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1 Introduction

How important is time-varying economic uncertainty and what role does it play in macro-

economic fluctuations? A large and growing body of literature has concerned itself with this

question.1 At a general level, uncertainty is typically defined as the conditional volatility of a

disturbance that is unforecastable from the perspective of economic agents. In partial equilib-

rium settings, increases in uncertainty can depress hiring, investment, or consumption if agents

are subject to fixed costs or partial irreversibilities (a “real options”effect), if agents are risk

averse (a “precautionary savings”effect), or if financial constraints tighten in response to higher

uncertainty (a “financial frictions”effect). In general equilibrium settings, many of these mech-

anisms continue to imply a role for time-varying uncertainty, although some may also require

additional frictions to generate the same effects.

A challenge in empirically examining the behavior of uncertainty, and its relation to macro-

economic activity, is that no objective measure of uncertainty exists. So far, the empirical

literature has relied primarily on proxies or indicators of uncertainty, such as the implied or

realized volatility of stock market returns, the cross-sectional dispersion of firm profits, stock

returns, or productivity, the cross-sectional dispersion of subjective (survey-based) forecasts, or

the appearance of certain “uncertainty-related”key words in news publications. While most of

these measures have the advantage of being directly observable, their adequacy as proxies for

uncertainty depends on how strongly they are correlated with this latent stochastic process.

Unfortunately, the conditions under which common proxies are likely to be tightly linked

to the typical theoretical notion of uncertainty may be quite special. For example, stock mar-

ket volatility can change over time even if there is no change in uncertainty about economic

fundamentals, if leverage changes, or if movements in risk aversion or sentiment are important

drivers of asset market fluctuations. Cross-sectional dispersion in individual stock returns can

fluctuate without any change in uncertainty if there is heterogeneity in the loadings on common

risk factors. Similarly, cross-sectional dispersion in firm-level profits, sales, and productivity

can fluctuate over the business cycle merely because there is heterogeneity in the cyclicality of

firms’business activity.2

This paper provides new measures of uncertainty and relates them to macroeconomic ac-

tivity. Our goal is to provide superior econometric estimates of uncertainty that are as free as

possible both from the structure of specific theoretical models, and from dependencies on any

1See for example, Bloom (2009); Arellano, Bai, and Kehoe (2011); Bloom, Floetotto, and Jaimovich (2010);
Bachmann, Elstner, and Sims (2013); Gilchrist, Sim, and Zakrajsek (2010); Schaal (2012) Bachmann and Bayer
(2011); Baker, Bloom, and Davis (2011); Basu and Bundick (2011); Knotek and Khan (2011) Fernández-
Villaverde, Pablo Guerrón-Quintana, and Uribe (2011); Bloom, Floetotto, Jaimovich, Saporta-Eksten, and
Terry (2012); Leduc and Liu (2012); Nakamura, Sergeyev, and Steinsson (2012); Orlik and Veldkamp (2013).

2Abraham and Katz (1986) also suggested that cross-section variation in employment could vary over the
business cycle because of heterogeneity across firms.
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single (or small number) of observable economic indicators. We start from the premise that

what matters for economic decision making is not whether particular economic indicators have

become more or less variable or disperse per se, but rather whether the economy has become

more or less predictable; that is, less or more uncertain.

To formalize our notion of uncertainty, let us define h-period ahead uncertainty in the

variable yjt ∈ Yt = (y1t, . . . , yNyt)
′, denoted by Uyjt(h), to be the conditional volatility of the

purely unforecastable component of the future value of the series. Specifically,

Uyjt(h) ≡

√
E

[
(yjt+h − E[yjt+h|It])2|It

]
(1)

where the expectation E (·|It) is taken with respect to information It available to economic
agents at time t.3 If the expectation today (conditional on all available information) of the

squared error in forecasting yjt+h rises, uncertainty in the variable increases. A measure, or

index, of macroeconomic uncertainty can then be constructed by aggregating individual uncer-

tainty at each date using aggregation weights wj :

Uyt (h) ≡ plimNy→∞

Ny∑
j=1

wjUyjt(h) ≡ Ew[Uyjt(h)]. (2)

We use the terms macro and aggregate uncertainty interchangeably.

We emphasize two features of these definitions. First, we distinguish between uncertainty

in a series yjt and its conditional volatility. The proper measurement of uncertainty requires re-

moving the forecastable component E[yjt+h|It] before computing conditional volatility. Failure
to do so will lead to estimates that erroneously categorize forecastable variations as “uncer-

tain.” Thus, uncertainty in a series is not the same as the conditional volatility of the raw

series where for example a constant mean is removed: it is important to remove the entire fore-

castable component. While this point may seem fairly straightforward, it is worth noting that

almost all measures of stock market volatility (realized or implied) or cross-sectional dispersion

currently used in the literature do not take this into account.4 We show below that this matters

empirically for a large number of series, including the stock market.

Second, macroeconomic uncertainty is not equal to the uncertainty in any single series yjt.

Instead, it is a measure of the common variation in uncertainty across many series. This is
3A concept that is often related to uncertainty is risk. In a finance context, risk is often measured by

conditional covariance of returns with the stochastic discount factor in equilibrium models. This covariance can
in turn be driven by conditional volatility in stock returns. Andersen, Bollerslev, Christoffersen, and Diebold
(2012) provide a comprehensive review of the statistical measurement of the conditional variance of financial
returns. Uncertainty as defined here is (see discussion below) distinct from conditional volatility but could be
one of several reasons why the conditional variances and covariances of returns vary.

4Two exceptions are Gilchrist, Sim, and Zakrajsek (2010), who use the financial factors developed by Fama
and French (1992) to control for common forecastable variation in their measure of realized volatility, and
Bachmann, Elstner, and Sims (2013), who use subjective forecasts of analysts.
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important because uncertainty-based theories of the business cycle typically require the exis-

tence of common (often countercyclical) variation in uncertainty across large numbers of series.

Indeed, in many models of the literature cited above, macroeconomic uncertainty is either

directly presumed by introducing stochastic volatility into aggregate shocks (e.g., shocks to

aggregate technology, representative-agent preferences, monetary or fiscal policy), or indirectly

imposed by way of a presumed countercyclical component in the volatilities of individual firm-

or household-level disturbances.5 This common variation is critical for the study of business

cycles because if the variability of the idiosyncratic shock were entirely idiosyncratic, it would

have no influence on macroeconomic variables. If these assumptions are correct, we would ex-

pect to find evidence of an aggregate uncertainty factor, or a common component in uncertainty

fluctuations that affects many series, sectors, markets, and geographical regions at the same

time.

The objective of our paper is therefore to obtain estimates of (1) and (2). To make these

measures of uncertainty operational, we require three key ingredients. First, we require an

estimate of the forecast E[yjt+h|It]. For this, we form factors from a large set of predictors

{Xit}, i = 1, 2, . . . , N , whose span is as close to It as possible. Using these factors, we then

approximate E[yjt+h|It] by a diffusion index forecast ideal for data-rich environments. An

important aspect of this data-rich approach is that the diffusion indices (or common factors)

can be treated as known in the subsequent analysis. Second, defining the h-step-ahead forecast

error to be V y
jt+h ≡ yjt+h − E[yjt+h|It], we require an estimate of the conditional (on time t

information) volatility of this error, E[(V y
t+h)

2|It]. For this, we specify a parametric stochastic
volatility model for both the one-step-ahead prediction errors in yjt and the analogous forecast

errors for the factors. These volatility estimates are used to recursively compute the values of

E[(V y
t+h)

2|It] for h > 1. As we show below, this procedure takes into account an important

property of multistep-ahead forecasts, namely that time-varying volatility in the errors of the

predictor variables creates additional unforecastable variation in yjt+h (above and beyond that

created by stochastic volatility in the one-step-ahead prediction error), and contributes to its

uncertainty. The third and final ingredient is an estimate of macroeconomic uncertainty Uyt (h)

constructed from the individual uncertainty measures Uyjt(h). Our base-case estimate of Uyt (h)

is the equally-weighted average of individual uncertainties. It is also possible to let the weights

be constructed so that macroeconomic uncertainty is interpreted as the common (latent) factor

in the individual measures of uncertainty.

We estimate measures of macroeconomic uncertainty from two post-war datasets of eco-

nomic activity. The first macro dataset is monthly and uses the information in hundreds of

5See, e.g., Bloom (2009), Arellano, Bai, and Kehoe (2011), Bloom, Floetotto, and Jaimovich (2010), Gilchrist,
Sim, and Zakrajsek (2010), Schaal (2012), Bachmann and Bayer (2011)). Herskovic, Kelly, Lustig, and Van
Nieuwerburgh (2014) find evidence of a common component in idiosyncratic volatility of firm-level cash-flow
growth and returns.

3



macroeconomic and financial indicators. The second firm level dataset is quarterly and consists

of 155 firm-level observations on profit growth normalized by sales. We will refer to estimates

of macro uncertainty based on the monthly series as common macro uncertainty whereas es-

timates of macro uncertainty based on the quarterly firm-level dataset will be referred to as

common firm-level uncertainty.

Our main results may be summarized as follows. We find significant independent variation

in our estimates of uncertainty as compared to commonly used proxies for uncertainty. An

important finding is that our estimates imply far fewer large uncertainty episodes than what

is inferred from all of the commonly used proxies we study. For example, consider the 17

uncertainty dates defined in Bloom (2009) as events associated with stock market volatility in

excess of 1.65 standard deviations above its trend. By contrast, in a sample extending from

1960:07 to 2011:12, our measure of macro uncertainty exceeds (or come close to exceeding)

1.65 standard deviations from its mean a total of only 49 (out of 618) months, each of which

are bunched into three deep recession episodes discussed below. Moreover, our estimate of

macroeconomic uncertainty is far more persistent than stock market volatility: the response of

macro uncertainty to its own innovation from an autoregression has a half life of 53 months; the

comparable figure for stock market volatility is 4 months. Qualitatively, these results are similar

for our measures of common firm-level uncertainty in profit growth rates. Taken together, the

findings imply that most movements in common uncertainty proxies, such as stock market

volatility (the most common), and measures of cross-sectional dispersion, are not associated

with a broad-based movement in economic uncertainty as defined in (2). This is important

because it suggests that much of the variation in common uncertainty proxies is not driven by

uncertainty.

So how important is time-varying economic uncertainty, and to what extent is it dynamically

correlated with macroeconomic fluctuations? Our estimates of macro uncertainty reveal three

big episodes of uncertainty in the post-war period: the months surrounding the 1973-74 and

1981-82 recessions and the Great Recession of 2007-09. Averaged across all uncertainty forecast

horizons, the 2007-09 recession represents the most striking episode of heightened uncertainty

since 1960, with the 1981-82 recession a close second. Large positive innovations to macro uncer-

tainty lead to a sizable and protracted decline in real activity (production, hours, employment).

These effects are larger and far more persistent and do not exhibit the “overshooting”pattern

found previously when stock market volatility is used to proxy for uncertainty. Using an eleven

variable monthly macro vector autoregression (VAR) and a recursive identification procedure

with uncertainty placed last, we find that common macro uncertainty shocks account for up

to 29% of the forecast error variance in industrial production, depending on the VAR forecast

horizon. By contrast, stock market volatility explains at most 7%. To form another basis for

comparison, shocks to the federal funds rate (a common proxy for unanticipated shifts in mone-
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tary policy) explain (at most) the same amount of forecast error variance in production as does

macroeconomic uncertainty, despite uncertainty being placed last in the VAR. Finally, we ask

how much each series’time-varying individual uncertainty is explained by time-varying macro

uncertainty and find that the role of the latter is strongly countercyclical, roughly doubling in

importance during recessions.

