5.

permanent output gap. As the end of the liquidity trap, inflation slowly comes down. There
is a small increase in output towards the end of the liquidity trap. This is a standard and
much-criticized feature of the usual new-Keynesian Phillips curve (2), that output rises when
inflation is declining, i.e. when inflation today is higher than expected future inflation.
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Figure 3: The standard choice of equilibrium in the new-Keynesian liquidity trap scenario.

Figure 3 presents the standard equilibrium choice in this liquidity trap scenario, (7) and (8).
This equilibrium is driven by the specification that the output gap and inflation w1 will both be
zero at t = 1. This choice of equilibrium for ¢ > T has a drastic effect on the equilibrium for
t <T. Now we see a dramatic deflation and catastrophic output gaps during the liquidity-trap
period. We also see strong dynamics — deflation steadily improves, and output growth is strong.
This model does not produce a “slump,” a long period of a steady output gap.

Figure 2 and Figure 3 are both equilibria of the same model with the same parameters,
and the same interest rate policy. The only difference between the figures is the choice of
equilibrium. Nothing is theoretically “wrong” with either equilibrium, at least playing by the
standard new-Keynesian rules.

The two equilibrium choices have drastically different implications for how the economy
behaves in a liquidity trap. Figure 2 suggests that a liquidity trap is associated with a mild
inflation and a small increase in output relative to “potential” as the trap ends. Figure 3 suggests
that a liquidity trap is an economic calamity, with large output gap, strong expected output
growth, and rampant deflation.

The comparison of the two equilibria emphasizes Werning’s (2012) central message. The
real problem of the liquidity trap is not so much the lower bound on contemporaneous interest
rates, but expectations of what will happen once the trap passes. The only difference between a
smooth glidepath and a disastrous recession is people’s expectations of inflation in the immediate
aftermath of the liquidity trap.

Most of all, one cannot argue that the choice of equilibrium (or, equivalently, but less trans-
parently, the choice of expected Taylor-rule intercept) is an innocuous technical detail in new-
Keynesian models!

Figure 4 shows how the local-to-frictionless solutions behave as we increase the parameter
K, lowering the pricing friction, in the sequence of thin dashed lines. The figure only shows how



Local to frictionless equilibrium, varying
6 T T T T T

Percent

Figure 4: Local-to-frictionless equilibrium choice, varying price-stickiness. The price-stickiness
paramter k takes values 1,2,5,10,100. For clarity, the figure only shows inflation is shown for

K # 1.
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Figure 5: Standard equilibrium choice for different values of price stickiness k. & takes values
1,2,5,10,100. The figure only shows inflation is shown for x # 1.

inflation varies as k rises above 1 for clarity. Output gaps also smoothly approach the frictionless
solution z; = 0. As k increases both eigenvalues increase, so the steady state is arrived at more
quickly in both time directions.



Figure 5 shows how inflation behaves in the standard equilibrium choice as we as we increase
k and thus reduce the pricing friction. The solutions become steeper and steeper with greater and
greater deflation, and larger and larger output gaps (not shown) as the price friction decreases.
The eigenvalues increase with x, but in this case that means the backward explosion happens
faster and faster. The limit as kK — oo is a cliff for both output and inflation.

The prefect-foresight new-Keynesian Phillips curve (2) does not allow inflation jumps. This
local-to-frictionless solution smooths naturally with inflation following an S shape. But some of
that smoothing must occur in the ¢ > T period. Insistence that inflation is zero immediately
at t = T is the crucial specification that drives the economic dislocation and puzzling limiting
behavior of the standard solution.

Figure 6 and figure 7 show inflation and output gaps in a range of equilibria, indexed by
different choices for . The solid lines reprise the standard equilibrium choice, generated by 7
= 0, and the local-to-frictionless equilibrium choice. The dots at T' = 5 represent many other
possible values of 7, each of which selects the equilibrium in my parameterization. The figures
give an idea of the full range of bounded equilibria that can emerge in this model, all for fixed
interest rate policy.

Inflation across equilibria
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Figure 6: Inflation in all equilibria. Equilibria are indexed by the expected value of inflation 7
at T' = 5, shown by the circles. The thicker lines show the standard deflation equilibrium and
the local-to-frictionless equilibrum. Thinner lines show a range of equilibria indexed by different
choices for 7.

Figure 8 presents the local-to-frictionless equilibrium and the standard equilibrium in state
space. The blue dashed line is the standard equilibrium choice, as in Werning (2012) Figure 1.
Inflation and output gap approach from the bottom left, the region of deflation and depression.
Dots indicate years. At ¢t =T the standard solution attains the central red dot and stays there.
The solid lines display the two-way bounded or local-to-frictionless equilibrium choice. The red
part is ¢ > T. Once we eliminate the explosive solution or ¢t > T', there is a whole range of
non-explosive solutions that converge to the origin along the red ray. Equilibrium choice comes
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Figure 7: Output gaps in all equilibria. Alterniatve equilibria are indexed by the value of the
output gap at T = 5, shown by the circles. The thicker lines show the standard deflation
equilibrium and the local-to-frictionless equilibrum. Thinner lines show a range of equilibria..

down to where we specify that the ¢ < T solution will join this path. The standard choice picks
the origin itself. The local-to-frictionless or two-way-bounded choice merges at a point to the
northeast of the origin at ¢ = T, at just the right place so that the blue line is non explosive.
Going forward in time, this solution starts at the right end of the blue line and works left, hitting
the output gap peak at ¢t =T and then converging back to the steady state at the origin.

4 Magical multipliers and paradoxical policies

To analyze the fiscal multipliers and paradoxical policies, I add a shifter variable to the Phillips

curve
dﬂt

dt
The variable g; can represent totally useless (since it does not affect utility) government spending
— hiring people to dig ditches and fill them up or construct defenses against imaginary alien
invasions, to use two classic examples. It also can represent destruction of capital or technological
regress — throwing away ATM machines to employ bank tellers, idling bulldozers to employ
people with shovels, or even spoons, breaking glass or welcoming hurricanes, to use classic
examples. These policy steps matter in this model because they increase inflation m; for a
given output gap, and thus reduce the real interest rate and consumption growth. In the new-
Keynesian model where we always revert to an unchanged potential, again, reducing growth is
god and increases the current output level.

= pme — K (Tt + gt) - (11)

Again, I imagine an economy in a liquidity trap, with ir, = ir for ¢ < T and ir, = 0
thereafter. Now I assume that the government sets g; = ¢ for t < T and ¢; = 0 thereafter, and

10
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Figure 8: The two-way bounded and standard solutions compared in state space. The dashed
blue line gives the standard solution for ¢ < T'. For ¢ > T, the standard solution stops at the
central dot. The solid lines give the local to frictionless or two-way bounded equilibrium. Dots
indicate each years. The blue line is for ¢ < T" and the red line is for ¢ > T'. The solution starts
on the right and proceeds to the left

I examine how increasing g affects equilibrium output and employment.

In the steady state, (11) shows that a unit increase in g means a unit decrease in x;, and
the same inflation as before. The IS curve (1) is unaffected. However, the dynamics can paint
a different picture.

