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1 Trygve Haavelmo’s Causality

Trygve Haavelmo made fundamental contributions to understanding the formulation and

identification of causal models. In two seminal papers (1943, 1944), he formalized the distinc-

tion between correlation and causation,1 laid the foundation for counterfactual policy analysis

and distinguished the concept of “fixing” from the statistical operation of conditioning—a

central tenet of structural econometrics. He developed an empirically operational version of

Marshall’s notion of ceteris paribus (1890) which is a central notion of economic theory.

In Haavelmo’s framework, the causal effects of inputs on outputs are determined by

the impacts of hypothetical manipulations of inputs on outputs which he distinguishes from

correlations between inputs and outputs in observational data. The causal effect of an input is

defined using a hypothetical model that abstracts from the empirical data generating process

by making hypothetical variation in inputs that are independent of all other determinants of

outputs. As a consequence, Haavelmo’s notion of causality relies on a thought experiment

in which the model that governs the observed data is extended to allow for independent

manipulation of inputs, irrespective of whether or not they vary independently in the data.

Haavelmo formalized Frisch’s notion that “causality is in the mind.”2 Causal effects

1To our knowledge, the first recorded statement of the distinction correlation and causation is due
to Fechner (1851), who distinguished “causal dependency” from what he called “functional relationship”.
See Heidelberger (2004, p. 102). In later work, Yule (1895, footnote 2, p. 605) discussed the distinction
between correlation and causation in a discussion of the effect of relief payments on pauperism. We thank,
respectively, Olav Bjerkholt and Steve Stigler for these references.

2This notion is central to structural econometrics. It was developed by Frisch and participants in his
laboratory going back to at least 1930:

“. . . we think of a cause as something imperative which exists in the exterior world. In my
opinion this is fundamentally wrong. If we strip the word cause of its animistic mystery, and
leave only the part that science can accept, nothing is left except a certain way of thinking, an
intellectual trick . . . which has proved itself to be a useful weapon . . . the scientific . . . problem
of causality is essentially a problem regarding our way of thinking, not a problem regarding the
nature of the exterior world.” (Frisch 1930, p. 36, published 2011)

Writing in the heyday of the Frisch-Haavelmo-inspired Cowles Commission in the late 1940’s, Koopmans and
Reiersøl distinguished descriptive statistical inference form structural estimation in the following statement.

“In many fields the objective of the investigator’s inquisitiveness is not just a “population” in
the sense of a distribution of observable variables, but a physical structure projected behind this
distribution, by which the latter is thought to be generated. The word “physical” is used merely
to convey that the structure concept is based on the investigator’s ideas as to the “explanation”
or “formation” of the phenomena studied, briefly, on his theory of these phenomena, whether
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are not empirical statements or descriptions of actual worlds, but descriptions of hypotheti-

cal worlds obtained by varying—hypothetically—the inputs determining outcomes. Causal

relationships are often suggested by observed phenomena, but they are abstractions from

it. 3

This paper revisits Haavelmo’s notions of causality using the mathematical language of

Directed Acyclic Graphs (DAGs). We start with a recursive framework less general than

that of Haavelmo (1943). This allows us to represent causal models as Directed Acyclic

Graphs which are intensively studied in the literature on Bayesian networks (Howard and

Matheson, 1981; Lauritzen, 1996; Pearl, 2000). We then consider the general non-recursive

framework of Haavelmo (1943, 1944) which cannot, in general, be framed within the context

of DAGs.

Following Haavelmo, we distinguish hypothetical models that are used to define causal

parameters as idealizations of empirical models that govern data generating processes. This

enables us to discuss causal concepts such as “fixing” using an intuitive approach that draws

on Haavelmo’s notion of causality. Identification relies on linking the parameters defined in

a hypothetical model using data generated by an empirical model.

This paper makes the following contributions to the literature on causality: (1) We build

a framework for the study of causality inspired by Haavelmo’s concept of hypothetical varia-

tion of inputs; (2) In doing so, we express Haavelmo’s notion of causality in the mathematical

language of DAGs; (3) For this class of models, we compare the simplicity of Haavelmo’s

they are classified as physical in the literal sense, biological, psychological, sociological, economic
or otherwise.” (Koopmans and Reiersøl 1950, p. 165)

See Simon (1953), Heckman (2008) and Freedman et al. (2010), for later statements of this point of view.
3All models—empirical or hypothetical—are idealized thought experiments. There are no formalized

rules for creating models, causal or empirical. Analysts may differ about the inputs and relationships in
either type of model. A model is more plausible the more phenomena it predicts and the deeper are its
foundations in established theory. Causal models are idealizations of empirical models which are in turn
idealizations of phenomena. Some statisticians reject the validity of hypothetical models and seek to define
causality using empirical methods (Sobel, 2005). As an example we can cite the “Rubin model” of Holland
(1986), which equates establishing causality with the empirical feasibility of conducting experiments. This
approach confuses definition of causal parameters with their identification from data. We refer to Heckman
(2005, 2008) for a discussion of this approach.
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framework with the well-known causal framework of the do-calculus proposed by Pearl (2000)

which is beginning to be used in economics (see e.g. Margolis et al., 2012; White and Chalak,

2009); (4) We then discuss the limitations of the use of DAGs for econometric identification.

We show that even in recursive models, the methods that rely solely on the information

in DAGs do not exploit identification strategies based on functional restrictions and exclu-

sion restrictions that are generated by economic theory. This limitation produces apparent

non-identification in classically identified econometric models. We show how Haavelmo’s

approach naturally extends to notions of simultaneous causality while the DAG approach is

fundamentally recursive.

Our paper is mainly on the methodology of causality. We do not create a new concept

of causality, but rather propose a new framework within which to discuss it. We show that

Haavelmo’s approach is a complete framework for the study of causality which accommodates

the main tools of identification used in the current literature in econometrics whereas other

approaches do not.

We show that the causal operation of fixing described in Haavelmo (1943) and Heckman

(2005, 2008) is equivalent to statistical conditioning when embedded in a hypothetical model

that assigns independent variation to inputs with regard to all variables not caused by those

inputs. Pearl (2009) uses the term do for the concept of fixing a variable. We show the

relationship between statistical conditioning in a hypothetical model and the do-operator.

Fixing, in our framework, differs from the operation of the do-operator because it targets

specific causal links instead of variables that operate across multiple causal links. A benefit

of targeting causal links is that it simplifies the analysis of the subsets of causal relationships

associated with an input variable when compared to the do-operator.

Haavelmo’s approach allows for a precise yet intuitive definition of causal effects. With

it, analysts can identify causal effects by applying standard statistical tools. In contrast

with the do-calculus, application of Haavelmo’s concepts eliminates the need for additional

extra-statistical graphical/statistical rules to achieve identification of causal parameters.
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Haavelmo’s approach also covers the case of simultaneous causality in its full generality

whereas frameworks for causal analysis currently used in statistics cannot, except through

introduction and application of ad hoc rules.

This paper is organized in the following way. Section 2 reviews Haavelmo’s causal frame-

work. Section 3 uses a modern framework of causality to assess Haavelmo’s contributions to

the literature. Section 4 examines how application of this framework differs from Pearl’s do-

calculus (2009) and enables analysts to apply the standard tools of probability and statistics

without having to invent extra-statistical rules. It gives an example of the identification of

causal effects that considers Pearl’s “Front-Door” criteria. Section 5 discuss the limitations

of DAGs in implementing the variety of sources of identification available to economists. We

focus on the simplest cases of confounding models where instrumental variables are avail-

able. Section 6 extends the discussion to a simultaneous equations framework. Section 7

concludes.

2 Haavelmo’s Causal Framework

We review the key concepts of causality developed by Haavelmo (1943, 1944)—starting with

a recursive model. A causal model is based on a system of structural equations that define

causal relationships among a set of variables. In the language of Frisch (1938), these struc-

tural equations are autonomous mechanisms represented by deterministic functions mapping

inputs to outputs. By autonomy we mean, as did Frisch, that these relationships remain

invariant under external manipulations of their arguments. They are functions in the or-

dinary usage of the term in mathematics. They produce the same values of the outcomes

when inputs are assigned to a fixed set of values, however those values are determined. Even

though the functional form of a structural equation may be unknown, the causal directions

among the variables of a structural equation are assumed to be known. They are determined

by thought experiments that may sometimes be validated in data. The variables chosen as
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arguments in a structural equation are assumed to account for all causes of the associated

output variable.

Haavelmo developed his work on causality for aggregate economic models. He considered

mean causal effects and, for the sake of simplicity, invoked linearity, assumed uniformity

of responses to inputs across agents, and focused on continuous variables. More recent

approaches generalize his framework.

Haavelmo formalized the distinction between correlation and causation using a simple

model. In order to examine his ideas, consider three variables Y,X, U associated with error

terms ε = (εU , εX , εY ) such that X, Y are observed by the analyst while variable U, ε are

not.4 He assumed that U is a confounding variable that causes Y and X. We represent this

model through the following structural equations:

Y = fY (X,U, εY ), X = fX(U, εX), and U = fU(εU),

where ε is a vector of mutually independent error terms with cumulative distribution function

Qε. Thus, if X,U, εY take values of x, u, eY , then Y must take the value y = fY (x, u, eY ).

By iterated substitution we can express all variables in terms of ε. Moreover, the mutual

independence assumption of error terms implies that εY is independent of (X,U) as X =

fX(fU(εU), εX) and U = fU(εU). Notationally, we write (X,U) ⊥⊥ εY where ⊥⊥ denotes

statistical independence. In the same fashion, we have that εX ⊥⊥ U butX is not independent

of εU .