These results underscore the importance of considering how aggregate uncertainty is mea-

sured when assessing its relationship with the macroeconomy. In particular, our estimates imply

that quantitatively important uncertainty episodes occur far more infrequently than what is

indicated from common uncertainty proxies, but that when they do occur, they display larger

and more persistent correlations with real activity. Indeed, the deepest, most protracted re-

cessions in our sample are associated with large increases in estimated uncertainty, while more

modest reductions in real activity are not. By contrast, common uncertainty proxies are less

persistent and spike far more frequently, often in non-recession periods, or in periods of relative

macroeconomic quiescence.

While we find that increases in uncertainty are associated with large declines in real activity,

we caution that our results are silent on whether uncertainty is the cause or effect of such

declines. Our goal is to develop a defensible measure of time-varying macro uncertainty that

can be tracked over time and related to fluctuations in real activity and asset markets. Our

estimates do, however, imply that the economy is objectively less predictable in recessions than

it is in normal times. This result is not a statement about changing subjective perceptions of

uncertainty in recessions as compared to booms. Any theory for which uncertainty is entirely

the effect of recessions would need to be consistent with these basic findings.

In this way, our estimates provide a benchmark with which to evaluate theories where

uncertainty plays a role in business cycles. Uncertainty as defined in this paper only requires

evaluation of the h step ahead conditional expectation and conditional volatility of the variable

in question and so can be computed for any number of endogenous variables in a dynamic,

stochastic, general equilibrium (DSGE) model. Moreover, these statistics can be computed

from within the model regardless of whether the theory implies that uncertainty is the cause

or effect of recessions. A comparison of the uncertainty implied by the model and the data can

be used to evaluate DSGE models that feature uncertainty.

The rest of this paper is organized as follows. Section 2 reviews related empirical literature

on uncertainty in more detail. Section 3 outlines the econometric framework employed in our

study, and describes how our measures of uncertainty are constructed. Section 4 describes

the data and empirical implementation. Section 5 presents our common macro uncertainty

estimates, compares our measure to other proxies of uncertainty used in the literature, and

considers the dynamic relationship between macro uncertainty and variables such as production

and employment. Section 6 performs a similar analysis for our estimates of common firm-level
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uncertainty. Section 7 summarizes and concludes.

To conserve space, a large amount of supplementary material for this paper appears in

Jurado, Ludvigson, and Ng (2013). This document has two parts. The first part provides results

from a large number of robustness exercises designed to check the sensitivity of our results to

various assumptions (see description below). The second part is a data appendix that contains

details on the construction of all data used in this study, including data sources. The complete

dataset used in this study, as well as the uncertainty estimates, are available for download from

the authors’website: http://www.econ.nyu.edu/user/ludvigsons/data.htm.

2 Related Empirical Literature

The literature on measuring uncertainty is still in its infancy. Existing research has primarily

relied on measures of volatility and dispersion as proxies of uncertainty. In his seminal work,

Bloom (2009) found a strong countercyclical relationship between real activity and uncertainty

as proxied by stock market volatility. His VAR estimates suggest that uncertainty has an

impact on output and employment in the six months after an innovation in these measures,

with a rise in volatility at first depressing real activity and then increasing it, leading to an

over-shoot of its long-run level, consistent with the predictions of models with uncertainty as

a driving force of macroeconomic fluctuations. Bloom, Floetotto, Jaimovich, Saporta-Eksten,

and Terry (2012) also documented a relation between real activity and uncertainty as proxied

by dispersion in firm-level earnings, industry-level earnings, total factor productivity, and the

predictions of forecasters. A recurring feature of these studies is that the uncertainty proxies

are strongly countercyclical.

While these analyses are sensible starting places and important cases to understand, we

emphasize here that the measures of dispersion and stock market volatility studied may or may

not be tightly linked to true economic uncertainty. Indeed, one of the most popular proxies for

uncertainty is closely related to financial market volatility as measured by the VIX, which has

a large component that appears driven by factors associated with time-varying risk-aversion

rather than economic uncertainty (Bekaert, Hoerova, and Duca (2012)).

A separate strand of the literature focuses on cross-sectional dispersion in NA analysts’or

firms’subjective expectations as a measure of uncertainty:

DAjt(h) =

√√√√NAt∑
k=1

wAk

[
(yjt+h − E(yjt+h|IAk,t))2|IAk,t

]2

where IAk,t is the information of agent k at time t, and w
A
k is the weight applied to agent k.

One potential advantage of using DAjt(h) as a proxy for uncertainty is that it treats the condi-

tional forecast of yjt+h as an observable variable, and therefore does not require estimation of

6



E[yt+h|IAk,t]. Bachmann, Elstner, and Sims (2013) follow this approach using a survey of Ger-
man firms and argue that uncertainty appears to be more an outcome of recessions than a cause,

contrary to the predictions of theoretical models such as Bloom (2009) and Bloom, Floetotto,

Jaimovich, Saporta-Eksten, and Terry (2012). DÁmico and Orphanides (2008) is an earlier

project that studies various measures of analyst uncertainty and disagreement from the Survey

of Professional Forecasters. While analysts’forecasts are interesting in their own right, there are

several known drawbacks in using them to measure uncertainty. First, subjective expectations

are only available for a limited number of series. For example, of the 132 monthly macroeco-

nomic series we will consider in this paper, not even one-fifth have corresponding expectations

series. Second, it is not clear that the responses elicited from these surveys accurately capture

the conditional expectations of the economy as a whole. The respondents typically sampled are

practitioner forecasters; some analysts’ forecasts are known to display systematic biases and

omit relevant forecasting information (So (2012)), and analysts may have pecuniary incentives

to bias their forecasts in a way that economic agents would not. Third, disagreement in survey

forecasts could be more reflective of differences in opinion than of uncertainty (e.g., Diether,

Malloy, and Scherbina (2002); Mankiw, Reis, and Wolfers (2003)). As discussed above, it could

also reflect differences in firm’s loadings on aggregate shocks in the absence of aggregate or idio-

syncratic time-varying volatility. Fourth, Lahiri and Sheng (2010) show that, even if forecasts

are unbiased, disagreement in analysts’point forecasts does not equal (average across analysts)

forecast error uncertainty unless the variance of accumulated aggregate shocks over the forecast

horizon is zero. They show empirically using the Survey of Professional Forecasters that the

variance of the accumulated aggregate shocks can drive a large wedge between uncertainty and

disagreement in times of important economic change, or whenever the forecast horizon is not

extremely short. Bachmann, Elstner, and Sims (2013) acknowledge these problems and are

careful to address them by using additional proxies for uncertainty, such as an ex-post measure

of forecast error variance based on the survey expectations. A similar approach is taken in

Scotti (2012) who studies series for which real-time data are available. Whereas these studies

focus on variation in outcomes around subjective survey expectations of relatively few variables,

we focus on uncertainty around objective statistical forecasts for hundreds of economic series.

Our uncertainty measure is also different from proxies based on the unconditional cross-

section dispersion of a particular variable:

DBjt =

√√√√ 1

NB

NB∑
k=1

[
(yjkt −

1

NB

∑
i

yjit)2

]
(3)

where yjkt is a variable indexed by j (e.g., firm-level profits studied in Bloom (2009)) for

firm k, and NB is the sample size of firms reporting profits. Notably, this dispersion has no

forward looking component; it is the same for all horizons. This measure suffers from the same
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drawback as DAjt(h), namely that it can fluctuate without any change in uncertainty if there is

heterogeneity in the cyclicality of firms business activity.

Carriero, Clark, and Marcellino (2012) consider common sources of variation in the residual

volatilities of a Bayesian Vector Autoregression (VAR). This investigation differs from ours in

several ways: their focus is on small-order VARs (e.g., 4 or 8 variables) and residual volatility,

which corresponds to our definition of uncertainty only when h = 1; our interest is in measuring

the prevalence of uncertainty across the entire macroeconomy. Their estimation procedure

presumes that individual volatilities only have common shocks, and it is not possible for some

series to have homoskedastic shocks while others have heteroskedastic ones. We find a large

idiosyncratic component in individual volatilities, the magnitude of which varies across series.

An important unresolved issue for empirical analysis of uncertainty concerns the persistence

of uncertainty shocks. In models studied by Bloom, Floetotto, Jaimovich, Saporta-Eksten,

and Terry (2012), for example, recessions are caused by an increase in uncertainty, which in

turn causes a drop in productivity growth. But other researchers who have studied models

where uncertainty plays a key role (e.g., Schaal (2012)) have argued that empirical proxies

for uncertainty, such as the cross-sectional dispersion in firms’sales growth, are not persistent

enough to explain the prolonged levels of unemployment that have occurred during and after

some recessions, notably the 2007-2009 recession and its aftermath. Here we provide new

measures of uncertainty and its persistence, finding that they are considerably more persistent

than popular proxies such as stock market volatility and measures of dispersion.

3 Econometric Framework

We now turn to a description of our econometric framework. A crucial first step in our analysis

is to replace the conditional expectation in (1) by a forecast, from which we construct the

forecast error that forms the basis of our uncertainty measures. In order to identify a true

forecast error, it is important that our predictive model be as rich as possible, so that our

measured forecast error is purged of predictive content. A standard approach is to select a set

of K predetermined conditioning variables given by the K × 1 vector Wt, and then estimate

yt+1 = β′Wt + εt+1 (4)

by least squares. The one period forecast is ŷt+1|t = β̂
′
Wt where β̂ is the least squares estimate

of β. as financial market participants have more information than that in the conditioning

variables. Indeed, recent work finds that forecasts of both real activity and financial returns

are substantially improved by augmenting best-fitting conventional forecasting equations with

common factors estimated from large datasets.6 This problem is especially important in our

6See, for example, Stock and Watson (2002b, 2004), , and Ludvigson and Ng (2007, 2009).
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exercise since relevant information not used to form forecasts will lead to spurious estimates of

uncertainty and its dynamics.

To address this problem, we use the method of diffusion index forecasting whereby a rel-

atively small number of factors estimated from a large number of economic time series are

augmented to an otherwise standard forecasting model. The omitted information problem is

remedied by including estimated factors, and possibly non-linear functions of these factors or

factors formed from non-linear transformations of the raw data, in the forecasting model. This

eliminates the arbitrary reliance on a small number of exogenous predictors and enables the use

of information in a vast set of economic variables that are more likely to span the unobservable

information sets of economic agents. Diffusion index forecasts are increasingly used in data

rich environments. Thus we only generically highlight the forecasting step and focus instead

on construction of uncertainty, leaving details about estimation of the factors to the on-line

supplementary file.

3.1 Construction of Forecast Uncertainty

Let Xt = (X1t, . . . , XNt)
′ generically denote the predictors available for analysis. It is assumed

that Xt has been suitably transformed (such as by taking logs and differencing) so as to render

the series stationary. We assume that Xit has an approximate factor structure taking the form

Xit = ΛF ′
i Ft + eXit , (5)

where Ft is an rF × 1 vector of latent common factors, ΛF
i is a corresponding rF × 1 vector of

latent factor loadings, and eXit is a vector of idiosyncratic errors. In an approximate dynamic

factor structure, the idiosyncratic errors eXit are permitted to have a limited amount of cross-

sectional correlation. Importantly, the number of factors rF is significantly smaller than the

number of series, N .