The general solution is now

KTy - pire — Kgr | 1 AP2 M2 ] C[ar AT (t=T)
" N ir AP — \™ PN 1 -1 | M9 AP (t=T)
+ [ )ip } mpet” T,

(The algebra is in the Appendix.) The standard equilibrium choice with 77 = 0 is
kxy || pire — kg 1 AP2 _\m2 ] AP\ AT (t=T)
T | ire D SV V. I I T B L HPE-T) |-
1
The local-to-frictionless or two-way-bounded solution, which rules out backwards explosions in

t < T, setting to zero the loading on A\, picks

~ MNir — kg

T = P\ (13)
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and is therefore!, for t < T,

KT ir — K 1 A2 A _
e e (e [ [ )
and for ¢t > T,
KTt _ )\piT — Rg )\p e}\m(t_T)
Ty AP — )\ 1 )

Now we can evaluate the multiplier. In the standard solution (12),
0 | x -1 1 AP -\ A" (t=T)
el =L o (18 ) e
8 Tt 0
rgla]-[t

while in the local-to-frictionless solution, (14)

Lo x| ] -1 1 AT -
ve g B0 e T
9 | = —1 N ami-T)
7.2 -
e gl e [ e

Recall that the root A™ < 0 leads to )" (t=1) that explodes as we go backward in time.
Hence, the standard-solution multiplier depends on the length of time the liquidity trap and
g policy are expected to last, and can be arbitrarily large. Since the eigenvalue \™ increases
in absolute value as price stickiness declines, x — oo, the multiplier grows larger as frictions
disappear and the multiplier approaches infinity in the frictionless limit! These are standard
magical results.

By contrast, the root AP > 0 is the only one that appears in (14), and N (t=T) converges to
zero as we go backwards in time. Hence, the local-to frictionless multiplier is at its largest in
absolute value just before the liquidity trap ends, and is lower the earlier it is applied. Further-
more, the local-to-frictionless multiplier is negative throughout. And the multiplier approaches
-1 smoothly and sensibly as we approach the frictionless limit.

Figure 9 presents these multipliers. The thick red dashed line presents the multipliers in the
standard equilibrium choice. The exercise is an increase in g that lasts from the indicated time
t, until £ = T when the liquidity trap ends. The graph shows very large multipliers, and how
multipliers increase drastically as the time of the liquidity trap and g policy increases, moving
to the left.

The thin dashed red lines present multipliers from the standard equilibrium choice, for
steadily less price stickiness. They show how multipliers paradoxically increase as price sticki-
ness is reduced. In the limit that price stickiness goes to zero, the multiplier goes to infinity.

1

KXt . pir — kg 1 P2 \m2 ] AP A AN (t=T) AP | APir — kg am(i—m)
] - [ e (8 2 e [ [ [ e
K pir — kg 1 M2 ym2 ] [ e . 20T\ [ D
|: ﬂ'tt :| = |: r :| - AP —\™ <|: \P _\m wr — 1 ] Kg — ()\p’LT — /fg) 1 0 €>\1)(th)

and simplify
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Figure 9: Multpliers. I modify the Phillips curve to dn;/dt = pmy — k(x¢ + g¢). The graph plots
the multiplier dz;/dg for an increase in g that lasts from the indicated time until the end of the
liquidity trap at 7' = 5. The dashed lines present the standard solution, the solid lines present
the local-to-frictionless solution. The thin lines show what happens as price stickiness is steadily
reduced. Parameters are kK = 1, p = 0.05,7 = —5% and the thin lines present x = 2,5, 10, 100.

The thick solid blue line is the multiplier in the local-to-frictionless solution. The multiplier

is negative throughout and it asymptotes smoothly to the frictionless limit —1, and also as price
stickiness is reduced.

(I present private output = private consumption multipliers dz;/dg;. If g represents govern-
ment spending, conventional multipliers would add g itself and all be larger by one. I present
private-outut multipliers since g can represent other Phillips curve shocks, and because when g
is completely wasted spending — the relevant case — the private-output multiplier better captures

the economic issue. Additionally, if the equations represent log-linearized deviations, y =z + g
doesn’t hold.)

In sum, magical multipliers and paradoxical policies are direct results of equilibrium choice,

holding interest rates constant. The local-to-frictionless equilibrium produces a perfectly normal
sign and magnitude of multipliers.

4.1 Forward guidance and commitments

Many authors have advocated “forward guidance” and “commitment,” “open-mouth” policies,
or promises to temporarily raise future inflation targets, as polices to ameliorate a liquidity
trap. If the Fed could only commit itself to keep rates low for some time after the negative
natural rate passes, we would get a little bit of inflation at that time, and the discounted effect

of lower future real rates would stimulate output today. Werning’s (2012) optimal policy is of
this sort.

13



To address the power of this sort of policy, I now assume that people can be induced to
expect that the interest rate will remain at zero iy = 0 for a time interval 7 after T', when the
natural rate rises to a new constant and positive value r.. In the previous simulations, people
expected the Fed to raise rates to iy = 7, immediately at ¢t =T, so 7 = 0.

I solve the model as before. The same general solution (5) holds, and I pick non-explosive
solutions at t > T + 7, eliminating one eigenvalue in that region. To work backwards, I now
paste twice, once at t = 1"+ 7 when interest rates rise from i = 0 to ¢y = 7, and again at t =T
when the natural rate switches from —r to 4+r,. The standard solution chooses the equilibrium
with 774, = 0. The local-to-frictionless solution chooses the equilibrium that is bounded as
time goes backwards, though this allows some inflation to continue past 77 ;.

Figure 10 presents the predictions of the standard equilibrium-selection choice for a variety
of time intervals for the continuation of zero nominal rates 7. In the top left, I present the
previous solution with 7 = 0, which reminds us of the deep recession and deflation baseline.
The top right panel supposes that people expect the interest-rate rise to be delayed. This delay
allows a little inflation and output gap to emerge between ¢t =1 and t = T + 7. Multiplying
small changes in terminal conditions by backward-explosive eigenvalues has large effects. The
vertical difference between the top left and top right equilibria at ¢ = 2, for example, is quite
large, and larger still at t = 1. So, the further in the future the same promise is, the more its
effect today. Moving to the bottom left and bottom right, allowing one year and then two years
of delayed interest rate rises has a dramatic effect. Now the deflation and depression during the
liquidity trap is turned into an inflation with a boom! Not shown, as pricing frictions decrease,
and the backward-explosive eigenvalue increases, all of these effects become larger.

The completely frictionless solution (not shown) requires z; = 0 at all times. Thus, we will
see inflation m; = r for t < T', a period of deflation m; = —r; during the period of zero nominal
rate and positive natural rate r, > 0, and then no inflation when 7, = r, for ¢t > T + 7.