Haavelmo defines the causal effect of X on Y as being generated by a hypothetical manip-

ulation of variable X that does not affect the values that U or ε take. This is called fixing X

by a hypothetical manipulation.5 Notationally, outcome Y when X is fixed at x is denoted

4This framework allows for uncertainty on the part of agents if realizations of the uncertain variables are
captured through variablesX and U . In that sense the model can be characterized as a method for examining
ex-post relationships between variables. For a discussion of causal analysis of ex-post versus ex-ante models,
see, e.g., Hansen and Sargent (1980) and Heckman (2008).

5Haavelmo (1943) did not explicitly use the term “fixing.” He set U (in our notation) to a specified
value and manipulated X in his “hypothetical model.” Specifically, Haavelmo set U = 0 but the point of
evaluation is irrelevant in the linear case he analyzed.
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by Y (x) = fY (x, U, εY ) and its expectation is given by E(U,εY )(Y (x)) = E(f(x, U, εY )), where

E(U,εY )(·) means expectation over the distribution of random variables U and εY . The average

causal effect ofX on Y whenX takes values x and x′ is given by E(U,εY )(Y (x))−E(U,εY )(Y (x′)).

For notational simplicity, we henceforth suppress the subscript on E denoting the random

variable with respect to which the expectation is computed.

Conditioning is a statistical operation that accounts for the dependence structure in the

data. Fixing is an abstract operation that assigns independent variation to the variable

being “fixed”. The standard linear regression framework is convenient for illustrating these

ideas and in fact is the one used by Haavelmo (1943).

Consider the standard linear model Y = Xβ+U+εY where E(εY ) = 0 represent the data

generating process for Y. The expectation of outcome Y when X is fixed at x is given by

E(Y (x)) = xβ+E(U). This equation corresponds to Haavelmo’s (1943) hypothetical model.

The expectation of Y when X is conditioned on x is given by E(Y |X = x) = xβ+E(U |X =

x), as E(εY |X = x) = 0 because εY ⊥⊥ X. If E(U |X = x) = 0 and elements of X are

not collinear, then OLS identifies β and E(Y |X = x) = E(Y (x)) = xβ and β generates

the average treatment effect of a change in X on Y . Specifically, (x − x′)β is the average

difference between the expectation of Y when X is fixed at x and x′.

The difficulty of identifying the average causal effect of X on Y when E(U |X) �= 0 (and

thereby E(Y |X = x) �= E(Y (x))) stems from the potential confounding effects of unobserved

variable U on X. In this case, the standard Least Squares estimator does not generate

an autonomous causal or structural parameter because plim(β̂) = β + cov(X,U)/ var(X)

depends on the covariance between X and U . While the concept of a causal effect does not

rely on the properties of the data generating process, the identification of causal effects does.

Without linearity, one needs an assumption stronger than E(U |X = x) = 0 to obtain

E(Y |X = x) = E(Y (x)). Indeed if one assumes no confounding effects of U , that is to say

that X and U are independent (X ⊥⊥ U), then one can show that fixing is equivalent to
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statistical conditioning:

E(Y |X = x) =

∫
fY (x, u, εY )dQ(U,εY )|X=x(u, εY )

=

∫
fY (x, u, εY )dQU(u)dQεY (εY )

= E(fY (x, U, εY ))

= E(Y (x)),

where dQ(U,εY )|X=x(u, εY ) denotes the cumulative joint distribution function of U, εY con-

ditional on X = x and the second equality comes from as the fact that U,X and εY are

mutually independent. If X ⊥⊥ (U, εY ) holds, we can use observational data to identify the

mean value of Y fixing X = x by evaluating the expected value of Y conditional on X = x.

Note that in general, the value obtained depends on the functional form of fY (x, u, εY ).

Haavelmo’s notation has led to some confusion in the statistical literature. His argument

was aimed at economists of the 1940s and does not use modern notation. Haavelmo’s key

definitions and ideas are given by examples rather than by formal definitions. We restate

and clarify his argument in this paper.

To simplify the exposition, assume that all variables are discrete and let P denote their

probability measure. The factorization of the joint distribution of Y, U conditional on X

is given by P(Y, U |X = x) = P(Y |U,X = x)P(U |X = x). In contrast, in the abstract

operation of fixing X is assumed not to affect the marginal distribution of U. That is to say

that U(x) = U. Therefore the joint distribution of Y, U when X is fixed at x is given by

P(Y (x), U(x)) = P(Y (x), U) = P(Y |U,X = x)P(U).

Fixing lies outside the scope of standard statistical theory and is often a source of con-

fusion. Indeed, even though the probabilities P(Y |U,X = x) and P(U) are well defined,

neither the causal operation of fixing nor the resulting joint distribution follow from standard

statistical arguments.6 Conditioning is equivalent to fixing under independence of X and

6See Pearl (2009) and Spirtes et al. (2000) for discussions.
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U . In this case the conditional joint distribution of Y and U becomes P(Y, U |X = x) =

P(Y |U,X = x)P(U |X = x) = P(Y |U,X = x)P(U).

To gain more intuition on the difference between fixing and standard statistical theory

express the conditional expectation E(Y |X = x) as the integral across ε over a restricted set

AC . By iterated substitution, we can write Y as Y = fY (fX(fU(εU), εX), fU(εU), εY ). Thus

E(Y |X = x) =

∫
AC fY (fX(fU(εU), εX), fU(εU), εY )dQε(ε)∫

AC dQε(ε)
(1)

where AC = {ε = (εU , εX , εY ) ∈ supp(ε) ; fX(fU(εU), εX) = x}. (2)

Fixing, on the other hand, is written as the integral across ε over its full support:

E(Y (x)) =

∫
AF fY (x, fU(εU), εY )dQε(ε)∫

AF dQε(ε)
(3)

where AF = {ε = (εU , εX , εY ) ∈ supp(ε)} and

∫
AF

dQε(ε) = 1. (4)

Fixing differs from conditioning in terms of the difference in the integration sets AF and AC .

While conditional expectation (1) is a standard operation in statistics, the operation used to

define fixing is not. Equation (1) is an expectation conditional on the event fX(fU(εU), εX) =

x, which affects the integration set AC as given in (2). Fixing (3), on the other hand,

integrates the function fY (x, fU(εU), εY ) across the whole support of ε as given in (4). The

inconsistency between fixing and conditioning in the general case comes from the fact that

fixing X is equivalent to setting the expression fX(fU(εU), εX) to x without changing the

probability measures of εU , εX associated with the operation of conditioning on the event

X = x.

This paper interprets Haavelmo’s approach by introducing a hypothetical model that

enables analysts to examine fixing using standard tools of probability. The hypothetical

model departs from the data generating process by exploiting autonomy and creating a

hypothetical variable that has the desired property of independent variation with regard to
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U . The hypothetical model is an idealization of the empirical model. Standard statistical

tools apply to both the data generating process and the hypothetical model.

To formalize Haavelmo’s notions of causality, let a hypothetical model with error terms

ε and four variables including Y,X, U but also a new variable X̃ with the property that

X̃ ⊥⊥ (X,U, ε).7 Invoking autonomy, the hypothetical model shares the same structural

equation as the empirical one but departs from it by replacing X with an X̃-input, namely

Y = fY (X̃, U, εY ). The hypothetical model is not a wildly speculative departure from the

empirical data generating process but an expanded version of it. Thus (Y |X = x, U = u) =

fY (x, u, εY ) in the empirical model and (Y |X̃ = x, U = u) = fY (x, u, εY ) in the hypothetical

model. The hypothetical model has the same marginal distribution of U as the empirical

model. The joint distributions of variables in the empirical model PE and the hypothetical

model PH may differ.

The hypothetical model clarifies the notion of fixing in the empirical model. Fixing in the

empirical model is based on non-standard statistical operations. However, the distribution

of the outcome Y when X is fixed at x in the empirical model can be interpreted as standard

statistical conditioning in the hypothetical model, namely, PE(Y (x)) = PH(Y |X̃ = x). The

next section formalizes this notion using one modern language of causality.8

3 Haavelmo’s Framework Recast in a Modern Frame-

work of Causality

We recast Haavelmo’s model in the framework of Directed Acyclic Graphs (DAGs). DAGs

are studied in Bayesian Networks (Howard and Matheson, 1981; Lauritzen, 1996) and are

often used to define and estimate causal relationships (Lauritzen, 2001). The literature on

7We could express X̃ = fX̃(εX̃) to be notationally consistent.
8Frisch’s (1938) notion of invariance used by Haavelmo is called SUTVA in one model of causality popular

in statistics. See Holland (1986) and Rubin (1986).
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causality based on DAGs was advanced by Judea Pearl (2000, 2009).9

In this fundamentally recursive framework, a causal model consists of a set of variables

T = {V1, . . . , Vn} associated with a set of mutually independent error terms ε = {ε1, . . . , εn}

and a system of autonomous structural equations {f1, . . . , fn}. Variable set T includes both

observed and unobserved variables. Variable set T also include both external and internal

variables. We clarify these concepts in the following way.

Causal relationships between a dependent variable Vi ∈ T and its arguments are defined

by Vi = fi(Pa(Vi), εi), where Pa(Vi) ⊂ T and εi ∈ ε are called parents of Vi and are said

to directly cause Vi. If Pa(V ) = ∅ then variable V is not caused by any variable in T . In

this case, V is an external variable determined outside the system, otherwise the variable

is called an internal or endogenous variable. The error terms in ε are not caused by any

variable and are introduced to avoid degenerate conditioning statements among variables in

T . For simplicity of notation, we keep the error terms ε implicit, except when it clarifies

matters to do so. We assume that all random variables in this section and the next are

discrete valued although this requirement is easily relaxed.