Let yjt generically denote a series that we wish to compute uncertainty in and whose value

in period h ≥ 1 is estimated from a factor augmented forecasting model

yjt+1 = φyj (L)yjt + γFj (L)F̂t + γWj (L)Wt + vyjt+1 (6)

where φyj (L), γFj (L), and γWj (L) are finite-order polynomials in the lag operator L of orders py,

pF , and pW , respectively, the elements of the vector F̂t are consistent estimates of a rotation of

Ft, and the rw dimensional vectorWt contains additional predictors that will be specified below.

An important feature of our analysis is that the one-step-ahead prediction error of yjt+1, and of

each factor Fk,t+1 and additional predictor Wh,t+1, is permitted to have time-varying volatility

σyjt+1, σ
F
kt+1, σ

W
ht+1, respectively. This feature generates time-varying uncertainty in the series

yjt.
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When the factors have autoregressive dynamics, a more compact representation of the sys-

tem above is the factor augmented vector autoregression (FAVAR). Let Zt ≡ (F̂ ′t ,W
′
t)
′ be a

r = rF + rW vector which collects the rF estimated factors and rW additional predictors, and

define Zt ≡ (Z ′t, . . . , Z
′
t−q+1)′. Also let Yjt = (yjt, yjt−1, . . . , yjt−q+1)′. Then forecasts for any

h > 1 can be obtained from the FAVAR system, stacked in first-order companion form:

(
Zt
Yjt

)
(r+1)q×1

=


ΦZ

qr×qr
0

qr×q
Λ′j
q×qr

ΦY
j

q×q

(Zt−1

Yjt−1

)
+

(
VZt
VYjt

)
(7)

Yjt = ΦYj Yjt−1 + VYjt,

where Λ′j and ΦY
j are functions of the coeffi cients in the lag polynomials in (6), ΦZ stacks

the autoregressive coeffi cients of the components of Zt.7 By the assumption of stationarity,

the largest eigenvalue of ΦYj is less than one and, under quadratic loss, the optimal h-period

forecast is the conditional mean:

EtYjt+h = (ΦYj )hYjt.

The forecast error variance at t is

ΩYjt(h) ≡ Et
[
(Yjt+h − EtYjt+h) (Yjt+h − EtYjt+h)′

]
.

Time variation in the mean squared forecast error in general arises from the fact that shocks

to both yjt and the predictors Zt may have time-varying variances. We now turn to these

implications. Note first that when h = 1,

ΩYjt(1) = Et(VYjt+1VY ′jt+1). (8)

For h > 1, the forecast error variance of Yjt+h evolves according to

ΩYjt(h) = ΦYj ΩYjt(h− 1)ΦY ′j + Et(VYjt+hVY ′jt+h). (9)

As h→∞ the forecast is the unconditional mean and the forecast error variance is the uncon-

ditional variance of Yjt. This implies that ΩYjt(h) is less variable as h increases.

We are interested in the expected forecast uncertainty of the scalar series yjt+h given in-

formation at time t, denoted Uyjt(h). This is the square-root of the appropriate entry of the

forecast error variance ΩYjt(h). With 1j being a selection vector,

Uyjt(h) =
√

1′jΩ
Y
jt(h)1j. (10)

7The above specification assumes that the coeffi cients are time-invariant. Cogley and Sargent (2005) among
others have found important variation in VAR coeffi cients. Dynamic factor models are somewhat more robust-
ness against temporal parameter instability than small forecasting models (Stock and Watson (2002a)). The
reason is that such instabilities can “average out”in the construction of common factors if the instability is
suffi ciently dissimilar from one series to the next. Nonetheless, as a robustness check, an uncertainty measure
is also constructed using recursive out-of-sample forecasts errors and will be discussed below.
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To estimate macro (economy-wide) uncertainty, we form weighted averages of individual

uncertainty estimates:
Ny∑
j=1

wjUyjt(h).

A simple weighting scheme is to give every series the equal weight of wj = 1/Ny. If individual

uncertainty has a factor structure, the weights can be defined by the eigenvector corresponding

to the largest eigenvalue of theNy×Ny covariance matrix of the matrix of individual uncertainty.

We discuss our weighting schemes for measuring macro uncertainty further below.

3.2 Time-varying Uncertainty: A Statistical Decomposition

In this subsection we show how stochastic volatility in the predictors Z and in yj contribute

to its h period ahead uncertainty. The choice of stochastic volatility is important because it

permits the construction of a shock to the second moment that is independent of innovations

to yj itself. This is consistent with much of the theoretical literature on uncertainty which

presumes the existence of a uncertainty shock that independently affects real activity. GARCH

type models (for example) do not share this feature and instead have a shock that is not

independent from innovations to yj.

Consider first the factors Ft (the argument for Wt is similar). Suppose that each Ft is

serially correlated and well represented by a univariate AR(1) model (dropping the subscript

that indexes the factor in question for simplicity):

Ft = ΦFFt−1 + vFt .

If vFt was a martingale difference with constant variance (σF )2, the forecast error variance

ΩF (h) = ΩF (h− 1) + (ΦF )2(h−1)(σF )2 increases with h but is the same for all t. We allow the

shocks to F to exhibit time-varying stochastic volatility, ie vFt = σFt ε
F
t where log volatility has

an autoregressive structure:

log(σFt )2 = αF + βF log(σFt−1)2 + τFηFt , ηFt
iid∼N(0, 1).

The stochastic volatility model allows for a shock to the second moment that is independent of

the first moment, consistent with theoretical models of uncertainty. The model implies

Et(σ
F
t+h)

2 = exp

[
αF

h−1∑
s=0

(βF )s +
(τF )2

2

h−1∑
s=0

(βF )2(s) + (βF )h log(σFt )2

]
.

Since εFt
iid∼(0, 1) by assumption, Et(vFt+h)

2 = Et(σ
F
t+h)

2. This allows us to compute the h > 1

forecast error variance for F using the recursion

ΩF
t (h) = (ΦF )ΩF

t (h− 1)ΦF ′ + Et(v
F
t+hv

F ′
t+h)
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with ΩF
t (1) = Et(v

F
t+h)

2. The h period ahead predictor uncertainty at time t is the square root

of the h-step forecast error variance of the predictor:

UFt (h) =
√

1′FΩF
t (h)1F

where 1F is an appropriate selection vector. It follows from the determinants of E(σFt+h)
2

that h-period-ahead uncertainty of Ft has a level-effect attributable to αF (the homoskedastic

variation in vFt), a scale effect attributable to τF , with persistence determined by β
F .

To understand how uncertainty in the predictors affect uncertainty in the variable of interest

yj, suppose that the forecasting model for yj only has a single predictor Ft and is given by:

yjt+1 = φyjyjt + γFj F̂t + vyjt+1

where vyjt+1 = σyjt+1ε
y
jt+1 with ε

y
jt+1

iid∼N(0, 1) and

log(σyjt+1)2 = αyj + βyj log(σ
y
jt)

2 + τ yjηjt+1, ηjt+1
iid∼N(0, 1).

When h = 1, V y
jt+1 coincides with the innovation v

y
jt+1 which is uncorrelated with the one-step-

ahead error in forecasting Ft+1, given by V F
t+1 = vFt+1. When h = 2, the forecast error for the

factor is V F
t+2 = ΦFV F

t+1 + vFt+2. The corresponding forecast error for yjt is:

V y
jt+2 = vyjt+2 + φyjV

y
jt+1 + γFj V

F
t+1

which evidently depends on the one-step-ahead forecasting errors made at time t, but V y
t+1 and

V F
t+1 are uncorrelated. When h = 3, the forecast error is

V y
jt+3 = vyjt+3 + φyjV

y
jt+2 + γFj V

F
t+2

which evidently depends on V y
jt+2 and V

F
t+2. But unlike the h = 2 case, the two components

V y
jt+2 and V

F
t+2 are now correlated because both depend on V

F
t+1.

Therefore, returning to the general case when the predictors are Zt = (F ′t ,W
′
t)
′ and its lags,

h-step-ahead forecast error variance for Yjt+h admits the decomposition:

ΩY
jt(h) = ΦY

j ΩY
jt(h− 1)ΦY ′

j

autoregressive

+ ΩZjt(h− 1)

Predictor

+ Et(VYjt+hVY ′jt+h)
stochastic volatility Y

+ 2ΦY
j ΩY Z

jt (h− 1)

covariance

(11)

where ΩY Z
jt (h) = covt(VYjt+h,VZjt+h). The terms in E(VYj,t+hVY ′j,t+h) are computed using the fact

that Et(v
y
jt+h)

2 = Et(σ
y
jt+h)

2, Et(vFt+h)
2 = Et(σ

F
t+h)

2 and Et(vWt+h)
2 = Et(σ

W
t+h)

2.

Time variation in uncertainty can thus be mathematically decomposed into four sources:

an autoregressive component, a common factor (predictor) component, a stochastic volatility

component, and a covariance term. Representation (11), which is equivalent to (9) for the

subvector Yt, makes clear that predictor uncertainty plays an important role via the second term
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ΩZjt (h− 1). It is time-varying because of stochastic volatility in the innovations to the factors

and is in general non-zero for multi-step-ahead forecasts, i.e., h > 1. The role of stochastic

volatility in the series yj comes through the third term, with the role of the covariance between

the forecast errors of the series and the predictors coming through the last term. Computing

the left-hand-side therefore requires estimates of stochastic volatility in the residuals of every

series yj, and in every predictor variable Zj.

4 Empirical Implementation and Macro Data

Our empirical analysis forms forecasts and common uncertainty from two datasets. The first

dataset, denoted Xm, is an updated version of the 132 mostly macroeconomic series used in

Ludvigson and Ng (2010). The 132 macro series inXm are selected to represent broad categories

of macroeconomic time series: real output and income, employment and hours, real retail, man-

ufacturing and trade sales, consumer spending, housing starts, inventories and inventory sales

ratios, orders and unfilled orders, compensation and labor costs, capacity utilization measures,

price indexes, bond and stock market indexes, and foreign exchange measures. The second

dataset, denoted Xf , is an updated monthly version of the of 147 financial time series used

in Ludvigson and Ng (2007). The data include valuation ratios such as the dividend-price ra-

tio and earnings-price ratio, growth rates of aggregate dividends and prices, default and term

spreads, yields on corporate bonds of different ratings grades, yields on Treasuries and yield

spreads, and a broad cross-section of industry, size, book-market, and momentum portfolio

equity returns. A detailed description of the series is given in the Data Appendix of the online

supplementary file. Both of these datasets span the period 1960:01-2011:12. After lags in the

FAVAR and transformations of the raw data, we construct uncertainty estimates for the period

1960:07-2011:12, or 618 observations.

We combine the macro and financial monthly datasets together into one large “macroeco-

nomic dataset”(X) to estimate forecasting factors in these 132+147=279 series. However, we

estimate macroeconomic uncertainty Uyt (h) from the individual uncertainties in the 132 macro

series only. Uncertainties in the 147 financial series are not computed because Xm already

includes a number of financial indicators. To obtain a broad-based measure of uncertainty, it is

desirable not to over-represent the financial series, which are far more volatile than the macro

series and can easily dominate the aggregate uncertainty index.8

The stochastic volatility parameters αj, βj, τ j are estimated from the least square residuals

of the forecasting models using Markov chain Monte Carlo (MCMC) methods.9 In the base-

8The macro dataset already contains some 25 financial indicators. If we include the additional 147 indicators
in our uncertainty index, their greater volatility will dominate the uncertainty measure and we will get back a
aggregate financial market volatility variable as uncertainty.