Figure 11 presents the local-to-frictionless equilibrium choice in the same situation. As we
might have expected, The “local-to-frictionless” equilibrium shows very little current (¢ < T')
effect of the open-mouth policy. As the length of the negative real interest rate period between
T and T + 7 and stretches out, the equilibrium begins to approach the frictionless prediction of
deflation during this period. Since the model is stable backward, promises about the further-off
future have smaller and smaller effects, the opposite of the standard solution.

The main point remains: equilibrium choice is vitally important to analyzing predictions of
this model, and all the usual dramatic properties disappear in the local-to-frictionless solution
which is bounded backward.

In equations, the standard solutions shown in Figure 10 are, for ¢t < T,

kre ] [ p 1 AP2 _\m2 A" (t=T) A" (t=T) [1 _ ef)\m‘r]
=L e D [ e [ [ S 2 |}
We recognize the solution before, plus the 7, term. The 7, term thus capture the effects of the
interest-rate-rise postponement policy. The e} ¢=T) terms explode backward so are the most
important. Thus, the [e)‘m(t_T)] r multiplied by A’ and AP? are the terms that drive the negative
explosion going back in time in the standard solution. Now, e "7 > 1, so the top right term is
negative, offsetting the [eAm(t_T)] r term. For larger enough 7, the total effect multiplying the
e 2" (=T) root becomes positive, which gives the inflationary solutions in a deflationary trap
show in Figure 10 for 7 =1 and 7 = 2.
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Figure 10: Equilibrium values of output gap x and inflation 7 in the standard equilibrium choice
of the new-Keynesian model. At t = T = 5, marked by the left dashed line, the natural rate
changes from -5% to +5%. At t = T + 7 people expect the nominal interest rate to rise from
1 =0 to i = 5%, for 7 as indicated. The standard selecton criterion is w7, = 0.

Between T and 1" + 7, the standard solution is
Ky 1 \P2 _\m2 A" (= (T+7)) _ 1
{ ¢ } U [ AP ] [ A= (TH7)) ] '

Both terms are positive, so inflation and output gap are positive during this period. Beyond
t > T + 7, both inflation and output gap are zero.

The local-to-frictionless solution is, for ¢t < T’

B R IR e | (e I Bt

We see the backwards-stable root N (=) is the only one left, and the system approaches the
steady state going back in time. For ¢ > T+ this solution leaves some slowly decaying inflation
and output gap, now controlled by the forward-stable root erm(t=T)

)

[ " ] W - g [ A;f } [rot e (1) 0D,

The behavior between 7" and T+ 7 is not very interesting (well, I couldn’t make it pretty), but
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Figure 11: Equilibrium values of output gap « and inflation 7 in the local-to-frictionless equilib-
rium choice of the new-Keynesian model. At t = 5, marked by the left dashed line, the natural
rate changes from -5% to +5%. At t = T' 4 7 the Fed raises the nominal interest rate from i = 0
to i = 5%, for 7 as indicated.

for completeness it is

|: Ky :| 1 |: )\p2 _)\m2 :| |: e/\m(tf(TJrT)) -1 :|r

" AP — AT A T N U=(T47)
1 A2 —xmr\] AT
—i-)\p_)\m[)\p]{r—i-m(l—e ﬂe (t=T),

5 A Taylor rule

How do we choose which is the right equilibrium? In the standard new-Keynesian approach,
the Fed chooses the equilibrium — or, more precisely, people’s expectations of Fed equilibrium-
selection policies choose the equilibrium. The Fed chooses the interest rate path {i;}. It then
conducts an equilibrium-selection policy to choose which of the many possible equilibria {m;}
(and {x:}) consistent with that {i;} will emerge as the equilibrium {x}.

Regarding equilibrium selection this way, then, the disastrous predictions for the economic
consequences of a liquidity trap, and the prediction that reverse-sign policies can counteract those
consequences, rest centrally on expectations about the Fed’s “equilibrium selection” policies, at
least as much as they do on interest rate policies — where it sets {¢ } — which are the conventional
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focus.

But just how does the Fed execute “equilibrium selection policy?” In the new-Keynesian
tradition, the Fed selects the equilibrium 7} by following for t > 7" a Taylor-rule inspired policy
of the form

it =14 + ¢r(me — ). (15)

This policy de-stabilizes the economy. With ||¢.|| > 1 in this model, all the equilibria
other than {7} explode as ¢ — co. The new-Keynesian tradition adopts as an equilibrium-
selection principle that the economy will not choose non-locally bounded equilibria, and thus
predicts that 7} is the observed equilibrium. As Woodford (2004, p.128) explains, “The equi-
librium ..[7*].. is nonetheless locally unique, which may be enough to allow expectations to
coordinate upon that equilibrium rather than on one of the others.”

(The form (15), due to King (2000), may seem unusual. The interest rate rule is often
parameterized as a simple Taylor rule

it = U + Gy, (16)

where 7; is a potentially time-varying intercept or policy shock, in which the Fed responds
directly to other events or shocks in the economy. Woodford (2004) advocates such an intercept
as “Wicksellian policy” and shows its desirable properties.

This formulation is equivalent to (15). In equilibrium, (16) is
iy =0+ ¢,y
Then we can rewrite (16) in the form (15)
it = (if = Gpm;) + Gt = if + & (M — 77) -

Thus, saying that expectations about equilibrium selection in (15) drive model predictions and
policy implications is the same as saying that expectations about the intercept in the standard
Taylor rule (16) drive model predictions and policy implications.

The Taylor rule policy often includes output responses qﬁy(yt —y;), lagged responses pi;—1
and other complexities. That generality is inessential to the current point.

There are many actions the Fed could take to enforce its inflation target 7} ; Atkeson,
Chari,Varadarajan and Kehoe (2010), but Taylor-inspired rules dominate applied analysis.

I call (15) “inspired by” because Taylor introduced the rule in fundamentally different old-
Keynesian models, where it serves an opposite purpose, stabilizing rather than destabilizing
model dynamics, providing stability rather than determinacy.)

To examine this idea, let us ask: suppose that after the liquidity trap period ends at 7', the
natural rate rises to r > 0, the Fed wishes to produce ¢f = r and choose the equilibrium 7} = 0,
and it does so with a Taylor rule of this form for £ > T, i.e. the Fed follows

=14+ ¢7T7Tt- (17)
This is also an important calculation if you’re dubious of all this equilibrium-selection busi-

ness. Many analyses of liquidity traps pose the problem this way: People’s expectations of Fed
behavior after the liquidity trap ends are that it will revert to a Taylor rule of the form (17). If
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you objected to my previous calculations that described post-trap policy by separate i; and 7}
choices, this is the calculation you want.

There are two flies in the ointment. First, we can’t use rules of the form (15) or (17) in
continuous-time models, as explained in the Appendix. Therefore, I follow Sims (2004) and
Fernandez-Villaverde, Posch, and Rubio-Ramirez (2012) by writing the continuous-time Taylor
rule in partial-adjustment form, which is also how it is typically estimated,

d (i — iy .

WD) 16 (e — ) — (i — i) (18)
ie.,

o
it — i = (;59/ e O (mi_s — mr_,)ds.
s=0

The parameter ¢ is the usual Taylor parameter, measuring the eventual response of interest
rates to inflation. The parameter 6 controls speed of adjustment. I use # = 1 or a half-life of one
year.