Causal relationships are represented by a graph G where each node corresponds to a

variable V ∈ T . Nodes are connected by arrows from Pa(V ) to V and represent causal

influences between variables. Descendants of a variable V , i.e. D(V ) ⊂ T , consist of all

variables connected to V by arrows of the same direction arising from V . Graph G is called

a DAG if no variable is a descendant of itself, i.e., V /∈ D(V ), ∀ V ∈ T . Observe that this

assumption rules out simultaneity—a central feature of Haavelmo’s approach. Children of a

variable V are the set of variables that have V as a parent, namely, Ch(V ) = {V ′ ∈ T ;V ∈

Pa(V ′)}.

Causal relationships are translated into statistical relationships in a DAG through a

property termed the Local Markov Condition (LMC) (Kiiveri et al., 1984; Lauritzen, 1996).

LMC states that a variable is independent of its non-descendants conditional on its parents.

9Chalak and White (2012) present generalizations of this approach.
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LMC (5) also holds among variables in T under the assumption that error terms {ε1, . . . , εn}

are mutually independent (Pearl, 1988; Pearl and Verma, 1994), namely:

LMC: for all V ∈ T , V ⊥⊥ (T \D(V )) | Pa(V ). (5)

We use Dawid’s (1979) notation to denote conditional independence. If W,K,Z are subsets

of T , the expression W ⊥⊥ K|Z means that each variable in W is statistically independent

of each variable in K conditional on all variables in Z.

The conditional independence relationships generated by LMC (5) can be further ma-

nipulated using the Graphoid relations.10 A benefit of LMC (5) is that we can factorize the

joint distribution of variables P(V1, . . . , Vn). Under a recursive model, we can assume with-

out loss of generality that variables (V1, . . . , Vn, . . . , VN) are ordered so that (V1, . . . , Vn−1)

are non-descendants of Vn and thereby Pa(Vn) ⊂ (V1, . . . , Vn−1). Thus:

P(V1, . . . , Vn) =
∏
Vn∈T

P(Vn|V1, . . . , Vn−1) =
∏
Vn∈T

P(Vn|Pa(Vn)), (6)

where the last equality comes from applying LMC (5).

Table 1 uses the Haavelmo model described in Section 2 to illustrate the concepts dis-

cussed here. Table 1 presents two models and seven panels separated by a series of horizontal

lines. The first panel names the models. The second panel presents the structural equations

generating the models. Columns 1 and 2 are based on structural equations that have the

10The Graphoid relationships are a set of elementary conditional independence relationships presented by
Dawid (1979):

Symmetry: X ⊥⊥ Y |Z ⇒ Y ⊥⊥ X|Z.
Decomposition: X ⊥⊥ (W,Y )|Z ⇒ X ⊥⊥ Y |Z.

Weak Union: X ⊥⊥ (W,Y )|Z ⇒ X ⊥⊥ W |(Y, Z).

Contraction: X ⊥⊥ Y |Z and X ⊥⊥ W |(Y, Z) ⇒ X ⊥⊥ (W,Y )|Z.
Intersection: X ⊥⊥ W |(Y, Z) and X ⊥⊥ Y |(W,Z) ⇒ X ⊥⊥ (W,Y )|Z.
Redundancy: X ⊥⊥ Y |X.

The intersection relation is only valid for variables with strictly positive probability distributions. See also
Dawid (2001).
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same functional form, but different inputs. The third panel represents the associated model

as a DAG. Squares represent observed variables, circles represent unobserved variables. (Ex-

cept in the first panel, the components of ε are kept implicit in the table.) The fourth panel

displays the parents in T for each variable. The fifth panel shows the conditional indepen-

dence relationships generated by the application of LMC (5) and the sixth panel presents

the factorization of the joint distribution. The seventh and final panel provides the joint

distribution of variables when X is fixed at x and the corresponding joint distribution for

the hypothetical models. The content of the last panel is discussed further in this section.

Using this framework, we can discuss the concept of fixing introduced in Section 2 in

greater generality. Following Section 2, we define the causal operation of fixing a variable in

a model represented by a graph G by the intervention that sets a value to this variable in T in

a fashion that does not affect the distribution of its non-descendants. In other words, fixing

a random variable (or a set of random variables) X ∈ T to x translates to setting X = x for

all X-inputs in the structural equations associated with variables in Ch(X). Pearl (2009)

uses the term doing for what we call fixing. We use his notation in writing Equation (7).

The post-intervention distribution of variables in T when X is fixed at x is given by

P(T \ {X}|do(X) = x) =
∏

V ∈T \{{X}∪Ch(X)}
P(V |Pa(V ))

∏
V ∈Ch(X)

P(V |Pa(V ) \ {X}, X = x).

(7)

Versions of Equation (7) can be found in Pearl (2001); Robins (1986); Spirtes et al. (2000).

In this instance, do(X) = x is equivalent to conditioning X̃ at X̃ = x.

As noted in Section 2, standard arguments of statistical conditioning are unable to de-

scribe the probability laws governing the fixing operation used in Equation (7). Our solution

to this problem draws on Haavelmo’s insight that causality is a property of hypothetical mod-

els in which causal effects on output variables are generated through hypothetical indepen-

dent variations of inputs. Specifically, we show that the fixing operation is easily translated

into statistical conditioning under the Hypothetical model described in Section 3.1.
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Table 1: Haavelmo Empirical and Hypothetical Models

1. Haavelmo 2. Haavelmo
Empirical Model Hypothetical Model

T = {U,X, Y } T = {U,X, Y, X̃}
ε = {εU , εX , εY } ε = {εU , εX , εY }
Y = fY (X,U, εY ) Y = fY (X̃, U, εY )
X = fX(U, εX) X = fX(U, εX)
U = fU (εU ) U = fU (εU )

U

X Y

U

X Y

X̃

Pa(U) = ∅, Pa(U) = Pa(X̃) = ∅,
Pa(X) = {U} Pa(X) = {U}

Pa(Y ) = {X,U} Pa(Y ) = {X̃, U}
Y ⊥⊥ X|(X̃, U)

X ⊥⊥ (X̃, Y )|U
X̃ ⊥⊥ U

PE(Y,X, U) = PH(Y,X, U, X̃) =

PE(Y |X,U)PE(X|U)PE(U) PH(Y |X̃, U)P(X|U)PH(U)PH(X̃)

PE(Y, U|X fixed at x) = PH(Y, U,X|X̃ = x) =

PE(Y |X = x, U)PE(U) PH(Y |X̃ = x, U)P(X|U)PH(U)

This table has two columns and seven panels separated by horizontal lines. Each column presents a causal
model. The first panel names the models. The second panel presents the structural equations generating the
models. In this row alone we make ε explicit. In the other rows it is kept implicit to avoid clutter. Columns
1 and 2 are based on structural equations that have the same functional form, but have different inputs.
The third panel represents the model as a DAG. Squares represent observed variables, circles represent
unobserved variables. The fourth panel presents the parents in T of each variable. The fifth panel shows the
conditional independence relationships generated by the application of the Local Markov Condition. The
sixth panel presents the factorization of the joint distribution of variables in the Bayesian Network. The last
panel of column 1 presents the joint distribution of variables when X is fixed at x. This entails a thought
experiment implicit in Haavelmo (1943). The last panel of column 2 gives the joint distribution of variables
generated by the hypothetical model when X̃ is conditioned at value X̃ = x.
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3.1 The Hypothetical Model

Our approach is based on a hypothetical model that is used to study causal effects. To

recall, we use the term empirical model to designate the data generating process and the

term hypothetical model to designate the model used to characterize causal effects.

The hypothetical model is based on the empirical model. It shares the same structural

equations and same distribution of error terms as the empirical model. The hypothetical

model differs from the empirical model in two ways. First, it appends to the empirical

model an external variable (or a set of external variables) termed a hypothetical variable(s).

Second, it replaces the action of existing inputs. If X ∈ T is the target variable to be fixed

in the empirical model, then the newly created hypothetical variable X̃ replaces the X-input

of one, some or all variables in Ch(X). In other words, children of X in the empirical model

will have their X-input replaced by a X̃-input in the hypothetical model. We assume that

X and X̃ have common supports.

Table 1 illustrates the concept of a hypothetical model using the Haavelmo model intro-

duced in Section 2. Column 2 presents the hypothetical model associated with the Haavelmo

empirical model presented in the first column.

For the sake of clarity, we use GE for the DAG representing the empirical model and

TE for its associated set of variables. We use PaE, DE, ChE for the parents, descendants,

and children with DAG GE. We use PE for the probability measure of variables in TE. For

the corresponding counterparts in the hypothetical model we use GH, TH, PaH, DH, ChH and

PH .

We now list some salient features of the hypothetical model. Let X̃ denote the hy-

pothetical variable (or variables) associated with X ∈ TE. We expand the list of vari-

ables in the hypothetical model so that TH = TE ∪ {X̃}. The hypothetical variable can

replace some or all of the input X for variables in ChE(X), i.e., ChH(X̃) ⊆ ChE(X).

Children of X in the empirical model can be partitioned among X and X̃ in the hypo-
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thetical model: ChE(X) = ChH(X) ∪ ChH(X̃). 11 As a consequence we also have that

DE(X) = DH(X) ∪DH(X̃), that is, X-descendants of the empirical model constitute the X

and X̃ descendants in the hypothetical model. Parental sets of the hypothetical model are de-

fined by PaH(V ) = PaE(V ) ∀ V ∈ TE\ChH(X̃) and PaH(V ) = {PaE(V )\{X}}∪{X̃} ∀ V ∈

ChH(X̃). Moreover, X̃ is an external variable, that is, PaH(X̃) = ∅. The hypothetical model

is also a DAG. Thus LMC (5) holds and the joint distribution of the variables in TH can be

factorized using equation (6). By sharing the same structural equations and distribution of

error terms, the conditional probabilities of the hypothetical model can be written as:

PH(V |PaH(V )) = PE(V |PaE(V )) ∀ V ∈ TE \ ChH(X̃) (8)

and

PH(V |PaH(V ) \ {X̃}, X̃ = x) = PE(V |PaE(V ) \ {X}, X = x) ∀ V ∈ ChH(X̃). (9)

Equations (8)–(9) arise because the distribution of a variable V ∈ TE conditional on its

parents is determined by the distribution of its error terms, which is the same for hypothetical

and empirical models.