9We use the stochvol package in R, which implements the ancillarity-suffi ciency interweaving strategy as
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case, the average of these model parameters over the MCMC draws are used to estimate Uyjt(h).

Simple averaging is used to obtain an estimate of h period macro uncertainty denoted

Uyt (h) =
1

Ny

Ny∑
j=1

Ûyjt(h), (12)

where the “hat”indicates the estimated value of Uyjt.This measure of average uncertainty does
not impose any structure on the individual uncertainties above and beyond the assumed as-

sumptions on the latent volatility process.

As an alternative to equally weighting the individual uncertainty estimates, we also construct

a latent common factor estimate of macro uncertainty as the first principal component of

the covariance matrix of individual uncertainties, denoted Ut(h). To ensure that the latent

uncertainty factor is positive, the method of principal components is applied to the logarithm

of the individual uncertainty estimates and then rescaled. Its construction is detailed in the

on-line supplementary file.

Throughout, the factors in the forecasting equation are estimated by the method of static

principal components (PCA). Bai and Ng (2006) show that if
√
T/N → 0, the estimates F̂t can

be treated as though they were observed in the subsequent forecasting regression. The defining

feature of a model with rF factors is that the rF largest population eigenvalues should increase

as N increases, while the N − rF eigenvalues should be bounded. The criterion of Bai and Ng
(2002) suggests rF = 12 forecasting factors Ft for the combined datasets Xm and Xf explaining

about 54% of the variation in the 279 series, with the first three factors accounting for 37%,

8%, 3%, respectively. The first factor loads heavily on stock market portfolio returns (such as

size and book-market portfolio returns), the excess stock market return, and the log dividend-

price ratio. The second factor loads heavily on measures of real activity, such as manufacturing

production, employment, total production and employment, and capacity utilization. The third

factor loads heavily on risk and term spreads in the bond market.

The potential predictors in the forecasting model are F̂t = (F̂1t, . . . F̂rF t)
′ and Wt, where Wt

consists of squares of the first component of F̂t, and factors inX2
it collected into theNG×1 vector

Ĝt. These quadratic terms in Wt are used to capture possible non-linearities and any effect

that conditional volatility might have on the conditional mean function. Following Bai and Ng

(2008), the predictors ultimately used are selected so as to insure that only those likely to have

significant incremental predictive power are included. To do so, we apply a hard thresholding

rule using a conservative t test to retain those Ft andWt that are statistically significant.10 The

discussed in Kastner and Fruhwirth-Schnatter (2013) which is less sensitive to whether the mean of the volatility
process is in the observation or the state equation. Earlier versions of this paper implements the algorithm of
Kim, Shephard, and Chib (1998) using our own MATLAB code.
10Specifically, we begin with a set of candidate predictors that includes all the estimated factors in Xit (the

F̂t), the first estimated factor in X2
it (Ĝ1t), and the square of the first factor in Xit (F̂

2
1t). We then chose subsets
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most frequently selected predictors are F̂2t, a “real”factor highly correlated with measures of

industrial production and employment, F̂12t−1, highly correlated with lagged hours, F̂4t, highly

correlated with measures of inflation, and F̂10t, highly correlated with exchange rates. Four lags

of the dependent variable are always included in the predictive regressions.

Before describing the results, we comment briefly on the question of whether it is desirable for

our objective to use so-called “real-time”data, which would restrict the forecasting information

set to observations on Xit that coincide with the estimated value for this series available at time

t from data collection agencies. Such a dataset differs from the final “historical”data on Xit

because initial estimates of a series are available only with a (typically one month) delay, and

earlier available estimates of many series are revised in subsequent months as better estimates

become available. In this paper we use the final revised, or historical, data in our estimation, for

two reasons. The first is a practical one: our approach calls for a summary statistic of forecasts

and therefore uncertainty across many series, requiring far more series than what is in practice

available on a real-time data basis.

Second, and more fundamentally, we are interested in forming the most historically accurate

estimates of uncertainty at any given point in time in our sample. Restricting information

to real-time data is not ideal for this objective because it is likely to be overly restrictive,

underestimating the amount of information agents actually had at the time of the forecast.

Economic modeling is replete with examples of why this could be so. In representative-agent

models, agents typically observe the current aggregate economic state as it occurs. In practice,

individuals know their own consumption, incomes, the prices they pay for consumption goods,

and probably a good deal about the output of the firm and industries they work in, long

before data collection agencies report on these. Even forecasting practitioners can predict a

large fraction of a future data release based on current information. In this sense, except

for data from asset markets, many of what is called real-time data is not really real-time

news, but instead represents newly released information on events that had occurred. Even in

heterogeneous-agent models where individuals directly observe only their own economic state

variables, the aggregate state upon which their optimization problems depend can typically

be well summarized by a few financial market returns that are observable on a timely basis.

Partly for this reason, our forecasting equations always include a large number of financial

indicators as conditioning variables. The 147 financial data series include many empirical risk-

factors for stocks and bonds that we expect to be immediately responsive to any genuine news

contained in data releases. These financial indicators can also be expected to respond in real

time to disaster-like events (wars, political shocks, natural disasters) that invariably increase

from these by running a regression of yit+1 on a constant, four lags of the dependent variable, F̂t, F̂ 21t, and
Ĝ1t (no lags). Regressors are retained if they have a marginal t statistic greater than 2.575 in the multivariate
forecasting regression of yit+1 on the candidate predictors known at time t.
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uncertainty.11

5 Estimates of Macro Uncertainty

We present estimates of macro uncertainty for three horizons: h = 1, 3, and 12months. Figure 1

plots Uyt (h) over time for h = 1, 3, and 12, along with the NBER recession dates. The matching

horizontal bars correspond to 1.65 standard deviations above the mean for each series. Figure 1

shows that macro uncertainty is clearly countercyclical: the correlation of Uyt (h) with industrial

production growth is -0.62, -0.61, and -0.57 for h = 1, 3, and 12, respectively. While the level

of uncertainty increases with h (on average), the variability of uncertainty decreases because

the forecast tends to the unconditional mean as the forecast horizon tends to infinity. Macro

uncertainty exhibits spikes around the 1973-74 and 1981-82 recessions, as well as the Great

Recession of 2007-09.

Looking across all uncertainty forecast horizons h = 1, 3, and 12, the 2007-09 recession

clearly represents the most striking episode of heightened uncertainty since 1960. The 1981-82

recession is a close second, especially for forecast horizons h = 3 and 12. Indeed, for these

horizons, these are the only two episodes for which macro uncertainty exceeds 1.65 standard

deviations above its mean in our sample. Inclusive of h = 1, the three episodes are the only

instances in which Uyt (h) exceeds, or comes close to exceeding, 1.65 standard deviation above its

mean, implying far fewer uncertainty episodes than other popular proxies for uncertainty, as we

show below. Heightened uncertainty is broad-based during these three episodes as the fraction

of series with Ûyjt(h) exceeding their own standard deviation over the full sample are .42, .61,

and .51 for 1, 3, and 12 respectively. Further investigation reveals that the three series with the

highest uncertainty between 1973:11 and 1975:03 are a producer price index for intermediate

materials, a commodity spot price index, and employment in mining. For the 1980:01 and

1982:11 episode, uncertainty is highest for the Fed funds rate, employment in mining, and the

3 months commercial paper rate. Between 2007:12 and 2009:06, uncertainty is highest for the

monetary base, non-borrowed reserves and total reserves. These findings are consistent with

the historical account of an energy crisis around 1974, a recession of monetary policy origin

around 1981, and a financial crisis around 2008 that created challenges for the operation of

monetary policy.

Table 1 reports summary statistics of Uyt (1).12 The table reports the first-order autocorre-

lation coeffi cient, estimates of the half-life of an aggregate uncertainty innovation from a uni-

variate autoregression (AR) for Uyt (1), estimates of skewness, and kurtosis, and IP-Corr(k)=

11Baker and Bloom (2013) use disaster-like events as instruments for stock market volatility with the objective
of sorting out the causal relationship between uncertainty and economic growth.
12The statistics for Uyjt(3) and Uyjt(12) (not reported) are very similar.
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|corr(Uyt (1),∆IPt+k)| is the (absolute) cross-correlation of U
y

t (1) with industrial production

growth at different leads and lags, k. Also reported is the maximum of IP-Corr(k) over k. The

same statistics are reported for other uncertainty proxies, discussed below. Several statistical

facts about the estimate of aggregate uncertainty Uyt (1) stand out in Table 1.

First, the estimated half life of a shock to aggregate uncertainty is 53 months. This can

be compared to a common proxy for uncertainty, the VXO stock market volatility index con-

structed by the Chicago Board of Options Exchange (CBOE) from the prices of options con-

tracts written on the S&P 100 Index.13 The estimated half life of a shock to stock market

volatility (VXO) is 4 months. Thus, macro uncertainty is much more persistent than the most

common proxy for uncertainty, a finding relevant for theories where uncertainty is a driving force

of economic downturns, including those with more prolonged periods of below-trend economic

growth. Second, the skewness of Uyt (1) is similar to that for VXO, but the kurtosis of Uyt (1)

is lower than VXO. This implies that there are more extreme values in VXO, consistent with

the visual inspection of the two series. Third, aggregate uncertainty is strongly countercyclical

and has a contemporaneous correlation with industrial production of -0.62. Moreover, a sub-

stantial part of the comovement between aggregate uncertainty and production is attributable

to uncertainty leading real activity. The maximum of IP-Corr(k) conditional on k > 0 is -0.67

and occurs at k = 3. But there is also a substantial component of the comovement in which

uncertainty lags real activity. At negative values of k, the maximum of IP-Corr(k) is -0.59 and

occurs at k = −1. By contrast, at a one year horizon (corresponding to k = 12, 4, 2, 1 in

monthly, quarterly, semi-annual and annual data), Uyt (1) has a much stronger correlation with

future real activity than past (-0.44 versus -0.14 in monthly data), where as the opposite is true

for the cross-sectional variance of firm profits and the dispersion in subjective GDP forecasts.

Of course, these unconditional correlations are uninformative about the causal relation between

uncertainty and real activity. All that can be said is that there is a strong coherence between

uncertainty and real activity.

Uncertainty in a series is defined above as the volatility of a purely unforecastable error of

that series. It is potentially influenced by macro uncertainty shocks and idiosyncratic uncer-

tainty shocks. To assess the relative importance of macro uncertainty Uyt (h) in total uncertainty

(summed over all series), we compute, for each of the 132 series in the macro dataset

R2
jτ (h) =

varτ (ϕ̂jτ (h)Uyt (h))

varτ (Ûyjt(h))
. (13)

13This index is available from 1986. Following Bloom (2009), we create a longer series by splicing the CBOE
VXO with estimates of realized stock market volatility for the months before 1986. Specifically, from 1961:1-
1986:12, the series is the standard deviation of stock returns and from 1986:1-2011:12, the series is VXO from
the CBOE. We refer to this spliced version as the VXO index. The VXO series is used instead of the VIX
because the VIX data does not exist before 1990. We have also constructed a new “VIX”series that splices the
post 1990 VIX from CBOE with the standard deviation of stock returns for the earlier sample 1960: 1-1989:12
and found very similar results. The correlation between VXO and VIX is 0.99 over the overlapping sample.
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where ϕ̂jτ (h) is the coeffi cient from a regression of Ûyjt(h) on Uyt (h). Thus R2
jτ (h) is the fraction

of variation in Ûyjt(h) explained by macro uncertainty Uyt (h) in the subsample. The statistic is

computed for h = 1, 3, and 12, for the full sample, for recession months, and for non-recession

months.14 The larger is R2
t (h) ≡ 1

Ny

∑Ny
j=1R

2
jt(h), the more important is macro uncertainty in

explaining total uncertainty.