Second, in many equilibria a rule of the form (18) soon passes the lower bound i; = 0. To
make a more reasonable specification of what the Fed will do, I therefore modify (18) to respect
the zero bound. Also specializing to 7 = 0 and ¢f = r > 0, and allowing the interest rate to
rise above the zero bound, we then have

diy _ 0 [pmy — (it — 1)) if i, >0
dt { max {0 [¢pm; — (ig — 1)],0} ifi; =0 } (19)

This modification just cuts off solutions which otherwise spiral to iy — —oo. Since my point
is that expectation of such policy is not credible, I don’t want to stack the deck by supposing
impossible interest rates. Most analyses of liquidity traps with Taylor rules likewise specify that
the Taylor principle ceases to hold at the lower bound.

Since i; = 0 for t < T, this modification makes no difference to the solutions previously
presented in the t < T region. The difference is, they are now pasted to different expectations
about what will happen for ¢ > T'. The Appendix details the calculations.

Figure 12 presents inflation. Compare it to figure 6 — the figures are the same for ¢ < T', but
now we see the effect of the Taylor-rule equilibrium selection efforts for ¢ > T'. Figure 13 graphs
the output gap x;, and compare it to Figure 7. Figure 14 presents the interest rate. I assume
a r = 5% natural rate of interest in the ¢t > T period. The corresponding value in the previous
exercise was simply i = 5% for t > T.

The comparison between the sets of figures verify that the Taylor rule is doing what it’s
supposed to do: ¢ > 1 induces explosive dynamics in all variables except for the unique locally
bounded equilibrium zf = 0,7} = 0, ¢ > T', where before there were multiple locally-bounded
equilibria for ¢t > T. If people’s expectations are coordinated on locally-bounded equilibria, this
Taylor rule will coordinate expectations on the zf = 0, m; = 0 equilibrium.

The inflation and interest paths are interesting — they overshoot. For example, to rule out the
local-to-frictionless equilibrium, the Fed starts raising the interest rate i; to combat the unwanted
inflation at ¢ = T'. This interest rate rise makes output grow more quickly, and the higher output
level pushes down inflation more quickly through the Phillips curve dr/dt = pmy — kxy than it
otherwise would do.

But when inflation hits zero it doesn’t stop. This equilibrium path overshoots and send
inflation off to negative territory, while shooting output off to positive infinity. This Fed ends
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up sending the economy into a deflationary boom. The inflation and output paths looks much
the same without the 7 > 0 restriction.

Inflation across equilibria with a Taylor rule
100

Percent
1
o
T

15}

Figure 12: Path of inflation in all equilibria with a Taylor rule. At ¢t = T = 5 people expect
the Fed to follow a Taylor rule to enforce the 7* = x* = 0 equilibrium. The Taylor parameter
is ¢ = 1.1 and the half-life of adjustment is & = 1. The thick dashed line is the conventional
equilibrium. The upper solid line is the local-to-frictionless equilibrium.

Now, let us ponder the lessons of these figures. All of the equilibria to the left of ¢t < T
remain unchanged. Our question is, how do new-Keynesian modelers decide that, given the
interest rate path, the economy will follow the disastrous standard equilibrium rather than, say,
the benign local-to-frictionless equilibrium?

The answer is given by the figures. If the economy were to follow the local-to-frictionless
equilibrium, people believe that after ¢ > T', the Fed would not tolerate the “glide path” to zero
inflation shown in Figure 2, and would instead start aggressively raising interest rates above the
natural rate. But the problem is not that people expect the Fed to push the glide path more
quickly to zero. If that were the expectation, then this equilibrium would remain bounded, and
would remain a valid equilibrium by new-Keynesian rules. The problem is that people expect the
Fed to over-react so drastically that the economy takes off explosively to a spiraling deflation.

We have to ask ourselves, is this at all a reasonable specification of how people think the
Fed would react to inflation above its target? Would the Fed, seeing the end of the liquidity
trap approaching and inflation declining, really not allow a glide path back to its target? Even if
people expect the Fed to over-react, do people really think the Fed would over-react so strongly
as to send the economy to a ‘“non-locally-bounded” deflationary boom equilibrium? It would
be an interesting exercise for survey researchers to find out how many people’s expectations of
what the Fed would do if its inflation target were violated correspond to these figures.

In the new-Keynesian model, people are thought to believe that Fed policy deliberately
destabilizes the economy. The policy ¢, > 0 takes an eigenvalue less than one, which leaves the
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Figure 13: Path of output gap in all equilibria with a Taylor rule for t > T. The top solid line

gives the local-to-frictionless equilibrium for ¢ < T', and the thick dashed line gives the standard
equilibrium.

Interest rate across equilibria with a Taylor rule
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Figure 14: Path of interest rates in all equilibria with a Taylor rule. The Taylor parameter is
¢ = 1.1 and the half-life of adjustment is # = 1. The solid lines give the local-to-frictionless

equilibrium and the thick dashed line gives the standard equilibrium. I assume the natural rate
is 5% for t > T.
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stable dynamics of Figure 6 and turns it in to an eigenvalue greater than one, generating through
policy the explosive dynamics of Figure 12. If the Fed were just to leave interest rates alone
i¢ = r then the local-to-frictionless equilibrium would be perfectly acceptable and the glide path
would emerge. So, the key question is, why would people’s expectations of the future be built
on the idea that the Fed operates interest rate policy in such a way as to deliberately destabilize
the economy? Especially when every statement every Fed official has ever made emphasizes
stabilizing, rather than de-stabilizing dynamics?

The point does not violate Woodford’s (2004, p. 128) admonishment on how to read new-
Keynesian dynamics

... the equation [explosive inflation dynamics| indicates how the equilibrium infla-
tion rate in period t is determined by expectations regarding inflation in the following
period... The equilibria that involve initial inflation rates near (but not equal to) IT*
can only occur as a result of expectations of future inflation rates (at least in some
states) that are even further from the target inflation rate. Thus the economy can
only move to one of these alternative paths if expectations about the future change
significantly, something that one may suppose would not easily occur.

I am explicitly reading from expectations of the future to equilibrium choice today. In new-
Keynesian thinking, the benign local-to-frictionless equilibrium is ruled out, because it requires
an expectation that 77 > 0 at the end of the trap as shown in Figure 2. In turn, 77 > 0 at the
end of the trap is ruled out because the only way for 77 > 0 to be an equilibrium is if people
expect the crazy dynamics of Figure 12 to be their future. The analysis is just as Woodford
recommends. But are these really people’s expectations?

5.1 Which equilibrium will the Fed choose?

In sum, the new-Keynesian prediction that we will see the disastrous standard equilibrium
emerge posits that people expect the Fed to follow a deliberate equilibrium-selection policy to
select mf = 0 ¢ > T instead of the equally possible local-to-frictionless glide path, and the nature
of that policy is to induce explosive dynamics into an otherwise stable economy. My point so far
is to seriously question whether this set of “equilibrium-selection” expectations make any sense
at all.