We now link the probability measures of the empirical and hypothetical models. Theo-

rem T-1 uses LMC (5) and Equation (8) to show that the distribution of non-descendants

of X̃ are the same in both hypothetical and empirical models:

Theorem T-1. Let X̃ be the hypothetical variable in the hypothetical model represented

by GH associated with variable X in empirical model GE. Let W,Z be any disjoint set of

11As an example, let a simple empirical model for mediation analysis consist of three variables: an input
variable X, a mediation variable M caused by X and an outcome of interest Y caused by X and M . This
model is represented as a DAG in Model 1 of Table 2 and ChE(X) = {M,Y }. Suppose we are interested in
the indirect effect, that is the effect of X on Y that operates exclusively by changes in M while holding the
distribution of X unaltered. The hypothetical model for the evaluation of the indirect causal effect assigns
the causal link of X on M to the hypothetical variable X̃. Namely, X still causes Y , but X̃ causes M. This
hypothetical model is represented by Model 3 of Table 2. In this model ChH(X) = {Y }, ChH(X̃) = {M}
and ChE(X) = ChH(X) ∪ ChH(X̃).
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variables in TE \DH(X̃) then:

PH(W |Z) = PH(W |Z, X̃) = PE(W |Z) ∀ {W,Z} ⊂ TE \DH(X̃).

Proof. See Appendix

Theorem T-1 also holds for the set of variables that are non-descendants of X according to

the empirical model, which are a subset of TE \DH(X̃). Thus PH(W |Z) = PH(W |Z, X̃) =

PE(W |Z) for all {W,Z} ⊂ TE \DE(X).

The following theorem uses Theorem T-1 and Equations (8)–(9) to show that the dis-

tribution of variables conditional on X and X̃ taking the same value x in the hypothetical

model is equal to the distribution of the variables conditional on X = x in the empirical

model:

Theorem T-2. Let X̃ be the hypothetical variable in the hypothetical model represented

by GH associated with variable X in empirical model GE and let W,Z be any disjoint12 set

of variables in TE then:

PH(W |Z,X = x, X̃ = x) = PE(W |Z,X = x) ∀ {W,Z} ⊂ TE.

Proof. See Appendix.13

The hypothetical variable is created to have the desired independent variation to generate

causal effects. As a consequence, the operation of fixing a variable in the empirical model is

translated into statistical conditioning in the hypothetical model. In particular, if we replace

12Disjoint (i.e., distinct) from X
13We also note the following result:

Corollary C-1. Let X̃ be uniformly distributed in the support of X and let W,Z be any disjoint set of
variables in TE then:

PH(W |Z,X = X̃) = PE(W |Z) ∀ {W,Z} ⊂ TE.

Proof. See Appendix. We thank an anonymous referee for suggesting this result and its proof.
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the X-input by a X̃-input for all children of X, as suggested by the operation of fixing or

“doing,” we have that the distribution of an outcome Y ∈ TE of the empirical model when

variable X is fixed at x (for all its children) is equivalent to the distribution of Y conditioned

on the hypothetical variable X̃ being assigned to value x. This is captured by the following

theorem:

Theorem T-3. Let X̃ be the hypothetical variable in GH associated with variable X in the

empirical model GE, such that ChH(X̃) = ChE(X), then:

PH(TE \ {X}|X̃ = x) = PE(TE \ {X}|do(X) = x).

Proof. See Appendix

One benefit of the hypothetical model is its greater flexibility for the study of causal

effects. While the do-operator targets all causal relationships involving a variable X, the

hypothetical variable allows analysts to target causal relationships of X separately. Indeed

we can choose which variable in Ch(X) will be caused by a hypothetical variable X̃, which

in turn replaces some of the X inputs. This flexibility facilitates the investigation of causal

effects in models that examine different causal paths associated with a single input, such as

mediation analysis.14

To show this, consider a simple empirical model for mediation consisting of three vari-

ables, an input variable X, a mediation variable M caused by X and an outcome of in-

terest Y caused by X and M . Its structural equations are given by Y = fY (X,M, εY ),

M = fM(X, εM), X = fX(εX) and its DAG is represented as Model 1 of Table 2 (with ε

kept implicit). The total causal effect of X on Y when X is fixed at x compared to when

it is fixed at x′ is given by TE(x, x′) = EE(Y (x) − Y (x′)) where Y (x) = fY (x,M(x), εY ),

M(x) = fM(x, εM) and EE denotes the expectation over the probability measure of the empir-

ical model. The hypothetical model for the evaluation of the total causal effect considers all

14Robins and Richardson (2011) analyze the mediation framework of Model 1 of Table 2 to examine four
broad classes of graphical causal models.
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causal links of X in the hypothetical variable X̃. It is represented by Model 2 of Table 2. Us-

ing this model, the total causal effect is given by TE(x, x′) = EH(Y |X̃ = x)−EH(Y |X̃ = x′),

where EH denotes the expectation over the probability measure of the hypothetical model in

Model 2 of Table 2. Suppose that we are interested in the indirect effect, that is the effect of

X on Y that operates exclusively by changing M while keeping the distribution of X unal-

tered from what it is in the empirical model, i.e., EE(fY (X,M(x), εY ) − fY (X,M(x′), εY )).

This effect is EH(Y |X̃ = x)− EH(Y |X̃ = x′) derived from the hypothetical model presented

in model 3 of Table 2. Hypothetical model 4 of Table 2 gives the causal graph for the direct

effect of X on Y that operates exclusively through changes in X conditioning on M in the

empirical model.15

15See Heckman and Pinto (2013) for further discussion of mediation models.
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Table 2: Models for Mediation Analysis

1. Empirical Mediation Model 2. Hypothetical Model for Total Effect of X on Y

X YM

X
~

X YM

3. Hypothetical Model for Indirect Effect of X on Y 4. Hypothetical Model for Direct Effect of X on Y

X
~

X YM

X
~

X YM

This table shows four models represents by DAGs. To simplify the displays we keep the unobserv-
ables in ε implicit. Model 1 represents the empirical model for mediation analysis. The remaining
three models are hypothetical models that target different causal effects of X on Y . Model 2 rep-
resents the hypothetical model for the analysis of total effect of X on Y . Model 3 examines the
indirect effect X on Y . Model 4 examines the direct effect of X on Y .

The hypothetical model does not suppress the variable we seek to fix, but rather creates a

new hypothetical variable that allows us to examine a variety of causal effects. This approach

provides a natural framework within which to examine counterfactual outcomes that involve

both fixing and conditioning. Specifically, the expected value of an outcome Y when an

input X is fixed at x conditional on X = x′ is readily defined by EH(Y |X̃ = x,X = x′) in

the hypothetical model. By characterizing causality through a hypothetical model we avoid

the necessity of defining new mathematical tools outside standard statistical analysis. The
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next section illustrates this point by identifying the causal effects of the “Front-Door” model

of Pearl (2009) using his “do-calculus” and the standard statistical tools that can be used

to analyze the hypothetical model.

The hypothetical model allows analysts to clearly distinguish the definition of causal

effects from their identification in data. Causal effects are translated into statistical condi-

tioning in the hypothetical model. Identification of causal effects requires analysts to relate

the hypothetical and empirical distributions in a fashion that allows the evaluation of causal

effects examined in the hypothetical model using data generated by the empirical model.

For example, a standard technique for doing so is matching:

Lemma L-1. Matching: Let Z,W be any disjoint set of variables in TE and let X̃ be a

hypothetical variable in model GH associated with X ∈ TE in model GE such that, in the

hypothetical model, X ⊥⊥ W |(Z, X̃), then

PH(W |Z, X̃ = x) = PE(W |Z,X = x).

Proof. See Mathematical Appendix.

Variables Z of Lemma L-1 are called matching variables. In statistical jargon, it is

said that matching variables solve the problem of confounding effects between a treatment

indicator X and outcome W . Matching is commonly used to identify treatment effects in

propensity score matching models.16 In these models, the conditional independence relation

of Lemma L-1 is assumed to be true. Pearl (1993) describes a graphical test called the

“Back-Door” criterion that can be applied to a DAG in order to check if a set of variables

satisfy the matching assumptions of Lemma L-1. The next section illustrates the use of

Lemma L-1.

16See, e.g., Rosenbaum and Rubin (1983).
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4 The Do Calculus and Haavelmo’s Notation of Causal-

ity

To illustrate the points made in the previous section, we give the rules of the “do-calculus”

and compare the identification strategies associated with the do-calculus with an approach

using the hypothetical model. The do-calculus, developed by Pearl (1995), consists of three

graphical and statistical rules that operate on the empirical model PE and that supplement

standard statistics. In special cases they solve the problem of identifying causal effects in

Bayesian Networks. The concept of a hypothetical model—central to the Frisch-Haavelmo

approach—is not used in the literature on DAGs. It is commonly used to process the

information of a causal model that can be represented by a DAG. Examples of this literature

are Huang and Valtorta (2006, 2008) and Tian and Pearl (2002, 2003).

To review these methods, we introduce the graphical and statistical notation used to

define the do-calculus. Let X, Y, Z be arbitrary disjoint sets of variables (nodes) in a causal

graph G. GX denotes a modification of DAG G obtained by deleting the arrows pointing to

X, GX denotes the modified DAG obtained by deleting the arrows emerging from X and

GX,Z denotes the DAG obtained by deleting arrows pointing to X and emerging from Z.

Table 4 presents an example of the application of these rules for the Front-Door model,

which is described in Table 3. The Front-Door model is described in greater detail in the

next Section.