Table 2 shows that the importance of macro uncertainty grows as the forecast horizon h

increases. On average across all series, the fraction of series uncertainty that is driven by

common macro uncertainty is much higher for h = 3 and h = 12 than it is for h = 1. Table

2 also shows that macro uncertainty Uyt (h) accounts for a quantitatively large fraction of the

variation in total uncertainty in the individual series. When the uncertainty horizon is h = 3

months, estimated macro uncertainty explains an average (across all series) 24%. But because

there is much more variability in uncertainty in recessions, the amount explained in recessions

is much larger (26%) than in non-recessions (16%). The results are similar for the h = 12

case. Results in the right panel of the table based on the common uncertainty factor Ut(h)

constructed by the method of principal components reinforce the point that macro uncertainty

accounts for a larger fraction of the variation in total uncertainty during recessions.

These results show that, on average across series, macro uncertainty is quantitatively im-

portant. But there is a large amount idiosyncratic variation in uncertainty across series, as

evident from the many R2
t (h) statistics that are substantially lower than unity. This is also

evident from examining additional results (not in the table) on the average R2 in the lowest

and highest quartile of series. Whereas the average of R2
jt(h) for h = 3 is 0.24, the upper and

lower quartiles are 0.11 and 0.37, respectively. For an uncertainty horizon of h = 12 months,

the three series that are most explained by macro uncertainty contemporaneously are: man-

ufacturing and trade inventories relative to sales, housing starts (South), and housing starts

(nonfarm), with R2 equal to 0.8, 0.8, and 0.78, respectively. The three series that are least

explained by macro uncertainty contemporaneously are: NAPM vendor deliveries index, CPI-U

(medical care), and a measure of the number of long-run unemployed (persons unemployed 27

weeks or more). All of these have R2 that are effectively zero.

5.1 The Role of the Predictors

We have emphasized the importance of removing the predictable variation in a series so as not

to attribute its fluctuations to a movement in uncertainty. How important are these predictable

variations in our estimates? Our forecasting regression is

yjt+1 = φyj (L)yjt + γFj (L)F̂t + γWj (L)Wt + σyjt+1εjt+1.

14Recession months are defined by National Bureau of Economic Research dates. Macro uncertainty is
estimated over the full sample even when the R2 statistics are computed over subsamples.
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The future values of our predictors F and W are unknown and each predictor is forecasted

by an AR(4) model. As explained above, time-varying volatility in their forecast errors also

contributes to h-step-ahead uncertainty in the variable yjt whenever h > 1. Figure 2 plots

estimated factor uncertainty ÛFkt(h) for several estimated factors F̂kt that display significant

stochastic volatility and that are frequently chosen as predictor variables according to the

hard thresholding rule. These are, F̂1t (highly correlated with the stock market), F̂2t (highly

correlated with measures of real activity such as industrial production and employment), F̂4t

(highly correlated with measures of inflation), F̂5t (highly correlated with the Fama-French risk

factors and bond default spreads). This figure also displays estimates of uncertainty for two

predictors in W : the squared value of the first factor F̂ 2
1t and for the first factor formed from

observations X2
it, which we denote Ĝ1t. These results suggest that uncertainty in the predictor

variables is an important contributor to uncertainty in the series yjt+h to be forecast.

In addition to the stochastic volatility effect, the predictors directly affect the level of the

forecast. An important aspect of our uncertainty measure is a forecasting model that exploits as

much available information as possible to control for the economic state, so as not to erroneously

attributing forecastable variations (as reflected in F̂t and Wt) to uncertainty in series yjt+h.

Most popular measures of uncertainty do not take these systematic forecasting relationships

into account. To examine the role that this information plays in our estimates, we re-estimate

the uncertainty for each series based on the following (potentially misspecified) simple model

with constant conditional mean:

yjt+1 = µ+ σ̃jt+1ε̃jt+1. (14)

Figure 3 plots the resulting estimates of one-step ahead uncertainty Uyjt(1) using this possibly

misspecified model and compares it to the corresponding estimates using the full set of chosen

predictors (chosen using the hard thresholding rule described above), for several key series

in our dataset: total industrial production, employment in manufacturing, non-farm housing

starts, consumer expectations, M2, CPI-inflation, the ten-year/federal funds term spread, and

the commercial paper/federal funds rate spread. Figure 3 shows that there is substantial

heterogeneity in the time-varying uncertainty estimates across series, suggesting that a good

deal of uncertainty is series-specific. But Figure 3 also shows that the estimates of uncertainty in

these series are significantly influenced by whether or not the forecastable variation is removed

before computing uncertainty: when it is removed, the estimates of uncertainty tend to be

lower, much so in some cases. Specifically, uncertainty in each of the eight variables shown

in this figure is estimated to be lower during the 2007-09 recession when predictive content is

removed than when not, especially for industrial production, employment, and the two interest

rate spreads. The difference over time between the two estimates for these variables is quite

pronounced in some periods, suggesting that much of the variation in these series is predictable
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and should not be attributed to uncertainty.15

Since stock market volatility is the most commonly used proxy for uncertainty, we further

examine in Figure 4 how estimates of stock market uncertainty are affected by whether or not

the purely forecastable variation in the stock market is removed before computing uncertainty.

This figure compares (i) the estimate of uncertainty in the log difference of the S&P 500

index for a case where the conditional mean is assumed constant, implying as in (14) that no

predictable variation is removed, with (ii) a case in which only autoregressive terms are included

to forecast the stock market, as in

yjt+1 = φ̃j(L)yjt + σ̃jt+1ε̃jt+1,

with (iii) a case in which all selected factors (using the hard thresholding rule) estimated

from the combined macro and financial dataset with 279 indicators are used as predictors.

Notice that the first case (constant conditional mean) is most akin to estimates of stock market

volatility such as the VXO index and discussed further below. We emphasize that stock market

volatility measures do not purge movements in the stock market of its predictable component

and are therefore estimates of conditional volatility, not uncertainty. Of course, if there were

no predictable component in the stock market, these two estimates would coincide. But Figure

4 shows that there is a substantial predictable component in the log change in the S&P price

index, which, once removed, makes a quantitatively large difference in the estimated amount

of uncertainty over time.16 Uncertainty in the stock market is substantially lower in every

episode when these forecastable fluctuations are removed compared to when they are not, and

is dramatically lower in the recession of 2007-09 compared to what is indicated by ex-post

conditional stock market volatility.

If we examine more closely our measure of stock market uncertainty, (given by the baseline

estimate in Figure 4) and compare it to macro uncertainty Uyt (Figure 1), we see there are
important differences over time in the two series. In particular, there are many (more) large

spikes in stock market uncertainty that are not present for macro uncertainty. Unlike macro

uncertainty, several of the spikes in financial uncertainty occur outside of recessions. Because

stock market volatility is arguably the most common proxy for uncertainty, we further examine

the distinction between uncertainty and stock market volatility in the next section.

15We have also re-estimated common macro uncertainty, Uyt (h) without removing predictable fluctuations.
The spikes appear larger than the base case that removes the forecastable component in each series before
computing uncertainty. This is especially true for the h = 1 case, where presumably the predictive information
is most valuable.
16Evidence for predictability of stock returns is not hard to find. Cochrane (1994) found an important

transitory component in stock prices. Ludvigson and Ng (2007) found substantial predictive information for
excess stock market returns in the factors formed from the financial dataset Xf . For more general surveys of
the predictable variation in stock market returns, see Cochrane (2005) and Lettau and Ludvigson (2010).
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5.2 Uncertainty Versus Stock Market Volatility

In an influential paper, Bloom (2009) emphasizes a measure of stock market volatility as a proxy

of uncertainty.17 This measure is primarily based on the VXO Index. In this subsection we

compare our macro uncertainty estimates with stock market volatility as a proxy for uncertainty.

We update this stock market volatility series to include more recent observations, and plot it

along with our estimated macro uncertainty Uyt (h) for h = 1 in Figure 5. To construct his

benchmark measure of uncertainty “shocks” (plausibly exogenous variation in his proxy of

uncertainty), Bloom selects 17 dates (listed in his Table A.1) which are associated with stock

market volatility in excess of 1.65 standard deviations above its HP-detrended mean. These 17

dates are marked by vertical lines in the figure. As emphasized above and seen again in Figure

5, Uyt (1) exceeds 1.65 standard deviations above its unconditional mean in only three episodes,

suggesting far fewer episodes of uncertainty than that indicated by these 17 uncertainty dates.18

While Uyt (1) is positively correlated with the VXO Index, with a correlation coeffi cient

around 0.5, the VXO Index is itself substantially more volatile than Uyt (1), with many sharp

peaks that are not correspondingly reflected by the macro uncertainty measure. For example,

the large spike in October 1987 reflects “Black Monday,”which occurred on the 19th of the

month when stock markets experienced their largest single-day percentage decline in recorded

history. While this may accurately reflect the sudden increase in financial market volatility

that occurred on that date, our measure of macroeconomic uncertainty barely increases at all.

Indeed, it is diffi cult to imagine that the level of macro uncertainty in the economy in October

1987 (not even a recession year) was on par with the recent financial crisis. Nevertheless, when

the VXO index is interpreted as a proxy for uncertainty, this is precisely what is implied. Other

important episodes where the two measures disagree include the recessionary period from 1980-

1982, where our measure of uncertainty was high but the VXO index was comparatively low,

and the stock market boom and bust of the late 1990s and early 2000s, where the VXO index

was high but uncertainty was low.

5.3 Macro Uncertainty and Macroeconomic Dynamics

Existing empirical research on uncertainty has often found important dynamic relationships

between real activity and various uncertainty proxies. In particular, these proxies are counter-

cyclical and VAR estimates suggest that they have a large impact on output and employment

17A number of other papers also use stock market volatility to proxy for uncertainty; these include Romer
(1990), Leahy and Whited (1996), Hassler (2001), Bloom, Bond, and Van Reenen (2007), Greasley and Madsen
(2006), Gilchrist, Sim, and Zakrajsek (2010), and Basu and Bundick (2011)
18Bloom (2009) counts uncertainty episodes by the number of times the stock market volatility index exceeds

1.65 standard deviations above its Hodrick-Prescott filtered trend, rather than its unconditional mean. If we
do the same for Uyt (1), we find 5 episodes of heightened uncertainty: one in the early mid 1970s (1973:09 and
1974:11), one during the twin recessions in the early 1980s (1980:02 and 1982:02), 1990:01, 2001:10, and 2008:07.
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in the months after an innovation in these measures. A key result is that a in rise some proxies

(notably stock market volatility) at first depresses real activity and then increases it, leading to

an over-shoot of its long-run level, consistent with the predictions of some theoretical models

on uncertainty as a driving force of macroeconomic fluctuations.

We now use VARs to investigate the dynamic responses of key macro variables to innovations

in our uncertainty measures and compare them to the responses to innovations in the VXO

index as a proxy for uncertainty. For brevity in discussing the results, we will often refer to

these innovations to uncertainty or stock market volatility (in the case of the VXO index) as

“shocks.”Ȧs is the case of all VAR analyses, the impulse responses and variance decompositions

depend on the identification scheme, which in our case is based on the ordering of the variables.