But this analysis does not answer the central question. If one accepts that this or some other
equilibrium-selection policy is a reasonable description of Fed behavior and people’s expectations
of Fed behavior, why would people expect the Fed to focus its equilibrium-selection policies on
the disastrous standard path shown in Figure 3, rather than the benign local-to-frictionless glide
path of Figure 27 We could plug the local-to-frictionless inflation path 7} t > T in (15) or write
the algebraically equivalent (17) as

it =1 — (Ppmy) + OpTrt. (20)

In this interpretation, the first term reflects an expectation of a time-varying intercept or policy
error, or more simply an expectation that the Fed will allow a glide path back to its eventual
mf = 0 target while it ramps back in to a Taylor principle.

Figures 15 and 16 make this point graphically. In these figures, I imagine that the Fed wishes
to select the local-to-frictionless equilibrium, and centers its equilibrium-selection policy there.
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Now, those equilibria are the only bounded ones and all the others, including the standard
equilibrium, explode. (The interest rate graph is so visually similar to figure 14 that it is not
worth repeating.) If you think the Fed selects equilibria by Taylor-inspired rules, why not this
one?

Inflation across equilibria with a Taylor rule
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Figure 15: Path of inflation in all equilibria with a Taylor rule, when the Fed selects the local-to-
frictionless equilibrium. The thick dashed line is the local-to-frictionless equilibrium. The solid
line is the standard equilibrium.

Werning’s (2012) analysis, the expectation that the Fed will insist on 77 = 0 ¢ > T follows
a logical and reasonable principle: People believe that the Fed cannot precommit, so it will
do ex-post what looks best going forward no matter what last year’s “forward guidance” was.
Werning finds the optimal discretionary policy. His Fed maximizes a standard loss function

o0
L= 5/ e " (xf + A7) dt, (21)
0

choosing i; and 7; at each date in a completely forward-looking manner, subject to the model
dynamics (1)-(2). Since there are multiple equilibria, Werning’s monetary policy consists of both
the specification of i; and of m¢, with an unstated equilibrium-selection device for the latter.
(This is clear in Werning’s footnote 7, p. 9.) At time T', after the liquidity trap is over, such a
Fed can achieve xy = 0,7, = 0V t > T immediately, and it will do so.

However, there is a curious paradox (or perhaps a form of subgame imperfection) in this
specification. All equilibria except the selected one are disastrous from the Fed’s objective. Thus,
to select an equilibrium, the Fed must completely precommit to follow an equilibrium-selection
strategy which, ex-post, is disastrous for its objectives. For example, if the local-to-frictionless
equilibrium emerged nonetheless, all the Fed has to is to give up the Taylor-rule threat, revert
to ix = r and the economy will settle down to m; = 0, xy = 0 soon enough. But no, it has
precommitted to a Taylor rule, and now it must follow that rule to explosive deflation. Why
would people think the Fed is incapable of precommitment to its interest rate and inflation
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Figure 16: Path of output gap in all equilibria with a Taylor rule for ¢ > T, when the Fed
selects the local-to-frictionless equilibrium. The thick dashed line gives the local-to-frictionless
equilibrium, and the thick solid line gives the standard equilibrium.

targets, but the victim of such monstrous precommitment in its equilibrium-selection policy?
(Werning only analyzes discretion and commitment in the choice of interest rate target and
inflation target. While recognizing that an equilibrium-selection policy is necessary, he does
not specify a specific equilibrium-selection policy, and thus does not analyze whether it requires
commitment.)

Equilibrium-selection discretion is also particularly unfortunate in light of Werning’s ob-
jective. Given the interest rate policy, the local-to-frictionless solution maximizes the Fed’s
objective in the limit of a long liquidity trap

A /oo e (xF + M) dt
2 )

In fact, the-local-to-frictionless solution is the only one that gives a finite value to this objective,
as all the others spiral off to infinity as ¢ — —oc.

5.2 Inflation targets

One might view the equations as validating calls that the Fed adopt and commit to an explicit
inflation target separately from its interest rate policy announcements. After all, the local-to-
frictionless solution differs only from the disastrous standard solution in that the Fed changes
its inflation target, changing 7* in ¢ = i + ¢(m; — 77) while leaving i* alone. Equation (20)
looks especially like a Taylor rule with a temporarily higher inflation target.

This is true, but the whole enterprise hinges on the question, what does the Fed do if the
world doesn’t follow its announcements of what inflation it would like to see? What is the stick
corresponding to the “speak loudly” advice?
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In this case the answer is the Taylor-inspired rule, in its off-equilibrium threat form. People
are assumed to expect that if the wrong equilibrium emerges, the Fed will drive the economy off
a cliff. I don’t think that people who advocate a higher inflation target as a means to stimulus,
such as Blanchard, Dell’Ariccia, and Mauro (2010), have this in mind. I think they have in
mind a rather old-Keynesian view that the central bank will keep equilibrium interest rates low
for a while as inflation picks up, mixing new and old Keynesian intuition in a way that cannot be
captured in these models, or perhaps as captured by my exercises that postpone the interest rate
rise. They do not mean a different equilibrium-selection policy for the same interest rate path,
and they do not mean “and if the desired inflation does not occur, the Fed should precommit
to drive the economy off a cliff.”

6 Equilibrium choice

This discussion should leave us hungry for better principles on which to select equilibria. In a
liquidity trap, either the benign local-to-frictionless or the disastrous standard equilibrium will
emerge. Which is right? Is there no better way to think about this question than to imagine the
Fed introduces explosive dynamics to select equilibria?

In models with multiple equilibria — bounded or not — a wide range of essentially philosoph-
ical principles have been advocated to select equilibria. Examples include the “minimum state
variable” criterion, “E-stability” and “learnability” (Evans and Hohkapohja (2001), McCallum
(2003), (2009), and in this context Christiano and Eichenbaum (2012) ). The new-Keynesian
procedure is in essence a philosophical criterion as well, resting primarily on the principle that
expectations should “coordinate” on “locally bounded” equilibria, as explained in the above
Woodford (2004) quote and King (2000, p. 58-59). Efforts to turn locally bounded into an eco-
nomic criterion — to establish global uniqueness by economic rather than philosophical principles
— have, as far as I was able to ascertain in an extensive survey (Cochrane 2011), simply failed,
and that includes the standard citation to Obsfteld and Rogoff (1983).

One can make a similar philosophical case that we should choose the local-to-frictionless
equilibrium. It has a sensible frictionless limit, and it does not produce magical multipliers and
policy paradoxes. It is locally bounded in both directions. It is a minimal perturbation of the
underlying real equilibrium to account for price stickiness — it minimizes the sum of squared
deviations from the frictionless equilibrium. Any of these could be turned in to pleasant axioms
for its selection.

However, I won’t try to shoehorn this analysis into one of these categories and make an
economic or philosophical case for a particular equilibrium, nor introduce a new philosophical
criterion. Doing so would require me to examine a wide range of models, and stochastic ones in
particular.