Let G be a DAG and let X, Y, Z,W be any disjoint sets of variables. The do-calculus

rules are:

• Rule 1: Insertion/deletion of observations:

Y ⊥⊥ Z|(X,W ) under GX ⇒ P(Y |do(X), Z,W ) = P(Y |do(X),W ).

• Rule 2: Action/observation exchange:

Y ⊥⊥ Z|(X,W ) under GX,Z ⇒ P(Y |do(X), do(Z),W ) = P(Y |do(X), Z,W ).
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Table 3: “Front-Door” Empirical and Hypothetical Models

1. Pearl’s “Front-Door” 2. Our Version of the “Front-Door”
Empirical Model Hypothetical Model

T = {U,X,M, Y } T = {U,X,M, Y, X̃}
ε = {εU , εX , εM , εY } ε = {εU , εX , εM , εY }
Y = fY (M,U, εY ) Y = fY (M,U, εY )
X = fX(U, εX) X = fX(U, εX)

M = fM (X, εM ) M = fM (X̃, εM )
U = fU (εU ) U = fU (εU )

U

MX Y

U

MX Y

X̃

Pa(U) = ∅, Pa(U) = Pa(X̃) = ∅,
Pa(X) = {U} Pa(X) = {U}
Pa(M) = {X} Pa(M) = {X̃}

Pa(Y ) = {M,U} Pa(Y ) = {M,U}
Y ⊥⊥ X|(M,U) Y ⊥⊥ (X̃,X)|(M,U)

M ⊥⊥ U |X M ⊥⊥ (U,X)|X̃
X ⊥⊥ (M, X̃, Y )|U

U ⊥⊥ (M, X̃)

X̃ ⊥⊥ (X,U)

PE(Y,M,X,U) = PH(Y,M,X,U, X̃) =

PE(Y |M,U)PE(X|U)PE(M|X)PE(U) PH(Y |M,U)P(X|U)PH(M|X̃)PH(U)PH(X̃)

PE(Y,M,U|do(X) = x) = PH(Y,M,U,X|X̃ = x) =

PE(Y |M,U)PE(M|X = x)PE(U) PH(Y |M,U)P(X|U)PH(M|X̃ = x)PH(U)

This table has two columns and seven panels separated by horizontal lines. Each column presents a causal
model. The first panel names the models. The second panel presents the structural equations generating the
model. In this row alone we make ε explicit. In the other it is kept implicit to avoid clutter. Columns 1 and
2 are based on structural equations that have the same functional form, but have different inputs. The third
panel represents the model as a DAG. Squares represent observed variables, circles represent unobserved
variables. The fourth panel presents the parents in T of each variable. The fifth panel shows the conditional
independence relationships generated by the application of the Local Markov Condition. The sixth panel
presents the factorization of the joint distribution of variables in the Bayesian Network. The last panel of
column 1 presents the joint distribution of variables when X is fixed at x using the “do operator.” The last
panel of column 2 gives the joint distribution of variables generated by the hypothetical models associated
with empirical model 1 when X̃ is conditioned at X̃ = x.
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Table 4: Do-calculus and the Front-Door Model

1. Modified Front-Door Model GX = GM 2. Modified Front-Door Model GM

U

MX Y

U

MX Y

(Y,M) ⊥⊥ X|U (X,M) ⊥⊥ Y |U
(X,U) ⊥⊥ M (Y, U) ⊥⊥ M |X

3. Modified Front-Door Model GX,M 4. Modified Front-Door Model GX,M

U

MX Y

U

MX Y

(X,M) ⊥⊥ (Y, U) (Y,M,U) ⊥⊥ X
U ⊥⊥ M

This table shows four models represented by DAGs (ε are kept implicit to avoid notational clutter).
Squares represent observed variables, circles represent unobserved variables. Each DAG is generated
by the deletion of arrows of the original Front-Door model (first column of Table 3) according to the
rules of the do-calculus. Below each model, we show conditional independent relations generated
by the application of the Local Markov Condition (5) to variables of the models.

• Rule 3: Insertion/deletion of actions:

Y ⊥⊥ Z|(X,W ) under GX,Z(W ) ⇒ P(Y |do(X), do(Z),W ) = P(Y |do(X),W ),

where Z(W ) is the set of Z-nodes that are not ancestors of any W -node in GX .

These rules are intended to supplement standard statistical tools with a new set of “do”

operations. We illustrate the use of the do-calculus in the next section.
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4.1 Comparing Analyses Based on the Do-calculus with those

from the Hypothetical Model

We compare the do-calculus and an analysis based on our hypothetical model by identifying

the causal effects of Pearl’s “Front-Door model”. That model consists of four variables: (1)

an external unobserved variable U ; (2) an observed variable X caused by U ; (3) an observed

variable M caused by X; and (4) an outcome Y caused by U and M . The Front-Door model

is presented in the first column of Table 3.

We are interested in identifying the distribution of the outcome Y when X is fixed at x.

By identification we mean expressing the quantity P(Y |do(X)) in terms of the distribution

of observed variables.

The do-calculus identifies P(Y |do(X)) through four steps which we now perform. Steps

1, 2 and 3 identify P(M |do(X)), P(Y |do(M)) and P(Y |M, do(X)) respectively. Step 4 uses

the first three steps to identify P(Y |do(X)).

1. Invoking LMC (5) for variable M of DAG GX , (DAG 1 of Table 4) generates X ⊥⊥ M.

Thus, by Rule 2 of the do-calculus, we obtain P(M |do(X)) = P(M |X).

2. Invoking LMC (5) for variable M of DAG GM , (DAG 1 of Table 4) generates X ⊥⊥

M. Thus, by Rule 3 of the do-calculus, P(X|do(M)) = P(X). In addition, applying

LMC (5) for variable M of DAG GM , (DAG 2 of Table 4) generates M ⊥⊥ Y |X. Thus,

by Rule 2 of do-calculus, P(Y |X, do(M)) = P(Y |X,M).

Therefore P(Y |do(M)) =
∑

x′∈supp(X)

P(Y |X = x′, do(M))P(X = x′|do(M))

=
∑

x′∈supp(X)

P(Y |X = x′,M)P(X = x′),

where “supp” means support.

3. Invoking LMC (5) for variable M of DAG GX,M , (DAG 3 of Table 4) generates
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Y ⊥⊥ M |X. Thus, by Rule 2 of the do-calculus, P(Y |M, do(X)) = P(Y |do(M), do(X)).

In addition, applyingLMC (5) for variable X of DAG GX,M , (DAG 4 of Table 4)

generates (Y,M,U) ⊥⊥ X. By weak union and decomposition, we obtain Y ⊥⊥ X|M.

Thus by Rule 3 of the do-calculus, we obtain that P(Y |do(X), do(M)) = P(Y |do(M)).

Thus P(Y |M, do(X)) = P(Y |do(M), do(X)) = P(Y |do(M)).

4. We collect the results from the three previous steps to identify P(Y |do(X)) from ob-

served data:

P(Y |do(X) = x)

=
∑

m∈supp(M)

P(Y |M, do(X) = x)P(M |do(X) = x)

=
∑

m∈supp(M)

P(Y |do(M) = m, do(X) = x)︸ ︷︷ ︸
Step 3

P(M = m|do(X) = x)

=
∑

m∈supp(M)

P(Y |do(M) = m)︸ ︷︷ ︸
Step 3

P(M = m|do(X) = x)

=
∑

m∈supp(M)

( ∑
x′∈supp(X)

P(Y |X = x′,M)P(X = x′)

)
︸ ︷︷ ︸

Step 2

P(M = m|X = x)︸ ︷︷ ︸
Step 1

.

In this fashion, we use the do-calculus to identify the desired causal parameter. It is in-

structive to compare this proof of identification with one based on the approach of Haavelmo.

We identify the causal effects ofX on Y for the Front-Door model using a hypothetical model.

We replace the relationship of X on M by a hypothetical variable X̃ that causes M. We

use PE to denote the probability of the Front-Door model that generates the data (Column

1 of Table 3) and PH for the hypothetical model (Column 2 of Table 3). As before, we

seek to identify PH(Y |X̃) (the equivalent of P(Y |do(X))) from observed distributions in the

empirical model.

We first present a lemma that states three useful conditional independence relations of

the hypothetical model. The lemma is based on the application of LMC (5) and the Graphoid
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relationships:

Lemma L-2. In the Front-Door hypothetical model, (1) Y ⊥⊥ X̃|M, (2) X ⊥⊥ M, and (3)

Y ⊥⊥ X̃|(M,X)

Proof. By LMC (5) for X, we obtain (Y,M, X̃) ⊥⊥ X|U. By LMC (5) for Y we obtain

Y ⊥⊥ (X, X̃)|(M,U). By Contraction applied to (Y,M, X̃) ⊥⊥ X|U and Y ⊥⊥ (X, X̃)|(M,U)

we obtain (Y,X) ⊥⊥ X̃|(M,U). By LMC (5) for U we obtain (M, X̃) ⊥⊥ U. By Contraction

applied to (M, X̃) ⊥⊥ U and(Y,M, X̃) ⊥⊥ X|U we obtain(X,U) ⊥⊥ (M, X̃). The second

relationship in the Lemma is obtained by Decomposition. In addition, by Contraction on

(Y,X) ⊥⊥ X̃|(M,U) and (M, X̃) ⊥⊥ U we obtain (Y,X, U) ⊥⊥ X̃|M. The two remaining

conditional independence relationships of the Lemma are obtained by Weak Union and De-

composition.17

17One can also prove Lemma L-2 using Pearl’s d-Separation criteria. According to Pearl (2009), a path p
connecting X and Y is said to be d-Separated (or blocked) by a set of nodes Z if and only if

1. a path p contains a chain i → m → j or a fork i ← m → j such that the middle node m is in Z, or

2. a path p contains an inverted fork (or collider) i → m ← j such that the middle node m is not in Z
and such that no descendant of m is in Z.