A question arises as to which variables to include in the VAR. As a starting point, we choose a

macro VAR similar to that studied in Christiano, Eichenbaum and Evans (2005, CEE hereafter).

This VAR affords the advantage of containing a set of variables whose dynamic relationships

have been the focus of extensive macroeconomic research. Since CEE use quarterly data and we

use monthly data, we do not use exactly the same VAR, but instead include similar variables

so as to roughly cover the same sources of variation in the economy.19 We estimate impulse

responses from a eleven-variable VAR, hereafter referred to as VAR-11. The ordering mimics

that of CEE: 

log (real IP)
log (employment)

log (real consumption)
log (PCE deflator)

log (real new orders)
log (real wage)

hours
federal funds rate

log (S&P 500 Index)
growth rate of M2

uncertainty


(VAR-11)

Four versions of VARs-11 with twelve lags are considered with uncertainty taken to be either

Uyt (1) , Uyt (3), Uyt (12) , or the VXO Index. The main difference from the CEE VAR is the

inclusion of a stock price index and uncertainty. It is important to include the stock market

index for understanding the dynamics of uncertainty since it is natural to expect the two

variables to be dynamically related. In all cases, we place the measure of uncertainty last in

the VAR. The shocks to which dynamic responses are traced are identified using a Cholesky

decomposition, with the same timing assumptions made in CEE that allows identification of

19Specifically, monthly industrial production and the PCE deflator are substituted for quarterly Gross Do-
mestic Product GDP and its deflator, hours is used instead of labor productivity, average hourly earnings is for
the manufacturing sector only because the aggregate measure does not go back to 1960, and the S&P 500 stock
market index is substituted for quarterly corporate profits.
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federal funds rate shocks.20

In addition to VAR-11, it is also of interest to compare the dynamic correlations of our

uncertainty measures with common uncertainty proxies using a VAR that has been previously

employed in the uncertainty literature. To do so, we estimate impulse responses from a eight-

variable model as in Bloom (2009), hereafter referred to as VAR-8:

log(S&P 500 Index)
uncertainty

federal funds rate
log(wages)
log(CPI)

hours
log(employment)

log(industrial production)


. (VAR-8)

Following Bloom (2009), VAR-8 uses twelve lags of industrial production, wages, hours. Unlike

VAR-11, VAR-8 uses employment for the manufacturing sector only. Bloom (2009) considers a

15-point shock to the error in the VXO equation. This amounts to approximately 4 standard

deviations of the identified error. We record responses to 4 standard deviation shocks in Uyt (h),

so the magnitudes are comparable with those of VXO shocks. However, we make one departure

from the estimates in Bloom (2009). We do not detrend any variables using the filter of Hodrick

and Prescott (1997), while Bloom did so for every series except the VXO index. Because the

HP filter uses information over the entire sample, it is diffi cult to interpret the timing of an

observation.21

Figure 6 shows the dynamic responses of output and employment in VAR-11. Shocks to

Uyt (h) sharply reduce production and employment, with the effects persisting well past the

60 month horizon depicted. The last row of this figure compares the responses when the

VXO index is used as a proxy for uncertainty. Both the magnitude and the persistence of the

responses of production and employment are much smaller. The responses to Uyt (h) are far more

protracted than those to the VXO Index, which underscores the greater persistence of these

measures as compared to popular uncertainty proxies. Indeed, the response of employment

to a VXO disturbance is barely statistically different from zero shortly after the shock and

outright insignificant at other horizons. The response of production to a VXO shock is also only

marginally different from zero for the first 3 months, becoming zero thereafter. An important

difference in these results from those reported in Bloom (2009) is that shocks to any of these

measures (including VXO) do not generate a statistically significant “volatility overshoot,”

20We have confirmed that the dynamic responses of the non-uncertainty variables to a federal funds rate shock
(interpreted by CEE as a monetary policy shock) in a VAR that does not include any uncertainty measure are
qualitatively and quantitatively very similar to those reported in CEE. These results are available upon request.
21Results using HP filtered data and the original Bloom VAR are reported in the on-line supplementary

material file for this paper.
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namely, the rebound in real activity following the initial decline after a positive uncertainty

shock. This finding echoes those in Bachmann, Elstner, and Sims (2013). Unlike the findings

in Bachmann, Elstner, and Sims (2013), however, the short-run (within 10 months) responses

to our uncertainty shocks are sizable.

Figure 7 shows the dynamic responses of output and employment in VAR-8. The responses of

these variables, both in terms of magnitude and persistence, to the macro uncertainty measures

Uyt (h) are similar to those reported in Figure 6 using VAR-11. Disturbances to the VXO index

appear to have larger and somewhat more persistent effects in VAR-8 than in VAR-11. But the

responses to VXO shocks even in this VAR are not as large or persistent as those to innovations

in macro uncertainty Uyt (h). Again, there is no clear evidence of a volatility overshoot in

response to any of the uncertainty measures, including VXO. The overshoot found by Bloom

(2009) appears to be sensitive to whether the VXO data are HP filtered.22

To study the quantitative importance of uncertainty shocks for macroeconomic fluctuations,

Table 3 reports forecast error variance decomposition for production, employment and hours and

compares them with the decompositions when VXO is used instead as the proxy for uncertainty

in the VAR-11. We use k here to distinguish the VAR forecast horizon from the uncertainty

forecast horizon h. The table shows the fraction of the VAR forecast error variance that is

attributable to common macro uncertainty shocks in Uyt (h) over several horizons, including the

horizon k for which shocks to the uncertainty measure Uyt (1) or VXO are associated with the

greatest fraction of VAR forecast error variance (denoted k =max in the table). The table also

reports the fraction of variation attributable to the federal funds rate, which we discuss below.

From Table 3 we can see that uncertainty shocks are associated with much larger fractions

of real activity than are VXO shocks. Shocks to Uyt (12), for example, are associated with a

maximum of 29% of the forecast error variance in production, 31% of the forecast error variance

in employment, and 12% of the forecast error variance in hours. By contrast, the corresponding

numbers for VXO shocks are 6.9%, 7.6%, and 2.3%, respectively. Thus, uncertainty shocks are

associated with over four times the variation in production and employment and over five times

the variation in hours compared to VXO shocks.

To put these results in perspective, Table 3 also reports the fraction of variation in these

variables that is attributable to monetary policy shocks, identified here following CEE by a

shock in VAR-11 to the federal funds rate. Inn the VAR-11 where Uyt (12) is included as the

measure of uncertainty, shocks to the federal funds rate are associated with a maximum of 29%

of the forecast error variance in production, 32% of the forecast error variance in employment,

and 10% of the forecast error variance in hours. These numbers are almost identical to the

fraction explained by shocks to Uyt (12). This finding suggest that the dynamic correlation of

22After a careful inspection of the code kindly provided by Bloom, we find that contrary to a statement in
the paper, Bloom (2009) HP filters all data in the VAR for these impulse responses except the VXO index.
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uncertainty with the real economy may be quantitatively as important as it is for monetary

policy shocks.

We can use the same variance decompositions to ask how much of uncertainty variation is

associated with variation in innovations of the other variables in the system. These results are

not reported in the table, but we discuss a few of them here. At the k =∞ horizon, we find that

stock return innovations are associated with the largest fraction of variation in Uyt (12), equal

to 15.26%, followed by price level innovations (11.9%) and innovations to industrial production

(9.56%). These numbers are roughly of the same order of magnitude as those for the fraction of

forecast error variance in production growth explained by Uyt (12) for k =∞ (equal to 15.75%).

These variance decompositions are of course specific to the ordering of the variables used in

the analysis. But as uncertainty is placed last in the VAR, the effects of uncertainty shocks

on the other variables in the system are measured after we have removed all the variation in

uncertainty that is attributable to shocks to the other endogenous variables in the system. That

the effects of uncertainty shocks are still non-trivial is consistent with the view that uncertainty

has important implications for economic activity.

These variance decomposition results are similar if we instead use VARs that include both

VXO and our uncertainty measures Uyt (h). From such VARs, we find that the big driver of

VXO are shocks to VXO, not uncertainty. This reinforces the conclusion that stock market

volatility is driven largely by shocks other than those to broad-based economic uncertainty,

suggesting researchers should be cautious when using this measure as a proxy for uncertainty.

We have reported results only for the base-case estimates described above. An on-line sup-

plementary file provides additional results designed to check the sensitivity of our results to

various assumptions made above. These exercises are based on (i) alternative weights used to

aggregate individual uncertainty series; (ii) alternative location statistics of stochastic volatility

to construct individual uncertainty series; (iii) alternative conditioning information based on

recursive (out-of-sample) forecasts to construct diffusion index forecasts (iv) alterative measures

of volatility of individual series such as GARCH and EGARCH.23 The key findings are qualita-

tively and quantitatively similar to the ones reported here. We note one finding in particular,

namely that the results above are not sensitive to whether we use out-of-sample (recursive) or

in-sample forecasts; indeed the correlation between the resulting uncertainty measures is 0.98.24

23Results based on the GARCH/EGARCH estimates indicate the number and timing of big uncertainty
episodes, as well as the persistence of uncertainty, is very similar to what is found using our base-case measure of
macro uncertainty. What is different is the real effect of uncertainty innovations from a VAR, once orthogonalized
shocks are analyzed. This is to be expected because GARCH type models (unlike stochastic volatility) have
a shock to the second moment that is not independent of the first moment, a structure inconsistent with the
assumptions of an independent uncertainty shock presumed in the uncertainty literature. Using a GARCH-based
uncertainty index thus creates additional identification problems that are beyond the scope of this paper.
24Note also that, in the recursive forecast estimation the parameters of the forecasting relation change every

period, so this speaks directly to the question of the role played by parameter stability in our estimates,
suggesting that parameter instability is not important in our FAVAR.
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5.4 Comparison with Measures of Dispersion

This subsection compares the time-series behavior of Uyt (h) with four cross-sectional uncertainty

proxies studied by Bloom (2009). These are:

1. The cross-sectional dispersion of firm stock returns. This is defined as the within-month

cross-sectional standard deviation of stock returns for firms with at least 500 months of

data in the Center for Research in Securities Prices (CRSP) stock-returns file. The series

is also linearly detrended over our sample period.

2. The cross-sectional dispersion of firm profit growth. Profit growth rates are normalized

by average sales on a monthly basis, so that this measure captures the quarterly cross-

sectional standard deviation profits. We formulate a year-over-year version to minimize

seasonal variation equal to profitsit−profitsit−4
0.5(salesit+salesit−4)

, where i = 1, 2, . . . , Nt indexes the firms and

Nt denotes the total number of firms observed in month t. The sample is restricted to

firms with at least 150 quarters of data in the Compustat (North America) database.

3. The cross-sectional dispersion of GDP forecasts from the Philadelphia Federal Reserve

Bank’s biannual Livingston Survey. This is defined as the biannual cross-sectional stan-

dard deviation of forecasts of nominal GDP one year ahead. The series is also linearly

detrended over our sample period.