In Cochrane (2011) I advocated that fiscal considerations could help to select equilibria of this
kind of model. In the model so far, fiscal policy is passive, meaning that the Treasury is assumed
to raise whatever revenue monetary policy requires by lump sum taxation. The huge deflation in
the new-Keynesian equilibrium choice would put that assumption to the test. Deflation would
have been an unexpected bonanza to the holders of long-term U.S. government debt, requiring
huge new taxes to transfer wealth to bondholders, at a time when the fiscal solvency of the US was
already in question, and large unexpected income transfers from taxpayers to typical Treasury
bondholders not exactly high on the political agenda. The local-to-frictionless equilibrium, by
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contrast, with a small inflation, has little fiscal impact. However, using fiscal considerations to
specify exactly which of the slightly inflationary solutions would emerge would require a lengthy
digression into monetary-fiscal coordination, government debt maturity structure, and the actual
structure of the underlying model rather than the simple loglinearized form here. For now, it
can be said that the need for fiscal support of any monetary policy at least pushes us away from
equilibria that involve deep deflations.

7 Concluding comments

I build on a standard new-Keynesian analysis of the zero bond: A negative natural rate will
last until time 7T, and the nominal rate will be stuck at zero. After that, policy returns to
normal, meaning that people expect interest rates to rise again and thereafter follow the natural
rate. I calculate the new-Keynesian model equilibria in this circumstance. I find there are many
locally-bounded (nonexplosive as t — co) equilibria, which we can index by the value of expected
inflation at the end of the trap mp. These equilibria all share the same interest rate path.

The new-Keynesian literature analyzes one equilibrium: it features a huge recession, deflation,
and strong expected output growth, which is why the level of output is so low. It predicts large
multipliers to wasted government spending, output destruction, and announcements about far-
off future policy. These predictions grow larger the longer the period of the liquidity trap, and
as the degree of price stickiness is reduced. An e price stickiness produces paleolithic output
levels and nearly infinite multipliers. Though price stickiness is the central friction causing
the economy to deviate from efficient output levels, reducing price frictions would lower output
further, and increasing frictions would raise output.

Another interesting equilibrium is the “local-to-frictionless” equilibrium. It predicts mild
inflation during the liquidity trap, no reduction in output relative to potential, small negative
multipliers, and little effects of promises of far-off policies. Its predictions smoothly approach
the frictionless limit as pricing frictions are reduced.

The equilibrium we will observe during the trap depends on people’s expectations of what
will happen following the trap. If people think we must have exactly zero inflation (deviation
from long run trend) as soon as the trap ends, then we will experience the new-Keynesian
recession and its paradoxical policy implications. If people expect that we can retain a mild
inflation — about half the negative “natural rate” in the trap — and then a smoothly declining
inflation “glide path” as graphed in Figure 2, then we will experience a benign period during
the liquidity trap and magical policies will not work.

At a minimum, this analysis shows that equilibrium selection, rather than just interest rate
policy, is vitally important for understanding these models’ predictions for a liquidity trap and
the effectiveness of stimulative policies. In usual interpretations of new-Keynesian model results,
authors feel that interest rate policy is central, and equilibrium-selection policy by the Fed, or
equilibrium-selection criteria, are details relegated to technical footnotes (as in Werning 2012),
game-theoretic foundations, or philosophical debates, which can all safely be ignored in applied
research. These results deny that interpretation.

The standard new-Keynesian approach specifies that expectations about Fed behavior select
equilibria. In that analysis, the Fed has two important policy tools — interest rate policy,
which specifies the equilibrium interest rate path {i;} (which may covary systematically with
equilibrium output zj and inflation 7}), and an equilibrium-selection policy which selects one
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particular equilibrium path {7}} from the set consistent with {i;}. Equilibrium selection is
accomplished by a Taylor-inspired rule, i; = i} + ¢ (7 — 7f), ¢ > 1. People believe that the
Fed selects equilibria by this method, and the Fed will explode the economy should undesired
equilibria emerge.

You may say, “this is nuts, the Fed doesn’t have an equilibrium-selection policy, and does
not threaten to explode the economy for equilibria it doesn’t like.” You may object that none
of this has any relation to the Fed’s clear statements of how it would stabilize the economy if
inflation came out higher than the Fed’s target, not the opposite. You may object that nobody
has written any op-eds or policy essays castigating the Fed for its equilibrium-selection policies.
You may look at my graphs of the expectations for alternative equilibria required to support
a given equilibrium choice, and feel they are nutty assumptions to make about what people
expect. If so, you conclude that the Fed really doesn’t have an “equilibrium selection” policy,
and this class of models needs a different equilibrium-selection mechanism in order to provide a
definite prediction for the data and reliable policy prescriptions.

And that discussion still leaves unanswered why, even if people did expect the Fed to fol-
low an equilibrium-selection policy, people would expect the Fed choose an equilibrium with
such disastrous consequences, when the same sort of threats could support benign equilibria.
“Discretion” won’t do it, as equilibrium-selection requires prodigious precommitment.

I have throughout added what may have seemed unnecessary words to emphasize that equi-
libria are selected not by what the Fed will do, could do, or promises to do, but by what people
expect to happen. The logic of these models is strong — the expectation of future inflation (or
output) paths is what selects equilibria today. In evaluating which equilibrium emerges today it
is not just desirable but necessary to think about what people actually expect to happen when
the liquidity trap ends.

Leaving out such selection mechanisms — if the Fed really just picks the equilibrium interest
rate path (which, again, may covary with equilibrium inflation and output) — then there really
are multiple equilibria and choosing one vs. another is simply an arbitrary choice. Since there is
an equilibrium with no depression and deflation, and no magical policy predictions, one cannot
say that the new-Keynesian model makes a definite prediction of depression and policy impact.

I have not advocated a specific alternative equilibrium selection criterion. Obviously, the
local-to-frictionless equilibrium has some points to commend it: It is bounded in both directions,
it produces normal policy predictions, it has a smooth limit as price stickiness is reduced, and
it does not presume an enormous fiscal support for deflation. But this is not yet economic proof
that it is the “right” equilibrium choice.

We might consider which equilibrium choice is more consistent with the data. The US
economy 2009-2013 features steady but slow growth, a level of output stuck about 6-7% below the
previous trendline and the CBO’s assessment of “potential,” a stagnant employment-population
ratio, and steady positive 2-2.5% inflation.

The local-to-frictionless equilibrium as shown in Figure 2 can produce this stagnant outcome,
but only if one thinks that current output is about equal to potential, i.e. that the problem
is “supply” rather than “demand,” and that the CBO and other calculations of “potential” or
non-inflationary output and employment are optimistic, as they were in the 1970s, and do not
reflect new structural impediments to output.

The standard equilibrium choice as shown in Figure 3 cannot produce stagnation. It counter-
factually predicts deflation (Coibion and Gorodnichenko (2013)), and it counterfactually predicts
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strong growth. Omne would have imagine a steady stream of unexpected negative shocks — that
each year, the expected duration of the negative natural rate increases unexpectedly by one
more year — to rescue the model. But five tails in a row is pretty unlikely.