A set Z is said to d-separate X from Y if and only if Z blocks every path from a node in X to a node
in Y. If X and Y are d-Separated by Z according to a graph G, then Y ⊥⊥ Y |Z in G. We are examining
the Hypothetical Model described by second column of Table 2. Variables Y and X̃ are connected by a
single path X̃ → M → Y. Thus we have that Y ⊥⊥ X̃|M, according to part 1 of the d-Separation criteria.
Moreover, we can also state that Y ⊥⊥ X̃|(M,X) as X is not a collider nor a decendant of a collider (part
2 of the d-Separation criteria). Finally, there is no path that connects X and M of the form X → . . . → M
nor X ← . . . ← M. Thus we can state that X ⊥⊥ M according to part 1 of the d-Separation criteria.
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Applying these results,

PH(Y |X̃ = x)

=
∑

m∈supp(M)

PH(Y |M = m, X̃ = x)PH(M = m|X̃ = x)

=
∑

m∈supp(M)

PH(Y |M = m)PH(M = m|X̃ = x)

=
∑

m∈supp(M)

( ∑
x′∈supp(X)

PH(Y |X = x′,M = m)PH(X = x′|M = m)

)
PH(M = m|X̃ = x)

=
∑

m∈supp(M)

( ∑
x′∈supp(X)

PH(Y |X = x′,M = m)PH(X = x′)

)
PH(M = m|X̃ = x)

=
∑

m∈supp(M)

( ∑
x′∈supp(X)

PH(Y |X = x′, X̃ = x′,M = m)PH(X = x′)

)
PH(M = m|X̃ = x)

=
∑

m∈supp(M)

( ∑
x′∈supp(X)

PE(Y |M,X = x′)︸ ︷︷ ︸
by Theorem T-2

PE(X = x′)︸ ︷︷ ︸
by Theorem T-1

)
PE(M = m|X = x)︸ ︷︷ ︸

by Matching L-1

.

The second equality comes from relationship (1) Y ⊥⊥ X̃|M of Lemma L-2. The fourth

equality comes from relationship (2) X ⊥⊥ M of Lemma L-2. The fifth equality comes from

relationship (3) Y ⊥⊥ X̃|(M,X) of Lemma L-2. The last equality links the distributions of

the hypothetical model with the ones of the empirical model. The first term uses Theorem T-

2 to equate PH(Y |X = x′, X̃ = x′,M = m) = PE(Y |M,X = x′). The second term uses the

fact that X is not a child of X̃, thus by Theorem T-1, PH(X = x′) = PE(X = x′). Finally,

the last term uses Matching applied to M. Namely, LMC (5) for M generates M ⊥⊥ X|X̃ in

the hypothetical model. Then, by Matching L-1, PH(M |X̃ = x) = PE(M |X = x).

It is clear from this example that, even though both frameworks produce the same final

identification formula, the methods underlying them differ greatly. A key concept in the

framework inspired by Haavelmo is the notion of a hypothetical model. Hypothetical models

are the essential ingredients of science. Using this specification, identification is secured using

the standard statistical tools involving the rules of conditional probability distributions.

LMC and the graphoid relations generate conditional independence relationships that arise
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from the hypothetical model. Identification using the hypothetical model is transparent, and

does not require additional causal rules.18

5 The Benefits and Limitations of DAGs

A major benefit of a DAG is its intuitive description of models as causal chains. DAG

assumptions list the variables in a model and their causal relationships. A DAG does not

generate or characterize any restrictions on functional forms or parametric specifications of

the structural equations. In this sense, if an identification result is achieved, it is obtained

under very weak conditions.

The generality of a DAG is also the source of its limitation. Methods that focus on

identification of models solely described by DAGs lack the tools for invoking additional

assumptions that would generate the identification of an a priori non-identified model. We

clarify this point by considering the instrumental variable model.

The simplest instrumental variable model consists of four variables: (1) a confounding

variable U that is external and unobserved; (2) an external instrumental variable Z; (3)

an observed variable X caused by U and Z; and (4) an outcome Y caused by U and X.

The empirical instrumental variable model is described in the first column of Table 5. Its

hypothetical counterpart is presented in the second column of Table 5.

The instrumental variable method is a fundamental ingredient of a huge literature on

econometric identification (see, e.g., Matzkin, 2013). It is the basis for more sophisticated

models such as the Generalized Roy model, which is widely used in econometrics in the

analysis of selection bias and in evaluating social programs (Heckman, 1976, 1979, Heckman

and Robb, 1985, Powell, 1994, Heckman and Vytlacil, 2007a,b). Examples of this literature

are nonparametric control functions (see, e.g., Blundell and Powell, 2003) and identification

through instrumental variables (Reiersöl, 1945).

18Pearl (2009) also considers a “Back Door model” and applies do-calculus to identify a model that can
readily be defined by the Haavelmo approach and identified using conventional matching methods.
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Table 5: Instrumental Variable Empirical and Hypothetical Models

1. Instrumental Variable 2. Instrumental Variable
Empirical Model Hypothetical Model

T = {U,X,Z, Y } T = {U,X,Z, Y, X̃}
ε = {εU , εX , εZ , εY } ε = {εU , εX , εZ , εY }
Y = gY (X,U, εY ) Y = gY (X̃, U, εY )
X = gX(U,Z, εX) X = gX(U,Z, εX)

Z = gZ(εZ) Z = gZ(εZ)
U = gU (εU ) U = gU (εU )

U

X YZ

U

X YZ

X̃

Pa(U) = Pa(Z) = ∅, Pa(U) = Pa(U) = ∅,
Pa(X) = {U,Z} Pa(X) = {U,Z}
Pa(Y ) = {U,X} Pa(Y ) = {U, X̃}
Y ⊥⊥ Z|(X,U) Y ⊥⊥ (X,Z)|(X̃, U)

Z ⊥⊥ U Z ⊥⊥ (U, Y, X̃)|(X̃, U)

X ⊥⊥ (Y, X̃)|(Z,U)

U ⊥⊥ (Z, X̃)

X̃ ⊥⊥ (U,X,Z)

PE(Y, Z,X, U) = PH(Y, Z,X, U, X̃) =

PE(Y |X,U)PE(X|U,Z)PE(Z)PE(U) PH(Y |X̃, U)PH(X|U,Z)PH(Z)PH(U)PH(X̃)

PE(Y, Z, U|do(X) = x) = PH(Y, Z,X, U|X̃ = x) =

PE(Y |X = x, U)PE(Z)PE(U) PH(Y |X̃ = x, U)PH(X|U,Z)PH(Z)PH(U)

This table has two columns and seven panels separated by horizontal lines. Each column presents a causal
model. The first panel names the model. The second panel presents the structural equations generating the
model. In this row alone we make the ε explicit. In the other rows it is kept implicit to avoid notational
clutter. Columns 1 and 2 are based on structural equations that have the same functional form, but have
different inputs. The third panel represents the model as a DAG. Squares represent observed variables and
circles represent unobserved variables. The fourth panel presents the parents in T of each variable. The fifth
panel shows the conditional independence relationships generated by the application of the Local Markov
Condition. The sixth panel presents the factorization of the joint distribution of variables in the Bayesian
Network. The last panel of column 1 presents the joint distribution of variables when X is fixed at x.
(do(X) = x). The last panel of column 2 gives the joint distribution of variables generated by hypothetical
models associated with empirical model 1 when X̃ is conditioned on X̃ = x.
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Chapters 3 and 5 of Pearl (2009) show that the instrumental variable model is not

identified applying the rules of the do-calculus. Indeed, it is impossible to identify the causal

effect of X on Y without additional information.

The non-identification of the instrumental variable model poses a major limitation for

the identification literature that relies exclusively on DAGs. Identification of the instru-

mental variable model relies on assumptions outside the scope of the DAG literature. For

example, we can use LMC (5) to obtain the following conditional independence relation-

ships: Y ⊥⊥ Z|(U,X) and U ⊥⊥ Z. These relationships in addition to X �⊥⊥ Z satisfy the

necessary criteria to apply the method of Two Stage Least Squares (TSLS). TSLS identi-

fies the instrumental variable model under a linearity assumption. As a consequence, if we

assume that the causal relationship of X and U on outcome Y are represented by a linear

equation, i.e., Y = Xβ + U , then it is well-known that parameters β can be identified using

cov(Z, Y )/ cov(Z,X) under standard rank conditions.

Linearity and homogeneity of the effects ofX on Y across agents (i.e., β is the same across

the values X,U take) are strong assumptions about the causal links that govern the rela-

tionship between Y and X. This assessment fostered a huge literature in economics devoted

to methods that relax linearity and homogeneity and that allow coefficients to be correlated

with regressors. Examples of this literature are Imbens and Angrist (1994), Vytlacil (2002),

and Heckman and Vytlacil (2005, 2007a,b), who identify the instrumental variable model

under more general conditions by making assumptions on the causal relationship of Z with

X. Imbens and Angrist (1994) show that the instrumental variable model can be identified

under a “monotonicity” assumption (increasing the values of an instrument has the same

qualitative effect on all agents). Vytlacil (2002) shows that this assumption is equivalent to

assuming an instrumental variable model in which the treatment assignment decision rule is

separable in terms of unobserved characteristics of the agents and the instrumental variable.

Heckman and Vytlacil (1999, 2005, 2007a,b) develop and apply this result.

Table 6 summarizes the common and distinct features of Pearl’s do-calculus and the
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approach based on Haavelmo’s hypothetical model. Both approaches use structural equation

models in the sense of Koopmans and Reiersøl (1950). Both invoke autonomy and assume

mutually independent errors ε. In recursive models, both use the Local Markov Condition

and the Graphoid axioms. Both use “fixing” or the “do operator” to define counterfactuals.