4. The cross-sectional dispersion of industry-level total factor productivity (TFP). This is

defined as the annual cross-sectional standard deviation of TFP growth rates within SIC

4-digit manufacturing industries, calculated using the five-factor TFP growth data com-

puted by Bartelsman, Becker, and Gray as a part of the NBER-CES Manufacturing

Industry Database (http://www.nber.org/data/nbprod2005.html).25

These updated series, along with Uyt (1) are displayed in Figure 8. As was true in the case

of stock market volatility in the previous subsection, these measures exhibit quite different

behavior from macroeconomic uncertainty. Stock return dispersion tells a story roughly similar

to the VXO Index, with a particularly large increase in uncertainty leading up to the 2001

recession that is not present in our measure of macro uncertainty. Firm profit dispersion

actually suggests a relatively low level of uncertainty during the 1980-82 recessions when macro

uncertainty was high, with a sharp increase towards the end of the 1982 recession, by which time

macro uncertainty had declined. GDP forecast dispersion points to a level of uncertainty during

each of the 1969-70 and 1990 recessions which is on par with the level of uncertainty during

25There is a jump in the 1997 industry TFP dispersion measure that occurs purely because of a move from
NAICS to SIC industry classification codes. We therefore drop this year and interpolate to obtain the continuous
panel.
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the 2007-09 recession. Again, this contrasts with macro uncertainty which is at a record high

in the 2007-09 recession but was not high in the previous episodes. Industry TFP dispersion

shows almost no increase in uncertainty during the 1980-82 recessions. and displays the largest

increase during the recent financial crisis.

It is instructive to consider the different statistical properties of these dispersion measures

as they compare to those for the estimated aggregate uncertainty index. Table 1 provides the

statistics. To match the frequency of the dispersion measure, we aggregate our monthly series

Uyt (h) using averages over the desired period.

The statistics using these proxies for uncertainty paint a similar picture to that obtained

using the VXO Index. In particular, the responses of Uyt (1) to its own shock from an autore-

gression are far more prolonged than those of the dispersion proxies. For example, the response

of the dispersion in firm-level stock returns to its own shock has a half-life of 1.9 months,

compared to 52.5 months for Ûyjt(1).

We also consider impulse responses of production and employment for the eleven-variable

VAR, but using these measures of dispersion as the proxy for uncertainty. These results are

reported in Figure 9 and can be summarized as follows. The dynamic responses using dispersions

to proxy for uncertainty do not in general display the intuitive pattern that production and

employment should fall as a result of an uncertainty shock. Production falls the most on impact

in response to shocks to the cross-sectional dispersion in industry-level TFP, but the response

of employment is more muted. In the case of stock return dispersion, we see no statistically

significant response in production or employment to an innovation. Shocks to the dispersion

in firm profits lead to an increase in production and employment, as do shocks to the cross-

sectional dispersion in subjective GDP forecasts.

Overall, these results show that, like the VXO proxy, increases in measures of cross-sectional

dispersion do not necessarily coincide with increases in broad-based macro uncertainty, where

the latter is associated with a large and persistent decline in real activity. Like stock market

volatility over time, measures of dispersion may vary for many reasons that are unrelated to

broad-based macroeconomic uncertainty.

6 Results: Firm-Level Common Uncertainty

In this section we turn from our analysis of common macroeconomic uncertainty to examine

common variation in uncertainty at the firm level. Rather than studying uncertainty across

many different variables, we now study uncertainty on the same variable across many different

firms. Specifically, we measure uncertainty in the profit growth of individual firms. For the

firm-level dataset, the unit of observation is the change in firm pre-tax profits Pi,t, normalized

by a two-period moving average of sales, Si,t, following Bloom (2009). Given the seasonality
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in this series, we instead form a year-over-year version of this measure, as detailed in the data

appendix. After converting to a balanced panel, we are left with 155 firms from 1970:Q1-

2011:Q2 without missing values.26 With data transformations and lags in the FAVAR, we are

left with uncertainty estimates for 1970:Q3-2011:Q2. For each firm, the series to be forecast is

normalized pretax profits, so again yit = Xit. For the firm-level results, as for the macro results,

we form forecasting factors Ft from the panel {Xit}Nxpi=1 , as well as {X2
it}

Nxp
i=1 where Nxp = 155, the

number of cross-sectional firm-level observations. We find evidence of two factors in {Xit}Nxpi=1

and one factor in {X2
it}

Nxp
i=1 . The Wt vector of additional predictors includes the macro factors

estimated from the macro data set. As before, a conservative t test is used to include only the

predictors that are statistically significant.

One important consideration that is relevant to this microeconomic context is the construc-

tion of our panel. Since we need a reasonable number of time series observations to estimate

the stochastic volatility processes, we require that the panel be balanced. This leads us to drop

about 400 firms per quarter on average. In particular, many of the firms operating towards

the beginning of our sample are excluded, because they do not survive until 2011:Q2. This

eliminates a large fraction of the cross-sectional variation before 1995. Because of this survivor-

ship bias, it is diffi cult to conclude that our estimated aggregate firm-level uncertainty measure

represents a comprehensive measure of the uncertainty facing firms since 1970. But note that

we will compute the cross-sectional standard deviation of firm profits within this same balanced

panel and compare it to our estimate of common firm-level uncertainty from the panel. Since

the two measures are computed over the same panel of firms, any differences between them

cannot be attributable to survivorship bias.

Figure 10 displays the estimated common uncertainty in firm-level profits Uyt (h) over time

for h = 1, 3, and 4 quarters. Like the measure of macroeconomic uncertainty analyzed above,

these estimates point to a rise in uncertainty surrounding the 1973-75,1980-82 recessions, but

not of the same magnitude. Instead, there are larger increases in common firm-level uncertainty

surrounding the 2000-01 and 2007-09 recessions. However, this type of aggregate uncertainty

is less countercyclical: the correlation of each of these measures with industrial production

growth is negative, but smaller in absolute value than is the correlation of the macro uncertainty

measures with production growth. This figure also compares our measures of common firm-level

uncertainty Uyt (h) to the popular proxy for common firm-level uncertainty given by on the cross-

sectional dispersion in firm profit growth normalized by sales, denoted DBt (see equation (3)).
As the figure shows, the two measures behave quite differently, with many more spikes in DBt
than in common firm-level uncertainty. Indeed, the dispersion measure exceeds 1.65 standard

26A limitation with Compustat data is that its coverage is restricted to large publicly traded firms. The
Census Bureau’s ASM data are more comprehensive, but limited to annual observations. Similarly, (industry
level) total factor productivity may be preferred over profits as the source of uncertainty, but these industry
level data eliminate much of the uncertainty at the firm level (Schaal (2012)).
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deviations above its mean dozens of times, while common firm-level uncertainty measures only

do so a handful of times. Like the VXO index, there appear to be many movements in the

cross-sectional standard deviation of firm profit growth that are not driven by common shocks

to uncertainty across firms.

To assess the relative importance of macro uncertainty Uyt (h) in total uncertainty, we again

compute, for each of the 155 firms in the firm-level dataset, and for h = 1 to 6, the R2
jt(h)

as defined in (13), averaged over t. As above, this exercise is performed for the full sample,

for recession months, and for non-recession months. Table 4 shows that common firm-level

uncertainty comprises a larger fraction of the variation in total uncertainty during recessions

that during non-recessions, as was the case for common macroeconomic uncertainty. Indeed,

the common firm-level common uncertainty we estimate explains an average of 18% of the

variation in total uncertainty for an uncertainty horizon of h = 4 quarters in non-recessions,

but it explains double that in recessions. These results echo those using the macro uncertainty

measures. Other results (using VARs for example) are qualitatively similar and omitted to

conserve space.

7 Conclusion

In this paper we have introduced new time series measures of macroeconomic uncertainty. We

have strived to ensure that these measures be comprehensive and as free as possible from both

the restrictions of theoretical models and/or dependencies on a handful of economic indicators.

We are interested in macroeconomic uncertainty, namely uncertainty that may be observed

in many economic indicators at the same time, across firms, sectors, markets, and geographic

regions. And we are interested in the extent to which this macroeconomic uncertainty is asso-

ciated with fluctuations in aggregate real activity and financial markets.

Our measures of macroeconomic uncertainty fluctuate in a manner that is often quite distinct

from popular proxies for uncertainty, including the volatility of stock market returns (both over

time and in the cross-section), the cross-sectional dispersion of firm profits, productivity, or

survey-based forecasts. Indeed, our estimates imply far fewer important uncertainty episodes

than do popular proxies such as stock market volatility, a measure that forms the basis for the

17 uncertainty dates identified by Bloom (2009). By contrast, we uncover just three big macro

uncertainty episodes in the post-war period: the months surrounding the 1973-74 and 1981-82

recessions and the Great Recession of 2007-09, with the 2007-09 recession the most striking

episode of heightened uncertainty since 1960. These findings and others reported here suggest

that there is much variability in the stock market and in other uncertainty proxies that is not

generated by a movement in genuine uncertainty across the broader economy. This occurs both

because these proxies over-weight certain series in the measurement of macro uncertainty, and
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because they erroneously attribute forecastable fluctuations to a movement in uncertainty.

Our estimates nevertheless point to a quantitatively important dynamic relationship be-

tween uncertainty and real activity. In an eleven variable monthly macro VAR, common macro

uncertainty shocks have effects on par with monetary policy shocks and are associated with a

much larger fraction of the VAR forecast error variance in production and hours worked than are

stock market volatility shocks. Our estimates also suggest that macro uncertainty is strongly

countercyclical, explaining a much larger component of total uncertainty during recessions than

in non-recessions, and far more persistent than common uncertainty proxies.

In this paper we have deliberately taken an atheoretical approach, in order to provide a

model-free index of macroeconomic uncertainty that can be tracked over time. Such an in-

dex can be used as a benchmark for evaluating any DSGE model with (potentially numerous)

primitive stochastic volatility shocks. Our measure of uncertainty conveniently aggregates un-

certainty in the economy derived from all sources into one summary statistic. In some cases, it

may be useful to construct sub-indices. These can be easily constructed using our framework.
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Uncertainty measured by
Statistic (Monthly) VXO D(Returns) Uyt (1)
AR(1), Half life 0.85, 4.13 0.70, 1.92 0.99, 53.58
Skewness, Kurtosis 2.18, 11.05 1.30, 5.51 1.81, 7.06
IP-Corr(0) -0.32 -0.45 -0.62
IP-Corr(12), IP-Corr(-12) -0.29,-0.11 -0.25,-0.07 -0.44,-0.14
maxk>0IP-Corr(k) -0.43 -0.47 -0.67
At lag k = 6 2 3

maxk<0IP-Corr(k) -0.30 -0.43 -0.59
At lag k = -1 -1 -1

Statistic (Quarterly) D(Profits) Uyt (1)
AR(1), Half life 0.76, 2.55 0.93, 10.23
Skewness, Kurtosis 0.36, 2.47 1.77, 6.75
IP-Corr(0) -0.37 -0.64
IP-Corr(4), IP-Corr(-4) -0.11,-0.30 -0.46,-0.16
maxk>0IP-Corr(k) -0.34 -0.70
At lag k = 1 1

maxk<0IP-Corr(k) -0.37 -0.53
At lag k = -1 -1

Statistic (Semi-Annual) D(Forecasts) Uyt (1)
AR(1), Half Life 0.45, 0.86 0.85, 4.18
Skewness, Kurtosis 0.24, 2.19 1.74, 6.41
IP-Corr(0) -0.41 -0.64
IP-Corr(2), IP-Corr(-2) -0.16,-0.24 -0.48,-0.16
maxk>0IP-Corr(k) -0.34 -0.68
At lag k = 1 1

maxk<0IP-Corr(k) -0.35 -0.40
At lag k = -1 -1

Statistic (Annual) D(TFP) Uyt (1)
AR(1), Half Life 0.33, 0.63 0.61, 1.40
Skewness, Kurtosis 1.71, 8.56 1.76, 6.24
IP-Corr(0) -0.55 -0.69
IP-Corr(1), IP-Corr(-1) -0.33,-0.09 -0.48,-0.16
maxk>0IP-Corr(k) -0.33 -0.47
At lag k = 1 1

maxk<0IP-Corr(k) -0.24 -0.24
At lag k = -26 -26

Table 1: Summary Statistics. This table displays a number of summary statistics characterizing various
proxies. IP-Corr(k) is the absolute cross-correlation coeffi cient between a measure of uncertainty ut and 12
month moving average of industrial production growth in period t+ k, ie. IP-Corr(k)=|corr(ut,∆lnIPt+k)|. A
positive k means uncertainty is correlated with future IP. Half-lifes are based on estimates from a univariate
AR(1) model for each series. The maximum correlation, at different leads/lags, with the growth rate of IP
(12 month moving average) is also reported. Uyt (1) denotes base case estimated aggregate uncertainty. D(·)
represents dispersion, i.e. the cross-sectional standard deviation. Monthly series are aggregated to quarterly,
semi-annual, and annual series by averaging monthly observations over each larger period. The sample for
each dataset is the largest available that overlaps with our uncertainty estimates: 1960:07-2011:12 (monthly),
1961:Q3-2011:Q3 (quarterly), 1960:H2-2011:H2 (half-years), 1960-2009 (annual).