The problem in generating stagnation is central to the new-Keynesian model. The “IS” curve
and the assumption that we return to trend means that we can only have a low level of output
and consumption if we expect strong growth. The Phillips curve says that to have a large output
gap, we must have inflation today much below expected inflation tomorrow and thus growing
inflation (or declining deflation). Thus if we are to return to a low-inflation steady state, we
must experience sharp deflation today. If one wants a model with stagnation resulting from
perpetual lack of “demand,” this model isn’t it. Static old-Keynesian models produce slumps,
but dynamic intertemporal new-Keynesian models do not. Of course, the very stylized model
used here is too simplistic for a serious comparison to data. But the trouble is so essential to a
forward-looking IS and Phillips curve, it does not seem likely to be solved by epicycles around
those main ingredients.

We might consider which equilibrium choice is correct by examining data and policies from
longer periods in history. Magical multipliers and paradoxical policies have been found in similar
models any time interest rates do not respond to changes in equilibrium output and inflation.
Thus, they should occur in periods such as the great depression, at the zero bound, the late 1940s
and early 1950s, when interest rates were explicitly fixed, and in the 1970s, when new-Keynesian
thought claims that interest rates did not respond enough to output and inflation. At a casual
level, attempts to deliberately inflate, output destruction, technical regress, useless government
spending, and promises all seem to have been tried in those periods without the large effects
claimed for them now. That too, however, is a suggestion, not a claim, and one that requires
much more careful documentation.

I close with a few kinds words for the new-Keynesian model. This paper is really an argument
to save the core of the new-Keynesian model — proper, forward-looking intertemporal behavior
in its IS and price-setting equations — rather than to attack it. Inaccurate predictions for data
(deflation, depression, strong growth), crazy-sounding, or at least sign-changing, policy predic-
tions, a paradoxical limit as price stickiness declines, and explosive off-equilibrium expectations,
are not essential results of the model’s core ingredients. A model with the core ingredients
can give a very conventional view of the world, if one only picks the local-to-frictionless equilib-
rium. That model will build neatly on a stochastic growth model, represented here in part by
the forward-looking “IS” equation and changes in “potential.” Its price stickiness will modify
dynamics in small but sensible ways and allow a description of the effects of monetary policy.
This was the initial vision for new-Keynesian models, and it remains true.

Really, the fault is not in the core of the new-Keynesian model. The fault is in its application,
which failed to take seriously the fundamental problem of nominal indeterminacy, i.e. multiple
nominal equilibria. Interest rate targets, even those that vary with output and inflation, or
money supply control with interest-elastic demand, simply do not determine the price level or
inflation. (Cochrane (2011).) In a model with price stickiness, nominal indeterminacy spills
over in to real indeterminacy.

In that context, this paper shows there is an equilibrium choice that leads to sensible re-
sults. Alas, those sensible results are non-intoxicating. In that equilibrium, our present (2013)
economic troubles cannot be chalked up to one big simple story, a “negative natural rate” (what-
ever that means) facing a lower bound on short term nominal rates; and our economic troubles
cannot be solved by promises, or a sign reversal of all the dismal parts of our dismal science.
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Technical regress, wasted government spending, and deliberate capital destruction do not work.
Growth is good, not bad. That outcome is bad news for those who found magical policies an
intoxicating possibility, but good news for a realistic and sober macroeconomics.
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9 Appendix

9.1 Derivation of the model solution

The model is

dxy .

7 L — Tt

d

% = pry— K (2t + ge) -

where ir; = ir for t <T and ir = 0 for ¢t > T, and ¢; is a constant g for t < T and g; = 0 for
t >T. It is convenient to scale z; by k, yielding

al ==L S TR &

The steady state of (22) is
KTy | | pir — kg
Tt o ir

Thus, we find solutions to the homogenous part — without the first term in (22) — and then add
back this steady state.

Eigenvalue decomposing the transition matrix, we have

ST ST

where

o=

%<p+ \/p2+4n) >0
AT = l<p—\/p2+4/-i> <0.

2

For simplifying algebra it is convenient to note

N =N = \/p? 4k (23)

AN = p
AN = g
Define 1
ze | | AP o I I
Wt o 1 1 Tt i
and thus

Tt [ pir — kg AP 2
= ] + .
Tt I ir 1 1 | wy

i-zt - A" 0 Zt-
dt | we | | 0 N we |

Then (22) reduces to




with solutions

ze | A" (t=T) 0 27
we | 0 e (t=T) wr

where and zr and wr are constants indexing multiple equilibria.

Transforming back to = and 7, the general solution to (22) when ¢ and ir are constant is

therefore
Kkry | | pir—Kg AP\ A1) 27
[ T } - [ i } + [ 1 1 0 N (t=T) wr (24)

For t > T, I follow the standard procedure by requiring that z; and m; do not explode as
t — oo. This requirement means that the constant wp multiplying the explosive eigenvalue NP
must be zero. We also have ir =0 and g = 0 for t > T, and so we have

t>1T: [ e ] = [ A } zTeAm(t_T).
T 1

The single parameter zp controls both z; and 7; equilibria, and zy = 77 so I use that notation.

t>1T: { o } = { A ] WTeAm(th).

¢ 1

For t <T, we pick a different set of constants 2. and w}. We pick these constants so that
the solution (kx¢, m¢) pastes in to the ¢t > T solution at ¢t = T'. This consideration does not rule
out solutions that load on the positive eigenvalue A?. The pasting condition is

C R T IR S

We can solve (25) for [ 25w ]/ and substitute into (24).
zp | [ APAT T | PIT =R
wh |11 1| ir
KTt B pir — Kg
Tt - ir

NN AT g AT T ir — K
+ mr—| 9
11 0 NMNET |11 I ir
Using (23) we can write each of the rightmost terms as

XA AT AP T A RE AT
11 0 N |1 1™ 1€ T

AP ][ AT AP 1T A e ]
R I =N e N

1 /\p2 _)\m2 e m(t-T) )
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and

A AT g »oxm 1T 1 N X ][ e

1 1 0 e)\p(th) 1 1 0 KRg = AP — \T 1 -1 e)\P(th) rg
Putting it all back together,

[m:t} _ [mnl_ﬁgt] 26)

T 1Tt

1 N AP AT
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9N}

AT (t—T)
AP(t—T) }

@

9.2 Solution with a postponed interest rate rise

Here I consider a policy in which the Fed keeps the interest rate at zero from period 1" to period
T + 7, though the natural rate has risen from —r to +r. The model is

dzxy .

— = iy — T
dt t t
dﬂ't

— = P — K.
dt PTe t

where iry =7 fort <T ;ir=—r,for T <t<t+7and and ir =0 for ¢t > T
The general solution to (22) when ir is constant is given in (24). We just paste twice.