Table 6: Summarizing the Do-calculus of Pearl (2009) and Haavelmo’s Framework

Common Features of Haavelmo and Do-Calculus:

Autonomy (Frisch, 1938)
Errors Terms: ε mutually independent
Statistical Tools: LMC and Graphoid Axioms apply
Counterfactuals: Fixing or Do-operator is a Causal, not statistical, operation

Distinctive Features of Haavelmo and Do-Calculus:

Haavelmo Do-calculus
Approach: Thinks Outside the Box of the Empirical Model Applies Complex Tools
Introduces: Constructs a Hypothetical Model Graphical Rules
Identification: Connects PH and PE Iteration of Do-Calculus Rules
Versatility: Basic Statistical Principles Apply Creates New Rules of Statistics

The approaches diverge in their analyses of identification. The approach based on

Haavelmo creates a hypothetical variable X̃ and an associated hypothetical model that

is “outside the box” of the empirical model. It applies standard probability calculus to

the hypothetical model to connect the hypothetical model to the empirical model. Pearl’s

do-calculus creates a new set of extra-statistical tools to identify the causal parameters cre-

ated by fixing or the “do operator.” Our analysis shows that in the hypothetical model of

Haavelmo, the special extra-statistical tools of the do-calculus are not required to identify

causal parameters. The econometric approach identifies a broader range of models that

cannot be identified using the rules of the “do-calculus.”
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6 Hypothetical Models and Simultaneous Equations

The literature on causality provides a framework for modeling causal processes that are based

on DAGs. Less is known about Directed Cyclic Graphs (DCGs) that are used to represent

Simultaneous Equations. Indeed, the fundamental Local Markov Condition no longer holds

for DCGs (Spirtes, 1995). Nevertheless, the notion of fixing readily extends to a system of

simultaneous equations.

Consider a system of two equations:

Y1 = gY1(Y2, X1, U1), (7a)

Y2 = gY2(Y1, X2, U2). (7b)

TE = {Y1, Y2, X1, X2, U1, U2}. Our analysis can be readily generalized to systems with more

than two equations, but for the sake of brevity, we focus on the two-equation case. To

simplify notation, we keep ε implicit.

The empirical Simultaneous Equations Model of (7a) and (7b) is represented as Model

1 of Table 7. Many different versions of this model appear in the literature. For simplicity,

we assume U1 ⊥⊥ U2 and (U1, U2) ⊥⊥ (X1, X2).
19

The hypothetical model associated with the causal operation of fixing both Y2 and Y1 is

represented in Model 2 of Table 7. Under autonomy, the causal effect of Y2 on Y1 when Y2

is fixed at y2 is given by Y1(y2) = gY1(y2, X, U1). Symmetrically, Y2(y1) = gy2(y1, X, U2). We

define hypothetical random variables Ỹ1, Ỹ2. They replace the Y1, Y2 inputs in Equations (7a)

and (7b) in the same fashion as discussed in previous sections. (Ỹ1, Ỹ2) ⊥⊥ (X1, X2, U1, U2);

and Ỹ1 ⊥⊥ Ỹ2. TH = {Ỹ1, Ỹ2, Y1, Y2, X1, X2, U1, U2}. We assume a common support for (Y1, Y2)

and (Ỹ1, Ỹ2).

19These assumptions are made to simplify the analysis. A large literature relaxes these assumptions
and develops identification criteria for cases where U1 ⊥�⊥ U2 and (U1, U2) ⊥�⊥ (X1, X2). The literature
considers a variety of specifications (see Matzkin, 2008). We maintain the assumptions that U1 ⊥⊥ U2 and
(U1, U2) ⊥⊥ (X1, X2) for simplicity.
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In the same fashion as in the model previously discussed, the distribution of Y1 when Y2

is fixed at y2 is given by PH(Y1|Ỹ2 = y2). The average causal effect of Y2 on Y1 when Y2

is fixed at the two values of y2 and y′2 is given by EH(Y1|Ỹ2 = y2) − EH(Y1|Ỹ2 = y′2), where

EH denotes expectation over the probability measure PH of the hypothetical model. The

hypothetical variation of Ỹ2 corresponds to the standard Marshallian and Walrasian thought

experiments in which quantities or prices are fixed to trace out demand and supply curves

(see, e.g., Mas-Colell et al., 1995). A symmetric analysis produces the causal effect of Y1 on

Y2. Thus we obtain the counterpart to the counterfactuals defined for the recursive models

earlier in this paper.

Table 7: Models for Simultaneous Equations

1. Empirical Model for Simultaneous Equations

X2 Y2 Y1 X1

U2 U1

2. Hypothetical Model for Simultaneous Equations

X2 Y2 Y1 X1

U2 U1 Ỹ2Ỹ1

This table shows two models. (The ε are kept implicit.) Model 1 represents the empirical model for
Simultaneous Equations where Y1 and Y2 cause each other. Model 1 is cyclic, and hence it is not
a DAG. Model 2 represents one possible hypothetical model associated with the empirical model
for Simultaneous Equations. In Model 2, the hypothetical variable Ỹ2 is associated with the causal
link of Y2 on Y1 of Model 1 and the hypothetical variable Ỹ1 is associated with the causal link of
Y1 on Y2 of Model 1.

Under simultaneity, the graph for Model 1 is cyclic and the relationships that hold for
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DAGs, such as the LMC (5), break down (Lauritzen and Richardson, 2002; Spirtes, 1995).

Equations (7a) and (7b) cannot be represented as Directed Bayesian networks. The tools

developed for DAGs do not directly apply and require modification. Equations (7a) and (7b)

are fundamentally non-recursive and observed variables emerge from a feedback process.

A traditional assumption in the simultaneous equations literature is “completeness”—the

existence of at least a local solution for Y1 and Y2 in terms of (X1, X2, U1, U2):

Y1 = φ1(X1, X2, U1, U2), (8a)

Y2 = φ2(X1, X2, U1, U2).
20 (8b)

These are called “reduced form” equations (see, e.g., Matzkin, 2008, 2013). They inherit

the autonomy properties of the structural equations.

The assumption of the existence of a reduced form is not innocuous even in the linear cases

for continuous Y1 and Y2 analyzed by Haavelmo (1943, 1944) and the Cowles Foundation

pioneers (see Koopmans et al., 1950). Heckman (1978), Tamer (2003), and Chesher and

Rosen (2012) analyze the case in which Y1 and Y2 are discrete valued. Solutions (8a) and (8b)

may not exist except under conditions given in those papers.21 Alternatively, there may be

multiple solutions giving rise to reduced form correspondences. In the case where no solutions

exist, the model is incoherent as an equilibrium model unless additional assumptions are

invoked. However, one can construct hypothetical models using Haavelmo’s insights even in

incoherent cases.22

20We use the term “completeness” in the sense of Koopmans et al. (1950); i.e., the existence of a local
solution of equations (7a) and (7b). This concept is to be distinguished from the notion of completeness in
the nonparametric IV literature (Newey and Powell, 2003) or in hypothesis testing (Lehmann and Romano,
2005).

21Linear probability model approximations to Equations (7a) and (7b), as advocated by Angrist and
Pischke (2008), although widely used, are in general not autonomous. They can, however, be estimated
and identified for incoherent models, creating the illusion of coherency through approximation error. See
Heckman and MaCurdy (1985).

22This might be a conceptually unsatisfactory enterprise unless the data intended to be described by the
model display disequilibrium cycling phenomena and a time sequence for the evolution of the system, e.g.,

Y
(t)
1 , Y

(t+1)
2 , . . ., is postulated as functions of inputs where superscripts denote time-dated variables.
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In addition, some frameworks for multivariate discrete data may not be sufficiently rich

to distinguish correlation from causation. Heckman (1978) shows that log-linear models

for discrete data used in statistics (see, e.g., Bishop et al., 1975) have too few parameters

to make causal distinctions. He introduces a class of latent variable models in which such

distinctions are possible.

Note further that even in models in which the reduced form equations are well defined, it is

not possible, in general, to simultaneously vary Ỹ1 and Ỹ2 so that they (i) solve Equations (7a)

and (7b) and (ii) also satisfy the requirement that (Ỹ1, Ỹ2) ⊥⊥ (X1, X2, U1, U2). This is appar-

ent from the reduced form equations (8a) and (8b) that, under completeness, the proposed

variations must also satisfy. Nonetheless, Ỹ2 and Ỹ1 can be separately constructed to create

hypothetical models corresponding to Equations (7a) and (7b) respectively. These equations

exist as theoretical constructs independent of any particular equilibrium construct.23

Matzkin (2007, 2008, 2012, 2013) presents comprehensive and definitive treatments of

alternative approaches for identifying simultaneous equations. Our analysis readily extends

to systems with more than two equations, but for the sake of brevity we do not make the

extension here.

23Under completeness, we can use a version of indirect least squares (ILS) to define causal parameters and
identify them where the induced variation in Ỹ1 and Ỹ2 satisfy equilibrium conditions. Thus if X1 and X2 are
disjoint, one can use ILS to identify from reduced form equations (8a) and (8b), assumed to be differentiable:

∂Y1

∂X2
(From 8a)

=
∂gY1(Y2, X1, U1)

∂Y2

∂Y2

∂X2
(From 8b)

∂Y1

∂X2

∂Y2

∂X2

=

∂φ1(·)
∂X2

∂φ2(·)
∂X2

=
∂gY1

(·)
∂Y2

If X1 and X2 contain common elements, the method can be modified to use only the distinct elements in
X1 and X2 in this analysis.
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7 Summary and Conclusions

This paper examines Haavelmo’s fundamental contributions to the study of causal inference.

He produced the first formal analysis of the distinction between causation and correlation.