Average R2 From Regressions of Individual Uncertainty on Macro Uncertainty
Average: Uy(h) = 1

Ny

∑Ny

j=1 Ûjt(h) PC: Uy(h) =
∑Ny

j=1 wjÛjt(h)

h R2 full sample R2 recession R2 non-recession R2 full sample R2 recession R2 non-recession
1 0.18 0.19 0.12 0.17 0.17 0.12
2 0.22 0.24 0.15 0.22 0.24 0.15
3 0.24 0.26 0.16 0.23 0.25 0.16
4 0.25 0.26 0.17 0.23 0.24 0.16
5 0.26 0.27 0.18 0.24 0.25 0.16
6 0.27 0.28 0.19 0.25 0.26 0.16
7 0.28 0.29 0.19 0.25 0.27 0.17
8 0.29 0.30 0.20 0.25 0.27 0.17
9 0.29 0.30 0.20 0.25 0.28 0.17
10 0.29 0.31 0.21 0.25 0.28 0.17
11 0.30 0.31 0.21 0.25 0.29 0.17
12 0.30 0.31 0.21 0.25 0.29 0.17

Table 2: Cross-sectional averages of R2 values from regressions of Ûyjt(h) on the benchmark (average across

series) macro uncertainty measure Uyt (h) or the principal components (PC) macro uncertainty measure Uyt (h)
over different subsamples. Uncertainty is estimated from the monthly, macro dataset. Recession months are
defined according to the NBER Business Cycle Dating Committee. The data are monthly and span the period
1960:07-2011:12.



Relative Importance of Uncertainty v.s. FFR in VAR-11

Fraction Variation in Production (%)
Explained by: Uyt (1) FFR Uyt (3) FFR Uyt (12) FFR VXO FFR
k = 3 1.78 0.06 2.08 0.04 2.13 0.02 0.48 0.01
k = 12 11.29 5.86 15.79 5.27 15.22 4.00 0.91 7.17
k =∞ 7.87 33.67 8.79 31.39 15.76 28.96 6.93 39.07
max k 174 ∞ 171 ∞ 174 ∞ 184 ∞
k = max 17.02 33.67 20.86 31.39 28.54 28.96 6.93 39.07

Fraction Variation in Employment (%):
Explained by: Uyt (1) FFR Uyt (3) FFR Uyt (12) FFR VXO FFR
k = 3 0.90 0.06 0.98 0.03 0.86 0.01 1.06 0.02
k = 12 9.15 6.99 13.23 6.33 13.08 4.87 1.11 8.26
k =∞ 6.66 36.02 7.51 33.14 14.25 31.89 7.64 39.47
max k 105 185 106 190 107 357 184 148
k = max 16.40 41.30 20.06 39.35 31.00 34.83 7.64 52.74

Fraction of Variation in Hours (%):
Explained by: Uyt (1) FFR Uyt (3) FFR Uyt (12) FFR VXO FFR
k = 3 1.76 0.44 1.88 0.48 1.26 0.56 0.12 0.72
k = 12 8.11 4.58 11.36 4.30 10.53 3.54 1.16 6.36
k =∞ 7.38 12.92 8.98 12.08 11.93 9.79 2.15 17.21
max k 21 ∞ 16 ∞ 37 ∞ 43 ∞
k = max 9.21 12.92 11.96 12.08 12.34 9.79 2.32 17.21

Table 3: Decomposition of variance in production, employment and hours due to either uncertainty or
the federal funds rate in VAR-11. The VAR uses variables in the following order: log(industrial production),
log(employment), log(real consumption), log(implicit consumption deflator), log(real value new orders, con-
sumption and non-defense capital goods), log(real wage), hours, federal funds rate (FFR), log(S&P 500 Index),
growth rate of M2, and uncertainty , where the latter is either Uyt (h) or the VXO Index. We estimate separate
VARs in which uncertainty is either one of Uyt (h), h = 1, 3, 12 or the VXO index. Each panel shows the fraction
of forecast-error variance of the variable given in the panel title at VAR forecast horizon k that is explained by
the uncertainty measure, as named in the column, or the FFR for that VAR. The row denoted “max k”gives the
horizon k for which the uncertainty variable named in the column explains the maximum fraction of forecast
error variance. The row denoted “k = ”max gives the fraction of forecast error variance explained at max k.
Real variables are obtained by dividing nominal values by the PCE deflator. The data are monthly and span
the period 1960:07-2011:12.



Average R2 From regressions of Firm-Level Uncertainty on Common Uncertainty
Average: Uy(h) = 1

Ny

∑Ny

j=1 Ûjt(h) PC: Uy(h) =
∑Ny

j=1 wjÛjt(h)

h R2 full sample R2 recession R2 non-recession R2 full sample R2 recession R2 non-recession

1 0.15 0.29 0.14 0.12 0.27 0.11
2 0.18 0.34 0.16 0.16 0.32 0.14
3 0.19 0.35 0.17 0.17 0.33 0.15
4 0.20 0.36 0.18 0.18 0.33 0.16
5 0.21 0.36 0.18 0.18 0.33 0.16
6 0.21 0.36 0.19 0.18 0.32 0.16

Table 4: Cross-sectional averages of R2 values from regressions of Ûyjt(h) on the benchmark (average across

series) macro uncertainty measure Uyt (h) or the principal components (PC) macro uncertainty measure Uyt (h)
over different subsamples. Uncertainty estimated from the quarterly firm-level dataset with observations on
firm profit growth rates normalized by sales. Recession months are defined according to the NBER Business
Cycle Dating Committee. The data are quarterly and span the period 1970:Q3-2011:Q2.
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Figure 1: Aggregate Uncertainty: Uyt (h) for h = 1, 3, 12. Horizontal lines indicate 1.65 standard
deviations above the mean of each series. Industrial Production (IP) growth is computed as
the 12-month moving average of monthly growth rates (in percent). The data are monthly and
span the period 1960:07-2011:12.
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Figure 2: Predictor Uncertainty: This plot displays uncertainty estimates for 6 of the 14
predictors contained in the vector Zt ≡ (F ′t ,W

′
t)
′. Ft denotes the 12 factors estimated from Xit,

andWt ≡ (F 2
1t, G1t)

′, where G1t is the first factor estimated from X2
it. Titles represent the types

of series which load most heavily on the factor plotted; “FF Factors”means the Fama-French
factors (HML, SMB, UMD). The data are monthly and span the period 1960:07-2011:12.
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Figure 3: The Role of Predictors: These plots display two estimates of Uyjt(1) for several
key series in our data set. The first is constructed using the full set of predictor variables
(“Baseline”); the second is constructed using no predictors (“No predictors”). The data are
monthly and span the period 1960:07-2011:12.
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Figure 4: Uncertainty in the S&P 500 Index. These plots show estimates of UySP500,t(1) for
the S&P 500 Index based on three different forecasting models. “No Predictors”indicates that
no predictors were used, “AR only” indicates that only a fourth-order autoregressive model
was used to generate forecast errors, and “Baseline” indicates that the full set of predictor
variables was used to generate forecast errors. The data are monthly and span the period
1960:07-2011:12.
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Figure 5: Stock Market Implied Volatility and Uncertainty: This plot shows Uyt (1) and the
VXO index, expressed in standardized units. The vertical lines correspond to the 17 dates
in Bloom (2009) Table A.1, which correspond to dates when the VXO index exceeds 1.65
standard deviations above its HP (Hodrick and Prescott, 1997) filtered mean. The horizontal
line corresponds to 1.65 standard deviations above the unconditional mean of each series (which
has been normalized to zero). The data are monthly and span 1960:07-2011:12.
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Figure 6: Impulse response of production and employment from estimation of VAR-11 using
Uyt (h) or VXO as uncertainty. Dashed lines show 68% standard error bands. The data are
monthly and span the period 1960:07 to 2011:12.
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Figure 7: Impulse response of production and employment from estimation of VAR-8 using
Uyt (h) or VXO as uncertainty. Dashed lines show 68% standard error bands. The data are
monthly and span the period 1960:07 to 2011:12.
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Figure 8: Cross-sectional Dispersion and Uncertainty: This plot shows Uyt (1) and four
dispersion-based proxies, expressed in standardized units. The proxies are (in clockwise or-
der from the northwest panel) the cross-sectional standard deviation of: monthly firm stock
returns (CRSP), quarterly firm profit growth (Compustat), yearly SIC 4-digit industry total
factor productivity growth (NBER-CES Manufacturing Industry Database), and half-yearly
GDP forecasts (Livingston Survey). The sample for each dataset is the largest available that
overlaps with our uncertainty estimates: 1960:07-2011:12 (monthly), 1961:Q3-2011:Q3 (quar-
terly), 1960:H2-2011:H2 (half-years), 1960-2009 (annual).
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Figure 9: Impulse response of production and employment from estimation of VAR-11 us-
ing four dispersion measures Dt as uncertainty: (i) “Returns”is the cross-sectional standard
deviation of firm stock returns; (ii) “Profits”is the cross-sectional standard deviation of firm
profits; (iii) “Forecasts”is the cross-sectional standard deviation of GDP forecasts from the
Livingston Survey; (iv) “TFP”is the cross-sectional standard deviation of industry-level total
factor productivity. Dashed lines show 68% standard error bands. The sample for each dataset
is the largest available that overlaps with our uncertainty estimates: 1960:07-2011:12 (monthly),
1961:Q3-2011:Q3 (quarterly), 1960:H2-2011:H2 (half-years), 1960-2009 (annual).
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Figure 10: Firm-level Uncertainty: Uyt (h) for h = 1, 2, 4. Horizontal lines indicate 1.65 standard
deviations above the mean of each series. The thin solid line marked “Dispersion in firm
profits”is the cross-sectional standard deviation of firm profit growth, normalized by sales, and
denoted DBt . The dispersion is taken after standardizing the profit growth data. Industrial
Production (IP) growth is computed as the 12-month moving average of monthly growth rates
(in percent). The data are monthly and span the period 1970:Q3-2011:Q2.