For t > T + 7, we again set to zero the explosive root,

t>T+7: [ et ] = [ A } e)‘m[tf(TJrT)]?TTjLT.
Tt 1

For T'< t <T 4+ 7, since ir = —r,, we use the pasting condition at t =T + 7
K¥rir | _ | P |, AP\ A0 2| AP
Lo [T e [T e

where r, is the positive natural rate that holds between time T and time T+ 7. 'We solve this
equation for | 25%  wit, ], and substitute into (24).

Hok —A\"r D m -1 P
2re. || e 0 AP A P
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so between T and T + 7,
2] - -[2]-
T 1
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Using (23) we can write each of the rightmost terms as

AP\ AT ETE) o oom 1T e AP ™t (T4
|: 1 1 :| [O e/\p(t*(TJrT)) :| |: 1 1 :| |: 1 :|7TT+T—|: 1 ]WT+T€>\ t—(T+ )),

11 0 N (t=(T+7) ] [ 11 1
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Putting it all back together, for T' <t < T + 7

KTt P 1 AP2 M2 e (t=(T+7)) L
[ Tt } - [ 1 ]TT+)\p_)\m [ AP\ N (t=(T+7)) R I s
(27)

[ AP AT ] [ AT (E=(TH7) AP\ }‘1 [ AT NP } .

Now, we paste again at t = T, with the general solution for ¢ < T" matching this solution for
T'<t<T+H+rTatt=T,

KX . p AP 27
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Solving for 2} and wr,
-1
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We substitute in (24) once again, repeated here and specialized,

Kxy | | p n AP\ A" =T) 27
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The terms are, first using A? + A" = p
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and finally
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Putting it all together, for ¢t < T,
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Standard solution

The standard solution just sets w7y, = 0 as usual. For 7 < T,
Ky p 1 AP2 M2 A" (t=T) A" (t=T) [1 _ e—)me]
= T m m -1y | T T awee-T —\P rr
T 1 AN — NP = N1 N =T) 1 — =T
while for T'<t < T+,
KRI¢ P 1 )\p? _)\mQ eAm (t—(T+7))
= - rrt+ 5 D(t— rr
4 1 P N P N (t=(T+7))
and with p = M + \™,

[ Ky } 1 [ )\p? —Xm2 ] [ e/\m(tf(T+7-)) -1 ]T

ol TN AT | AP A || M)

and of course 7y = 0,2z, =0 for t > T + 7.

Local-to-frictionless solution
To make the loading on e*" (¢=7)

by

equal to zero in the ¢ < T period, we need to choose 774,

e N Ty, = ¥ om [r + 7y <1 —e A T)} .

So, for t > T 4+ 7 we have
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Substituting in (27) we have for T <t < T + 7,

=] - [1]--
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and substituting in (28) for t < T' gives
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9.3 Solution with a Taylor rule

I want to add a Taylor rule of the form i, = i} 4+ ¢, (m; — ;) by which people expect the Fed to
select equilibria in the ¢t > T period. Unfortunately, this simple form of Taylor rule which works
in discrete time cannot be directly transported to continuous time. The problem is easiest to
see in a frictionless example. In a discrete-time frictionless perfect foresight model, the IS curve
and Taylor rule are

it = Tl

i = Qpm

leading to equilibrium dynamics
Tit1 = Gpme
The Taylor coefficient is the system eigenvalue, and a coefficient greater than one gives a unique

locally bounded solution, m; = 0 in this case. If we take this example directly to continuous
time, however, we have

’th = Tt
it = ¢7r7rt

and now the corresponding eigenvalue is infinite! In discrete time there is a one period lag between
the inflation that the interest rate controls —F;m 11— and the inflation that the Fed responds to
— m¢. To keep reasonable dynamics in the continuous time limit, we have to reintroduce that lag
somehow.

I follow Sims (2004) and Ferndndez-Villaverde, Posch, and Rubio-Ramirez (2012) in writing
the continuous-time Taylor rule in partial-adjustment form — which is also how it is typically
estimated — 0y — i)

i — 1 y ) .
SR 01 (e — ) — (i — i)
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ie.,
o
it — i = (bﬁ/ e 0 (mi_s —mr_,)ds.

s=0
With this specification, a permanent unit increase in 7; — 7} thus leads to a ¢ increase in iy — i},
so ¢ still has a natural interpretation. By specifying that the speed of adjustment parameters
0 = 1, we specify that interest rates adapt with a one-year half life, and generate approximately
the same dynamics as we would in applying the standard new-Keynesian model at an annual
horizon.

I also impose the zero bound on these off-equilibrium solutions. This turns out to have very
little effect on output and inflation dynamics — undesired equilibria spiral off to infinity just as
well when the interest rate hits the zero bound as they do without it. But since the point is that
these expectations are not reasonable, it makes sense to give them the best shot by imposing
the reasonable zero bound in the future as well as the past. Since I have 4 = r a constant
throughout ¢ > 7', my Taylor rule becomes

%_{ 06 (my —mf) — 6 (iy — 1) i>0

dt | max[0¢(m—m;)—0(—1),00 i=0
or,
% _ O¢ (my — my) — Oiry 1>0 (29)
dt max [0¢ (my — wf) — Oiry, 0] =0
where iry = i — 14,
The model is now, for ¢t > T,
% = =T
PR t
dr
dt = pPT¢ RXt.
along with (29).
Putting it all together, when i¢; > 0 or ¢, = 0 and 6¢ (7, — 7}) — ir, > 0 we have
d | re 0 —k kK KXt 0
i I -1 p 0 m | — | 0 |=.
iry 0 6 —0 iy ld
m; and x} are also solutions to this model with ir; = ir; =0,
dl ke | _ [ 0 -k KT}
e | 7w ] -1 p T |’
and thus )
d KX} 0 -k & KXy 0
p ™ |=|-1 p O ™ | —| 0 |«
| 0 0 60¢p —0 0 o0
Subtracting, it is easiest to describe deviations from the desired equilibrium,
d [ k(2 — xf) 0 -k &K K (zy — xf)
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L iTt 0 (9¢ —0 irt
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When i; = 0 and 6¢ (7 — ;) — 0ir, < 0 we have instead

4 | re 0 —k kK KTt
E Tt = —1 P 0 Uy
iy 0 0 0 it
The desired 7} and x} are also solutions to this model with ir; = ir; =0,
d KX} 0 K K KT}
T m | =|-1 p O T |,
0 0 0 0 0
so we have in this case
Kk (¢ — xf) 0 —k K K (x¢ — )
-1 p 0 T — T} (31)
0 iTt

d T — T
a L= _
dt iry 0 0

We already know the unique forward-bounded solutions of these systems. The point is to
look at the off equilibrium behavior. Thus, I simulate forward, from the known 77, 27, to see
However, for greater accuracy, I simulate

what would happen to alternative multiple equilibria.

One could simply discretize these derivatives.
forward the solutions. Each of (30)-(31) is of the form
QAQ™' X,

d
—X;=AX; =
7t t
with solution
_ At H—1
X =Qe™ Q™ Xo
Thus, I simulate forward starting at time 7',
Xera = QeMQ71X,

at each date t I check which case holds, and simulate forward to date t+ A using the appropriate

transition matrix. I find eigenvalues and eigenvectors numerically.
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