He carefully distinguished the process of defining causality—a mental act that assigns hypo-

thetical variation to inputs—from the act of identifying causal models from data. Haavelmo

was remarkably clear about concepts that are still muddled in some quarters of statistics.24

Haavelmo shows us that causal effects of inputs on outputs are defined in abstract models

that assign independent variation to inputs. He formalized Frisch’s notion that causality

is in the mind. We formalize his insight extending his analysis for linear models to more

general models. This enables us to discuss causal concepts such as “fixing” using an intuitive

approach that applies Haavelmo’s ideas.

Following Haavelmo, we distinguish the definition of causal parameters from their iden-

tification. Our approach to defining causality relies on the assumption of autonomy joined

with Haavelmo’s notion of hypothetical random variables. Together they enable us to express

the distribution of counterfactual outcomes using structural equations and the distributions

of the data by replacing the variables whose causal effects we seek to establish with their

hypothetical counterparts. Causal models thus defined apply standard statistical tools and

do not require new procedures like the do-calculus that lie outside the scope of the standard

tools of probability and statistics.

Identification in Haavelmo’s model is achieved in recursive models by applying standard

statistical tools to Bayesian Networks. We link the distributions of empirical and hypothet-

ical models by expressing the quantities of interest in the hypothetical model into observed

quantities in the empirical one.

We illustrate the benefits of Haavelmo’s approach by comparing identification of the

causal effects of Pearl’s flagship Front-Door model (Pearl, 2009) using a method based on

24See, e.g., Holland (1986) and Sobel (2005) for examples of the confusion between models and identification
strategies exemplified by the claim that no causal statements are possible unless persons are randomly
assigned to treatment.
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the Haavelmo approach and a method based on the do-calculus of Pearl (2009). While both

methods generate the same estimator, the identification methods differ on both conceptual

and methodological grounds. We discuss the limitations of methods of identification that

rely on the fundamentally recursive approach of Directed Acyclic Graphs.

That framework cannot accommodate the fundamentally non-recursive framework of

the simultaneous equations model without violating autonomy. We consider causality in

the simultaneous equations model developed in the seminal research of Haavelmo (1943,

1944). The framework of simultaneous equations is fundamentally non-recursive and falls

outside of the framework of Bayesian causal nets and DAGs. The analysis of causality in

simultaneous equations models and the identification of causal parameters are central and

enduring contributions of Haavelmo (1944).
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A Mathematical Appendix

Theorem T-1:

Proof. If V is non-descendant of X̃ in the hypothetical model, i.e. V ∈ TE \ DH(X̃) then

V ∈ TE \ ChH(X̃) as ChH(X̃) ⊂ DH(X̃). Thus PH(V |PaH(V )) = PE(V |PaE(V )) from

Equation (8). Moreover, it must be the case that parents of V are also non-descendants

of X̃, i.e., PaH(V ) ⊂ TE \ DH(X̃) ⊂ TE \ ChH(X̃) ∴ PaH(V ) = PaE(V ) by Equation (8).

Another way of saying this is that the parents of V are not children of X̃. Thus we can use

factorization (6) to write:

PH(TE\DH(X̃)) =
∏

V ∈TE\DH(X̃)

PH(V |PaH(V )) =
∏

V ∈TE\DH(X̃)

PE(V |PaE(V )) = PE(TE\DH(X̃)).

As a consequence, PH(W ) = PE(W ) for all W ⊂ TE \DH(X̃) and thereby

PH(W = w|Z = z) =
PH(W = w,Z = z)

PH(Z = z)
=

PE(W = w,Z = z)

PE(Z = z)
= PE(W = w|Z = z).

Conditioning on X̃ comes from that fact that X̃ ⊥⊥ (TE \ DH(X̃)), which is obtained by

applying LMC (5) to X̃ in GH.

Theorem T-2:

Proof. In order to prove the theorem, we first partition the set of variables TE into four sets:

TE = {TE \DE(X)︸ ︷︷ ︸
Set 1

} ∪ {DE(X) \ ChE(X)︸ ︷︷ ︸
Set 2

} ∪ {ChH(X)︸ ︷︷ ︸
Set 3

} ∪ {ChH(X̃)︸ ︷︷ ︸
Set 4

}.

Set 1 consists of all variables in TE that are non-descendants of X in the empirical model

and thereby nondescendants of X̃ in the hypothetical one. Set 2 consists of descendants of

X but not directly caused by X, i.e., except its Children. Sets 3 and 4 are the Children of

X and X̃ in the hypothetical model. Note that Sets 3 and 4 consist of all Children of X
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in the empirical model as ChE(X) = ChH(X) ∪ ChH(X̃). We now examine the variables of

each set separately:

1. For all V ∈ TH \ DE(X) ⇒ {V, PaH(V )} ⊂ TH \ DE(X) ⊂ TE \ DH(X̃), as DH(X̃) ⊂

DE(X). Also X ∈ TE \DH(X̃). Thus by Theorem T-1: PH(V |PaH, X̃ = x,X = x) =

PE(V |PaE(V ), X = x).

2. V ∈ DE(X) \ ChE(X) ⇒ X̃ /∈ PaH(V ), X /∈ PaH(V ), and PaH(V ) = PaE(V ). More-

over, X, X̃ must be non-descendants of V due to the acyclic property of the empir-

ical model on X. Thus, by LMC (5), (X̃,X) ⊥⊥ V |PaH(V ). By Weak Union, X̃ ⊥⊥

V |(PaH(V ), X). Therefore PH(V |PaH(V ), X̃ = x,X = x) = PH(V |PaH(V ), X = x) =

PE(V |PaE(V ), X = x) by Equation (8).

3. V ∈ ChH(X) ⇒ X̃ /∈ PaH(V ) and X ∈ PaH(V ) = PaE(V ). Also, X̃ is external, thus

X̃ ⊥⊥ V |PaH(V ) by LMC (5) applied to V. Therefore PH(V |PaH(V ) \X, X̃ = x,X =

x) = PH(V |PaH(V ) \ X,X = x) = PE(V |PaE(V ) \ X,X = x) by Equation (8) as

V ∈ ChH(X) ⊂ TE \ ChH(X̃).

4. V ∈ ChH(X̃) ⇒ X̃ ∈ PaH(V ). Moreover, X must be a non-descendant of V due to the

acyclic property of the empirical model on X. Thus, by LMC (5), X ⊥⊥ V |PaH(V ).

Therefore PH(V |PaH(V ) \ X̃, X̃ = x,X = x) = PH(V |PaH(V ) \ X̃, X̃ = x) =

PE(V |PaE(V ) \X,X = x) by Equation (9).

Grouping items 1–4, we have that for all V ∈ TH, PH(V |PaH(V ), X̃ = x,X = x) =

PE(V |PaE(V ), X = x). Thus we can use the factorization (6) to obtain:

PH(TE|X = x, X̃ = x) =
∏
V ∈TE

PH(V |PaH(V ), X̃ = x,X = x)

=
∏
V ∈TE

PE(V |PaE(V ), X = x)

= PE(TE|X = x). (12)
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The claim of the theorem is a direct consequence of Equation (12).

Corollary C-1:

Proof.

PH(TE|X = X̃) =
∑

x∈supp(X)

PH(TE|X = x, X̃ = x)
PH(X = x, X̃ = x)∑

x∈supp(X)PH(X = x, X̃ = x)

=
∑

x∈supp(X)

PH(TE|X = x, X̃ = x)
PH(X = x)PH(X̃ = x)∑

x∈supp(X)PH(X = x)PH(X̃ = x)

=
∑

x∈supp(X)

PH(TE|X = x, X̃ = x)
PH(X = x)∑

x∈supp(X)PH(X = x)

=
∑

x∈supp(X)

PH(TE|X = x, X̃ = x)PH(X = x)

=
∑

x∈supp(X)

PE(TE|X = x)PE(X = x)

= PE(TE).

The second equality stems from PaH(X̃) = ∅ and X is not descendant of X̃, thus by

LMC (5), X ⊥⊥ X̃. Therefore PH(X = x, X̃ = x) = PH(X = x)PH(X̃ = x). The third

equality comes from the assumption that PH(X̃ = x) is constant due to uniformity. The

fourth equality comes from the fact that
∑

x∈supp(X)PH(X = x) = 1. The first term of the

fifth equality comes from an application of Theorem T-2. The second term of the fifth

equality comes from Theorem T-1 and the fact that X ∈ TE \DH(X̃).
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Theorem T-3:

Proof.

PH(TE \X|X̃ = x) =
∏

V ∈TE\{X∪ChH(X)}
PH(V |Pa(V ))

∏
V ∈ChH(X)

PH(V |Pa(V ) \ X̃, X̃ = x)

=
∏

V ∈TE\{X∪ChE(X)}
PH(V |Pa(V ))

∏
V ∈ChE(X)

PH(V |Pa(V ) \ X̃, X̃ = x)

=
∏

V ∈TE\{X∪ChE(X)}
PE(V |Pa(V ))

∏
V ∈ChE(X)

PE(V |Pa(V ) \X,X = x)

= PE(TE \X|do(X) = x).

The first equality comes from the fact that the hypothetical model is a DAG, therefore we

apply factorization (6). The second equality comes from the characteristic of the do-operator,

which targets all causal links of a fixed variable X. Thus the hypothetical variable X̃ must

replace all X inputs which is equivalent to ChH(X̃) = ChE(X). The first and second terms

of the third equality come as a consequence of Equations (8) and (9) respectively. The last

equality comes from the definition of the do-operator.

Lemma L-1:

Proof.

PH(W |Z, X̃ = x) = PH(W |Z, X̃ = x,X = x) by assumption X ⊥⊥ W |(Z, X̃) in GH

= PE(W |Z,X = x) by Theorem T-2.
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